单相桥式逆变电路设计

合集下载

单相桥式PWM逆变电路设计

单相桥式PWM逆变电路设计

单相桥式PWM逆变电路设计一、设计原理单相桥式PWM逆变电路由整流桥、滤波电路、逆变桥和控制电路组成。

整流桥将输入的交流电转换为直流电,滤波电路对直流电进行平滑处理,逆变桥将直流电转换为交流电输出,控制电路对逆变桥进行PWM控制,调节输出电压的幅值和频率。

二、设计方法1.选择逆变桥和整流桥元件:根据输出功率的要求选择合适的逆变桥和整流桥元件,常见的有MOSFET、IGBT和二极管等。

2.设计滤波电路:通过选择合适的电容和电感元件,设计滤波电路对直流电进行平滑处理。

常见的滤波电路有LC滤波电路和RC滤波电路,可以根据具体情况选择合适的滤波电路。

3.设计控制电路:控制电路是单相桥式PWM逆变电路的关键部分,通过控制电路对逆变桥进行PWM调制,实现对输出电压的控制。

常见的控制方法有脉宽调制(PWM)和脉振宽调制(PPWM),可以根据实际需求选择合适的控制方法。

4.稳定性分析和保护措施:在设计过程中需要考虑逆变电路的稳定性和保护措施。

通过稳定度分析和保护措施的选择,可以提高逆变电路的可靠性和安全性。

5.实验验证和调试:设计完成后需要进行实验验证和调试,对电路进行性能测试和参数调节,确保逆变电路的正常工作。

三、设计注意事项1.选择合适的元件:在设计过程中需要根据具体要求选择合适的元件,包括逆变桥、整流桥、滤波电路和控制电路等。

合理选择元件能够提高电路的性能和可靠性。

2.稳定性和保护措施:在设计过程中需要考虑逆变电路的稳定性和保护措施。

通过分析稳定性和选择保护措施,可以防止电路因过电流、过压等故障而损坏。

3.实验验证和调试:设计完成后需要进行实验验证和调试,对电路进行性能测试和参数调节,确保逆变电路的正常工作。

及时调试和修改电路中存在的问题,确保电路的性能满足设计要求。

四、总结单相桥式PWM逆变电路是一种常见的电力电子转换电路,设计涉及到逆变桥、整流桥、滤波电路和控制电路等方面。

通过选择合适的元件、稳定性分析和保护措施以及实验验证和调试,可以设计出性能优良、稳定可靠的逆变电路。

MOSFET单相桥式无源逆变电路设计

MOSFET单相桥式无源逆变电路设计

MOSFET单相桥式无源逆变电路设计首先,我们来了解一下MOSFET的基本工作原理。

MOSFET是一种场效应晶体管,其工作原理是通过外加电压来控制电流的流动。

MOSFET有三个主要的电极:栅极、漏极和源极。

当栅极施加正向电压时,电流将流过MOSFET;当栅极施加反向电压时,MOSFET将关闭。

MOSFET单相桥式无源逆变电路由四个MOSFET组成,分别连接在桥式变换电路的四个支路上。

这四个支路中的两个支路的MOSFET开关状态是互补的,即一个导通,另一个关闭。

通过控制四个MOSFET的开关状态,就可以控制电流的流动方向,从而实现直流到交流的转换。

在设计MOSFET单相桥式无源逆变电路时,需要考虑以下因素:1.MOSFET的选型:选择合适的MOSFET是设计成功的关键。

需要考虑MOSFET的额定电压、最大电流和导通电阻,以满足设计需求。

2.电源电压和输出电压:根据需求确定输入电压和输出电压的范围,确定电路的电源设计和输出滤波电路。

3.充电和放电电路:桥式变换电路需要充电和放电,需要设计合适的充电和放电电路以确保稳定的电流流动。

4.保护电路:考虑到MOSFET的额定电压和最大电流,需要设计合适的保护电路来避免过电流和过压。

5.控制电路:需要一个合适的控制电路来控制MOSFET的开关状态。

可以使用微控制器、门电路或其他逻辑电路来实现。

设计完成后,需要进行仿真和测试来验证设计的可行性和性能。

通过仿真和测试可以评估电路的效率、稳定性和可靠性,并对其进行优化。

总结起来,设计一个MOSFET单相桥式无源逆变电路需要综合考虑MOSFET的选型、电路的电源和输出电压、充电和放电电路、保护电路以及控制电路等因素。

通过详细的设计和实验验证,可以得到一个高效可靠的MOSFET单相桥式无源逆变电路。

单相桥式pwm逆变电路的单元控制器设计

单相桥式pwm逆变电路的单元控制器设计

单相桥式pwm逆变电路的单元控制器设计一、引言- 现代电力技术的快速发展促进了逆变电路的广泛应用。

- 单相桥式PWM逆变电路作为一种常见的逆变器结构,具有较高的转换效率和可靠性。

- 单元控制器在单相桥式PWM逆变电路中起到至关重要的作用。

二、单相桥式PWM逆变电路的工作原理- 单相桥式PWM逆变电路是将直流电源变换为交流电源的一种电力转换装置。

- 它由四个开关管和一个逆变输出滤波器组成,通过对开关管的控制实现脉宽调制。

三、单元控制器的概述- 单元控制器是单相桥式PWM逆变电路中的关键部分,负责对开关管进行控制,从而实现输出电压的调节。

- 单元控制器通常由PWM波形发生器、电流比较器和逻辑控制单元组成。

四、单元控制器的设计要点1. PWM波形发生器的设计- PWM波形发生器用于产生脉宽调制信号,常见的设计方法有基于比较器的设计和基于计数器的设计。

- 在设计中需要考虑输出电压的稳定性、脉宽分辨率和噪声抑制等因素。

2. 电流比较器的设计- 电流比较器用于检测逆变输出电流与参考电流的差值,并将差值信号送回到控制器中。

- 设计中需要考虑比较精度、动态响应和抗干扰能力等因素。

3. 逻辑控制单元的设计- 逻辑控制单元负责根据电流比较器的输出信号控制开关管的通断。

- 设计中需要考虑工作模式切换、保护功能和通信接口等因素。

五、单元控制器的性能评估与改进- 完成单元控制器的设计后,需要进行性能评估,包括输出电压波形、功率损耗和效率等方面。

- 根据评估结果可以对单元控制器进行调整和改进,以提高逆变电路的整体性能。

六、应用实例- 单相桥式PWM逆变电路的单元控制器广泛应用于家庭电器、工业自动化和新能源等领域。

- 它可以实现直流电源到交流电源的转换,满足不同领域对电能的要求。

七、结论- 单相桥式PWM逆变电路的单元控制器设计对逆变电路的性能和可靠性有着重要的影响。

- 在设计中,需要充分考虑PWM波形发生器、电流比较器和逻辑控制单元的设计要点。

IGBT单相桥式无源逆变电路设计

IGBT单相桥式无源逆变电路设计

IGBT单相桥式无源逆变电路设计IGBT单相桥式无源逆变电路是一种常用于将直流电转换成交流电的电路。

在没有任何主动元件的控制下,通过合适的电路设计可以实现直流到交流的转换。

本文将详细介绍IGBT单相桥式无源逆变电路的设计原理、电路组成以及相关参数的计算。

一、IGBT单相桥式无源逆变电路的设计原理IGBT(Insulated Gate Bipolar Transistor)是一种常用的功率开关元件,同时结合了MOSFET和BJT的优点,具有低开关损耗、高开关速度等特点。

单相桥式无源逆变电路是由四个IGBT和四个二极管组成的桥式整流电路,它可以将直流电源的电压转换成交流电,供给交流电动机等负载使用。

桥式无源逆变电路的工作原理是通过控制IGBT的导通和关断时间来生成脉冲调制信号,进而控制IGBT的输出电压波形。

通过合理的波形控制,可以实现直流到交流的转换。

二、IGBT单相桥式无源逆变电路的电路组成1.IGBT模块:IGBT模块由四个IGBT和四个二极管组成,承担了整流和逆变的功能。

2.LC滤波网络:LC滤波网络由电感器和电容器组成,用于平滑逆变后的脉冲信号,使其更接近于纯正弦波。

3.电源:电源为IGBT单相桥式无源逆变电路提供直流信号,可以采用整流桥或直流电源等形式。

4.纯电阻负载:纯电阻负载是指无感性和无容性的负载,用于测试和验证逆变电路的输出波形。

三、IGBT单相桥式无源逆变电路参数的计算1.IGBT参数的计算:IGBT的参数包括额定电压、额定电流、功率损耗等。

根据所需的载波频率、输入电压和输出功率等参数进行计算。

2.LC滤波网络参数的计算:根据所需的输出频率和负载电流等参数,计算出电感器和电容器的数值。

3.电源参数的计算:根据所需的输入电压、输出功率和效率等参数,选择合适的电源。

四、总结IGBT单相桥式无源逆变电路是一种常用的电路,用于将直流电转换成交流电供给负载使用。

本文介绍了该电路的设计原理、电路组成以及相关参数的计算方法。

单相桥式PWM逆变电路设计

单相桥式PWM逆变电路设计

单相桥式PWM逆变电路设计介绍单相桥式PWM逆变电路的背景和重要性单相桥式PWM逆变电路是一种常见的电力电子技术应用,广泛用于交流电能转换为直流电能的场合。

由于其高效、可靠的特点,被广泛运用于电力系统中的UPS(不间断电源)、电机驱动和太阳能逆变器等领域。

在现代电力系统中,交流电能的应用日益增多,而很多电子设备却需要使用直流电能。

因此,采用桥式PWM逆变电路来实现交流电与直流电的转换是非常必要和重要的。

本文将详细讨论单相桥式PWM逆变电路的设计原理和关键技术。

首先,将介绍PWM技术的基本原理,并解释为什么选择桥式逆变器。

其次,将详细讲解桥式逆变器的工作原理和电路结构。

最后,将给出一种基于控制策略的桥式逆变器设计方案。

通过本文的研究,读者将能够深入了解单相桥式PWM逆变电路的设计原理和实践应用,为电力系统和电子设备的设计提供有益的参考。

单相桥式PWM逆变电路是一种常用的电力电子变换器。

它通过控制开关器件的开关周期和占空比,将直流电源转换为交流电源,实现电能的变换和调节。

该逆变电路的基本组成包括:单相桥式整流电路:它由四个可控开关器件组成,通常使用MOSFET或IGBT等器件,用于将交流电源转换为直流电源。

PWM调制电路:PWM调制电路通过控制开关器件的开关周期和工作占空比,可以实现输出电压的调节和波形控制。

滤波电路:滤波电路用于平滑输出电压,去除输出电压中的高频噪声和谐波。

输出变压器:输出变压器用于将逆变电路的输出电压变换为所需的电压等级。

单相桥式PWM逆变电路的工作原理是:首先,经过单相桥式整流电路的整流,将交流电源转换为直流电源;然后,通过PWM 调制电路控制开关器件的开关周期和工作占空比,将直流电源转换为交流电源;最后,经过滤波电路的处理,输出平滑的交流电压。

这样,单相桥式PWM逆变电路实现了将直流电源转换为交流电源的功能,可以广泛应用于电力电子变换器、逆变电源、变频调速等领域。

本文讨论了单相桥式PWM逆变电路的设计步骤和注意事项。

单相桥式PWM逆变电路设计

单相桥式PWM逆变电路设计

指导教师评定成绩:审定成绩:重庆邮电大学自动化学院综合设计报告设计题目:单相桥式PWM逆变电路设计单位(二级学院):自动化学院学生姓名:梁勇专业:电气工程与自动化班级:0830702学号:07350225指导教师:罗萍设计时间:2010年10月重庆邮电大学自动化学院制目录一、课程设计任务 (2)二、SPWM逆变器的工作原理 (2)1.工作原理 (3)2.控制方式 (4)3.单片机电源与程序下载模块 (7)4.正弦脉宽调制的调制算法 (8)5.基于STC系列单片机的SPWM波形实现 (11)三、总结 (14)四、心得体会 (15)五、附录: (17)1.程序 (17)2.模拟电路图 (19)3.电路图 (22)摘要:单片机控制逆变电路,以逆变器为主要元件,稳压、稳频输出的电源保护设备。

采用面积等效的SPWM波,又单片机为主导,输出三角波和正弦波再由这两个波相叠加输出spwm波来控制逆变电路的触发,使其把直流编程频率可变的交流电关键字:单片机逆变电源正弦波脉冲触发单相桥式PWM逆变电路设计一、课程设计任务对单相桥式pwm逆变电路的主电路及控制电路进行设计,参数要求如下:直流电压为12 V,L=1mH,要求频率可调,输出为5V的正弦交流电。

设计要求:1.理论设计:了解掌握单相桥式PWM逆变电路的工作原理,设计单相桥式PWM逆变电路的主电路和控制电路。

包括:IGBT电流,电压额定的选择驱动电路的设计画出完整的主电路原理图和控制原理图列出主电路所用元器件的明细表二、SPWM逆变器的工作原理由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N 等分。

然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。

这样,由N个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。

同样,正弦波的负半周也可用相同的方法来等效。

这一系列脉冲波形就是所期望的逆变器输出SPWM波形。

学位论文-—单相桥式逆变电路

学位论文-—单相桥式逆变电路

电力电子技术课程设计说明书单相桥式逆变电路的设计院、部学生姓名:指导教师:职称专业:班级:学号:完成时间:摘要随着电力电子技术的高速发展,逆变电路的应用非常广泛,蓄电池、干电池、太阳能电池等都是直流电源,当我们使用这些电源向交流负载供电时,就需要用到逆变电路了。

本次基于MOSFET的单相桥式无源逆变电路的课程设计,主要涉及IGBT的工作原理、全桥的工作特性和无源逆变的性能。

本次所设计的单相全桥逆变电路采用IGBT作为开关器件,将直流电压Ud 逆变为波形电压,并将它加到纯电阻负载两端。

首先分析了单项桥式逆变电路的设计要求。

确定了单项桥式逆变电路的总体方案,对主电路、保护电路、驱动电路等单元电路进行了设计和参数的计算,其中保护电路有过电压、过电流、电压上升率、电流上升率等,选择和校验了IGBT、SG3525等元器件,IGBT是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。

最后利用MATLAB仿真软件建立了SIMULINK仿真模型,并进行了波形仿真,仿真的结果证明了完成设计任务要求,满足设计的技术参数要求。

关键词:单相;逆变;设计ABSTRACTWith the rapid development of power electronics technology, the inverter circuit is widely used, batteries, dry batteries, solar cells are DC power supply, when we use these power supply power to the AC load, you need to use the inverter circuit. This time based on MOSFET single phase bridge inverter circuit design, mainly related to the work principle of IGBT, the full bridge of the working characteristics and the performance of passive inverter. The single-phase full bridge inverter circuit designed by IGBT as the switching device, the DC voltage Ud inverter as the waveform voltage, and will be added to the pure resistance load at both ends.Firstly, the design requirements of the single bridge inverter circuit are analyzed. To determine the overall scheme of single bridge inverter circuit, of the main circuit, protection circuit, driving circuit unit circuit design and parameter calculation, the protection circuit have voltage, current and voltage rate of rise, the current rate of rise, selection and validation of the IGBT and SG3525 components, IGBT is by BJT (bipolar transistor) and MOS (insulated gate field effect transistor) composed of full control type voltage driven type power semiconductor devices, both MOSFET's high input impedance and GTR low conductance through the advantages of pressure drop. At last, the MATLAB simulation software is used to build the SIMULINK model, and the simulation results are carried out. The results prove that the design task is required to meet the design requirements.Keywords: single phase; inverter; design目录1 绪论 (1)1.1 逆变电路的背景与意义 (1)1.2 逆变器技术的发展现状 (2)1.3 本设计主要内容 (2)2 单相桥式逆变电路主电路设计 (3)2.1 方案设计 (3)2.1.1 系统框图 (3)2.1.2 主电路框图 (3)2.2 逆变电路分类及特点 (3)2.2.1 电压型逆变电路的特点 (3)2.2.2 单项全桥逆变电路的移相调压方式 (4)2.3 主电路的设计 (4)2.4 相关参数的计算 (5)3 辅助电路设计 (7)3.1 保护电路的设计 (7)3.1.1 保护电路的种类 (7)3.1.2 保护电路的作用 (7)3.1.3 过电流保护电路 (8)3.2 驱动电路的设计 (8)3.2.1 驱动电路的种类及作用 (8)3.2.2 驱动电路的设计 (8)3.2.3 驱动电路的原理 (9)3.3 控制电路的设计 (9)3.3.1 控制电路的作用 (9)3.3.2 控制电路原理分析 (9)4 仿真分析 (11)4.1 仿真软件MATLAB介绍 (11)4.2 主电路仿真图及参数计算 (13)4.3 仿真所得波形 (16)4.4 波形分析 (17)结束语 (18)参考文献 (19)附录 (21)1 绪论1.1 逆变电路的背景与意义随着电力电子技术的高速发展,逆变电路的应用非常广泛,蓄电池、干电池、太阳能电池等都是直流电源,当我们使用这些电源向交流负载供电时,就需要用到逆变电路了。

MOSFET单相桥式无源逆变电路设计

MOSFET单相桥式无源逆变电路设计

MOSFET单相桥式无源逆变电路设计引言无源逆变电路是一种将直流电能转换为交流电能的电路。

其中,MOSFET单相桥式无源逆变电路是一种常用的设计方案。

本文将详细介绍MOSFET单相桥式无源逆变电路的设计。

设计思路MOSFET单相桥式无源逆变电路的设计需要考虑很多因素。

首先,要确定输出交流电的频率和电压,以及所需的输出功率。

其次,要选择合适的MOSFET管件,以确保其能够承受所需的输出功率。

最后,要设计出合适的电路结构和控制策略,以确保电路的稳定运行。

电路结构控制策略为了实现无源逆变电路的正常工作,需要设计合适的控制策略。

一种常用的控制策略是基于PWM(脉冲宽度调制)技术的控制方法。

通过控制上下桥的MOSFET管件的开关频率和占空比,可以实现对输出交流电的频率和电压的调节。

具体的控制策略是,通过对上下桥的交叉触发,控制上下MOSFET管件的开关。

当上半桥导通时,下半桥断开,输出交流电为正半周期;当下半桥导通时,上半桥断开,输出交流电为负半周期。

通过不断交替地进行上下桥的导通和断开,可以实现输出交流电的正常工作。

主要参数的设计在设计MOSFET单相桥式无源逆变电路时,需要确定一些重要的参数。

首先是输入端的直流电压。

根据所需的输出交流电压,可以确定输入端的直流电压。

其次是输出的频率和电压。

根据应用需求,可以指定输出交流电的频率和电压。

最后是输出功率。

根据所需的输出功率,可以选取合适的MOSFET管件。

结果与分析通过对MOSFET单相桥式无源逆变电路的设计,可以得到所需的输出交流电。

通过控制上下桥的MOSFET管件的开关,可以实现对输出交流电的频率和电压的调节。

结论1.唐凤鸣,张仕锁.电力电子器件与电源技术.北京:中国电力出版社,20242.鄂柯.光伏系统无源逆变与控制策略研究.浙江:浙江大学。

IGBT单相桥式无源逆变电路课程设计

IGBT单相桥式无源逆变电路课程设计

IGBT单相桥式无源逆变电路是一种常见的电力电子变换器拓扑结构,广泛应用于各种领域的电力控制和调节中。

本文将详细介绍IGBT单相桥式无源逆变电路的设计原理、电路结构、控制策略以及性能评估等方面,并通过课程设计来深入理解和实践这一电路的工作机制。

一、设计原理IGBT单相桥式无源逆变电路是一种将直流电压转换为交流电压的电力电子变换器。

其基本工作原理是通过控制IGBT管的导通和关断,调节输出电压的大小和频率,实现对负载端的功率调节。

在正半周和负半周分别通过两个IGBT管来实现电压的逆变,从而产生交流输出。

二、电路结构IGBT单相桥式无源逆变电路主要由四个IGBT管和四个二极管组成,其中两个IGBT管和两个二极管串联构成半桥,两个半桥串联形成全桥结构。

通过PWM控制方法,控制IGBT管的导通和关断,实现对输出电压的调节。

三、控制策略1. PWM控制:采用脉冲宽度调制(PWM)控制方法,通过改变PWM信号的占空比来调节输出电压的大小。

2. 电压闭环控制:通过采集输出电压信号,与设定的参考电压进行比较,控制PWM信号的占空比,实现稳定的输出电压控制。

3. 过流保护:设计合适的过流保护电路,当负载过大时及时切断IGBT 管的导通,以保护设备和负载不受损坏。

四、性能评估1. 效率评估:通过测量输入功率和输出功率,计算电路的效率,评估电路的能量转换效率。

2. 谐波分析:通过示波器等工具对输出波形进行谐波分析,评估谐波含量,检查输出波形的质量。

3. 动态响应:测试电路的动态响应特性,如瞬态响应时间、稳定性等,评估电路的动态性能。

五、课程设计内容1. 电路仿真:使用仿真软件搭建IGBT单相桥式无源逆变电路模型,进行电路仿真分析。

2. 硬件设计:根据电路原理图设计PCB电路板,选取合适的元器件进行电路搭建。

3. 控制程序编写:编写微控制器控制程序,实现对IGBT管的PWM 控制和电压闭环控制。

4. 性能测试与优化:进行电路性能测试,如效率测试、谐波分析、动态响应测试等,根据测试结果进行电路性能优化。

单相桥式有源逆变电路设计

单相桥式有源逆变电路设计

单相桥式有源逆变电路设计长江职业学院电⼒电⼦技术课程设计报告学院:机电学院学⽣姓名:余鸿指导教师:李莎专业:电⽓⾃动化班级:电⽓1401⽇期:单相桥式有源逆变电路设计摘要:整流与逆变⼀直都是电⼒电⼦技术的热点之⼀。

桥式整流是利⽤⼆极管的单向导通性进⾏整流的最常⽤的电路。

常⽤来将交流电转化为直流电。

从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条和⽅法已成熟⼗⼏年了,随件。

基本原理着我国交直流变换器市场迅猛发展,与之相应的核型技术应⽤于发展⽐较将成为业内企业关注的焦点。

在逆变电路中,把直流电能经过直交变换,向交流电源反馈能量的变换电路称之为有源逆变电路,相应的装置称为有源逆变器。

关键词:整流逆变桥式有源逆变。

1前⾔⽬前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的⾼频开关整流设备所取代。

系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。

加上阀控式密封铅酸蓄电池的⼴泛应⽤,为分散供电创造了条件。

从⽽⼤⼤提⾼了通信⽹运⾏可靠和通信质量。

⾼频开关整流器采⽤模块化设计、N1配置和热插拨技术,⽅便了系统的扩展,有利于设备的维护。

由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及⾃保护功能。

新旗舰、新技术、新材料的应⽤,使⾼频开关整流器跃上了⼀个新台阶。

逆变与整流相对应,直流电变成交流电。

交流侧接电⽹,为有源逆变。

交流侧接负载,为⽆源逆变。

有源逆变的条件:负载侧存在⼀个直流电源E,由他提供能量,其电势极性与变流器的整流电压相反,对晶闸管为正向偏置电压;变流器在起直流侧输出应有⼀个与原整流电压相反的逆变电压U,其平均值U2设计⽅案及其原理图图2-1 系统⽅框图图2-2 等效电路及波形图当开关S1、S4闭合,S2、S3断开时,负载电压u o为正;当开关S1、S4断开,S2、S3闭合时,u o为负,如此交替进⾏下去,就在负载上得到了由直流电变换的交流电,u o的波形如上图 (b)所⽰。

IGBT单相桥式无源逆变电路设计

IGBT单相桥式无源逆变电路设计

IGBT单相桥式无源逆变电路设计IGBT单相桥式无源逆变电路是一种将直流电能转换为交流电能的电路,广泛应用于电力电子领域中。

无源逆变电路由于不需要任何外部能源,使得其工作更加简单和可靠。

本文将介绍IGBT单相桥式无源逆变电路的设计原理、主要组成部分以及其工作原理等内容。

在设计IGBT单相桥式无源逆变电路时,需要考虑以下几个关键因素:1.选择合适的IGBT管:IGBT管是无源逆变电路的关键部件,应选择具有适当的功率、电压和电流特性的IGBT管。

同时需要考虑其导通和关断速度,以确保电路的稳定性和工作效率。

2.设计适当的驱动电路:由于IGBT管需要在高频环境下工作,需要设计适当的驱动电路,以提供恰当的电压和电流波形,确保IGBT的正常工作。

3.控制策略设计:无源逆变电路的控制策略是确保电路能够实现所需输出的重要因素。

可以采用脉宽调制(PWM)控制策略,通过控制开关的导通和关断时间,来实现电压和频率的调节。

4.滤波电路设计:逆变电路产生的输出电压可能存在较高的谐波成分,需要设计适当的滤波电路来消除这些谐波,从而获得稳定的交流输出。

1.当输入直流电源施加在桥式电路的直流侧时,根据控制策略,对四个IGBT管进行相应的开通和关断操作。

2.当Q1和Q4管开通,Q2和Q3管关断时,输入直流电源通过Q1管和Q4管流入负载电阻RL,形成正向电压。

3.反之,当Q1和Q4管关断,Q2和Q3管开通时,输入直流电源通过Q2管和Q3管流入负载电阻RL,形成反向电压。

通过适当控制IGBT管的导通和关断时间,可以调节输出的电压和频率,从而实现不同的应用需求。

在设计IGBT单相桥式无源逆变电路时,需要进行合理的元件选择、电路设计和控制策略设计,以确保电路的性能和稳定性。

此外,还需要考虑保护电路的设计,以确保电路和负载的安全性。

单相桥式整流逆变电路的设计及仿真..

单相桥式整流逆变电路的设计及仿真..

辽宁工业大学电力电子技术课程设计(论文)题目:单相桥式整流/逆变电路的设计及仿真院(系):电气工程学院专业班级:自动化111班学号: *********学生姓名:指导教师:(签字)起止时间:2013.12.30-2014.1.10课程设计(论文)任务及评语院(系):电气工程学院 教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算学 号 1103020 学生姓名 专业班级课程设计(论文)题目单相桥式整流/逆变电路的设计及仿真课程设计(论文)任务 课题完成的功能、设计任务及要求、技术参数 实现功能整流电路是将交流电能变成直流电供给直流用电设备,在生产实际中,用于电阻加热炉、电解、电镀中,这类负载属于电阻类负载。

逆变电路是把直流电变成交流电。

逆变电路应用广泛,在各种直流电源中广泛使用。

设计任务及要求 1、确定系统设计方案,各器件的选型 2、设计主电路、控制电路、保护电路; 3、各参数的计算;4、建立仿真模型,验证设计结果。

5、撰写、打印设计说明书一份;设计说明书应在4000字以上。

技术参数整流电路:单相电网220V ,输出电压0~100V ,电阻性负载,,R=20欧姆 逆变电路:单相全桥无源逆变,输出功率200W ,输出电压100Hz 方波 进度计划1、 布置任务,查阅资料,确定系统方案(1天)2、 系统功能分析及系统方案确定(2天)3、 主电路、控制电路等设计(1天)4、 各参数计算(1天)5、 仿真分析与研究(3天)6、 撰写、打印设计说明书(1天)答辩(1天)指导教师评语及成绩平时: 论文质量: 答辩:总成绩: 指导教师签字: 年 月 日摘要整流电路是把交流电转换为直流电的电路。

大多数整流电路由变压器、整流主电路和滤波器等组成。

逆变电路是把直流电变成交流电的电路,与整流电路相对应。

无源逆变电路则是将交流侧直接和负载连接的电路。

此次设计的单相桥式整流电路是利用二极管来连接成“桥”式结构,达到电能的充分利用,是使用最多的一种整流电路。

单相桥式有源逆变电路设计

单相桥式有源逆变电路设计

单相桥式有源逆变电路设计1. 引言有源逆变器是一种将直流电源转换为交流电源的装置,常用于电力电子领域。

单相桥式有源逆变电路是其中一种常见的拓扑结构,可以实现从直流电源到交流电源的有效转换。

本文将介绍单相桥式有源逆变电路的设计原理和步骤。

2. 单相桥式有源逆变电路的原理单相桥式有源逆变电路由四个开关管和一个电源组成,其中两个开关管为上桥臂开关管,另外两个开关管为下桥臂开关管。

开关管通过开关控制器进行开关操作,通过改变开关管的状态来实现对电流的控制和转换。

在正半周的工作状态下,上桥臂的开关管S1和S2打开,下桥臂的开关管S3和S4关闭。

此时,电源的正极连接至负载,负载的交流电路通过开关管S1和S2直接接通。

在负半周的工作状态下,上桥臂的开关管S1和S2关闭,下桥臂的开关管S3和S4打开。

此时,电源的负极连接至负载,负载的交流电路通过开关管S3和S4直接接通。

通过交替切换开关管的状态,可以实现直流电源到交流电源的转换。

3. 单相桥式有源逆变电路的设计步骤3.1 确定输入和输出参数在设计单相桥式有源逆变电路时,首先需要确定输入和输出的参数。

输入参数包括直流电压和电流的范围,输出参数包括交流电压和电流的要求。

3.2 选择开关管和开关控制器根据输入和输出参数的要求,选择适合的开关管和开关控制器。

开关管需要能够承受输入参数的范围,并具有较低的开关损耗和导通损耗。

开关控制器需要能够实现准确的开关控制,并具有过流保护和过温保护等功能。

3.3 设计滤波电路为了减小逆变电路的谐波含量,需要设计合适的滤波电路。

滤波电路可以采用LC滤波器或LCL滤波器,通过选择合适的电感和电容参数来实现滤波效果。

3.4 进行仿真和优化在设计完成后,使用电路仿真软件对单相桥式有源逆变电路进行仿真。

通过仿真可以评估电路的性能,如电压波形的失真程度和效率等。

根据仿真结果进行优化,调整参数和设计,以达到设计要求。

3.5 PCB布线和制作根据最终的设计结果,进行PCB布线设计。

单相桥式有源逆变电路设计

单相桥式有源逆变电路设计

长江职业学院电力电子技术课程设计报告学院:机电学院学生姓名:余鸿指导教师:李莎专业:电气自动化班级:电气1401日期:2015.12单相桥式有源逆变电路设计摘要:整流与逆变一直都是电力电子技术的热点之一。

桥式整流是利用二极管的单向导通性进行整流的最常用的电路。

常用来将交流电转化为直流电。

从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条和方法已成熟十几年了,随件。

基本原理着我国交直流变换器市1场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。

在逆变电路中,把直流电能经过直交变换,向交流电源反馈能量的变换电路称之为有源逆变电路,相应的装置称为有源逆变器。

关键词:整流逆变桥式有源逆变。

1前言目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。

系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。

加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。

从而大大提高了通信网运行可靠和通信质量。

高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。

由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。

新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

逆变与整流相对应,直流电变成交流电。

交流侧接电网,为有源逆变。

交流侧接负载,为无源逆变。

有源逆变的条件:负载侧存在一个直流电源E,由他提供能量,其电势极性与变流器的整流电压相反,对晶闸管为正向偏置电压;变流器在起直流侧输出应有一个与原整流电压相反的逆变电压U,其平均值U<E,以吸收能量,并将其能量馈送给交流电源。

逆变电路的分类,根据直流侧的电源的性质不同,直流侧是电流源,电流型逆变电路,又称为电流型逆变电路;电压型逆变电路,输出电压是矩形波,电流型逆变电路输出电流是矩形波。

单相桥式PWM逆变电路设计讲解

单相桥式PWM逆变电路设计讲解

指导教师评定成绩:审定成绩:重庆邮电大学自动化学院综合设计报告设计题目:单相桥式PWM逆变电路设计单位(二级学院):自动化学院学生姓名:梁勇专业:电气工程与自动化班级:0830702学号:07350225指导教师:罗萍设计时间:2010年10月重庆邮电大学自动化学院制目录一、课程设计任务 (2)二、SPWM逆变器的工作原理 (2)1.工作原理 (3)2.控制方式 (4)3.单片机电源与程序下载模块 (7)4.正弦脉宽调制的调制算法 (8)5.基于STC系列单片机的SPWM波形实现 (11)三、总结 (14)四、心得体会 (15)五、附录: (17)1.程序 (17)2.模拟电路图 (19)3.电路图 (22)摘要:单片机控制逆变电路,以逆变器为主要元件,稳压、稳频输出的电源保护设备。

采用面积等效的SPWM波,又单片机为主导,输出三角波和正弦波再由这两个波相叠加输出spwm波来控制逆变电路的触发,使其把直流编程频率可变的交流电关键字:单片机逆变电源正弦波脉冲触发单相桥式PWM逆变电路设计一、课程设计任务对单相桥式pwm逆变电路的主电路及控制电路进行设计,参数要求如下:直流电压为12 V,L=1mH,要求频率可调,输出为5V的正弦交流电。

设计要求:1.理论设计:了解掌握单相桥式PWM逆变电路的工作原理,设计单相桥式PWM逆变电路的主电路和控制电路。

包括:IGBT电流,电压额定的选择驱动电路的设计画出完整的主电路原理图和控制原理图列出主电路所用元器件的明细表二、SPWM逆变器的工作原理由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N 等分。

然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。

这样,由N 个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。

同样,正弦波的负半周也可用相同的方法来等效。

这一系列脉冲波形就是所期望的逆变器输出SPWM波形。

单相全桥逆变器电路图 单相桥式逆变器的工作原理和波形图详解

单相全桥逆变器电路图 单相桥式逆变器的工作原理和波形图详解

单相全桥逆变器电路图单相桥式逆变器的工作原理和波形图详解
一、单相全桥(逆变器)是什么?
单相全桥逆变器基本上是电压源逆变器,单相全桥逆变器的(电源电路)图下图所示。

为了简单,没有标出SCR触发电路和换向电路。

单相全桥逆变器采用2线直流(电源)、4个续流(二极管)和4个(可控硅)。

T1和可T2同时导通,其频率为f=1/T。

同样,T3 和T4同时开启。

(T1和T2 )和(T3和T4)的相位差有180℃。

单相全桥逆变器
二、单相全桥逆变器电路工作原理
单相全桥逆变器的工作分为4种模式:模式℃:(t1
模式℃(t1
模式II (T/2
模式III(t2
三、单相全桥逆变波形
这里S1、S2、S3、S4也就是T1、T2、T3、T4。

1、当负载为:负载为R、L、RL
1)纯(电感负载)L 负载:
电流Io 关于t 轴对称,因此直流分量= 0,并且电流从最小峰值电流(-Ip) 到最大峰值电流(+Ip) 呈线性。

在这种情况下:D1 和D2在0
负载为R、L、RL
2、当负载为纯阻性负载
输出电压(U0)和输出电流(I0)波形如下:
Ig1和Ig2为门脉冲,用于接通S1、S2和S3、S4。

对于阻性负载,在0
负载为纯阻性负载
3、任何负载的输出电压(U0)波形
负载的输出电压(U0)波形
对于任何类型的负载,输出电压波形将保持相同,但电流波形取决于负载的性质。

输出电压波形是半波对称的,因此不存在所有偶次谐波。

四、单相全桥逆变优点
电路中无电压波动
适合高输入电压
高效节能
功率器件的额定电流等于负载电流。

单相桥式逆变电路的设计

单相桥式逆变电路的设计

单相桥式逆变电路的设计单相桥式逆变电路是一种常见的电路,用于将直流电转换为交流电。

它广泛应用于工业、交通、通信和家庭等领域,具有功率大、效率高等优点。

在设计单相桥式逆变电路时,需要考虑电路的拓扑结构、元器件的选择、控制策略等方面。

本文将详细介绍单相桥式逆变电路的设计。

1.电路拓扑结构2.元器件的选择在单相桥式逆变电路中,关键元器件包括开关管、二极管、滤波电感和电容。

开关管是控制电流的关键元器件,常用的有MOSFET和IGBT。

MOSFET具有开关速度快、损耗小等优点,适合低功率应用;IGBT具有高电压承受能力、大电流控制能力等优点,适合高功率应用。

二极管的选择应具有快速恢复、低压降等特性。

滤波电感和电容的选择应根据输出功率和输出电压波形等要求。

3.控制策略单相桥式逆变电路的控制策略包括PWM控制和SPWM控制两种。

PWM控制是通过调整开关管的导通和关断时间比例来控制输出的电压和频率。

相比较而言,SPWM控制更加精确,可以实现较低的谐波含量和更好的输出波形质量。

SPWM控制的关键问题是如何生成合适的三角波和调制信号。

在SPWM控制中,三角波的频率应大于逆变电路输出信号的频率,可以通过运放和RC电路以及振荡电路实现。

调制信号可以通过微控制器生成,也可以通过模拟电路生成。

4.保护措施单相桥式逆变电路在运行过程中可能会出现电流过大、过压、过温等问题,为了确保电路和元器件的安全可靠,需要采取适当的保护措施。

常见的保护措施包括:过流保护、过温保护、过压保护、短路保护等。

这些保护措施可以通过电流传感器、温度传感器和电压传感器等元器件来实现。

5.实际应用总结:单相桥式逆变电路是一种常见的电路,具有功率大、效率高等优点。

在设计单相桥式逆变电路时,需要考虑电路拓扑结构、元器件的选择、控制策略和保护措施等方面。

电路的设计需要根据具体的应用需求进行,以实现最佳的性能和可靠性。

单相桥式逆变电路设计

单相桥式逆变电路设计

《电力电子技术》课程设计说明书单相桥式逆变电路的设计院、部:电气与信息工程学院学生姓名:指导教师:桂友超职称副教授专业:电气工程及其自动化班级:完成时间: 2014年6月电力电子技术》课程设计任务书一、课程设计的目的通过课程设计达到以下目的1、加强和巩固所学的知识,加深对理论知识的理解;2、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料;3、培养学生综合分析问题、发现问题和解决问题的能力;4、培养学生综合运用知识的能力和工程设计能力;5、培养学生运用仿真软件的能力和方法;6、培养学生科技写作水平。

二、课程设计的主要内容1、关于本课程学习情况简述2、主电路的设计、原理分析和器件的选择;3、控制电路的设计;4、保护电路的设计;5、利用MATLAB软件对自己的设计进行仿真。

三、课程设计的要求1、通过查阅资料,确定自己的设计方案;2、按学号尾数定课题,即课题一的学号尾数为1,以此类推。

自拟参数不能雷同;3、要求最后图纸是标准的CAD图;4、课程设计在第18周五前交上来。

四、课题1、课题一:单相桥式可控整流电路的设计已知单相交流输入交流电压220V,负载自拟,要求整流电压在0~100V连续可调,其它性能指标自定。

2、课题二:三相半波可控整流电路的设计已知三相交流输入线电压380V,要求整流电压在0~100V连续可调,负载自拟,其它性能指标自定。

3、课题三:三相桥式可控整流电路的设计已知三相交流输入线电压380V,要求整流电压在0~100V连续可调,负载自拟,其它性能指标自定。

4、课题四:直流降压斩波电路的设计已知直流输入电压200V,负载自拟,要求输出电压在50~100V可调,其它性能指标自定。

5、课题五:直流升压斩波电路的设计已知直流输入电压200V,负载自拟,要求输出电压在300~400V可调,其它性能指标自定。

6、课题六:直流升降压斩波电路的设计已知直流输入电压200V,负载自拟,要求输出电压在100~300V连续可调,其它性能指标自定。

MOSFET单相桥式无源逆变电路设计

MOSFET单相桥式无源逆变电路设计

MOSFET单相桥式无源逆变电路设计无源逆变电路是一种将直流电能转换为交流电能的电路,常用于交流电机驱动、太阳能逆变器等应用中。

MOSFET单相桥式无源逆变电路是其中一种常见的设计方案,下面将详细介绍其设计原理和步骤。

设计原理:MOSFET单相桥式无源逆变电路由四个MOSFET管组成,分别为Q1、Q2、Q3和Q4、其中,Q1和Q4为上管,Q2和Q3为下管。

通过控制MOSFET管的导通和关断,实现直流电源的正负半周期切换,从而产生交流电源输出。

设计步骤:1.电源选择:根据实际需求选择适当的直流电源作为输入电源。

通常情况下,选择稳定的直流电源,如电池或直流电源供应器。

2.选择MOSFET管:根据设计要求,选择适当的MOSFET管。

关键参数包括最大电流、最大电压、开关速度等。

确保所选的MOSFET管能够满足设计需求。

3.电路连接:按照桥式无源逆变电路的连接方式,将四个MOSFET管连接成桥式电路。

其中,Q1和Q4的源极连接到正极,Q2和Q3的源极连接到负极。

同时,将输入电源连接到Q1和Q3的栅极,Q2和Q4的栅极通过适当的驱动电路控制。

4.控制信号生成:通过控制Q1和Q3的栅极驱动电路,生成交替的高低电平信号,控制其导通和关断。

具体的控制信号生成方式可以采用计算机控制、单片机控制或者专用的驱动芯片。

5.输出滤波:由于无源逆变电路输出的是一个脉冲信号,需要通过滤波电路将其转变为平滑的交流电源输出。

常用的滤波电路包括LC滤波电路、RC滤波电路等。

6.保护措施:为了保护MOSFET管和其他电路元件,可以采取一些保护措施,如过流保护、过压保护、温度保护等。

7.参数调整:在实际应用中,根据具体的负载要求和输出电流电压等参数,对无源逆变电路进行调整和优化。

可以通过改变MOSFET管的参数、调整滤波电路等方式来实现。

总结:MOSFET单相桥式无源逆变电路是一种常见的无源逆变电路设计方案。

通过控制MOSFET管的导通和关断,将直流电能转换为交流电能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电力电子技术》课程设计说明书单相桥式逆变电路的设计院、部:电气与信息工程学院学生姓名:指导教师:桂友超职称副教授专业:电气工程及其自动化班级:完成时间: 2014年6月电力电子技术》课程设计任务书一、课程设计的目的通过课程设计达到以下目的1、加强和巩固所学的知识,加深对理论知识的理解;2、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料;3、培养学生综合分析问题、发现问题和解决问题的能力;4、培养学生综合运用知识的能力和工程设计能力;5、培养学生运用仿真软件的能力和方法;6、培养学生科技写作水平。

二、课程设计的主要内容1、关于本课程学习情况简述2、主电路的设计、原理分析和器件的选择;3、控制电路的设计;4、保护电路的设计;5、利用MATLAB软件对自己的设计进行仿真。

三、课程设计的要求1、通过查阅资料,确定自己的设计方案;2、按学号尾数定课题,即课题一的学号尾数为1,以此类推。

自拟参数不能雷同;3、要求最后图纸是标准的CAD图;4、课程设计在第18周五前交上来。

四、课题1、课题一:单相桥式可控整流电路的设计已知单相交流输入交流电压220V,负载自拟,要求整流电压在0~100V连续可调,其它性能指标自定。

2、课题二:三相半波可控整流电路的设计已知三相交流输入线电压380V,要求整流电压在0~100V连续可调,负载自拟,其它性能指标自定。

3、课题三:三相桥式可控整流电路的设计已知三相交流输入线电压380V,要求整流电压在0~100V连续可调,负载自拟,其它性能指标自定。

4、课题四:直流降压斩波电路的设计已知直流输入电压200V,负载自拟,要求输出电压在50~100V可调,其它性能指标自定。

5、课题五:直流升压斩波电路的设计已知直流输入电压200V,负载自拟,要求输出电压在300~400V可调,其它性能指标自定。

6、课题六:直流升降压斩波电路的设计已知直流输入电压200V,负载自拟,要求输出电压在100~300V连续可调,其它性能指标自定。

7、课题七:单相桥式逆变电路的设计已知直流输入电压100V,负载自拟,要求交流输出电压频率范围在30~60HZ,电压在30~50V范围可调,其它性能指标自定。

8、课题八:单相交流调压电路设计已知单相交流输入交流电压220V,负载自拟,要求输出交流电压在0~220V 可调,其它性能指标自定。

9、课题九:三相交流调压电路的设计已知三相交流输入交流线电压380V,负载自拟,要求输出交流电压在0~200V可调,其它性能指标自定。

10、课题十:三相桥式逆变电路的设计已知直流输入电压100V,负载自拟,要求交流输出电压频率范围在30~60HZ,电压在30~50V范围可调,其它性能指标自定。

注意:若已经按上课时我讲解的内容和安排的课题进行了设计,则不必再更改。

五、格式要求1、格式严格按照教务处规定的毕业设计格式;2、文档内容:1)绪言:主要介绍对本课程学习情况;本设计内容的掌握情况;拟出设计任务书。

2)主电路设计:(1)电路原理图:用CAD绘制电路;(2)原理分析:用自己的语言;(3)参数计算:请用公司编辑器;(4)器件选择3)控制电路设计:(1)电路原理框图(2)电路原理图(3)原理分析(4)主要器件介绍4)保护电路及其它辅助电路的设计(1)保护电路的作用;(2)电路原理图;(3)原理分析5)仿真分析(1)仿真模型的建立方法(2)仿真电路模型;(3)仿真效果图;(4)仿真结果分析。

6)设计总结用自己的语言介绍如何完成本次设计的,通过设计自己有哪些方面提高,对本课程教学有什么建议等。

7)附录:系统总图目录一前言 (1)1.1电力电子简介 (1)二单相桥式逆变电路 (2)2.1电压型与电流型的区别 (2)2,2电压型逆变电路 (2)三单相桥式PWM逆变主电路设计 (4)3.1逆变控制电路的设计 (4)3.2主电路仿真图的设计 (5)3.3有关参数计算 (5)四驱动和保护电路的设计 (6)4.1过电流保护 (6)4.2驱路的设计……………………………………………………………7五仿真实验 (8)5.1 单相桥式PWM逆变主电路原理图 (8)5.2 控制电路原理图 (9)5.3 仿真所得波形 (10)5.4 波形分析 (12)六设计总结 (13)七参考文献 (14)八致谢 (15)摘要本次基于MOSFET的单相桥式无源逆变电路的课程设计,主要涉及IGBT的工作原理、全桥的工作特性和无源逆变的性能。

本次所设计的单相全桥逆变电路采用IGBT作为开关器件,将直流电压Ud 逆变为波形电压,并将它加到纯电阻负载两端。

本次课程设计的原理图仿真是基于MATLZB的SIMULINK,由于MATLAB软件中电源等器件均为理想器件,使得仿真电路相对较为简便,不影响结果输出。

设计主要是对电阻负载输出电流、电压与器件IGBT输出电压的波形仿真。

关键字:单相;全桥;逆变;IGBTABSTRACTControl circuit with MCU as main components, inverter, voltage, frequency stabilized output power protection equipment. SPWM wave using the equivalent area, and single chip microcomputer as the leading factor, output triangle and sine wave and the two wave of superposition trigger output SPWM wave to control the inverter circuit, the variable frequency AC to DC programmingKeywords inverted circuit sine wave pulse triggering一前言电力电子技术是利用电力电子器件对电能进行控制和转换的学科。

它包括电力电子器件、变流电路和控制电路三个部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。

随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。

随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。

对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。

因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。

电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。

目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。

IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。

它的并联不成问题,由于本身的关断延迟很短,其串联也容易。

尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外绝缘材料的缺陷也是一个问题。

在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。

该调制方法的最大缺点是它的4个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。

本次课程设计研究单相桥式PWM逆变电路,通过该电路实现逆变电源变压、变频输出。

二单相桥式逆变电路特点及主要类型2.1 电压型与电流型的区别根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。

电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。

直流侧电压基本无脉动,直流回路呈现低阻抗。

由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。

而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。

当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。

为了给交流侧想直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。

又称为续流二极管。

2.2 电压型逆变电路2.2.1 电压型逆变电路的特点:(1)根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。

电压型逆变电路有以下特点:(2)直流侧为电压源,或并联有大电容,相当于电压源。

直流侧电压基本无脉动,直流回路呈现低阻抗。

(3)由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。

而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。

(4)当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。

为了给交流侧想直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。

又称为续流二极管。

(5) 逆变电路分为三相和单相两大类。

其中,单相逆变电路主要采用桥式接法。

主要有:单相半桥和单相全桥逆变电路。

而三相电压型逆变电路则是由三个单相逆变电路组成。

2.2.2 单相全桥逆变电路的移相调压方式:共四个桥臂,可看成两个半桥电路组合而成。

两对桥臂交替导通180°。

输出电压和电流波形与半桥电路形状相同,幅值高出一倍。

改变输出交流电压的有效值只能通过改变直流电压Ud来实现。

阻感负载时,还可采用移相的方式来调节输出电压——移相调压。

图一电压型全桥无源逆变电路的电路图V3的基极信号比V1落后θ(0<θ<180 °)。

V3、V4的栅极信号分别比V2、V1前移180°-θ。

输出电压是正负各为θ 的脉冲。

改变θ 就可调节输出电压。

故移相调压就是调节输出电压的脉宽。

三单相桥式逆变主电路设计3.1 逆变控制电路的设计单相逆变电路主要采用桥式接法。

它的电路结构主要由四个桥臂组成,其中每个桥臂都有一个全控器件IGBT和一个反向并接的续流二极管,在直流侧并联有大电容而负载接在桥臂之间。

其中桥臂1,4为一对,桥臂2,3为一对。

可以看成由两个半桥电路组合而成。

其基本电路连接图如下所示:图2.电压型全桥无源逆变电路的电路图由于采用绝缘栅晶体管(IGBT)来设计,如图2的单相桥式电压型无源逆变电路,此课程设计为电阻负载,故应将RLC负载中电感、电容的值设为零。

相关文档
最新文档