高中数学必修4平面向量测试题(附详细答案)
(完整版)高一数学必修4平面向量练习题及答案(完整版)
平面向量练习题一、选择题1、若向量a= (1,1), b= (1,-1), c =(-1,2),则 c等于( )A 、21 a +23bB 、21a 23 bC 、23a 21 bD 、23 a + 21b2、已知,A (2,3),B (-4,5),则与AB 共线的单位向量是( )A 、)1010,10103(e B 、)1010,10103()1010,10103(或e C 、)2,6( eD 、)2,6()2,6(或 e3、已知b a b a k b a 3),2,3(),2,1( 与垂直时k 值为 ( )A 、17B 、18C 、19D 、204、已知向量OP =(2,1),OA =(1,7),OB =(5,1),设X 是直线OP 上的一点(O 为坐标原点),那么XB XA 的最小值是 ( )A 、-16B 、-8C 、0D 、45、若向量)1,2(),2,1( n m 分别是直线ax+(b -a)y -a=0和ax+4by+b=0的方向向量,则 a, b 的值分别可以是 ( )A 、 -1 ,2B 、 -2 ,1C 、 1 ,2D 、 2,1 6、若向量a =(cos ,sin ),b =(cos,sin),则a 与b 一定满足 ( )A 、a 与b 的夹角等于 -B 、(a +b )⊥(a -b )C 、a ∥bD 、a ⊥b7、设j i ,分别是x 轴,y 轴正方向上的单位向量,j i OP sin 3cos 3 ,i OQ ),2,0(。
若用来表示OP与OQ 的夹角,则等于 ( ) A 、B 、2C 、2D 、8、设 20 ,已知两个向量 sin ,cos 1 OP , cos 2,sin 22 OP ,则向量21P P 长度的最大值是( ) A 、2B 、3C 、23D 、二、填空题9、已知点A(2,0),B(4,0),动点P 在抛物线y 2=-4x 运动,则使BP AP 取得最小值的点P 的坐标是 、10、把函数sin y x x的图象,按向量 ,a m n v(m>0)平移后所得的图象关于y 轴对称,则m 的最小正值为__________________、11、已知向量 m m 则若,),,3(),2,1( 、 三、解答题12、求点A (-3,5)关于点P (-1,2)的对称点/A 、13、平面直角坐标系有点].4,4[),1,(cos ),cos ,1(x x Q x P (1)求向量和的夹角 的余弦用x 表示的函数)(x f ; (2)求 的最值、14、设,)2cos ,sin 2(x x ,x ,)1cos ( 其中x ∈[0,2]、 (1)求f(x)=·的最大值和最小值; (2)当 OA u u u r ⊥OB uuu r ,求|AB u u u r|、15、已知定点)1,0(A 、)1,0( B 、)0,1(C ,动点P 满足:2||PC k BP AP 、(1)求动点P 的轨迹方程,并说明方程表示的图形; (2)当2 k 时,求||BP AP 的最大值和最小值、参考答案一、选择题1、B ;2、B ;3、C ;4、B ;5、D ;6、B ;7、D ;8、C 二、填空题9、(0,0) 10、56m 11、4 三、解答题12、解:设/A (x,y),则有312522xy ,解得11x y 、所以/A (1,-1)。
高中数学必修四平面向量测试题及答案
高中数学必修四平面向量测试题一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。
A、-9B、-6C、9D、6bb上的投影为()。
=(-4,7),则 2.已知 =(2,3), 在 D、、B、 CA、 =(-1按向量,-1),B(3,5,将向量)平移后得 3.设点A(1,2)。
向量)为(A、(2,3) B、(1,2) C、(3,4) D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。
A、直角三角形B、等边三角形C、等腰三角形D、等腰直角三角形bbb|等于()。
的夹角为60°,则5.已知| |=4, | | |=3, 与+D C、、 A、 B、所成的比为2,则()。
、已知OA、B为平面上三点,点C分有向线段 6.B、 A、、DC、 ABC所在平面上一点,且满足条件.O是Δ,7则点O是ΔABC的()。
A、重心B、垂心C、内心D、外心b均为平面内任意非零向量且互不共线,则下列4、个命题:、 8.设22222bbbbbb)+-|| =( (3)| (1)( ·)= · +(2)| +|≥|bb a不一定垂直。
其中真命题的个数是(-() ))。
与(4)(4、 D 3 、 C 2 、 B 1 、A.等中,A=60°,b=1,,则 9.在ΔABC 。
于() D、A、、B C、2bb=0的解的情况是(、不共线,则关于x的方程) x+。
x+ 10.设A、至少有一个实数解 B、至多只有一个实数解 D、可能有无数个实数解、至多有两个实数解 C.).分,满分16分二、填空题:(本大题共4小题,每小题4CAAB 22=_________AC=ABC中,斜边,则11.在等腰直角三角形ACABAD babABCDEFa为.已知则用为正六边形,______.且,=表示=,,12速度为的小船要从河的一边驶向,.有一两岸平行的河流,水速为113对岸,为使所行路程最短,小船应朝________方向行驶。
高一数学必修四第二章平面向量测试题及答案
一、选择题:( 本大题共10 小题,每题 4分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的 .)1.设点P 〔3,-6〕,Q 〔-5,2〕,R 的纵坐标为-9,且P 、Q 、R 三点共线,那么R 点的横坐标为〔 〕。
A 、-9B 、-6C 、9D 、6 2. =(2,3), =(-4,7) ,那么 在 b 上的投影为〔 〕。
b A 、B、C 、D 、3.设点A 〔1,2〕,B 〔3,5〕,将向量按向量 =〔-1,-1〕平移后得向量为〔〕。
A 、〔2,3〕B 、〔1,2〕C 、〔3,4〕D 、〔4,7〕4.假设(a+b+c)(b+c-a)=3bc ,且sinA=sinBcosC ,那么 ABC 是〔 〕。
A 、直角三角形 B 、等边三角形C 、等腰三角形 D 、等腰直角三角形5.| |=4,| b|=3, 与b 的夹角为60°,那么| +b|等于〔 〕。
A 、B、C、D 、6.O 、A 、B 为平面上三点,点C 分有向线段所成的比为 2,那么〔 〕。
A 、B、C 、D、7.O 是 ABC 所在平面上一点,且满足条件 , 那么点O 是 ABC 的〔 〕。
A 、重心 B 、垂心 C 、内心D 、外心 8.设 、b 、 均为平面内任意非零向量且互不共线,那么以下4个命题: (1)( ·b)2= 2·b 2 (2)| +b |≥| -b|(3)| +b|2=(+b)2(4)(b)-(a)b与不一定垂直。
其中真命题的个数是〔〕。
A、1B、2C、3D、49.在ABC中,A=60°,b=1,,那么等于〔〕。
A、B、C、D、10.设、b不共线,那么关于x的方程x2+b x+=0的解的情况是〔〕。
A、至少有一个实数解B、至多只有一个实数解C、至多有两个实数解D、可能有无数个实数解二、填空题:〔本大题共4小题,每题4分,总分值16分.〕.11.在等腰直角三角形ABC中,斜边AC=22,那么ABCA=_________12.ABCDEF为正六边形,且AC=a,AD=b,那么用a,b表示AB为______.13.有一两岸平行的河流,水速为1,速度为的小船要从河的一边驶向对岸,为使所行路程最短,小船应朝________方向行驶。
(压轴题)高中数学必修四第二章《平面向量》检测卷(有答案解析)
一、选择题1.己知平面向量,a b 满足1a a b =-=,则32a b a b -++的最大值为( )A .4B .C .3+D .62.设向量a ,b ,c 满足||||1a b ==,12a b ⋅=,()()0a c b c -⋅-=,则||c 的最小值是( )A .12B .12C D .13.已知非零向量a →,b →夹角为45︒,且2a =,2a b -=,则b →等于( )A .B .2C D4.已知ABC 是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,与CE 交于点O ,则下列说法正确的是( )A .1AB CD ⋅=- B .1233BD BC BA =+ C .3OA OB OC ++=D .ED 在BC 方向上的投影为765.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( )A .(1⎤⎦B .(1⎤⎦C .1⎤⎦D .)1,+∞6.在ABC 中,4A π=,3B π=,2BC =,AC 的垂直平分线交AB 于D ,则AC CD ⋅=( )A .1-B .2-C .3-D .37.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==8.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .3-C .3D .39.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b + B .3255a b + C .2133a b +D .1233a b +10.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( ) A .14B .12C .2D .411.直线0ax by c与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( ) A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-12.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,23AB =,2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题: ①若1ABλ=,1ACμ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心; ③若1λμ+=,且0μ>,则点P 在线段BC 上; ④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内. 其中真命题为______14.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.15.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,) OC mOA nOB m n R =+∈,则mn等于.16.已知ABC的三边长3AC=,4BC=,5AB=,P为AB边上任意一点,则()CP BA BC⋅-的最大值为______________.17.已知ABC∆中,3AB=,5AC=,7BC=,若点D满足1132AD AB AC=+,则DB DC⋅=__________.18.已知向量()()2,3,1,2==-a b,若ma b+与2a b-平行,则实数m等于______. 19.已知点O是ABC∆内部一点,并且满足230OA OB OC++=,BOC∆的面积为1S,ABC∆的面积为2S,则12SS=______.20.如图,在四边形ABCD中,60B∠=︒,2AB=,6BC=,1AD=,若M,N是线段BC上的动点,且||1MN=,则DM DN⋅的取值范围为_________.三、解答题21.在ABC中,3AB=,6AC=,23BACπ∠=,D为边BC的中点,M为中线AD 的中点.(1)求中线AD的长;(2)求BM与AD的夹角θ的余弦值.22.在直角坐标系xoy中,单位圆O的圆周上两动点A B、满足60AOB∠=︒(如图),C 坐标为()1,0,记COAα∠=(1)求点A与点B纵坐标差A By y-的取值范围;(2)求AO CB ⋅的取值范围;23.在OAB 的边OA ,OB 上分别有一点P ,Q ,已知:1:2OP PA =,:3:2OQ QB =,连接AQ ,BP ,设它们交于点R ,若OA a =,OB b =.(1)用a 与b 表示OR ;(2)过R 作RH AB ⊥,垂足为H ,若1a =,2b =,a 与b 的夹角2,33ππθ⎡⎤∈⎢⎥⎣⎦,求BHBA的范围.24.如图,在ABC 中,1AB AC ==,120BAC ∠=.(Ⅰ)求AB BC 的值;(Ⅱ)设点P 在以A 为圆心,AB 为半径的圆弧BC 上运动,且AP x AB y AC →→→=+,其中,x y R ∈. 求xy 的最大值.25.如图,四边形ABOC 是边长为1的菱形,120CAB ∠=︒,E 为OC 中点.(1)求BC 和BE ;(2)若点M 满足ME MB =,问BE BM ⋅的值是否为定值?若是定值请求出这个值;若不是定值,说明理由.26.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用1a a b =-=得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,利用平面向量的运算法则得到29832a b a b t -+-=+,再利用基本不等式即可求解. 【详解】因为1a a b =-=, 所以22222cos ,1a a ba ab a b b =-=-〈〉+=,则2cos ,b a b =〈〉, 令[]cos ,,1,1t a b t =〈〉∈-, 所以2b t =, 则()23232a b a b -=-22124a a b t b =-+== ()2222a b a b a a b t b +=+=++22418t t =+=+,所以29832a b a b t -+-=+,利用基本不等式知:2a b a b +≤+≤,≤=,=此时2t =±.则32a b a b -++的最大值为 故选:B. 【点睛】思路点睛:利用已知条件得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,把问题化为了单一变量的函数问题,再利用平面向量的运算法则得到29832a b a b t -+-=+,最后利用基本不等式即可解决.2.B解析:B 【分析】建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为122⎛⎫ ⎪ ⎪⎝⎭,,221⎛⎫- ⎪ ⎪⎝⎭,设c 的坐标为(),x y ,由已知可得2214x y ⎛+= ⎝⎭,表示以2⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆,求出圆心到原点的距离,再减去半径即为所求 【详解】解:建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为12⎫⎪⎪⎝⎭,21⎫-⎪⎪⎝⎭,设c 的坐标为(),x y , 因为()()0a c b c -⋅-=,所以11,,022x y x y ⎫⎫--⋅---=⎪⎪⎪⎪⎝⎭⎝⎭,化简得22124x y ⎛-+= ⎝⎭,表示以,02⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆, 则||c 的最小值表示圆上的点到原点的距离的最小值,因为圆到原点的距离为2,所以圆上的点到原点的距离的最小值为122-,故选:B【点睛】此题考查平面向量的数量积运算,解题的关键是写出满足条件的对应的点,考查数学转化思想,考查数形结合的思想,属于中档题3.A解析:A 【分析】根据数量积的运算,2a b →→-=两边平方即可求解. 【详解】2a b →→-=,=2a →,a →,b →夹角为45︒,2222()24a b a b a a b b →→→→→→→→∴-=-=-⋅+=, 2422||cos||44b b π→→∴-⨯+=,解得:||22b →= 故选:A 【点睛】本题主要考查了向量数量积的运算性质,数量积的定义,属于中档题.4.D解析:D 【分析】利用CE AB ⊥,判断出A 错误;由2AD DC =结合平面向量的基本定理,判断出选项B 错误;以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,写出各点坐标,计算出OA OB OC ++的值,判断出选项C 错误;利用投影的定义计算出D 正确. 【详解】由题E 为AB 中点,则CE AB ⊥,0AB CE ⋅=,所以选项A 错误;由平面向量线性运算得2133BD BC BA =+,所以选项B 错误; 以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,()0,0E ,1,0A ,()1,0B -,(3C ,1233D ⎛ ⎝⎭,设()0,O y ,(3y ∈,()1,BO y =,123,33DO y ⎛=-- ⎝⎭, //BO DO ,所以,3133y y -=-,解:32y =, 32OA OB OC OE OE OE ++=+==,所以选项C 错误; 123,33ED ⎛⎫= ⎪ ⎪⎝⎭,(1,3BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,故选:D . 【点睛】本题考查平面向量数量积的应用,考查平面向量基本定理,考查投影的定义,考查平面向量的坐标表示,属于中档题.5.C解析:C 【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出22OB x y d =+=,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 取得最小值21-,O 在BM 的延长线上时,OB 取得最大值21+. 故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,()()2222222ax cy ac xy x y +≤++=+,取等号条件:ay cx =,令22OB x y d =+=,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得2121d -≤≤+.故选:C 【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.6.C解析:C 【分析】由AC 的垂直平分线交AB 于D ,且4A π=可得ACD △为等腰直角三角形,且4A ACD π∠=∠=,2ADC BDC π∠=∠=;进而由2BC =可求出,,DB CD AC 的长,从而求出AC CD ⋅的值. 【详解】解:因为AC 的垂直平分线交AB 于D 、4A π=,所以ACD △为等腰直角三角形,4A ACD π∠=∠=,2ADC BDC π∠=∠=,在BDC 中,3B π=,2BDC π∠=,2BC =,所以1,3BD CD ==,所以3AD CD ==,26AC CD ==,所以32cos63()342AC CD AC CD π⋅=⋅=⨯⨯-=-.故选:C. 【点睛】本题主要考查平面向量的数量积,考查运算求解能力,属于基础题型.7.B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.8.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a ba b +=-所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+,所以13a b ⋅=,则()2263a b a b+=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()4326a a b a b⋅+==+ 故选:C. 【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.9.B解析:B 【分析】由题得三角形是直角三角形,设3,4,5AB AC BC ===,设,=,,DB BF x AD AE y EC CF z =====求出,,x y z ,再利用平面向量的线性运算求解.【详解】因为||:||:||3:4:5AB AC BC =,所以ABC 是直角三角形,设3,4, 5.AB AC BC ===如图,设,=,,DB BF x AD AE y EC CF z =====由题得34,2,1,35x y y z x y z x z +=⎧⎪+=∴===⎨⎪+=⎩,所以2232()5555AD AB BD AB BC AB AC AB AB AC =+=+=+-=+3255a b =+. 故选:B 【点睛】本题主要考查平面向量的线性运算,意在考查学生对这些知识的理解掌握水平.10.C解析:C 【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos62b a b t aaπ⋅=-=-时,()g t 取得最小值1,变形可得22sin16b π=,从而可求出b 【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos 1)06a b a b a b π∆=⋅-=-<,所以()g t 恒大于零,所以当232cos622b b a b taaaπ⋅=-=-=-时,()g t 取得最小值1,所以22233321222b b bg a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =,所以2b =, 故选:C 【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题11.A解析:A 【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-,()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解. 【详解】解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b==+,在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭, ∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭,∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-; 当OP ,OA 反向时,取得最大值,为246+=. ∴PM PN ⋅的取值范围为[]2,6-. 故选:A. 【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.12.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④ 【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断. 【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】延长BC 作圆M 的切线设切点为A1切线与BD 的交点D 结合数量积的几何意义可得点A 运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC 作圆M 的切线设切点为A1切 解析:2-延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,结合数量积的几何意义可得点A 运动到A 1时,CA 在CB 上的投影最小,设CP x =,将结果表示为关于x 的二次函数,求出最值即可. 【详解】 如图,延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,由数量积的几何意义,CA CB ⋅等于CA 在CB 上的投影与CB 之积,当点A 运动到A 1时,CA 在CB 上的投影最小; 设BC 中点P ,连MP ,MA 1,则四边形MPDA 1为矩形; 设CP =x ,则CD =2-x ,CB =2x ,CA CB ⋅=()()222224212x x x x x --⋅=-=--,[]02x ∈,, 所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.15.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①22323m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=.以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,22OC λλλ⎛⎫=︒︒ ⎪ ⎪⎝⎭,又()(()1,033OC mOA nOB m n m n =+=+=,得()31,=322m n λ⎛⎫ ⎪ ⎪⎝⎭,即 3=2132m nλλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.16.9【分析】根据题意建立直角坐标系用坐标法解决即可得答案【详解】解:根据题意如图建立直角坐标系∴∴∴∴的最大值为故答案为:【点睛】本题考查坐标法表示向量向量的数量积运算线性运算的坐标表示等是中档题解析:9 【分析】根据题意,建立直角坐标系,用坐标法解决即可得答案. 【详解】解:根据题意,如图建立直角坐标系,∴ ()0,3A ()4,0B ,()0,0C , ∴ ()4,3AB =-,()()()0,34,34,33CP CA AP CA AB λλλλλ=+=+=+-=-,[]0,1λ∈,∴ ()()()[]4,330,3990,9CP BA BC CP CA λλλ⋅-=⋅=-⋅=-∈∴()CP BA BC ⋅-的最大值为9.故答案为:9 . 【点睛】本题考查坐标法表示向量,向量的数量积运算,线性运算的坐标表示等,是中档题.17.【分析】根据以为一组基底由得到再由求解【详解】因为又因为所以所以故答案为:-12【点睛】本题主要考查平面向量基本定理和向量的线性运算还考查了运算求解的能力属于中档题 解析:12-【分析】 根据1132AD AB AC =+,以,AB AC 为一组基底,由2222()2BC AC AB AC AB AB AC =-=+-⋅,得到152AB AC ⋅=-,再由2111()()3223⎛⎫⎛⎫⋅=-⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭DB DC AB AD AC AD AB AC AC AB 求解.【详解】因为2222()2BC AC AB AC AB AB AC =-=+-⋅ 又因为3AB =,5AC =,7BC = 所以152AB AC ⋅=-,所以2111()()3223DB DC AB AD AC AD AB AC AC AB ⎛⎫⎛⎫⋅=-⋅-=-⋅-=⎪ ⎪⎝⎭⎝⎭22211251521294244AB AC AB AC --+⋅=---=-. 故答案为:-12 【点睛】本题主要考查平面向量基本定理和向量的线性运算,还考查了运算求解的能力,属于中档题.18.【分析】由向量坐标的数乘及加减法运算求出与然后利用向量共线的坐标表示列式求解【详解】解:由向量和所以由与平行所以解得故答案为:【点睛】本题考查了平行向量与共线向量考查了平面向量的坐标运算属于基础题解析:12-【分析】由向量坐标的数乘及加减法运算求出ma b +与2a b -,然后利用向量共线的坐标表示列式求解. 【详解】解:由向量(2,3)a =和(1,2)b =-,所以()()()2,31,221,32m m m b m a ++=-=-+,()()()22,321,24,1a b -=--=-,由ma b +与2a b -平行,所以4(32)(21)0m m ++-=. 解得12m =-. 故答案为:12-. 【点睛】本题考查了平行向量与共线向量,考查了平面向量的坐标运算,属于基础题.19.【分析】将化为再构造向量和得出比例关系最后求解【详解】因为所以分别取的中点则所以即三点共线且如图所示则由于为中点所以所以故答案为:【点睛】本题考查向量的线性运算但是在三角形中考查又和三角形面积综合在解析:16【分析】将230OA OB OC ++=化为()2OA OC OB OC +=-+,再构造向量()12OA OC +和()12OB OC +,得出比例关系,最后求解12.S S【详解】因为230OA OB OC ++=,所以()2OA OC OB OC +=-+,分别取AC ,BC 的中点D ,E ,则2OA OC OD +=,2OB OC OE +=. 所以2OD OE =-,即O ,D ,E 三点共线且2OD OE =.如图所示,则13OBC DBC S S ∆∆=,由于D 为AC 中点,所以12DBC ABC S S ∆∆=,所以16OBC ABC S S ∆∆=. 故答案为:16【点睛】本题考查向量的线性运算,但是在三角形中考查,又和三角形面积综合在一起,属于中档题.20.【分析】首先以点为原点建立空间直角坐标系利用向量的坐标表示再求取值范围【详解】如图建立平面直角坐标系当时取得最小值当时取得最大值所以的取值范围为故答案为:【点睛】关键点点睛:本题的关键是利用坐标法解解析:11,154⎡⎤⎢⎥⎣⎦【分析】首先以点B 为原点,建立空间直角坐标系,利用向量的坐标表示DM DN ⋅,再求取值范围. 【详解】如图,建立平面直角坐标系,(3A ,(3D ,(),0M x ,()1,0N x +,(2,3DM x =--,(1,3DN x =--,[]0,5x ∈,()()212335DM DN x x x x ⋅=--+=-+231124x ⎛⎫=-+ ⎪⎝⎭,当32x =时,取得最小值114,当5x =时,取得最大值15,所以DM DN ⋅的取值范围为11,154⎡⎤⎢⎥⎣⎦故答案为:11,154⎡⎤⎢⎥⎣⎦【点睛】关键点点睛:本题的关键是利用坐标法解决数量积的范围问题.三、解答题21.(1)332;(257【分析】 (1)由于()12AD AB AC =+,进而根据向量的模的计算求解即可; (2)由于3144BM AB AC =-+,()12AD AB AC =+,进而根据向量数量积得278BM AD ⋅=,故57cos BM AD BM AD θ⋅==. 【详解】解:(1)由已知,236cos 93AB AC π⋅=⨯=-, 又()12AD AB AC =+, 所以()222124AD AB AB AC AC =+⋅+()1279183644=-+=, 所以33AD =. (2)由(1)知,()131444BM AM AB AB AC AB AB AC =-=+-=-+, 所以()293117199361681616BM=⨯-⨯-+⨯=,从而319BM =. ()311442BM AD AB AC AB AC ⎛⎫⋅=-+⋅+= ⎪⎝⎭()3212799368888-⨯-⨯-+⨯=,所以2757cos 831933BM AD BM ADθ⋅=== 解法2:(1)以点A 为原点,AB 为x 轴,过点A 且垂直于AB 的直线为y 轴建系,则()0,0A ,()3,0B ,(C -,因为D 为边BC 的中点,所以0,2D ⎛ ⎝⎭,0,2AD ⎛= ⎝⎭,所以332AD =.(2)因为M 为中线AD 的中点,由(1)知,0,4M ⎛⎫ ⎪ ⎪⎝⎭,所以3,4BM ⎛⎫=- ⎪ ⎪⎝⎭,所以9164BM ==,278BM AD ⋅=,所以27cos8BM AD BM AD θ⋅=== 【点睛】本题考查向量的数量积运算,向量夹角的计算,考查运算求解能力与化归转化思想,是中档题.本题解题的关键在于向量表示中线向量()12AD AB AC =+,进而根据向量模的计算公式计算.22.(1)[ 1.1]A B y y -∈-;(2)31,22⎡⎤-⎢⎥⎣⎦. 【分析】(1)根据三角函数的定义写出点A 与点B 纵坐标,从而将A B y y -表示成关于α的三角函数;(2)写出向量数量积的坐标运算,即AO CB OA BC ⋅=⋅,再利用三角函数的有界性,即可得答案;【详解】由题意得:()sin ,sin 60A B y y αα︒==-,∴A B y y -()1sin sin 60sin sin cos 22ααααα︒⎛⎫=--=-⋅-⋅ ⎪ ⎪⎝⎭1sin sin 223πααα⎛⎫=+=+ ⎪⎝⎭ 02απ<,∴1sin 13πα⎛⎫-≤+≤ ⎪⎝⎭,∴[ 1.1]A B y y -∈-.(2)()()() (cos ,sin )1cos 60,sin 60AO CB OA BC αααα︒︒⋅=⋅=⋅---- ()()cos cos cos 60sin sin 60ααααα︒︒=-⋅--⋅- ()22133cos sin cos sin cos sin cos 2ααααααα=-+-⋅+⋅ 1cos 2α=-, 02απ≤<,3111cos 1cos 222αα∴-≤≤⇒-≤-≤, ∴31,22AO CB ⎡⎤⋅∈-⎢⎥⎣⎦. 【点睛】根据三角函数的定义及三角恒等变换、三角函数的有界性是求解本题的关键.23.(1)1162OR a b =+;(2)171,422⎡⎤⎢⎥⎣⎦. 【分析】(1)利用,,A R Q 三点共线和,,B R P 三点共线,结合平面向量共线定理,可构造方程组求得结果;(2)设BHt BA =,利用0BH AB ⋅=,结合平面向量线性运算将两个向量转化为用,a b 表示的向量,利用平面向量数量积的运算律可整理得到t 关于cos θ的函数形式,利用cos θ的范围即可求得结果.【详解】(1)设OR OA OQ λμ=+,,,A R Q 三点共线,1λμ∴+=,又:3:2OQ QB =,35OQ OB ∴=,35OR OA OB μλ∴=+;设OR mOP nOB =+,同理可得:1m n +=,3m OR OA nOB =+, ,OA OB 不共线,335m n λμ⎧=⎪⎪∴⎨⎪=⎪⎩,51331m n m n ⎧+=⎪∴⎨⎪+=⎩,解得:1212m n ⎧=⎪⎪⎨⎪=⎪⎩,1162OR OA OB ∴=+, 即1162OR a b =+. (2)设BH t BA =,则BH tBA =,()()1162RH BH BR tBA OR OB t OA OB OA OB ⎛⎫=-=--=--- ⎪⎝⎭ 11116262t OA t OB t a t b ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 又AB OB OA b a =-=-,BH AB ⊥,0BH AB ∴⋅=,()2211112262623t a t b b a t a t b t a b ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴-+-⋅-=-+-+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦14134244cos 54cos cos 06363t t t t t θθθ⎛⎫=-+-+-=-+-= ⎪⎝⎭, 整理可得:134cos 138cos 136354cos 3024cos 33024cos t θθθθθ--===+---, 2,33ππθ⎡⎤∈⎢⎥⎣⎦,11cos ,22θ⎡⎤∴∈-⎢⎥⎣⎦,171,422t ⎡⎤∴∈⎢⎥⎣⎦, 即BHBA 的取值范围为171,422⎡⎤⎢⎥⎣⎦. 【点睛】思路点睛:本题考查了平面向量线性运算和数量积运算的综合应用,处理数量积运算问题时,通常利用线性运算将所求向量进行等价转化,利用模长和夹角已知的两个向量来表示所求向量,如本题中利用,a b 表示出,BH AB ,再结合数量积的运算律来进行求解. 24.(Ⅰ)32-;(Ⅱ)1. 【分析】(I )建立坐标系,求出向量坐标,代入数量积公式计算;(II )利用向量坐标运算,得到三角函数,根据三角函数求出最大值.【详解】(Ⅰ)()AB BC AB AC AB →→→→→⋅=⋅- 213122AB AC AB →→→=⋅-=--=-. (Ⅱ)建立如图所示的平面直角坐标系,则(1,0)B ,13(,)22C -. 设(cos ,sin )P θθ,[0,]3θ2π∈,由AP x AB y AC →→→=+,得13(cos ,sin )(1,0)(2x y θθ=+-. 所以3cos ,sin 22y x y θθ=-=. 所以3cos sin 3x θθ=+,33y θ=, 2232311sin cos sin 2cos 233333xy θθθθθ=+=+- 2311(2cos 2)3223θθ=-+ 21sin(2)363πθ=-+, 因为2[0,]3πθ∈,72[,]666πππθ-∈-. 所以,当262ππθ-=,即3πθ=时,xy 的最大值为1. 【点睛】本题主要考查了平面向量的数量积运算,向量的坐标运算,正弦型函数的图象与性质,属于中档题.25.(1)3BC =;72BE =;(2)是定值,78. 【分析】 (1)由()22BC AC AB =-,()2212BE BO BC ⎡⎤=+⎢⎥⎣⎦,结合数量积公式得出BC 和BE ;(2)取BE 的中点N ,连接MN ,由ME MB =,得出MN BE ⊥,由BM BN NM =+,结合数量积公式计算BE BM ⋅,即可得出定值.【详解】(1)∵BC AC AB =-∴222211211cos1203BC AC AB AB AC =+-⋅=+-⨯⨯⨯︒=∴3BC =又()12BE BO BC =+ ∴()22211372132134424BE BO BC BO BC ⎛⎫=++⋅=++⨯⨯⨯= ⎪⎝⎭ ∴7BE = (2)取BE 的中点N ,连接MN∵ME MB =,∴MN BE ⊥,且BM BN NM =+∴()BE BM BE BN NM BE BN BE NM ⋅=⋅+=⋅+⋅211177022248BE BE BE =⋅+==⨯= ∴78BE BM ⋅=(为定值)【点睛】本题主要考查了利用定义计算数量积以及模长,涉及了向量加减法的应用,属于中档题.26.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =. 因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<,则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ, 使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=,故310 CGCB.【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.。
(好题)高中数学必修四第二章《平面向量》测试题(有答案解析)
一、选择题1.过点()3,1P 的直线l 与函数21()26x f x x -=-的图象交于A ,B 两点,O 为坐标原点,则()OA OB OP +⋅=( )AB.C .10D .202.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为( )A .2B .1C .0D .-13.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( ) A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B.0,(1,)3⎛⋃+∞ ⎝⎭C.3⎛⎫ ⎪ ⎪⎝⎭ D .(1,)+∞4.在ABC ∆中,2AB =,3AC =,5cos 6A =,若O 为ABC ∆的外心(即三角形外接圆的圆心),且AO mAB nAC +=,则2n m -=( ) A .199B .4122-C .111-D .17115.已知平面向量a 与b 的夹角为23π,若(3,1)a =-,2213a b -=,则b ( ) A .3B . 4C .3D .26.已知1a =,2b=,则a b ab ++-的最大值等于( ) A .4B C .D .57.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==8.若2a b c ===,且0a b ⋅=,()()0a c b c -⋅-≤,则a b c +-的取值范围是( )A .[0,2]B .[0,2]C .22,222]-+D .[222,2]-9.在ABC ∆中,D 为BC 边上一点,且AD BC ⊥,向量AB AC +与向量AD 共线,若10AC =,2BC =,0GA GB GC ++=,则AB CG=( )A .3B .5C .2D .10210.如图,已知点D 为ABC 的边BC 上一点,3BD DC =,*()∈n E n N 为AC 边的一列点,满足11(32)4n n n n n E A a E B a E D +=-+,其中实数列{}n a 中,10,1n a a >=,,则{}n a 的通项公式为( )A .1321n -⋅-B .21n -C .32n -D .1231n -⋅-11.已知向量(6,4),(3,),(2,3)a b k c =-==-,若//a b ,则b 与c 的夹角的余弦值为( ) A .1213B .1213-C .45-D .4512.设O 为ABC 内一点,已知2332OA OB OC AB BC CA ++=++,则::AOB BOC COA S S S ∆∆∆= ( )A .1:2:3B .2:3:1C .3:1:2D .3:2:1二、填空题13.已知平面向量a ,b 的夹角为120︒,且1a b ⋅=-,则a b -的最小值为________. 14.已知3a =,2b =,()()2318a b a b +⋅-=-,则a 与b 的夹角为_____. 15.如图,直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8,若7CE DE =-,3BF FC =,则AF ·BE =_____.16.如图,在ABC 中,已知D 是BC 延长线上一点,点E 为线段AD 的中点,若2BC CD =,且34AE AB AC λ=+,则λ=___________.17.已知(2,3),(4,7)a b ==-,则向量b 在a 方向上的投影为_________.18.已知ABC 的三边长3AC =,4BC =,5AB =,P 为AB 边上任意一点,则()CP BA BC ⋅-的最大值为______________.19.如图,在矩形ABCD 中,3AB =,4=AD ,圆M 为BCD △的内切圆,点P 为圆上任意一点, 且AP AB AD λμ=+,则λμ+的最大值为________.20.在ABC △中,已知4CA =,3CP =23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.三、解答题21.已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为1F 、2F ,左顶点为A ,若122F F =,椭圆的离心率为12e =. (1)求椭圆的标准方程.(2)若P 是椭圆上的任意一点,求1PF PA ⋅的取值范围. 22.已知4,3,(23)(2)61a b a b a b ==-⋅+=. (1)求a 与b 的夹角为θ; (2)求a b +;(3)若AB =a ,BC =b ,求△ABC 的面积. 23.已知向量()1,2a =-,()3,1b =-. (1)若()a b a λ+⊥,求实数λ的值;(2)若2c a b =-,2d a b =+,求向量c 与d 的夹角. 24.已知向量()cos ,sin m x x =-,()3,3n =,[]0,x π∈. (1)若m 与n 共线,求tan x 的值; (2)若m 与n 的夹角为3π,求x 的值. 25.已知向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭且函数()f x u v =⋅,若函数f (x )的图象上两个相邻的对称轴距离为2π. (1)求函数f (x )的解析式; (2)将函数y =f (x )的图象向左平移12π个单位后,得到函数y =g (x )的图象,求函数g (x )的表达式并其对称轴;(3)若方程f (x )=m (m >0)在0,2x π⎡⎤∈⎢⎥⎣⎦时,有两个不同实数根x 1,x 2,求实数m 的取值范围,并求出x 1+x 2的值.26.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足1cos cos sin sin 2b A C a B C b -=.(1)求B 的大小;(2)设1BA BC ⋅=-,D 为边AC 上的点,满足2AD DC =,求BD 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】判断函数()f x 的图象关于点P 对称,得出过点()3,1P 的直线l 与函数()f x 的图象交于A ,B 两点时,得出A ,B 两点关于点P 对称,则有 2OA OB OP +=,再计算()OA OB OP +⋅的值.【详解】()52121263x f x x x -==+-- ,∴函数21()26x f x x -=-的图象关于点()3,1P 对称,∴过点()3,1P 的直线l 与函数()2126x f x x -=-的图象交于A ,B 两点,且A ,B 两点关于点()3,1P 对称,∴ 2OA OB OP +=,则()()222223120OA OB OP OP +⋅==⨯+=.故选D . 【点睛】本题主要考查了函数的对称性,以及平面向量的数量积运算问题,是中档题.2.A解析:A 【分析】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y ,做出不等式组所表示的平面区域,做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移,结合图象可判断取得最大值时的位置. 【详解】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y做出不等式组所表示的平面区域,如图所示的△ABC 阴影部分:做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移, 到点A 时Z 最大, 而由x+y=11x ⎧⎨=⎩可得A (1,0), 此时Z max =2. 故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。
(典型题)高中数学必修四第二章《平面向量》测试题(有答案解析)
一、选择题1.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的个数为( )①当0x =时,[]2,3y ∈②当P 是线段CE 的中点时,12x =-,52y =③若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段 ④x y -的最大值为1- A .1 B .2C .3D .42.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .3.若12,e e 是夹角为60︒的两个单位向量,则向量1212,2a e e b e e =+=-+的夹角为( ) A .30B .60︒C .90︒D .120︒4.在AOB ∆中,0,5,25,OA OB OA OB AB ⋅===边上的高为,OD D 在AB 上,点E 位于线段OD 上,若34OE EA ⋅=,则向量EA 在向量OD 上的投影为( ) A .12或32B .1C .1或12D .325.已知1a ,2a ,1b ,2b ,()*k b k ⋅⋅⋅∈N是平面内两两互不相等的向量,121a a-=,且对任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈,则k 最大值为( ) A .3B .4C .5D .66.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6B .4C .3D .27.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A B .1C .2D .8.已知向量,a b 满足2(1,2),(1,)+==a b m b m ,且a 在b ,则实数m =( )A .2±B .2C .5±D 9.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-10.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,AB =,2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 11.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( ) A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定12.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23π C .3π D .6π 二、填空题13.已知平面向量a ,b ,c ,d 满足1a b ==,2c =,0a b ⋅=,1c d -=,则2a b d ++的取值范围为______.14.已知向量1e ,2e 是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当12OP xe ye =+时,则称有序实数对(),x y 为点P 的广义坐标,若点A 、B 的广义坐标分别为()11,x y 、()22,x y ,对于下列命题: ① 线段A 、B 的中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭;② A 、B③ 向量OA 平行于向量OB 的充要条件是1221x y x y =; ④ 向量OA 垂直于向量OB 的充要条件是12120x x y y +=. 其中的真命题是________(请写出所有真命题的序号)15.如图,在Rt ABC ∆中,2,60,90AB BAC B =∠=︒∠=︒,G 是ABC ∆的重心,则GB GC ⋅=__________.16.在平面内,定点,,A B C 满足DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点,P M 满足1AP PM MC ==,则2BM 的最大值为________.17.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.18.如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN 的最小值是_____.19.已知O 为ABC 内一点,且满足305OA OB OC =++,延长AO 交BC 于点D .若BD DC λ=,则λ=_____.20.已知平面向量a ,b 满足3a b +=,3a b -=,则向量a 与b 夹角的取值范围是______.三、解答题21.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数m 和n ; (3)若()(2)a kc b a +⊥-,求实数k . 22.已知向量a 与b 的夹角为3π,且1a =,2b =. (1)求a b +;(2)求向量a b +与向量a 的夹角的余弦值. 23.已知向量,a b 满足:16,()2a b a b a ==⋅-=,. (1)求向量a 与b 的夹角; (2)求2a b -.24.如图,正六边形ABCDEF 的边长为1.M ,N 分别是BC ,DE 上的动点,且满足BM DN =.(1)若M ,N 分别是BC ,DE 的中点,求AM AN ⋅的值; (2)求AM AN ⋅的取值范围.25.已知向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭且函数()f x u v =⋅,若函数f (x )的图象上两个相邻的对称轴距离为2π. (1)求函数f (x )的解析式; (2)将函数y =f (x )的图象向左平移12π个单位后,得到函数y =g (x )的图象,求函数g (x )的表达式并其对称轴;(3)若方程f (x )=m (m >0)在0,2x π⎡⎤∈⎢⎥⎣⎦时,有两个不同实数根x 1,x 2,求实数m 的取值范围,并求出x 1+x 2的值.26.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用向量共线的充要条件判断出①错,③正确;利用向量的运算法则求出OP ,求出x ,y 判断出②正确,利用三点共线解得④正确 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故①错 当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ ()11153(2)32222OB OB AB OB OB OB OA OA OB =+-+=-+-=-+,故②对x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故③对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N , 则:OP ON OM =+;又OP xOA yOB =+;0x ∴≤,1y ≥;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故④正确 所以选项②③④正确. 故选:C 【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.2.C解析:C 【解析】,,又,,则,故选3.B解析:B 【分析】首先分别求出12a e e =+与122b e e =-+的数量积以及各自的模,利用数量积公式求之. 【详解】 由已知,1212e e ⋅=,所以(()1212)2e e e e +-+=32,|12e e +3,|122e e -+3, 设向量1212,2a e e b e e =+=-+的夹角为α,则312cos ,2333παα==∴=⋅.故答案为B 【点睛】(1)本题主要考查向量的夹角的求法,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 求两个向量的夹角一般有两种方法,方法一:·cos ,ab a b a b=,方法二:设a =11(,)x y ,b =22(,)x y ,θ为向量a 与b 的夹角,则121222221122cos x y x yθ=+⋅+.4.A解析:A 【解析】Rt AOB 中,0OA OB ⋅=,∴2AOB π∠=,∵5OA =,25OB =,∴225AB OA OB += , ∵AB 边上的高线为OD ,点E 位于线段OD 上,建立平面直角坐标系,如图所示; 则)5,0A、(025B ,、设(),D m n ,则OAD BAO ∽,∴OA ADAB OA=, ∴1AD =,∴15AD AB =, 即()(155,255m n =-,,求得45m =, ∴4525D ⎝⎭;则45254525OE OD λλ⎫===⎪⎪⎝⎭⎝⎭, 45255,EA ⎛⎫= ⎪ ⎪⎭;∵34OE EA ⋅=, ∴2454525354⎫⎫⋅-=⎪⎪⎪⎪⎭⎝⎭, 解得34λ=或14λ=;∴向量EA 在向量OD 上的投影为))452511ED OD OE λλ⎛⎫=-=-- ⎪⎪⎝⎭, 当34λ=时,5512ED ⎛== ⎝⎭;当14λ=时,353532ED ==⎝⎭. 即向量EA 在向量OD 上的投影为12或32,故选A.5.D解析:D 【分析】根据向量的几何意义把抽象问题具体化,转化到圆与圆的位置关系问题. 【详解】如图所示,设11OA a =,22OA a =,此时121A A =,由题意可知:对于任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈, 作j j OB b =则有1j A B 等于1或2,且2j A B 等于1或2, 所以点(1,2,,)j B j k =同时在以(1,2)i A i =为圆心,半径为1或2的圆上,由图可知共有6个交点满足条件,故k 的最大值为6.故选:D. 【点睛】本题主要考查平面向量的线性运算和平面向量的应用.6.C解析:C 【分析】根据向量的运算法则,求得12AM AD AB =+,2132MN AD AB =-+,再结合向量的数量积的运算公式,即可求解. 【详解】由题意,作出图形,如图所示:由图及题意,根据向量的运算法则,可得12AM AD DM AD AB =+=+, 2132MN CN CM CB CD =-=-21213232BC DC AD AB =-+=-+,所以2212121||||23234AM MN AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=.故选C .【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力.7.B解析:B 【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值. 【详解】 如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B. 【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.8.A解析:A 【分析】根据2(1,2),(1,)+==a b m b m 可得0,2m a ⎛⎫= ⎪⎝⎭,结合||cos a θ=,列出等式,即可解出答案. 【详解】因为向量,a b 满足2(1,2),(1,)a b m b m +==,22(0,)a a b b m =+-=,所以20,,22m m a a b ⎛⎫=⋅= ⎪⎝⎭,若向量,a b 的夹角为θ,则2225||(||cos )152m b a m a b θ=+⋅=⋅=, 所以42516160m m --=,即()()225440m m +-=,解得2m =±. 故选:A . 【点睛】本题主要考查向量的投影及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是||||cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角,cos ||||a ba b θ⋅=⋅(此时a b ⋅往往用坐标形式求解);(2)求投影,a 在b 上的投影是||a bb ⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb +的模(平方后需求a b ⋅). 9.C解析:C 【分析】对=2a b -两边平方后,结合2·cos 3a b a b π=⋅进行化简可得:224a b b +⋅+=;由基本不等式可得222a b a b +⋅,于是推出403a b<⋅,再结合平面向量数量积即可得解. 【详解】因为2a b -=,所以 2224a a b b -⋅+=,所以2222cos 43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a ba b +⋅,403a b∴<⋅, 所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭. 故选:C . 【点睛】本题主要考查平面向量数量积运算,考查利用基本不等式求最值,难度一般.对于平面向量的模长问题,一般采用平方处理,然后结合平面向量数量积的运算公式求解即可.10.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.11.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()b c a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.12.B解析:B 【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C . 【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-.()20,,3C C ππ∈∴=.故选:B. 【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.二、填空题13.【分析】用几何意义求解不妨设则在圆心在原点半径为2的圆上设则在以为圆心半径为1的圆上运动后形成的轨迹是圆心在原点大圆半径为3小圆半径为1的圆环表示圆环内的点与定点的距离由图形可得最大值和最小值【详解解析:3⎡⎤⎣⎦【分析】用几何意义求解.不妨设()1,0a =,()0,1b =,(),c x y =,则(,)C x y 在圆心在原点,半径为2的圆上,设(),d x y '=',则(,)D x y ''在以C 为圆心半径为1的圆上,C 运动后,D 形成的轨迹是圆心在原点,大圆半径为3,小圆半径为1的圆环,2a b d ++表示圆环内的点D 与定点()2,1P --的距离,由图形可得最大值和最小值.【详解】令()1,0a =,()0,1b =,(),c x y =,设C 的坐标为(),x y ,C 的轨迹为圆心在原点,半径为2的圆上.设(),d x y '=',D 的坐标为(),x y '',D 的轨迹为圆心在原点,大圆半径为3,小圆半径为1的圆环上.()22,1a b d d ++=---表示D 与点()2,1P --的距离,由图可知,故2a b d ++的取值范围为0,53⎡⎤+⎣⎦. 故答案为:0,53⎡⎤+⎣⎦【点睛】本题考查向量模的几何意义,考查模的最值,解题关键是设()1,0a =,()0,1b =,(),c x y =,(),d x y '=',固定,a b 后得出了,C D 的轨迹,然后由模2a b d ++的几何意义得出最值.14.①③【分析】根据点的广义坐标分别为利用向量的运算公式分别计算①②③④得出结论【详解】点的广义坐标分别为对于①线段的中点设为M 根据=()=中点的广义坐标为故①正确对于②∵(x2﹣x1)A 两点间的距离为解析:①③ 【分析】根据点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,利用向量的运算公式分别计算①②③④,得出结论.【详解】点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,对于①,线段A 、B 的中点设为M ,根据OM =12(OA OB +)=12112211()()22x x e y y e +++∴中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,故①正确. 对于②,∵AB =(x 2﹣x 1)()1212e y y e +-,∴A 、B 12e ,故②不一定正确.对于③,向量OA 平行于向量OB ,则t OA OB =,即(11,x y )=t ()22,x y ,1221x y x y ∴=,故③正确.对于④,向量OA 垂直于向量OB ,则OA OB =0,221211221121220x x e x y x y e e y y e ∴+++=(),故④不一定正确.故答案为①③. 【点睛】本题在新情境下考查了数量积运算性质、数量积定义,考查了推理能力与计算能力,属于中档题.15.【解析】分析:建立平面直角坐标系结合平面向量数量积的坐标运算整理计算即可求得最终结果详解:建立如图所示的平面直角坐标系则:由中心坐标公式可得:即据此有:结合平面向量数量积的坐标运算法则可得:点睛:求 解析:209-【解析】分析:建立平面直角坐标系,结合平面向量数量积的坐标运算整理计算即可求得最终结果.详解:建立如图所示的平面直角坐标系,则:()0,2A ,()0,0B ,()C ,由中心坐标公式可得:2003G ⎫++⎪⎪⎝⎭,即23G ⎫⎪⎭, 据此有:233GB ⎛⎫=-- ⎪⎝⎭,4233GC ⎛⎫=-⎪⎭, 结合平面向量数量积的坐标运算法则可得:222203339GB GC ⎛⎛⎫⎛⎫⋅=--⨯-=- ⎪ ⎪⎝⎝⎭⎝⎭.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.16.【分析】由可得为的外心又可得为的垂心则为的中心即为正三角形运用向量的数量积定义可得的边长以为坐标原点所在直线为轴建立直角坐标系求得的坐标再设由中点坐标公式可得的坐标运用两点的距离公式可得的长运用三角 解析:494【分析】由DA DB DC ==,可得D 为ABC ∆的外心,又DA DB DB DC DC DA ⋅=⋅=⋅,可得D 为ABC ∆的垂心,则D 为ABC ∆的中心,即ABC ∆为正三角形.运用向量的数量积定义可得ABC ∆的边长,以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy ,求得,B C 的坐标,再设(cos ,sin ),(02)P θθθπ≤<,由中点坐标公式可得M 的坐标,运用两点的距离公式可得BM 的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值. 【详解】解: 由DA DB DC ==,可得D 为ABC ∆的外心, 又DA DB DB DC DC DA ⋅=⋅=⋅,可得()0,(DB DA DC DC DB ⋅-=⋅ )0DA -=,即0DB AC DC AB ⋅=⋅=, 即有,DB AC DC AB ⊥⊥,可得D 为ABC ∆的垂心, 则D 为ABC ∆的中心,即ABC ∆为正三角形, 由2DA DB ⋅=-,即有||||cos1202DA DB ︒⋅=-, 解得||2DA =,ABC ∆的边长为4cos3023︒=以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy , 可得B(3,3),C(3,3),D(2,0)-, 由||1AP =,可设(cos ,sin ),(02)P θθθπ≤<,由PM MC =,可得M 为PC 中点,即有3cos 3sin (2M θθ++,则2223cos3sin||3=3+2BMθθ⎛⎫++⎛⎫-+⎪⎪ ⎪⎝⎭⎝22(3cos)(33sin)376cos63sin4θθθθ-+-+=+=3712sin64πθ⎛⎫+-⎪⎝⎭=,当sin16πθ⎛⎫-=⎪⎝⎭,即23πθ=时,取得最大值,且为494.故答案为:494.【点睛】本题考查向量的定义和性质,以及模的最值的求法,注意运用坐标法,转化为三角函数的最值的求法,考查化简整理的运算能力,属于中档题.17.【分析】延长BC作圆M的切线设切点为A1切线与BD的交点D结合数量积的几何意义可得点A运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC作圆M的切线设切点为A1切解析:2-【分析】延长BC,作圆M的切线,设切点为A1,切线与BD的交点D,结合数量积的几何意义可得点A运动到A1时,CA在CB上的投影最小,设CP x=,将结果表示为关于x的二次函数,求出最值即可.【详解】如图,延长BC,作圆M的切线,设切点为A1,切线与BD的交点D,由数量积的几何意义,CA CB⋅等于CA在CB上的投影与CB之积,当点A运动到A1时,CA在CB上的投影最小;设BC中点P,连MP,MA1,则四边形MPDA1为矩形;设CP=x,则CD=2-x,CB=2x,CA CB⋅=()()222224212x x x x x--⋅=-=--,[]02x∈,,所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.18.【分析】根据条件及向量数量积运算求得连接由三角形中线的性质表示出根据向量的线性运算及数量积公式表示出结合二次函数性质即可求得最小值【详解】根据题意连接如下图所示:在等腰三角形中已知则由向量数量积运算 解析:77【分析】根据条件及向量数量积运算求得AB AC ⋅,连接,AM AN ,由三角形中线的性质表示出,AM AN .根据向量的线性运算及数量积公式表示出2MN ,结合二次函数性质即可求得最小值. 【详解】根据题意,连接,AM AN ,如下图所示:在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒则由向量数量积运算可知1cos 11cos1202AB AC AB AC A ⋅=⋅=⨯⨯=- 线段EF BC 、的中点分别为M N 、则()()1122AM AE AF AB AC λμ=+=+ ()12AN AB AC =+ 由向量减法的线性运算可得11112222MN AN AM AB AC λμ⎛⎫⎛⎫=-=-+-⎪ ⎪⎝⎭⎝⎭所以2211112222MN AB AC λμ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦222211111111222222222AB AC AB AC λμλμ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭221111111112222222222λμλμ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭因为41λμ+=,代入化简可得22221312111424477MN μμμ⎛⎫=-+=-+ ⎪⎝⎭因为(),0,1λμ∈且41λμ+=10,4μ⎛⎫∴∈ ⎪⎝⎭所以当17μ=时, 2MN 取得最小值17因而minMN==故答案为: 7【点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.19.【分析】将已知条件转化为结合得到设列出关于的方程组由此求得【详解】由于所以所以即因为即化简得设所以解得故答案为:【点睛】本小题主要考查平面向量的基本定理考查平面向量的线性运算考查化归与转化的数学思想解析:53【分析】将已知条件转化为1539AO AB AC =+,结合BD DC λ=,得到111AD AB AC λλλ=+++,设AO k AD =,列出关于,k λ的方程组,由此求得λ. 【详解】 由于305OA OB OC =++,所以()()350OA AB AO AC AO +-+-=,所以935AO AB AC =+,即1539AO AB AC =+. 因为BD DC λ=,即()AD AB AC AD λ-=-, 化简得111AD AB AC λλλ=+++, 设11k k AO k AD AB AC λλλ==+++,所以1 13519kkλλλ⎧=⎪⎪+⎨⎪=⎪+⎩,解得53λ=.故答案为:53【点睛】本小题主要考查平面向量的基本定理,考查平面向量的线性运算,考查化归与转化的数学思想方法,属于中档题.20.【分析】由已知得由得由不等式可知再由得最后由可得解【详解】由得即由得即由得由得所以故答案为:【点睛】本题考查了向量及其模的运算考查了向量的夹角公式和基本不等式考查了计算能力属于中档题解析:0,3π⎡⎤⎢⎥⎣⎦【分析】由已知,得22222923a ab ba ab b+⋅⎧⎪⎨⎪+=-⋅+=⎩②①,由+①②,得226a b+=,由不等式可知3a b ≤,再由-①②,得32a b⋅=,最后由cos,a ba ba b⋅=可得解.【详解】由3a b+=,3a b-=,得()()2239baab⎧⎪⎨⎪-==+⎩,即22222923a ab ba ab b+⋅⎧⎪⎨⎪+=-⋅+=⎩②①由+①②,得226a b+=,即226a b+=由-①②,得32a b⋅=由222a b a b +≥,得3a b ≤1cos ,2a b a b a b⋅=≥所以,0,3a b π≤≤.故答案为:0,3π⎡⎤⎢⎥⎣⎦【点睛】本题考查了向量及其模的运算,考查了向量的夹角公式和基本不等式,考查了计算能力,属于中档题.三、解答题21.(1)6;(2)58,99m n ==;(3)1118k =-.【分析】(1)利用向量加法的坐标运算得到()320,6a b c +-=,再求模长即可;(2)先写mb nc +的坐标,再根据a mb nc =+使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可. 【详解】解:(1)由(3,2),(1,2),(4,1)a b c ==-=,得3(9,6),(1,2),2(8,2)a b c ==-=∴()()32918,6220,6a b c +-=--+-=,∴23206a b c +-=+=;(2)()(),2,4,mb m m nc n n =-=, ∴()4,2mb nc n m m n +=-+,a mb nc =+,∴()4,2(3,2)a n m m n ==-+,故4322n m m n -=⎧⎨+=⎩,解得58,99m n ==;(3)(3,2),(4,)a kc k k ==,∴()34,2a kc k k +=++,(3,2),2(2,4)a b ==-,∴()25,2b a -=-,()()2a kc b a +⊥-,∴()()20a kc b a +⋅-=,即()()534220k k -+++=,解得1118k =-. 【点睛】 结论点睛:若()()1122,,,a x y b x y == ,则//a b 等价于12210x y x y -=;a b ⊥等价于12120x x y y +=.22.(1;(2. 【分析】(1)由已知利用平面向量数量积公式可得1a b ⋅=,平方后根据向量数量积的运算可求||a b +的值.(2)结合(1),根据已知条件,由向量夹角的余弦公式即可求解.【详解】(1)向量a 与b 的夹角为3π,且||1a =,||2b =, ∴||||cos a b a b a ⋅=<,112cos12132b π>=⨯⨯=⨯⨯=.222||()2142a b a b a b a b ∴+=+=++⋅=++=.(2)设向量a b +与向量a 的夹角θ,22()||27cos ||||||||||||71a b a a a b a a b a b a a b a a b a θ+⋅+⋅+⋅∴=====+⋅+⋅+⋅⨯. 【点睛】本题主要考查了向量数量积的运算及计算公式,向量夹角的余弦公式,属于中档题.23.(1)π3;(2) 【分析】(1)设向量a 与b 的夹角θ,利用向量的数量积公式计算()2a b a ⋅-=,可得向量的夹角;(2)利用向量的模长公式:2a a =,代入计算可得. 【详解】 (1)设向量a 与b 的夹角θ, ()16cos 12a b a a b θ⋅-=⋅-=-=,解得1cos 2θ=, 又[]0πθ∈,,π3θ∴= (2)由向量的模长公式可得:()222a b a b -=-==. 【点睛】 本题主要考查向量数量积公式的应用,向量模长的计算,求向量的模长需要熟记公式2a a =,考查学生的逻辑推理与计算能力,属于基础题.24.(1)118;(2)31.2⎡⎤⎢⎥⎣⎦. 【分析】 (1)首先以点A 为坐标原点建立平面直角坐标系.求AM ,AN 的坐标,再求数量积;(2)首先利用BM DN =,设BM DN t ==,表示向量AM ,AN ,利用数量积的坐标表示转化为二次函数求取值范围. 【详解】 (1)如图,以AB 所在直线为x 轴,以A 为坐标原点建立平面直角坐标系.因为ABCDEF 是边长为1的正六边形,且M ,N 分别是BC ,DE 的中点, 所以53,44M ⎛⎫ ⎪ ⎪⎝⎭,132N ⎛ ⎝, 所以5311848AM AN ⋅=+=. (2)设BM DN t ==,则[]0,1t ∈.所以31,22t M ⎛⎫+ ⎪ ⎪⎝⎭,(13N t -. 所以()()223113*********t AM AN t t t t t ⎛⎫⋅=+⋅-+=-++=--+ ⎪⎝⎭. 当0t =时,AM AN ⋅取得最小值1;当1t =时,AM AN ⋅取得最大值32. 所以AM AN ⋅的取值范围为31.2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查数量积的坐标表示,重点考查计算能力,属于基础题型.25.(1)()26f x sin x π⎛⎫=- ⎪⎝⎭;(2)()2g x sin x =, 对称轴为,42k x k Z ππ=+∈;(3)112m ≤<,,1223x x π+=. 【分析】 (1) 根据向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭和函数()f x u v =⋅,利用数量积结合倍角公式和辅助角法得到,()26πω⎛⎫=-⎪⎝⎭f x sin x ,再根据函数f (x )的图象上两个相邻的对称轴距离为2π求解. (2)依据左加右减,将函数y =f (x )的图象向左平移12π个单位后,得到函数()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,令2,2ππ=+∈x k k Z 求其对称轴. (3)作出函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上图象,根据函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点求解.再令2,62x k k Z πππ-=+∈,求对称轴. 【详解】(1)()()21122ωωωωωω=-=-f x sin x sin x x sin x xcos x ,1222226πωωω⎛⎫=-=- ⎪⎝⎭sin x cos x sin x ∵函数f (x )的图象上两个相邻的对称轴距离为2π, ∴22T π=, ∴2(0)2ππωω=>, ∴ω=1, 故函数f (x )的解析式为()sin 26f x x π⎛⎫=-⎪⎝⎭; (2)依题意,()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦, 令2,2ππ=+∈x k k Z ,则,42ππ=+∈k x k Z , ∴函数g (x )的对称轴为,42ππ=+∈k x k Z ;(3)∵0,2x π⎡⎤∈⎢⎥⎣⎦, ∴52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, ∴12,162sin x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的草图如下,依题意,函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点,则112m ≤<, 令2,62x k k Z πππ-=+∈,则,32k x k Z ππ=+∈, ∴函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的对称轴为3x π=,则1223x x π+=. 【点睛】 本题主要考查了平面向量和三角函数,三角函数的图象和性质及其应用,还考查了数形结合的思想和运算求解的能力,属于中档题.26.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =.因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<, 则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ,使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=, 故310CGCB =. 【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.。
高一数学必修4《平面向量》测试卷(含答案)
《平面向量》测试卷考试时间:120分钟满分:150分一.选择题.(本大题共12小题,每小题5分,共60分) 1.对于任意向量a b 和,下列命题中正确的是()A.若,a b 满足a b >,且a b 与同向,则a b >B.a b a b +≤+ C .a b a b ⋅≥ D.a b a b -≤-2.已知平面向量(1,1),(1,1)a b ==-,则向量1322a b -等于()A .(2,1)--ﻩ B.(2,1)- C.(1,0)- D.(1,2)- 3.下列各组向量中,可以作为基底的是() A .12(0,0),(1,2)e e ==-B .12(1,2),(5,7)e e =-=C .12(3,5),(6,10)e e ==D .1213(2,3),(,)24e e =-=-4.已知5,28,3()AB a b BC a b CD a b =+=-+=-,则( ) A.A B D 、、三点共线B.A B C 、、三点共线 C.B C D 、、三点共线D.A C D 、、三点共线5.已知正方形ABCD 的边长为1,,,,AB a BC b AC c ===则a b c ++等于() A.0B.32D.226.已知,,,,OA a OB b OC c OD d ====且四边形ABCD 为平行四边形,则() A.0a b c d +++=B.0a b c d -+-= C.0a b c d +--=D .0a b c d --+=7.若(2,3),(4,7)a b ==-,则b a 在方向上的投影为()365135658.在三角形ABC 中,,AB c AC b ==,若点D 满足2BD DC =,则AD =( )A.2133b c + B.5233b c - C.2133b c - D.1233b c + 9.如图,正六边形ABCDEF 中,BA CD EF ++=() A.0B.BE C.AD D .CF10.已知点O N P 、、在三角形ABC 所在平面内,且OA OB OC ==,0NA NB NC ++=,PA PB PB PC PC PA ⋅=⋅=⋅,则点O N P 、、依次是三角形ABC 的( )A.重心、外心、垂心B.重心、外心、内心C.外心、重心、垂心D .外心、重心、内心 11.如图,三角形OAB 中,3,2ON NA OM MB ==,AM 和BN 交于点G ,OG mOA nOB =+,则()AA.11,23m n ==B.11,32m n ==C.11,63m n ==D.11,26m n ==12.定义平面向量之间的一种运算“⊗”如下:对任意的(,),(,)a m n b p q ==,令a b mq np ⊗=-.下列说法错误的是( )A.若a b 与共线,则0a b ⊗= B.a b b a ⊗=⊗C.,R λ∈∀都有()()a b a b λλ⊗=⊗D.2222()()a b a b a b ⊗+⋅= 二.填空题.(本大题共4小题,每小题5分,共20分)13.已知向量(2,1),(1,),(1,2)a b m c =-=-=-,若a b +平行于c ,则m =.14.已知三角形ABC 的三个顶点坐标分别为(1,1)A ,(4,1)B ,(4,5)C ,则tan A 的值为. 15.我们知道,(1,0),(0,1)a b ==是一组单位正交基底.请再任意写出一组单位正交基底.16.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为,DE DC ⋅的最大值为.三.解答题.(本大题共6小题,其中17题10分,其余5个小题每题12分,共70分)17.平面向量的数量积a b ⋅是一个非常重要的概念,利用它可以容易地证明平面几何的许多命题,例如勾股定理、菱形的对角线相互垂直、长方形对角线相等、正方形的对角线垂直平分等、三角形的三条中线交于一点、三角形的三条垂线交于一点、三角形的三条角平分线交于一点等.请选择其中一个命题,给出具体证明.18.已知平面直角坐标系中,点O 为原点,(3,4),(5,12)A B ---. (1)求AB 的坐标及AB ;(2)若,OC OA OB OD OA OB =+=-,求OC 及OD 的坐标; (3)求OA OB ⋅.19.在平面直角坐标系xOy 中,已知点(1,2),(2,3),(2,1)A B C ----. (1)求以线段,AB AC (2)设实数t 满足()0AB tOC OC -⋅=,求实数t 的值 20.如图,在矩形ABCD 中,2AB BC ==, 点E 为BC 的中点,点F 在边CD 上, 若2AB AF ⋅=AE BF ⋅的值.21.已知,m n 为单位向量,夹角为3π. (1)求cos 35,2m n m n 〈+-〉;(2)若22,3m n km n π〈-+〉=,求实数k 的值.22.已知(2,1),(3,2),(1,4)A B D -.(1)求证:AB AD ⊥;(2)若四边形ABCD 是矩形,试确定C 点的坐标;(3)若点M 为直线OD 上的一个动点,当MA MB ⋅取最小值时,求OM 的坐标.《平面向量》答案解析一.选择题.(本大题共12小题,每小题5分,共60分)BDBAD BAADC AB二.填空题.(本大题共4小题,每小题5分,共20分)13.1- 14.4315.(cos ,sin ),(sin ,cos )a b θθθθ==-(答案不唯一) 16.1,1三.解答题.(本大题共6小题,其中17题10分,其余5个小题每题12分,共70分)22222222=,2=+==(+)2ABC C AB AC CBAB AC CBAB AB AC CB AC CB AC CB AC CBAC π=+∴=++⋅⊥∴17.解:勾股定理:三角形中,不妨设则有 证明: 又2220CB AB AC CB⋅=∴=+18.(1)(8,8),82(2)(3,4)(5,12)(2,16)(3,4)(5,12)(8,8)(3)(3,4)(5,12)33AB AB OC OD OAOB =-==--+-=-=----=-⋅=--⋅-=解:19.(1)(3,5),(1,1),(2,6),(4,4)210,42(2)(2,1)AB AC AB AC AB AC AB AC AB AC OC AB tOC ==-+=-=∴+=-=∴=--∴-=解:由题意知则 所求的两条对角线长分别为 (3,5)(2,)(23,5)()(23,5)(2,1)511()05110115t t t t AB tOC OC t t t AB tOC OC t t ---=++∴-⋅=++⋅--=---⋅=∴--=∴=-220.,(1)()()222(1)2DF xAB CF x ABAB AF AB AD DF AB AD xAB xAB xxBF BC CF BC ABAE==-⋅=⋅+=⋅+==∴=∴=+=+-∴解:方法一:设则222()(1)212()(1)2211)2211)2422BF AB BE BC ABAB BC BCABAB BC⎡⎤⋅=+⋅+-⎢⎥⎣⎦⎡⎤=+⋅+-⎢⎥⎣⎦=-+=-⨯+⨯=方法二:以(0,0),(2,0),(2,1),(,2)(2,0),(,2),(2,1),(2)2(,2)1(2A AB x AD yA B E F xAB AF x AE BF xAB AFxxAE BF∴====-⋅=∴⋅=∴=∴⋅=为坐标原点,所在直线为轴,所在直线为轴,建立平面直角坐标系,则(12)⋅-=121.(1)29(35)(2),357,232(35)(2)33cos35,2143523(2)(2)(),223,a bm n m n m n m nm n m nm n m nm n m nm n km n km n km⋅=∴+⋅-=+=-=+⋅-∴〈+-〉==+--⋅+=-=解:由题意知232cos31,1()2n k kkk kπ+=+∴=∴=-=或舍(1)(1,1),(3,3),0(2)(,),(3,3)(3,2)0,5(0,5)(3)(,),(,),(AB AD AB AD AB ADC x y AD BC x y x y C M a b OM a b OD ==-∴⋅=∴⊥=-=--∴==∴==-22.解:由题意得 设则由得 设则21,4),,144(2,1)(3,2)(2,14)(3,24)1778714,3417O M D a bb aMA MB a b a b a a a a a a a MA MB b ∴=-∴=-∴⋅=--⋅--=-+⋅-+=++∴=-⋅=三点共线 当,时可取得最小值,此时 714(,)3417OM ∴=-。
高中数学必修四平面向量测试题及答案
高中数学必修四平面向量测试题一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。
A、-9B、-6C、9D、62.已知=(2,3), b=(-4,7),则在b上的投影为()。
A、 B、C、D、3.设点A(1,2),B(3,5),将向量按向量=(-1,-1)平移后得向量为()。
A、(2,3)B、(1,2)C、(3,4)D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。
A、直角三角形B、等边三角形C、等腰三角形D、等腰直角三角形5.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于()。
A、 B、 C、 D、6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。
A、 B、C、 D、7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。
A、重心B、垂心C、内心D、外心8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题:(1)( ·b)2= 2·b2(2)| +b|≥| -b| (3)| +b|2=( +b)2(4)(b) -(a)b与不一定垂直。
其中真命题的个数是()。
A、1B、2C、3D、49.在ΔABC 中,A=60°,b=1, ,则 等于( )。
A 、B 、C 、D 、10.设 、b 不共线,则关于x 的方程 x 2+b x+ =0的解的情况是( )。
A 、至少有一个实数解 B 、至多只有一个实数解 C 、至多有两个实数解 D 、可能有无数个实数解 二、填空题:(本大题共4小题,每小题4分,满分16分.).11.在等腰直角三角形ABC 中,斜边AC=22,则CA AB =_________12.已知ABCDEF 为正六边形,且AC =a ,AD =b ,则用a ,b 表示AB 为______.13.有一两岸平行的河流,水速为1,速度为的小船要从河的一边驶向对岸,为使所行路程最短,小船应朝________方向行驶。
(完整版)高一数学必修4平面向量测试题(含答案)
一 .选择题1.以下说法错误的选项是()A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等C.平行向量方向同样D.平行向量必定是共线向量2.以下四式不可以化简为AD的是()A .(AB+CD)+BC;B .(AD+MB)+(BC+CM);C.MB+AD-BM; D .OC-OA+CD;3.已知a =( 3, 4),b =( 5, 12),a与b则夹角的余弦为()A.63B.65C.13D.13 6554.已知 a、 b 均为单位向量 ,它们的夹角为60°,那么 |a+ 3b| =()A.7B.10C.13D.45.已知 ABCDEF 是正六边形,且AB = a , AE = b ,则BC=()( A )12( a b) (B)12(b a ) (C) a +12b(D)12(a b)6.设a,b为不共线向量,AB=a+2b,BC=-4a-b,CD=-5 a- 3 b , 则以下关系式中正确的选项是()(A)AD=BC(B)AD=2BC(C)AD=-BC(D)AD=-2BC7.设e1与e2是不共线的非零向量,且k e1+e2与e1+ k e2共线,则 k 的值是()( A) 1(B)-1(C)1(D)随意不为零的实数8.在四边形ABCD中,AB=DC,且AC·BD= 0,则四边形ABCD是()( A)矩形(B)菱形(C)直角梯形(D)等腰梯形9.已知 M (- 2, 7)、 N( 10,- 2),点 P 是线段 MN 上的点,且PN =-2PM,则P点的坐标为()( A )(-14,16)(B)(22,-11)(C)(6,1)(D)(2,4)10.已知a=( 1,2),b=(- 2,3),且 k a + b与a- k b垂直,则k=()(A)1 2 (B) 2 1(C) 2 3(D)3211、若平面向量r r(2 x3, x) 相互平行,此中r r)a (1, x) 和 b x R .则a b (A.2或0;B.25;C. 2或2 5;D. 2或10.12、下边给出的关系式中正确的个数是()① 0 a0 ② a b b a ③a2 a 2④(a b )c a (b c)⑤a b a b(A) 0(B) 1(C) 2(D) 3二. 填空题 :13.若AB(3,4), A点的坐标为(-2,-1),则B点的坐标为.14.已知a(3,4), b(2,3),则 2 | a | 3a b.15、已知向量a3, b(1,2) ,且a b ,则a的坐标是_________________。
(典型题)高中数学必修四第二章《平面向量》测试卷(包含答案解析)
一、选择题1.已知ABC 为等边三角形,2AB =,ABC 所在平面内的点P 满足1AP AB AC --=,AP 的最小值为( )A 1B .221-C .231-D 12.已知1a =,2b =,则a b a b ++-的最大值等于( )A .4B C .D .53.ABC 中,AD DC =,点M 在BD 上,且满足37AM AB t AC =+,则实数t 的值为( ) A .67B .47C .27D .594.已知ABC ,若对任意m R ∈,BC mBA CA -≥恒成立,则ABC 为( ) A .锐角三角形B .钝角三角形C .直角三角形D .不确定5.已知向量(3,0)a =,(0,1)b =-,(,3)c k =,若(2)a b c -⊥,则k =( ) A .2B .2-C .32D .32-6.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-7.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .3-C D .38.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( ) A .8B .4C .6D .39.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b +B .3255a b + C .2133a b +D .1233a b +10.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-11.设O 为ABC 所在平面内一点,满足2730OA OB OC ++=,则ABC 的面积与BOC 的面积的比值为( )A .6B .83C .127D .412.设非零向量a 与b 的夹角是23π,且a a b =+,则22a tb b+的最小值为( )A 3B 3C .12D .1二、填空题13.记集合{|X x b a xc ==+且||||4}a b a b ++-=中所有元素的绝对值之和为(,)S a c ,其中平面向量a ,b ,c 不共线,且||||1a c ==,则(,)S a c 的取值范围是______________.14.已知ABC ,AB AC ⊥,2AB =,12AC =,如果P 点是ABC 所在平面内一点,且4AB AC AP ABAC=+,那么PB PC ⋅的值等于________.15.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 16.设向量a ,b ,c ,满足1a b ==,12a b ⋅=-,a c -与b c -的夹角为60︒,则c 的最大值等于________17.在ABC 中,22AB =26AC =G 为ABC 的重心,则AG BC ⋅=________.18.已知夹角为θ的两个单位向量,a b ,向量c 满足()()0a c b c -⋅-=,则c 的最大值为______.19.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O .已知AC BC =,AC BC ⊥,AD BD ⊥,且O 是AC 的中点,若2AD AB CD CB ⋅-⋅=,则AC BD ⋅的值为__________.20.已知向量(1,3)a =,1(2,)2b =-,若单位向量c 与2a b -平行,则c =___________.三、解答题21.已知()3,2a =-,()2,1b =,O 为坐标原点.(1)若ma b +与2a b -的夹角为钝角,求实数m 的取值范围; (2)设OA a =,OB b =,求OAB 的面积.22.对于任意实数a ,b ,c ,d ,表达式ad bc -称为二阶行列式(determinant ),记作a b c d,(1)求下列行列式的值: ①1001;②1326;③251025--;(2)求证:向量(),p a b =与向量(),q c d =共线的充要条件是0a b c d=;(3)讨论关于x ,y 的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(12120a a b b ≠)有唯一解的条件,并求出解.(结果用二阶行列式的记号表示). 23.已知向量()1,2a =,(),1b x =. (1)若|2|||a b a b -=+,求实数x 的值; (2)若2x =,求2a b -与a b +的夹角.24.如图一,在平面直角坐标系xOy 中,O 为坐标原点,()11,A x y ,()22,B x y ,请根据以下信息,处理问题(1)和(2).信息一:O 为坐标原点,()22,OB x y =,若将OB 顺时针旋转90︒得到向量'OB ,则()22',OB y x =-,且'OB OB =;信息二:()22,OB x y =与()11,OA x y =的夹角记为θ,()22',OB y x =-与()11,OA x y =的夹角记为α,则sin cos θα=;信息三:1sin 2OAB S OA OB θ=⋅⋅△;信息四:11122122x y x y x y x y =-,叫二阶行列式.(1)求证:112212OAB x y S x y =△,(外层“”表示取绝对值);(2)如图二,已知三点()2,1M ,()3,4N ,()1,6Q ,试用(1)中的结论求MNQ △的面积.25.在ABCD 中,2AB =,23AC =AB 与AD 的夹角为3π. (Ⅰ)求AD ;(Ⅱ)求AC 和BD 夹角的余弦值.26.在平面直角坐标系xOy 中,已知向量(1,2)a =-,(1,)b k =. (1)若()a a b ⊥+,求实数k 的值;(2)若对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】计算出AB AC +的值,利用向量模的三角不等式可求得AP 的最小值. 【详解】2222222cos123AB AC AB AC AB AC AB AC AB AC π+=++⋅=++⋅=,所以,23AB AC +=由平面向量模的三角不等式可得()()231AP AP AB AC AB AC AP AB AC AB AC =--++≥---+=.当且仅当AP AB AC --与AB AC +方向相反时,等号成立. 因此,AP 的最小值为1. 故选:C. 【点睛】结论点睛:在求解向量模的最值时,可利用向量模的三角不等式来求解:a b a b a b -≤±≤+. 2.C解析:C 【分析】利用基本不等式得到222a b a b a b a b ++-++-≤,然后利用平面向量数量积运算求解. 【详解】因为1a =,2b =,所以222222252a b a ba b a b a b ++-++-≤=+=,当且仅当a b a b +=-,即a b ⊥时取等号, 故选:C 【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于中档题.3.C解析:C 【分析】由题意,可设DM k DB =,结合条件整理可得11(1)22AM AC DM k AC k AB =+=-+,得到关于k 与t 的方程组,解出t 即可. 【详解】 如图,因为AD DC =,所以12AD AC = 则12AM AD DM AC DM =+=+,因为M在BD上,不妨设1()()2 DM kDB k AB AD k AB AC==-=-,则1111()(1)2222AM AC DM AC k AB AC k AC k AB=+=+-=-+,因为37AM AB t AC=+,所以37{1(1)2kk t=-=,解得27t=,故选:C【点睛】本题主要考查了平面向量的线性运算的应用及平面向量基本定理的应用,意在考查学生对这些知识的理解掌握水平.4.C解析:C【分析】在直线AB上取一点D,根据向量减法运算可得到DC CA≥,由垂线段最短可确定结论.【详解】在直线AB上取一点D,使得mBA BD=,则BC mBA BC BD DC-=-=,DC CA∴≥.对于任意m R∈,都有不等式成立,由垂线段最短可知:AC AD⊥,即AC AB⊥,ABC∴为直角三角形.故选:C.【点睛】本题考查与平面向量结合的三角形形状的判断,关键是能够利用平面向量数乘运算和减法运算的几何意义准确化简不等式.5.B解析:B【分析】求出2a b-)3,2=,利用向量垂直数量积为零列方程求解即可.【详解】由(3,0)a =,(0,1)b =-,得2a b -)2=,若(2)c a b -⊥,则(2)?0a b c -=,0,2k +=∴=-.故选B. 【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答.6.C解析:C 【分析】对=2a b -两边平方后,结合2·cos 3a b a b π=⋅进行化简可得:224a b b +⋅+=;由基本不等式可得222a b a b +⋅,于是推出403a b<⋅,再结合平面向量数量积即可得解. 【详解】因为2a b -=,所以 2224a a b b -⋅+=,所以2222cos43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a b a b +⋅,403a b∴<⋅, 所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭. 故选:C . 【点睛】本题主要考查平面向量数量积运算,考查利用基本不等式求最值,难度一般.对于平面向量的模长问题,一般采用平方处理,然后结合平面向量数量积的运算公式求解即可.7.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a ba b +=-所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+, 所以13a b ⋅=,则()2263a b a b +=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()4326a a ba b⋅+==+ 故选:C. 【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.8.D解析:D 【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF . 【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D. 【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.9.B解析:B 【分析】由题得三角形是直角三角形,设3,4,5AB AC BC ===,设,=,,DB BF x AD AE y EC CF z =====求出,,x y z ,再利用平面向量的线性运算求解.【详解】因为||:||:||3:4:5AB AC BC =,所以ABC 是直角三角形,设3,4, 5.AB AC BC ===如图,设,=,,DB BF x AD AE y EC CF z =====由题得34,2,1,35x y y z x y z x z +=⎧⎪+=∴===⎨⎪+=⎩,所以2232()5555AD AB BD AB BC AB AC AB AB AC =+=+=+-=+3255a b =+. 故选:B 【点睛】本题主要考查平面向量的线性运算,意在考查学生对这些知识的理解掌握水平.10.C解析:C 【分析】建立直角坐标系,利用向量的坐标运算求解即可. 【详解】以点A 为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF ∴==21124AE AF ∴⋅=⨯+⨯=故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.11.A解析:A 【分析】作2OA OA '=,7OB OB '=,3OC OC '=,由已知可得O 是'''A B C 的重心,由重心性质可得所求面积比. 【详解】作2OA OA '=,7OB OB '=,3OC OC '=,如图,∵2730OA OB OC ++=,∴O 是'''A B C 的重心,则''''''OA B OB C OC A S S S ==△△△,设''''''OA B OB C OC A S S S t ===△△△,设,,OAB OAC y OBC S x S S z ===△△△, ∵2OA OA '=,7OB OB '=,3OC OC '=,∴''1''sin ''2141sin 2OAB OABOA OB A OB S S OA OB AOB ⋅∠==⋅∠△△,即114x t =,同理16y t =,121z t =, 11161462121ABC S x y z t t t t =++=++=△, ∴6216121ABC OBCtS S t ==△△. 故选:A .【点睛】本题考查三角形面积的计算,考查向量的加法与数乘法则,体现了向量在解决平面图形问题中的优越性.12.B解析:B 【分析】利用向量a与b 的夹角是23π,且a ab=+,得出a b a b==+,进而将22a tbb+化成只含有t为自变量的二次函数形态,然后利用二次函数的特性来求出最值.【详解】对于a,b和a b+的关系,根据平行四边形法则,如图a BA CD==,b BC=,a b BD+=,23ABCπ∠=,3DCBπ∴∠=,a a b=+,CD BD BC∴==,a b a b∴==+,2222222==222a tba tb a tbb bb+++,a b=,22222222244cos223=224a t ab t ba tba tbb b bπ++++=,222222222244cos42312444a t ab t b a t a a t a t tb aπ++-+==-+当且仅当1t=时,22a tbb+的最小值为3故选:B.【点睛】本题考查平面向量的综合运用,解题的关键点在于把22a tbb+化成只含有t为自变量的二次函数形态,进而求最值.二、填空题13.【分析】由条件有两边平方可得当时当时可得答案【详解】解:因为所以所以两边平方得化简得设向量的夹角为则当时当时所以集合中所有元素的绝对值之和为因为所以所以所以所以的取值范围为【点睛】关键点点睛:此题考 解析:[3,4)【分析】由条件有|2||||2|||4a xc xc a xc x ++=++=,两边平方可得3xa c x ⋅=-,当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,可得答案【详解】解:因为||||4a b a b ++-=,b a xc =+,||||1a c == 所以|2||||2|||4a xc xc a xc x ++=++=, 所以|2|4||a xc x +=-,两边平方得,2244168xa c x x x +⋅+=-+, 化简得,3xa c x ⋅=-,设向量,a c 的夹角为θ,(0,)θπ∈,则cos 32x x θ=-, 当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,所以集合X 中所有元素的绝对值之和为233122cos 2cos 4cos θθθ+=+--, 因为(0,)θπ∈,所以20cos 1θ≤<, 所以234cos 4θ<-≤,所以212344cos θ≤<-, 所以(,)S a c 的取值范围为[3,4)【点睛】关键点点睛:此题考查向量数量积的性质的运用,解题的关键是由已知条件得到3xa c x ⋅=-,然后设出向量,a c 的夹角为θ,则当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,从而可得集合X 中所有元素的绝对值之和为233122cos 2cos 4cos θθθ+=+--,再利用三角函数的有界性可求得结果,考查数学转化思想14.13【分析】由条件可得可得由可得出答案【详解】又故答案为:13【点睛】本题主要考查了平面向量线性运算和数量积的运算性质的应用属于中档题解析:13 【分析】由条件可得0AB AC ⋅=,182AP AB AC =+,可得217AP =,由()()PB PC PA AB PA AC ⋅=+⋅+,可得出答案.【详解】AB AC ⊥,2AB =,12AC =,4AB AC AP AB AC =+, 0AB AC ∴⋅=,182AP AB AC =+, 2222118641724AP AB AC AB AC ⎛⎫=+=+= ⎪⎝⎭,PB PA AB =+,PC PA AC =+,()()2PB PC PA AB PA AC PA PA AC PA AB ∴⋅=+⋅+=+⋅+⋅又42PA AC AC ⋅=-=-,2PA AB AB ⋅=-=-172213PB PC ∴⋅=--=.故答案为:13. 【点睛】本题主要考查了平面向量线性运算和数量积的运算性质的应用,属于中档题.15.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos OA OC AOC OA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①=,所以229m n =,点C 在AOB ∠内, 所以3mn=. 方法二:以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()()10,03A B ,, , 设()31cos30,sin 30=,22OC λλλ⎛⎫=︒︒ ⎪ ⎪⎝⎭,又()()()1,00,3,3OC mOA nOB m n m n =+=+=,得()31,=,322m n λλ⎛⎫ ⎪ ⎪⎝⎭,即 3=2132m nλλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.16.【分析】作向量根据已知条件可得出与的夹角为四点共圆再结合正余弦定理可得出结果【详解】解:如下图作向量与的夹角为即又与的夹角为即与夹角为四点共圆当为直径时最大在中由余弦定理得:的外接圆的直径为四点共圆 解析:2【分析】作向量OA a =,OB b =,OC c =,根据已知条件可得出a 与b 的夹角为120︒,A ,O ,B ,C 四点共圆,再结合正余弦定理可得出结果. 【详解】解:如下图,作向量OA a =,OB b =,OC c =,∴CA a c =-,CB b c =-,1a b ==,1cos ,2a b a b a b ⋅=⋅⋅=-,∴a 与b 的夹角为120︒,即120AOB ∠=︒. ∴120AOB ∠=︒.又a c -与bc -的夹角为60︒,即CA 与CB 夹角为60︒,∴A ,O ,B ,C 四点共圆. ∴当OC 为直径时c 最大,在AOB 中,由余弦定理得:2222cos1203AB OA OB OA OB =+-⋅︒=, ∴3AB =.∴AOB 的外接圆的直径为2sin120AB=︒.∴A ,O ,B ,C 四点共圆的圆的直径为2. ∴c 的最大值为2.故答案为:2. 【点睛】本题主要考查向量在几何图形中的应用,考查正余弦定理,考查数形结合的能力,分析问题能力,属于中档题.17.6【分析】根据三角形重心的性质转化为以及再求数量积【详解】如图点是的中点为的重心所以故答案为:6【点睛】本题考查向量数量积重心重点考查转化与化归思想计算能力属于基础题型解析:6 【分析】根据三角形重心的性质转化为()13AG AB AC =+,以及BC AC AB =-,再求数量积. 【详解】如图,点D 是BC 的中点,G 为ABC 的重心,∴()()22113323AG AD AB AC AB AC ==⨯+=+,BC AC AB =-,所以()()()221133AG BC AB AC AC AB AC AB ⋅=+⋅-=- ()126863=-=故答案为:6 【点睛】本题考查向量数量积,重心,重点考查转化与化归思想,计算能力,属于基础题型.18.【分析】建立平面直角坐标系设出向量的坐标得出向量的终点的轨迹方程再运用点与圆的位置关系可以得到的最大值【详解】由已知建立平面直角坐标系设又所以所以点在以为圆心以为半径的圆上所以的最大值为所以的最大值 解析:cossin22θθ+【分析】建立平面直角坐标系,设出向量a b c ,,的坐标,得出向量c 的终点C 的轨迹方程,再运用点与圆的位置关系可以得到||c 的最大值. 【详解】由已知建立平面直角坐标系,设()()()10cos ,sin ,,OA a OB b OC c x y θθ======,,,又()()0a c b c -⋅-=,所以()22+1+cos sin +cos 0x x y y θθθ-⋅-⋅=,所以点C 在以1+cos sin ,22P θθ⎛⎫⎪⎝⎭为圆心,以sin 2R θ=为半径的圆上, 所以c 的最大值为221+cos sin +cos +sin 22222OP R θθθθθ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以c 的最大值为cos sin22θθ+,故答案为:cos sin22θθ+.【点睛】本题考查求向量的模的最值,建立平面直角坐标系,设出向量坐标,得出向量的终点的轨迹方程是解决本题的关键,属于中档题.19.【分析】如图设先求出再根据得到再求的值得解【详解】如图四点共圆为圆的直径设所以由相交弦定理得在直角△中由勾股定理得在△中由余弦定理得因为所以又所以所以故答案为:【点睛】本题主要考查平面向量的数量积的 解析:3-【分析】如图,设12OA OC BC t ===,先求出,,OD AD CD ,再根据2AD AB CD CB ⋅-⋅=得到5t =,再求AC BD ⋅的值得解. 【详解】如图,,,,A B C D 四点共圆,AB 为圆的直径.设12OA OC BC t ===,所以225AB t OB t ==,由相交弦定理得5OD =,在直角△AOD 中,由勾股定理得5AD =, 在△COD 中,由余弦定理得225tCD =. 因为2AD AB CD CB ⋅-⋅=, 2222cos 2cos(180)255t t DAB t DAB ∠--∠=, 又cos 10AD DAB AB ∠==,所以5t =.所以212125=(2)(5)cos(180)35545AC BD t t t α⋅+-=-=-=-.故答案为:3- 【点睛】本题主要考查平面向量的数量积的计算,考查平面几何圆的知识,意在考查学生对这些知识的理解掌握水平.20.或【分析】由向量的坐标运算求出并求出它的模用除以它的模得一向量再加上它的相反向量可得结论【详解】由题意∴又∴或故答案为:或【点睛】易错点睛:本题考查求单位向量一般与平行的单位向量有两个它们是相反向量解析:34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭. 【分析】由向量的坐标运算求出2a b -,并求出它的模,用2a b -除以它的模,得一向量,再加上它的相反向量可得结论. 【详解】由题意2(1,3)(4,1)(3,4)a b -=--=-,∴22(3)5a b -=-=,又234,552a ba b -⎛⎫=- ⎪⎝⎭-, ∴c =34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭.故答案为:34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭. 【点睛】易错点睛:本题考查求单位向量,一般与a 平行的单位向量有两个,它们是相反向量:a a±.只写出一个向量a a是错误的.三、解答题21.(1)116,,225⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭;(2)72S =.【分析】(1)由题意,求得,2ma b a b +-的坐标,令()()20ma b a b +⋅-<,解得65m <,再由当12m =-时,得到2a b -与ma b +方向相反,求得12m ≠-,即可求解; (2)设AOB θ∠=,OAB 面积为S ,则1sin 2S a b θ=⋅,结合向量的夹角公式和向量的坐标运算,即可求解. 【详解】(1)由题意,向量()3,2a =-,()2,1b =,可得()32,21ma b m m +=+-+,()21,4a b -=--, 令()()20ma b a b +⋅-<,即32840m m --+-<,解得65m <,当12m =-时,12ma b a b +=-+, 此时2a b -与ma b +方向相反,夹角为π,不合题意,∴12m ≠-, 综上可得,实数m 的取值范围为116,,225⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. (2)设AOB θ∠=,OAB 面积为S ,则1sin 2S a b θ=⋅, 因为222sin 1cos 1a ba b θθ⎛⎫⋅⎪=-=- ⎪⋅⎝⎭, 又由()3,2a =-,()2,1b =,可得()22222224sin 651649S a b a b a b θ=⋅=-⋅=-=,解得72S =, 即OAB 的面积为72OABS =. 【点睛】本题主要考查了向量的角公式,向量的数量积的坐标运算的综合应用,其中解答中熟记向量的基本概念,以及向量的数量积和夹角公式的坐标运算是解答的关键,着重考查推理与运算能力.22.(1)1,0,0;(2)证明见解析;(3)当11220a b a b ≠时,有唯一解,11221122c b c b x a b a b =,11221122a c a c y ab a b =. 【分析】(1)利用行列式的定义可以直接求出行列式的值.(2)若向量(),p a b =与向量(),q c d =共线,由0q ≠和0q =时,分别推导出0a b c d=;反之,若0a b c d=,即0ad bc -=,当c ,d 不全为0时,不妨设0c ≠,则ad b c =,,ab p a c ⎛⎫= ⎪⎝⎭,推导出a p q c =⋅,//p q ,当0c 且0d =时,0q =,(),p a b =与0q =共线,由此能证明向量(),p a b =与向量(),q c d =共线的充要条件是0a b c d=.(3)求出()12211221a b a b x c b c b -=-,()12211221a b a b x a c a c -=-,由此能求出当11220a b a b ≠时,关于x ,y 的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(12120a a b b ≠)有唯一解,并能求出解. 【详解】 解:(1)解:①10101=②131623026=⨯-⨯=; ③()()2522551001025-=-⨯--⨯=-.(2)证明:若向量(),p a b =与向量(),q c d =共线,则: 当0q ≠时,有0ad bc -=,即0a b c d=,当0q =时,有0c d ==,即0a b ad bc c d=-=,∴必要性得证. 反之,若0a b c d=,即0ad bc -=,当c ,d 不全为0时,即0q ≠时, 不妨设0c ≠,则ad b c =,∴,ab p a c ⎛⎫= ⎪⎝⎭,∵(),q c d =,∴ap q c=⋅,∴//p q ,∴(),p a b =与(),q c d =共线, 当0c且0d =时,0q =,∴(),p a b =与0q =共线,充分性得证.综上,向量(),p a b =与向量(),q c d =共线的充要条件是0a b c d=.(3)用2b 和1b 分别乘上面两个方程的两端,然后两个方程相减,消去y 得:()12211221a b a b x c b c b -=-,①同理,消去x ,得:()12211221a b a b x a c a c -=-,②∴当12210a b a b -≠时,即11220a b a b ≠时,由①②得:1122121*********c b c b x a b a b a b c b c b a b -==-,1122122111122122a c a c a c a c y a b a b a b a b -==-, ∴当11220a b a b ≠时,关于x ,y 的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(12120a a b b ≠)有唯一解, 且11221122c b c b x a b a b =,11221122a c a c y a b a b =. 【点睛】此题考查行列式求值,考查向量共线的充要条件的证明,考查二元一次方程有解的条件及解的求法,考查运算求解能力,属于中档题23.(1)12;(2)4π. 【分析】(1)求出向量2a b -与a b +的坐标,然后由模的坐标运算列出方程可求得x ; (2)求出向量2a b -与a b +的坐标,由向量夹角的坐标运算计算.【详解】(1)因为()1,2a =,(),1b x =,所以()22,3a b x -=-,()1,3a b x +=+.因为|2|||a b a b -=+,= 解得12x =. (2)当2x =时,()20,3a b -=,()3,3a b +=,所以()()203339a b a b -⋅+=⨯+⨯=, 23a b -=,32a b +=.设2a b -与a b +的夹角为θ. 则(2)()cos 2|2|||332a b a b a b a b θ-⋅+===-⋅+⋅. 又[]0,θπ∈,所以4πθ=,即2a b -与a b +的夹角为4π.本题考查向量模的坐标运算,考查向量夹角的坐标运算,掌握向量的坐标运算是解题基础.24.(1)证明见解析;(2)4.【分析】(1)由1sin 2OAB S OA OB θ=⋅⋅△,再根据'OB OB =,sin cos θα=,转化OAB S =△1'2OA OB =⋅,利用平面向量的数量积运算结合行列式证明. (2)由(1)的结论,由MNQ OMN ONQ OMQ S S S S =+-△△△△求解.【详解】 (1)如图所示.∵1sin 2OAB S OA OB θ=⋅⋅△, 又因为'OB OB =,sin cos θα=, ∴1'cos 2OAB S OA OB α=⋅⋅△ 1'2OA OB =⋅ ()()11221,,2x y y x =⋅- ()121212x y y x =+- 122112x y x y =-, 又∵11122122x y x y x y x y =-, ∴112212OAB x y S x y =△. (2)∵MNQ OMN ONQ OMQ S S S S =+-△△△△∴213421111341616222MNQ S =+-△ 111(2431)(3614)(2611)222=⨯-⨯+⨯-⨯-⨯-⨯ 511722=+- 4=本题主要考查平面向量的数量积运算,行列式以及面积公式的应用,还考查了运算求解的能力,属于中档题.25.(Ⅰ)2AD =;(Ⅱ)0.【分析】(Ⅰ)设AB a =,AD b =,利用平面向量加法的平行四边形法则可得AC a b =+,由23AC =b 的方程,即可解得AD b =;(Ⅱ)计算得出0AC BD ⋅=,可得出AC BD ⊥,进而可得出结果.【详解】(Ⅰ)设AB a =,AD b =,则AC a b =+,BD AD AB b a =-=-.向量AB 与AD 的夹角为3π,cos 3a b a b b π∴⋅=⋅=. ()22222242AC a b a b a a b b b b ∴=+=+=+⋅+=++= 整理得2280b b +-=,0b ≥,解得2b =,即2AD =;(Ⅱ)()()220AC BD a b b a b a ⋅=+⋅-=-=,则AC BD ⊥,因此,AC 和BD 夹角的余弦值为0.【点睛】本题考查利用平面向量的数量积求向量的模,同时也考查了平面向量夹角余弦值的计算,考查计算能力,属于中等题.26.(1)2k =-;(2)2k ≠-.【分析】(1)根据向量垂直,其数量积等于0,利用向量数量积公式得到对应的等量关系式,求得结果;(2)平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,其等价结果为向量(1,2)a =-和向量(1,)b k =是两个不共线向量,根据坐标关系得到结果.【详解】(1)若()a a b ⊥+,则有()0a a b ⋅+=,即20a a b +⋅=,又因为(1,2)a =-,(1,)b k =,所以222[(1)2](1)120a a b k +⋅=-++-⋅+=,即5120k -+=,解得2k =-;(2)对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,所以向量(1,2)a =-和向量(1,)b k =是两个不共线向量,所以121k -⋅≠⋅,即2k ≠-,所以实数k 的取值范围是2k ≠-.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,平面向量基本定理,一组向量可以作为基底的条件,属于基础题目.。
高一数学必修4平面向量练习题及答案(完整版)
a an t 1平面向量练习题一、选择题1、若向量= (1,1), = (1,-1), =(-1,2),则 等于()abc cA 、+B 、C 、D 、+ 21-a 23b 21a 23-b 23a 21-b23-a 21b2、已知,A (2,3),B (-4,5),则与共线的单位向量是( )AB A 、B 、)1010,10103(-=e 1010,10103()1010,10103(--=或e C 、D 、)2,6(-=e )2,6()2,6(或-=e 3、已知垂直时k 值为()b a b a k b a 3),2,3(),2,1(-+-==与A 、17B 、18C 、19D 、204、已知向量=(2,1), =(1,7), =(5,1),设X 是直线OP 上的一点(O 为坐标原点),那么的最OP OA OB XB XA ⋅小值是 ( )A 、-16B 、-8C 、0D 、45、若向量分别是直线ax+(b -a)y -a=0和ax+4by+b=0的方向向量,则 a,b 的值分别可以是)1,2(),2,1(-==n m ( )A 、 -1 ,2B 、 -2 ,1C 、 1 ,2D 、 2,16、若向量a =(cos ,sin ),b =(cos ,sin ),则a 与b 一定满足 ()αβαβA 、a 与b 的夹角等于-B 、(a +b )⊥(a -b )αβC 、a ∥bD 、a ⊥b7、设分别是轴,轴正方向上的单位向量,,。
若用 来表示j i ,x y j i OP θθsin 3cos 3+=i OQ -=∈),2,0(πθ与的夹角,则 等于()OP OQ A 、B 、C 、D 、θθπ+2θπ-2θπ-8、设,已知两个向量,,则向量长度的最大值是πθ20<≤()θθsin ,cos 1=OP ()θθcos 2,sin 22-+=OP 21P P ()A 、B 、C 、D 、2323二、填空题9、已知点A(2,0),B(4,0),动点P 在抛物线y 2=-4x 运动,则使取得最小值的点P 的坐标是BP AP ⋅i r t 2、10、把函数的图象,按向量(m>0)平移后所得的图象关于轴对称,则m 的最sin y x x =-(),a m n =-y 小正值为__________________、11、已知向量 、=⊥=-=m AB OA m OB OA 则若,),,3(),2,1(三、解答题12、求点A (-3,5)关于点P (-1,2)的对称点、/A 13、平面直角坐标系有点].4,4[),1,(cos ),cos ,1(ππ-∈=x x Q x P (1)求向量的夹角的余弦用x 表示的函数;OQ OP 和θ)(x f (2)求的最值、θ14、设其中x ∈[0,]、,)2cos ,sin 2(x x OA =,x ,OB )1cos (-=2π(1)求f(x)=的最大值和最小值;OB OA ·(2)当 ⊥,求||、OA OB AB 15、已知定点、)1,0(-B 、,动点P 满足:、)1,0(A )0,1(C 2||−→−−→−−→−=⋅PC k BP AP (1)求动点的轨迹方程,并说明方程表示的图形;P (2)当时,求的最大值和最小值、2=k ||−→−−→−+BP APa t i me l i ng i nt e n t 3参考答案一、选择题1、B ;2、B ;3、C ;4、B ;5、D ;6、B ;7、D ;8、C 二、填空题9、(0,0)10、56m π=11、4三、解答题12、解:设(x,y),则有,解得、所以(1,-1)。
高中数学必修四第二章《平面向量》单元测试题(含答案)
高中数学必修四第二章单元测试题《平面向量》(时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20-2.已知向量31,22BA ⎛⎫=⎪ ⎪⎝⎭, ()0,1BC =,则向量BA 与BC 夹角的大小为( ) A. π6 B. π4 C. π3 D. 2π33.已知向量()11a =-,, ()12b =-,,则()2a b a +⋅=( )A. 1-B. 0C. 1D. 24.已知向量,若,则实数m 的值为 ( ) A. 0 B. 2 C. D. 2或 5.如上图,向量1e , 2e , a 的起点与终点均在正方形网格的格点上,则向量a 用基底1e , 2e 表示为( )A. 1e +2eB. 21e -2eC. -21e +2eD. 21e +2e6.若三点()1,2A --、()0,1B -、()5,C a 共线,则a 的值为( )A. 4B. 4-C. 2D. 2-7.已知平面向量,a b 的夹角为60°,()1,3a =, 1b =,则a b +=( )A. 2B. 37 D. 48.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20-9.已知向量()()()3,1,0,1,,3a b c k ==-=,若(2a b -)与c 互相垂直,则k 的值为 A. 1 B. 1- C. 3 D. 3-10.已知点()0,1A , ()1,2B , ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为( ) A. 322 B. 2 C. 322- D. 3152- 11.在矩形ABCD 中, 3AB =, 3BC =, 2BE EC =,点F 在边CD 上,若•3AB AF =,则•AE BF 的值为( )A. 0B. 833C. 4-D. 4 12.已知ABC ∆是边长为4的等边三角形, P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值为 ( )A. 3-B. 6-C. 2-D. 83-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设a 与b 是两个不共线向量,且向量a b λ+与2a b -共线,则λ=__________.14.已知单位向量a , b 满足()1•232a ab -=,则向量a 与b 的夹角为__________. 15.在平行四边形ABCD 中, AC 与BD 交于点O , E 是线段OD 的中点, AE 的延长线与CD 交于点F . 若AC a =, BD b =,则AF 等于_______(用a , b 表示).16.已知正方形ABCD 的边长为1,点E 在线段AB 边上运动(包含线段端点),则DE CB ⋅的值为__________; DE DB ⋅的取值范围为__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题10分)已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +)(1)求证: AB BC ⊥;(2) //AD BC ,求实数m 的值.18.(本小题12分)已知向量()1,2a =,()3,4b =-.(1)求a b +与a b -的夹角;(2)若()a ab λ⊥+,求实数λ的值.19.(本小题12分)已知是夹角为的两个单位向量,,.(1)求;(2)求与的夹角.20.(本小题12分)如图,在平行四边形中,,是上一点,且. (1)求实数的值;(2)记,,试用表示向量,,.21.(本小题12分)已知向量a 与b 的夹角为120︒, 2,3a b ==, 32,2m a b n a kb =-=+. (I )若m n ⊥,求实数k 的值; (II )是否存在实数k ,使得//m n ?说明理由.22.(本小题12分)已知点(1,0),(0,1)A B -,点(,)P x y 为直线1y x =-上的一个动点.(1)求证:APB ∠恒为锐角;(2)若四边形ABPQ 为菱形,求BQ AQ ⋅的值.高中数学必修四第二章单元测试题《平面向量》参考答案(时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20- 【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭. 故选:C .2.【2017届北京房山高三上期末】已知向量31,22BA ⎛⎫=⎪ ⎪⎝⎭, ()0,1BC =,则向量BA 与BC 夹角的大小为( )A. π6B. π4C. π3D. 2π3【答案】C3.【2018届四川省成都市郫都区高三上期中】已知向量()11a =-,, ()12b =-,,则()2a b a +⋅=( ) A. 1- B. 0 C. 1 D. 2【答案】C【解析】()()()21,01,11a b a +⋅=-=,故选:C.4.已知向量,若,则实数m 的值为 ( ) A. 0 B. 2 C.D. 2或 【答案】C 【解析】∵向量,且 ∴, ∴.选C. 5.如上图,向量1e , 2e , a 的起点与终点均在正方形网格的格点上,则向量a 用基底1e , 2e 表示为( )A. 1e +2eB. 21e -2eC. -21e +2eD. 21e +2e【答案】C6.若三点()1,2A --、()0,1B -、()5,C a 共线,则a 的值为( )A. 4B. 4-C. 2D. 2-【答案】A【解析】()1,2A --, ()()0,1,5B C a -,三点共线ABAC λ∴→=→即()()1162a λ=+,,()16{ 12a λλ==+ 16λ∴=, 4a = 故答案选A .7.【2018届全国名校大联考高三第二次联考】已知平面向量,a b 的夹角为60°,()1,3a =, 1b =,则a b +=( ) A. 2 B. 23 C. 7 D. 4 【答案】C 8.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ).A. 20B. 10C. 10-D. 20-【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭. 故选:C .9.【2018届福建省福安市一中上学期高三期中】已知向量()()()3,1,0,1,,3a b c k ==-=,若(2a b -)与c 互相垂直,则k 的值为A. 1B. 1-C. 3D. 3-【答案】D【解析】()23,3a b -=,因为(2a b -)与c 互相垂直,则()233303a b c k k -⋅=+=⇒=-,选D. 10.【2018届河南省中原名校高三第三次考评】已知点()0,1A , ()1,2B , ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为( )A. 322B. 2C. 322-D. 3152-【答案】B【解析】()()1,1.5,5AB CD ==则向量AB 在CD 方向上的投影为10cos ,252AB CDAB AB CD AB AB CD ⋅=⋅==故选B.11.【2018届黑龙江省齐齐哈尔地区八校高三期中联考】在矩形ABCD 中, 3AB =,3BC =, 2BE EC =,点F 在边CD 上,若•3AB AF =,则•AE BF 的值为( )A. 0B. 833 C. 4- D. 4【答案】C【解析】12.【2018届河南省漯河市高级中学高三上期中】已知ABC ∆是边长为4的等边三角形, P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值为 ( )A. 3-B. 6-C. 2-D. 83-【答案】B【解析】如图建立坐标系, (()()0,23,2,0,2,0A B C -,设(),P x y ,则()()(),23,2,,2,PA x y PB x y PC x y =--=---=--,()()()22,232,22243PA PB PC x y x y x y ∴⋅+=-⋅--=+-(222366x y ⎡⎤=+--≥-⎢⎥⎣⎦,∴最小值为6-,故选B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设a 与b 是两个不共线向量,且向量a b λ+与2a b -共线,则λ=__________.【答案】12-【解析】由题意得()11:2:12λλ=-∴=- .14.【2018届河北省邢台市高三上学期第二次月考】已知单位向量a , b 满足()1•232a ab -=,则向量a 与b 的夹角为__________. 【答案】60°(或3π) 【解析】因为()1232a a b ⋅-=,化简得: 2123232a a b a b -⋅=-⋅=,即12a b ⋅=,所以1cos ,2a b a b a b⋅==⋅,又0,a b π≤≤,所以,3a b π=,故填3π. 15.【2018届福建省三明市第一中学高三上学期期中】在平行四边形ABCD 中, AC 与BD 交于点O ,E 是线段OD 的中点, AE 的延长线与CD 交于点F . 若AC a =, BD b =,则AF 等于_______(用a ,b 表示).【答案】2133a b + 【解析】∵AC a =, BD b =,∴11112222AD AC BD a b =+=+. ∵E 是OD 的中点,∴=,∴DF=AB .∴111111332266DF AB AC BD a b ⎛⎫==-=- ⎪⎝⎭, ∴111121226633AF AD DF a b a b a b =+=++-=+. 16.已知正方形ABCD 的边长为1,点E 在线段AB 边上运动(包含线段端点),则DE CB ⋅的值为__________; DE DB ⋅的取值范围为__________. 【答案】 1 []1,2【解析】如图,以D 为坐标原点,以DC , DA 分别为x , y 轴,建立平面直角坐标系, ()0,0D , ()0,1DE x , ()1,1B , ()0,1CB ,()1,0C , ()1,1DB , ()0,1E x , []00,1x ∈,∴1DE CB ⋅=, 01DE DB x ⋅=+,∵001x ≤≤,0112x ≤+≤,∴DE DB ⋅的取值范围为[]1,2,故答案为1, []1,2.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +) (1)求证: AB BC ⊥; (2) //AD BC ,求实数m 的值. 【答案】(1)见解析(2) 12-或1 【解析】试题分析:(1)分别根据向量的坐标运算得出AB BC ,算出AB BC ⋅(2)由向量的平行进行坐标运算即可. 试题解析:(1)依题意得, ()()2,3,3,2AB BC =-= 所以()23320AB BC ⋅=⨯+-⨯= 所以AB BC ⊥.18.(本小题12分)已知向量()1,2a =,()3,4b =-. (1)求a b +与a b -的夹角; (2)若()a ab λ⊥+,求实数λ的值. 【答案】(1)34π;(2)1-. 【解析】(1)因为()1,2a =,()3,4b =-,所以()2,6a b +=-,()4,2a b -=- 所以()()2,64,2202cos ,240204020a b a b -⋅--+-===-⨯⨯,由[],0,a b a b π+-∈,则3,4a b a b π+-=; (2)当()a ab λ⊥+时,()0a a b λ⋅+=,又()13,24a b λλλ+=-+,所以13480λλ-++=,解得:1λ=-.19.(本小题12分)已知是夹角为的两个单位向量,,.(1)求; (2)求与的夹角. 【答案】(1);(2)与的夹角为.【解析】试题分析:(1)向量点积的运算规律可得到再展开根据向量点积公式得最终结果;(2)同第一问,由向量点积公式展开=0.∵是夹角为的两个单位向量,∴,(1)(2) ,,∴,∴与的夹角为.20.(本小题12分)如图,在平行四边形中,,是上一点,且. (1)求实数的值;(2)记,,试用表示向量,,.【答案】(1);(2),,.【解析】试题分析:(1)根据平面向量共线定理得到,由系数和等于1,得到即。
(典型题)高中数学必修四第二章《平面向量》测试(有答案解析)
一、选择题1.在ABC ∆中,2AB =,3AC =,5cos 6A =,若O 为ABC ∆的外心(即三角形外接圆的圆心),且AO mAB nAC +=,则2n m -=( ) A .199B .4122-C .111-D .17112.已知平面向量a 与b 的夹角为23π,若(3,1)a =-,2213a b -=,则b ( ) A .3B .4C .3D .23.已知a ,b 是单位向量,a •b =0.若向量c 满足|c a b --|=1,则|c |的最大值为( )A 1 BC 1D 2+4.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( ) A .18-B .116-C .316-D .05.在ABC 中,D 是BC 的中点,E 是AD 的中点,那么下列各式中正确的是( ) A .DB DC =B .2AD DE =C .2AB AC AD += D .AB AC BC -=6.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-7.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( ) A .14B .12C .2D .48.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( )A .0B .4,C .16,0D .4,09.在ABC 中,D 为AB 的中点,E 为AC 边上靠近点A 的三等分点,且BE CD ⊥,则cos2A 的最小值为( )A B .27-C .17-D .149-10.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭11.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .2312.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ; ②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =; ④若//a b ,则一定存在唯一的实数λ,使得a b λ=. A .①③B .①④C .②③D .②④二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题: ①若1ABλ=,1ACμ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心; ③若1λμ+=,且0μ>,则点P 在线段BC 上; ④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内. 其中真命题为______14.设10AB =,若平面上点P 满足对任意的R λ∈,28AP AB λ-≥,PA PB ⋅的最小值为_______.15.在平面内,定点,,A B C 满足DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点,P M 满足1AP PM MC ==,则2BM 的最大值为________.16.已知圆22:1O x y +=,A 点为圆上第一象限内的一个动点,将OA 逆时针旋转90°得OB ,又1,0P ,则PA PB ⋅的取值范围为________.17.已知平面非零向量,,a b c 两两所成的角相等,1a b c ===,则a b c ++的值为_____.18.如图,在ABC 中,已知D 是BC 延长线上一点,点E 为线段AD 的中点,若2BC CD =,且34AE AB AC λ=+,则λ=___________.19.已知平面向量2a =,3b =,4c =,4d =,0a b c d +++=,则()()a b b c +⋅+=______.20.向量a ,b ,c 在正方形网格(每个小正方形的边长为1)中的位置如图所示,若向量a b λ+与c 共线,则||a b λ-=________.三、解答题21.如图所示,在ABC 中,AB a =,BC b =,D ,F 分别为线段BC ,AC 上一点,且2BD DC =,3CF FA =,BF 和AD 相交于点E .(1)用向量a ,b 表示BF ;(2)假设()1BE BA BD BF λλμ=+-=,用向量a ,b 表示BE 并求出μ的值. 22.已知123PP P 三个顶点的坐标分别为123(cos ,sin ),(cos ,sin ),(cos ,sin )P P P ααββγγ,且1230OP OP OP ++=(O 为坐标原点).(1)求12POP ∠的大小; (2)试判断123PP P 的形状. 23.设非零向量a ,b 不共线.(1)若(),1a t =,()5,b t =,且//a b ,求实数t 的值;(2)若OA a b =+,2OB a b =+,3OC a b =+.求证:A ,B ,C 三点共线. 24.已知||2,||3,a b a ==与b 的夹角为120°. (1)求(2)(3)a b a b -⋅+与||a b +的值; (2)x 为何值时,xa b -与3ab 垂直?25.在ABC 中,G 为ABC 的重心,过G 点的直线分别交,AB AC 于,P Q 两点,且,AP h AB AQ k AC ==,(1)求11h k+的值; (2)设,APQ ABC S S △△分别表示,APQ ABC △△的面积,求APQ ABCS S的最小值.26.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cossin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ;(2)若22212a b c =+,试求sin()A B -的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,从而得到·0?0OD AB OE AC ==,,坐标化构建m ,n 的方程组,解之即可.【详解】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,又OD AD AO =-,即11222mOD AB mAB nAC AB nAC -=--=-, 同理122nOE AE AO AC mAB -=-=-, 因为212·||?02mOD AB AB nAB AC -=-=, 所以124502m n -⨯-=,又212·||?02nOE AC AC mAB AC -=-=, 所以129502nm -⨯-=,联立方程组124502129502mn n m -⎧⨯-=⎪⎪⎨-⎪⨯-=⎪⎩,解得922811m n ⎧=-⎪⎪⎨⎪=⎪⎩,所以17211n m -=. 故选D 【点睛】本题考查了数量积运算性质、向量垂直与数量积的关系、三角形外心的性质、向量基本定理,考查了推理能力与计算能力,属于中档题.2.A解析:A 【解析】分析:根据题设条件2213a b -=,平方化简,得到关于b 的方程,即可求解结果. 详解:由题意,(3,1)a =-且向量a 与b 的夹角为23π,由2213a b -=,则222222444442cos523a b a b a b b b π-=+-⋅=+-⨯=, 整理得2120b b +-=,解得3b =,故选A.点睛:本题主要考查了向量的运算问题,其中熟记平面向量的数量积的运算公式,以及向量的模的计算公式是解答的关键,着重考查了推理与运算能力.3.C解析:C 【分析】通过建立直角坐标系,利用向量的坐标运算和圆的方程及数形结合即可得出. 【详解】∵|a |=|b |=1,且0a b ⋅=,∴可设()10a =,,()01b =,,()c x y ,=.∴()11c a b x y --=--,. ∵1c a b --=, ∴22(1)(1)1x y -+-=x ﹣1)2+(y ﹣1)2=1.∴c 的最大值2211121=+=.故选C . 【点睛】熟练掌握向量的坐标运算和圆的方程及数形结合是解题的关键.4.C解析:C 【分析】建立平面直角坐标系,()0,P t ,3t ≤,则 22333(16⋅==-AP CP t t ,进而可求最小值. 【详解】以D 点为坐标原点,DC 所在直线为y 轴,DA 所在直线为x 轴建立直角坐标系,1(,0)2A ,1(,0)2B -,3(0,)C ,设()0,P t ,其中3t ≤1(,)2AP t =-,3(0,)CP t ==,22333()16⋅=-=--AP CP t t t ,当3t =时取最小值为316-,所以AP CP ⋅的最小值为316-.故选:C 【点睛】本题考查了平面向量的数量积运算,用坐标法求最值问题,考查了运算求解能力,属于一般题目.5.C解析:C 【解析】依题意ABC 如图所示:∵D 是BC 的中点 ∴DB CD =,故A 错误 ∵E 是AD 的中点 ∴2AD ED =,故B 错误∵AB AD DB =+,AC AD DC =+∴2AB AC AD DB AD DC AD +=+++=,故C 正确∴()AB AC AD DB AD DC DB DC CB -=+-+=-=,故D 错误 故选C6.C解析:C 【分析】对=2a b -两边平方后,结合2·cos 3a b a b π=⋅进行化简可得:224a b b +⋅+=;由基本不等式可得222a b a b +⋅,于是推出403a b<⋅,再结合平面向量数量积即可得解. 【详解】因为2a b -=,所以 2224a a b b -⋅+=,所以2222cos 43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a ba b +⋅,403a b∴<⋅, 所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭. 故选:C . 【点睛】本题主要考查平面向量数量积运算,考查利用基本不等式求最值,难度一般.对于平面向量的模长问题,一般采用平方处理,然后结合平面向量数量积的运算公式求解即可.7.C解析:C 【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos62b a b t aaπ⋅=-=-时,()g t 取得最小值1,变形可得22sin16b π=,从而可求出b 【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos 1)06a b a b a b π∆=⋅-=-<,所以()g t 恒大于零, 所以当232cos622b b a b t aaaπ⋅=-=-=-时,()g t 取得最小值1,所以2223332122b b bg a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =,所以2b =, 故选:C 【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题8.D解析:D 【分析】利用向量的坐标运算得到|2|a b -用θ的三角函数表示化简求最值. 【详解】解:向量()a cos sin θθ=,,向量()31b =-,,则2a b -=(2cosθ3-,2sinθ+1),所以|2|a b -2=(2cosθ3-)2+(2sinθ+1)2=8﹣43cosθ+4sinθ=8﹣8sin (3πθ-),所以|2|a b -2的最大值,最小值分别是:16,0; 所以|2|a b -的最大值,最小值分别是4,0; 故选:D . 【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性.9.D解析:D 【分析】作出图形,用AB 、AC 表示向量BE 、CD ,由BE CD ⋅可得出2232cos 7c b A bc+=,利用基本不等式求得cos A 的最小值,结合二倍角的余弦公式可求得cos2A 的最小值. 【详解】 如下图所示:13BE AE AB AC AB =-=-,12CD AD AC AB AC =-=-, BE CD ⊥,则2211711032623BE CD AC AB AB AC AB AC AB AC ⎛⎫⎛⎫⋅=-⋅-=⋅--= ⎪ ⎪⎝⎭⎝⎭,即22711cos 0623cb A c b --=,可得2232cos 7c b A bc +=≥=当且仅当2b =时,等号成立,所以,221cos 22cos 121749A A ⎛⎫=-≥⨯-=- ⎪ ⎪⎝⎭. 故选:D. 【点睛】本题考查二倍角余弦值最值的求解,考查平面向量垂直的数量积的应用,同时也考查了基本不等式的应用,考查计算能力,属于中等题.10.D解析:D 【分析】设CO yBC =,则()1AO AC CO AC yBC yAB y AC =+=+=-++,根据3BC CD =得出y 的范围,再结合()1AO xAB x AC =+-得到,x y 的关系,从而得出x的取值范围. 【详解】 设CO yBC =,则()()1AO AC CO AC yBC AC y AC AB yAB y AC =+=+=+-=-++, 因为3BC CD =,点O 在线段CD 上(与点C ,D 不重合),所以10,3y ⎛⎫∈ ⎪⎝⎭, 又因为()1AO xAB x AC =+-, 所以x y =-,所以1,03x ⎛⎫∈- ⎪⎝⎭. 故选:D 【点睛】本题考查平面向量基本定理及向量的线性运算,考查利用向量关系式求参数的取值范围问题,难度一般.11.B解析:B 【分析】由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解. 【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=,故选:B . 【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题.12.B解析:B 【分析】根据向量共线定理判断①④,由模长关系只能说明向量a ,b 的长度关系判断②,举反例判断③. 【详解】对于①,由向量共线定理可知,//a b ,则存在唯一的实数1λ,使得1λa b ,//b c ,则存在唯一的实数2λ,使得2λbc ,由此得出存在唯一的实数12λλ⋅,使得12a c λλ=⋅,即//a c ,则①正确;对于②,模长关系只能说明向量a ,b 的长度关系,与方向无关,则②错误; 对于③,当a b =时,由题意可得()5x y a a +=,则5x y +=,不能说明2x =,3y =,则③错误;由向量共线定理可知,④正确; 故选:B. 【点睛】本题主要考查了向量共线定理以及向量的定义,属于中档题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断. 【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】建立如图所示的坐标系则设则所以从而结合可得对任意恒成立则必然成立可得而从而可求得结果【详解】解:以线段的中点为原点以所在的直线为轴以其中垂线为轴建立直角坐标系则设则所以因为所以化简得由于上述 解析:9-【分析】建立如图所示的坐标系,则(5,0),(5,0)A B -,设(,)P x y ,则(5,),(10,0)AP x y AB =+=,所以2(21010,2)AP AB x y λλ-=+-,从而2(21010,2)AP AB x y λλ-=+-,结合28AP AB λ-≥,可得222100(20040)4404360x x x y λλ-+++++≥,对任意R λ∈恒成立,则0∆≤必然成立,可得4y ≥,而2225PA PB x y ⋅=+-216259x ≥+-≥-,从而可求得结果解:以线段AB 的中点为原点,以AB 所在的直线为x 轴,以其中垂线为y 轴,建立直角坐标系,则(5,0),(5,0)A B -,设(,)P x y ,则(5,),(10,0)AP x y AB =+=, 所以2(21010,2)AP AB x y λλ-=+-,因为28AP AB λ-≥,所以22(21010)464x y λ+-+≥,化简得222100(20040)4404360x x x y λλ-+++++≥, 由于上述不等式对任意R λ∈恒成立,则0∆≤必然成立,222(20040)4100(440436)0x x x y ∆=+-⨯⨯+++≤,解得4y ≥,所以4y ≥或4y ≤-, 因为(5,),(5,)PA x y PB x y =---=--, 所以2225PA PB x y ⋅=+-, 因为x ∈R ,216y ≥,所以2222516259x y x +-≥+-≥-, 即9PA PB ⋅≥-,所以PA PB ⋅的最小值为9-, 故答案为:9-【点睛】此题考查向量的数量积运算,考查数形结合思想,考查计算能力,属于中档题15.【分析】由可得为的外心又可得为的垂心则为的中心即为正三角形运用向量的数量积定义可得的边长以为坐标原点所在直线为轴建立直角坐标系求得的坐标再设由中点坐标公式可得的坐标运用两点的距离公式可得的长运用三角解析:494【分析】由DA DB DC ==,可得D 为ABC ∆的外心,又DA DB DB DC DC DA ⋅=⋅=⋅,可得D 为ABC ∆的垂心,则D 为ABC ∆的中心,即ABC ∆为正三角形.运用向量的数量积定义可得ABC ∆的边长,以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy ,求得,B C 的坐标,再设(cos ,sin ),(02)P θθθπ≤<,由中点坐标公式可得M 的坐标,运用两点的距离公式可得BM 的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值. 【详解】解: 由DA DB DC ==,可得D 为ABC ∆的外心, 又DA DB DB DC DC DA ⋅=⋅=⋅,可得()0,(DB DA DC DC DB ⋅-=⋅ )0DA -=,即0DB AC DC AB ⋅=⋅=, 即有,DB AC DC AB ⊥⊥,可得D 为ABC ∆的垂心, 则D 为ABC ∆的中心,即ABC ∆为正三角形, 由2DA DB ⋅=-,即有||||cos1202DA DB ︒⋅=-, 解得||2DA =,ABC∆的边长为4cos30︒=以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy , 可得B(3,3),C(3,D(2,0)-, 由||1AP=,可设(cos ,sin ),(02)P θθθπ≤<,由PM MC =,可得M为PC中点,即有3cos (2M θ+, 则2223cos ||3=+2BM θ+⎛⎫- ⎪⎝⎭⎝ 2(3cos )4θ-=+=3712sin 64πθ⎛⎫+- ⎪⎝⎭=, 当sin 16πθ⎛⎫-= ⎪⎝⎭,即23πθ=时,取得最大值,且为494. 故答案为:494. 【点睛】本题考查向量的定义和性质,以及模的最值的求法,注意运用坐标法,转化为三角函数的最值的求法,考查化简整理的运算能力,属于中档题.16.【分析】由题意可设即有结合应用数量积的坐标公式即可求的取值范围;【详解】由题意设则即有∴而即∴故答案为:【点睛】本题考查了向量数量积的坐标表示结合坐标的三角表示正弦函数的区间值域求数量积的范围; 解析:()0,2【分析】由题意可设(cos ,sin )A αα,02πα<<,即有(sin ,cos )B αα-,结合1,0P 应用数量积的坐标公式即可求PA PB ⋅的取值范围; 【详解】由题意,设(cos ,sin )A αα,02πα<<,则(sin ,cos )B αα-,即有(cos 1,sin )PA αα-,(sin 1,cos )PB αα--,∴(cos 1)(sin 1)sin cos sin cos 12)14PA PB πααααααα⋅=---+=-+=-+,而(,)444πππα-∈-,即2sin()(0,42πα-∈, ∴(0,2)PA PB ⋅∈, 故答案为:()0,2 【点睛】本题考查了向量数量积的坐标表示,结合坐标的三角表示、正弦函数的区间值域求数量积的范围;17.3或0【分析】由于三个平面向量两两夹角相等可得任意两向量的夹角是或由于三个向量的模已知当两两夹角为时直接算出结果;当两两夹角为时采取平方的方法可求出三个向量的和向量的模【详解】由题意三个平面向量两两解析:3或0 【分析】由于三个平面向量两两夹角相等,可得任意两向量的夹角是0或120︒,由于三个向量的模已知,当,,a b c →→→两两夹角为0时,直接算出结果;当,,a b c →→→两两夹角为120︒时,采取平方的方法可求出三个向量的和向量的模. 【详解】由题意三个平面向量两两夹角相等,可得任意两向量的夹角是0或120︒, 当,,a b c →→→两两夹角为0时,,,a b c →→→方向相同,则3a b c →→→++=; 当,,a b c →→→两两夹角为120︒时,由于1a b c ===, 则2222222a b c a b c a b a c b c→→→→→→→→→++=+++⋅+⋅+⋅111211cos120211cos120211cos1200=+++⨯⨯⨯︒+⨯⨯⨯︒+⨯⨯⨯︒=,则20a b c →→→++=,∴0a b c →→→++=. 综上a b c →→→++的值为3或0. 故答案为:3或0. 【点睛】本题考查平面向量的模的求法,涉及向量的夹角和向量的数量积运算,解题的关键是理解向量夹角的定义,考查运算能力.18.【分析】利用表示向量再由可求得实数的值【详解】所以则为线段的中点则因此故答案为:【点睛】本题考查利用平面向量的基底表示求参数考查计算能力属于中等题解析:14-【分析】利用AB 、AC 表示向量AD ,再由12AE AD =可求得实数λ的值. 【详解】()22BC CD BD BC ==-,所以,32BD BC =, 则()33132222AD AB BD AB BC AB AC AB AB AC =+=+=+-=-+, E 为线段AD 的中点,则11332444AE AD AB AC AB AC λ==-+=+,因此,14λ=-.故答案为:14-. 【点睛】本题考查利用平面向量的基底表示求参数,考查计算能力,属于中等题.19.【分析】根据得到然后两边平方结合求得再由求解即可【详解】因为所以所以所以因为所以故答案为:【点睛】本题主要考查平面向量的数量积运算还考查了运算求解的能力属于中档题解析:52【分析】根据0a b c d +++=,得到++=-a b c d ,然后两边平方结合2a =,3b =,4c =,4d =,求得⋅+⋅+⋅a b a c b c ,再由()()a b b c +⋅+=2⋅+⋅+⋅+a b a c b c b 求解即可. 【详解】因为0a b c d +++=, 所以++=-a b c d ,所以()()22++=-a b cd ,所以()()()()2222222+++⋅+⋅+⋅=-a b c a b a c b c d ,因为2a =,3b =,4c =,4d =, 所以132⋅+⋅+⋅=-a b a c b c , ()()a b b c +⋅+=252⋅+⋅+⋅+=a b a c b c b . 故答案为:52【点睛】本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题.20.【分析】建立平面直角坐标系从而得到的坐标这样即可得出的坐标根据与共线可求出从而求出的坐标即得解【详解】建立如图所示平面直角坐标系则:;与共线故答案为:【点睛】本题考查了平面向量线性运算和共线的坐标表【分析】建立平面直角坐标系,从而得到,,a b c 的坐标,这样即可得出a b λ+的坐标,根据a b λ+与c 共线,可求出λ,从而求出a b λ-的坐标,即得解. 【详解】建立如图所示平面直角坐标系,则:(1,1),(0,1),(2,1)a b c ==-= ;(,1)a b λλλ∴+=-a b λ+与c 共线2(1)02λλλ∴--=∴=(2,3)a b λ∴-=22||2313a b λ∴-=+=13【点睛】本题考查了平面向量线性运算和共线的坐标表示,考查了学生概念理解,数形结合,数学运算的能力,属于中档题.三、解答题21.(1)3144BF a b =-+;(2)2239BE a b =-+,89μ=. 【分析】(1)把BF 放在ABF 中,利用向量加法的三角形法则即可; (2)把a ,b 作为基底,表示出 BE ,利用BE BF μ=求出 μ. 【详解】解:由题意得3CF FA =,2BD DC =,所以14AF AC =,23BD BC = (1)因为BF BA AF =+,AB a =,BC b = 所以()1144BF BA AC BA BC BA =+=+-31314444BA BC a b =+=-+. (2)由(1)知3144BF a b =-+,而3223BD BC b ==而()()23111344BE BA BD BF BE a a b b λλμλλμ⎛⎫=+-=⇒=-+-=-+⎪⎝⎭因为a 与b 不共线,由平面向量基本定理得()342134λμμλ⎧-=-⎪⎪⎨⎪-=⎪⎩ 解得89μ=所以2239BE a b =-+,89μ=即为所求. 【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则; (2)树立“基底”意识,利用基向量进行线性运算. 22.(1)1223POP π∠=;(2)123PP P 是等边三角形. 【分析】(1)根据1231OP OP OP ===和1230OP OP OP ++=可得1212OP OP ⋅=-,从而可求12POP ∠的大小.(2)结合(1)可求得231321||||||3PP P P PP ===, 从而可得123PP P 是等边三角形. 【详解】解:(1)题意知1231OP OP OP === ∵123OP OP OP +=-, ∴()22123OP OP OP +=∴222121232OP OP OP OP OP +⋅+= ∴1221OP OP ⋅=-,即1212OP OP ⋅=-, ∴1212121cos 2OP OP POP OP OP ⋅∠==-⋅,∴[]120,POP π∠∈,∴1223POP π∠=. (2)∵1221PP OP OP =-, ∴22122122121||()23PP OP OP OP OP OP OP =-=-⋅+=同理:1323||||3PP P P == ∴123PP P 是等边三角形.【点睛】本题考查向量的夹角的计算以及三角形形状的判断,注意根据各向量的模长相等且为1对向量等式平方,从而得到夹角的大小,本题属于中档题.23.(1)2)证明见解析. 【分析】(1)利用平面向量的坐标运算和共线定理列方程求出t 的值; (2)根据条件得到2AC AB =且有公共点A ,即可得到结论. 【详解】解:(1)∵(),1a t =,()5,b t =,且//a b ,故250t t -=⇒=, 即实数t 的值为:5±;(2)证明:∵OA a b =+,2OB a b =+,3OC a b =+. ∴AB OB OA b =-=,2AC OC OA b =-=,即2AC AB =且有公共点A , 故A ,B ,C 三点共线. 【点睛】本题考查向量平行的坐标表示,用向量法证明三点共线,属于基础题.24.(1)34-2)当245x =-时,xa b -与3a b 垂直.【分析】(1)先由数量积的定义求出3a b ⋅=-,由数量积的运算性质可得22(2)(3)253a b a b a a b b -⋅+=+⋅-,222||||2a b a b a a b b +=+=+⋅+,将条件及a b ⋅的值代入,可得答案. (2)由xa b -与3a b 垂直,可得22()(3)(31)30xa b a b xa x a b b -⋅+=+-⋅-=,将条件代入可求出x 的值.【详解】(1)||||cos ,23cos1203a b a b a b ︒⋅=〈〉=⨯⨯=-.22(2)(3)25324153934a b a b a a b b -⋅+=+⋅-=⨯--⨯=-.222||||2469a b a b a a b b +=+=+⋅+=-+=(2)因为()(3)xa b a b -⊥+,所以22()(3)(31)3493270xa b a b xa x a b b x x -⋅+=+-⋅-=-+-=,即245x =-. 所以当245x =-时,xa b -与3a b 垂直. 【点睛】本题考查向量数量积的定义和运算性质,求模长,根据向量垂直其数量积为零求参数的值,属于中档题.25.(1)3;(2)49. 【分析】 (1)G 为ABC 的重心,可得1331AG AB AC =+,再由,,P G Q 三点共线,利用共线的充要条件可得(1)AG AP AQ λλ=+-,结合已知和向量的基本定理,即可求出,h k 关系;(2)由三角形面积公式可得APQ ABC S hk S =,利用(1)中结论,结合基本不等式,即可求出结论.【详解】(1)设BC 中点为D ,则,,A G D 三点共线,且211333AG AD AB AC ==+, ,,P G Q 三点共线,存在唯一的λ,使得(1)(1)AG AQ QP AP AQ hAB k AC λλλλλ=+=+-=+-, ,AB AC 不共线,131(1)3h k λλ⎧=⎪⎪⎨⎪-=⎪⎩, 整理得31()1,31h h k h k k=+=+; (2)1||||sin 21||||sin 2APQABC AP AQ BAC S hk S AB AC BAC ⋅⋅∠==⋅⋅∠114))911()((299k h h k h k h k =+++≥+=, 当且仅当23h k ==时,等号成立. APQ ABC S S 的最小值为49. 【点睛】本题考查向量基本定理以及共线充要条件的应用,注意运用基本不等式求最值,属于中档题.26.(1)60C =︒;(2. 【分析】(1)利用两个向量垂直的性质,两个向量数量积公式以及二倍角公式,求得cos C 的值,可得C 的值.(2)利用两角差的正弦公式,正弦定理和余弦定理化简,可得结果.【详解】(1)由题意知,0m n =,即222cos 2sin 02C C -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒. (2)2222221122a b c a b c =+⇒-=, 222222sin()sin cos sin cos 2222a a c b b b c a A B A BB A R ac R bc+-+--=-=- ()222214442a b c c sinC cR cR R -=====. 【点睛】本题主要考查两个向量数量积公式,两角差的正弦公式,正弦定理和余弦定理的应用,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量单元测试一、选择题【共12道小题】1、下列说法中正确的是( )A.两个单位向量的数量积为1 B.若a·b=a·c且a≠0,则b=cC. D.若b⊥c,则(a+c)·b=a·b2、设e是单位向量,=2e,=-2e,||=2,则四边形ABCD是( )A.梯形B.菱形C.矩形 D.正方形3、已知|a|=|b|=1,a与b的夹角为90°,且c=2a+3b,d=ka-4b,若c⊥d,则实数k的值为( )A.6B.-6C.3D.-34、设0≤θ<2π,已知两个向量=(cosθ,sinθ),=(2+sinθ,2-cosθ),则向量长度的最大值是( )A.B.C. D.5、设向量a=(1,-3),b=(-2,4),c=(-1,-2),若表示向量4a、4b-2c、2(a-c)、d的有向线段首尾相接能构成四边形,则向量d为( )A.(2,6)B.(-2,6)C.(2,-6)D.(-2,-6)6、已知向量a=(3,4),b=(-3,1),a与b的夹角为θ,则tanθ等于()A. B.-C.3 D.-37、向量a与b不共线,=a+kb,=la+b(k、l∈R),且与共线,则k、l应满足( )A.k+l=0 B.k-l=0 C.kl+1=0 D.kl-1=08、已知平面内三点A(-1,0),B(5,6),P(3,4),且AP=λPB,则λ的值为( )A.3 B.2 C. D.9、设平面向量a1,a2,a3的和a1+a2+a3=0,如果平面向量b1,b2,b3满足|bi|=2|ai|,且ai顺时针旋转30°后与bi同向,其中i=1,2,3,则( )A.-b1+b2+b3=0 B.b1-b2+b3=0C.b1+b2-b3=0D.b1+b2+b3=010、设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A、B两点,点Q与点P关于y 轴对称,O为坐标原点,若,且·=1,则P点的轨迹方程是( )A.3x2+y2=1(x>0,y>0) B.3x2y2=1(x>0,y>0)C.x2-3y2=1(x>0,y>0)D.x2+3y2=1(x>0,y>0)11、已知△ABC中,点D在BC边上,且,若,则r+s的值是( )A.B.0 C. D.-312、定义a※b=|a||b|sinθ,θ是向量a和b的夹角,|a|、|b|分别为a、b的模,已知点A(-3,2)、B(2,3),O是坐标原点,则※等于( )A.-2 B.0 C.6.5 D.13二、填空题【共4道小题】1、已知a+b+c=0,且|a|=3,|b|=5,|c|=7,则向量a与b的夹角是____________.2、若=2e1+e2,=e1-3e2,=5e1+λe2,且B、C、D三点共线,则实数λ=___________.3、已知e1、e2是夹角为60°的两个单位向量,则a=2e1+e2和b=2e2-3e1的夹角是__________.4、如图2-1所示,两射线OA与OB交于O,则下列选项中向量的终点落在阴影区域内的是_________________.图2-1①②+③④+⑤-三、解答题【共6道小题】1、如图2-2所示,在△ABC中,=c,=a,=b,且a·b=b·c=c·a,试判断△ABC的形状.图2-22、如图2-3所示,已知||=||=1,、的夹角为120°,与的夹角为45°,||=5,用,表示.(注:cos75°=)图2-33、在四边形ABCD中(A、B、C、D顺时针排列),=(6,1),=(-2,-3).若有∥,又有⊥,求的坐标.4、已知平面向量a=(,-1),b=(,).(1)证明a⊥b;(2)若存在不同时为零的实数k、t,使得x=a+(t2-3)b,y=-ka+tb,且x⊥y,求函数关系式k=f(t).5、已知a、b、c是同一平面内的三个向量,其中a=(1,2).(1)若|c|=,且c∥a,求c的坐标;(2)若|b|=,且a+2b与2a-b垂直,求a与b的夹角θ.6、如图2-4所示,已知△AOB,其中=a,=b,而M、N分别是△AOB的两边OA、OB上的点,且=λa(0<λ<1),=μb(0<μ<1),设BM与AN相交于P,试将向量=p用a、b表示出来.图2-4平面向量单元测试参考答案一、选择题1.参考答案与解析:解析:A中两向量的夹角不确定;B中若a⊥b,a⊥c,b与c反方向则不成立;C 中应为;D中b⊥c b·c=0,所以(a+c)·b=a·b+c·b=a·b.答案:D主要考察知识点:向量、向量的运算2.参考答案与解析:解析:,所以||=||,且AB∥CD,所以四边形ABCD是平行四边形.又因为||=||=2,所以四边形ABCD是菱形.答案:Bﻫ主要考察知识点:向量、向量的运算3.参考答案与解析:解析:∵c⊥d,∴c·d=(2a+3b)·(ka-4b)=0,即2k-12=0,∴k=6.答案:A主要考察知识点:向量、向量的运算4.参考答案与解析:解析:=(2+sinθ-cosθ,2-cosθ-sinθ),所以||=≤=.答案:C主要考察知识点:向量与向量运算的坐标表示5.参考答案与解析:解析:依题意,4a+4b-2c+2(a-c)+d=0,所以d=-6a+4b-4c=(-2,-6).主要考察知识点:向量与向量运算的坐标表示6.参考答案与解析:解析:由已知得a·b=3×(-3)+4×1=-5,|a|=5,|b|=,所以cosθ=.由于θ∈[0,π],所以sinθ=.所以tanθ==-3.答案:Dﻫ主要考察知识点:向量与向量运算的坐标表示7.参考答案与解析:解析:因为与共线,所以设=λ(λ∈R),即la+b=λ(a+kb)=λa+λkb,所以(l-λ)a+(1-λk)b=0.因为a与b不共线,所以l-λ=0且1-λk=0,消去λ得1-lk=0,即kl-1=0.答案:D主要考察知识点:向量、向量的运算8.参考答案与解析:解析:因为=λ,所以(4,4)=λ(2,2).所以λ=.答案:C主要考察知识点:向量与向量运算的坐标表示9.参考答案与解析:解析:根据题意,由向量的物理意义,共点的向量模伸长为原来的2倍,三个向量都顺时针旋转30°后合力为原来的2倍,原来的合力为零,所以由a1+a2+a3=0,可得b1+b2+b3=0.答案:D主要考察知识点:向量、向量的运算10.参考答案与解析:解析:设P(x,y),则Q(-x,y).设A(xA),xA,B(0,yByB0,=(x,y-yB)=(xAx,-y).∵=2PA,∴x=2(xA,x),y-yB=2y,xA=x,yB=3y(x>0,y>0).又∵·=1,(-x,y)·(-xA,yB)=1,∴(-x,y)·(x,3y)=1,即x2+3y2=1(x>0,y>0).主要考察知识点:向量、向量的运算11.参考答案与解析:解析:△ABC中,==()=-,故r+s=0.答案:Bﻫ主要考察知识点:向量、向量的运算12.参考答案与解析:解析:由题意可知=(-3,2),=(2,3),计算得·=-3×2+2×3=0,另一方面·=||||cosθ,∴cosθ=0,又θ∈(0,π),从而sinθ=1,∴※=||||sinθ=13.答案:D主要考察知识点:向量与向量运算的坐标表示二、填空题1.参考答案与解析:解析:由已知得a+b=-c,两边平方得a2+2a·b+b2=c2,所以2a·b=72-32-52=15.设a与b的夹角为θ,则cosθ===,所以θ=60°.答案:60°ﻫ主要考察知识点:向量、向量的运算2.参考答案与解析:解析:由已知可得=(e1-3e2)-(2e1+e2)=-e1-4e2,=(5e1+λe2)-(e1-3e2)=4e1+(λ+3)e2.由于B、C、D三点共线,所以存在实数m使得,即-e1-4e2=m[4e1+(λ+3)e2].所以-1=4m且-4=m(λ+3),消去m得λ=13.答案:13主要考察知识点:向量、向量的运算3.参考答案与解析:解析:运用夹角公式cosθ=,代入数据即可得到结果.答案:120°ﻫ主要考察知识点:向量、向量的运算4.参考答案与解析:解析:由向量减法法则可知③⑤不符合条件,①②显然满足,④不满足.答案:①②主要考察知识点:向量、向量的运算三、解答题1.参考答案与解析:解:∵a·b=b·c,∴b·(a-c)=0.又b=-(a+c),∴-(a+c)·(a-c)=0,即c2-a2=0.故|a|=|b|=|c|,所以△ABC为等边三角形.主要考察知识点:向量、向量的运算2.参考答案与解析:解:设=λ+μ,则·=(λ+μ)·=λ+μ·=λ+μcos120°=λμ.又·=||||cos45°=5cos45°=,∴λμ=,·=(λ+μ)·=λ·+μ=λcos120°+μ=λ+μ.又·=||·||cos(120°-45°)=5cos75°=,∴λ+μ=.∴λ=,μ=.∴=+.主要考察知识点:向量、向量的运算3.参考答案与解析:解:设=(x,y),则=(6+x,1+y),=(4+x,y-2),=(-x-4,2-y),=(x-2,y-3).又∥及⊥,所以x(2-y)-(-x-4)y=0, ①(6+x)(x-2)+(1+y)(y-3)=0. ②解得或∴=(-6,3)或(2,-1).主要考察知识点:向量与向量运算的坐标表示4.参考答案与解析:(1)证明:因为a·b=(,-1)·(,)=+(-1)×=0,所以a⊥b.(2)解:由已知得|a|==2,|b|==1,由于x⊥y,所以x·y=0,即[a+(t2-3)b]·(-ka+tb)=0.所以-ka2+ta·b-k(t2-3)b·a+t(t2-3)b2=0.由于a·b=0,所以-4k+t(t2-3)=0.所以k=t(t2-3).由已知k,t不同时为零得k=t(t2-3)(t≠0).主要考察知识点:向量与向量运算的坐标表示5.参考答案与解析:解:(1)设c=(x,y),∵|c|=,∴,即x2+y2=20, ①∵c∥a,a=(1,2),∴2x-y=0,即y=2x. ②联立①②得或∴c=(2,4)或(-2,-4).(2)∵(a+2b)⊥(2a-b),∴(a+2b)·(2a-b)=0,即2a2+3a·b-2b2=0.∴2|a|2+3a·b-2|b|2=0. ①∵|a|2=5,|b|2=,代入①式得a·b=.∴cosθ==-1.又∵θ∈[0,π],∴θ=π.主要考察知识点:向量与向量运算的坐标表示6.参考答案与解析:解:由题图可知p=或p=,而=λa,设=m()=m(b-λa),又∵=μb,设=n()=n(a-μb),∴p==λa+m(b-λa)=λ(1-m)a+mb,p==μb+n(a-μb)=na+μ(1-n)b.∵a、b不共线,且表示方法唯一,∴解得∴p=λ[]a+,即p=.主要考察知识点:向量、向量的运算。