工程变形监测

合集下载

如何进行工程变形监测与分析

如何进行工程变形监测与分析

如何进行工程变形监测与分析工程变形监测与分析是一项关键的工作,它在工程建设与维护中具有重要的意义。

在现代工程项目中,工程变形是不可避免的现象,如桥梁的挠度、建筑物的沉降以及地下管道的位移等。

因此,准确地进行工程变形监测与分析对于确保工程的安全和可持续发展至关重要。

工程变形监测与分析的目的是通过监测结构或设备的变形情况来评估其性能,并及时采取措施来防止潜在的灾害发生。

通过采集和分析变形数据,我们可以了解工程结构的健康状况,判断其是否存在异常状态,并及时采取相应的措施来保障工程的稳定性和安全运行。

首先,工程变形监测与分析的基础是科学准确的监测手段。

目前,常用的监测手段有激光测距仪、位移传感器、倾斜计等。

这些先进的监测仪器可以精确地测量工程结构的变形,并将数据实时传输到监测中心进行分析。

同时,通过使用先进的数据处理技术,可以将大量的监测数据进行有效的整理和分析,提取有价值的信息。

其次,工程变形监测与分析需要根据工程的特点和需求进行针对性的设计。

不同类型的工程在监测和分析上存在着一些特殊的要求。

例如,对于桥梁结构,我们需要关注振动频率、挠度以及风荷载等因素的影响;对于地下管道,我们需要关注位移是否超出了结构设计的允许范围。

因此,在进行监测方案设计时,需要充分了解工程的特点,并综合考虑各种因素,制定适用的监测方法和方案。

此外,工程变形监测与分析还需要结合现代信息技术的发展,打造智能化的监测系统。

随着物联网技术的不断发展,我们可以通过将监测仪器与云计算技术相结合,实现远程监测和数据分析。

通过智能化的监测系统,可以实时监测工程结构的变形情况,并及时预警潜在的问题。

同时,通过数据分析和挖掘,可以更加全面地了解工程结构的变形特点,并为工程维护和管理提供科学依据。

最后,工程变形监测与分析的结果应该被充分利用,为工程的决策与管理提供可靠的依据。

工程变形监测与分析的最终目的是保障工程的稳定性和安全运行。

因此,监测与分析的结果应该被及时沟通和共享,为工程的决策提供有力的支持。

工程的变形监测方案

工程的变形监测方案

工程的变形监测方案1. 背景及意义随着工程建设的不断发展,工程变形监测逐渐成为一个重要的研究方向。

对工程进行变形监测可以及时了解工程稳定性和安全性,保障工程质量,避免灾难事故的发生。

工程变形监测方案是指对工程变形进行监测,采集和分析数据,对工程进行安全评估和风险分析的一项重要工作。

因此,制定合理、科学的工程变形监测方案对工程的稳定和安全具有重要意义。

2. 监测对象在工程变形监测方案中,首先需要明确监测对象。

监测对象包括土木工程、建筑物、桥梁、隧道、水利工程等。

根据不同的监测对象,监测方案中的监测手段和方法也会有所不同。

3. 变形监测手段在工程变形监测方案中,变形监测手段是至关重要的一环。

目前,常见的变形监测手段包括激光测距仪、全站仪、GNSS(全球导航卫星系统)、INSAR(干涉合成孔径雷达)等。

这些监测手段具有精度高、监测范围广、操作简单等特点,可以为工程变形监测提供有力支持。

4. 监测方法对于不同的监测对象,需要采用不同的监测方法。

通常情况下,可以采用静态监测和动态监测相结合的方式进行工程变形监测。

静态监测是指通过定点监测,采集工程各个部位的变形信息,以实现全方位的监测。

动态监测则是指采用实时监测,利用传感器等设备监测工程的变形情况。

通过静态和动态监测相结合,可以全面了解工程的变形情况,提高监测数据的精度和准确性。

5. 数据采集和分析数据采集和分析是工程变形监测方案中不可或缺的环节。

在变形监测中,需要通过监测手段采集大量的变形数据,并进行精确的数据分析。

通过对数据的分析,可以及时了解工程的变形情况,判断工程的安全状态,预测可能出现的问题,并提出相应的处理和应对措施。

6. 存储和管理在工程变形监测方案中,对于采集到的大量数据需要进行合理的存储和管理。

这样可以方便后续的数据分析和使用。

同时,通过对数据的存储和管理,可以形成完整的监测报告,为工程的安全评估和风险分析提供重要依据。

7. 安全评估和风险分析在工程变形监测方案中,安全评估和风险分析是至关重要的一环。

变形监测工程施工方案

变形监测工程施工方案

变形监测工程施工方案1. 项目背景变形监测工程是指为了观测和记录土地、建筑物、桥梁、隧道、水利工程等工程物体在受力或受外部因素影响时产生的形变变化,及时发现并研究工程物体的形变规律,采取相应的措施,以确保工程的安全。

变形监测工程是土木工程领域的重要内容,对工程质量和安全具有重要意义。

本文将围绕变形监测工程的施工方案进行详细介绍和讨论。

2. 工程范围变形监测工程通常包括以下几个方面的内容:土建结构的变形监测、地下隧道及地下工程的地表沉降监测、边坡和河岸的变形监测、管线和电缆的变形监测等。

需要根据实际工程情况,对变形监测工程的范围进行具体确定,并组织相应的监测方案和工艺设计。

3. 工程方法变形监测工程的方法通常包括传统的地面测量和现代化的无人机、激光雷达、卫星定位等高新技术手段。

根据工程的具体情况,选择合适的监测方法,并进行相应的监测点设置和数据采集。

传统地面测量主要包括水准测量、测角测量、距离测量等方法,适用于一些无法使用高新技术手段的场合。

无人机、激光雷达等现代化技术则可以实现对大范围、多角度的监测,并具有高效、精准的特点。

4. 监测点设置在进行变形监测工程的施工过程中,需要根据工程的具体情况,合理设置监测点。

监测点应当尽可能覆盖整个工程范围,并且应当考虑到监测点的密度和分布,以确保监测结果的可靠性和准确性。

在设置监测点时,需要考虑到监测点的稳定性和安全性,并根据需要进行相应的支撑和固定工程。

5. 数据采集与处理在变形监测工程的施工过程中,需要根据监测点的设置,进行相应的数据采集工作。

数据采集工作应当严格按照监测方案和技术要求进行,确保数据的真实性和准确性。

采集到的监测数据需要进行相应的处理和分析工作。

数据处理包括数据的校正、去噪、验证等工作,以确保数据的可信度。

数据分析则包括对数据的整合、趋势分析、异常点识别等工作,以保证对工程变形情况的准确掌握。

6. 施工组织变形监测工程的施工组织工作是保证工程顺利进行的重要环节。

变形监测实施方案

变形监测实施方案

变形监测实施方案一、引言。

变形监测是指对工程结构或地质体进行形变、位移等变化的监测和分析。

在工程建设、地质灾害防治等领域,变形监测具有重要的意义。

本文旨在制定一套科学合理的变形监测实施方案,以确保监测数据的准确性和可靠性,为工程安全和地质灾害防治提供可靠的数据支持。

二、监测对象。

变形监测的对象包括但不限于建筑物、桥梁、隧道、坝体、边坡、地基等工程结构,以及山体、岩体、土体等地质体。

三、监测内容。

1. 变形监测应包括的内容:(1)位移监测,包括水平位移、垂直位移等。

(2)形变监测,包括轴向形变、横向形变等。

(3)应力监测,包括受力构件的应力监测等。

2. 监测方法:(1)传统监测方法,包括测量法、观测法等。

(2)现代监测方法,包括卫星定位技术、遥感技术、激光扫描技术等。

四、监测方案。

1. 监测方案的制定应考虑以下因素:(1)监测目的,明确监测的目的和需求。

(2)监测对象,确定监测对象的类型和特点。

(3)监测内容,明确监测的内容和范围。

(4)监测方法,选择合适的监测方法和技术手段。

(5)监测周期,确定监测的周期和频率。

(6)监测标准,制定监测的标准和要求。

(7)监测方案,综合考虑以上因素,制定科学合理的监测方案。

2. 监测方案的实施步骤:(1)确定监测方案,根据监测对象的特点和监测需求,确定监测方案。

(2)监测仪器设备的选择,选择适合监测对象和监测内容的监测仪器设备。

(3)监测点布设,根据监测方案,合理布设监测点,确保监测数据的全面性和代表性。

(4)监测数据采集,按照监测方案和要求,进行监测数据的采集和记录。

(5)监测数据处理,对采集到的监测数据进行处理和分析,得出监测结果。

(6)监测报告编制,根据监测结果,编制监测报告,提出监测分析和建议。

五、监测质量控制。

1. 监测质量控制的要求:(1)仪器设备的准确性和稳定性。

(2)监测数据的准确性和可靠性。

(3)监测过程的规范性和科学性。

2. 监测质量控制的措施:(1)严格按照监测方案和要求进行监测。

工程测量之变形监测

工程测量之变形监测

§1.1.变形监测的基本概念:1)变形:指变形体在各种荷载作用下,其形状、大小及位置在时间域和空间域中的变化。

2)变形监测:指利用测量仪器与其他专用仪器和方法对变形体的变形现象进行监视、观测的工作。

3)分类:根据变形体的不同来划分。

变形监测的分类:根据变形体的研究范围,可将变形监测研究对象划分为以下三类:(1)全球性变形研究:如监测全球板块运动、地极移动、地球自转速率变化、地潮等。

(2)区域性变形研究:如地壳形变监测、城市地面沉降监测等。

(3)工程和局部性变形研究:如监测工程建筑物的三维变形、滑坡体的滑动、地下开采引起的地表移动和下沉等。

变形监测任务和内容:1)任务:长期地对变形体的移动监测点进行重复观测,捕捉变形敏感部位和各观测周期间的变形观测点的变形信息,并对变形信息进行分析、解释并作出变形预报。

2)内容:视变形体的类型和性质以及设站观测的目的的不同而异。

应以能正确地反映出变形体的变化情况,达到监视变形体的安全、了解其变形规律为目的。

几种不同变形体的监测内容:a、大地形变监测:目的是了解地壳动态,所以观测内容是观测监测点的点位位移、移动方向、速度和高程变化等。

b、工业与民用建筑物变形监测:主要观测其基础的下沉和纵横向的长度变化,用以计算建筑物的倾斜、弯曲、拉伸与压缩变形及下沉速度,并绘制沉降分布图;对建筑物的主体部分主要观测倾斜和裂缝。

c、水工建筑物稳定性监测:对土坝而言,主要观测水平位移、垂直位移、渗透、裂缝观测等;对混凝土重力坝而言,主要有垂直位移、水平位移、伸缩缝及应力观测等。

d、地表沉降观测:掌握其沉降与回升的规律,以便采取防护措施。

在江河下游和冲积表土层大面积覆盖的平原地区,导致地表沉降的原因主要有两个:变形监测的目的和意义:目的:掌握变形体的实际形状,为判断其安全提供必要的信息。

意义:重点表现在两个方面实用上的意义:掌握各种建筑物和地质构造的稳定性,为安全性诊断提供必要的信息,以便及时发现问题并采取措施;科学上的意义:更好地理解变形的机理,验证有关工程设计的理论和地壳运动的假说,进行反馈设计以及建立有效的变形预报模型。

变形监测有哪些内容

变形监测有哪些内容

变形监测有哪些内容变形监测是指对物体形态、结构、位置等进行实时监测和分析的技术手段。

在工程领域中,变形监测被广泛应用于建筑物、桥梁、隧道、坝体、地铁、高架线路等工程结构的安全监测和评估。

通过对结构变形的监测,可以及时发现结构变形的情况,为结构的安全运行提供重要的依据。

变形监测的内容主要包括以下几个方面:1. 变形监测的基本原理。

变形监测的基本原理是利用各种传感器对结构进行实时监测,通过采集的数据进行分析和处理,得出结构的变形情况。

常用的监测手段包括全站仪、GPS、倾角仪、位移传感器等。

这些传感器可以实时监测结构的位移、倾斜、变形等情况,为结构的安全运行提供重要的数据支持。

2. 变形监测的应用范围。

变形监测广泛应用于建筑物、桥梁、隧道、坝体等工程结构的安全监测和评估。

在建筑物中,可以通过变形监测技术对建筑物的沉降、裂缝、变形等情况进行实时监测,及时发现结构的变形情况,为建筑物的安全运行提供重要的依据。

在桥梁、隧道、坝体等工程结构中,变形监测可以对结构的位移、倾斜、裂缝等情况进行实时监测,为工程结构的安全运行提供重要的数据支持。

3. 变形监测的优势。

变形监测具有实时性强、监测范围广、监测精度高等优势。

通过变形监测技术,可以实时监测结构的变形情况,及时发现结构的安全隐患,为结构的安全运行提供重要的数据支持。

同时,变形监测技术可以对结构的变形情况进行全面、精准的监测,提高了监测的准确性和可靠性。

4. 变形监测的发展趋势。

随着科学技术的不断发展,变形监测技术也在不断创新和完善。

未来,变形监测技术将更加注重监测数据的实时性和准确性,提高监测手段的灵活性和多样性,为工程结构的安全运行提供更加可靠的数据支持。

同时,变形监测技术将更加注重监测数据的分析和处理,提高数据的利用价值,为工程结构的安全评估提供更加科学、可靠的依据。

5. 结语。

变形监测作为一种重要的工程监测手段,对工程结构的安全运行具有重要的意义。

通过对结构变形的实时监测和分析,可以及时发现结构的变形情况,为工程结构的安全运行提供重要的数据支持。

测绘工程中的工程变形监测与分析

测绘工程中的工程变形监测与分析

测绘工程中的工程变形监测与分析在现代工程建设领域中,测绘工程扮演着至关重要的角色。

而其中的工程变形监测与分析更是保障工程安全、质量和稳定运行的关键环节。

工程变形可能会给工程项目带来严重的安全隐患和经济损失,因此对其进行有效的监测和分析具有极其重要的意义。

工程变形是指工程建筑物在施工、运营过程中,由于各种内外因素的作用,其形状、位置、尺寸等发生的变化。

这些变化可能是缓慢的、渐进的,也可能是突发的、剧烈的。

常见的工程变形包括建筑物的沉降、倾斜、水平位移、裂缝开展等。

而引起工程变形的原因多种多样,主要包括地质条件的变化、荷载的作用、施工工艺的影响、环境因素的改变等。

为了及时准确地掌握工程变形情况,需要采用一系列先进的监测技术和方法。

其中,水准测量是最常用的一种方法。

通过在工程建筑物周围建立水准测量网,定期观测水准点的高程变化,从而计算出建筑物的沉降情况。

全站仪测量则能够同时测量建筑物的水平位移和垂直位移,具有较高的精度和效率。

GPS 测量技术的应用也越来越广泛,其不受通视条件限制,能够实现对大范围工程变形的实时监测。

此外,还有一些新兴的监测技术,如激光扫描测量、摄影测量等,为工程变形监测提供了更多的选择。

在进行工程变形监测时,监测点的布设是一个关键环节。

监测点应能够反映建筑物的变形特征,同时要保证其稳定性和可靠性。

一般来说,监测点应分布在建筑物的关键部位,如基础、柱、梁等。

监测的频率则需要根据工程的特点、变形的速度以及监测的目的来确定。

在施工期间,由于施工活动对建筑物的影响较大,监测频率通常较高;而在运营期间,监测频率可以适当降低。

监测得到的数据需要进行及时的处理和分析,以提取有用的信息。

数据处理包括误差消除、数据平差等。

而数据分析则可以采用多种方法,如回归分析、灰色系统理论、有限元分析等。

通过对监测数据的分析,可以了解工程变形的规律和趋势,判断变形是否在允许范围内。

如果变形超过了允许值,就需要及时采取措施进行处理,如加固建筑物、调整施工工艺等。

测绘技术中的工程变形监测方法

测绘技术中的工程变形监测方法

测绘技术中的工程变形监测方法引言:在建设工程领域,工程变形监测是一项重要的任务。

为了确保工程施工的质量和安全,测绘技术在监测工程变形方面发挥着关键作用。

本文将介绍测绘技术中常用的工程变形监测方法。

一、全站仪监测法全站仪监测法是一种常见的工程变形监测方法。

全站仪能够通过测量目标点的水平角度、垂直角度和斜距来计算出目标点的空间坐标。

在工程变形监测中,全站仪可以用于测量目标点的位移和变形。

全站仪监测法的优点在于测量精度高、数据准确可靠。

通过将全站仪放置在适当位置,可以覆盖整个工程区域的监测范围。

同时,全站仪还具有较高的自动化程度,能够实现数据的实时传输和处理。

二、摄影测量监测法摄影测量监测法是一种基于影像信息的工程变形监测方法。

通过将航空遥感或无人机摄像机拍摄的影像进行处理,可以获取目标区域的变形信息。

利用图像匹配和数字几何模型,可以计算目标点的坐标和位移。

摄影测量监测法的优点在于监测范围广、数据处理简便。

通过摄影测量技术,可以覆盖大范围的工程区域,并进行高精度的变形监测。

另外,摄影测量技术还能够提供三维场景的可视化效果,方便用户对变形情况的直观理解。

三、遥感监测法遥感监测法是一种基于卫星和航空遥感影像的工程变形监测方法。

通过获取目标区域的遥感影像,可以分析地表的变形情况。

利用影像处理和遥感技术,可以提取地表点的坐标和形状信息。

遥感监测法的优点在于监测范围大、实时性强。

随着卫星和航空遥感技术的发展,遥感影像的分辨率和覆盖范围越来越大。

因此,遥感监测法可以应用于全球范围的工程变形监测,并实现实时数据的获取和分析。

四、激光测量监测法激光测量监测法是一种基于激光测距仪的工程变形监测方法。

通过激光测距仪测量目标点的距离,可以计算出目标点的坐标和位移。

激光测量监测法适用于监测小范围、高精度的变形情况。

激光测量监测法的优点在于测量速度快、精度高。

通过激光测距仪,可以实现对目标点的非接触式测量,避免了传统测量方法中的接触干扰。

变形监测有哪些内容

变形监测有哪些内容

变形监测有哪些内容变形监测是指对工程结构或地质体进行形变的监测和分析,以及对变形进行预测和预警的一种技术手段。

变形监测通常应用于地质灾害预警、工程结构安全监测、地下水开采引起的地面沉降等领域。

在实际工程和地质勘察中,变形监测具有重要的意义,可以及时发现和预警可能出现的问题,保障工程安全和地质环境稳定。

下面将介绍一下变形监测的相关内容。

一、监测对象。

变形监测的对象包括但不限于以下几个方面:1. 工程结构,如建筑物、桥梁、隧道、坝体等工程结构的变形监测,可以通过监测结构的位移、变形、裂缝等情况,及时了解工程结构的变形情况,确保结构的安全性。

2. 地质体,如山体、边坡、岩体等地质体的变形监测,可以通过监测地表位移、地下水位变化、地下裂缝等情况,及时了解地质体的变形情况,预防地质灾害的发生。

3. 地下水位,地下水开采引起的地面沉降是一种常见的地质灾害,通过监测地下水位的变化,可以及时预警地面沉降的可能性,采取相应的措施进行治理。

二、监测方法。

1. GNSS监测,GNSS(全球导航卫星系统)是一种常用的变形监测技术,通过布设在监测对象周围的GNSS接收机,实时监测接收机的位置坐标,从而得到监测对象的位移和变形情况。

2. 雷达干涉监测,雷达干涉监测是一种利用合成孔径雷达(SAR)技术进行地表形变监测的方法,可以实现对大范围地表的高精度监测,对地质灾害的监测具有重要意义。

3. 激光测距监测,激光测距监测是一种利用激光测距仪进行变形监测的方法,可以实现对监测对象的高精度三维形变监测,适用于对工程结构的变形监测。

三、监测数据分析。

监测数据的分析是变形监测的重要环节,通过对监测数据的分析,可以及时发现变形情况,并进行预测和预警。

监测数据分析通常包括以下几个方面:1. 变形趋势分析,对监测数据进行时间序列分析,得出监测对象的变形趋势,判断变形是否存在加剧或减缓的趋势。

2. 变形速率分析,对监测数据进行速率分析,得出监测对象的变形速率,判断变形的快慢程度,为预测变形提供依据。

工程变形监测方案审批

工程变形监测方案审批

工程变形监测方案审批一、前言工程变形监测是指为了掌握工程设施在使用过程中的变形情况,从而及时发现和预警潜在的安全隐患,保障工程设施的安全、稳定使用而进行的一种监测措施。

工程变形监测既包括建设过程中的变形监测,也包括工程使用过程中的变形监测。

本方案旨在对工程变形监测方案进行审批,以确保工程变形监测工作的科学性、合理性和有效性。

二、监测对象本监测方案适用于各类工程设施和建筑物,包括但不限于桥梁、隧道、大型建筑、水利工程、地铁、高铁等各类工程设施及其周边环境。

三、监测内容1. 工程变形监测内容应包括但不限于以下几个方面:(1)建设过程中的变形监测:主要包括施工期间各种施工工艺对周边环境和地质条件的影响,以及工程结构本身的变形情况。

(2)工程使用过程中的变形监测:主要包括工程设施在使用过程中的变形情况,例如桥梁的变形、隧道的变形、建筑物的变形等。

2. 变形监测的参数和方法应符合国家规定的相关标准和规范,监测内容应具体、明确,并包括监测的频次、监测的区域和监测的参数等。

四、监测方法1. 工程变形监测方法多种多样,包括但不限于以下几种:(1)物理测量法:如测量位移传感器、水准仪等物理测量仪器进行监测。

(2)遥感监测法:如卫星遥感、飞机航拍等遥感技术进行监测。

(3)无损检测法:如超声波检测、激光检测等技术进行监测。

2. 按照工程的具体情况,确定相应的监测方法和技术,确保监测结果准确、可靠。

五、监测频次1. 工程变形监测频次应根据工程设施的使用情况、周边环境的变化等因素确定,建设过程中的变形监测频次可根据施工进度和局部变形情况确定。

2. 工程使用过程中的变形监测频次一般应每年至少进行一次,对于特殊情况应根据实际情况确定监测频次,并及时调整监测方案。

六、监测报告1. 工程变形监测应编制监测报告,监测报告应包括但不限于以下几个方面的内容:(1)监测的基本情况:包括监测的对象、监测的位置、监测的参数和监测的方法等。

(2)监测结果:对监测结果进行分析和解读,结合相关标准和规范进行评价,确定工程的安全状况。

如何进行变形监测

如何进行变形监测

如何进行变形监测变形监测,是指对建筑物、桥梁、地铁隧道等工程结构在使用过程中的变形和位移进行实时监测和分析的过程。

通过变形监测,我们可以及时发现结构的异常变形,提前预警潜在问题,以保证建筑物的安全稳定。

本文将介绍如何进行有效的变形监测,涵盖监测方法、监测工具和数据分析等方面。

一、变形监测的方法1. 传统测量方法传统测量方法是指人工进行的监测方法,通常利用经纬仪、水准仪、全站仪等仪器设备进行直接测量。

这种方法的优势在于测量精度较高,数据可靠性比较高。

但是,由于工程规模大、监测点多,传统方法不能满足大规模和实时监测的需求。

2. 无人机测量方法随着科技的进步,无人机测量方法逐渐被应用于工程结构的变形监测中。

无人机可搭载高精度相机、雷达、激光扫描仪等设备,能够对工程结构进行全面、快速的测量。

通过无人机测量,我们可以获取大范围、高分辨率的监测数据,实现对工程结构的三维建模和变形分析。

3. 激光扫描仪监测方法激光扫描仪是一种高精度的变形监测工具,通过激光束测量物体表面的距离,可以获取物体的空间形态信息。

激光扫描仪监测方法具有高精度、非接触、高效率等特点,能够满足复杂场景下的变形监测需求。

但是,由于设备成本较高,该方法在实际应用中还存在一定的限制。

二、变形监测的工具1. 数据采集设备数据采集设备是进行变形监测的关键工具之一。

它可以记录监测点的位移、振动、变形等数据,并将其传输到监测中心进行分析。

常用的数据采集设备有挠度计、位移传感器、加速度计等。

这些设备具有高精度、高灵敏度的特点,能够准确地监测结构的变形情况。

2. 数据处理软件数据处理软件用于对采集到的监测数据进行分析和处理。

它能够将原始数据转化为可视化的图表和图像,以便工程师进行进一步分析。

常用的数据处理软件有MATLAB、Python等,它们提供了各种数据处理和统计分析的功能,方便工程师进行数据挖掘和模型建立。

三、数据分析方法1. 统计分析统计分析是变形监测中常用的分析方法之一。

建筑工程施工测量中的变形监测技术要点

建筑工程施工测量中的变形监测技术要点

建筑工程施工测量中的变形监测技术要点建筑工程施工过程中,测量变形监测技术起到了至关重要的作用。

它能够对建筑物的结构在施工中发生的任何变形进行精确测量和监测,及时发现并纠正问题,保证工程质量和安全。

本文将从测量变形监测技术的定义、应用、要点等多个方面进行论述。

一、定义及应用建筑工程测量变形监测技术是指利用各种测量手段对建筑物在施工阶段或使用阶段中出现的各种形变进行定量测量和监测的技术。

它广泛应用于大型工程项目、高层建筑、桥梁、地铁隧道等。

二、测量原理测量变形监测技术主要通过测量建筑物的位移、形变、挠度等参数来判断建筑物是否存在变形,并定量地测量变形的大小和分布情况。

常用的测量方法包括全站仪测量、激光测距仪测量、GPS测量等。

全站仪测量是一种高精度的测量方法,通过设置多个基准点,使用全站仪对建筑物的各个关键点进行测量,并计算出相对于基准点的位移、形变等参数。

激光测距仪测量则是利用激光技术测量建筑物的距离和高度,通过多次测量得到的数据进行比对,来判断建筑物是否发生变形。

而GPS测量则适用于大范围的建筑物变形监测,其定位精度较高,适用于对地表变形进行测量。

三、测量要点1. 合理选择监测点位在施工测量中,需要选择合适的监测点位。

这些点位应该能够准确反映建筑物的变形情况,同时要注意点位的选择是否影响施工进度和工程质量。

一般情况下,可以选择建筑物的变形较大的部位作为监测点位。

2. 精确高效的测量设备测量设备的准确性和稳定性直接影响到测量结果的精度和有效性。

因此,选择精确可靠的测量设备非常重要。

同时,还需要对测量设备进行定期校准和维护,确保其在工作过程中的准确性。

3. 定期监测和数据分析建筑物的变形监测需要定期进行,以及时发现和纠正问题。

通过对监测数据的分析,可以判断建筑物的变形趋势,及时采取相应的措施,保证工程的质量和安全。

4. 合理解读和应用监测数据监测数据的解读和应用是整个测量变形监测过程中的重要环节。

只有对监测数据进行合理的解读和分析,才能及时发现并解决问题,确保工程质量和安全。

工程变形监测方案涉及哪些内容

工程变形监测方案涉及哪些内容

工程变形监测方案涉及哪些内容一、监测对象工程变形监测的对象主要包括建筑结构、桥梁、隧道、地铁、坝体、管道、地基土体等工程结构及地质体等。

对不同的监测对象,采取不同的监测手段和技术方法。

在建筑结构方面,通常会对建筑的位移、倾斜、裂缝等进行监测,以确保建筑物的稳定性和安全性。

对桥梁和隧道方面,主要关注其结构变形、挠度、裂缝等情况。

而对于地基土体、坝体、管道等地下工程,通常会对其沉降、变形、应力等进行监测。

二、监测的技术手段工程变形监测的技术手段主要包括传统的测量仪器监测和现代的遥感监测技术。

传统的测量仪器监测包括全站仪、水准仪、倾斜仪、裂缝计等。

这些仪器主要通过人工操作或固定安装在监测点上,采用光学、机械或电子等原理进行测量,获取监测数据。

现代的遥感监测技术包括卫星遥感、激光雷达扫描、无人机、高精度GPS等。

这些技术可以实现远距离、动态、高精度的监测,大大提高了监测效率和精度。

三、监测的频次工程变形监测的频次主要包括定期监测和实时监测。

定期监测通常是按照一定的时间间隔进行,如每月、每季度或每年进行一次,以了解结构变形的趋势和周期性变化。

实时监测是指通过实时数据传输和处理技术,实时获取变形数据,并能及时发出预警信号。

四、监测数据分析监测数据的分析主要包括数据处理、趋势分析、异常预警等。

数据处理方面,主要对监测数据进行清洗、修正、转换、存储等,以确保数据的准确性和可靠性。

趋势分析是指对监测数据进行周、月、年的趋势分析,以了解结构变形的规律性和周期性变化。

异常预警是指通过监测数据的分析,发现结构发生异常变形,及时报警并采取相应的措施。

五、应对措施当监测数据显示结构发生异常变形时,需要及时采取相应的措施。

对于建筑结构,可以通过加固、维修等手段来消除异常变形。

对于桥梁和隧道等结构,可以加固、维修或限行等来应对。

对于地基土体、地铁隧道等地下工程,可以通过加固、抢修或改线等来应对。

综上所述,工程变形监测方案是确保工程结构安全及稳定运行的重要手段,涉及监测对象、监测技术手段、监测频次、监测数据分析及应对措施等方面。

工程变形监测设计方案

工程变形监测设计方案

工程变形监测设计方案一、前言工程变形监测是指针对工程结构在使用过程中可能发生的变形情况进行实时、精准的监测和控制,以确保工程的安全运行。

根据不同的工程类型、地质条件和使用环境,变形监测需要采用不同的监测方法和技术手段,以满足工程变形监测的精确性、实时性和可靠性要求。

本方案将通过分析变形监测的技术原理、监测方法和应用场景,提出一套全面、有效的工程变形监测设计方案,以期为相关工程领域的实践工作者提供参考和借鉴。

二、工程变形监测的技术原理工程变形监测的技术原理主要涉及传感技术、数据采集和处理技术、通信技术和监控技术等方面。

1. 传感技术传感技术是工程变形监测的核心技术之一,其主要包括位移传感技术、应变传感技术、倾斜传感技术、振动传感技术等。

传感器通过将物理量(如位移、应变、倾斜、振动等)转换为电信号,再经过放大、滤波和模数转换等处理,最终形成可供监测分析的数字信号。

2. 数据采集和处理技术数据采集和处理技术是将传感器监测到的模拟信号采集、转换成数字信号,并通过存储和处理系统进行数据的存储、分析和处理。

这项技术的主要任务是保证采集到的数据真实可靠,并通过数据分析挖掘出有用的信息。

3. 通信技术通信技术是将采集到的监测数据通过网络传输到监测中心的关键环节。

目前常用的通信技术包括有线传输、无线传输、卫星通信、移动通信等,其中无线传输技术应用较为广泛。

通过通信技术,监测中心可以实时获取工程变形的监测数据,做到实时监控。

4. 监控技术监控技术是将采集到的数据进行分析,通过数据分析的结果及时发现工程变形的异常情况,并及时采取相应的措施防止事故的发生,保障工程的安全运行。

三、工程变形监测的常用方法工程变形监测的常用方法包括精密水准测量、全站仪测量、GNSS定位测量、应变片测量、倾斜仪测量等。

1. 精密水准测量精密水准测量是通过测量水准仪的读数变化,研究出工程结构的变形情况。

该方法适用于平面变形的监测,具有精度高、实时性好的优点,但仪器比较昂贵,且需要专业技术人员操作和维护。

测绘技术中的工程变形监测方法介绍

测绘技术中的工程变形监测方法介绍

测绘技术中的工程变形监测方法介绍随着工程建设的不断发展,对变形监测的需求越来越大。

变形监测是指在工程实施过程中,通过测量来监测和分析结构体的形状和位置的变化。

它在土木工程、建筑工程、交通工程等领域中具有重要的应用价值。

本文将介绍几种常见的工程变形监测方法。

一、全站仪测量法全站仪是测绘工程中常用的仪器之一。

全站仪测量法是一种基于三角测量原理的方法,利用全站仪测量固定点的坐标变化,从而得到工程结构体的变形情况。

全站仪具有高精度和高效率的特点,可以实现对结构体变形的实时监测。

二、激光测距仪测量法激光测距仪是一种利用激光波测量距离的仪器。

激光测距仪测量法通过在结构体上设置一系列测点,并利用激光测距仪对这些测点进行测量,从而获取结构体的变形情况。

激光测距仪具有高精度和非接触性的优点,适用于较大范围的变形监测。

三、GNSS测量法GNSS(全球导航卫星系统)是一种基于卫星信号进行测量的技术。

GNSS测量法通过在结构体上设置一系列GNSS接收器,并利用卫星信号对这些接收器进行测量,从而获取结构体的变形情况。

GNSS测量法具有全球覆盖和较高的定位精度,适用于大范围的变形监测。

四、形变传感器监测法形变传感器是一种能够感知和测量结构体形变的传感器。

形变传感器监测法通过在结构体上安装一些形变传感器,并利用这些传感器对结构体形变进行监测,从而获取结构体的变形情况。

形变传感器监测法能够实时监测结构体的小范围变形,适用于高精度的变形监测。

五、图像处理技术图像处理技术是一种利用计算机对图像进行分析和处理的技术。

图像处理技术在工程变形监测中的应用主要有两种方式:一种是利用摄像机拍摄结构体图像,通过对图像进行处理和分析来获取结构体的变形情况;另一种是利用遥感影像对大范围的结构体进行监测。

图像处理技术具有非接触性和全局性的优势,适用于较大范围的变形监测。

综上所述,工程变形监测是工程建设中不可或缺的环节。

全站仪测量法、激光测距仪测量法、GNSS测量法、形变传感器监测法以及图像处理技术是常见的工程变形监测方法。

工程测量学第9讲 工程的变形监测和数据处理

工程测量学第9讲 工程的变形监测和数据处理
4.变形监测的特点: 变形监测的最大特点是要进行周期观测,所谓周期一周期 的观测方案如监测网的图形、使用的仪器、作业方法乃至观 测人员都要一致。
二、变形体的几何模型和监测点布设
1.变形监测实施:变形监测是通过对变形体进行空间上的离 散化和数据获取在时间上的离散化实施的。 (1)前者是用一定数量的有代表性的位于变形体上的目标 点(或称为观测点)来代表变形体的几何模型,变形监测就是 确定目标点之间的相对运动以及相对于变形体周围的绝对运 动(参见图6-3)。
(5)水准基准点有时还设在平峒内,或采用深埋双金属标 等。 (6)目标点的布设应具有一定的密度,具有代表性。 (7)不仅仅布设在变形体的表面,而且还布设在内部的不 同部位,呈立体式分布。应与变形体固连在一起,能反映所 代表部位的变形,且稳定;能长期保存,与变形体共存亡; 便于观测,对外界的其他干扰影响不敏感。 (8)在变形观测时,不可能对建筑物的每一点都进行观
(2)科学上的作用:积累监测分析资料,能更好地 解释变形的机理,验证变形假说,为研究灾害预报的 理论和方法服务检验工程设计的理论是否正确,设计 是否合理,为以后修改设计、制定设计规范提供依。
3.变形监测的内容: 变形监测主要包括水平位移、垂直位移监测,偏距、倾斜、
挠度、弯曲、扭转、振动、裂缝等的测量,主要是对描述变 形体自身形变和刚体位移的几何量的监测。 (1)水平位移:监测点在平面上的变动,它可以分解到某一 特定方向; (2)垂直位移是监测点在铅直面或大地水准面法线方向上的 变动。
若只对目标点的相对变形感兴趣,则可以不设参考点,这时 存在秩亏问题,坐标系的定义也需另定。
3.监测点的布设: (1)对于所有的变形监测都有共性,但具体的要求又不尽 相同,一般要与相邻学科(如地球物理、岩土力学、建筑工程、 机械制造等)人员共同研究决定。 (2)参考点的布设主要应考虑稳定,不受干扰,埋标要求 高,且要考虑测量技术。 (3)在参考点周围一般还要设保护点。当参考点受破坏时 可用保护点来恢复,平时可用于参考点的检核。参考点一般 要钻孔深埋,要求与基岩固结在一起。

工程变形监测技术与方法概述

工程变形监测技术与方法概述

工程变形监测技术与方法概述工程变形监测是指对建筑物、桥梁、隧道等工程结构进行实时监测和分析,以评估其变形情况并采取必要的措施。

准确的变形监测可以发现潜在的结构问题,提前预防工程事故的发生,保障人民生命财产安全。

本文将概述工程变形监测技术与方法。

1.传统监测方法传统的工程变形监测方法包括水准测量、全站仪测量、倾斜仪测量等。

水准测量通过测量标高,可以获得地面的高程信息,但是在结构变形监测中应用较少。

全站仪测量通过测量水平角、垂直角和斜距,可以获得建筑物各个点的坐标信息,但无法实时监测变形情况。

倾斜仪测量可以实时监测结构的倾斜变形,但只能监测小范围结构。

2.遥感监测技术遥感监测技术通过使用卫星、航空摄影、无人机等遥感设备,获取地面建筑物的变形信息。

卫星遥感监测具有覆盖面广、周期长的优势,但分辨率较低,适用于大尺度结构变形监测。

航空摄影遥感具有分辨率较高的优势,适用于中小尺度结构变形监测。

无人机遥感监测具有灵活性强、分辨率高的优势,适用于小尺度结构变形监测。

3.基于传感器的监测技术基于传感器的监测技术是利用传感器对结构变形进行实时监测。

其中,应变传感器可以实时监测结构的应变情况,通过应变-应力关系可以评估结构的变形情况。

加速度传感器可以实时监测结构的振动情况,通过振动频率和幅值等参数可以评估结构的变形情况。

位移传感器可以实时监测结构的位移情况,通过连续测量可以获得结构的变形曲线。

应力传感器可以实时监测结构的应力情况,通过监测应力变化可以评估结构的变形情况。

4.监测数据处理与分析工程变形监测涉及大量的监测数据,如何进行数据的处理与分析是重要的一环。

常用的数据处理与分析方法包括数据滤波、数据融合、数据插值、数据拟合等。

数据滤波可以去除数据中的噪声,提取出变形信号。

数据融合可以将不同传感器收集到的数据进行整合,提高数据的可靠性和准确性。

数据插值可以通过已有数据推算出未监测到的数据,填补监测数据的空白。

数据拟合可以通过拟合曲线获取变形的趋势和规律。

路基工程变形监测方案

路基工程变形监测方案

路基工程变形监测方案一、监测内容路基工程变形监测的主要内容包括路基变形量、路基变形速率、路基变形趋势、路基稳定性评价等。

监测路基变形量可采用水准测量、全站仪测量、GPS测量等方法,通过监测不同位置的路基变形量,分析和评估路基的变形情况。

监测路基变形速率可采用连续监测法或间歇监测法,分析路基变形的时间变化规律,评估路基变形的速率和趋势。

路基稳定性评价则是通过计算和分析监测数据,评估路基工程的稳定性和安全性。

二、监测方法1.水准测量法:水准测量法是利用水准仪和测量桩进行路基变形量的监测。

它的优点是准确性高,可靠性强,适用范围广,但劳动强度大,监测周期较长。

2.全站仪测量法:全站仪测量法是利用全站仪和反射棱镜进行路基变形量的监测。

它的优点是测量速度快,准确性高,适用范围广,适合大面积路基的监测。

3.GPS测量法:GPS测量法是利用全球定位系统进行路基变形量的监测。

它的优点是测量速度快,无需建立测量桩,适合大面积路基的监测,但受天气和遮挡物的影响较大。

4.连续监测法:连续监测法是指采用自动监测仪器,对路基变形量进行连续监测。

它的优点是实时监测,能够及时发现变形趋势,但监测设备成本较高,维护和管理成本也较高。

5.间歇监测法:间歇监测法是指定期对路基变形量进行监测。

它的优点是监测成本低,适用范围广,但不能及时发现变形趋势。

三、监测技术1.数据采集技术:采用先进的数据采集设备,实现对路基变形量的高效、精准采集。

2.数据传输技术:采用现代化的数据传输技术,实现监测数据的实时传输和远程监控。

3.数据处理技术:采用计算机辅助数据处理技术,对监测数据进行分析和评估。

4.监测报警技术:采用智能化监测系统,实现对异常变形的及时报警和处理。

四、监测方案1.确定监测路段:根据路基工程的重要程度和变形风险,确定监测路段。

2.选择监测方法:根据监测路段的特点和变形情况,选择合适的监测方法。

3.确定监测频次:根据监测要求和变形趋势,确定监测频次。

工程施工过程务必掌握的五种变形监测方法

工程施工过程务必掌握的五种变形监测方法

工程施工过程务必掌握的五种变形监测方法为保证建筑物在施工、使用和运行中的安全,以及为建筑物的设计、施工、管理及科学研究提供可靠的资料,在建筑物施工和运行期间,需要对建筑物的稳定性进行观测。

五种边坡变形监测方法一、常规大地测量方法常规大地测量方法的完善与发展,其显著进步是全站型仪器的广泛使用,尤其是全自动跟踪全站仪,有时也叫测量机器人,为局部工程变形的自动监测或室内监测提高了一种良好的技术手段,它可以进行一定范围内无人值守、全天候、全方位的自动监测。

实际工程试验表明,测量机器人监测精度可达亚mm级。

最大的缺陷是受测程限制,测站点一般都在变形区域的范围之内。

二、地面摄影测量技术在变形监测中的应用虽然起步较早,但是由于摄影距离不能过远,加上绝对精度较低,使得其应用受到局限,过去仅大量应用于高塔、烟筒、古建筑、船闸、边坡体等的变形监测。

近几年发展起来的数字摄影测量和实时摄影测量为地面摄影测量技术在变形监测中的深入应用开拓了非常广泛的前景。

三、特殊的测量手段光、机、电技术的发展,研制了一些特殊和专用的仪器可用于变形的自动监测,它包括应变测量、准直测量和倾斜测量。

例如,遥测垂线坐标仪,采用自动读数设备,其分辨率可达0.01mm;采用光纤传感器测量系统将信号测量与信号传输合二为一,具有很强的抗雷击、抗电磁干扰和抗恶劣环境的能力,便于组成遥测系统,实现在线分布式监测。

四、GPS空间定位技术GPS用于变形监测的作业方式可划分为周期性和连续性(Episodic and Continuous Mode)两种模式。

五、3D激光扫描技术三维激光扫描技术是20世纪90年代中期开始出现的一项高新技术,是继GPS空间定位系统之后又一项测绘技术新突破。

它通过高速激光扫描测量的方法,大面积高分辨率地快速获取被测对象表面的三维坐标数据。

可以快速、大量、高精度地获取空间点位及其变化信息。

三维激光扫描仪基坑施工监测方法以及注意事项施工前,应对周围建筑物和有关设施的现状、裂缝开展情况等进行调查,拍照、摄像作为施工前的档案资料并作详细记录;对于同一工程,监测工作应固定观测人员和仪器,采用相同的观测方法和观测线路,在基本相同的情况下施测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程变形监测最小二乘法广泛应用于测量平差。

最小二乘配置包括了平差、滤波和推估。

附有限制条件的条件平差模型被称为概括平差模型,它是各种经典的和现代平差模型的统一模型。

测量误差理论主要表现在对模型误差的研究上,主要包括:平差中函数模型误差、随机模型误差的鉴别或诊断;模型误差对参数估计的影响,对参数和残差统计性质的影响;病态方程与控制网及其观测方案设计的关系。

由于变形监测网参考点稳定性检验的需要,导致了自由网平差和拟稳平差的出现和发展。

观测值粗差的研究促进了控制网可靠性理论,以及变形监测网变形和观测值粗差的可区分性理论的研究和发展。

针对观测值存在粗差的客观实际,出现了稳健估计(或称抗差估计);针对法方程系数阵存在病态的可能,发展了有偏估计。

与最小二乘估计相区别,稳健估计和有偏估计称为非最小二乘估计。

巴尔达的数据探测法对观测值中只存在一个粗差时有效,稳健估计法具有抵抗多个粗差影响的优点。

建立改正数向量与观测值真误差向量之间的函数关系,可对多个粗差同时进行定位和定值,这种方法已在通用平差软件包中得到算法实现和应用。

方差和协方差分量估计实质上是精化平差的随机模型,过去一直仅停留在理论的研究上。

实际中,要求对多种观测量进行综合处理,因此,方差分量估计已成为测量平差的必备内容了。

目前,通用平差软件包中已增加了该功能,但还需要在测量规范中明确提出来。

需要指出的是:许多测量作业单位喜欢采用附合导线进行逐级加密,主要依据目前规范中有关一、二、三级导线和图根导线的规定。

无疑附合导线具有许多优点,但由于多余观测少,发现和抵抗粗差的能力较弱,不宜滥用。

建立一个区域的控制,首级网点采用GPS测量,下面最好用一个等级的导线网作全面加密。

从测量平差理论来看,全面布设的导线网具有更好的图形强度,精密较均匀,可靠性也较高。

2. 工程控制网优化设计理论和方法网的优化设计方法有解析法和模拟法两种。

解析法是基于优化设计理论构造目标函数和约束条件,解求目标函数的极大值或极小值。

一般将网的质量指标作为目标函数或约束条件。

网的质量指标主要有精度、可靠性和建网费用,对于变形监测网还包括网的灵敏度或可区分性。

对于网的平差模型而言,按固定参数和待定参数的不同,网的优化设计又分为零类、一类、二类和三类优化设计,涉及到网的基准设计,网形、观测值精度以及观测方案的设计。

在工程测量中,施工控制网、安装控制网和变形监测网都需要作优化设计。

由于采用GPS定位技术和电磁波测距,网的几何图形概念与传统的测角网有很大的区别。

除特别的精密控制网可考虑用专门编写的解析法优化设计程序作网的优化设计外,其他的网都可用模拟法进行设计。

模拟法优化设计的软件功能和进行优化设计的步骤主要是:根据设计资料和地图资料在图上选点布网,获取网点近似坐标(最好将资料作数字化扫描并在微机上进行)。

模拟观测方案,根据仪器确定观测值精度,可进一步模拟观测值。

计算网的各种质量指标如精度、可靠性、灵敏度。

精度应包括点位精度、相邻点位精度、任意两点间的相对精度、最弱点和最弱边精度、边长和方位角精度。

进一步可计算坐标未知数的协方差阵或部分点坐标的协方差阵,协方差阵的主成份计算,特征值计算,点位误差椭圆、置信椭圆的计算等。

可靠性包括每个观测值的多余观测分量(内部可靠性)和某一观测值的粗差界限值对平差坐标的影响(外部可靠性)。

灵敏度包括灵敏度椭圆、在给定变形向量下的灵敏度指标以及观测值的灵敏度影响系数。

将计算出的各质量指标与设计要求的指标比较,使之既满足设计要求,又不致于有太大的富余。

通过改变观测值的精度或改变观测方案(增加或减少观测值)或局部改变网形(增加或减少网点)等方法重新作上述设计计算,直到获取一个较好的结果。

在实践中,总结出了下述优化设计策略:先固定观测值的精度,对选取的网点,观测所有可能的边和方向,计算网的质量的指标,若质量偏低,则必须提高观测值的精度。

在某一组先验精度下,若网的质量指标偏高了,这时可按观测值的内部可靠性指标ri,删减观测值。

ri太大,说明该观测值显得多余,应删去;若ri很小,则该观测值的精度不宜增加。

这种根据ri大小来删除观测值的方法称为从“密”到“疏”,从“肥”到“瘦”的优化策略。

从模拟法优化设计的整个过程来看,它是一种试算法,需要有一个好的软件。

该软件除具有通用平差软件的功能外,在成果输出的多样性、直观性,在可视化以及人机交互界面设计方面都有更高要求。

同时也要求设计者具有坚实的专业知识和丰富的经验。

用模拟法可获得一个相对较优且切实可行的方案,可进一步用模拟观测值作网的平差计算,同时可模拟观测值粗差并计算对结果的影响。

这种方法称为数学扭曲法或蒙特卡洛法。

对于一个精度、可靠性以及灵敏度要求极高的监测网或精密控制网,作上述优化设计和精细计算是十分必要的。

国内在这方面的应用报道较少。

多是为了安全起见,有较大的质量富余,建网费用偏高。

网优化设计费用很少,所带来的效益较大,凡是较重要的工程控制网,都应作优化设计。

3. 变形观测数据处理工程建筑物及与工程有关的变形的监测、分析及预报是工程测量学的重要研究内容。

其中的变形分析和预报涉及到变形观测数据处理。

但变形分析和预报的范畴更广,属于多学科的交叉。

(1) 变形观测数据处理的几种典型方法根据变形观测数据绘制变形过程曲线是一种最简单而有效的数据处理方法,由过程曲线可作趋势分析。

如果将变形观测数据与影响因子进行多元回归分析和逐步回归计算,可得到变形与显著性因子间的函数关系,除作物理解释外,也可用于变形预报。

多元回归分析需要较长的一致性好的多组时间序列数据。

若仅对变形观测数据,可采用灰色系统理论或时间序列分析理论建模,前者可针对小数据量的时间序列,对原始数列采用累加生成法变为生成数列,因此有减弱随机性、增加规律性的作用。

如果对一个变形观测量(如位移)的时间序列,通过建立一阶或二阶灰微分方程提取变形的趋势项,然后再采用时序分析中的自回归滑动平均模型ARMA,这种组合建模的方法,可分性好且具有以下显著优点:将非平稳相关时序转化为独立的平衡时序;具有同时进行平滑、滤波和推估的作用;模型参数聚集了系统输出的特征和状态;这种组合模型是基于输出的等价系统的理想动态模型。

把变形体视为一个动态系统,将一组观测值作为系统的输出,可以用卡尔曼滤波模型来描述系统的状态。

动态系统由状态方程和观测方程描述,以监测点的位置、速率和加速率参数为状态向量,可构造一个典型的运动模型。

状态方程中要加进系统的动态噪声。

卡尔曼滤波的优点是勿需保留用过的观测值序列,按照一套递推算法,把参数估计和预报有机地结合起来。

除观测值的随机模型外,动态噪声向量的协方差阵估计和初始周期状态向量及其协方差阵的确定值得注意。

采用自适应卡尔曼滤波可较好地解决动态噪声协方差的实时估计问题。

卡尔曼滤波特别适合滑坡监测数据的动态处理;也可用于静态点场、似静态点场在周期的观测中显著性变化点的检验识别。

对于具有周期性变化的变形观测时间序列,通过Fourier变换,可将时域内的信息转变到频域内分析,例如大坝的水平位移、桥梁的垂直位移都具有明显的周期性。

在某一观测时刻的观测值数字信号可表示为许多个不同频率的谐波分量之和,通过计算各谐波频率的振幅,最大振幅以及所对应的主频率等,可揭示变形的周期变化规律。

若将变形体视为动态系统,变形视为输出,各种影响因子视为输入,并假设系统是线性的,输入输出信号是平稳的,则通过频谱分析中的相干函数、频响函数和响应谱函数估计,可以分析输入输出信号之间的相干性,输入对系统的贡献(即影响变形的主要因素及其频谱特性)。

(2) 变形的几何分析与物理解释传统的方法将变形观测数据处理分为变形的几何分析和物理解释。

几何分析在于描述变形的空间及时间特性,主要包括模型初步鉴别、模型参数估计和模拟统计检验及最佳模型选取3个步骤。

变形监测网的参考网、相对网在周期观测下,参考点的稳定性检验和目标点和位移值计算是建立变形模型的基础。

变形模型既可根据变形体的物理力学性质和地质信息选取,也可根据点场的位移矢量和变形过程曲线选取。

此外,前述的时间序列分析,灰色理论建模、卡尔曼滤波以及时间序列频域法分析中的主频率和振幅计算等也可看作变形的几何分析。

变形的物理解释在于确定变形与引起变形的原因之间的关系,通常采用统计分析法和确定函数法。

统计分析法包括多元回归分析、灰色系统理论中的关联度分析以及时间序列频域法分析中的动态响应分析等。

统计分析法以实测资料为基础,观测资料愈丰富、质量愈高,其结果愈可靠,且具有“后验”性质,它与变形的几何分析具有密切的关系,是测量工作者最熟悉和乐于采用的方法。

确定函数法是根据变形体的物理力学参数,建立力(荷载)和变形之间的函数关系如位移场的微分方程,在边界条件已知时,采用有限元法解微分方程,可得到变形体有限元结点上的变形。

采用有限元法,可以计算混凝土大坝、矿山地表以及滑坡在外力(表面力和体力)作用下的位移值。

这种方法不需要监测数据(监测数据仅作检验用),具有“先验”性质。

只要有限元划分得当,变形体的物理力学参数(如杨氏弹性模量,泊松比,内摩擦角、内聚力以及容重等)选取得较好,该法无疑是一种多快好省的方法,目前有许多有限元计算软件如COSMOS/M供用。

但变形体的物理力学参数的确定和所建立的微分方程都带有一定的假设,有时用有限元法计算的值与实测值有较大的差异,这就导致了将两种方法相结合的综合分析法,以及根据实测值按一定理论反求变形体物理力学参数的反演分析法,通过反演解算,重新用有限元法作修正计算。

相对于有限元法,条分法用于边坡稳定性分析、计算和评价更为简单,其中萨尔码(SARMA) 法应用最普遍,根据力学模型、几何条件和静力平衡方程,对平衡条件作迭代计算,可定量的得到边坡稳定性评价指标——稳定安全系统。

一般要求对条分法和有限元法同时使用。

上述方法对大多数测量工作者来说较为陌生,用确定函数法进行地变形的物理解释和预测属于学科交叉领域,需要与地质和工程结构方面的人员合作。

(3) 变形分析与预报的系统论方法用现代系统论为指导进行变形分析与预报是目前研究的一个方向。

变形体是一个复杂的系统,它具有多层次高维的灰箱或黑箱式结构,是非线性的,开放性(耗散)的,它还具有随机性,这种随机性除包括外界干扰的不确定性外,还表现在对初始状态的敏感性和系统长期行为的混沌性。

此外,还具有自相似性、突变性、自组织性和动态性等特征。

按系统论方法,对变形体系统一般采用输入—输出模型和动力学方程两种建模方法进行研究,前者系针对黑箱或灰箱系统建模,前述的时序分析、卡尔曼滤波、灰色系统建模、神经网络模型乃至多元回归分析法都可以视为输入—输出建模法。

采用动力学方程建模与变形物理解释中的确定函数法相似,系根据系统运动的物理规律建立确定的微分方程来描述系统的运动演化。

相关文档
最新文档