TD-LTE网络优化方案设计

合集下载

LTE网络优化常见问题和优化方法

LTE网络优化常见问题和优化方法
业务速率质量优化时考虑的内容不同
• 与TD-S类似需要考虑覆盖、干扰、小区用户数的影响 • 需要考虑带宽配置对速率的影响 • 需要考虑天线模式对速率的影响 • 需要考虑时隙比例配置、特殊时隙配置对速率的影响 • 需要考虑功率配置对速率的影响 • 需要考虑下行控制信道占用符号数对速率的影响
干扰问题分析的重点和难点不同
© ZTE Corporation. All rights reserved.
覆盖问题分类(RSRP占主导)
弱覆盖(覆盖空洞)
越区覆盖
保证网络的连续 覆盖;
使实际覆盖与规划 一致,解决孤岛效 应导致的切换掉话 问题;
上下行不平衡
从上行和下行链 路损耗是否平衡 角度出发,解决 因为上下行覆盖 不一致的问题;
解决越区覆盖问题
Ø避免扇区天线的主瓣方 向正对道路传播;对于此 种情况应当适当调整扇区 天线的方位角,使天线主 瓣方向与街道方向稍微形 成斜交,利用周边建筑物 的遮挡效应减少电波因街 道两边的建筑反射而覆盖 过远的情况
Ø在天线方位角基本合理 的情况下,调整扇区天线 下倾角,或更换电子下倾 更大的天线。调整下倾角 是最为有效的控制覆盖区 域的手段。下倾角的调整… 包括电子下倾和机械下倾 两种,如果条件允许优先 考虑调整电子下倾角,其 次调整机械下倾角
解决无主导小区问题
Ø针对无主导小区的区域,确 定网络规划时用来覆盖该区域 的小区,应当通过调整天线下 倾角和方向角等方法,增强某 一强信号小区(或近距离小区) 的覆盖,削弱其他弱信号小区 (或远距离小区)的覆盖。
Ø如果实际情况与网络规划有 出入,则需要根据实际情况选 择能够对该区域覆盖最好的小 区进行工程参数的调整。
RF优化的基本流程图
RF优化开始

移动通信设备运行与维护-项目4--TD-LTE系统开通调试与网络优化

移动通信设备运行与维护-项目4--TD-LTE系统开通调试与网络优化

DTRRU.DTZ和5116TDL.DTZ,点击“打开”添加到
“本地软件库”列表窗口中,如图4-23所示。
·图4-23 添加升级软件包
步骤二:软件包添加成功后,在左侧“网元列表”中
选择需要升级的网元,在“本地软件库”列表中选择
DTRRU.DTZ,点击
按钮,弹出“软件包下载激
活配置”对话框中,激活标志更改为“立即激活”,确认
项目4 TD-LTE系统开通调试 与网络优化
任务4.1 TD-LTE eNdoe B基站开通 调试
任务4.2 TD-LTE 系统网络优化
任务4.1 TD-LTE eNdoe B基站开通调试
4.1.1 理论知识:TD-LTE eNode B开通准备
知识点 介绍了eNode B安装场景、eNode B开通流程及
·图4-18 配置基站连接IP地址 图4-19 LMT连接基站
2. 软件升级 通常需要将基站设备的出厂软件升级到指定的软件版
本上,保证设备能够满足网络运行的要求。 软件包有5116TDL.DTZ和DTRRU.DTZ,升级时要求 先升级RRU软件包,再升级BBU软件包。
(1)RRU软件包升级 RRU软件包为DTRRU.DTZ,包含RRU的升级文件, 升级操作方法有如下两种方式。
操作方法一: 步骤一:单击工具栏“文件管理”按钮 ,显示文 件管理界面,在左侧窗口找到软件包存放目录,选择 DTRRU.DTZ,拖曳到右侧基站文件窗口,在弹出的窗口 中 单击“确定”按钮,LMT会自动解析软件包,解析软件包 类型,如图4-20所示。
·图4-20 下载RRU软件包
步骤二:在弹出的“软件包下载激活配置”窗口中, 确认升级信息之后点击“确定”,如图4-21所示。
重点掌握TD-LTE eNode B开通调试方法与步骤。

移动TD-LTE网络KPI指标优化指导书

移动TD-LTE网络KPI指标优化指导书

移动TD-LTE网络KPI指标优化指导书适用对象:TD LTE网优工程师摘要目录1概述 (1)2主要KPI指标介绍 (2)2.1 指标的分类 (2)2.1.1 按照网元对象分 (2)2.1.2 按照统计时间粒度分 (2)2.1.3 按照指标相关性分 (2)2.2 接入类指标 (3)2.2.1 RRC连接建立成功率 (3)2.2.2 ERAB建立成功率 (4)2.3 保持性指标 (5)2.3.1 无线掉线率 (5)2.3.2 ERAB掉线率(小区级) (6)2.4 移动性指标 (7)2.4.1 切换成功率 (7)3KPI指标监控流程 (8)3.1 KPI监控流程介绍 (8)3.2 日常KPI监控流程 (9)3.3 参数修改过程中KPI监控流程 (10)3.4 ENODEB版本升级过程中的KPI监控 (11)3.5 割接过程中的KPI监控 (12)4KPI性能分析方法 (12)4.1 KPI性能分析方法 (12)4.1.1 TOP N最坏小区分析法 (12)4.2 KPI性能分析基本技能 (14)4.2.1 KPI监控常用工具 (15)4.2.2 KPI分析用到的工具 (15)4.3 KPI优化分析过程 (16)5KPI优化分析专题 (19)5.1 RRC建立成功率优化专题 (19)5.1.1 RRC建立成功率的定义 (19)5.1.2 RRC建立失败常见原因 (20)5.1.3 优化措施 (21)5.2 切换成功率优化专题 (23)5.2.1 切换成功率的定义 (25)5.2.2 切换失败常见原因 (26)5.2.3 优化措施 (34)5.3 KPI常见原因处理手段 (35)6结束语 (36)7附录 (37)7.1 缩略语 (37)7.2 参考资料 (39)图目录图 1-1 KPI联合问题定位 (1)图 3-1 日常KPI监控流程图 (9)图 3-2 参数修改后KPI监控流程图 (10)图 3-3 ENodeB版本升级KPI监控流程图 (11)图 4-1 KPI优化分析流程图 (18)图 5-1 RRC接入流程 (19)图 5-2 TA接入统计分布 (21)图 5-3 优化后RRC建立成功率 (22)图 5-4 优化后无线掉线率 (22)图 5-5 S1切换流程 (26)图 5-6 EUTRAN邻接关系 (27)图 5-7 同频同PCI配置 (33)图 5-8 邻区错配 (33)图 5-9 优化后切换成功率 (34)表目录表 2-1 RRC连接建立成功率与质量等级 (4)表 2-2 小区ERAB建立成功率与质量等级 (5)表 2-3 业务掉话率与质量等级 (6)表 2-4 分组域业务掉线率与质量等级 (7)表 2-5 业务切换成功率与质量等级 (8)表 4-1 TOP N最坏小区列表 (13)表 5-1 掉话常见原因 (20)1 概述无线网络KPI是体现网络质量的直接体现,KPI监控也是我们发现问题的重要手段;KPI监控与优化主要集中在运维期间,网络问题不能靠用户投诉来解决,对一些异常的事件必须第一时间发现并提出相应解决方案,这样才能保证为用户提供良好的话音与数据业务。

TD-LTE网络优化方案设计

TD-LTE网络优化方案设计

TD-LTE网络优化方案设计TD-LTE是第四代移动通信技术中的一种,相比于传统的2G和3G网络,具有更高的传输速率和更低的时延。

然而,在实际网络部署和使用中,可能会遇到一些问题,如网络覆盖不全、信号不稳定、容量不足等。

针对这些问题,设计一个TD-LTE网络优化方案,可以提高网络性能和用户体验。

首先,进行网络规划和设计。

根据网络需求和覆盖范围,合理确定基站的位置、天线高度和方向。

利用相关的规划工具进行网络模拟和仿真,优化网络覆盖及天线配置,确保信号覆盖范围和强度的均衡,避免盲区和覆盖重叠。

此外,还要考虑网络容量规划,根据用户密度和流量需求,设置适当的基站数量和小区划分方案,以提高网络容量和负载均衡。

其次,进行信道优化。

利用信道测量工具,监测信道质量和干扰情况。

根据测量结果,对网络进行频率规划和功率控制,避免同频干扰和邻频干扰。

此外,还可以通过手动优化或自动配置工具,调整小区参数,如射频功率、PRACH配置、SRS配置等,以优化信道资源的利用效率和性能。

第三,进行干扰管理。

通过干扰捕捉工具和干扰分析工具,对网络中存在的干扰源进行定位和分析。

根据干扰的特征和影响范围,采取相应的干扰管理措施,如调整小区参数、改变天线方向、加装滤波器等。

此外,可以利用干扰协调工具,进行干扰的预测和调度,提前识别和解决潜在的干扰问题。

此外,在TD-LTE网络优化中,还可以采用一些先进的技术和方案来进一步提高网络性能。

例如,引入MIMO技术,利用多个天线进行信号的收发,提高网络容量和覆盖范围。

还可以采用小区间和小区内的载波聚合技术,将多个载波进行聚合,提高网络的传输速率。

另外,可以引入跳频技术,自动调整载波频率,避免干扰和提高网络的频谱利用率。

综上所述,设计一个TD-LTE网络优化方案,需要从网络规划、信道优化、干扰管理和引入先进技术等方面进行考虑。

通过合理的规划和设计,优化信道和减少干扰,提高网络性能和用户体验,实现更好的TD-LTE网络覆盖和服务质量。

(完整版)TDD_LTE无线网络优化案例

(完整版)TDD_LTE无线网络优化案例

TDD_LTE无线网络优化案例一、浦东大道福山路道路优化案例1. 测试环境【路测设备】:JDSU W1314A—E01 Receiver【路测软件】:JDSU E6474A-X【测试路段】:浦东大道、源深路及福山路周边路段【测试环境】:从前期的测试中发现在浦东大道福山路附近路段存在弱覆盖情况,SINR在道路上分布不满足测试需求,通过RF手段进行优化后进行前后对比。

图1浦东大道福山路附近无线环境图浦东大道福山路周边无线环境图中看出,该区域由密集居民区、高层商务写字楼、厂房及学校组成,浦东大道北侧无线环境良好,南侧道路两旁有较多建筑,对无线信号有较强的阻挡,周边主要由利男居、浦福昌、钱栖站点覆盖周边道路。

2. 优化前覆盖情况图2浦东大道福山路优化前RSRP覆盖图图3浦东大道福山路优化前CINR覆盖图从优化前的测试数据中看出浦东大道福山路附近路段RSRP值主要在-90dbm左右,但是CINR覆盖较差,浦东大道福山路至源深路之间普遍在15dB以下,不能满足道路覆盖要求,该路段主要由利男居站点覆盖,但是从该站RSRP分布情况看出,该站在浦东大道上没有出现强信号,考虑对该站重点优化。

3. 优化思路及方案图4利男居站点平面图利男居各小区照片问题路段主覆盖站点为利男居,该站点位于浦东大道44号林顿酒店7楼,天馈采用抱杆安装,挂高24米,从利男居站点各小区安装位置中看出,该站3个小区天馈周边都有阻挡物,而按照当前设计方位角,利男居_1小区的天线方位角0°,在浦东大道上是旁瓣信号覆盖,而利男居_3小区天线方位角240°覆盖方向也存在自身楼面建筑的阻挡,从而得出浦东大道该站点信号偏弱的原因,通过实际情况看中看出,利男居_1小区50°方向角有自身建筑的阻挡,往该方向调整不但不能改善浦东大道的覆盖,反而会使得信号反射而出现在背面区域,于是考虑将利男居_1调整为280°、根据挂高计算出该小区下倾调整为2°覆盖效果为最佳;利男居_2主覆盖方向由两栋高楼阻挡,导致在源深路段覆盖较差,由于建筑的阴影效果通过调整天馈是无法改善覆盖,建议该小区调整为50°来覆盖浦东大道东侧路段、利男居_3当前信号阻挡明显,调整为180°可以很好的避开阻挡物,达到最佳的覆盖效果,同时为了改善福山路近浦东大道覆盖,调整浦福昌2、钱栖1小区天馈来避免由于利男居下倾角增大后出现的弱覆盖路段,综合路测情况分析,得出具体调整方案如下:SiteNameCN CellNameCN初始值调整后Height azimuth MDownTilt azimuth MDownTilt利男居利男居_1240—22802利男居_224170050—4利男居_3242403180-4浦福昌浦福昌_121030—4浦福昌_2211001110-1浦福昌_3212401240—4钱栖钱栖_1270230—4钱栖_2271207120—4钱栖_3272402240—24. 优化后覆盖情况图5浦东大道福山路优化后RSRP覆盖图图6浦东大道福山路优化后CINR覆盖图图7浦东大道福山路优化后CELL_Identity分布图5. 优化小结从优化后的测试数据中看出,利男居_1、2小区在浦东大道上RSRP有较大幅度的提升,其主覆盖方向CINR基本能达到30的极好点,浦福昌2小区在昌邑路福山路良好,钱栖1小区天馈调整后在福山路近浦东大道信号也有所提升,从调整后的整体效果中看出,此次优化达到优化目的,当前浦东大道福山路段信号覆盖良好,各小区信号分布合理,信号满足道路覆盖指标要求。

TD—LTE网络优化经验总结

TD—LTE网络优化经验总结

TD—LTE网络优化经验总结【摘要】在现代这个信息化的时代,信息技术的发展迅速,而无线网络的快速发展彻底改变了人与人之间的沟通方式,还有无线网络通过计算机进行操作,使人们的工作更加便捷、快速、高效,进而加快了社会现代化的进程。

然而传统的无线网络技术已经不能够满足现代工作高效、高安全的保障需求,因此对于无线网络通信技术的变革是必然的事情,目前社会科学领域中也对TD-LTE网络进行了优化,并在实际生活工作当中得到很好的应用。

本文将对TD-LTE网络的优化进行进行阐述。

【关键词】TD-LTE网络;优化;方法在现代经济的快速发展中,网络通信技术得到了飞速发展。

而TD-LTE技术由于具有较强的频谱利用效率、网络结构简洁开放、宽带传输灵活以及承载能力强等特点受到人们的青睐。

但是无线网络的发展中各种各样的网络被应用,这些网络在应用的同时也产生了一定的问题,同时也对无线网络的承载力提出了新的要求,因此需要对TD-LTE网络进行优化方能满足现代网络的使用要求。

本文具体阐述了TD-LTE的基本原理,并对目前TD-LTE网络中存在的问题给出了优化方案。

一、TD-LTE网络技术的基本原理TD-SCDMA系统经过长期的改进便产生了TD-LTE(Time Division-Long Term Evolution)网络系统,TD-LTE网络中运用的技术是OFDMA空中接口技术,在TD-LTE网络中通过此技术的运用使无线通信系统的上下行数据传输速率和频谱利用率得到显著的提高,同时还降低了系统的传输时延。

另外运用了OFDMA空中接口技术的TD-LTE网络系统还具有语音、视频点播以等多项功能。

目前,TD-LTE因为其独特的优势在设备制造和电信通信中得到了广泛的应用。

图1 TD-LTE网络系统的基本工作原理图TD-LTE网络系统的基本工作原理如图1所示。

在TD-LTE网络系统中采用的结构是较完全的基站e-Node B结构,此结构具有全新的功能,并且在TD-LTE 网络系统中是连接各节点之间传输的媒介,各节点在系统逻辑层面上的连接接口是X2接口,在系统中通过这样的连接方式使系统内部形成Mesh型网络结构,这种网络结构在系统中的功能是支持UE在整个系统中移动性,通过这样的传输方式和结构类型才保证了用户们在使用移动网络时进行平滑无缝的网络切换。

TD-LTE网络TA和TA

TD-LTE网络TA和TA

延时到下一个 PO 发送。
寻呼相关参数及推荐配置如下: defaultPagingCycle nB 参数名称 可选配置 32、64、128、256 帧 1/8T, 1/16T, 1/32T 推荐配置 128(1.28 秒)
4T,2T, T, 1/2T, 1/4T, T (T 为一个 DRX 周期 包含的帧数)
SGSN-MME 的能力也会限制寻呼容量,其能力和 SCTP/S1 板子数量相关,目前 产业能力,1 块 SCTP/S1 板子可以同时处理 6000 个寻呼消息。 结合以上五点,单小区寻呼容量上限 = min(PDCCH 限制下寻呼容量,PDSCH 限制下寻呼容量, 寻呼阻塞限制下寻呼容量, eNB 处理能力限制下寻呼容量, MME 处理能力限制下寻呼容量) =min(Infinite, 830, 1195, 600, 6000)=600 次/秒。 (2) 单小区寻呼需求预测 预测单小区的寻呼需求需要分别预测单小区的用户数目以及单用户的寻呼 模型。 单小区的用户数目 单小区用户数目 Numue/cell 可用以下公式预测: S 为覆盖面积, 小区用户数:
开销就会增加; (3) 应设置在低话务区域 TA 的边界决定了 TA list 的边界。为减小位置更新的频率,TA 边界不应设在 高话务量区域及高速移动等区域, 并应尽量设在天然屏障位置 (如山川、 河流等) 。 在市区和城郊交界区域,一般将 TA 区的边界放在外围一线的基站处,而不 是放在话务密集的城郊结合部,避免结合部用户频繁位置更新。 同时, TA 划分尽量不要以街道为界, 一般要求 TA 边界不与街道平行或垂直, 而是斜交。此外,TA 边界应该与用户流的方向(或者说是话务流的方向)垂直 而不是平行,避免产生乒乓效应的位置或路由更新。 3、TA list 规划原则 由于网络的最终位置管理是以 TA list 为单位的,因此 TA list 的规划要满足两 个基本原则: (1) TA list 不能过大 TA list 过大则 TA list 中包含的小区过多, 寻呼负荷随之增加, 可能造成寻呼滞后, 延迟端到端的接续时长,直接影响用户感知; (2) TA list 不能过小 令开销,同时,UE 在 TA 更新过程中是不可及,用户感知也会随之降低。 (3) 应设置在低话务区域 如果 TA 未能设置在低话务区域,必须保证 TA list 位于低话务区。 TA list 过小则位置更新的频率会加大,这不仅会增加 UE 的功耗,增加网络信

诺西TDLTE网络优化经验总结—优化案例集

诺西TDLTE网络优化经验总结—优化案例集
•3.将时隙配比改为2:2后,三个扇区上传速度均达到了 15Mbps以上,确认为3扇区的3:1配置对该站有强干扰导致 上行底噪上升,上传速度低;
优化结果:
•在将滨江电力3小区的时隙配比TDDframeconf改为1后,分 别验证3个小区的上传速率,均达到了15Mbps以上;
案例一:长河水产市场下载速度低 案例二:滨江电力公司上传速率低 案例三:海斯终端无法搜网 案例四:海斯终端ATTCH 失败 案例五:远见智能第1小区下载速率偏低问题 案例六:室分小区随机接入失败 案例七:基站有信号,Attach不成功 案例八:参数配置导致切换失败 案例九:修正测试规范BF Gain计算公式
案例二:滨江电力公司上传速率低
案例描述: •在对滨江电力公司进行单站验证的过程中,在进行上传业务 时发现该站点的3个扇区的速度均比较低,只能达到约 2~5Mbps,而在前期的测试中,该站的上传速度表现一直很 好达到了15Mbps以上;
案例分析:
•1.在滨江电力1扇区测试中显示 BLER较高,MCS较低;
案例一:长河水产市场下载速度低 案例二:滨江电力公司上传速率低 案例三:海斯终端无法搜网 案例四:海斯终端ATTCH 失败 案例五:远见智能第1小区下载速率偏低问题 案例六:室分小区随机接入失败 案例七:基站有信号,Attach不成功 案例八:参数配置导致切换失败 案例九:修正测试规范BF Gain计算公式
【解决方案】通过sscom32在hisi终端的bluetooth口发送命令,将hisi终 端的鉴权与基站侧的鉴权进行同步。设备连接后,通过sscom32打开终端 的bluetooth端口,发送命令:g_ulSmcControl=1,点击发送后,鼠标 移至运行窗口按enter,返回值value = 1即表示操作成功,然后关闭 bluetooth端口,如下图所示。

中国移动TD-LTE无线参数设置指导优化手册-爱立信分册

中国移动TD-LTE无线参数设置指导优化手册-爱立信分册
po wer. The maximum out put po wer for each configured TX antenna is limited to the RU port out put po wer cap acity.
If the p arameter value is set to 0, the installed op tional features licenses for mult iple antennas defines the configuration, and available resources will be used accordingly. If the p arameter value is set to 0 and the op tional features is Disabled, the pr edefined value for the number of TX antennas is 1.
第二章RRU级联。
第三章 小区合并。
第四章同厂商负载均衡。
第五章
异厂商负载均衡。
第六章
移动性管理。
第七章
安全管理。
第八章
下行功率控制。
第九章
上行功率控制。
第十章
上行多用户MIMO。
eNodeB
2.1
配置eNodeB ID
2.2
P arameterDescri ption
RBS ID forms part of the Cell Global ID that identifies the node over the S1 interface.
This p arameter is contained in the MO and stores the configured maximum sector po wer in milliwatts. This value repr esents the sum of po wer for all antenna connectors used by the sector.

TD-LTE优化无线网络优化及应用

TD-LTE优化无线网络优化及应用

TD-LTE优化无线网络优化及应用摘要:本文通过对TD-LTE无线网络的规范研究分析,提出了相关网络维护优化方案,以解决网络下行吞吐量低的问题,结合典型工作案例,提出了常见故障并详细阐述了其处理方法,具有一定的参考意义,供相关人员学习借鉴。

关键词:TD-LTE;下行峰值;故障分析;优化方案前言当下TD-LTE网络系统的吞吐量问题引起了广泛深入研究,由于下行吞吐量与网络用户的感知成正比关系,所以如何保证4G网络的使用达到建设预期要求,并提高网络配置提高下行峰值量及速率是当下移动网络优化建设最值得探讨的问题。

在TD-LTE网络系统设计、资源规划和分配时,精确地估计系统峰值吞吐量是关键。

现通过研究TD-LTE系统峰值吞吐量相关原理,造成吞吐量低的常见问题进行总结,分析了影响TD-LTE系统峰值吞吐量的关键因素,提出了相关提升下行吞吐量的优化方案,通过计算测试结果可得,该优化方案确行有效,值得推广使用。

1 下行吞吐量的常见问题分析1.1 影响下行吞吐量的常见因素下行指的是eNodeB(以下简写作eNB)发往UE方向,eNB侧会根据实际资源情况和调度算法,给UE分配相应的下行资源。

对下行吞吐量造成影响的常见因素主要有:占用的下行带宽大小、编码速率限制、信道条件好坏、UE能力限制。

在LTE系统中,占用的下行带宽大小与分配的RB数、频带占用机会(由DLgrant决定)有关;编码速率限制与MCS有关;信道条件好坏可以表征为误码率,主要考虑初次传输的IBLER;UE能力限制与本身硬件支持的等级速率有关,通常要求终端达到CAT4等级,支持峰值速率为下行150Mbit/s,上行50Mbit/s。

1.2 与吞吐量有关的关键信令在MME下发给eNB的Initial UE context setup request信令中包含:UE支持的能力等级和业务的QCI、QoS配置参数。

1.3 下行吞吐量的常见问题下行数据流从服务器生成到传输至UE,共涉及到6大因素:主要包括数据源、网管参数配置、占用的下行带宽大小、编码速率限制、信道条件好坏、UE能力限制。

LTE簇优化优化重点及案例分析

LTE簇优化优化重点及案例分析

干扰优化 切换优化 掉线率与接通率优化 业务性能优化 TDS/TDL协同优化
簇优化
簇优化目标:
簇优化完成后,该簇路测的覆盖、干扰、切换、接入等方面达到如下标准:
评价方法:
通过DT测试,对目标优化簇内的道路要求遍历1~4级交通干道、次干道、主要支路,车速保 持在30km/h~50km/h,平均车速不低于20km/h。
1、基础信息核查
小区1: 小区1: 小区1: 小区1: 小区1:
小区2: 小区2: 小区2: 小区2: 小区2:
小区3: 小区3: 小区3: 小区3: 小区3:
项目 是否为超近基站
是/ 否 最小宏站间距小于100米
备注
2、四超基站核查
是否为超远基站 是否为超高基站 超重叠覆盖基站
最小宏站间距大于700米,或 测试发现过覆盖超过700米。 挂高超过50米。 有一个小区重叠覆盖度大于3的基站为超高重叠覆盖基站。
单站 验证
开始
簇优化
片区 优化
全网 优化
结束
协同优化从簇优化开始贯穿优化全过 程,包括2/3/4G邻区参数配置、室内
外优化等。 突出精品簇优化的工作、精品网格优 化的工作。
规划一致性核查

含基础信息、四超基站两项核查,任一项目不不合格,该站点不达标
规划经度: 实际经度: 站址偏差(米): 天线挂高(米): 方位角 下倾角 共站2G站点名: 共站2G小区号 共站2G小区方位角 共站2G小区下倾角 规划纬度: 实际纬度:
片区优化触发条件:
片区优化阶段是在一个以上簇优化结束后,对相邻的簇的边界进行覆盖和业务优化调整;
片区优化内容:
重点解决簇边界的越区覆盖和切换带控制的问题,调整手段同簇优化 ;

湖南移动TD-LTE掉线优化指导手册V2

湖南移动TD-LTE掉线优化指导手册V2

湖南移动TD-LTE 掉线优化指导手册2015年2月目录1概述 (2)2掉线率相关KPI指标 (2)2.1掉线率指标定义 (2)2.2掉线率相关统计项 (3)2.2.1无线掉线率统计项 (3)2.2.2ERAB掉线率统计项 (4)2.2.3掉线原因统计项 (4)2.2.4掉线的常见问题 (5)3掉线问题的分析和定位 (5)3.1掉线问题的分析 (5)3.1.1UE initialed Drop过程 (5)3.1.2eNB initialed drop过程 (7)3.1.3MME initialed Drop过程 (8)3.2掉线问题的原因 (8)3.3掉线问题的定位 (9)3.4掉线问题处理流程图 (9)3.4.1掉线整体分析 (12)3.4.2掉线Top小区分析 (12)3.4.3小区故障排查 (13)3.4.4切换导致掉线问题分析 (13)3.4.5基站上行RLF检测机制引起的掉线 (13)3.4.6无线环境导致掉线 (13)3.4.7终端类问题 (14)3.4.8个性问题单独分析 (14)3.5掉线问题优化方案 (14)3.5.1切换优化 (14)3.5.2参数优化 (15)3.5.3干扰优化 (15)3.5.4覆盖优化 (16)4掉线问题典型案例 (16)1概述本文主要介绍了TD-LTE掉线问题优化方法,通过对出现各种情况的掉线问题进行讲解说明,总结了TD-LTE掉线的处理思路及优化方案,为后续处理TD-LTE掉线问题提供了优化经验。

2掉线率相关KPI指标2.1掉线率指标定义无线掉线率=∑(eNB请求释放上下文数-正常的eNB请求释放上下文数)/∑(初始上下文建立成功次数+遗留上下文个数)*100% ,其中∑代表将本地网范围内的各个小区的统计结果累加。

诺基亚的无线掉线率公式是:100*sum(M8013C15+M8013C16)/sum(M8006C35+M8006C36+M8006C168+M8006C169+M8006C 170)ERAB掉线率=∑( eNB请求释放的E-RAB数 -正常的eNB请求释放的E-RAB数 +切出失败的E-RAB数 )/∑(E-RAB建立成功数+遗留E-RAB个数)*100%,其中∑代表将本地网范围内的各个小区的统计结果累加。

TD-LTE覆盖优化

TD-LTE覆盖优化

孤岛效应优化
所谓孤岛效应就是在无线通信系统中,因为复杂的无线环境,无线信号经过山脉、建筑物、以及大气层的发射、折射,或 基站安装位置过高,以及波导效应等原因,引起在远离本小区覆盖的区域外形成一个强场区域。如图9所示,小区D因为某 种原因在相距很远的小区A覆盖区域内产生D基站的强信号区域,由于这个区域超出D小区实际覆盖范围,往往这一区域没 有和周围小区配备邻区关系,形成孤岛,对A小区产生干扰,或在孤岛区域起呼的UE无法切换到A小区,产生掉话。 引起孤岛效应的主要原因有以下方面: • 天线挂高太高 • 天线方位角、下倾角设置不合理 • 基站发射功率太大 • 无线环境影响
Company confidential – for internal use only 7 © Nokia Siemens Networks Nokia Siemens Networks PowerPoint – Template 16:9 format / June 2009
弱覆盖优化案例
问题描述:中华墓园2扇下及大观路2扇区站下弱覆盖,RSRP低于100,SINR值较差(部分低于0) 问题措施:该区域属于弱覆盖,建议调整天线方位角和下倾角以解决弱 覆盖,其中中华墓园为单管塔,可以调整用以加强道路覆盖,大观路为楼 顶站点,天线采用抱杆安装,也可以调整,调整天线后复测弱覆盖解决
覆盖优化流程: 1. 网络覆盖优化需求:全网规模、覆盖需求及道路规划 2. 簇划分:将整个网络划分为N个簇进行小规模区域优化(要求簇内道路连续,站点连片) 3. 簇内测试路线规划(至少包含全网测试所经过得道路) 4. 簇内优化(根据优化原则进行优化) 5. 簇间优化(完成簇内优化后进行邻簇间的优化) 6. 全网优化 覆盖优化工程流程: 1. 数据采集(路测) 2. 数据分析(分许并提出优化方案) 3. 弱覆盖优化 4. 干扰优化 5. 切换优化

TD-LTE U型干扰分析及优化方案

TD-LTE U型干扰分析及优化方案
路。
关键词 :T D. L T E 干扰 参数优化 功率控制 参数优化
1 引言
T D . L T E系统有相应 的手段加以抑制 , 如通 过异频组
网或者加大空间隔离 , 或采用软频率复用等干扰协调
根据 双 工 方 式不 同 ,L T E系统 分 为 F D D— L T E和 技术。但在实际运行 的网络中 , 仍然可能存在一些特 T D D— L T E 两 种 。其 中 ,T D— L T E采 用 的 是 不 对 称 频 殊 的干 扰类 型 。
图1 厂 商 A的典 型U型 干 扰
/ /





— , _ \_ ,
, /
山 东 通 信 技 术
2 0 1 6 年
P R A C H为用户接入 网络时 占用 的物理 资源 , 不
合 理分 配有 可能 导致 干扰 和小 区性 能 劣化 。通 过修 改 小 区参数 , 改变 P R A C H的位置 , 放到 1 0 0个 R B 的 中 间位 置 , 发 现 干扰 无 明 显 改 善 , 因此 排 除 P R AC H
活性 , 较之 F D D双工方式 , T D D有着更高 的频谱效率 ; 量 限制 , 各项 指标 略 低 于正 常水 平 。对某 地 现 网投诉
由于上下行链路使用相同的频率 , 上下行链路的一致 区域小 区进 行 上 行 时 隙 P R B干 扰 电平指 标 统 计 分 析 性较好 , 基站的收 / 发可 以共用部分射频单元 , 降低 时 , 发现存在频段前后两端干扰高 、 中间低的 u型干 了设备成本 , 同时能更好地采用传输预处理技术 , 有 扰 , 明显不 同于通常 的系统 内干扰 , 也不同于带外杂 效降低移动终端 的处理复杂性 。 散干扰 、 杂散干扰 、 谐波干扰或者互调干扰等外部的 T D时分系统也存在一些弱点 : T D D基站的覆盖 波形。通过 网管 系统提取不 同厂商 的指标进行分析 范 围略小于 F D D基 站 , 且对 同步要求 高 ,T D需要 后发现 , 部分小区均不 同程度地存在类似情况。不同

华为TD-LTE优化-新特性功能使用指导书

华为TD-LTE优化-新特性功能使用指导书

TDD-LTE新特性验证指导手册1概述伴随着智能网络的高速发展,视频产业将迎来新一轮高速发展的机遇。

新特性通过创新中心进行新产品、新技术、新方法的孵化,应用在现网网络基础上提升网络性能,维护“移动TDD-LTE精品网络”品牌质量。

本期专项开展了上行COMP、下行COMP、载波聚合、负载均衡、基于频率优先级切换、控制信道干扰干扰抑制合并、下行频选调度增强、符号关断等八个新特性功能验证。

2新特性验证流程3新特性介绍3.1下行COMP3.1.1特性原理UE位于小区边界区域,能够感受到来自多个小区的信号,DL CoMP技术使得多个小区同时服务终端,或者对来自多个小区的发射信号进行协作以规避彼此间的干扰,从而提升UE的性能。

3.1.2应用场景密集宏小区,扇区间有较大干扰,且小区有一定的负荷。

这样,才能保证:●CoMP OFF时,边缘用户调度时刻对应RB上也概率上碰撞上邻区用户的调度,有碰撞就对边缘用户产生了干扰,造成了性能损失;否则,在小区负荷很轻(5%以下)的场景,边缘用户调度RB位置上也很小概率感受到邻区的干扰,此时做不做干扰协调性能差别不大;●CoMP ON时,通过干扰协同调度策略,使得边缘用户调度RB位置上受到邻区的干扰减少,从而提升边缘用户的体验;硬件要求:3.1.3开通方法3.1.3.1MML命令说明备注:➢DSP eX2 ,如果eX2接口状态信息正常,则表示eX2已生效➢DSP CELLDLCOMPSTATUS,如果小区DL COMP开通状态正常,则表示这个簇的DL COMP 开通成功3.1.3.2开通观察(MML)步骤1 在U2000上执行MML命令LST CELLALGOSWITCH,查看返回信息“下行CoMP算法开关”的输出结果,判断DL CoMP开通是否成功。

如下示例中,输出结果表示基带板内DL CoMP开通成功:下行CoMP算法开关 = 站内DL CoMP开关:开&站间DCS开关:关&站间CBF开关:关步骤2 在U2000上执行MML命令DSP LICINFO:●基带板内CoMP:查看LTE-A引入包(TDD)与基于自适应模式的下行协作多点发送(TDD)对应的实际使用值取值。

TD-LTE室内覆盖解决方案和LTE网络规划优化案例-nuoxi

TD-LTE室内覆盖解决方案和LTE网络规划优化案例-nuoxi

子帧配置
原则上业务子帧配置为1:3,特殊子帧配置为10:2:2,上行业务需求大的楼宇可将业务子帧 配置为2:2,特殊子帧配置为10:2:2
LTE规划优化国内外案例
8
Copyright Nokia Siemens Networks. All rights reserved.
TD-LTE室分解决方案
TD-LTE站点解决方案
P BAR R E 3m
E
MAGAZZIN O A SC AFFALI
E E
E
E
LOC ALE BATTER IE
UFFICI OPEN SPACE
E
E E
E
E
SALA PR OVE
EE E
CDZ
E
E A
IMPIAN TI TELEFON IA MOBILE
E E
E
LABOR ATOR IO
METEOR OLOGIC O
ZONA SOPPALCO A
E
E
E
E
PRODUZIONE IN OPEN SPACE
E E
E
E
E
E
BUSR170 mq.
E E
SALA D MER A AN EC OIC A
ATTREZZERIA
E
E
BURM
210 mqE.
E PRODUZIONE IN OPEN SPACE
增强移动宽带接入能力
LTE规划优化国内外案例
5
Copyright Nokia Siemens Networks. All rights reserved.
TD-LTE室分解决方案
TD-LTE站点解决方案

TD-LTE无线网络优化问题与方案分析

TD-LTE无线网络优化问题与方案分析

2018年第2期81科教论坛1.TD-LTE无线网络概述TD-LTE无线网络是在TD一CSDMA长期发展演进下出现的产物,TD-LTE无线网络采用oFDMA空中接口技术提升了通信系统的数据传输速度和频谱利用率,并进一步拓展了 TD-LTE无线网络的语音、视频、在线游戏等功能。

TD-LTE无线网络系统运行操作主要是利用e-NodeB结构,并在一系列技术的支持下不断完善基站功能,应用各个IP实现各个基站节点信息的有效传输。

TD-LTE无线网络在逻辑层面上通过X2接口互相连接形成Mesh型的网络结构,从而提升整个系统的移动网络运行。

在这样系统的运行下,用户在使用的时候能够根据自己的需要进行信息的无缝切换操作。

另外,基站e-NodeB和接入网关之间通过S1接口能够实现有效连接,在一个基站作用下实现和多个网关的连接。

2.TD-LTE无线网络优化方案2.1 PCI规划。

PCI是用来区分终端不同小区的无线信号,是LTE的物理小区标识。

在实际操作中,临近小区之前的PCI必须保持一致,同时PCI的覆盖范围也需要具有唯一性的特点。

为此,在进行PCI规划的时候要遵循简单、清晰、容易拓展的特点,同时在进行PCI规划的时候要求同一个PCI小组所包含的PCI来自同一个站点,将临近点的PCI划分到不同的PCI组内,从而确保各类无线信号识别的清晰、准确。

另外,在进行PCI规划的时候还需要考虑室内无线网线的覆盖问题,结合实际情况尽可能选择分开规划的方法。

2.2网络规划。

TD-LTE的无线网络规划和拓展结构的时候和传统2G或者3G网络系统规划操作存在一定的相似性,因此结合实际情况能够选择的网络类型都是蜂窝型,由此决定了2G或者3G网络规划流程的相似性,但是在实际操作中因为采取了不同的网络架构、调度算法,使得TD-LTE无线网络规划无法按照传统的网络规划模式。

另外,TD-LTE无线网络的TDD和FDD模式存在不同的差别,在进行网络规划的时候没有严格按照传统网络规划模式进行操作。

TD-LTE无线参数设置指导优化手册-华为

TD-LTE无线参数设置指导优化手册-华为

中国移动TD-LTE无线参数设置指导优化手册-华为分册(征求意见稿)目录TABLE OF CONTENTS1 前言 (3)2上行资源分配 (7)3上行ICIC (7)4下行资源分配 (8)5下行MIMO (9)6移动性管理 (10)7LC(过载控制) (11)8功控算法 (12)9信道配置&链路控制 (13)10数传算法 (13)11传输TRM算法 (14)12 SON (14)13附件:华为ERAN3.0参数列表 (14)14《LTE无线网优参数集》 (15)15《TD-LTE无线参数指导优化手册》 (15)1 前言1.1 关于本书1.1.1目的本文主要介绍了华为TD-LTE系统eRAN3.0版本的各个专题的相关参数,对参数进行介绍和分析,旨在帮助读者理解和使用系统中的参数,提高系统性能。

1.1.2读者对象本手册适用于TD-LTE系统的基本概念有一定认识的华为公司内部工程师。

1.1.3内容组织本手册是基于TD-LTE产品eRAN3.0版本的参数介绍,其内容组织如下:第一章:对本手册的目的,读者对象,内容组织进行介绍。

第二章上行资源分配:介绍Sounding RS资源分配和上行调度的参数配置及调整影响。

第三章上行ICIC:介绍上行ICIC相关参数配置及其调整影响。

第四章下行资源分配:介绍PUCCH资源分配、下行CQI调整、下行调度和下行物理控制信道的参数配置及调整影响。

第五章下行ICIC:介绍下行ICIC相关参数的配置及其调整影响。

第六章下行MIMO:介绍下行MIMO(含Beamforming)与CQI模式的参数配置方法及其调整的影响。

第七章移动性管理:介绍切换、重选的参数配置及其调整影响。

第八章LC(过载控制):介绍负载控制算法、随机接入控制算法、系统消息SIB映射、移动性负载平衡算法、准入控制算法的参数配置及其调整影响。

第九章功控算法:介绍影响上行功率控制算法、下行功率控制算法的相关参数及其调整影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川师范大学成都学院本科毕业设计TD-LTE网络优化方案设计学生姓名王明学63号所在学院通信工程学院专业名称通信工程班2012级广播电视方向级指导教师倪磊四川师范大学成都学院二○一六年五月TD-LTE网络优化方案设计学生:王明指导教师:倪磊内容摘要:TD-LTE无线网络优化有两个运行阶段:一是工程优化阶段,第二,运营阶段。

本文的研究方向是工程优化阶段。

工程优化阶段分为阶段的单站优化,优化集群,整个网络优化阶段。

每个阶段的任务是不一样的,但我们的目标是一样的,两个阶段的目标都是相同的,两个阶段的目标是让用户得到最大价值,实现最佳组合的网络覆盖、容量和价值。

用户通过无线网络优化方法提高产量和节约成本。

为了达到要求的KPI指标,我们针对优化工作:覆盖优化,切换优化,干扰优化,RR优化做出分析。

经过这些反复的优化流程以确保广大用户能正常使用LTE无线网路。

本文将重点介绍上述工程优化三个阶段的优化流程和方法,以及介绍无线网络优化主要优化任务,还有优化过程中经常遇到的问题和解决方法。

关键词:TD- LTE 覆盖优化切换优化干扰优化RP优化Design Of Optimization in The TD-LTE NetworkAbstract: The TD-LTE wireless network optimization, there are two operation stages: one is the engineeringoptimization phase, the second, the operational phase. In this paper, the research direction is engineering optimization Phase. Engineering optimization phase is divided into phases single station optimization, optimization of the cluster, the entire network optimization phase. Each stage task is different, but our goal is the same, two Goals are the same, the two stages the goal is to let users get the most value, to achieve the best combination of network coverage, capacity and value. Users via wireless network optimization method to Increase production and save cost. In order to satisfy the the requirements of KPI, we optimized work: coverage optimization, the switch optimization, optimization, RR optimization analysis. After these repeatedoptimization process to ensure that users can use normally LTE wireless article focuses Three stages of optimization in engineering optimization processes and methods, and introduce the wireless network optimization mainly optimization tasks, there are often encountered in the process of optimization problems and solutions.Keywords: The TD-LTE Coverage optimization Switch to optimize Interferenceoptimization The RP optimization.目录前言错误!未定义书签。

1 无线网络优化错误!未定义书签。

通信技术简介错误!未定义书签。

网络优化的意义错误!未定义书签。

2 TD-LTE基本原理错误!未定义书签。

2G、3G关键技术错误!未定义书签。

Rake接收技术错误!未定义书签。

信道编码技术错误!未定义书签。

功率控制技术错误!未定义书签。

多用户检测技术错误!未定义书签。

智能天线错误!未定义书签。

核心技术错误!未定义书签。

OFDM技术错误!未定义书签。

OFDM的优点错误!未定义书签。

基于DFT的OFDM有快速算法错误!未定义书签。

MIMO技术错误!未定义书签。

3 TD-LTE网络优化架构错误!未定义书签。

4 网优方案设计错误!未定义书签。

LTE网络优化关键步骤错误!未定义书签。

网络优化内容错误!未定义书签。

天馈接反错误!未定义书签。

弱覆盖优化错误!未定义书签。

越区覆盖优化错误!未定义书签。

上下行不平衡错误!未定义书签。

无主导小区错误!未定义书签。

网络干扰优化错误!未定义书签。

切换干扰优化错误!未定义书签。

5 总结与展望错误!未定义书签。

参考文献错误!未定义书签。

TD-LTE网络优化方案设计前言3 GPP LTE推出了新一代无线通信技术,并发展成新一代移动通信技术的主流。

目前大多数的国际主流通信运营商选择LTE作为下一代移动通信的发展方向,每个人都在积极推动LTE的产业化开发。

LTE技术成为新一代的网络通信技术,网络的结构也发生了很大的改变。

此外,LTE网络应用大量的新的无线通信技术,包括正交频分复用(OFDM),多天线技术(MIMO),LTE网络优化的方法从一个新的解决方案和新角度来解决满足网络优化的需要。

中国据有自主知识产权的3G标准是TD-SCDMA,中国为此在世界上赢得了很多发达国家的关注,这对中国移动通信事业的开展起到了决定性的作用。

随着通信技术快速发展领域的应用程序中,用户要求的数据服务质量和传输速率增加,使得TD-SCDMA必须加快进化步伐以满足用户对数据传输速率的需求。

LTE无线网络优化涵盖了无线网络运维优化和无线网络工程优化。

两者都要求达到相应的考核标准,无线网络运维优化的时间是运维期,在网络运行正常的时候进行,其中网络的性能指标、用户满意度、网络覆盖率、设备利用率等等是其优化的重点。

无线网络优化是一个长期运行的过程,从网络优化到网路建设再到网络运维都需要它。

本篇论文中主要介绍的是无线网络优化的工程优化。

无线网络优化是建立在无线网络建设的基础上展开进行的,当一个片区的无线网络覆盖到一定范围时,就可以进行网路优化。

并确保无线网络的容量能满足用户的需求,为广大用户能感觉到真正的满意度从心理学,并通过无线网络使用户能够提高产量和节约成本,使每个用户可以使用放心,快乐和安心。

网络优化着眼于降低操作节约成本方面的进一步改善系统必须能够满足现有的无线接入网络系统,将改变宽带CDMA技术系统可以更有效的对OFDM技术的多路径干扰。

OFDM技术起源于1960年代,其后飞速发展,在短时间内成为当时通信技术的核心技术。

王志威、刘云在《LTE技术发展与研发管理》提出了4G网络优化与之前的2/3G优化相比存在的优势,以及4G网络优化在未来发展的方向[1]。

樊昌信在《通信原理》提出了通信系统的模型组成,其中包含数字通信和模拟通信,简单的阐述了通信的过程和基本原理[2]。

王映民、孙韶辉在《TD- LTE技术原理与系统设计》提出了4G网络优化的一个具体实施步骤方向,全面的讲解了4G优化的原理以及一些可能存在的故障实例[3]。

本文共分五章,第一章将对无线网络优化历程做一个大概的介绍;第二章介绍TD-LTE 优化所需要用到的一些关键技术;第三章介绍网络优化的架构,实施网络优化的步骤;第四章将描述网络优化实施过程中可能遇到的问题,以及一些解决方案;最后第五章是对全文的一个总结与延伸,概括全文写作过程中遇到的问题,以及解决思路还有这项技术未来的发展前景。

1 无线网络优化通信技术简介现代通信主要技术包含计算机通信、移动通信、卫星通信、光钎通信等。

当前无线网络优化分2/3G优化和4G优化,其测试工具存在巨大差异,2/3G设备只能测试语音、通话质量、掉话等问题而4G设备能测试数据传输速率即网速。

目前网络优化的测试工具包括诺优、鼎力、烽火等。

实现这些技术的步骤大致见图。

图通信技术实现步骤由上图可知,网络优化和网络建设都是建立在通信技术的基础之上,其中网络建设的一般步骤是先进行规划咨询了解需要建设的真实数据,然后对这些数据进行分析整理得出相应的研究报告,在确定需要建设网络之后进行实地勘察,这些都是网络建设前期需要准备的工作,在网络建设初期必然会出现网络故障问题,这是本文将重点介绍的内容。

网络优化的意义随着网络时代的步伐,已经有越来越多的用户从之前的传呼机,小灵通转向手机电脑等新时代产物,现有的网络状况根本不能满足大部分用户的需求,大家都知道青年是接收新事物最快的人群,随着大型网络游戏、3D电影等的出现,现有的网络资源“不堪重负”因此,网络优化这门技术“应运而生”它最终的目的是解决当前网络拥挤、网速慢、延迟高、不流畅等问题,网络优化还能应付越来越多的网络用户更多达到网络费用低运营商收益高的双赢局面。

网络优化需要具备方方面面的知识,这些的实现都需要通过相关技术来缓解并最终解决用户反馈的问题,在实践中总结经验,然后整理出一套系统化的网络优化方案其中主要技术见图所示。

图网络优化主要技术由上图可以看出网络优化是逐步展开的,首先需要做好优化准备比如检测测试设备是否完好,测试类型的确定一般分为室分优化,城市DT,高铁,高速优化优化场景的不同决定了需要选取的设备类型计划方案;其次,需要明白我们要优化的区域,大致可以分为簇优化、区域优化、边界优化等。

然后需要对测试的参数进行核对比较,排除差距较大的参数然后取均值,经反复核查之后得出结论。

2 TD-LTE基本原理2G、3G关键技术Rake接收技术窄频带在蜂窝系统中,有多径衰落。

在宽带CDMA系统中,不同的路径是可以独立的,区分多路径信号可以用加权来调整,使合成后的信号增强,从而达到减少多径衰落造成负面影响的目的。

要完成相干Rake的接收,必须发射未经过调制的导频,这样接收方就能对多路信号的相位进行估计。

用以区分这两个信号的方法具体见图2.1.1-1所示。

相关文档
最新文档