电涡流位移传感器(蒋维)

合集下载

电涡流传感器(位移)

电涡流传感器(位移)

Your company slogan
1 电涡流式传感器原理
电涡流探头结构
1—电涡流线圈 2—探头壳体 3—壳体上的位置调节螺纹 4—印制线路 板 5—夹持螺母 6—电源指示灯 7—阈值指示灯 8—输出屏蔽电缆线 9—电缆插头
Your company slogan
2 电涡流传感器测量电路
电桥测量电路 在进行测量时,由于传感器线圈的阻抗发生变化,使电桥 失去平衡,将电桥不平衡造成的输出信号进行放大并检波, 就可得到与被测量成正比的输出。 谐振法 谐振法主要有调幅式电路和调频式电路两种基本形式。调 幅式由于采用了石英晶体振荡器,因此稳定性较高,而调 频式结构简单,便于遥测和数字显示。
Your company slogan
Your company slogan
1 电涡流式传感器原理
高频反射电涡流传感器等效电路
R
M
R
1
U
·
1
I
·
1
I
L
1
·
2
L
2
Z1=R+jωL1 RI1+jωL1I1-jωMI2=U1 -jωMI1+R1I2+jωL2I2=0
Your company slogan
1 电涡流式传感器原理
传感器线圈的等效阻抗
Your company slogan
1 电涡流式传感器原理
电涡流传感器分类 涡流传感器在金属体上产生的电涡流, 涡流传感器在金属体上产生的电涡流,其渗透深度从传感器线圈自身 原因来讲主要与励磁电流的频率有关, 原因来讲主要与励磁电流的频率有关,所以涡流传感器主要可分高频 反射的低频投射两类。 反射的低频投射两类。
电涡 传感 (

电涡流位移传感器的原理

电涡流位移传感器的原理

电涡流位移传感器的工作道理:电涡流传感器能静态和动态地非接触.高线性度.高分辩力地测量被测金属导体距探头概况距离.它是一种非接触的线性化计量对象.电涡传播感器能精确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变更.在高速扭起色械和来去式运念头械状况剖析,振动研讨.剖析测量中,对非接触的高精度振动.位移旌旗灯号,能持续精确地收集到转子振动状况的多种参数.如轴的径向振动.振幅以及轴向地位.电涡传播感器以其长期工作靠得住性好.测量规模宽.敏锐度高.分辩率高级长处,在大型扭起色械状况的在线监测与故障诊断中得到普遍运用.从转子动力学.轴承学的理论上剖析,大型扭起色械的活动状况,重要取决于其焦点—转轴,而电涡传播感器,能直接非接触测量转轴的状况,对诸如转子的不服衡.不合错误中.轴承磨损.轴裂纹及产生摩擦等机械问题的早期剖断,可供给症结的信息.依据法拉第电磁感应道理,块状金属导体置于变更的磁场中或在磁场中作切割磁力线活动时,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应.而依据电涡流效应制成的传感器称为电涡流式传感器.前置器中高频振荡电流畅过延长电缆流入探头线圈,在探头头部的线圈中产生交变的磁场.当被测金属体接近这一磁场,则在此金属概况产生感应电流,与此同时该电涡流场也产生一个偏向与头部线圈偏向相反的交变磁场,因为其反感化,使头部线圈高频电流的幅度和相位得到转变(线圈的有用阻抗),这一变更与金属体磁导率.电导率.线圈的几何外形.几何尺寸.电流频率以及头部线圈到金属导体概况的距离等参数有关.平日假定金属导体材质平均且机能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б.磁导率ξ.尺寸因子τ.头部体线圈与金属导体概况的距离D.电流强度I和频率ω参数来描写.则线圈特点阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来暗示.平日我们能做到掌握τ, ξ, б, I, ω这几个参数在必定规模内不变,则线圈的特点阻抗Z就成为距离D的单值函数,固然它全部函数是一非线性的,其函数特点为“S”型曲线,但可以拔取它近似为线性的一段.于此,经由过程前置器电子线路的处理,将线圈阻抗Z的变更,即头部体线圈与金属导体的距离D的变更转化成电压或电流的变更.输出旌旗灯号的大小随探头到被测体概况之间的间距而变更,电涡传播感器就是依据这一道理实现对金属物体的位移.振动等参数的测量.其工作进程是:当被测金属与探头之间的距离产生变更时,探头中线圈的Q值也产生变更,Q值的变更引起振荡电压幅度的变更,而这个随距离变更的振荡电压经由检波.滤波.线性抵偿.放大归一处理转化成电压(电流)变更,最终完成机械位移(间隙)转换成电压(电流).由上所述,电涡传播感器工作体系中被测体可看作传感器体系的一半,即一个电涡流位移传感器的机能与被测体有关.按照电涡流在导体内的贯串情形,此传感器可分为高频反射式和低频透射式两类,但从根本工作道理上来说仍是类似的.电涡流式传感器最大的特色是能对位移.厚度.概况温度.速度. 应力.材料毁伤等进行非接触式持续测量,别的还具有体积小,敏锐度高,频率响应宽等特色,运用极其普遍.典范运用:电涡传播感器体系普遍运用于电力.石油.化工.冶金等行业和一些科研单位.对汽轮机.水轮机.鼓风机.紧缩机.空分机.齿轮箱.大型冷却泵等大型扭起色械轴的径向振动.轴向位移.键相器.轴转速.胀差.偏幸.以及转子动力学研讨和零件尺寸磨练等进行在线测量和呵护. 轴向位移测量对于很多扭起色械,包含蒸汽轮机.燃汽轮机.水轮机.离心式和轴流式紧缩机.离心泵等,轴向位移是一个十分重要的旌旗灯号,过大的轴向位移将会引起过大的机构破坏.轴向位移的测量,可以指导扭转部件与固定部件之间的轴向间隙或相对瞬时的位移变更,用以防止机械的破坏.轴向位移是指机械内部转子沿轴心偏向,相对于止推轴承二者之间的间隙而言.有些机械故障,也可经由过程轴向位移的探测,进行判别:止推轴承的磨损与掉效均衡活塞的磨损与掉效止推法兰的松动联轴节的锁住等.轴向位移(轴向间隙)的测量,经常与轴向振动弄混.轴向振动是指传感器探头概况与被测体,沿轴向之间距离的快速变动,这是一种轴的振动,用峰峰值暗示.它与平均间隙无关.有些故障可以导致轴向振动.例如紧缩机的踹振和不合错误中等于.振动测量测量径向振动,可以由它看到轴承的工作状况,还可以看到转子的不服衡,不合错误中等机械故障.可以供给对于下列症结或基本机械进行机械状况监测所须要的信息:·工业透平,蒸汽/燃汽·紧缩机,空气/特别用处气体,径向/轴向·电动马达·发电机·励磁机·齿轮箱·泵·电扇·鼓风机·来去式机械振动测量同样可以用于对一般性的小型机械进行持续监测.可为如下各类机械故障的早期判别供给了重要信息.胀差测量对于汽轮发电机组来说,在其启动和停机时,因为金属材料的不合,热膨胀系数的不合,以及散热的不合,轴的热膨胀可能超出壳体膨胀;有可能导致透平机的扭转部件和静止部件(如机壳.喷嘴.台座等)的互相接触,导致机械的破坏.是以胀差的测量是异常重要的.转速测量对于所有扭起色械而言,都须要监测扭起色械轴的转速,转速是权衡机械正常运转的一个重要指标.而电涡传播感器测量转速的优胜性是其它任何传感器测量没法比的,它既能响应零转速,也能响应高转速,抗干扰机能也异常强.转速测量对于所有扭起色械而言,都须要监测扭起色械轴的转速,转速是权衡机械正常运转的一个重要指标.而电涡传播感器测量转速的优胜性是其它任何传感器测量没法比的,它既能响应零转速,也能响应高转速,抗干扰机能也异常强.电涡传播感器测转速,平日选用φ3mm.φ4mm.φ5mm.φ8mm.φ10mm 的探头.转速测量频响为0~10KHZ. 电涡传播感器测转速,传感器输出的旌旗灯号幅值较高(在低速和高速全部规模内)抗干扰才能强. 无源磁电式传感器是针对测齿轮而设计的发电型传感器(无源),不合适测零转速和较低转速,因低频时,幅值旌旗灯号小,抗干扰才能差,它不须要供电. 有源磁电式传感器采取了+24V 供电,输出波形为矩形波,具有负载驱动才能,合适测量 0.03HZ以上转速旌旗灯号.装配请求:1.轴的径向振动测量当须要测量轴的径向振动时,请求轴的直径大于探头直径的三倍以上.每个测点应同时装配两个传感器探头,两个探头应分离装配在轴承双方的统一平面上相隔90o±5o.因为轴承盖一般是程度朋分的,是以平日将两个探头分离装配在垂直中间线每一侧45o,从原念头端看,分离界说为X探头(程度偏向)和Y探头(垂直偏向),X偏向在垂直中间线的右侧,Y偏向在垂直中间线的左侧.轴的径向振动测量时探头的装配地位应当尽量接近轴承,如图所示,不然因为轴的挠度,得到的值会有误差.轴的径向振动探头装配地位与轴承的最大距离.轴的径向振动测量时探头的装配:测量轴承直径最大距离0~76mm 25mm76~510mm 76mm大于520mm 160mm探头中间线应与轴心线正交,探头监测的概况(正对探头中间线的双方1.5倍探头直径宽度的轴的全部圆周面,如图)应无裂缝或其它任何不持续的概况现象(如键槽.凸凹不服.油孔等),且在这个规模内不克不及有喷镀金属或电镀,其概况的粗糟度应在0.4 um至0.8um之间.2.轴的轴向位移测量测量轴的轴向位移时,测量面应当与轴是一个整体,这个测量面是以探头的中间线为中间,宽度为 1.5倍的探头圆环.探头装配距离距止推法兰盘不该超出305mm,不然测量成果不但包含轴向位移的变更,并且包含胀差在内的变更,如许测量的不是轴的真实位移值.3.键相测量键相测量就是经由过程在被测轴上设置一个凹槽或凸键,称键相标识表记标帜.当这个凹槽或凸键转到探头地位时,相当于探头与被测面间距突变,传感器会产生一个脉冲旌旗灯号,轴每转一圈,就会产生一个脉冲旌旗灯号,产生的时刻标清楚明了轴在每转周期中的地位.是以经由过程对脉冲计数,可以测量轴的转速;经由过程将脉冲与轴的振动旌旗灯号比较,可以肯定振动的相位角,用于轴的动均衡剖析以及装备的故障剖析与诊断等方面.凹槽或凸键要足够大,以使产生的脉冲旌旗灯号峰峰值不小于5V.一般若采取φ5.φ8探头,则这一凹槽或凸键宽度应大于7.6mm.深度或高度应大于1.5mm(推举采取2.5mm以上).长度应大于0.2mm.凹槽或凸键应平行于轴中间线,其长度尽量长,以防当轴产生轴向窜动时,探头还能对着凹槽或凸键.为了防止因为轴相位移引起的探头与被测面之间的间隙变更过大,应将键相探头装配在轴的径向,而不是轴向的地位.应尽可能地将键相探头装配在机组的驱动部分上,如许即使机组的驱动部分与载荷离开,传感器仍会有键信任号输出.当机组具有不合的转速时平日须要有多套键相传感器探头对其进行监测,从而可认为机组的各部分供给有用的键信任号.键相标识表记标帜可所以凹槽,也可所以凸键,如图所示,尺度请求用凹槽的情势.当标识表记标帜是凹槽时,装配探头要对着轴的完全部分调剂初始装配间隙(装配在传感器的线性中点为宜),而不是对着凹槽来调剂初始装配间隙.而当标识表记标帜是凸键时探头必定要对着凸起的顶部概况调剂初始装配间隙(装配在传感器的线性中点为宜),不是对着轴的其它完全概况进行调剂.不然当轴迁移转变时,可能会造成凸键与探头碰撞,剪断探头.被测体对电涡传播感器特点的影响:1.被测体材料对传感器的影响传感器特点与被测体的电导率б.磁导率ξ有关,当被测体为导磁材料(如通俗钢.构造钢等)时,因为涡流效应和磁效应同时消失,磁效应反感化于涡流效应,使得涡流效应削弱,即传感器的敏锐度降低.而当被测体为弱导磁材料(如铜,铝,合金钢等)时,因为磁效应弱,相对来说涡流效应要强,是以传感器感应敏锐度要高.2.被测体概况平整度对传感器的影响不规矩的被测体概况,会给现实的测量带来附加误差,是以对被测体概况应当平整滑腻,不该消失凸起.洞眼.刻痕.凹槽等缺点.一般请求,对于振动测量的被测概况光滑度请求在0.4um~0.8um之间;对于位移测量被测概况光滑度请求在0.4um~1.6um 之间.3.被测体概况磁效应对传感器的影响电涡流效应重要分散在被测体概况,假如因为加工进程中形成残磁效应,以及淬火不平均.硬度不平均.金相组织不平均.结晶构造不平均等都邑影响传感器特点.在进行振动测量时,假如被测体概况残磁效应过大,会消失测量波形产生畸变.4.被测体概况镀层对传感器的影响被测体概况的镀层对传感器的影响相当于转变了被测体材料,视其镀层的材质.厚薄,传感器的敏锐度会略有变更.5.被测体概况尺寸对传感器的影响因为探头线圈产生的磁场规模是必定的,而被测体概况形成的涡流场也是必定的.如许就对被测体概况大小有必定请求.平日,当被测体概况为平面时,以正对探头中间线的点为中间,被测面直径应大于探头头部直径的1.5倍以上;当被测体为圆轴且探头中间线与轴心线正交时,一般请求被测轴直径为探头头部直径的3倍以上,不然传感器的敏锐度会降低,被测体概况越小,敏锐度降低越多.试验测试,当被测体概况大小与探头头部直径雷同,其敏锐度会降低到72%阁下.被测体的厚度也会影响测量成果.被测体中电涡流场感化的深度由频率.材料导电率.导磁率决议.是以假如被测体太薄,将会造成电涡流感化不敷,使传感器敏锐度降低,一般请求厚度大于0.1mm以上的钢等导磁材料及厚度大于0.05mm以上的铜.铝等弱导磁材料,则敏锐度不会受其厚度的影响.设计总结:经由过程进修这门课程让我学到了以前没接触过的器械.让我熟悉到了传感器在我们生涯中的一些现实运用,没有传感器级没有现代科学技巧,更没有人类现代化的生涯情形和前提.但是要研制出更好的电涡流位移传感器还要做很多.和进修很多相干常识.这不但仅是为进修电涡传播感器做预备更是给我们本身充电.。

电涡流传感器位移实验报告

电涡流传感器位移实验报告

电涡流传感器位移实验报告电涡流传感器位移实验报告摘要:本实验旨在通过电涡流传感器测量物体的位移,并分析其原理和应用。

通过实验发现,电涡流传感器具有高灵敏度、快速响应和非接触式等特点,适用于工业自动化、机械加工和材料测试等领域。

本实验结果可为电涡流传感器的实际应用提供参考。

引言:电涡流传感器是一种利用电磁感应原理测量物体位移的传感器。

其工作原理是通过感应线圈产生的交变磁场诱发物体表面的涡流,进而测量物体位移。

电涡流传感器具有高灵敏度、快速响应和非接触式等特点,广泛应用于工业自动化、机械加工和材料测试等领域。

实验方法:本实验使用一台电涡流传感器和一块金属板进行位移测量。

首先,将金属板固定在实验台上,使其与传感器平行。

然后,将传感器的感应线圈靠近金属板表面,并连接到示波器上。

最后,通过调节传感器与金属板的距离,观察示波器上的波形变化。

实验结果:实验中,我们发现当传感器与金属板的距离逐渐减小时,示波器上的波形幅度逐渐增大。

当传感器与金属板的距离为零时,波形幅度达到最大值。

这说明传感器能够感应到金属板表面的涡流,并随着距离的减小而增强。

讨论:根据实验结果,我们可以得出结论:电涡流传感器的灵敏度与物体与传感器的距离成反比。

当物体与传感器的距离越近,感应到的涡流越强,波形幅度也越大。

这是因为当物体靠近传感器时,感应线圈产生的磁场能够更好地诱发物体表面的涡流。

电涡流传感器的应用十分广泛。

在工业自动化领域,它可以用于测量机械零件的位移和变形,以及监测设备的运行状态。

在机械加工领域,电涡流传感器可以用于检测工件的尺寸和表面质量,提高加工精度。

在材料测试领域,电涡流传感器可以用于评估材料的导电性和磁导率等特性。

然而,电涡流传感器也存在一些限制。

首先,它只适用于导电性材料的位移测量,对于非导电性材料无法工作。

其次,传感器与物体之间的距离需要保持一定范围,过大或过小都会影响测量结果。

此外,传感器的价格相对较高,对于一些应用场景来说可能不太经济实用。

电涡流式位移传感器实验报告

电涡流式位移传感器实验报告

电涡流式位移传感器实验报告电涡流式位移传感器是一种能够测量目标物体相对于传感器的位移的设备。

它利用了电涡流效应,通过感应电磁场的变化来获取目标物体的位移信息。

电涡流效应是指当导体材料处于变化的磁场中时,会产生涡流。

这种涡流会导致导体内部的能量损耗,并产生一个反向的电磁场。

根据这个原理,电涡流式位移传感器通过测量涡流的大小和方向来确定目标物体的位移情况。

电涡流式位移传感器由传感器头和信号处理电路组成。

传感器头通常由导体线圈制成,将其安装在测量物体附近。

当目标物体发生位移时,导体线圈中的磁场也会发生变化,从而引起涡流的产生。

信号处理电路会对涡流信号进行采集和处理,最终输出位移的数值。

电涡流式位移传感器具有许多优点。

首先,它可以实时、精确地测量目标物体的位移,具有很高的测量精度。

其次,它不需要与测量目标物体直接接触,可以在非接触的情况下进行测量,避免了由于接触导致的误差和磨损。

此外,电涡流式位移传感器还具有响应速度快、抗干扰能力强等特点。

在实际应用中,电涡流式位移传感器被广泛应用于各种领域。

例如,在机械制造行业中,它可以用于测量机械零件的位移和变形,以确保机械设备的正常运行。

在航空航天领域,电涡流式位移传感器可以用于测量飞机结构的变形情况,以保证飞机的安全。

此外,它还可以应用于汽车制造、电子设备、医疗器械等领域。

然而,电涡流式位移传感器也存在一些局限性。

首先,它对目标物体的材料有一定的要求,只有导电性较好的材料才能产生涡流效应。

其次,传感器的测量范围相对较小,对于大范围的位移测量可能不适用。

此外,电涡流式位移传感器的成本较高,不适合用于一些低成本的应用场景。

电涡流式位移传感器是一种能够实时、精确地测量目标物体位移的设备。

它通过利用电涡流效应来感应目标物体的位移,并将其转化为电信号输出。

电涡流式位移传感器在各个领域有着广泛的应用,但也存在一些局限性。

随着科技的不断进步,电涡流式位移传感器将会得到更广泛的应用和发展。

电涡流位移传感器的原理及其静态标定方法

电涡流位移传感器的原理及其静态标定方法

电涡流位移传感器的原理及其静态标定方法电涡流是20世纪70年代以后发展较快的一种新型传感器,它广泛的应用在位移震动检测、金属材质鉴别,无损探伤等技术领域。

实验目的:了解电涡流位移传感器的结构和工作原理。

了解电涡流位移传感器的静态标定方法。

实验原理结构:变间隙式是最常用的一种电涡流传感器形式,它的结构很简单,由一个扁平线圈固定在框架上构成。

线圈用高强度漆包铜线或银线绕成,用粘结剂粘在框架端部或是绕指在框架槽内。

线圈框架应采用损耗小、电性能好、热膨胀系数小的材料,常用高频陶瓷、聚四氟乙烯等。

由于激励频率较高,对所用的电缆和插头也要充分重视,一般使用专用的高频电缆和插头。

工作原理:在传感器线圈中通以高频电流,则在线圈中产生高频交变磁场。

当到点被测金属板接近线圈,并置于线圈的磁场范围内,交变磁场在金属板的表面层内产生感应电流,即电涡流。

电涡流又产生一个反向的磁场,减弱了线圈的原磁场,从而导致线圈的电感量、阻抗和品质因素发生变化,这些参数的变化与导体的几何形状、电导率、线圈的几何参数、电流的频率以及线圈与被测导体间的距离有关。

如果控制上述参数的变化,在其他条件不变的情况下,仅是线圈与金属板之间距离的单值函数,从而达到测量位移间隙的目的。

测量电路当传感器接近被测导体时,损耗功率增大,回路失谐,输出电压相应变小。

这样,在一定范围内,输出电压幅值与间隙呈近似线性关系。

由于输出电压的频率始终恒定,因此称为定频幅式。

这种电路采用适应晶体振荡器,旨在获得高稳定度频率的高频激励信号,以保证稳定的输出。

实验仪器与材料电涡流位移传感器静态标定系统Hz-8500探头前置器8511型电涡流探头电涡流传感器测量装置高精度数字万用表。

实验内容:实验一:被测金属板采用铝质板,测量U-x 关系曲线。

实验二:被测金属板仍采用铝质板,但直径较小,测量U-x 关系曲线。

实验三:被测金属板采用铁板,测量U-x 关系曲线。

5、实验数据:实验一数据:6、实验要求:1、画出(实验一)中的U-x 关系曲线,确定传感器的线性工作范围计算传感器的灵敏度。

电涡流传感器位移实验报告

电涡流传感器位移实验报告

电涡流传感器位移实验报告背景电涡流传感器是一种非接触式位移传感器,广泛应用于工业领域中的位移测量。

它基于涡流效应,通过感应涡流的变化来测量目标物体的位移。

在实验中,我们使用了一种常见的电涡流传感器,将其应用于位移测量,并对其性能进行了评估和分析。

实验目的本实验旨在通过测量电涡流传感器对不同位移的响应,评估其性能指标(如灵敏度、线性度等),并提出相应的改进建议,以提高位移测量的精确性和稳定性。

实验装置与方法实验装置•电涡流传感器:型号ABC-123,频率范围0-10kHz•信号发生器:频率范围0-10kHz,可调幅度•示波器:带宽100MHz,采样率1GS/s•电压表:精度0.1mV实验步骤1.准备实验装置,保证电涡流传感器与信号发生器、示波器的连接正确。

2.设置信号发生器的频率为2kHz,并将幅度调至适当水平。

3.将电涡流传感器固定在实验台上,使其与目标物体相对静止并平行。

4.使用示波器测量电涡流传感器输出的电压信号,并记录数据。

5.调整信号发生器的频率和幅度,重复步骤4,以获得不同位移下的电压信号。

数据分析与结果实验数据我们通过实验获得了电涡流传感器在不同位移下的电压信号数据,如下所示:位移 (mm) 电压 (mV)0 1.21 1.52 1.83 2.14 2.45 2.7曲线拟合与性能评估我们将实验数据进行曲线拟合,以评估电涡流传感器的性能指标。

首先,我们使用最小二乘法对数据进行线性拟合。

得到的拟合直线的方程为:V = 0.3d + 1.2其中V表示电压(mV),d表示位移(mm)。

通过拟合直线,我们可以计算出电涡流传感器的灵敏度为0.3 mV/mm,表示单位位移引起的电压变化量。

其次,我们计算了电涡流传感器的线性度。

线性度是衡量传感器输出与输入之间线性关系程度的指标,通常以百分比表示。

通过计算每个数据点与拟合直线之间的残差,并将其转化为线性度,我们得到了电涡流传感器的线性度为95%。

结果分析与建议通过对实验数据的分析和性能评估,我们得到了以下结论:1.电涡流传感器表现出良好的线性关系,其灵敏度为0.3 mV/mm。

电涡流传感器位移实验

电涡流传感器位移实验

实验二十电涡流传感器位移实验一、实验目的了解电涡流传感器测量位移的工作原理和特性。

二、实验内容用铁圆片检测电涡流传感器的位移特性。

三、实验仪器电涡流传感器实验模板、电涡流传感器、直流电源、数显单元、测微头、铁圆片。

四、实验原理电涡流式传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,与其平行的金属片上感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关。

当平面线圈、被测体(涡流片)、激励源已确定,并保持环境温度不变,阻抗Z只与X距离有关。

将阻抗变化经涡流变换器变换成电压V输出,则输出电压是距离X的单值函数。

五、实验注意事项被测体与涡流传感器测试探头平面尽量平行,并将探头尽量对准被测体中间,以减少涡流损失。

六、实验步骤1、根据图20-1安装电涡流传感器。

2、观察传感器结构,这是一个平绕线圈。

3、将涡流传感器输出线接入实验模板上标有L的两端插孔中,作为振荡器的一个元件。

图20-1 电涡流传感器安装示意图图8-2 电涡流传感器位移实验接线图4、在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。

5、将实验模板输出端Vo与数显单元输入端Vin相接。

数显表量程切换到选择电压20V 档。

6、用连结导线从主控台接入15V直流电源接到模板上标有+15V的插孔中。

7、使测微头与传感器线圈端部接触,开启主控台电源开关,此时数显表读数为最小,然后每隔0.1mm读一个数,直到输出几乎不变为止。

将结果列入下表。

(实验结论:1、本实验每隔0.1mm是相对位置,起始值看做0.1mm即可,无需从测微头上读绝对位置。

每旋转0.1mm,输出的电压的增量应该大致相等。

2、由于学生做实验可能不能正确的找到起始点,导致采集的数据不在线性范围内,从而影响数据采集的线性度,可以让学生从选取的起始点开始计数,多计几组数据,然后选取线性度较好的十组数据,填入下表)8、根据上表数据画出V-X曲线,根据曲线找出线性区域及进行正、负位移测量时的最佳工作点,试计算量程为1mm、3 mm及5mm时的灵敏度和线性度(可以用端基法或其它拟合直线)。

电涡流位移传感器介绍

电涡流位移传感器介绍
③ 如果产品完好,而且又不立即安装使用,最好将各部分小心 的放回原包装箱内,封好保存,以备以后使用。
④ 如果验收不合格,请尽快与本公司联系。
2、 贮存 如果长期不使用,传感器系统应存放在温度介于-30℃~70℃、相
对湿度不大于 90%的整洁室内,且室内空气中不得含有腐蚀性气体。 存放期达一年以上的,使用前应重新校准。 3、试件材料
ZA21 系列前置器只有一种外形结构。 外型尺寸: 78×70×30(mm) 安装尺寸: DIN35 导轨安装 供电电源 UT: 1、 -20V DC~-26V DC,输出电压极限:-0.7V~(UT+1)V,线性
量程内输出电压范围:-2V~-18V。 2、 亦可使用供电电源+20V~+26V 输出电压极限: 0.7V~(UT-1)
探头壳体用于连接和固定探头头部,并作为探头安装时的装夹结
构。壳体一般采用不锈钢制成(对于高温、高压、强酸、强碱等特殊
环境的应用、本公司可以为用户提供一体化全陶瓷探头头部和壳体的
探头),一般上面刻有标准螺纹,并备有锁紧螺母。为了能适应不同的
应用和安装场合,探头壳体具有不同的形式和不同的螺纹及尺寸规格
(见附录 A)。
一套完整的传感器系统主要包括探头、延伸电缆(用户可以根据 需要选择)、前置器和附件。系统组成见图 1-1。
图 1-1 一套完整的传感器系统的组成
★ 与同类产品的兼容性 ZA21 系列电涡流位移传感器的各项性能指标相当或接近美国本
特利(BN)公司的 3300 系列产品水平,优于国内任何一家公司的同 类产品。
① 将系统各部分从包装箱取出。检查是否存在由于运输不当造 成的损坏。如果有,应立即与承运单位交涉提出索赔,并将情况反映 给本公司。

WT 系列电涡流位移传感器 说明书

WT 系列电涡流位移传感器 说明书

WT系列电涡流位移传感器概述电涡流传感器就是能静态和动态地非接触,高线性度,高分辨力地测量被测金属导体距探头表面的距离。

它是一种非接触的线性化计量工具。

电涡流位移传感器,能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。

在对高速旋转机械和往复式运动机械状态分析,即振动研究、分析测量中,非接触的高精度振动、位移信号测量,能连续准确地采集到转子振动状态的多种参数。

如轴的径向振动、振幅以及轴向位置。

在所有的与机械状态有关的故障征兆中,机械振动测量是最具权威性的,这是由于它同时含有幅值,相位和频率的信息。

机械振动测量占有优势的另一个原因是:它能反应出机械所有大的损坏并易于测量。

从转子动力学,轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流位移传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。

电涡流位移传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响,结构简单等优点。

因此在大型旋转机械状态在线监测与故障诊断中得到广泛应用。

电涡流传感器的工作原理及特性探头、(延伸电缆)、前置器以及被测体构成基本工作系统。

前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。

如果在这一交变磁场的有效范围内没有金属材料靠近,则这一磁场能量会全部损失;当有被测金属体靠近这一磁场,则在此金属表面产生感应电流,电磁学上称之为电涡流。

与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。

通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。

高动态电涡流位移传感器温度实时补偿算法

高动态电涡流位移传感器温度实时补偿算法

高动态电涡流位移传感器温度实时补偿算法作者:李昌周松斌韩威来源:《现代电子技术》2018年第05期摘要:电涡流位移传感器在测量不同位移时有不同的温度灵敏度系数。

单一的曲线拟合方法无法实现全量程的温度补偿。

在温箱中收集多个指定位移处线圈电压的温飘数据,并拟合成曲线,根据这些曲线和传感器内线圈的温度可得到指定位移处线圈电压。

用最小二乘法拟合指定位移和线圈电压得到一个多项式方程。

把线圈电压值代入该方程可得到与温度无关的位移量,实现温度补偿。

采用DMA中断和后台程序相结合的方法,使得传感器具有高动态响应。

关键词:电涡流位移传感器;温度补偿;最小二乘法;在线拟合;高动态响应; DMA 中断中圖分类号: TN911.1⁃34; TP212 文献标识码: A 文章编号: 1004⁃373X(2018)05⁃0132⁃04Abstract: The eddy current displacement sensor has different temperature sensitivity coefficients for differ ent displacement measurements. The single curve fitting method can′t realize the temperature compensation in measuring range. The temperature drift data of the coil voltage at multiple specified displacements was collected in temperature box, and fitted for curves. According to the curves and temperature of the coil inside the sensor, the coil voltage of the specified displacement can be obtained. The least square method is used to fit the specified displacement and coil voltage to obtain a polynomial equation. The coil voltage is substituted into the equation to obtain a displacement independent of temperature, and realize the temperature compensation. The sensor has high dynamic response by using the method combining DMA interrupt and background program.Keywords: eddy current displacement sensor; temperature compensation; least square method; online fitting; high dynamic response; DMA interrupt电涡流位移传感器可用于非接触式测量流水线上饮料罐的高度,易拉罐在检测时温度较高[1],这就要求传感器的温漂小,才能准确测量。

电涡流位移传感器原理

电涡流位移传感器原理

电涡流位移传感器原理
电涡流位移传感器利用了涡流效应来测量物体的位移。

涡流效应是指当一个导体在变化的磁场中移动时,会在导体内产生感应电流,进而产生磁场,这个磁场又会与变化的磁场相互作用,从而产生涡流。

涡流的大小与导体的导电性、磁场的强度、导体形状等因素有关。

电涡流位移传感器由一个线圈和一个金属圆盘组成。

当线圈中通过交流电时,会在金属圆盘上产生一个交变的磁场。

如果金属圆盘处于静止状态,那么它不会有涡流产生,因为没有磁场的变化。

但是,当金属圆盘受到外力作用而移动时,它会穿过线圈中的磁场,从而产生感应电流和涡流。

涡流产生的感应电流会经过线圈回路,形成一个感应电压。

这个感应电压与金属圆盘的位移成正比。

通过测量感应电压的大小,可以确定金属圆盘的位移量。

因此,通过测量感应电压的变化,就可以得到物体的位移信息。

电涡流位移传感器的优点是具有高精度、无接触、非破坏性等特点。

它常被应用于机械设备的位移测量、液位测量、压力测量等领域。

电涡流位移传感器工作原理

电涡流位移传感器工作原理

电涡流位移传感器工作原理小伙伴们!今天咱们来唠唠电涡流位移传感器这个超有趣的东西。

你知道吗?电涡流位移传感器就像是一个超级敏感的小侦探呢。

它主要是利用电涡流效应来工作的。

啥是电涡流效应呢?想象一下,你在一个平静的湖面上丢了一颗小石子,会激起一圈圈的涟漪吧。

在传感器的世界里,当一个通有交变电流的线圈靠近金属导体的时候,就会在金属导体里产生像那湖面上的涟漪一样的电涡流啦。

这个电涡流可不得了哦。

它会产生自己的磁场,这个磁场呢就会和原来线圈产生的磁场相互作用。

就像是两个小怪兽在打架一样,你影响我,我影响你。

当金属导体靠近或者远离传感器的线圈时,电涡流的大小就会发生变化呢。

为啥会这样呢?因为距离不一样了呀,就好像你和朋友之间的距离变了,你们之间的相互影响也就不一样了。

那这个变化有啥用呢?这可太有用啦。

传感器就是靠着检测这个电涡流的变化来知道金属导体的位移情况的。

比如说,在一个机器设备里,有个金属零件在来回移动。

电涡流位移传感器就像一个小眼睛一样盯着这个零件的位移。

如果这个零件移动得太离谱了,传感器就能马上发现,然后给其他设备发出信号,就像在喊:“那个零件跑错地方啦,快管管它!”这个传感器的线圈就像是一个魔法圈。

交变电流通过它的时候,就像给这个魔法圈注入了魔力。

当有金属靠近时,电涡流产生的磁场就会让这个魔法圈的魔力发生变化。

这种变化可以被转化成各种信号,比如电信号。

就好像魔法圈把它看到的金属的位移情况用一种特殊的语言告诉了其他设备。

而且哦,电涡流位移传感器还特别聪明呢。

它可以在很多不同的环境里工作。

不管是有点小灰尘的地方,还是有点小震动的地方,它都能坚守岗位。

不过呢,它也有自己的小脾气。

如果周围的环境太恶劣了,比如说温度特别高或者有很强的电磁干扰,它可能就会有点小迷糊啦。

在一些大型的工业设备里,电涡流位移传感器可是大功臣呢。

比如说在汽轮机里,那些高速旋转的金属部件的位移都得靠它来监测。

要是没有它,那些部件一旦发生位移异常,可能就会引发大事故呢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节系统简介1、为何采用电涡流位移传感器●电涡流位移传感器能测量被测体(必须是金属导体)与探头端面的相对位置。

●电涡流位移传感器长期工作可靠性好、灵敏度高、抗干扰能力强、非接触测量、响应速度快、不受油水等介质的影响,常被用于对大型旋转机械的轴位移、轴振动、轴转速等参数进行长期实时监测,可以分析出设备的工作状况和故障原因,有效地对设备进行保护及进行预测性维修。

●从转子动力学、轴承学的理论上分析,大型旋转机械的运行状态主要取决于其核心——转轴,而电涡流位移传感器能直接测量转轴的状态,测量结果可靠、可信。

过去对于机械的振动测量采用加速度传感器或速度传感器,通过测量机壳振动,间接地测量转轴振动,测量结果的可信度不高。

2、系统组成系统主要包括探头、延伸电缆(用户可以根据需要选择)、前置器。

图1传感器系统组成第二节系统的工作原理传感器系统的工作机理是电涡流效应。

当接通传感器系统电源时,在前置器内会产生一个高频电流信号,该信号通过电缆送到探头的头部,在头部周围产生交变磁场H1。

如果在磁场H1的范围内没有金属导体材料接近,则发射到这一范围内的能量都会全部释放;反之,如果有金属导体材料接近探头头部,则交变磁场H1将在导体的表面产生电涡流场,该电涡流场也会产生一个方向与H1相反的交变磁场H2。

由于H2的反作用,就会改变探头头部线圈高频电流的幅度和相位,即改变了线圈的电感。

这种变化既与电涡流效应有关,又与静磁学效应有关,即与金属导体的电导率、磁导率、几何形状、线圈几何参数、激励电流频率以及线圈到金属导体的距离等参数有关。

假定金属导体是均质的,其性能是线性和各向同性的,则线圈——金属导体系统的物理性质通常可由金属导体的磁导率μ、电导率σ、尺寸因子r,线圈与金属导体距离d,线圈激励电流强度I和频率ω等参数来描述。

因此线圈的电感可用函数L=F(μ,σ,r,I,ω,d)来表示。

图2电涡流作用原理图第三节结构说明1、探头探头对正被测体表面,它能精确地探测出被测体表面相对于探头端面间隙的变化。

通常探头由线圈、头部、壳体、高频电缆、高频接头组成,其典型结构见图3所示。

图3探头典型结构线圈是探头的核心,它是整个传感器系统的敏感元件,线圈的物理尺寸和电气参数决定传感器系统的线性量程以及探头的电气参数稳定性。

探头头部采用耐高低温的工程塑料,通过“二次注塑”工艺将线圈密封其中。

这项技术增强了探头头部的强度和密封性,在恶劣环境中可以保护头部线圈能可靠工作。

头部直径取决于其内部线圈直径,由于线圈直径决定传感器系统的基本性能——线性量程,因此我们通常用头部直径来分类和表征各型号探头,一般情况传感器系统的线性量程大致是探头头部直径的1/2~1/4。

最常用的的有φ5、φ8、φ11、φ14、φ25、φ50六种直径的头部。

探头壳体用于支撑探头头部,并作为探头安装时的装夹结构。

壳体采用不锈钢制成,一般上面刻有标准螺纹,并备有锁紧螺母。

为了能适合不同的应用和安装场合,探头壳体具有不同的型式和不同的螺纹及尺寸规格。

高频电缆是用于联接探头头部到前置器(有时中间带有延伸电缆转接),这种电缆是用氟塑料绝缘的射频同轴电缆,通常电缆长度有0.5m、1m、5m、9m四种选择,当选择0.5m和1m时必须用延伸电缆以保证系统的总的电缆长度为5m或9m,至于选择5m还是9m应该是考虑能满足将前置器安装在设备机组的同一侧来决定。

根据探头的应用场合和安装环境,探头所带电缆可以配有不锈钢软管铠装(可选择),以保护电缆不易被损坏,对于现场安装探头电缆无管道布置的情况,应该选择铠装。

2、延伸电缆作为系统的一个组成部分,延伸电缆(如图4所示)用来联接和延长探头与前置器之间的距离,您可以对延伸电缆长度和是否需要带铠装进行选择,选择延伸电缆的长度应该使延伸电缆长度加探头电缆长度与配套前置器所要求的长度一致(5m或9m),铠装选择的情况同探头电缆。

采用延伸电缆的目的是为了减短探头所带电缆长度,对于用螺纹安装探头时,需转动探头,过长的电缆不便使电缆随探头转动,容易扭断电缆,这种情形在探头安装部分有进一步说明。

延伸电缆的两端接头不同,带阳螺纹的接头(转接头)与探头联接,带阴螺纹的接头与前置器联接。

图4延伸电缆3、前置器前置器是一个电子信号处理器。

一方面前置器为探头线圈提供高频交流电流;另一方面,前置器感受探头前面由于金属导体靠近引起探头参数的变化,经过前置器的处理,产生随探头端面与被测金属导体间隙线性变化的输出电压信号。

图5传感器和信号转换器框图检波器—将高频信号解调成直流电压信号,低通滤波器—将高频的残余波除去,直流放大器—放大线性补偿电路—线性化输出放大器—放大前置器(信号转换器)的额定输出电压为 -4~-20V(线性区)。

第四节被测体尺寸与材料的影响在系统的工作原理部分,被测金属导体的磁导率μ、电导率σ、尺寸因子r对测量有影响,因此除了探头、延伸电缆、前置器决定传感器系统的性能外,严格地讲被测体也是传感器系统的一部分,即被测体的性能参数也会影响整个传感器系统的性能,主要有:1、被测体尺寸的影响探头线圈产生的磁场范围是一定的,在被测体表面形成的涡流场也是一定的,所以,当被测面为平面时,以正对探头中心线的点为中心,被测面直径应当大于探头头部直径1.5倍以上;当被测体为圆轴而且探头中心线与轴心线正交时,一般要求被测轴直径为探头头部直径的3倍以上,否则灵敏度就会下降,一般当被测面大小与探头头部直径相同时,灵敏度会下降至70%左右。

被测体的厚度也会影响测量结果,如果被测体太薄,将会造成电涡流作用不够,使传感器灵敏度下降,一般厚度大于0.1mm以上的钢等导磁材料及厚度大于0.6mm 以上的铜、铝等弱导磁材料,则灵敏度不会受其厚度的影响。

2、被测体表面加工状况的影响不规则的被测体表面,会给实际的测量值造成附加误差,特别是对于振动测量,这个附加误差信号与实际的振动信号叠加一起,在电气上很难进行分离,因此被测表面应该光洁,不应该存在刻痕、洞眼、凸台、凹槽等缺陷。

3、被测体材料的影响传感器特性与被测体的导电率和导磁率有关,当被测体为导磁材料(如普通钢、结构钢等)时,由于磁效应和涡流效应同时存在,而且磁效应与涡流效应相反,要抵消部分涡流效应,使得传感器感应灵敏度低;而当被测体为非导磁或弱导磁材料(如铜、铝、合金钢等)时,由于磁效应弱,相对来说涡流效应要强,因此传感器感应灵敏度要高。

第五节传感器的典型应用电涡流位移传感器系统以其独特的优点,广泛应用于电力、石油、化工、冶金等行业,对汽轮机、水轮机、发电机、鼓风机、压缩机、齿轮箱等大型旋转机械的轴的径向振动、轴向位移、鉴相器、轴转速、胀差、偏心、油膜厚度等进行在线测量和安全保护,以及转子动力学研究和零件尺寸检验等方面。

传感器有四种最常见的使用方式,即轴的径向振动测量、轴向位移测量、鉴相器信号测量以及转速测量。

1、轴的径向振动测量测量轴的径向振动时,每个测点应安装两个传感器探头,两个探头分安装在轴承两边的同一平面上相隔90°(±5°)。

由于轴承盖一般是水平剖分的,因此通常将两个探头分别安装在垂直中心线每一侧45°,定义为X探头(水平方向)和Y探头(垂直方向)。

通常从原动机端看,X探头应该在垂直中心线的右侧,Y探头应该在垂直中心线的左侧。

如图6所示。

图6 轴的径向振动测量图7 现场图片2、轴向位移测量测量轴的轴向位移时,测量面应该与轴是一个整体,这个测量面是以探头的中心线为中心,宽度为1.5倍的探头圆环。

探头安装距离距止推法兰盘不应超过305mm,否则测量结果不仅包含轴向位移的变化,而且包含胀差在内的变化,这样测量的不是轴的真实位移值。

图8 轴向位移测量3、鉴相器测量鉴相器测量就是通过在被测轴上设置一个凹槽或凸键,称着鉴相标记。

当这个凹槽或凸键转到探头安装位置时,相当于探头与被测面间距突变,传感器会产生一个脉冲信号,轴每转一圈,就会产生一个脉冲信号,产生的时刻表明了轴在每转周期中的位置。

同时通过对脉冲计数,可以测量轴的转速。

通过将脉冲与轴的振动信号比较,可以确定振动的相位角,用于轴的动平衡分析以及设备的故障分析与诊断等方面。

图9 键相器测量4、转速测量鉴相器可以测量机器的转速,但是鉴相器只能产生每转一个脉冲的信号,用它作为转速测量的精度不高。

专门的转速测量一般都是在轴的测量圆周上设置多个凹槽或凸键标记,或者直接利用轴上的齿轮,使探头能每转产生多个脉冲。

图10 转速测量第六节传感器的安装1、探头的安装(1)安装探头时,您应注意以下几个问题:• 各探头间的距离当探头头部线圈中通过电流时,在头部周围会产生交变电磁场,因此在安装时要注意两个探头的安装距离不能太近,否则两探头之间会通过电磁场互相干扰(如图11所示),在输出信号上迭加两探头的差频信号,造成测量结果的失真,这种情况称之为相邻干扰。

排除相邻干扰有关的因素:被测体的形状,探头的头部直径以及安装方式。

图11 各探头的距离• 探头与安装面的距离探头头部发射的交变电磁场在径向和轴向上都有一定的扩散。

因此在安装时,就必须考虑安装面金属导体材料的影响,应保证探头的头部与安装面之间不小于一定的距离,工程塑料头部体要完全露出安装面,否则应将安装面加工成平底孔或倒角,如图12所示。

图12 探头头部与安装面的距离• 安装支架的选择实际的测量值是被测体相对于探头的相对值,而需要的测量结果是被测体相对于其基座的,因此探头必须牢固在基座上,通常需要用安装支架来固定探头。

对于不同的测量要求和不同的被测体结构,安装支架的形状和尺寸各种各样,常用的有机器内部探头安装支架和机器外部探头安装支架。

• 探头安装间隙图13探头安装间隙• 探头所带电缆的安装• 电缆转接头的密封与绝缘• 探头的抗腐蚀性• 探头的高压环境(2)探头安装的一般步骤• 根据测量部位的量程、安装空间的环境和尺寸、被测体材料等特性选定传感器,并检查传感器各部分外观是否完好、各部分是否配套。

• 将传感器各部分联接好。

• 安装好内部安装探头支架。

如果是外部安装探头,则应先将探头紧固在支架上,再将支架拧进安装螺孔内。

• 调整探头安装间隙。

• 紧固内部安装探头。

• 固定探头电缆。

2、延伸电缆的安装作为连接探头与前置器的中间部件,延伸电缆的安装应保证其在使用过程中不易受到损坏。

通常采用管道铺设,否则应采用带铠装的延伸电缆。

另外,应将过长的电缆线盘成直径不小于50mm的园环用绑绳扎紧后,用压片将其固定,不能随意剪断过长的电缆。

由于延伸电缆转接头和探头电缆高频接头的连接处通常是悬空在接线盒里,为了避免连接处和机壳接触以及加强其密封性,应该对连接处进行绝缘保护。

一种较好的办法是采用热缩套管收缩包裹。

3、前置器的安装作为传感器系统的信号处理部件,前置器对工作环境的要求比探头严格得多,通常将它安装在远离危险区,其周围环境应该无腐蚀性气体、干燥、震动小,环境温度与室温相差不大。

相关文档
最新文档