鲁教版五四制八年级数学上册第三章数据的分析单元测试 (2)

合集下载

鲁教版初中数学八年级上册《数据的分析》单元测试2测试卷练习题

鲁教版初中数学八年级上册《数据的分析》单元测试2测试卷练习题
3. 某班学生在希望工程献爱心的捐献活动中,将省下的零用钱为贫困山区 失学儿童捐款,有 15 位同学捐了 20 元,20 位同学捐了 10 元,3 位同学捐了 8 元,10 位同学间了 5 元捐了,2 位同学捐了 3 元,则该班学生共捐款_______ 元,平均捐款_______元,其中众数是_______元。
(1)5x1,5x2,…,5xn; (2) x1-y1,x2-y2,…,xn-yn; (3)x1,y1,x2,y2,…,xn,yn。
2. 小丽家上个月用于吃饭费用 500 元,教育费用 200 元,其它费用 500 元。本月小丽家这三项费用分别增长了 10﹪,30﹪和 5﹪。小丽家本月的总费 用比上个月增长的百分数是多少?
C. 最高分得主不是 A成绩不少于 83 环。
10. 某班一次语文测验的成绩如下:得 100 分的 7 人,90 分的 14,80 分的
17 人,70 分的 8 人,60 分的 2 人,50 分 2 人,这里 80 分是( )
A. 平均数
B. 是众数不是中位数
7. 从鱼塘捕获同时放养的草鱼 240 条,从中任选 8 条称得每条鱼的质量分
别为 1.5、1.6、1.4、1.3、1.5、1.2、1.7、1.8(单位:千克),那么可估计这 240
条鱼的总质量大约为( )
A. 300 千克 B. 360 千克 C. 36 千克 D. 30 千克
8. 一组数据由 5 个整数组成,已知中位数是 4,唯一众数是 5,则这组数
据最大和的可能是( )
TB:小初高题库
鲁教版初中数学
A. 19
B. 20
C. 22
D. 23
9. A、B、C、D、E 五名射击运动员在一次比赛中的平均成绩是 80 环,而

鲁教版五四制八年级数学上册第三章数据的分析测试题

鲁教版五四制八年级数学上册第三章数据的分析测试题

初中数学试卷第三章数据的剖析测试题(时间: 45 分钟满分:100分)班级: ________姓名: ________得分: ________一、选择题(每题 4 分,共 32 分)1.数据 -1 , 0,1,2,3 的均匀数是()A.-1 B.0 C.1 D .52.某中学篮球队13 名队员的年纪状况以下:年纪(岁)15 16 17 18人数 3 4 5 1则这个队队员年纪的中位数是()AB.16CD.173.某同学使用计算器求30 个数据的均匀数时,错将此中一个数据105 输入为 15 ,那么所求出的均匀数与实质均匀数的差是()B. -3 D. 34.如图 1 是交警在一个路口统计的某个时段来往车辆的车速(单位:千米 / 时 )状况,则这些车的车速的众数、中位数分别是()A.8,6B.8,5C.52,53D. 52,525.在一次竞赛中,有 5 位裁判分别给某位选手的打分状况以下表:裁判人数 2 2 1选手得分9 .1 9 .3 9 .7则这位选手得分的均匀数和方差分别是()A.9.3 ,B.9.22 ,C.9.3 ,D.9.37 ,6.一组数据 2 ,3 ,4 , x 中,若中位数与均匀数相等,则x 不行能是().7.关于数据3,3 ,2, 3,6, 3,10 ,3,6 ,3, 2.①这组数据的众数是 3 ;②这组数据的众数与中位数的数值不等;③这组数据的中位数与均匀数的数值相等;④这组数据的均匀数与众数的数值相等,此中正确的结论有()A.1 个B.2 个C.3 个D.4 个8.小华所在的八年级( 1 )班共有50 名学生,一次体检丈量了全班学生的身高,据此求得该班学生的均匀身高是 1.65 米,而小华的身高是 1.66 米,以下说法错误的是()..A .1.65 米是该班学生身高的均匀水平B.这组身高数据的众数不必定是 1.65 米C.这组身高数据的中位数不必定是 1.65 米D .班上比小华高的学生人数不会超出25 人二、填空题(每题 4 分,共 32 分)9.若 1 ,3 ,x, 5, 6 五个数的均匀数为4,则x的值为.10.(2014 年鞍山)学校以德智体三项成绩来计算学生的均匀成绩,三项成绩的比率挨次为1:3:1 ,小明德智体三项成绩分别为98 分, 95 分, 96 分,则小明的均匀成绩为分. 11. 小明在射击训练中,五次命中的环数分别为5,7 ,6 ,6 ,6 ,则小明命中环数的众数为,均匀数为.12.(2014 年吉林)某校举办“成语听写大赛” ,15 名学生进入决赛,他们所得分数互不同样,竞赛共设 8 个获奖名额,某学生知道自己的分数后,要判断自己可否获奖,他应当关注的统计量是.(填“均匀数”或“中位数” )13.已知数据 1,2 ,3 ,4 ,5 的方差为 2 ,则 11 ,12 ,13 ,14 , 15 的方差为 _____________.14.( 2014 年三明)甲、乙两支仪仗队的队员人数同样,均匀身高同样,身高的方差分别为S甲2 0.9 , S乙2,则甲、乙两支仪仗队的队员身高更齐整的是_____________(.填“甲”或“乙”)15.小芳测得连续五天日最低气温并整理后得出下表:日期一二三四五方差均匀气温最低气温1325 3因为不当心被墨迹污染了两个数据,这两个数据分别是,.16.将5个整数从大到小摆列,中位数是4;假如这个样本中的独一众数是 6 ,?则这 5 个整数可能的最大的和是_____.三、解答题(共56 分)17 .( 12 分)为认识某小区居民的用水状况,随机抽查了该小区10?户家庭的月用水量,结果以下:月用水量(吨)1 1 1 1 10 3 4 7 8户数2232 1(1)计算这 10 户家庭的均匀月用水量;(2)假如该小区有 500 户家庭,依据上边的计算结果,预计该小区居民每个月共用水多少吨?18 .( 14 分)在朝阳市中学生“人人会乐器”演奏竞赛中,八年级( 3 )班 10 名学生成绩统计如图 2 所示,试分别求出这10 名学生成绩的中位数和众数.人数52180 85 90 95分数图 219.( 14 分)红星煤矿人事部欲从内部招聘管理人员一名,对甲、乙、丙三名候选人乙甲进行专业知识测试,成绩以下表所示;34%35%丙测试成绩(单位:分)31%测试项目甲乙丙图3专业知识737467并依录取的程序,组织200 名员工对三人进行民主评论投票介绍,三人得票率如图 3 所示 .(没有弃权票,每位员工只好投 1 票,每得 1 票记作 1 分)( 1)请算出三人民主评论得分 .( 2)依据招聘简章,人事部将专业知识、民主评论二项得分按6∶4 确立综合成绩,谁将被录取?请说明原因 .20. ( 16 分)八年级 (1) 班的李华和张山两位同学10 次数学测试成绩以下表所示:(1)依据上表所得的数据,填写下表:(2)经过计算说明哪位同学的成绩较为稳固?参照答案一、 2.B 3. B 4. D 5. C 6.B 7. A二、11. 6 6 12. 中位数13. 2 14. 甲15.4 216.21三、 17. ( 1 )这 10 户家庭的均匀月用水量为14 吨;(2 )预计该小区居民每个月共用水7000 吨.18 .察看折线图可知,成绩为90的人数最多,因此众数为90 ;这组学生共10 人,而第 5 、6 名的成绩都为90 ,因此中位数为90.19. 解:( 1)甲的民主评论得分为200 35% 70 (分),乙的民主评论得分为200 34% 68 (分),丙的民主评论得分为200 31% 62 (分) .(2 )甲的综合成绩为73 6 70 4(分),6 4乙的综合成绩为74 6 68 4 71.6 (分),6 4丙的综合成绩为67 6 62 465 (分).6 4因为 71.8>71.6>65, 因此甲将被录取 .20.解:( 1)姓名均匀成绩中位数众数李华808080张 山80 85 902 1 (70 80)24 (80 80) 2 2 (90 80) 2 (100 80)2(60 80)( 2) S 李华2 2,10=120 21 (90 80) 22 (80 80)2 (100 80)23 (60 80)2S张山4=200 ,10因为 x李华=x 张山,且 S 李2 华< S 张2山 ,因此李华同学的成绩较为稳固.。

鲁教版八年级数学课程上册第三章数据分析单元测试

鲁教版八年级数学课程上册第三章数据分析单元测试

第三章数据的分析单元测试一.单选题(共10题;共30分)1.今年3月份某周,我市每天的最高气温(单位:℃)12,9,10,6,11,12,17,则这组数据的中位数与极差分别是()A. 8,11B. 8,17C. 11,11D. 11,172.某一公司共有51名员工(其中包括1名经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会()A. 平均数增加,中位数不变B. 平均数和中位数不变C. 平均数不变,中位数增加D. 平均数和中位数均增加3.已知一组数据:12,5,9,5,14,下列说法不正确的是( )A. 极差是5B. 中位数是9C. 众数是5D. 平均数是94.技术员小张为考察某种小麦长势整齐的情况,从中抽取了20株麦苗,并分别测量了苗高,则小张最需要知道这些麦苗高的()A. 平均数B. 方差C. 中位数D. 众数5.小明同学上学期的5科期末成绩,语文、数学、英语每科成绩均为90分,科学、社会每科成绩均80分,则他5科成绩的平均分是()A. 84B. 85C. 86D. 876.下列一组数据:﹣2、﹣1、0、1、2的平均数和方差分别是()A. 0和2B. 0和C. 0和1D. 0和07.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的中位数和众数分别是()A. 70,80B. 70,90C. 80,90D. 90,1008.下面获取数据的方法不正确的是()A. 我们班同学的身高用测量方法B. 快捷了解历史资料情况用观察方法C. 抛硬币看正反面的次数用实验方法D. 全班同学最喜爱的体育活动用访问方法9.10,20,40,20,80,90,50,40,40,50这10个数据最大值与最小值的差是()A. 40B. 70C. 80D. 9010.计算器已进入统计状态的标志是显示屏上显示()A. DATAB. STATC. RADD. DEG二.填空题(共8题;共36分)11.(2015•武汉)一组数据2,3,6,8,11的平均数是________ .12.(2015•巴中)有一组数据:5,4,3,6,7,则这组数据的方差是 ________.13.我们进入中学以来,已经学习过不少有关数据的统计量,例如________ 等,它们分别从不同的侧面描述了一组数据的特征.14.一组数据﹣1,x,0,5,3,﹣2的平均数是1,则这组数据的中位数是________ .15.一组数据按从小到大的顺序排列为1,2,3,3,4,5,则这组数据的方差是________ .16.八(6)班组织了一次经典朗读比赛,甲、乙两队各9人的比赛成绩如表(10分制):(1)甲队成绩的中位数是________分,乙队成绩的众数是________分;(2)计算乙队的平均成绩和方差________,________;(3)若选择其中一队参加校级经典朗读比赛则应选________队.17.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩________.18.如果一组数据1,11,x,5,9,4的中位数是6,那么x=________三.解答题(共6题;共36分)19.一家广告公司想招聘一名策划部经理,对甲、乙两名应聘应试者进行面试、文案策划、已有经历三项考评,他们的各项成绩(百分制)如下表(1)如果这家公司想招聘一名综合能力较强的部门经理,计算两名应试者的平均成绩(百分制),从他们成绩看,应录取谁?(2)如果这家公司想招聘一名综合能力较强的部门经理,面试、文案策划、已有成绩按照4:3:3的比确定,计算两名应试者的平均成绩(百分制),从他们成绩看,应录取谁?20.为了解某学校初三男生1000米长跑,女生800米长跑的成绩情况,从该校初三学生中随机抽取了10名男生和10名女生进行测试,将所得的成绩分别制成如下的表1和图1,并根据男生成绩绘制成了不完整的频率分布直方图(图2).表1(1)根据表1,补全图片2;(2)根据图1,10名女生成绩的中位数是多少?众数是多少?(3)按规定,初三女生800米长跑成绩不超过3′19″就可以得满分.该校初三学生共490人,其中男生比女生少70人.如果该校初三女生全部参加800米长跑测试,请你估计可获得满分的人数约为多少?21.甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为9,9,x,7,若这组数据的众数和平均数恰好相等,求出其中的x值以及此组数据的标准差.22.有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知紫悦从甲箱内拿出m颗球放入乙箱后,乙箱内球的号码的中位数为40,若此时甲箱内剩有a 颗球的号码小于40,b颗球的号码大于40.(1)当m=49时,求a、b之值,并问甲箱内球的号码的中位数能否为40?说明理由;(2)当甲箱内球的号码的中位数与乙箱内球的号码的中位数都是x,求x的值.23.某广告公司欲招聘一名职员,对甲、乙、丙三名候选人进行了三项素质测试,他们的各项测试成绩如表:根据实际需要,为公司招聘一名网络维护人员,公司将公关能力,计算机能力,创新能力三项测试的得分按3:5:2的比例确定各人的测试成绩,计算甲、乙、丙各自的平均成绩,谁将被录用?24.在校园歌手大奖赛上,比赛规则为七位评委打分,去掉一个最高分和一个最低分后,所剩数据取平均数即为选手的最后得分,七位评委给某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,则这位歌手的最后得分是多少?答案解析一.单选题1.【答案】C【考点】中位数、众数,极差【解析】【分析】首先把所给数据按照由小到大的顺序排序,然后利用中位数和极差定义即可求出结果.【解答】把已知数据按照由小到大的顺序排序后为6、9、10、11、12、12、17,∴这组数据的中位数是11;极差是17-6=11.故选C.【点评】此题主要这样考查了中位数和极差的定义,解题关键是把所给数据按照由小到大的顺序排序,然后确定最大值和最小值.2.【答案】A【考点】算术平均数,加权平均数,中位数、众数【解析】【解答】设这家公司除经理外50名员工的工资和为a元,则这家公司所有员工去年工资的平均数是元,今年工资的平均数是元,显然<;由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变.故选A.【分析】本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.3.【答案】A【考点】算术平均数,中位数、众数,极差【解析】【分析】分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案.【解答】极差为:14-5=9,故A错误;中位数为9,故B正确;5出现了2次,最多,众数是5,故C正确;平均数为(12+5+9+5+14)÷5=9,故D正确.由于题干选择的是不正确的,故选A.【点评】本题考查了数据的平均数、中位数、众数及极差,属于基础题,比较简单.4.【答案】B【考点】统计量的选择【解析】【分析】根据平均数、方差、中位数及众数的定义求解。

鲁教版(五四制)八年级数学上册第三章综合测试卷含答案

鲁教版(五四制)八年级数学上册第三章综合测试卷含答案

鲁教版(五四制)八年级数学上册第三章综合测试卷一、选择题(每题3分,共36分)1.某班5名同学的身高(单位:cm)分别为170,169,172,173,171,则这5名同学身高的平均数是()A.170 cm B.171 cmC.171.5 cm D.172 cm2.【2022·沈阳】调查某少年足球队全体队员的年龄,得到数据结果如下表:则该足球队队员年龄的众数是()A.15岁B.14岁C.13岁D.7人3.【2022·株洲】某路段的一台机动车雷达测速仪记录了一段时间内通过的机动车的车速数据如下:67,63,69,55,65,则该组数据的中位数为()A.63 B.65 C.66 D.694.若一组数据2,3,5,x的极差为6,则x的值是() A.8 B.9 C.11 D.8或-15.【母题:教材P60习题T3(2)】为筹备学校元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果做了调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.算术平均数C.加权平均数D.众数6.【2022·黄石】我市某校开展共创文明班,一起向未来的古诗文朗诵比赛活动,有10名同学参加了初赛,按初赛成绩由高到低取前5名进入决赛.如果小王同学知道了自己的成绩后,要判断能否进入决赛,他需要知道这10名同学成绩的()A.平均数B.众数C.中位数D.方差7.【母题:教材P52随堂练习T2】某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如下表.如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是()A.甲B.乙C.丙D.丁8.【2022·贵阳】小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数据可能是()A.5,10 B.5,9 C.6,8 D.7,89.小明想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5,记这组新数据的方差为s12,则()A.s02>s12 B.s02=s12C.s02<s12D.无法确定10.【2022·南充】为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖.关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差11.数据3,1,x,4,5,2的众数与平均数相等,则x的值是() A.2 B.3 C.4 D.512.【2022·本溪】甲、乙两人在相同的条件下各射击10次,将每次命中的环数绘制成如图所示统计图.根据统计图得出的结论正确的是()A.甲的射击成绩比乙的射击成绩更稳定B.甲射击成绩的众数大于乙射击成绩的众数C.甲射击成绩的平均数大于乙射击成绩的平均数D.甲射击成绩的中位数大于乙射击成绩的中位数二、填空题(每题3分,共18分)13.【2022·丹东】某书店与一所中学建立帮扶关系,连续6个月向该中学赠送书籍的数量(单位:本)分别为200,300,400,200,500,550,则这组数据的中位数是________本.14.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为________分.15. 某同学使用计算器求20个数据的平均数时,错将其中一个数据201输入为21,那么由此求出的这组数据的平均数与实际平均数的差是________.16.【2023·淄博桓台县期中】已知一组数据5,2,x,6,4,它们的平均数是4,则这组数据的标准差为________.17.有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的平均数为________.18.某鸡腿生产公司的质检人员从两批鸡腿中各随机抽取了6个,记录相应的质量如下表,若甲、乙两个样本数据的方差分别为s甲2,s乙2,则s甲2______s乙2.(填“>”“=”或“<”)三、解答题(19~21题每题8分,其余每题14分,共66分) 19.一次数学测试结束后,学校要了解八年级(共四个班)学生的平均成绩,得知一班48名学生的平均分为85分,二班52名学生的平均分为80分,三班50名学生的平均分为86分,四班50名学生的平均分为82分.小明这样计算该校八年级数学测试的平均成绩:x=85+80+86+824=83.25(分),小明的算法正确吗?若不正确,请写出正确的计算过程.20.某单位欲从内部招聘管理人员一名,现对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩(单位:分)如下表所示:测试项目甲乙丙笔试75 80 90面试93 70 68根据录用程序,该单位组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每名职工只能推荐一人)如图,每得一票记1分.现根据实际需要,单位将笔试、面试、民主评议三项测试成绩按433的比例确定个人总成绩,那么谁将被录用?21.下表是某校八年级(1)班抽查20名学生某次数学测验的成绩统计表:成绩/分60 70 80 90 100人数/人 1 5 x y 2(1)若这20名学生成绩的平均分是82分,求x,y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数是a,中位数是b,求a,b的值.22.“节省一分零钱,献出一份爱心,温暖世间真情”,某校倡议学生捐出一部分零花钱帮助山区儿童学习,倡议前为了解情况,校团委随机调查了本校部分学生一周的零花钱金额,并绘制了如图所示的统计图.请根据图中信息,回答下列问题:(1)所调查的学生一周的零花钱金额的众数是________元,中位数是________元;(2)求所调查的学生一周的零花钱金额的平均数;(3)若全校1 200名学生每人捐出一周零花钱金额的50%,请估计该校学生共捐款多少元.23.为了提高学生对数学的学习的兴趣,某校举行了主题为“生活中的数学”的知识竞赛活动,测试内容为20道判断题,每道题5分,满分100分,为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩.已知抽查得到的八年级的数据如下:80,95,75,75,90,75,80,65,80,85,75,65,70,65,85,70,95,80,75,80.为了便于分析数据,统计员对八年级数据进行了整理,得到了表一:成绩等级分数(单位:分) 学生数D等60<x≤70 5九年级成绩的平均数、中位数、优秀率如下:(分数80分以上、不含80分为优秀)(1)根据题目信息填空:a=______,c=______,m=______;(2)八年级的小宇和九年级的小乐的分数都为80分,请判断小宇、小乐在各自年级的排名哪位更靠前?请简述你的理由;(3)若九年级共有600人参加参赛,请估计九年级80分以上的人数.24.甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:平均成绩/环中位数/环众数/环 方差/环2 甲 a 7 7 1.2 乙7b8c根据以上信息,整理分析数据如下:(方差公式s 2=1n [(x 1-)2+(x 2-)2+…+(x n -)2])(1)填空:a =________;b =________;c =________; (2)从平均数和中位数的角度来比较,成绩较好的是______(填“甲”或“乙”);(3)若需从甲、乙两名队员中选择一人参加比赛,你认为选谁更加合适?请说明理由.答案一、1.B 2.C 3.B4.D【点拨】当x是最大数时,x-2=6,解得x=8;当x是最小数时,5-x=6,解得x=-1.综上所述:x的值是8或-1.5.D6.C【点拨】∵一共有10名同学参加比赛,取前5名进入决赛,∴成绩的中位数应为第5名、第6名同学成绩的平均数,如果小王的成绩大于中位数,则可以晋级,反之则不能晋级,故只需要知道10名同学成绩的中位数即可.7.B【点拨】甲的总成绩=90×60%+90×40%=90(分),乙的总成绩=95×60%+90×40%=93(分),丙的总成绩=90×60%+95×40%=92(分),丁的总成绩=90×60%+85×40%=88(分).∵93>92>90>88,∴应推荐乙.8.C【点拨】数据5,5,6,7,8,9,10的众数为5,中位数为7,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则5不能去掉,7不能去掉,所以去掉可能是6,8.9.B【点拨】∵新数据是将这组数据中的每一个数都减去90所得,∴新数据与原数据的波动幅度不变,∴s02=s12.10.B【点拨】计算平均数、方差需要全部数据,故A,D不符合题意;∵50-5-11-16=18>16,∴无法确定众数分布在哪一组,故C不符合题意;从统计图可得前三组的数据共有5+11+16=32,共有50名学生,中位数为第25与26个的平均数,∴已知的数据中中位数确定,且不受后面数据的影响.11.B【点拨】根据题意,得数据3,1,x,4,5,2的平均数为(3+1+x+4+5+2)÷6=(15+x)÷6=52+x6.由题意易知数据3,1,x,4,5,2的众数为x.∵数据3,1,x,4,5,2的众数与平均数相等,∴52+x6=x,∴x=3.12.A【点拨】由图可得甲射击10次的成绩分别为5,6,6,7,5,6,6,6,7,6;乙射击10次的成绩分别为9,5,3,6,9,10,4,7,8,9.甲的成绩起伏比乙的成绩起伏小,故A正确;甲的众数是6,乙的众数是9,故B错误;甲的平均数为110×(5+6+6+7+5+6+6+6+7+6)=6,乙的平均数为110×(9+5+3+6+9+10+4+7+8+9)=7,故C错误;甲的中位数是6,乙的中位数是7.5,故D 错误.二、13.350 14.8415.-9 【点拨】求20个数据的平均数时,错将其中的一个数据201输入成21,即少加了180;则由此求出的平均数与实际平均数的差是-18020=-9. 16. 217.4.4 【点拨】根据题意可知,这5个数是1,2,3,8,8,∴平均数为1+2+3+8+85=4.4. 18.< 【点拨】∵x 甲=70+71×4+726=71(g), x 乙=70×3+71×2+736=4256(g), ∴s 甲2=16×[(70-71)2+(71-71)2×4+(72-71)2]=13,s 乙2=16×[⎝ ⎛⎭⎪⎫70-42562×3+⎝ ⎛⎭⎪⎫71-42562×2+⎝ ⎛⎭⎪⎫73-42562]=4136.∵13<4136,∴s 甲2<s 乙2.三、19.解:小明的算法不正确.该校八年级数学测试的平均成绩为85×48+80×52+86×50+82×5048+52+50+50=83.2(分).【点拨】数据总和÷数据总个数=平均数.20.解:民主评议测试成绩:甲:200×25%=50(分); 乙:200×40%=80(分); 丙:200×35%=70(分). 总成绩: 甲:75×4+93×3+50×34+3+3=72.9(分); 乙:80×4+70×3+80×34+3+3=77(分); 丙:90×4+68×3+70×34+3+3=77.4(分). ∵77.4>77>72.9, ∴丙将被录用. 21.解:(1)依题意,得 ⎩⎪⎨⎪⎧1+5+x +y +2=20,60×1+70×5+80x +90y +100×2=82×20, 整理,得⎩⎪⎨⎪⎧x +y =12,8x +9y =103, 解得⎩⎪⎨⎪⎧x =5,y =7. (2)由(1)知a =90分,b =80分. 答:众数是90分,中位数是80分. 22.解:(1)30;30 (2)所调查的学生人数为6+13+20+8+3=50,150×(10×6+20×13+30×20+50×8+100×3)=32.4(元).答:所调查的学生一周的零花钱金额的平均数是32.4元.(3)32.4×50%×1 200=19 440(元).答:估计该校学生共捐款19 440元.23.解:(1)10;77.5;25(2)八年级的小宇的排名更靠前.理由如下:因为八年级的中位数是77.5,九年级的中位数是82.5,所以八年级的小宇和九年级的小乐的分数都为80分,小宇的排名更靠前.(3)600×50%=300(人).故估计九年级80分以上的人数是300人.24.解:(1)7; 7.5;4.2(2)乙(3)选乙.理由:甲、乙两名队员的平均成绩一样,但乙成绩的中位数比甲高,众数比甲高,说明乙的高分比甲多,所以选乙更合适(答案不唯一).。

2020年鲁教版(五四制)初中数学八年级上册第三章数据的分析测试题

2020年鲁教版(五四制)初中数学八年级上册第三章数据的分析测试题

2020鲁教版初中数学第三章数据的分析测试一、选择题1. 小明同学对数据26,36,46,,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则分析结果与被涂污数字无关的是A. 平均数B. 方差C. 中位数D. 众数2. 学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x ,4,已知这组数据的平均数是4,则这组数据的中位数和众数分别是A. 2和2B. 4和2C. 2和3D. 3和23. 两组数据:3,a ,b ,5与a ,4,2b 的平均数都是若将这两组数据合并为一组新数据,则这组新数据的众数为A. 2B. 3C. 4D. 54. 一组数据2,3,5,x ,7,4,6,9的众数是4,则这组数据的中位数是A. 4B.C. 5D.5. 某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是A. 众数是8B. 中位数是8C. 平均数是D. 方差是6. 下图是甲,乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差和的大小关系是A. B. C. D. 无法确定7. 某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:尺码39 40 41 42 43 平均每天销售数量件1012201212该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是A. 平均数B. 方差C. 众数D. 中位数8. 如图为2009年到2015年中关村国家自主创新示范区企业经营技术收入的统计图.下面四个推断:年到2015年技术收入持续增长;年到2015年技术收入的中位数是4032亿; 年到2015年技术收入增幅最大的是2015年;年到2011年的技术收入增长的平均数比2013年到2015年技术收入增长的平均数大. 其中,正确的是A.B.C.D.9. 在2019年的体育中考中,某校6名学生的体育成绩统计如图所示,则这组数据的众数,中位数依次是A. 50,48B. 48,49C. 48,48D. 50,4910.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是A. 中位数B. 众数C. 平均数D. 方差二、填空题11.某中学规定学生体育成绩满分为100分,按课外活动成绩、期中成绩、期末成绩2:3:5的比,计算学期成绩.小明同学本学期三项成绩依次为90分、90分、80分,则小明同学本学期的体育成绩是______分.12.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数单位:千克及方差单位:千克如表所示:甲乙丙454542明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是______.13.某班为了解同学们一周在校参加体育锻炼的时间,随机调查了10名同学,得到如下数据:锻炼时间小时5678人数1432则这10名同学一周在校参加体育锻炼时间的平均数是______小时.14.一组数据2,3,4,x,6的平均数是4,则x是______.15.2022年将在北京--张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示,______选手的成绩更稳定.三、解答题16.某校从期末考试、综合实践、平时作业和课堂表现四个方面对学生本学期的数学学业水平进行综合评价.下面是小明、小李和小王三名同学的成绩单位:分:姓名期末考试综合实践平时作业课堂表现小明85848082小李80828586小王75908885数学老师将期末考试、综合实践、平时作业、课堂表现四项成绩依次按,,,的比例评价学生的数学学业水平,那么小明、小李、小王中谁的数学学业水平高?你认为上述四个方面中哪一个更为重要?请你按自己的想法设计一个评价方案,根据你的评价方案直接写出谁的数学学业水平高.17.甲、乙两名学生参加数学素质测试有四项,每项测试成绩采用百分制,成绩如表:学生数与代数空间与图形统计与概率综合与实践平均成绩方差甲8793918589______ 乙89969180______ ______ 将表格中空缺的数据补充完整,根据表中信息判断哪个学生数学综合素质测试成绩更稳定?请说明理由.若数与代数、空间与图形、统计与概率、综合与实践的成绩按4:3:2:1,计算哪个学生数学综合素质测试成绩更好?请说明理由.18.近几年,国内快递业务快速发展,由于其便捷、高效,人们越来越多地通过快递公司代办点来代寄包裹.某快递公司某地区一代办点对60天中每天代寄的包裹数与天数的数据每天代寄包裹数、天数均为整数统计如下:求该数据中每天代寄包裹数在范围内的天数;若该代办点对顾客代寄包裹的收费标准为:重量小于或等于1千克的包裹收费8元;重量超1千克的包裹,在收费8元的基础上,每超过1千克不足1千克的按1千克计算需再收取2元.某顾客到该代办点寄重量为千克的包裹,求该顾客应付多少元费用?这60天中,该代办点为顾客代寄的包表中有一部分重量超过2千克,且不超过5千克.现从中随机抽取40件包裹的重量数据作为样本,统计如下:重量单位:千克件数单位:件151015求这40件包裹收取费用的平均数.19.2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表不完整,请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间234人数人26610m4本次共调查的学生人数为______,在表格中,______;统计的这组数据中,每天听空中黔课时间的中位数是______,众数是______;请就疫情期间如何学习的问题写出一条你的看法.20.某校260名学生参加植树活动,要求每人植棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图如图和条形图如图.回答下列问题:在这次调查中D类型有多少名学生?写出被调查学生每人植树量的众数、中位数;求被调查学生每人植树量的平均数,并估计这260名学生共植树多少棵?答案和解析1.【答案】C【解析】【分析】本题考查了方差、中位数、平均数和众数的概念.利用平均数、中位数、方差和众数的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和众数都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:C.2.【答案】D【解析】解:根据平均数的含义得:,所以;将这组数据从小到大的顺序排列2,3,4,,处于中间位置的数是3,那么这组数据的中位数是3;在这一组数据中2是出现次数最多的,故众数是2.故选:D.根据平均数的定义得到关于x的方程,求x,再根据中位数和众数的定义求解.本题为统计题,考查平均数、众数与中位数的意义,解题要细心.3.【答案】B【解析】解:由题意得,,解得,这两组数据为:3、3、1、5和3、4、2,这两组数合并成一组新数据,在这组新数据中,出现次数最多的是3,因此众数是3,故选:B.根据平均数的意义,求出a、b的值,进而确定两组数据,再合并成一组,找出出现次数最多的数据即可.本题考查平均数、众数的意义和计算方法,二元一次方程组的应用,理解平均数、众数的意义和计算方法是得出正确答案的前提.4.【答案】B【解析】解:这组数据的众数4,,将数据从小到大排列为:2,3,4,4,5,6,7,9则中位数为:.故选:B.根据题意由众数是4,可知,然后根据中位数的定义求解即可.本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.5.【答案】D【解析】解:由图可得,数据8出现3次,次数最多,所以众数为8,故A选项正确;10次成绩排序后为:6,7,7,8,8,8,9,9,10,10,所以中位数是,故B选项正确;平均数为,故C选项正确;方差为,故D选项错误;故选:D.根据众数、中位数、平均数以及方差的算法进行计算,即可得到不正确的选项.本题主要考查了众数、中位数、平均数以及方差,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差.6.【答案】A【解析】【分析】本题考查了方差,熟练掌握方差的定义是解题的关键.根据方差的定义即可得到结论.【解答】解:由折线统计图可以看出甲2019年上半年每月电费支出比乙2019年上半年每月电费支出的数据波动大,故,故选:A.7.【答案】C【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.根据销量大的尺码就是这组数据的众数即可解答.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.8.【答案】A【解析】解:由图象可得,2009年到2015年技术收入持续增长,正确;年到2015年技术收入的中位数是3403亿,故此选项错误;年到2015年技术收入增幅最大的是2015年,正确;年到2011年的技术收入增长的平均数为:376,2013年到2015年技术收入增长的平均数为:1296,故此选项错误.故选:A.直接利用中位数的定义结合算术平均数的定义分别分析得出答案.此题主要考查了中位数以及算术平均数,正确利用图形分析是解题关键.9.【答案】C【解析】解:这6人的成绩为:47,47,48,48,48,50,则众数为:48,中位数为:.故选:C.根据众数和中位数的概念求解.本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大或从大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10.【答案】A【解析】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数,故选:A.根据中位数的意义求解可得.本题主要考查统计量的选择,解题的关键是掌握中位数、众数、平均数及方差的定义和意义.11.【答案】85【解析】解:分,故答案为:85.根据加权平均数的计算方法进行计算即可.本题考查加权平均数的意义和计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是正确解答的前提.12.【答案】甲【解析】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.13.【答案】【解析】解:这10名同学一周在校参加体育锻炼时间的平均数是小时,故答案为:.根据加权平均数的定义列式计算可得.本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.14.【答案】5【解析】解:数据2,3,4,x,6的平均数是4,,解得:;故答案为:5.根据用平均数的定义列出算式,再进行计算即可得出答案.本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.15.【答案】A【解析】解:根据统计图可得出:,则A选手的成绩更稳定,故答案为:A.根据方差的定义,方差越小数据越稳定.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16.【答案】解:小明的得分:分.小李的得分:分.小王的得分:分.,小王的数学学业水平高;如果按照四项的权重一样,则三名同学的平均成绩分别为:小明的平均成绩分;小李的平均成绩分;小王的平均成绩分;则小王的数学学业水平高.【解析】根据权重为、、、的比例计算出各自的成绩,然后进行比较,即可得出谁的数学学业水平高;本问为开发题,答案不唯一,只要符合题意即可.此题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键,本题是开放题,答案不唯一.17.【答案】10 89【解析】解:甲的平均成绩;乙的平均成绩;甲的方差;乙的方差;,,甲数学综合素质测试成绩更稳定;若按4:3:2:1计分,则乙的成绩更好,理由如下:甲的分数分;乙的分数分故乙的成绩更好.根据平均数和方差的求法分别得出答案;根据加权成绩的概念计算得出答案.此题考查了平均数和加权平均数,用到的知识点是平均数和加权平均数,掌握它们的计算公式是本题的关键.18.【答案】解:结合统计图可知:每天代寄包裹数在范围内的天数为天;因为,故重量超过了1kg,除了付基础费用8元,还需要付超过1k部分的费用2元,则该顾客应付费用为元;元.所以这40件包裹收取费用的平均数为14元.【解析】根据统计图读出的天数,的天数,的天数,再将三个数据相加即可;应付费用等于基础费用加上超过部分的费用;求加权平均数即可.本题考查频数分布直方图、加权平均数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【答案】50 22【解析】解:本次共调查的学生人数为:人,,故答案为:50,22;由条形统计图得,2个,6个2,6个,10个3,22个,4个4,第25个数和第26个数都是,中位数是;出现了22次,出现的次数最多,众数是,故答案为:,;就疫情期间如何学习的问题,我的看法是:认真听课,独立思考答案不唯一.根据2小时的人数和所占的百分比求出本次调查的学生人数,进而求得m的值;根据中位数、众数的定义分别进行求解即可;如:认真听课,独立思考答案不唯一.本题考查扇形统计图、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.20.【答案】解类的人数是:人.众数为5棵,中位数为5棵;棵.估计260名学生共植树棵.【解析】利用总人数20乘以对应的百分比即可求得D类的人数,从而补全直方图;根据众数、中位数的定义即可直接求解;首先求得调查的20人的平均数,乘以总人数260即可.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。

2019—2020年最新鲁教版五四制八年级数学上册《数据的分析》单元测试题及答案解析【试卷】.docx

2019—2020年最新鲁教版五四制八年级数学上册《数据的分析》单元测试题及答案解析【试卷】.docx

《第3章数据的分析》一、选择题:1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是()A.40 B.42 C.38 D.22.一城市准备选购一千株高度大约为2米的某种风景树来进行街道绿化,有四个苗圃基地投标(单株树的价相同),采购小组从四个苗圃中任意抽查了20株树苗的高度,得到下表中的数据.你认为应选()A.甲苗圃的树苗 B.乙苗圃的树苗 C.丙苗圃的树苗 D.丁苗圃的树苗3.衡量样本和总体的波动大小的特征数是()A.平均数B.方差 C.众数 D.中位数4.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,95.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个B.2个C.3个D.4个6.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:班级参加人数中位数方差平均数甲55 149 191 135乙55 151 110 135某同学根据表中数据分析得出下列结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()纸笔测试实践能力成长记录甲90 83 95乙88 90 95丙90 88 90A.甲B.乙丙 C.甲乙 D.甲丙8.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:甲=乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是()A.甲班 B.乙班C.两班成绩一样稳定 D.无法确定9.期中考试后,学习小组长算出该组5位同学数学成绩的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M:N为()A.B.1 C.D.210.下列说法错误的是()A.一组数据的平均数、众数、中位数可能是同一个数B.一组数据中中位数可能不唯一确定C.一组数据中平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个二.填空题11.下图是根据某地相邻两年6月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是年.12.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是;众数是.13.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是.14.某公司欲招聘工人,对候选人进行三项测试:语言,创新,综合知识,并把测试得分按1:4:3比例确定测试总分,已知某候选人三项得分分别为88,72,50,则这位候选人的招聘得分为.15.如果样本方差S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2],那么这个样本的平均数为,样本容量为.16.已知x1,x2,x3的平均数=10,方差S2=3,则2x1,2x2,2x3的平均数为,方差为.三.解答题17.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?18.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服,为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(单位:cm).并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=).19.为了了解学校开展“尊敬父母,从家务事做起”活动的实施情况,该校抽取初二年级50名学生,调查他们一周(按七天计算)的家务所用时间(单位:小时),得到一组数据,并绘制成下表,请根据该表完成下列各题:(1)填写频率分布表中未完成的部分;(2)这组数据的中位数落在什么范围内;(3)由以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比.频数分布表分组频数累计频数频率0.55~1.05 正正14 0.281.05~1.55 正正正15 0.301.55~2.05 正72.05~2.55 4 0.082.55~3.05 正 5 0.103.05~3.55 33.55~4.05 0.04合计50 1.00《第3章数据的分析》参考答案与试题解析一、选择题:1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是()A.40 B.42 C.38 D.2【考点】算术平均数.【分析】根据所有数据均减去40后平均数也减去40,从而得出答案.【解答】解:一组数据中的每一个数减去40后的平均数是2,则原数据的平均数是42;故选B.【点评】本题考查了算术平均数,解决本题的关键是牢记“一组数据减去同一个数后,平均数也减去这个数”.2.一城市准备选购一千株高度大约为2米的某种风景树来进行街道绿化,有四个苗圃基地投标(单株树的价相同),采购小组从四个苗圃中任意抽查了20株树苗的高度,得到下表中的数据.你认为应选()A.甲苗圃的树苗 B.乙苗圃的树苗 C.丙苗圃的树苗 D.丁苗圃的树苗【考点】标准差.【专题】图表型.【分析】根据标准差和平均数的意义进行选择.【解答】解:由于标准差和方差可以反映数据的波动大小,所以甲苗圃与丁苗圃比较合适;又因为丁苗圃树苗平均高度大于甲苗圃,所以应选丁苗圃的树苗.故选D.【点评】本题考查了平均数和标准差的意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.标准差即方差的算术平方根.3.衡量样本和总体的波动大小的特征数是()A.平均数B.方差 C.众数 D.中位数【考点】方差.【分析】根据方差的意义可以选出合适的选项.【解答】解:根据方差的概念知,方差反映了一组数据的波动大小.故选B.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,9【考点】众数;中位数.【专题】常规题型.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选B.【点评】本题考查的是众数和中位数.注意掌握中位数和众数的定义是关键.5.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个B.2个C.3个D.4个【考点】众数;加权平均数;中位数.【分析】先把数据按大小排列,然后根据定义分别求出众数、中位数和平均数,最后逐一判断.【解答】解:从小到大排列此数据为:2,2,3,3,3,3,3,3,6,6,10.数据3出现了6次,最多,为众数;第6位是3,3是中位数;平均数为(2+2+3+3+3+3+3+3+6+6+10)÷11=4.故选A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.6.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:班级参加人数中位数方差平均数甲55 149 191 135乙55 151 110 135某同学根据表中数据分析得出下列结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(2004•太原)某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()纸笔测试实践能力成长记录甲90 83 95乙88 90 95丙90 88 90A.甲B.乙丙 C.甲乙 D.甲丙【考点】加权平均数.【专题】图表型.【分析】利用平均数的定义分别进行计算成绩,然后判断谁优秀.【解答】解:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,乙的总评成绩=88×50%+90×20%+95×30%=90.5,丙的总评成绩=90×50%+88×20%+90×30%=89.6,∴甲乙的学期总评成绩是优秀.故选C.【点评】本题考查了加权平均数的计算方法.8.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:甲=乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是()A.甲班 B.乙班C.两班成绩一样稳定 D.无法确定【考点】方差.【专题】应用题.【分析】根据方差的意义判断.方差越小,波动越小,越稳定.【解答】解:∵s甲2>s乙2,∴成绩较为稳定的班级是乙班.故选B.【点评】本题考查方差的意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.9.期中考试后,学习小组长算出该组5位同学数学成绩的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M:N为()A.B.1 C.D.2【考点】算术平均数.【专题】计算题;压轴题.【分析】根据5位同学数学成绩的平均分为M,求得5位同学的总分;再把M当成另一个同学的分数,与原来的5个分数一起,求得总分,再求这6个分数的平均值即为N;这样即可求得M与N的比值.【解答】解:∵5位同学数学成绩的平均分为M,∴5位同学的总分为5M,把M当成另一个同学的分数,与原来的5个分数一起,总分就为5M+M.这6个分数的平均值=(5M+M)=N,∴M:N=1.故选B.【点评】本题考查了样本平均数的求法.所有数据的和除以这些数据的个数叫这些数据的平均数.10.下列说法错误的是()A.一组数据的平均数、众数、中位数可能是同一个数B.一组数据中中位数可能不唯一确定C.一组数据中平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个【考点】统计量的选择.【分析】根据平均数、众数、中位数的概念分析各个选项.【解答】解:A、在一组数据的平均数、众数、中位数有可能相同如全部相等的数据,正确;B、中位数是将数据按从大到小,或从小到大顺序排列,最中间的那个数或两个数的平均数,所以只有一个,故错误;C、众数、中位数和平均数是从不同的角度描述了一组数据集中趋势的,符合意义,正确;D、根据众数的概念即数据出现次数最多的数据,可能有多个,正确;故选C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义,了解各个统计量的意义是解答本题的关键.二.填空题11.下图是根据某地相邻两年6月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是2005 年.【考点】折线统计图.【专题】图表型.【分析】折线统计图中折线越起伏的表示数据越不稳定,相反,折线越平稳的表示数据越稳定;从两幅图中可以看出:2004年6月上旬折线起伏较大,所以2004年6月上旬气温比较不稳定,则2005年6月上旬折线较平稳,则2005年6月上旬气温比较稳定.【解答】解:从两幅图中可以看出:2004年6月上旬折线起伏较大,所以2004年6月上旬气温比较不稳定,则2005年6月上旬折线较平稳,则2005年6月上旬气温比较稳定.【点评】本题考查的是折线统计图的综合运用.从折线统计图中不仅能看出数据的多少,还能看出数据的变化情况.12.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是7 ;众数是8 .【考点】中位数;众数.【分析】根据中位数和众数的定义解答.【解答】解:数据按从小到大排列:3,5,7,8,8,所以中位数是7;数据8出现2次,次数最多,所以众数是8.故填7;8.【点评】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.13.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是 2 .【考点】方差;算术平均数.【专题】压轴题.【分析】先由平均数计算出a的值,再计算方差.一般地设n个数据,x1,x2,…x n的平均数为,=(x1+x2+…+x n),则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:a=4×5﹣2﹣3﹣5﹣6=4,s2=[(2﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(6﹣4)2]=2.故填2.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.某公司欲招聘工人,对候选人进行三项测试:语言,创新,综合知识,并把测试得分按1:4:3比例确定测试总分,已知某候选人三项得分分别为88,72,50,则这位候选人的招聘得分为65.75 .【考点】加权平均数.【专题】计算题.【分析】运用加权平均数的计算公式求解.【解答】解:这位候选人的招聘得分=(88+72×4+50×3)÷8=65.75(分).故答案为:65.75.【点评】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.此题难度不大.15.如果样本方差S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2],那么这个样本的平均数为 2 ,样本容量为 4 .【考点】方差.【分析】先根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]中所以字母所代表的意义,n是样本容量,是样本中的平均数进行解答即可.【解答】解:∵在公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]中,平均数是,样本容量是n,∴在S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2]中,这个样本的平均数为2,样本容量为4;故答案为:2,4.【点评】此题考查了方差,解题的关键是根据方差的定义以及公式中各个字母所表示的意义进行解答.16.已知x1,x2,x3的平均数=10,方差S2=3,则2x1,2x2,2x3的平均数为20 ,方差为12 .【考点】方差;算术平均数.【分析】设2x1,2x2,2x3的平均数为,把数据代入平均数计算公式计算即可,再利用方差公式即可计算出新数据的方差.【解答】解:∵=10,∴=10,设2x1,2x2,2x3的方差为,则==2×10=20;∵S2=[(x1﹣10)2+(x2﹣10)2+(x3﹣10)],∴S′2='[(2x1﹣)2+(2x2﹣)+(2x3﹣],=[4(x1﹣10)2+4(x2﹣10)2+4(x2﹣10)],=4×3=12.故答案为:20;12.【点评】本题考查了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.三.解答题17.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?【考点】中位数;算术平均数;众数.【专题】应用题.【分析】(1)平均数=加工零件总数÷总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.本题中应是第7个数.众数又是指一组数据中出现次数最多的数据.240出现6次.(2)应根据中位数和众数综合考虑.【解答】解:(1)平均数:=260(件);中位数:240(件);众数:240(件);(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.【点评】在做本题的平均数时,应注意先算出15个人加工的零件总数.为了大多数人能达到的定额,制定标准零件总数时一般应采用中位数或众数.18.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服,为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(单位:cm).并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=).【考点】方差;算术平均数;中位数;极差.【专题】应用题.【分析】(1)分别求出甲、乙的中位数、方差和极差进而分析得出即可;(2)根据方差的性质得出即可;(3)根据方差的稳定性得出即可.【解答】解:(1)∵从小到大排列出台阶的高度值:甲的,14,14,15,15,16,16,乙的,10,11,15,17,18,19,甲的中位数、方差和极差分别为,15cm;;16﹣14=2(cm),乙的中位数、方差和极差分别为,(15+17)÷2=16(cm),,19﹣10=9(cm)平均数:(15+16+16+14+14+15)=15(cm);∴(11+15+18+17+10+19)=15(cm).∴相同点:两段台阶路高度的平均数相同.不同点:两段台阶路高度的中位数、方差和极差均不相同.(2)甲路段走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数),使得方差为0.【点评】本题考查了样本中的平均数,方差,极差,中位数在生活中的意义和应用.19.为了了解学校开展“尊敬父母,从家务事做起”活动的实施情况,该校抽取初二年级50名学生,调查他们一周(按七天计算)的家务所用时间(单位:小时),得到一组数据,并绘制成下表,请根据该表完成下列各题:(1)填写频率分布表中未完成的部分;(2)这组数据的中位数落在什么范围内;(3)由以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比.频数分布表分组频数累计频数频率0.55~1.05 正正14 0.281.05~1.55 正正正15 0.301.55~2.05 正7 0.142.05~2.55 4 0.082.55~3.05 正 5 0.103.05~3.55 3 0.063.55~4.05 2 0.04合计50 1.00【考点】频数(率)分布表;中位数.【分析】(1)根据频率、频数及样本容量的关系求得表中相关数据即可;(2)根据总人数确定中位数的位置即可;(3)用相关频率乘以100%即可求得百分率.【解答】解:(1)分组频数累计频数频率0.55~1.05 正正14 0.281.05~1.55 正正正15 0.301.55~2.05 正7 0.142.05~2.55 4 0.082.55~3.05 正 5 0.103.05~3.55 3 0.063.55~4.05 2 0.04合计50 1.00(2)∵共50人,其中第25和第26人的平均数是中位数,∴中位数落在1.05﹣1.55小组内;(3)每周做家务的时间不超过1.5小时的学生所占的百分比为(0.28+0.30)×100%=58%.【点评】本题考查了频数分布表的知识,解题的关键是能够读懂统计表并从中整理出进一步解题的有关信息,难度不大.。

新鲁教版五四制八年级数学上册《数据的分析》单元测试题1及答案解析.doc

新鲁教版五四制八年级数学上册《数据的分析》单元测试题1及答案解析.doc

第3章数据的分析单元测试卷一、选择题:1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A.40 B.42 C.38 D.22.一城市准备选购一千株高度大约为2米的某种风景树来进行街道绿化,有四个苗圃基地投标(单株树的价相同),采购小组从四个苗圃中任意抽查了20株树苗的高度,得到下表中的数据.你认为应选( )A.甲苗圃的树苗 B.乙苗圃的树苗 C.丙苗圃的树苗 D.丁苗圃的树苗3.衡量样本和总体的波动大小的特征数是( )A.平均数B.方差 C.众数 D.中位数4.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( )A.8,9 B.8,8 C.8.5,8 D.8.5,95.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( )A.1个 B.2个C.3个D.4个6.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:班级参加人数中位数方差平均数甲55 149 191 135乙55 151 110 135某同学根据表中数据分析得出下列结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是( )A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)7.某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录甲90 83 95乙88 90 95丙90 88 90A.甲B.乙丙 C.甲乙 D.甲丙8.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:甲=乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是( )A.甲班 B.乙班C.两班成绩一样稳定 D.无法确定9.期中考试后,学习小组长算出该组5位同学数学成绩的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M:N为( )A.B.1 C.D.210.下列说法错误的是( )A.一组数据的平均数、众数、中位数可能是同一个数B.一组数据中中位数可能不唯一确定C.一组数据中平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个二.填空题11.下图是根据某地相邻两年6月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是__________年.12.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是__________;众数是__________.13.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是__________.14.某公司欲招聘工人,对候选人进行三项测试:语言,创新,综合知识,并把测试得分按1:4:3比例确定测试总分,已知某候选人三项得分分别为88,72,50,则这位候选人的招聘得分为__________.15.如果样本方差S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2],那么这个样本的平均数为__________,样本容量为__________.16.已知x 1,x2,x3的平均数=10,方差S2=3,则2x1,2x2,2x3的平均数为__________,方差为__________.三.解答题17.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?18.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服,为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(单位:cm).并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=).19.为了了解学校开展“尊敬父母,从家务事做起”活动的实施情况,该校抽取初二年级50名学生,调查他们一周(按七天计算)的家务所用时间(单位:小时),得到一组数据,并绘制成下表,请根据该表完成下列各题:(1)填写频率分布表中未完成的部分;(2)这组数据的中位数落在什么范围内;(3)由以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比.频数分布表分组频数累计频数频率0.55~1.05正正14 0.281.05~1.55正正正15 0.301.55~2.05正7 __________2.05~2.554 0.082.55~3.05正 5 0.103.05~3.553 __________3.55~4.05 __________0.04合计50 1.00第3章数据的分析单元测试卷一、选择题:1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A.40 B.42 C.38 D.2【考点】算术平均数.【分析】根据所有数据均减去40后平均数也减去40,从而得出答案.【解答】解:一组数据中的每一个数减去40后的平均数是2,则原数据的平均数是42;故选B.【点评】本题考查了算术平均数,解决本题的关键是牢记“一组数据减去同一个数后,平均数也减去这个数”.2.一城市准备选购一千株高度大约为2米的某种风景树来进行街道绿化,有四个苗圃基地投标(单株树的价相同),采购小组从四个苗圃中任意抽查了20株树苗的高度,得到下表中的数据.你认为应选( )A.甲苗圃的树苗 B.乙苗圃的树苗 C.丙苗圃的树苗 D.丁苗圃的树苗【考点】标准差.【专题】图表型.【分析】根据标准差和平均数的意义进行选择.【解答】解:由于标准差和方差可以反映数据的波动大小,所以甲苗圃与丁苗圃比较合适;又因为丁苗圃树苗平均高度大于甲苗圃,所以应选丁苗圃的树苗.故选D.【点评】本题考查了平均数和标准差的意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.标准差即方差的算术平方根.3.衡量样本和总体的波动大小的特征数是( )A.平均数B.方差 C.众数 D.中位数【考点】方差.【分析】根据方差的意义可以选出合适的选项.【解答】解:根据方差的概念知,方差反映了一组数据的波动大小.故选B.【点评】本题考查方差的定义与意义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( )A.8,9 B.8,8 C.8.5,8 D.8.5,9【考点】众数;中位数.【专题】常规题型.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选B.【点评】本题考查的是众数和中位数.注意掌握中位数和众数的定义是关键.5.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( )A.1个 B.2个C.3个D.4个【考点】众数;加权平均数;中位数.【分析】先把数据按大小排列,然后根据定义分别求出众数、中位数和平均数,最后逐一判断.【解答】解:从小到大排列此数据为:2,2,3,3,3,3,3,3,6,6,10.数据3出现了6次,最多,为众数;第6位是3,3是中位数;平均数为(2+2+3+3+3+3+3+3+6+6+10)÷11=4.故选A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.6.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:班级参加人数中位数方差平均数甲55 149 191 135乙55 151 110 135某同学根据表中数据分析得出下列结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是( )A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)【考点】方差;算术平均数;中位数.【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是135,(1)正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;甲班的方差大于乙班的,又说明甲班的波动情况小,所以(3)错误.(1)(2)正确.故选:B.【点评】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.7.某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录甲90 83 95乙88 90 95丙90 88 90A.甲B.乙丙 C.甲乙 D.甲丙【考点】加权平均数.【专题】图表型.【分析】利用平均数的定义分别进行计算成绩,然后判断谁优秀.【解答】解:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,乙的总评成绩=88×50%+90×20%+95×30%=90.5,丙的总评成绩=90×50%+88×20%+90×30%=89.6,∴甲乙的学期总评成绩是优秀.故选C.【点评】本题考查了加权平均数的计算方法.8.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:甲=乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是( )A.甲班 B.乙班C.两班成绩一样稳定 D.无法确定【考点】方差.【专题】应用题.【分析】根据方差的意义判断.方差越小,波动越小,越稳定.【解答】解:∵s甲2>s乙2,∴成绩较为稳定的班级是乙班.故选B.【点评】本题考查方差的意义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.9.期中考试后,学习小组长算出该组5位同学数学成绩的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M:N为( )A.B.1 C.D.2【考点】算术平均数.【专题】计算题;压轴题.【分析】根据5位同学数学成绩的平均分为M,求得5位同学的总分;再把M当成另一个同学的分数,与原来的5个分数一起,求得总分,再求这6个分数的平均值即为N;这样即可求得M与N的比值.【解答】解:∵5位同学数学成绩的平均分为M,∴5位同学的总分为5M,把M当成另一个同学的分数,与原来的5个分数一起,总分就为5M+M.这6个分数的平均值=(5M+M)=M=N,∴M:N=1.故选B.【点评】本题考查了样本平均数的求法.所有数据的和除以这些数据的个数叫这些数据的平均数.10.下列说法错误的是( )A.一组数据的平均数、众数、中位数可能是同一个数B.一组数据中中位数可能不唯一确定C.一组数据中平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个【考点】统计量的选择.【分析】根据平均数、众数、中位数的概念分析各个选项.【解答】解:A、在一组数据的平均数、众数、中位数有可能相同如全部相等的数据,正确;B、中位数是将数据按从大到小,或从小到大顺序排列,最中间的那个数或两个数的平均数,所以只有一个,故错误;C、众数、中位数和平均数是从不同的角度描述了一组数据集中趋势的,符合意义,正确;D、根据众数的概念即数据出现次数最多的数据,可能有多个,正确;故选C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义,了解各个统计量的意义是解答本题的关键.二.填空题11.下图是根据某地相邻两年6月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是2005年.【考点】折线统计图.【专题】图表型.【分析】折线统计图中折线越起伏的表示数据越不稳定,相反,折线越平稳的表示数据越稳定;从两幅图中可以看出:2004年6月上旬折线起伏较大,所以2004年6月上旬气温比较不稳定,则2005年6月上旬折线较平稳,则2005年6月上旬气温比较稳定.【解答】解:从两幅图中可以看出:2004年6月上旬折线起伏较大,所以2004年6月上旬气温比较不稳定,则2005年6月上旬折线较平稳,则2005年6月上旬气温比较稳定.【点评】本题考查的是折线统计图的综合运用.从折线统计图中不仅能看出数据的多少,还能看出数据的变化情况.12.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是7;众数是8.【考点】中位数;众数.【分析】根据中位数和众数的定义解答.【解答】解:数据按从小到大排列:3,5,7,8,8,所以中位数是7;数据8出现2次,次数最多,所以众数是8.故填7;8.【点评】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.13.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是2.【考点】方差;算术平均数.【专题】压轴题.【分析】先由平均数计算出a的值,再计算方差.一般地设n个数据,x1,x2,…x n的平均数为,=(x 1+x2+…+x n),则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:a=4×5﹣2﹣3﹣5﹣6=4,s2=[(2﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(6﹣4)2]=2.故填2.【点评】本题考查方差的定义与意义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.某公司欲招聘工人,对候选人进行三项测试:语言,创新,综合知识,并把测试得分按1:4:3比例确定测试总分,已知某候选人三项得分分别为88,72,50,则这位候选人的招聘得分为65.75.【考点】加权平均数.【专题】计算题.【分析】运用加权平均数的计算公式求解.【解答】解:这位候选人的招聘得分=(88+72×4+50×3)÷8=65.75(分).故答案为:65.75.【点评】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.此题难度不大.15.如果样本方差S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2],那么这个样本的平均数为2,样本容量为4.【考点】方差.【分析】先根据方差公式S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2]中所以字母所代表的意义,n是样本容量,是样本中的平均数进行解答即可.【解答】解:∵在公式S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2]中,平均数是,样本容量是n,∴在S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2]中,这个样本的平均数为2,样本容量为4;故答案为:2,4.【点评】此题考查了方差,解题的关键是根据方差的定义以及公式中各个字母所表示的意义进行解答.16.已知x 1,x2,x3的平均数=10,方差S2=3,则2x1,2x2,2x3的平均数为20,方差为12.【考点】方差;算术平均数.【分析】设2x1,2x2,2x3的平均数为,把数据代入平均数计算公式计算即可,再利用方差公式即可计算出新数据的方差.【解答】解:∵=10,∴=10,设2x1,2x2,2x3的方差为,则==2×10=20;∵S2=[(x1﹣10)2+(x2﹣10)2+(x3﹣10)],∴S′2='[(2x1﹣)2+(2x2﹣)+(2x3﹣],=[4(x1﹣10)2+4(x2﹣10)2+4(x2﹣10)],=4×3=12.故答案为:20;12.【点评】本题考查了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.三.解答题17.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?【考点】中位数;算术平均数;众数.【专题】应用题.【分析】(1)平均数=加工零件总数÷总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.本题中应是第7个数.众数又是指一组数据中出现次数最多的数据.240出现6次.(2)应根据中位数和众数综合考虑.【解答】解:(1)平均数:=260(件);中位数:240(件);众数:240(件);(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.【点评】在做本题的平均数时,应注意先算出15个人加工的零件总数.为了大多数人能达到的定额,制定标准零件总数时一般应采用中位数或众数.18.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服,为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(单位:cm).并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=).【考点】方差;算术平均数;中位数;极差.【专题】应用题.【分析】(1)分别求出甲、乙的中位数、方差和极差进而分析得出即可;(2)根据方差的性质得出即可;(3)根据方差的稳定性得出即可.【解答】解:(1)∵从小到大排列出台阶的高度值:甲的,14,14,15,15,16,16,乙的,10,11,15,17,18,19,甲的中位数、方差和极差分别为,15cm;;16﹣14=2(cm),乙的中位数、方差和极差分别为,(15+17)÷2=16(cm),,19﹣10=9(cm)平均数:(15+16+16+14+14+15)=15(cm);∴(11+15+18+17+10+19)=15(cm).∴相同点:两段台阶路高度的平均数相同.不同点:两段台阶路高度的中位数、方差和极差均不相同.(2)甲路段走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数),使得方差为0.【点评】本题考查了样本中的平均数,方差,极差,中位数在生活中的意义和应用.19.为了了解学校开展“尊敬父母,从家务事做起”活动的实施情况,该校抽取初二年级50名学生,调查他们一周(按七天计算)的家务所用时间(单位:小时),得到一组数据,并绘制成下表,请根据该表完成下列各题:(1)填写频率分布表中未完成的部分;(2)这组数据的中位数落在什么范围内;(3)由以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比.频数分布表分组频数累计频数频率正正14 0.280.55~1.05正正正15 0.301.05~1.55正7 0.141.55~2.052.05~4 0.082.55正 5 0.102.55~3.053.05~3 0.063.552 0.043.55~4.05合计50 1.00【考点】频数(率)分布表;中位数.【分析】(1)根据频率、频数及样本容量的关系求得表中相关数据即可;(2)根据总人数确定中位数的位置即可;(3)用相关频率乘以100%即可求得百分率.【解答】解:(1)分组频数累计频数频率0.55~正正14 0.281.05正正正15 0.301.05~1.55正7 0.141.55~2.052.05~4 0.082.55正 5 0.102.55~3.053.05~3 0.063.552 0.043.55~4.05合计50 1.00(2)∵共50人,其中第25和第26人的平均数是中位数,∴中位数落在1.05﹣1.55小组内;(3)每周做家务的时间不超过1.5小时的学生所占的百分比为(0.28+0.30)×100%=58%.【点评】本题考查了频数分布表的知识,解题的关键是能够读懂统计表并从中整理出进一步解题的有关信息,难度不大.。

初中数学鲁教版(五四制)八年级上册第三章数据的分析测试题-普通用卷

初中数学鲁教版(五四制)八年级上册第三章数据的分析测试题-普通用卷

初中数学鲁教版八年级上册第三章测试题一、选择题(本大题共13小题,共39.0分)1.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,所求得的平均数为83,则实际平均数是()A. 80B. 86C. 83.5D. 82.52.下列说法正确的是()A. 检测某批次灯泡的使用寿命,适宜用全面调查B. 可能性是1%的事件在一次试验中一定不会发生C. 数据3,5,4,1,−2的中位数是4D. “367人中有2人同月同日出生”为必然事件3.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球.已知某同学从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b颗球的号码大于40,则关于a,b的值,下列选项正确的是()A. a=15B. a=16C. b=24D. b=354.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A. 96分、98分B. 97分、98分C. 98分、96分D. 97分、96分5.我市某一周每天的最高气温统计如下(单位:℃):27,28,29,28,29,30,29.这组数据的众数与中位数分别是()A. 28,28B. 28,29C. 29,28D. 29,296.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):则被遮盖的两个数据依次是()A. 80,80B. 81,80C. 80,2D. 81,27.疫情无情人有情,爱心捐款传真情,新型冠状病毒感染的肺炎疫情期间,某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如表:则他们捐款金额的平均数和中位数分别是()A. 27.6,10B. 27.6,20C. 37,10D. 37,208.受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A. 2,1B. 1,1.5C. 1,2D. 1,19.下表是抽查的某班10名同学中考体育测试成绩线计表.若成绩的平均数为23,中位数是a,众数是b,则a−b的值是()A. −5B. −2.5C. 2.5D. 510.数据3、4、6、7、x的平均数是5,则这组数据的中位数是()A. 4B. 4.5C. 5D. 611.下表是我市七个县(区)今年某日最高气温(℃)的统计结果:则该日最高气温(℃)的众数和中位数分别是()A. 25,25B. 25,26C. 25,23D. 24,2512.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x−(单位:千克)及方差S2(单位:千克 2)如表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A. 甲B. 乙C. 丙D. 丁13.某校航模兴趣小组共有30位同学,他们的年龄分布如下表:年龄/岁 13 14 15 16人数 5 15由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是( )A. 平均数、中位数B. 众数、中位数C. 平均数、方差D. 中位数、方差二、填空题(本大题共7小题,共21.0分)14. 数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是______分.15. 对于一组统计数据3,3,6,5,3.这组数据的中位数是______. 16. 已知一组数据:3,5,x ,7,9的平均数为6,则x =______.17. 在“爱我中华”中学生演讲比赛中,6位评委分别给选手小明的评分如下:7,9,6,7,9,8,则这组数据的众数是______.18. 小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是S 小刘2=0.6,S 小李2=1.4,那么两人中射击成绩比较稳定的是______.19. 小天想要计算一组数据92,90,94,86,99,85的方差s 02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,−4,9,−5,记这组新数据的方差为s 12,则s 12______s 02(填“>”,“=”或”<”)20. 甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S 甲2=2,S 乙2=1.5,则射击成绩较稳定的是 (填“甲”或“乙”).三、解答题(本大题共5小题,共40.0分)21. 今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.100名学生知识测试成绩的频数表成绩a(分)频数(人)50≤a<601060≤a<701570≤a<80m80≤a<904090≤a≤10015由图表中给出的信息回答下列问题:(1)m=______,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.22.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前3名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分),现得知1号选手的综合成绩为87分.序号123笔试成绩/分909284面试成绩/分858886(1)求笔试成绩和面试成绩各占的百分比;(2)求出其余两名选手的综合成绩,并以综合成绩排序确定这三名选手的名次.23.某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:七八年级学生一分钟跳绳成绩分析表七年级学生一分钟跳绳成绩(数据分7组:60≤x<80,80≤x<100, (180)x<200,在100≤x<120这一组的是:100101102103105106108109109110110111112113115115115116117119根据以上信息,回答下列问题:(1)表中a=______;(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是______(填“甲”或“乙”),理由是______.(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?24.8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).平均分方差中位数众数合格率优秀率一班7.2 2.117692.5%20%二班 6.85 4.288885%10%根据图表信息,回答问题:(1)用方差推断,______班的成绩波动较大;用优秀率和合格率推断,______班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?25.A,B两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量.(2)已知A,B两家酒店7~12月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.答案和解析1.【答案】B【解析】分析:本题考查平均数的定义和使用计算器求数据的平均数.利用平均数的定义可得.将其中一个数据105输入为15,也就是数据的和少了90,其平均数就少了90除以30,从而得出答案.解答:求30个数据的平均数时,错将其中一个数据105输入为15,即使总和减少了90,那么由此求出的这组数据的平均数83比实际平均数的差小90÷30=3,所以实际平均数为83+3=86.故选:B.2.【答案】D【解析】解:A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,−2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选:D.根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.3.【答案】A【解析】解:甲箱98−49=49(颗),∵乙箱中位数40,∴小于、大于40各有(49−1)÷2=24(颗),∴甲箱中小于40的球有39−24=15(颗),大于40的有49−15=34(颗),即a=15,∴A正确;故选:A.先求出甲箱的球数,再根据乙箱中位数40,得出乙箱中小于、大于40的球数,从而得出甲箱中小于40的球数和大于40的球数,即可求出答案.此题考查了中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.4.【答案】A【解析】【分析】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数,属于基础题.利用众数和中位数的定义求解.【解答】解:98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13数,是96,所以数据的中位数为96分.故选:A.5.【答案】D【解析】解:29出现了3次,出现的次数最多,则众数是29;把这组数据从小到大排列27,28,28,29,29,29,30,最中间的数是29,则中位数是29;故选:D.根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数,即可得出答案.此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.【解析】解:根据题意得:80×5−(81+77+80+82)=80(分),则丙的得分是80分;众数是80,故选:A.根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.7.【答案】B(5×6+10×17+20×14+50×8+100×5)=【解析】解:这组数的平均数是:15027.6(元),=20元,把这些数从小到大排列,最中间两个数的平均数是20+202则中位数是20元;故选:B.根据平均数的计算公式求出这组数据的平均数,再根据中位数的定义直接求出这组数据的中位数即可.本题考查了平均数和中位数.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).8.【答案】B【解析】解:由表格可得,全班学生平均每天阅读时间的中位数和众数分别是1、1.5,故选:B.根据表格中的数据可知七年级2班有30人,从而可以得到全班学生平均每天阅读时间的中位数和众数,本题得以解决.本题考查众数、加权平均数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.9.【答案】C【解析】解:∵平均数为23,=23,∴30×2+25x+20y+1510∴25x+20y=155,即:5x+4y=31,∵x+y=7,∴x=3,y=4,∴中位数a=22.5,b=20,∴a−b=2.5,故选:C.首先根据平均数求得x、y的值,然后利用中位数及众数的定义求得a和b的值,从而求得a−b的值即可.本题考查了众数及中位数的定义,求得x、y的值是解答本题的关键,难度不大.10.【答案】C【解析】解:∵数据3、4、6、7、x的平均数是5,∴(3+4+6+7+x)÷5=5,解得:x=5,把这些数从小到大排列为:3、4、5、6、7,最中间的数是5,∴这组数据的中位数是5;故选:C.根据平均数的计算公式先求出x的值,再根据中位数的定义即可得出答案.此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.11.【答案】A【解析】解:∵在这7个数中,25(℃)出现了3次,出现的次数最多,∴该日最高气温(℃)的众数是25;把这组数据按照从小到大的顺序排列位于中间位置的数是25,则中位数为:25;故选:A.根据众数和中位数的概念求解即可.本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12.【答案】B【解析】解:因为甲组、乙组的平均数丙组、丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选:B.先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.13.【答案】B【解析】解:因为共有30位同学,所以14岁有15人,所以14为众数,第15个数和第16个数都是14,所以数据的中位数为14.故选:B.利用数据有30个,而14占15个,则可得到数据的众数;然后利用中位数的定义可确定这组数据的中位数,从而可对各选项进行判断.本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数、众数.14.【答案】93【解析】解:根据题意得:90×3+100×3+90×4=93(分),3+3+4答:小红一学期的数学平均成绩是93分;故答案为:93.按3:3:4的比例算出本学期数学学期平均成绩即可.本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.15.【答案】3【解析】解:把这些数从小到大排列为3,3,3,5,6,则这组数据的中位数是3;故答案为:3.根据中位数的定义直接解答即可.此题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.16.【答案】6【解析】解:由题意知,(3+5+x+7+9)÷5=6,解得:x=6.故答案为6.根据算术平均数的定义列式计算即可得解.本题考查的是算术平均数的求法.熟记公式是解决本题的关键.17.【答案】7,9【解析】解:数据7,9都出现了两次,次数最多,所以这组数据的众数是7,9.故答案为:7,9.众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.考查了众数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.18.【答案】小刘【解析】解:由于S 小刘2<S 小李2,且两人10次射击成绩的平均值相等,∴两人中射击成绩比较稳定的是小刘,故答案为:小刘.根据方差的意义即可求出答案.本题考查方差的意义,解题的关键是熟练运用方差的意义,本题属于基础题型. 19.【答案】=【解析】【分析】本题考查方差性质,基础题根据一组数据中的每一个数据都加上或减去同一个常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【解答】解:根据一组数据中的每一个数据都加上或减去同一个常数,那么这组数据的波动情况不变,即方差不变∴则s 12=s 02. 故答案为=.20.【答案】乙【解析】解:∵S 甲2=2,S 乙2=1.5,∴S 甲2>S 乙2,∴乙的射击成绩较稳定.故答案为:乙.直接根据方差的意义求解.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s 2来表示,计算公式是:s 2=1n [(x 1−x¯)2+(x 2−x¯)2+⋯+(x n −x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.21.【答案】(1)20,频数直方图如下:(2)不一定是,理由:将100名学生知识测试成绩从小到大排列,第50、51名的成绩都在分数段80≤a≤90中,当他们的平均数不一定是85分;(3)估计全校1200名学生中成绩优秀的人数为1200×40+15100=660(人).【解析】解:(1)m=100−(10+15+40+15)=20,故答案为:20;频数直方图见答案;(2)见答案;(3)见答案.【分析】(1)由总人数为100可得m的值,从而补全图形;(2)根据中位数的定义判断即可得;(3)利用样本估计总体思想求解可得.本题考查条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.【答案】解:(1)设笔试成绩和面试成绩的比x:(10−x),由题意得:90×x10+85×10−x10=87,解得:x=4,10−x=6,因此笔试成绩与面试成绩的比是4:6,答:笔试成绩占40%,面试成绩占60%,(2)2号选手的综合成绩为:92×40%+88×60%=89.6,3号选手的综合成绩为:84×40%+86×60%=85.2,∵89.6>87>85.2∴2号选手第一,1号选手第二,3号选手第三,答:根据综合成绩排名第一名2号选手,第二名1号选手,第三名3号选手.【解析】(1)设出笔试成绩和面试成绩的比,利用加权平均数的计算方法,列方程求出这个比,进而得出百分比,(2)根据笔试成绩和面试成绩各占的百分比,原来加权平均数的计算方法计算出2号选手,3号选手的综合成绩,比较得出排名.考查加权平均数的计算方法,理解“权”对平均数的影响是解决问题的关键,掌握计算方法是前提.23.【答案】118 甲甲的成绩122超过中位数118,乙的成绩125低于其中位数126【解析】解:(1)由题意可得,a=(117+119)÷2=118,故答案为:118;(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是甲,理由是:甲的成绩122超过中位数118,乙的成绩125低于其中位数126,故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126;=270(人),(3)一分钟跳绳不低于116次的有500×50−2−4−(20−3)50即一分钟跳绳不低于116次的有270人.(1)根据题目中的数据,可以计算出a的值;(2)根据表格中的数据,可以得到谁更靠前,然后根据中位数说明理由即可;(3)根据题目中的数据,可以计算出一分钟跳绳不低于116次的有多少人.本题考查众数、中位数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】二一【解析】解:(1)从方差看,二班成绩波动较大,从众数、中位数上看,一班的成绩较好,故答案为:二,一.(2)乙同学的说法较合理,众数和中位数是反映一组数据集中发展趋势和集中水平,由于二班的众数、中位数都比一班的要好.(1)从方差上看,二班的方差较大,二班波动较大,合格率、优秀率一班都比二班高,(2)平均分会首极端值的影响,众数、中位数则是反映一组数据的集中趋势和平均水平,因此用众数、中位数进行分析比较客观.考查众数、中位数、方差的意义及各个统计量反映数据的特征,准确把握各个统计量的意义是前提.25.【答案】解:(1)选择两家酒店月盈利的平均值;=2.5,x A−=1+1.6+2.2+2.7+3.5+46=2.3;x B−=2+3+1.7+1.8+1.7+3.66(2)平均数,方差反映酒店的经营业绩,A酒店的经营状况较好.理由:A酒店盈利的平均数为2.5,B酒店盈利的平均数为2.3.A酒店盈利的方差为1.073,B酒店盈利的方差为0.54,无论是盈利的平均数还是盈利的方差,都是A酒店比较大,故A酒店的经营状况较好.【解析】(1)由要评价两家酒店月盈利的平均水平,即可得选择两家酒店月盈利的平均值,然后利用求平均数的方法求解即可求得答案;(2)平均数,盈利的方差反映酒店的经营业绩,A酒店的经营状况较好.此题考查了折线统计图的知识.此题难度适中,注意掌握折线统计图表达的实际意义是解此题的关键.。

鲁教版八年级数学上册第三章数据的分析单元测试_

鲁教版八年级数学上册第三章数据的分析单元测试_

《鲁教版八年级数学上册第三章数据的分析单元测试_》摘要:平数 B 方差位数众数 5明学上学期5科期末成绩语、数学、英语每科成绩90分科学、社会每科成绩80分则他5科成绩平分是(, 8 B 85 86 87 6下列组数据﹣、﹣、0、、平数和方差分别是(, 0和 B 0和 0和 0和07某校初三年级古诗词比赛初三()班名学生成绩统计如下则该班学生成绩位数和众数分别是(三数据分析单元测试单选题(共0题;共30分)今年3月份某周我市每天高气温(单位℃)9067则这组数据位数与极差分别是() 8 B 87 7 某公司共有5名员工(其包括名理)理工高其他员工工今年理工从年00000元增加到5000元而其他员工工年样这样这公司所有员工今年工平数和位数与年相比将会()平数增加位数不变 B 平数和位数不变平数不变位数增加平数和位数增加 3已知组数据595下列说法不正确是( ) 极差是5 B 位数是9 众数是5 平数是9 技术员张考察某种麦长势整齐情况从抽取了0株麦苗并分别测量了苗高则张要知道这些麦苗高()平数 B 方差位数众数 5明学上学期5科期末成绩语、数学、英语每科成绩90分科学、社会每科成绩80分则他5科成绩平分是() 8 B 85 86 87 6下列组数据﹣、﹣、0、、平数和方差分别是() 0和 B 0和 0和 0和0 7某校初三年级古诗词比赛初三()班名学生成绩统计如下则该班学生成绩位数和众数分别是()分数 50 60 70 80 90 00 人数 83 7080 B 7090 8090 9000 8下面获取数据方法不正确是()我们班学身高用测量方法 B 快捷了历史情况用观察方法抛硬币看正反面次数用实验方法全班学喜爱体育活动用访问方法900008090500050这0数据值与值差是() 0 B 70 80 90 0计算器已进入统计状态标志是显示屏上显示() B R G 二填空题(共8题;共36分)(05•武汉)组数据368平数是________ .(05•巴)有组数据5367则这组数据方差是 ________ 3我们进入学以已学习不少有关数据统计量例如________ 等它们分别从不侧面描述了组数据特征.组数据﹣x053﹣平数是则这组数据位数是________ . 5组数据按从到顺序排列335则这组数据方差是________ . 6八(6)班组织了次朗比赛甲、乙两队各9人比赛成绩如表(0分制)甲 7 8 9 7 0 0 0 0 0 乙 0 8 7 9 8 0 0 9 0 ()甲队成绩位数是________分乙队成绩众数是________分;()计算乙队平成绩和方差________,________;(3)若选择其队参加校级朗比赛则应选________队. 7学校卫生检规定各班教室卫生成绩占30%环境卫生成绩占0%人卫生成绩占30%.八年级班这三项成绩分别85分90分和95分该班卫生检总成绩________. 8如组数据x59位数是6那么x________ 三答题(共6题;共36分) 9广告公司想招聘名策划部理对甲、乙两名应聘应试者进行面试、案策划、已有历三项考评他们各项成绩(分制)如下表应聘者面试案策划已有历甲 88 78 80 乙 80 85 83 ()如这公司想招聘名综合能力较强部门理计算两名应试者平成绩(分制)从他们成绩看应录取谁?()如这公司想招聘名综合能力较强部门理面试、案策划、已有成绩按照33比确定计算两名应试者平成绩(分制)从他们成绩看应录取谁?甲、乙、丙、丁四支足球队世界杯预选赛进球数分别99x7若这组数据众数和平数恰相等出其x值以及组数据标准差. 3某广告公司欲招聘名职员对甲、乙、丙三名候选人进行了三项素质测试他们各项测试成绩如表应试者测试成绩公关能力计算机能力创新能力甲88 50 7 乙 5 7 85 丙 67 70 67 根据实际要公司招聘名络维护人员公司将公关能力计算机能力创新能力三项测试得分按35比例确定各人测试成绩计算甲、乙、丙各平成绩谁将被录用?校歌手奖赛上比赛规则七位评委打分高分和低分所剩数据取平数即选手得分七位评委给某位歌手打出分数如下9599699939790则这位歌手得分是多少?答案析单选题【答案】【考】位数、众数极差【析】【分析】首先把所给数据按照由到顺序排序然利用位数和极差定义即可出结.【答】把已知数据按照由到顺序排序6、9、0、、、、7 ∴这组数据位数是;极差是76.故选.【评】题主要这样考了位数和极差定义题关键是把所给数据按照由到顺序排序然确定值和值.【答案】【考】算术平数加权平数位数、众数【析】【答】设这公司除理外50名员工工和元则这公司所有员工年工平数是元今年工平数是元显然<;由这5数据按从到顺序排列次序完全没有变化所以位数不变.故选.【分析】题考统计有关知识位数要把数据按从到顺序排列位数或两数平数位数平数是指组数据所有数据和再除以数据数.题主要考了平数位数概念要掌握这些基概念才能熟练题.到别数据对平数影响较而对位数和众数没影响. 3【答案】【考】算术平数位数、众数极差【析】【分析】分别计算该组数据平数、位数、众数及极差即可得到正确答案.【答】极差59故错误;位数9故B正确; 5出现了次多众数是5故正确;平数(+5+9+5+)÷59故正确.由题干选择是不正确故选.【评】题考了数据平数、位数、众数及极差属基础题比较简单.【答案】B 【考】统计量选择【析】【分析】根据平数、方差、位数及众数定义【答】∵考察某种麦长势整齐情况∴应该要知道这些麦苗方差故选B. 5【答案】【考】加权平数【析】【答】∵语、数学、英语每科成绩90分科学、社会每科成绩80分∴则他5科成绩平分是(90×3+80×)÷586(分);故选.【分析】根据加权平数计算公式先出5科成绩总分再除以5即可. 6【答案】【考】算术平数方差【析】【答】这组数据﹣、﹣、0、、平数是(﹣﹣+0++)÷50;则方差[(﹣﹣0)+(﹣﹣0)+(0﹣0)+(﹣0)+(﹣0)];故选.【分析】先出这组数据平数再根据方差公式[(x﹣)+(x﹣)+…+(x﹣)]进行计算即可. 7【答案】【考】位数、众数【析】【答】把这组数据从到排列两数平数是(80+80)÷80则该班学生成绩位数是80; 90出现了次出现次数多则众数是90;故选.【分析】根据位数与众数定义进行答即可. 8【答案】B 【考】数据分析【析】【答】、我们班学身高用测量方法是长工具可信比较高; B、快捷了历史情况用观察方法可信很低;、抛硬币看正反面次数用实验方法是事实事件所以可信很高;、全班学喜爱体育活动用访问方法是事实事件可信很高.故选B.【分析】根据实际问题逐项判断即可得到答案. 9【答案】【考】极差【析】【答】这0数据值与值差是90﹣080;故选.【分析】根据极差公式极差值﹣值.出所数据值90值0再代入公式值. 0【答案】B 【考】计算器平数【析】【答】计算器已进入统计状态;显示屏上显示.故选B.【分析】题要学们能熟练应用计算器熟悉计算器各按键功能.二填空题【答案】6【考】算术平数【析】【答】(+3+6+8+)÷5 30÷5 6 所以组数据368平数是6.故答案6.【分析】首先出368和是多少;然用368和除以5出组数据368平数是多少即可.【答案】【考】方差【析】【答】5 ×[(5﹣5)+(﹣5)+(3﹣5)+(6﹣5)+(7﹣5)] 故答案.【分析】首先计算出数据平数再利用方差公式[(x﹣)+(x﹣)+…+(x﹣)]可算出方差.3【答案】平数、众数、位数、极差、方差、标准差【考】统计量选择【析】【答】所学统计量平数、众数、位数、极差、方差、标准差共有6.故填平数、众数、位数、极差、方差、标准差.【分析】根据统计知识可得出所学统计量共有6.【答案】05 【考】位数、众数【析】【答】由题可知(﹣+0+5+x+3﹣)÷6x﹣这组数据从到排列﹣﹣035 ∴位数是05.故答案05.【分析】先根据平数定义出x值然根据位数定义. 5【答案】53 【考】方差【析】【答】这组数据平数是(++3+3++5)÷63 方差是6[(﹣3)+(﹣3)+(3﹣3)+(﹣3)+(5﹣3)]53;故答案6 .【分析】先由平数公式计算出这组数据平数再根据方差公式计算即可 6【答案】0;9;9;;乙【考】位数、众数方差【析】【答】()甲队成绩位数是0分乙队成绩位数分9.故答案分别09.()乙队平成绩0+8+7+9+8+0+0+9+099.乙9[(0﹣9)+(8﹣9)+(7﹣9)+(9﹣9)+(8﹣9)+(0﹣9)+(0﹣9)+(9﹣9)+(0﹣9)] (3)∵甲09 乙∴乙<甲∴乙成绩稳定选乙队.故答案乙.【分析】()根据位数定义即可.()根据平数、方差公式计算即可.(3)根据方差越成绩越稳定作出判断. 7【答案】90分【考】加权平数【析】【答】该班卫生检总成绩85×30%+90×0%+95×30%90(分).故答案90分.【分析】根据加权平数计算公式即可. 8【答案】7 【考】位数、众数【析】【答】∵共6数∴位数是3和平数∵位数6 ∴ 6 得x7 故答案7.【分析】根据位数方法可知加上数x那么这组数据数就是6所以处两数平数就是组数据位数;再根据位数是6得x值.三答题 9【答案】()甲平成绩(88+78+80)÷38(分)乙平成绩(80+85+83)÷383(分).由83>8因乙将被录用.()甲成绩88×0+78×30+80×3086(分)乙成绩80×0+85×30+83×308(分)由86>8因甲将被录用.【考】算术平数加权平数【析】【分析】()根据三项平成绩计算比较录用平成绩高;()计算出加权平数再比较加权平数高低录用加权平数高者. 0【答案】()如图所示()∵0名女生成绩分别是3′0〞3′0〞3′0〞3′6〞3′〞3′〞3′7〞3′33〞3′3〞3′9〞∴这0名女生成绩位数是(3′〞+3′〞)÷3′〞众数是3′0〞;故答案3′″;3′0″;(3)设女生有x人男生有(x﹣70)人由题得x+x﹣7090 x80 ∵这0名学有名学成绩达满分∴估计该校女生满分率0×00%0% ∴80×0%(人).答女生得满分人数是人【考】位数、众数【析】【分析】()位数是组数据位位置数因0是偶数所以是两数和平值众数是组数据出现次数多数据;()根据学校男女生人数关系和总人数出该校女生人数乘以这0名学满分率即可.【答案】∵这组数据众数和平数恰相等∴(9+9+x+7)÷9∴x ∴这组数据方差是[(9﹣9)+(9﹣9)+(﹣9)+(7﹣9)] 则这组数据标准差是.【考】算术平数位数、众数方差【析】【分析】根据这组数据众数和平数恰相等出x值再根据方差计算公式出方差再计算方差算术平方根即标准差.【答案】()甲箱98﹣99(颗)∵乙箱位数0 ∴、0各有(9﹣)÷(颗)∴甲箱0球有39﹣5(颗) 0有b9﹣53(颗)甲箱球码位数不能0 ∵≠b(0球乙箱甲箱有9颗球不可能有0球)∴甲箱球码位数不能0.()由()可知当甲、乙箱球码位数相甲、乙箱球数量应该都是偶数.设甲箱球码x数量是颗则x数量也是颗;设乙箱球码x数量是颗则x数量也是颗是全部98颗球码x数量是(+)颗x数量也是(+)颗即~98位数是x.∴x(9+50)95.【考】位数、众数【析】【分析】()根据乙箱球码位数确定、0各有多少、b值根据0球乙箱甲箱有9颗球不可能有0球判断甲箱球码位数能否0;()设甲箱球码x数量和乙箱球码x数量列式计算即可. 3【答案】∵甲得分是 658;乙得分是 675;丙得分是 685;∴丙得分高∴丙被录取.【考】加权平数【析】【分析】根据图表数据直接出甲乙丙平分数三者进行比较即可得出答案.【答案】高分99低分90;平数是(95+9+96+93+97)95分【考】算术平数【析】【分析】9599699939790高分和低分所剩数据是959969397;再其平数即可.。

鲁教版八年级数学上第三章数据的分析综合练习及参考答案

鲁教版八年级数学上第三章数据的分析综合练习及参考答案

鲁教版八年级数学上第三章数据的分析综合练习学校:___________姓名:___________班级:___________考号:___________1.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.最高分B.中位数C.方差D.平均数2.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁3.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30°B.30°,28°C.31°,30°D.30°,30°4.某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是20 5.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差6.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选()参加.A.甲B.乙C.甲、乙都可以D.无法确定7.某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为()A.12 B.13 C.13.5 D.148.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20B.30,20C.30,30D.20,309.已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当( )A.平均数 B.中位数 C.众数 D.方差10.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如表:该店主决定本周进货时,增加了一些尺码的衬衫,影响该店主决策的统计量是( ) A.众数B.方差C.平均数D.中位数11.在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9.则这位选手五次射击环数的方差为.12.(2017江苏省苏州市)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是______环.13.已知2,3,5,m,n五个数据的方差是2,那么3,4,6,m+1,n+1五个数据的方差是______.14.某品牌专卖店对上个月销售的男运动鞋尺码统计如下:这组统计数据中的众数是_____码.15.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分.16.为了解射击运动员小杰的集训效果,教练统计了他集训前后的两次测试成绩(每次测试射击10次),制作了如图所示的条形统计图.(1)集训前小杰射击成绩的众数为;(2)分别计算小杰集训前后射击的平均成绩;(3)请用一句话评价小杰这次集训的效果.17.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.18.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?19.在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83乙:88,79,90,81,72.回答下列问题:(1)甲成绩的平均数是______ ,乙成绩的平均数是______ ;(2)经计算知S甲2=6,S乙2=42.你认为选拔谁参加比赛更合适,说明理由;(3)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率.参考答案1.B 【解析】试题分析:共有25名学生参加预赛,取前13名,所以小颖需要知道自己的成绩是否进入前13,我们把所有同学的成绩按大小顺序排列,第13名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B . 考点:统计量的选择. 2.D 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x >乙丁甲丙,∴从乙和丁中选择一人参加比赛,∵22S S >乙丁,∴选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 3.D 【解析】试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30; 故选D .考点:众数;算术平均数. 4.C 【解析】 【分析】直接利用平均数、中位数、众数以及极差的定义分别分析得出答案. 【详解】 A 、平均分为:15×(94+98+90+94+74)=90(分),故此选项错误;B 、五名同学成绩按大小顺序排序为:74,90,94,94,98, 故中位数是94分,故此选项错误;C 、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D 、极差是98﹣74=24,故此选项错误, 故选C . 【点睛】本题主要考查了平均数、中位数、众数以及极差的定义,正确把握相关定义以及求解方法是解题的关键. 5.D 【解析】 【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4,23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 6.A 【解析】试题分析:由题意可得,甲的平均数为:(9+8+7+7+9)÷5=8;[(9−8)2+(8−8)2+(7−8)2+(7−8)2+(9−8)2]=0.8方差为:15乙的平均数为:(10+8+9+7+6)÷5=8;[(10−8)2+(8−8)2+(9−8)2+(7−8)2+(6−8)2]=2;方差为:15∵0.8<2,∴选择甲射击运动员,故选A.考点:方差.7.B【解析】试题解析:10个数,处于中间位置的是13和13,因而中位数是:(13+13)÷2=13.故选B.点睛:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.8.C【解析】【分析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.【详解】捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C.【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.9.D.【解析】试题分析:A组:平均数=75,中位数=75,众数=60或90,方差=225;B组:平均数=75,中位数=75,众数=70或80,方差=25,故选D.考点:方差;平均数;中位数;众数.10.A【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:A.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.掌握以上知识是解题的关键.11.2.【解析】【分析】【详解】解:五次射击的平均成绩为15x (5+7+8+6+9)=7,方差S2=15[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(9﹣7)2]=2.故答案为:2.考点:方差.12.8【解析】解:∵按大小排列在中间的射击成绩为8环,则中位数为8.故答案为8.13.2【解析】由题意知,原数据的平均数为,新数据的每一个数都加了1,则平均数变为+1,则原来的方差S12=15[(x1-x)2+(x2-x)2+…+(x5-x)2]=2,现在的方差S22=15[(x1+1-x-1)2+(x2+1-x-1)2+…+(x5+1-x-1)2]=15[(x1-x)2+(x2-x)2+…+(x5-x)2]=2,所以方差不变.故答案为:2.点睛:本题考查了方差,方差是用来衡量一组数据波动大小的量,每个数都加1所以波动不会变,方差不变,即数据的波动情况不变.14.41【解析】【分析】一组数据中出现次数最多的数叫做众数,由此结合表格信息即可得出答案.【详解】由表格可知,码号为41的销售量最大,故众数为41;因此,本题正确答案是41.【点睛】本题主要考查数据的收集和整理,根据众数的定义求解是本题的关键.15.135【解析】【详解】∵13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分,∴第7个数是135分,∴中位数为135分,故答案为135.16.(1)8;(2)8.5,8.9;(3)小杰这次集训后的命中环数明显增加.【解析】试题分析:(1)根据众数的定义可得;(2)根据加权平均数的定义可得答案;(3)由(2)中答案可得答案.试题解析:解:(1)集训前小杰射击成绩的众数为为8环,故答案为:8;(2)小杰集训前射击的平均成绩为(8×6+9×3+10×1)÷10=8.5(环),小杰集训后射击的平均成绩为(8×3+9×5+10×2)÷10=8.9(环);(3)由集训前后平均环数的变化可知,小杰这次集训后的命中环数明显增加.17.(1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.【解析】【分析】【详解】试题分析:(1)、用整体1减去其它所占的百分比,即可求出a的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;(2)、观察条形统计图得:1.502 1.554 1.605 1.656 1.70324563x⨯+⨯+⨯+⨯+⨯=++++=1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(3)、能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数18.(1)22元;(2)20千克【解析】试题分析:(1)根据加权平均数的计算公式和三种糖果的单价和克数,列出算式进行计算即可;(2)设加入丙种糖果x千克,则加入甲种糖果(100-x)千克,根据商家计划在什锦糖中加入甲、丙两种糖果共100千克和锦糖的单价每千克至少降低2元,列出方程进行求解即可.试题解析:(1)根据题意得:20×40+25×40+30×20100=24 (元/千克).答:该什锦糖的单价是24元/千克;(2)设加入丙种糖果x千克,则加入甲种糖果千克,根据题意得:30x+20(100−x)+22×100200=20,解得:x=40.答:加入丙种糖果40千克.点睛:本题主要考查了加权平均数的知识,解题的关键是掌握加权平均数的公式,注意:权的差异对结果会产生直接的影响.19.(1)83, 82;(2)选拔甲参加比赛更合适,理由见解析;(3)12 25.【解析】【分析】(1)根据平均数的计算公式可知,甲成绩的平均数为79+86+82+85+83==835x甲,乙成绩的平均数为88+79+90+81+72==825x乙.(2)方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.根据方差的定义判断即可.(3)将所有可能发生的情况列成表格,根据表格得出所有情况以及出现抽到的两个人的成绩都大于80的几种情况,即可求出概率.【详解】解:(1)79+86+82+85+83==835x甲(分),88+79+90+81+72==825x乙(分);(2)选拔甲参加比赛更合适,理由如下:∵>,且S甲2<S乙2,∴甲的平均成绩高于乙,且甲的成绩更稳定,故选拔甲参加比赛更合适.(3)列表如下:由表格可知,所有等可能结果共有25种,其中两个人的成绩都大于80分有12种,∴抽到的两个人的成绩都大于80分的概率为12 25.【点睛】本题主要考查了数据的处理、数据的分析以及随机事件概率的方法,正确理解并灵活应用是解答本题的关键.。

2020年鲁教版(五四制)八年级数学上册第三章 数据的分析 单元测试题(含答案)

2020年鲁教版(五四制)八年级数学上册第三章 数据的分析 单元测试题(含答案)

第三章测试卷一、选择题(每题3分,共30分)1.有一组数据:1,3,3,4,5.这组数据的众数为()A.1 B.3 C.4 D.52.小明记录了当地今年元月份某五天的最低温度(单位:℃):1,2,0,-1,-2.这五天最低温度数据的平均数是()A.1 B.2 C.0 D.-13.某校为纪念世界反法西斯战争胜利70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.8,9,则这5个数据的中位数是()A.9.7 B.9.5 C.9 D.8.84.某制鞋厂准备生产一批男皮鞋,经抽样(120名中年男子)调查得知,所需鞋号和人数如下:现求出鞋号的中位数是25.5 cm,众数是26 cm,平均数约是25.5 cm.下列说法正确的是()A.因为需要鞋号为27 cm的人数太少,所以鞋号为27 cm的鞋可以不生产B.因为平均数约是25.5 cm,所以这批男鞋可以一律按鞋号为25.5 cm的鞋生产C.因为中位数是25.5 cm,所以25.5 cm的鞋的生产量应占首位D.因为众数是26 cm,所以26 cm的鞋的生产量应占首位5.某校规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的这三项成绩(百分制)分别为95分,90分,88分,则小彤这学期的体育成绩为()A.89分B.90分C.92分D.93分6.某校要从四名学生中选拔一名参加市“风华小主播”大赛,将多轮选拔赛的成绩的数据进行分析得到每名学生的平均成绩x及其方差s2如下表所示,如果要选择一名成绩高且发挥稳定的学生参赛,那么应选择的学生是()A.甲B.乙C.丙D.丁7.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是()A.4,4 B.3,4 C.4,3 D.3,38.某小组5位同学参加实验操作考试(满分20分)的平均成绩是16分,其中三位男生成绩的方差为6,两位女生的成绩分别为17分、15分,则这5位同学成绩的标准差为()A. 3 B.2 C. 6 D.69.如果一组数据a1,a2,a3,…,a n的方差是2,那么一组新数据2a1,2a2,2a3,…,2a n的方差是()A.2 B.4 C.8 D.1610.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁.经重新计算后,正确的平均数为a岁,中位数为b岁.则下列结论中正确的是()A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=13二、填空题(每题3分,共24分)11.高一新生入学军训射击训练中,小张同学的射击成绩(单位:环)为5,7,9,10,7,则这组数据的众数是________.12.一组数据-1,0,1,2,x的众数是2,则这组数据的平均数是________.13.已知一组数据0,1,2,2,x,3的平均数是2,则这组数据的方差是________.14.某校男子足球队队员的年龄分布如图所示,则这些队员的年龄的中位数是________.15.某超市购进一批大米,大米的标准包装为每袋30 k g ,售货员任选6袋进行了称重检验,超过标准质量的记作“+”,不足标准质量的记作“-”,他记录的结果是+0.5,-0.5,0,-0.5,-0.5,+1,那么这6袋大米质量数据的平均数和极差分别是________.16.甲、乙两地9月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温方差大小关系为s 2甲__________s 2乙(填“>”或“<”).17.若一组数据6,9,11,13,11,7,10,8,12的中位数是m ,众数是n ,则关于x ,y 的方程组⎩⎨⎧mx -10y =10,10x -ny =6的解是________.18.学校篮球队五名队员的年龄(单位:岁)分别为17,15,16,15,17,其方差为0.8,则三年后这五名队员年龄的方差为________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.一个电梯的最大载质量是1 000 kg,现有平均体重为80 kg的11人和平均体重为70 kg的2人,他们能否一起搭乘这个电梯?他们的平均体重是多少千克?(结果精确到0.1 kg)20.八年级(2)班组织了一场经典诵读比赛,甲、乙两队各10人的比赛成绩(10分制,单位:分)如下表:(1)甲队成绩的中位数是________分,乙队成绩的众数是________分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是________队.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组的各项得分(单位:分)如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?22.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:(1)请你计算这两组数据的平均数;(2)现要从中选派一人参加操作技能比赛,从稳定性的角度考虑,你认为选派谁参加比较合适?请说明理由.23.已知一组数据x1,x2,…,x6的平均数为1,方差为5 3.(1)求x21+x22+…+x26的值;(2)若在这组数据中加入另一个数据x7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示).24.荆门市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图如图所示,成绩统计分析表如表所示,其中七年级代表队得6分、10分的选手人数分别为a,b.队别平均分/分中位数/分方差合格率优秀率七年级 6.7 m 3.41 90% n八年级7.1 7.5 1.69 80% 10%(1)请依据图表中的数据,求a,b的值;(2)直接写出表中的m,n的值;(3)有人说:“七年级代表队的合格率、优秀率均高于八年级代表队,所以七年级代表队的成绩比八年级代表队好.”但也有人说:“八年级代表队的成绩比七年级队好.”请你给出两条支持八年级代表队成绩好的理由.答案一、1.B 2.C 3.C 4.D 5.B 6.B 7.D 8.B 9.C 10.A 二、11.7 12.0.8 13.53 14.15岁 15.30;1.5 16.>17.⎩⎨⎧x =5,y =4点拨:这组数据按从小到大的顺序排列为6,7,8,9,10,11,11,12,13.由题意得m =10,n =11. 由⎩⎨⎧10x -10y =10,10x -11y =6 解得⎩⎨⎧x =5,y =4.18.0.8三、19.解:80×11+70×2=1 020(kg),1 020 kg>1 000 kg ,所以他们不能一起搭乘这个电梯.他们的平均体重为1 020÷(11+2)≈78.5(kg). 20.解:(1)9.5;10 (2)x 乙=10+8+7+9+8+10+10+9+10+910=9(分).s 2乙=110×[(10-9)2+(8-9)2+…+(9-9)2]=1. (3)乙21.解:(1)由题意可得, x 甲=91+80+783=83(分),x 乙=81+74+853=80(分),x 丙=79+83+903=84(分).∵x 丙>x 甲>x 乙,∴从高分到低分确定小组的排名顺序为丙、甲、乙. (2)甲组的成绩是91×40%+ 80×30%+78×30%=83.8(分),乙组的成绩是81×40%+74×30%+85×30%=80.1(分),丙组的成绩是79×40%+83×30%+90×30%=83.5(分). ∵83.8>83.5>80.1 ∴甲组的成绩最高.22.解:(1)x 甲=18×(95+82+88+81+93+79+84+78)=85; x 乙=18×(83+92+80+95+90+80+85+75)=85. 这两组数据的平均数都是85.(2)(答案不唯一)选派甲参加比较合适.理由如下:由(1)知x 甲=x 乙=85,则s 2甲=18×[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18×[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41, ∴s 2甲<s 2乙, ∴甲的成绩较稳定, ∴选派甲参加比较合适.23.解:(1)∵数据x 1,x 2,…,x 6的平均数为1, ∴x 1+x 2+…+x 6=1×6=6. 又∵方差为53, ∴16[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=16[x 21+x 22+…+x 26-2(x 1+x 2+…+x 6)+6]=16(x 21+x 22+…+x 26-2×6+6)=16(x 21+x 22+…+x 26)-1=53, ∴x 21+x 22+…+x 26=16.(2)∵数据x 1,x 2,…,x 7的平均数为1, ∴x 1+x 2+…+x 7=1×7=7.∵x 1+x 2+…+x 6=6, ∴x 7=1.∵16[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=53, ∴(x 1-1)2+(x 2-1)2+…+(x 6-1)2=10,∴s 2=17[(x 1-1)2+(x 2-1)2+…+(x 7-1)2]=17[10+(1-1)2]=107. 24.解:(1)依题意得⎩⎨⎧3×1+6a +7×1+8×1+9×1+10b =6.7×10,a +1+1+1+b =90%×10,解得⎩⎨⎧a =5,b =1.(2)m =6,n =20%.(3)(答案不唯一)①八年级代表队的平均分高于七年级代表队;②八年级代表队的成绩比七年级代表队稳定.1、盛年不重来,一日难再晨。

鲁教版五四制八年级上册数学全册各个单元测试卷(及答案)

鲁教版五四制八年级上册数学全册各个单元测试卷(及答案)

鲁教版五四制八年级上册数学全册试卷(五套单元测试卷+一套期末测试卷)第一章测试卷一、选择题(每题3分,共30分)1.下列各式从左到右的变形中,是因式分解的为()A.x(a-b)=ax-bx B.x2-1+y2=(x-1)(x+1)+y2⎛1⎫C.x-1=(x+1)(x-1)D.x+1=x x+⎪22⎝x⎭2.下列四个多项式中,能因式分解的是()A.a-1B.a2+1C.x2-4y D.x2-6x+93.下列分解因式正确的是()A.-a+a3=-a(1+a2)B.2a-4b+2=2(a-2b)C.a2-4=(a-2)2D.a2-2a+1=(a-1)24.因式分解x3-2x2+x,正确的是()A.(x-1)2B.x(x-1)2C.x(x2-2x+1)D.x(x+1)25.多项式:①16x2-x;②(x-1)2-4(x-1);③(x+1)2-4x(x+1)+4x2;④-4x2-1+4x,分解因式后,结果中含有相同因式的是()A.①和②B.③和④C.①和④D.②和③6.若多项式x2+mx-28可因式分解为(x-4)(x+7),则m的值为() A.-3B.11C.-11D.37.已知a+b=2,则a2-b2+4b的值是()A.2B.3C.4D.68.已知△ABC的三边长分别为a,b,c,且满足a2+b2+c2=ab+ac+bc,则△ABC 的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形9.不论x,y为什么实数,代数式x2+y2+2x-4y+7的值() A.总不小于2B.总不小于7C.可为任何实数D.可能为负数10.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.(a-b)2=a2-b2D.a2-b2=(a+b)(a-b)二、填空题(每题3分,共24分)11.分解因式:m3n-4mn=________________.12.一个正方形的面积为x2+4x+4(x>0),则它的边长为________.13.比较大小:a2+b2________2ab-1(填“>”“≥”“<”“≤”或“=”).14.若m-n=-2,则m2+n22-mn的值是________.15.如果x2+kx+64是一个整式的平方,那么k的值是________.16.已知P=3xy-8x+1,Q=x-2xy-2,当x≠0时,3P-2Q=7恒成立,则y =________.17.多项式4y2+1加上一个单项式后,能成为一个完全平方式,那么加上的单项式可以是__________(写出一个即可).18.如图是两邻边长分别为a,b的长方形,它的周长为14,面积为10,则a2b +ab2的值为________.三、解答题(19~21题每题10分,其余每题12分,共66分) 19.分解因式:(1)a2b-abc;(2)(2a-b)2+8ab;121(3)(m-m)+(m-m)+.2162220.先分解因式,再求值:(1)4a2(x+7)-3(x+7),其中a=-5,x=3;11(2)(2x-3y)-(2x+3y),其中x=,y=.682221.已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.22.已知a,b是一个等腰三角形的两边长,且满足a2+b2-4a-6b+13=0,求这个等腰三角形的周长.23.如图,在一个边长为a m的正方形广场的四个角上分别留出一个边长为b m 的正方形花坛(a>2b),其余的地方种草坪.(1)求草坪的面积是多少;(2)当a=84,b=8,且每平方米草坪的成本为5元时,种这块草坪共需投资多少元?24.观察猜想:如图所示的大长方形是由一个小正方形和三个小长方形拼成的,请根据此图填空:x2+(p+q)x+pq=x2+px+qx+pq=(__________)·(__________).说理验证:事实上,我们也可以用如下方法进行变形:x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=____________=(__________)·(________).于是,我们可以利用上面的方法继续进行多项式的因式分解.尝试运用:例题把x2+5x+4因式分解.解:x2+5x+4=x2+(4+1)x+4×1=(x+4)(x+1).请利用上述方法将多项式x2-8x+15因式分解.答案一、1.C2.D3.D4.B5.D6.D 7.C :a 2-b 2+4b =(a +b )·(a -b )+4b =2(a -b )+4b =2a +2b =2(a +b )=4.8.D 9.A 10.D二、11.mn (m +2)(m -2):先提公因式,再利用平方差公式.注意分解因式要彻底.12.x +213.>14.2:15.±1616.2:∵P =3xy -8x +1,Q =x -2xy -2,∴3P -2Q =3(3xy -8x +1)-2(x -2xy -2)=7.∴9xy -24x +3-2x +4xy +4=7,∴13xy -26x =0,即13x (y -2)=0.∵x ≠0,∴y -2=0.∴y =2.17.4y (答案不唯一)18.70三、19.解:(1)原式=ab (a -c ).(2)原式=4a 2-4ab +b 2+8ab=4a 2+4ab +b 2=(2a +b )2.22⎤21⎡1114⎛⎫1⎛⎫22222(3)原式=(m -m )+2·(m -m )·+ ⎪=(m -m +)=⎢ m -⎪⎥=(m -).4⎝4⎭422⎭⎦⎣⎝m 2+n 22-mn =m 2+n 2-2mn (m -n )2(-2)22=2=2=2.20.解:(1)原式=(x +7)(4a 2-3).当a =-5,x =3时,(x+7)·(4a2-3)=(3+7)×[4×(-5)2-3]=970.(2)原式=[(2x-3y)+(2x+3y)]·[(2x-3y)-(2x+3y)]11=-24xy.当x=,y=时,68111-24xy=-24××=-.68221.解:∵a2+b2+2a-4b+5=0,∴(a2+2a+1)+(b2-4b+4)=0,即(a+1)2+(b-2)2=0.∴a+1=0且b-2=0.∴a=-1,b=2.∴2a2+4b-3=2×(-1)2+4×2-3=7.22.解:a2+b2-4a-6b+13=(a-2)2+(b-3)2=0,故a=2,b=3.当腰长为2时,则底边长为3,周长=2+2+3=7;当腰长为3时,则底边长为2,周长=3+3+2=8.所以这个等腰三角形的周长为7或8.23.解:(1)草坪的面积是(a2-4b2)m2.(2)当a=84,b=8时,草坪的面积是a2-4b2=(a+2b)(a-2b)=(84+2×8)·(84-2×8)=100×68=6 800(m2),所以种这块草坪共需投资5×6 800=34 000(元).24.解:观察猜想x+p;x+q说理验证x(x+p)+q(x+p);x+p;x+q尝试运用x2-8x+15=x2+(-8x)+15=x2+(-3-5)x+(-3)×(-5)=(x-3)(x-5).第二章测试卷一、选择题(每题3分,共30分)1.下列式子是分式的是()A.a -b25+y B.πx +3C.xD.1+x x 2-12.如果分式的值为0,那么x 的值是()2x +2A.1B.0C.-1D.±1x +23.函数y =的自变量x 的取值范围是()xA.x ≥-2B.x ≥-2且x ≠0C.x ≥0D.x >0a +2a -b 4a 14.分式:①,②,③,④,其中最简分式有()a 2+3a 2-b 212(a -b )x -2A.1个B.2个C.3个D.4个5.下列各式中,正确的是()-3x 3x a +b -a +b -a -b a -b a a A.-=B.-= C.=D.-=5y -5yc c c c b -a a -b 346.分式方程=的解是()x x +1A.x =-1B.x =1C.x =2D.x =3a 2-2a +1⎛1⎫7.当a =2时,计算÷ -1⎪的结果是()a 2⎝a ⎭3A.23B.-21C.2321D.-28.对于非零的两个实数a ,b ,规定a *b =-,若5*(3x -1)=2,则x 的值为()b a5A.63B.42C.31D.-69.若分式方程x x -1-1=有增根,则m 的值为()(x -1)(x +2)B.1C.1或-2D.3mA.0或310.某次列车平均提速20 km/h,用相同的时间,列车提速前行驶400 km,提速后比提速前多行驶100 km,设提速前列车的平均速度为x km/h,下列方程正确的是()400+100400400-100400400+100400400-100A.=B.=C.=D.=x x +20x x -20x x -20x x +20二、填空题(每题3分,共24分)400x y 11.与的最简公分母是________.6ab 29a 2bc x 2y ⎛y ⎫12.计算·÷ -⎪的结果是________.y x ⎝x ⎭a -2113.若x =1是分式方程-=0的根,则a =________.x x -21314.若代数式和的值相等,则x =________.x -22x +115.关于x 的分式方程mx -1+3=1的解为正数,则m 的取值范围是________.1-x 116.已知a -5a +1=0,则a +2=________.22a 111117.数学家们在研究15,12,10这三个数的倒数时发现:-=-.因此12151012就将具有这样性质的三个数称为调和数.如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x >5),则x =________.18.某自来水公司水费计算办法如下:若每户每月用水不超过5 m 3,则每立方米收费1.5元,若每户每月用水超过5 m 3,则超出部分每立方米收取较高的费2用.1月份,张家用水量是李家用水量的,张家当月水费是17.5元,李家当3月水费是27.5元,则超出5 m 3的部分每立方米收费________元.三、解答题(19~21题每题10分,其余每题12分,共66分)19.计算:(1)2a 1-;a 2-9a -3⎛11⎫a2-b2(2) -⎪÷.a b ab⎝⎭x2-4x+4⎛2⎫20.先化简,再求值:÷ -1⎪,其中x=2- 2.x⎝x⎭21.解分式方程:23x+14(1)=;(2)+=1.x x+2x-1x2-122.用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A 方法:剪6个侧面;B 方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x 张用A 方法,其余用B 方法.(1)用含x 的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,求做出三棱柱盒子的个数.23.阅读下面的材料,解答后面的问题.x -14x解方程:-=0.x x -1x -14解:设y =,则原方程可化为y -=0,方程两边同时乘y ,得y 2-4=0,x y解得y 1=2,y 2=-2.经检验,y 1=2,y 2=-2都是方程y -=0的解.4y x -1x -11当y =2时,=2,解得x =-1;当y =-2时,=-2,解得x =.x x 31经检验,x 1=-1,x 2=都是原分式方程的解.故原分式方程的解为x 1=-1,31x 2=.3这种解分式方程的方法称为换元法.问题:x -1x x -1(1)若在方程-=0中,设y =,则原方程可化为______________;4x x -1x (2)若在方程x -14x +4x -1-=0中,设y =,则原方程可化为_____________;x +1x -1x +1x -13(3)模仿上述换元法解方程:--1=0.x +2x -124.华联商场预测某品牌衬衫能畅销,先用了8万元购入这种衬衫,面市后果然该品牌衣衫供不应求.于是商场又用了17.6万元购入第二批这种衬衫,所购数量是第一批购入量的2倍,但单价贵了4元.商场销售这种衬衫时每件定价都是58元,最后剩下的150件按定价的八折销售,很快售完.(1)第一批购入的衬衫价格是多少?(2)销售这两批衣衫,华联商场一共盈利多少元?答案一、1.C 2.A3.B4.B5.D6.D7.D38.B:根据题意得-3x -1233=2,解得x =.经检验x =是原方程的解.故选B.5449.D 10.A2x 二、11.18a 2b 2c 12.-ya -2113.1:∵x =1是分式方程-=0的根,x x -21∴-=0.11-2解得a =1.14.715.m >2且m ≠316.23:由a 2-5a +1=0可知a ≠0,1所以a +=5.a -2a⎛1⎫2所以a +2= a +⎪-2=52-2=23.a ⎝a ⎭1111117.15:由题意可知-=-,解得x =15.5x 35经检验,x =15是该方程的根.18.2:设超出5 m 3的部分每立方米收费a 元,17.5-1.5×5⎛27.5-1.5×5⎫2+5⎪×,由题意得+5=a a ⎝⎭3解得a =2.经检验a =2是原方程的根.三、19.解:(1)原式22a a+3=-(a+3)(a-3)(a+3)(a-3)a-3=(a+3)(a-3)1=.a+3(2)原式b-a ab=·ab(a+b)(a-b)a-b ab=-·ab(a+b)(a-b)1=-.a+bx2-4x+4⎛2⎫20.解:÷ -1⎪x⎝x⎭(x-2)22-x=÷x x(2-x)2x=·x2-x=2-x.当x=2-2时,2-x=2-(2-2)= 2.21.解:(1)方程两边都乘x(x+2),得2(x+2)=3x,解得x=4.检验:当x=4时,x(x+2)≠0,所以原分式方程的解为x=4.(2)方程两边都乘(x+1)(x-1),得(x+1)2+4=(x+1)·(x-1),解得x=-3.检验:当x=-3时,(x+1)·(x-1)≠0,所以原分式方程的解为x =-3.22.解:(1)裁剪时x 张用A 方法,则裁剪时(19-x )张用B 方法.∴侧面的个数为6x +4(19-x )=2x +76,底面的个数为5(19-x )=95-5x .2x +763(2)由题意,得=.95-5x 2解得x =7.经检验,x =7是原方程的根.2x +762×7+76==30.33故做出的三棱柱盒子的个数是30.y 123.解:(1)-=0.4y(2)y -=0.4y (3)原方程化为x -1x +2-=0,x +2x -1设y =x -1,x +21则原方程可化为y -=0.y 方程两边同时乘y ,得y 2-1=0,解得y 1=1,y 2=-1.1经检验,y 1=1,y 2=-1都是方程y -=0的解.yx -1当y =1时,=1,该方程无实数解,x +2x-1当y=-1时,=-1,x+21解得x=-,21经检验,x=-是原分式方程的解.21故原分式方程的解为x=-.224.解:(1)设第一批购入的衬衫价格为x元/件,80 000176 000根据题意,得×2=.x x+4解得x=40.经检验,x=40是原方程的解.故第一批购入的衬衫的价格为40元/件.(2)由(1)知,第一批购入了80 000÷40=2 000(件).在这两笔生意中,华联商场共盈利:2 000×(58-40)+(2000×2-150)×(58-44)+150×(58×0.8-44)=90 260(元).故华联商场共盈利90 260元.第三章测试卷一、选择题(每题3分,共30分)1.有一组数据:1,3,3,4,5.这组数据的众数为()A.1B.3C.4D.52.小明记录了当地今年元月份某五天的最低温度(单位:℃):1,2,0,-1,-2.这五天最低温度数据的平均数是()A.1B.2C.0D.-13.某校为纪念世界反法西斯战争胜利70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.8,9,则这5个数据的中位数是()A.9.7B.9.5C.9D.8.84.某制鞋厂准备生产一批男皮鞋,经抽样(120名中年男子)调查得知,所需鞋号和人数如下:鞋号/cm24人数824.515252025.525263026.520272现求出鞋号的中位数是25.5 cm,众数是26 cm,平均数约是25.5 cm.下列说法正确的是()A.因为需要鞋号为27 cm的人数太少,所以鞋号为27 cm的鞋可以不生产B.因为平均数约是25.5 cm,所以这批男鞋可以一律按鞋号为25.5 cm的鞋生产C.因为中位数是25.5 cm,所以25.5 cm的鞋的生产量应占首位D.因为众数是26 cm,所以26 cm的鞋的生产量应占首位5.某校规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的这三项成绩(百分制)分别为95分,90分,88分,则小彤这学期的体育成绩为()A.89分B.90分C.92分D.93分6.某校要从四名学生中选拔一名参加市“风华小主播”大赛,将多轮选拔赛的成绩的数据进行分析得到每名学生的平均成绩x及其方差s2如下表所示,如果要选择一名成绩高且发挥稳定的学生参赛,那么应选择的学生是()A.甲B.乙C.丙D.丁7.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是()A.4,4B.3,4C.4,3D.3,38.某小组5位同学参加实验操作考试(满分20分)的平均成绩是16分,其中三位男生成绩的方差为6,两位女生的成绩分别为17分、15分,则这5位同学成绩的标准差为()A.3B.2 C.6D.69.如果一组数据a1,a2,a3,…,an的方差是2,那么一组新数据2a1,2a2,2a3,…,2an的方差是()A.2B.4C.8D.1610.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁.经重新计算后,正确的平均数为a岁,中位数为b岁.则下列结论中正确的是()A.a<13,b=13B.a<13,b<13C.a>13,b<13D.a>13,b=13二、填空题(每题3分,共24分)11.高一新生入学军训射击训练中,小张同学的射击成绩(单位:环)为5,7,9,10,7,则这组数据的众数是________.12.一组数据-1,0,1,2,x的众数是2,则这组数据的平均数是________.13.已知一组数据0,1,2,2,x,3的平均数是2,则这组数据的方差是________.14.某校男子足球队队员的年龄分布如图所示,则这些队员的年龄的中位数是________.15.某超市购进一批大米,大米的标准包装为每袋30k g,售货员任选6袋进行了称重检验,超过标准质量的记作“+”,不足标准质量的记作“-”,他记录的结果是+0.5,-0.5,0,-0.5,-0.5,+1,那么这6袋大米质量数据的平均数和极差分别是________.16.甲、乙两地9月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温方差大小关系为s2甲__________s2乙(填“>”或“<”).17.若一组数据6,9,11,13,11,7,10,8,12的中位数是m,众数是n,⎧mx-10y=10,则关于x,y的方程组⎨的解是________.⎩10x-ny=618.学校篮球队五名队员的年龄(单位:岁)分别为17,15,16,15,17,其方差为0.8,则三年后这五名队员年龄的方差为________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.一个电梯的最大载质量是1 000 kg,现有平均体重为80 kg的11人和平均体重为70 kg的2人,他们能否一起搭乘这个电梯?他们的平均体重是多少千克?(结果精确到0.1 kg)20.八年级(2)班组织了一场经典诵读比赛,甲、乙两队各10人的比赛成绩(10分制,单位:分)如下表:甲乙71088977910810109101091010109(1)甲队成绩的中位数是________分,乙队成绩的众数是________分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是________队.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组的各项得分(单位:分)如下表:小组甲乙丙研究报告小组展示答辩918179807483788590(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?22.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲乙95838292888081959390798084857875(1)请你计算这两组数据的平均数;(2)现要从中选派一人参加操作技能比赛,从稳定性的角度考虑,你认为选派谁参加比较合适?请说明理由.523.已知一组数据x 1,x 2,…,x 6的平均数为1,方差为3.(1)求x 21+x 22+…+x 26的值;(2)若在这组数据中加入另一个数据x 7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示).24.荆门市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图如图所示,成绩统计分析表如表所示,其中七年级代表队得6分、10分的选手人数分别为a,b.队别七年级八年级平均分/分中位数/分方差6.77.1m7.53.411.69合格率90%80%优秀率n10%(1)请依据图表中的数据,求a,b的值;(2)直接写出表中的m,n的值;(3)有人说:“七年级代表队的合格率、优秀率均高于八年级代表队,所以七年级代表队的成绩比八年级代表队好.”但也有人说:“八年级代表队的成绩比七年级队好.”请你给出两条支持八年级代表队成绩好的理由.答案一、1.B 2.C3.C4.D5.B 6.B 7.D 8.B 9.C 10.A5二、11.712.0.813.314.15岁15.30;1.516.>⎧x =5,17.⎨:这组数据按从小到大的顺序排列为6,7,8,9,10,11,11,12,⎩y =413.由题意得m =10,n =11.⎧10x -10y =10,由⎨⎩10x -11y =6⎧x =5,解得⎨⎩y =4.18.0.8三、19.解:80×11+70×2=1 020(kg),1 020 kg>1 000 kg ,所以他们不能一起搭乘这个电梯.他们的平均体重为1 020÷(11+2)≈78.5(kg).20.解:(1)9.5;10(2)x 乙=10+8+7+9+8+10+10+9+10+9=109(分).1s 2乙=10×[(10-9)2+(8-9)2+…+(9-9)2]=1.(3)乙21.解:(1)由题意可得,91+80+78x 甲==83(分),381+74+85x 乙==80(分),379+83+90x 丙==84(分).3∵x 丙>x 甲>x 乙,∴从高分到低分确定小组的排名顺序为丙、甲、乙.(2)甲组的成绩是91×40%+80×30%+78×30%=83.8(分),乙组的成绩是81×40%+74×30%+85×30%=80.1(分),丙组的成绩是79×40%+83×30%+90×30%=83.5(分).∵83.8>83.5>80.1∴甲组的成绩最高.122.解:(1)x 甲=8×(95+82+88+81+93+79+84+78)=85;1x 乙=8×(83+92+80+95+90+80+85+75)=85.这两组数据的平均数都是85.(2)(答案不唯一)选派甲参加比较合适.1理由如下:由(1)知x 甲=x 乙=85,则s 甲=8×[(78-85)2+(79-85)2+(81-85)221+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=8×[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41,∴s 2甲<s 2乙,∴甲的成绩较稳定,∴选派甲参加比较合适.23.解:(1)∵数据x 1,x 2,…,x 6的平均数为1,∴x 1+x 2+…+x 6=1×6=6.5又∵方差为3,1∴6[(x 1-1)2+(x 2-1)2+11…+(x 6-1)2]=6[x 21+x 22+…+x 26-2(x 1+x 2+…+x 6)+6]=6(x 21+x 22+…+x 26-2×156+6)=6(x 21+x 22+…+x 26)-1=3,∴x 21+x 22+…+x 26=16.(2)∵数据x 1,x 2,…,x 7的平均数为1,∴x 1+x 2+…+x 7=1×7=7.∵x 1+x 2+…+x 6=6,15∴x 7=1.∵6[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=3,∴(x 1-1)2+(x 2-1)2+…+(x 6-1)2=10,1110∴s 2=7[(x 1-1)2+(x 2-1)2+…+(x 7-1)2]=7[10+(1-1)2]=7.24.解:(1)依题意得⎧3×1+6a +7×1+8×1+9×⎨1+10b =6.7×10,⎩a +1+1+1+b =90%×10,⎧a =5,解得⎨⎩b =1.(2)m =6,n =20%.(3)(答案不唯一)①八年级代表队的平均分高于七年级代表队;②八年级代表队的成绩比七年级代表队稳定.第四章测试卷一、选择题(每题3分,共30分)1.下面的每组图形中,平移左图可以得到右图的一组是()2.下面的图形是天气预报使用的图标,从左到右分别代表“霾”“浮尘”“扬沙”和“阴”,其中是中心对称图形的是()3.下列图形中,既是轴对称图形又是中心对称图形的是()4.将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是() A.第一象限B.第二象限C.第三象限D.第四象限5.如图,在平面直角坐标系中,△ABC绕旋转中心顺时针旋转90°后得到△A′B′C′,则其旋转中心的坐标是()A.(1.5,1.5)B.(1,0)C.(1,-1)D.(1.5,-0.5)6.如图,在Rt△ABO中,∠ABO=90°,OA=2,AB=1,把Rt△ABO绕着原点逆时针旋转90°,得△A′B′O,那么点A′的坐标为()A.(-3,1)B.(-2,3)C.(-1,3)D.(-3,2)7.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连接对称点的线段都被对称中心平分C.在平面直角坐标系中,一个点向右平移a个单位长度,则该点的纵坐标加aD.在平移和旋转图形中,对应角相等,对应线段相等且平行8.如图,在正方形ABCD中,点E为DC边上的点,连接BE,若△BCE绕C 点按顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD 的度数为()A.10°B.15°C.20°D.25°9.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC平移的距离为()A.4B.5C.6D.810.如图所示的四个图形都可以看成是由一个“基本图案”经过旋转所形成的,则旋转角相同的图形为()A.①②B.①④C.②④D.③④二、填空题(每题3分,共24分)11.如图,已知△ABD沿BD方向平移到了△FCE的位置,若BE=12,CD=5,则平移的距离是________.12.在平面直角坐标系中,将点P(-2,1)先向右平移3个单位长度,再向上平移4个单位长度,得到点P′,则点P′的坐标是________.13.在平面直角坐标系中,点(a,5)关于原点对称的点的坐标是(1,b+1),则a +b的值为________.14.等边三角形至少绕中心旋转________才能与自身重合.15.如图,△ABC的顶点分别为A(3,6),B(1,3),C(4,2).若将△ABC绕点B 顺时针旋转90°,得到△A′BC′,则点A的对应点A′的坐标为________.16.如图,把边长为3 cm的正方形ABCD先向右平移1 cm,再向上平移1 cm,得到正方形EFGH,则阴影部分的面积为________.17.如图,在△AOB中,AO=AB,点A的坐标是(4,4),点O的坐标是(0,0),将△AOB平移得到△A′O′B′,使得点A′在y轴上,点O′,B′在x轴上,则点O′的坐标是________.18.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后得到△AFB,连接EF,则有下列结论:①△AED≌△AEF;②BE+DC=DE;③S△ABE +S△ACD>S△AED;④BE2+DC2=DE2.其中正确的有________(填入所有正确结论的序号).三、解答题(19~21题每题10分,其余每题12分,共66分)19.如图,在正方形网格中,△ABC为格点三角形(即三角形的各顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,得到△A1B2C2,在网格中画出旋转后的△A1B2C2.20.如图,在Rt△ABC中,∠ACB=90°,AC=4 cm,BC=3 cm,△ABC沿AB 方向平移至△DEF,若AE=8 cm,BD=2 cm.求:(1)△ABC沿AB方向平移的距离;(2)四边形AEFC的周长.21.如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF =CE.求证:FD=EB.22.实践与操作:现有如图①所示的两种瓷砖,请从这两种瓷砖中各选2块,拼成一个新的正方形地板图案,且拼铺的图案是轴对称图形或中心对称图形(如图②所示).(1)分别在图③、图④中各设计一种与图②不同的拼法,使其中的一个是轴对称图形而不是中心对称图形,另一个是中心对称图形而不是轴对称图形;(2)分别在图⑤、图⑥中各设计一个拼铺图案,使这两个图案都既是轴对称图形又是中心对称图形,且互不相同(两个图案之间若能通过轴对称、平移、旋转变换相互得到,则视为相同图案).23.如图①,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF,BE.(1)线段AF和BE有怎样的数量关系?请说明理由;(2)将图①中的△CEF绕点C旋转一定的角度,得到图②,(1)中的结论还成立吗?作出判断并说明理由.24.如图,在平面直角坐标系xOy中,已知Rt△DOE中,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5,∠ACB+∠ODE=180°,∠B=∠OED,BC=DE.(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN(不写作法,保留作图痕迹);(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM的重合,画出△A′B′C′(不写作法,保留作图痕迹);(3)求OE的长.答案一、1.D 2.A 3.B 4.D 5.C6.C:在Rt△ABO中,∠ABO=90°,OA=2,AB=1,所以OB′=OB=3,A′B′=AB=1.因为点A′在第二象限,所以点A′的坐标为(-1,3).故选C.7.B8.B9.A:∵点A,B的坐标分别为(1,0),(4,0),∴AB=3.又∵∠CAB=90°,BC=5,∴AC=4.当点C落在直线y=2x-6上时,令2x-6=4,解得x=5,故线段BC平移的距离为5-1=4.10.D二、11.3.512.(1,5)13.-714.120°15.(4,1)16.4 cm217.(-4,0)18.①③④:由旋转的性质知:AF=AD,BF=CD,∠FBA=∠DCA,∠F AD =∠BAC=90°,∴∠F AE=∠EAD=45°.又AE=AE,∴△AED≌△AEF.∴DE=EF.∵∠EBF=∠FBA+∠ABE=∠ACD+∠ABE=90°,∴BE2+BF2=BE2+DC2=EF2=DE2.S△ABE +S△ACD=S△ABE+S△AFB>S△AED,BE+DC=BE+FB>EF=ED,∴正确的结论有①③④.三、19.解:(1)如图.(2)如图.20.解:(1)∵△ABC沿AB方向平移至△DEF,∴AD=BE.∵AE=8 cm,BD=2 cm,8-2∴AD==3(cm),2即△ABC沿AB方向平移的距离是3 cm.(2)由平移的特征及(1)得,CF=AD=3 cm,EF=BC=3 cm.又∵AE=8 cm,AC=4 cm,∴四边形AEFC的周长=AE+EF+CF+AC=8+3+3+4=18(cm).21.证明:∵△ABO与△CDO关于O点中心对称,∴OB=OD,OA=OC.∵AF=CE,∴OF=OE.在△DOF和△BOE中,OD=OB,∠DOF=∠BOE,OF=OE,∴△DOF≌△BOE(SAS).∴FD=EB.22.解:(1)如图①是轴对称图形而不是中心对称图形.如图②是中心对称图形而不是轴对称图形.(2)如图③、图④、图⑤既是轴对称图形又是中心对称图形(画出其中的两个即可).:本题答案不唯一.23.解:(1)AF=BE.理由如下:∵△ABC和△CEF是等边三角形,∴AC=BC,CF=CE,∠ACF=∠BCE=60°.在△AFC与△BEC中,⎧AC=BC,⎨∠ACF=∠BCE,⎩CF=CE,∴△AFC≌△BEC(SAS).∴AF=BE.(2)成立.理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CF=CE,∠ACB=∠FCE=60°.∴∠ACB-∠FCB=∠FCE-∠FCB,即∠ACF=∠BCE.在△AFC与△BEC中,⎧AC=BC,⎨∠ACF=∠BCE,⎩CF=CE,∴△AFC≌△BEC(SAS).∴AF=BE.24.解:(1)△OMN如图所示.(2)△A′B′C′如图所示.(3)设OE=x,则ON=x,过点M作MF⊥A′B′于点F,如图所示.由作图可知,∠ONC′=∠OED,∠A′B′C′=∠B,∵∠B=∠OED,∴∠ONC′=∠A′B′C′.∴B′C′平分∠A′B′O.∵C′O⊥OB′,易得△FB′C′≌△OB′C′.∴B′F=B′O=OE=x,FC′=OC′=OD=3.∵A′C′=AC=5,∴A′F=A′C′2-C′F2=52-32=4,∴A′B′=x+4,易知A′O=5+3=8.在Rt△A′B′O中,A′O2+B′O2=A′B′2,即82+x2=(4+x)2,解得x=6.∴OE=6.第五章测试卷一、选择题(每题3分,共30分)1.在▱ABCD中,∠A=50°,则∠C等于()A.130°B.40°C.50°D.60°2.若n边形的内角和是1 080°,则n的值是()A.6B.7C.8D.93.下列不能判定一个四边形是平行四边形的条件是()A.两组对角分别相等B.两组对边分别相等C.一组对边平行且相等D.一组对边平行,另一组对边相等4.如图,▱ABCD的对角线AC,BD相交于点O,则下列结论中错误的是() A.AD=BC B.OA=OC C.AC⊥BD D.▱ABCD是中心对称图形5.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为() A.30°B.36°C.38°D.45°6.如图,在△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20B.18C.14D.137.已知▱ABCD的对角线相交于点O,点O到AB的距离为1,且AB=6,BC=4,则点O到BC的距离为()1A.2B.13C.2D.28.如图,在▱ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,则下列结论不一定成立的是()A.∠E=∠CDF B.EF=DF C.AD=2BF D.BE=2CF9.如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,则△ABC的周长是()A.28B.32C.18D.2510.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF,CF,EF=FC,则下列结论中一定成立的是()1①∠DCF=2∠BCD;②EC2+CD2=4EF2;③∠DFE=3∠AEF;④S△BEC <2S△CEF.A.①②③B.②③④C.①②④D.①③④二、填空题(每题3分,共24分)11.已知一个正多边形的一个外角为36°,则这个正多边形的边数是________.12.如图,在四边形ABCD中,对角线AC,BD交于点O,AD∥BC,请添加一个条件:______________,使四边形ABCD为平行四边形(不添加任何辅助线).13.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长为________.14.如图,▱ABCD的周长为36,对角线AC,BD相交于点O.E是CD的中点,BD=12,则△DOE的周长为________.15.如图,∠A+∠B+∠C+∠D+∠E+∠F=________.16.如图,在▱ABCD中,∠ABC=60°,E,F分别在CD和BC的延长线上,AE ∥BD,EF⊥BC,EF=3,则AB=________.17.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,∠EAF=45°,且AE+AF=22,则▱ABCD的周长是________.18.如图,在▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F处.若△FDE的周长为8,△FCB的周长为22,则FC的长为________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.如图,在▱ABCD中,AE⊥BC,交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:GD=CD.20.一个多边形的内角和与它某一外角的度数的总和为1 350°,试求这个多边形的边数及外角的度数.21.如图,在ABCD中,AC交BD于点O,点E,F分别是OA,OC的中点,连接BE,DF.请判断线段BE,DF的关系,并证明你的结论.22.如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.求证:(1)AE=AF;1(2)BE=(AB+AC).223.如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连接AC,AD,CE,AB=AC.(1)求证:△BDA≌△AEC;(2)若∠B=30°,∠ADC=45°,BD=10,求ABDE的面积.(提示:=53+5)10 3-124.分别以ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形ABE,等腰直角三角形CDG,等腰直角三角形ADF.(1)如图①,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF与EF的数量关系和位置关系(只写结论,不需证明);(2)如图②,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,请给出证明;若不成立,请说明理由.答案一、1.C2.C3.D4.C5.B6.C 117.C :设点O 到BC 的距离为x ,易知S △OAB =S △OBC ,∴2×1×6=2×x ×4.解得x3=2.故选C.8.D9.D :如图,延长线段BN 交AC 于点E .∵AN 平分∠BAC ,∴∠BAN =∠EAN .∵BN ⊥AN ,∴∠ANB =∠ANE =90°.又∵AN =AN ,∴△ABN ≌△AEN .∴AE =AB =6,BN =EN .又∵点M 是BC 的中点,∴MN 是△BCE 的中位线.∴CE =2MN =2×1.5=3.∴△ABC 的周长是AB +BC +AC =6+10+6+3=25.故选D .10.D :①∵点F 是AD 的中点,∴AF =FD .∵四边形ABCD 为平行四边形,∴AD ∥BC ,AB ∥CD ,AB =CD .在ABCD 中,AD =2AB ,∴AF =FD =CD .∴∠DFC =∠DCF .∵AD ∥BC ,∴∠DFC =∠BCF ,1∴∠DCF =∠BCF =2∠BCD .故①正确;②延长EF,交CD的延长线于点M,∵AB∥CD,∴∠A=∠MDF,∠AEF=∠M.又∵AF=DF,∴△AEF≌△DMF.∴EF=MF.又∵CE⊥AB,AB∥CD,∴CE⊥CM.∴∠ECM=90°.在Rt△ECM中,有EC2+CM2=EM2.又∵EM=EF+MF=2EF,∴EC2+CM2=4EF2.而CM>CD.故②错误;③设∠FEC=x,∵EF=FC,∴∠FCE=∠FEC=x.∴∠DFC=∠DCF=90°-x,∠EFC=180°-2x.∴∠DFE=90°-x+180°-2x=270°-3x.∵∠AEF=90°-x,∴∠DFE=3∠AEF.故③正确;④∵EF=MF,∴S△EFC =S△CFM.∵MC>BE,∴S△BEC <2S△EFC.故④正确.故选D.二、11.1012.AD=BC(答案不唯一)13.2014.1515.360°16.117.8:由题意易得△ABE,△ADF都是等腰直角三角形,∴AB=BE2+AE2=2AE.同理AD=2AF.∴AB+AD=2(AE+AF)=2×22=4.∴▱ABCD的周长为2(AB+AD)=8.18.7:△FDE的周长=FD+DE+EF,△FCB的周长=FC+BC+BF.由折叠知EF=AE,BF=AB,所以▱ABCD的周长=△FDE的周长+△FCB的周长=30.在ABCD中,AD=BC,AB=CD,所以BC+BF=BC+AB=15.所以FC=△FCB的周长-15=7.三、19.证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D.∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°.又∵BE=DF,∴△ABE≌△GDF.∴AB=GD.又∵AB=CD,∴GD=CD.20.解:∵1 350°=180°×7+90°,多边形的一个外角大于0°小于180°,∴多边形的这一外角的度数为90°,多边形的边数为7+2=9.21.解:BE∥DF.理由如下:如图,连接DE,BF.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵E,F分别是OA,OC的中点,∴OE=OF.∴四边形BFDE是平行四边形.∴BE∥DF.22.证明:(1)∵AD平分∠BAC,∴∠BAD=∠CAD.∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE.∴∠AEF=∠AFE.∴AE=AF.(2)如图,过点C作CG∥EM,交BA的延长线于点G.易得∠AGC =∠AEF ,∠ACG =∠AFE .由(1)知∠AEF =∠AFE ,∴∠AGC =∠ACG .∴AG =AC .11∵M 为BC 的中点,∴BM =CM .∵EM ∥CG ,∴BE =EG =2BG =2(AB +AG )1=2(AB +AC ).23.(1)证明:∵AB =AC ,∴∠B =∠ACB .又∵四边形ABDE 是平行四边形,∴AE ∥BD ,AE =BD .∴∠ACB =∠CAE =∠B .在△BDA 和△AEC 中,⎧AB =CA ,⎨∠B =∠CAE ,⎩BD =AE ,∴△BDA ≌△AEC (SAS).(2)解:过点A 作AG ⊥BC ,垂足为点G .设AG =x ,在Rt △AGD 中,∵∠ADG =45°,∴DG =AG =x .在Rt △AGB 中,∵∠B =30°,∴AB =2AG =2x .∴BG =3x .∵BD =10,∴BG -DG =10,即3x -x =10.解得x ==503+50.24.解:(1)GF =EF ,GF ⊥EF .10=53+5.∴S ABDE =BD ·AG =10×(53+5)3-1(2)成立.证明如下:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠DAB+∠ADC=180°,即∠BAE+∠DAF+∠EAF+∠ADF+∠CDF=180°.∵△ABE,△CDG,△ADF都是等腰直角三角形,AB=CD,∴AE=BE=DG=CG,DF=AF,∠DAF=∠ADF=∠BAE=∠CDG=45°.∴∠EAF+∠CDF=45°.∵∠CDF+∠GDF=45°,∴∠GDF=∠EAF.在△GDF和△EAF中,⎧DF=AF,⎨∠GDF=∠EAF,⎩DG=AE,∴△GDF≌△EAF(SAS).∴GF=EF,∠GFD=∠EF A.∴∠GFD+∠GF A=∠EF A+∠GF A.∴∠GFE=∠AFD=90°.∴GF⊥EF.。

八年级数学上册第三章数据的分析达标检测卷鲁教版五四制

八年级数学上册第三章数据的分析达标检测卷鲁教版五四制

第三章达标检测卷一、选择题(本大题共12道小题,每小题3分,满分36分)1.某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、4元、3元、2元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )A.2.8元B.2.85元C.3.15元D.3.55元2.如图为某队员射击10次的成绩统计图,该队员射击成绩的众数与中位数分别是( ) A.8环,7.5环 B.8环,7环 C.7环,7.5环 D.7环,7环3.一组数据4,5,x,7,9的平均数为6,则这组数据的众数为( )A.4 B.5 C.7 D.94.一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,则该组数据的平均数是( )A.3.6 B.3.8或3.2 C.3.6或3.4 D.3.6或3.25.若数据2,4,x,9,8的平均数是5,则这组数据的中位数是( )A.2 B.4 C.8 D.96.2019年9月29日,中国女排以11连胜的成绩夺得女排世界杯冠军,“女排精神”永远让中国人热血沸腾.某实验学校女子排球队12名队员的年龄分布如图所示,则这12名队员年龄的众数、平均数分别是( )A.15岁,14岁 B.15岁,15岁 C.15岁,16岁 D.14岁,15岁7.八年级某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如下表:捐款金额/元 5 10 20 50 100人数 6 17 14 8 5A.27.6元,10元,20元 B.27.6元,20元,10元C.37元,10元,10元 D.37元,20元,10元8.如果将一组数据中的每个数都减去5,那么所得的一组新数据的( ) A.众数改变,方差改变 B.众数不变,平均数改变C.中位数改变,方差不变 D.中位数不变,平均数不变9.有11个正整数,平均数是10,中位数是9,众数只有1个是8,问最大的正整数最大为( )A .25B .30C .35D .4010.某唱歌比赛中,评委由专业评审和大众评审组成.选手A 在某一轮比赛中,大众评审给出的平均分为98.03分.若选手的最终得分由专业评审和大众评审两部分组成,其中专业评审打分的平均分占60%,大众评审打分的平均分占40%,若干位专业评审打出的分数如下表,根据表中信息,以下说法错误的是( )A.专业评审共有C .这组数据的平均数和中位数一样 D .选手A 最终得分为98.312分 11.数据3,1,x ,4,5,2的众数与平均数相等,则x 的值是( )A .2B .3C .4D .512.班长调查了三班近10天的数学课堂小测验,在这10天中,小测验不及格人数为0,2,0,3,1,1,0,2,5,1.在这10天中小测验不及格人数的( ) A .中位数为1.5 B .方差为1.5 C .极差为1.5 D .标准差为1.5 二、填空题(本大题共6道小题,每小题3分,满分18分)13.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为________.14.已知一组数据1,3,5,x ,y 的平均数是3,则另一组数据-1,1,3,x -2,y -2的平均数是________.15.某超市购进一批大米,大米的标准包装为每袋30 kg ,售货员任选6袋进行了质量检验,超过标准质量的记为“+”,不足标准质量的记为“-”,他记录的结果是+0.5,-0.5,0,-0.5,-0.5,+1,那么这6袋大米质量数据的平均数和极差分别是________.16.不等式组⎩⎨⎧x +1≥0,2x -9<0的所有整数解的中位数是________.17.有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的平均数为________.18.某鸡腿生产公司的质检人员从两批鸡腿中各随机抽取了6个,记录相应的质量如下表,若甲、乙两个样本数据的方差分别为s 2甲、s 2乙,则s 2甲________s 2乙.(填“>”“=”或“<”)三、解答题(本大题共719.(8分)某单位欲从内部招聘管理人员一名,现对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每名职工只能推荐一人)如图,每得一票记1分.现根据实际需要,单位将笔试、面试、民主评议三项测试成绩按433的比例确定个人成绩,那么谁将被录用?20.(8分)某中学积极倡导阳光体育运动,提高中学生身体素质,开展跳绳比赛,下表为该校八年级(1)班40人参加跳绳比赛的情况,若标准数量为每人每分钟100个.(2)规定跳绳超过标准数量的,每多跳1个加3分;规定跳绳未达到标准数量的,每少跳1个扣1分,若班级跳绳总积分超过250分,便可得到学校的奖励,通过计算说明八年级(1)班能否得到学校的奖励.21.(8分)某校招聘数学教师,本次招聘进行专业技能笔试和课堂教学展示两个项目的考核,这两项考核的满分均为100分,学校将这两个项目的得分按一定的比例计算出总成绩.经统计,参加考核的4名考生的两个项目的得分如下:(1)经过计算,1占总成绩的百分比;(2)若学校录取总成绩最高的考生,通过计算说明4名考生中哪一名考生会被录取?22.(8分)为了了解八年级学生的课外阅读情况,学校随机调查了该年级部分学生在一周内的课外阅读时间,绘制成如下统计表,根据表中信息,回答下列问题:(1)(2)若该校共有300名八年级学生,请你估计该校八年级学生中一周内课外阅读时间不少于3小时的学生人数.23.(8分)下表是某公司25名员工月收入的资料.(2)在(1)中三个集中趋势参数中,你认为用哪一个反映该公司全体员工月收入水平更合适?请说明理由.24.(12分)某社区准备在甲、乙两位射箭爱好者中选出一位参加集训,两人各射了5箭,他们的总成绩相同,甲、乙两人射箭成绩(单位:环)统计表如下.(1)(2)请你从平均数和方差的角度分析,谁将被选中.25.(14分)为了解某品牌A,B两种型号冰箱的销售状况,王明对其专卖店开业以来连续7个月的销售情况进行了统计,并将得到的数据制成了如下的统计表:月份一二三四五六七A型销售量/台10 14 17 16 13 14 14B型销售量/台 6 10 14 15 16 17 20(1)完成下表:平均数中位数方差(结果精确到0.1)A型销售量14台B型销售量14台18.6(2)请你根据7个月的销售情况补充完整折线统计图,并依据折线图的变化趋势,对专卖店今后的进货情况提出建议.答案一、1.C 2.A 3.B 4.C 5.B 6.A 7.B8.C 【点拨】如果将一组数据中的每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变.故选C.9.C 【点拨】∵有11个正整数,平均数是10,∴这11个正整数的和为110.∵中位数是9,众数只有1个是8,∴当11个正整数为1,1,8,8,8,9,9,10,10,11,35时,最大的正整数最大为35.故选C.10.B 【点拨】共有专业评审5+7+5=17(位),故A 正确,不符合题意;这组数据中98.5出现的次数最多,故众数为98.5,故B 错误,符合题意;这组数据的平均数为98×5+98.5×7+99×517=98.5,中位数为98.5,故C 正确,不符合题意;选手A 的最终得分:98.03×40%+98.5×60%=98.312(分),故D 正确,不符合题意.故选B.11.B 【点拨】根据题意得,数据3,1,x ,4,5,2的平均数为(3+1+x +4+5+2)÷6=(15+x )÷6=2+x +36.数据3,1,x ,4,5,2的众数为1或2或3或4或5,∴x =1或2或3或4或5.∵数据3,1,x ,4,5,2的众数与平均数相等,∴2+x +36=1或2或3或4或5,∴x =-9或-3或3或9或15,∴x =3.故选B.12.D 【点拨】将10个数据按从小到大的顺序排列为0,0,0,1,1,1,2,2,3,5,第五个与第六个数都是1,∴中位数是(1+1)÷2=1,故A 错误;∵x =(0+2+0+3+1+1+0+2+5+1)÷10=1.5,∴s 2=[3×(0-1.5)2+2×(2-1.5)2+(3-1.5)2+3×(1-1.5)2+(5-1.5)2]÷10=2.25,故B 错误;∵方差为2.25,∴标准差为1.5,故D 正确;极差为5-0=5,故C 错误.故选D.二、13.84分 14.1 15.30;1.5 16.1.517.4.4 【点拨】根据题意可知,这5个数是1,2,3,8,8,和为8+8+3+2+1=22. ∴平均数为4.4.18.< 【点拨】∵x 甲=70+71×4+726=71(g),x 乙=70×3+71×2+736=4256(g),∴s 2甲=16×[(70-71)2+(72-71)2]=13,s 2乙=16×[⎝ ⎛⎭⎪⎫70-42562×3+⎝⎛⎭⎪⎫71-42562×2+⎝ ⎛⎭⎪⎫73-42562]=4136,∵13<4136,∴s 2甲<s 2乙,故答案为:<.三、19.解:民主测评: 甲:200×25%=50(分); 乙:200×40%=80(分); 丙:200×35%=70(分). 最后成绩:甲:75×4+93×3+50×34+3+3=72.9(分);乙:80×4+70×3+80×34+3+3=77(分);丙:90×4+68×3+70×34+3+3=77.4(分).∵77.4>77>72.9, ∴丙将被录用.20.解:(1)100+-2×6-1×12+4×6+5×10+6×540=102(个),∴八年级(1)班40人一分钟内平均每人跳绳102个.(2)∵(4×6+5×10+6×5)×3-(-2×6-1×12)×(-1)=288(分), 288>250,∴八年级(1)班能得到学校的奖励.21.解:(1)设专业技能笔试得分占总成绩的百分比是x ,根据题意,得 90x +70(1-x )=78, 解得x =40%,∴1-40%=60%.∴专业技能笔试得分和课堂教学展示得分分别占总成绩的百分比是40%,60%. (2)2号考生总成绩为70×0.4+90×0.6=82(分); 3号考生总成绩为86×0.4+80×0.6=82.4(分); 4号考生总成绩为75×0.4+86×0.6=81.6(分). ∵82.4>82>81.6>78, ∴3号考生会被录取. 22.解:(1)平均数为1×12+2×17+3×13+4×5+5×312+17+13+5+3=2.4(时);中位数为2时; 众数为2时.(2)∵300×13+5+312+17+13+5+3=126(名),∴估计该校八年级学生中一周内课外阅读时间不少于3小时的学生有126名.23.解:(1)3 800元; 3 000元(2)用中位数或众数来反映该公司全体员工月收入水平更合适.理由:平均数受极端值45 000元的影响,只有3名员工的工资达到了6 312元,不恰当. 24.解:(1)∵甲、乙总成绩相同, ∴a =9+4+7+4+6-(7+5+7+7)=4. ∵x 甲=x 乙=9+4+7+4+65=6(环),∴s 2甲=15×[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]=3.6,s 2乙=15×[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6;(2)乙将被选中.由(1)得x 甲=x 乙=6(环),即甲、乙两人成绩的平均数相等,而s 2甲=3.6,s 2乙=1.6,即甲的方差大于乙的方差,∴甲的成绩波动较大,即乙将被选中. 25.解:(1)14台;15台;4.3 (2)如图所示.建议:从折线图来看,B 型冰箱的月销售量呈上升趋势,若考虑增长势头,进货时可多进B 型冰箱.。

第三章 数据的分析 单元测试卷-2022-2023学年鲁教版(五四制)八年级数学上册

第三章 数据的分析 单元测试卷-2022-2023学年鲁教版(五四制)八年级数学上册

第三章数据的分析单元测试卷一、选择题(本大题共10小题,共30分。

在每小题列出的选项中,选出符合题目的一项)1.某校举办歌唱比赛,其中三名选手的成绩统计如下表(单位:分):测试成绩测试项目王飞李真林杨唱功989580音乐常识8090100综合知识8090100若唱功、音乐常识、综合知识按6:3:1的加权平均分决定冠军、亚军、季军,则冠军、亚军、季军分别是( )A. 王飞、李真、林杨B. 王飞、林杨、李真C. 李真、王飞、林杨 D. 李真、林杨、王飞2.某校足球队有16名队员,队员的年龄情况统计如下:年龄/岁13141516人数3562则这16名队员年龄的中位数和众数分别是( )A. 14,15B. 15,15C. 14.5,14D. 14.5,153.一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,则该组数据的平均数是( )A. 3.6B. 3.8或3.2C. 3.6或3.4D. 3.6或3.24.人数相等的甲、乙两班学生参加了同一次数学测验,甲、乙两班平均分和方差分别为x甲=82分,x乙=82分,s甲2=245,s乙2=190.那么成绩较为整齐的是( )A. 甲班B. 乙班C. 两班一样整齐D. 无法确定5.某次数学趣味竞赛共有10组题目,某班得分情况如下表.全班40名同学的成绩的中位数和众数分别是( )人数25131073成绩/分5060708090100A. 75分,70分B. 70分,70分C. 80分,80分D. 75分,80分6.为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表:则关于这10名学生周阅读所用时间,下列说法正确的是( )周阅读用时数(小时)45812学生人数(人)3421A. 中位数是6.5B. 众数是12C. 平均数是3.9D. 方差是67.已知一组数据的平均数为a,若在这组数据中添加一个数据a,得到一组新的数据,则下列说法:①平均数不变;②众数不变;③中位数不变;④方差不变;⑤极差不变其中说法正确的有( )A. ①②③⑤B. ①⑤C. ①②④⑤D. ①③④⑤8.若x1,x2,...,x10的平均数为a,x11,x12,...,x30的平均数为b,则x1,x2, (x30)平均数为( )A. 12(a+b) B. 130(a+b) C. 13(a+2b) D. 14(a+4b)9.某校举办体能比赛,其中一项是引体向上,每完成一次记录1分,达到10个即为满分10分.甲、乙两班各出代表10个人,比赛成绩分别如表,根据表格中的信息判断,下列结论正确的是( )甲班成绩78910人数2233乙班成绩78910人数1234A. 甲班成绩的众数是10B. 乙班成绩的中位数是9C. 甲班的成绩的平均数是8.6D. 乙班成绩的方差是210.某班班长统计去年1∼8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图所示的折线统计图,则下列说法正确的是( )A. 平均数是58B. 众数是42C. 中位数是58D. 阅读数量超过40本的有4个月二、填空题(本大题共8小题,共24分)11.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x−(单位:千克)及方差S2(单位:千克 2)如表所示:甲乙丙x−454542S2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是______.12.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,则该班卫生检查的总成绩为分.13.某公司欲招聘一名创作总监,对2名应试者进行了三项素质测试,他们的各项测试成绩如下表所示:测试成绩应试者创新能力计算机能力公关能力甲725088乙857445若将创新能力、计算机能力、公关能力三项得分按5:3:2的比例确定各人的最终得分,则本次招聘中应试者将被录用(填“甲”或“乙”).14.小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,那么根据图中2(填“>”“<”或“=”).的信息,他们成绩的方差的大小关系是s2小明(1)s小林15.某班为了解同学们一周在校参加体育锻炼的时间,随机调查了10名同学,得到如下数据:锻炼时间/ℎ5678人数1432名同学一周在校参加体育锻炼时间的平均数是ℎ.16.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分,已知某候选人三项得分分别为88,72,50,则这位候选人的招聘得分为分.17.某校拟招聘一批优秀教师,其中某位教师笔试、试讲、面试三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,试讲占40%,面试占20%,则该名教师的综合成绩为分.18.已知一组数据x1,x2,⋯,x n的方差是s2,则新的一组数据ax1+1,ax2+1,⋯,ax n+1(a为非零常数)的方差是(用含a和s2的式子表示).三、解答题(本大题共8小题,共66分。

鲁教版五四制 八年级上册 第三章 数据的分析 复习习题 (含答案解析)

鲁教版五四制 八年级上册 第三章 数据的分析 复习习题 (含答案解析)

鲁教版五四制八年级上册第三章数据的分析复习习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知一组数据:6,2,8,,7,它们的平均数是6.则这组数据的中位数是()A.7B.6C.5D.42.某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91B.中位数是90C.众数是94D.极差是203.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A.42、42B.43、42C.43、43D.44、434.某青年排球队12名队员的年龄情况如表:则这个队队员年龄的众数和中位数是()A.19,20B.19,19C.19,20.5D.20,195.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分6.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5B.中位数是5C.平均数是6D.方差是3.67.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为A.7B.5C.4D.38.某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是()A.50和48 B.50和47 C.48和48 D.48和439.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A.平均数B.方差C.众数D.中位数10.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:①甲、乙两班学生汉字输入的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字的个数不少于150为优秀);③甲班成绩的波动比乙班大.上述结论正确的是( )A.①②③B.①②C.①③D.②③11.下列说法正确的是()A.处于中间位置的数为这组数据的中位数B.中间两个数的平均数为这组数据的中位数C.要想了解一批电磁炉的使用寿命,适合采用全面调查的方法D.公司员工月收入的众数为3500元.说明该公司中月收入3500元的员工最多12.体育委员对七(5)班的立定跳远成绩作全面调查,绘成如下统计图,如果把高于0.8米的成绩视为合格,再绘制一张扇形图,“不合格”部分对应的圆心角是().A.50°B.60°C.90°D.80°13.下表是某同学周一至周五每天跳绳个数统计表:则表示“跳绳个数”这组数据的中位数和众数分别是()A.180,160 B.170,160 C.170,180 D.160,20014.已知甲、乙两组数据的平均数都是15,甲组数据的方差s2=1,乙组数据的方差s2=8,下列结论中正确的是( )A.甲组数据比乙组数据的波动大B.乙组数据比甲组数据的波动大C.甲组数据与乙组数据的波动一样大D.甲组数据与乙组数据的波动不能比较15.某青年排球队12名队员年龄情况如下:则这12名队员年龄的众数、中位数分别是()A.20,19B.19,19C.19,20.5D.19,2016.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲2=0.51,S乙2=0.62,S丙2=0.48,S丁2=0.45,则四人中成绩最稳定的是( ) A.甲B.乙C.丙D.丁17.为了参加中学生篮球运动会,一支篮球队准备购买10双运动鞋,各种尺码统计如下表:则这10双运动鞋尺码的众数和中位数分别为()A.40.5;41B.41;41C.40.5;40.5D.41;40.518.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,1519.某单位组织职工开展植树活动,植树量与人数之间的关系如下表,下列说法不正确的是()A.参加本次植树活动共有29人B.每人植树量的众数是4C.每人植树量的中位数是5D.每人植树量的平均数是520.九(2)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16.这组数据的中位数、众数分别为()A.16,16B.10,16C.8,8D.8,1621.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A.94分,96分B.96分,96分C.94分,96.4分D.96分,96. 4分22.10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.﹣2 C.4 D.﹣4二、填空题23.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.24.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是_____.25.有一组数据:3,a,4,6,7,它们的平均数是5,则a=_____,这组数据的方差是_____.26.某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分_____.27.若数据8,4,x,2的平均数是4,则这组数据的中位数为_____.28.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.29.某校把学生的笔试成绩、实践能力和成长记录三项成绩分别按50%、20%和30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩(单位:分)记录如下,学期总评成绩优秀的学生是__________.30.某组数据按从小到大的顺序如下:2、4、8、x、10、14,已知这组数据的中位数是9,则这组数据的众数是_____.31.把9个数按从小到大的顺序排列,其平均数是9,如果这组数中前5个数的平均数是8,后5个数的平均数是10,则这9个数的中位数是____.32.某校随机调查了若干名家长与中学生对带手机进校园的态度统计图(如图),已知调查家长的人数与调查学生的人数相等,则家长反对学生带手机进校园的人数有_____.33.已知某次测验的最高分、最低分、平均分、中位数,同学甲要知道自己的成绩,属于班级中较高的一半还是较低的一半,应利用上述数据中的_________。

鲁教版(五四制)八年级上册第三章数据的分析单元检测

鲁教版(五四制)八年级上册第三章数据的分析单元检测

数据的分析单元检测一、选择题1.关于一组数据:1,5,6,3,5,以下说法错误的选项是〔〕A. 平均数是4B. 众数是5C. 中位数是6D. 方差是3.22.假如一组数据x1,x2,…,x n的方差是4,那么另一组数据x1+3,x2+3,…,x n+3的方差是〔〕A. 4B. 7C. 8D. 193.某校举行“汉字听写比赛〞,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是〔〕A. 10,15B. 13,15C. 13,20D. 15,154.甲乙丙丁平均数〔cm〕185180185180方差 3.6 3.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运发动参加比赛,应该选择〔〕A. 甲B. 乙C. 丙D. 丁5.一组数据:1、2、2、3,假设添加一个数据2,那么发生变化的统计量是〔〕A. 平均数B. 中位数C. 众数D. 方差6.某科普小组有5名成员,身高分别为〔单位:cm〕:160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,以下说法正确的选项是〔〕A. 平均数不变,方差不变B. 平均数不变,方差变大C. 平均数不变,方差变小D. 平均数变小,方差不变7.甲、乙、丙、丁四名射击运发动在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如下图.欲选一名运发动参赛,从平均数与方差两个因素分析,应选〔〕甲乙平均数 9 8方差 1 1甲乙 C. 丙 D. 丁8.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等〞的比赛,全班同学的比赛结果统计如下表:得分〔分〕 60 70 80 90 100人数〔人〕 7 12 10 8 3那么得分的众数和中位数分别为〔〕A. 70分,70分B. 80分,80分C. 70分,80分D. 80分,70分9.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:编号12345方差平均成绩得分3834■3740■37那么被遮盖的两个数据依次是〔〕A. 35,2B. 36,4C. 35,3D. 36,310.某共享单车前a公里1元,超过a公里的,每公里2元,假设要使使用该共享单车50%的人只花1元钱,a应该要取什么数〔〕A. 平均数B. 中位数C. 众数D. 方差二、填空题11.一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,那么这组数据的众数是______.12.甲乙两人进展飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是______〔填“甲〞或“乙〞〕.13.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6假如选拔一名学生去参赛,应派______去.14.某同学在体育训练中统计了自己五次“1分钟跳绳〞成绩,并绘制了如下图的折线统计图,这五次“1分钟跳绳〞成绩的中位数是______ 个.15.一组数据0,1,2,2,x,3的平均数是2,那么这组数据的方差是______.三、解答题〔本大题共4小题,共32.0分〕16.甲、乙、丙三位运发动在一样条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5〔1〕根据以上数据完成下表:平均数中位数方差甲 8 8______乙 8 8 2.2丙 6______ 3〔2〕根据表中数据分析,哪位运发动的成绩最稳定,并简要说明理由;〔3〕比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.17.某跳水队为理解运发动的年龄情况,作了一次年龄调查,根据跳水运发动的年龄〔单位:岁〕,绘制出如下的统计图①和图②.请根据相关信息,解答以下问题:〔1〕本次承受调查的跳水运发动人数为______,图①中m的值为______;〔2〕求统计的这组跳水运发动年龄数据的平均数、众数和中位数.18.中华文化,源远流长,在文学方面,?西游记?、?三国演义?、?水浒传?、?红楼梦?是我国古代长篇小说中的典型代表,被称为“四大古典名著〞,某中学为了理解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部〞的问题在全校学生中进展了抽样调查,根据调查结果绘制成如下图的两个不完好的统计图,请结合图中信息解决以下问题:〔1〕本次调查所得数据的众数是______部,中位数是______部,扇形统计图中“1部〞所在扇形的圆心角为______度.〔2〕请将条形统计图补充完好;〔3〕没有读过四大古典名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,那么他们选中同一名著的概率为______.19.某校举办了一次成语知识竞赛,总分值10分,学生得分均为整数,成绩到达6分及6分以上为合格,到达9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如下图.〔1〕求出以下成绩统计分析表中a,b的值:组别平均分中位数方差合格率优秀率甲组6.8a 3.7690%30%乙组b7.5 1.9680%20%〔2〕小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!〞观察上面表格判断,小英是甲、乙哪个组的学生;〔3〕甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.答案和解析1.【答案】C【解析】【分析】此题考察平均数,中位数,方差的意义.平均数表示一组数据的平均程度.中位数是将一组数据从小到大〔或从大到小〕重新排列后,最中间的那个数〔或最中间两个数的平均数〕;方差是用来衡量一组数据波动大小的量.分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进展判断即可.【解答】解:A.这组数据的平均数是〔1+5+6+3+5〕÷5=4,故本选项正确;B.5出现了2次,出现的次数最多,那么众数是5,故本选项正确;C.把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,那么中位数是5,故本选项错误;D.这组数据的方差是:[〔1-4〕2+〔5-4〕2+〔6-4〕2+〔3-4〕2+〔5-4〕2]=3.2,故本选项正确;应选C.2.【答案】A【解析】解:根据题意得:数据x1,x2,…,x n的平均数设为a,那么数据x1+3,x2+3,…,x n+3的平均数为a+3,根据方差公式:S2=[〔x1-a〕2+〔x2-a〕2+…〔x n-a〕2]=4.那么S2={[〔x1+3〕-〔a+3〕]2+[〔x2+3〕-〔a+3〕]2+…〔x n+3〕-〔a+3〕]}2=[〔x1-a〕2+〔x2-a〕2+…〔x n-a〕2]=4.应选:A.根据题意得:数据x1,x2,…,x n的平均数设为a,那么数据x1+3,x2+3,…,x n+3的平均数为a+3,再根据方差公式进展计算:S2=[〔x1-〕2+〔x2-〕2+…〔x n-〕2]即可得到答案.此题主要考察了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进展计算即可.3.【答案】D【解析】解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,那么这组数据的中位数是15;15出现了2次,出现的次数最多,那么众数是15.应选:D.根据中位数和众数的定义分别进展解答即可.此题考察了中位数和众数,将一组数据从小到大〔或从大到小〕重新排列后,最中间的那个数〔或最中间两个数的平均数〕叫做这组数据的中位数;众数是一组数据中出现次数最多的数.4.【答案】A【解析】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,应选:A.首先比拟平均数,平均数一样时选择方差较小的运发动参加.此题考察了平均数和方差,正确理解方差与平均数的意义是解题关键.5.【答案】D【解析】【分析】此题主要考察的是众数、中位数、方差、平均数,纯熟掌握相关概念和公式是解题的关键.根据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A.原来数据的平均数是2,添加数字2后平均数扔为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数扔为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数扔为2,故C与要求不符;D.原来数据的方差==,添加数字2后的方差==,故方差发生了变化.应选D.6.【答案】C【解析】解:==165,S2原=,==165,S2新=,平均数不变,方差变小,应选:C.根据平均数的意义、方差的意义,可得答案.此题考察了方差,利用方差的定义是解题关键.7.【答案】C【解析】解:丙的平均数==9,丙的方差=[1+1+1=1]=0.4,丁的平均数==8.2,丁的方差为[0.04×5+0.64×2+1.44×2+3.24]=0.76∵丙的方差最小,平均成绩最高,∴丙的成绩最好,应选:C.求出丙的平均数、方差,乙的平均数,即可判断.此题考察方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式,属于根底题.8.【答案】C【解析】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.应选:C.根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.此题为统计题,考察众数与中位数的意义,中位数是将一组数据从小到大〔或从大到小〕重新排列后,最中间的那个数〔最中间两个数的平均数〕,叫做这组数据的中位数,假如中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9.【答案】B【解析】解:∵这组数据的平均数是37,∴编号3的得分是:37×5-〔38+34+37+40〕=36;被遮盖的方差是:[〔38-37〕2+〔34-37〕2+〔36-37〕2+〔37-37〕2+〔40-37〕2]=4;应选:B.根据平均数的计算公式先求出编号3的得分,再根据方差公式进展计算即可得出答案.此题考察方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,那么方差S2=[〔x1-〕2+〔x2-〕2+…+〔x n-〕2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.10.【答案】B【解析】解:根据中位数的意义,故只要知道中位数就可以了.应选:B.由于要使使用该共享单车50%的人只花1元钱,根据中位数的意义分析即可此题考察了中位数意义.解题的关键是正确的求出这组数据的中位数.11.【答案】5【解析】解:∵一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,∴〔2+5+x+y+2x+11〕=〔x+y〕=7,解得y=9,x=5,∴这组数据的众数是5.故答案为5.根据平均数与中位数的定义可以先求出x,y的值,进而就可以确定这组数据的众数.此题主要考察平均数、众数与中位数的定义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大〔或从大到小〕重新排列后,最中间的那个数〔最中间两个数的平均数〕,叫做这组数据的中位数,假如中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.12.【答案】甲【解析】解:乙组数据的平均数=〔0+1+5+9+10〕÷5=5,乙组数据的方差S2=[〔0-5〕2+〔1-5〕2+〔9-5〕2+〔10-5〕2]=16.4,∵S2甲<S2乙,∴成绩较为稳定的是甲.故答案为:甲.计算出乙的平均数和方差后,与甲的方差比拟后,可以得出判断.此题考察方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,那么方差S2=[〔x1-〕2+〔x2-〕2+…+〔x n-〕2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.【答案】乙【解析】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.首先比拟平均数,平均数一样时选择方差较小的运发动参加.题考察了平均数和方差,一般地设n个数据,x1,x2,…x n的平均数为,那么方差S2=[〔x1-〕2+〔x2-〕2+…+〔x n-〕2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.【答案】183【解析】解:由图可知,把数据从小到大排列的顺序是:180、182、183、185、186,中位数是183.故答案是:183.把这组数据从小到大排列,处于中间位置的数就是这组数据的中位数.此题考察了中位数和折线统计图,中位数是将一组数据从小到大〔或从大到小〕重新排列后,最中间的那个数〔最中间两个数的平均数〕,叫做这组数据的中位数,假如中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.15.【答案】【解析】解:∵数据0,1,2,2,x,3的平均数是2,∴〔0+1+2+2+x+3〕÷6=2,∴x=4,∴这组数据的方差=[〔2-0〕2+〔2-1〕2+〔2-2〕2+〔2-2〕2+〔2-4〕2+〔2-3〕2]=,故答案为:.先由平均数的公式计算出x的值,再根据方差的公式计算即可.此题考察方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,那么方差S2=[〔x1-〕2+〔x2-〕2+…+〔x n-〕2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.【答案】2;6【解析】解:〔1〕∵甲的平均数是8,∴甲的方差是:[〔9-8〕2+2〔10-8〕2+4〔8-8〕2+2〔7-8〕2+〔5-8〕2]=2;把丙运发动的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,那么中位数是=6;故答案为:6,2;〔2〕∵甲的方差是:[〔9-8〕2+2〔10-8〕2+4〔8-8〕2+2〔7-8〕2+〔5-8〕2]=2;乙的方差是:[2〔9-8〕2+2〔10-8〕2+2〔8-8〕2+3〔7-8〕2+〔5-8〕2]=2.2;丙的方差是:[〔9-6〕2+〔8-6〕2+2〔7-6〕2+2〔6-6〕2+2〔5-6〕2+〔4-6〕2+〔3-6〕2]=3;∴S甲2<S乙2<S丙2,∴甲运发动的成绩最稳定;〔3〕根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况,∴甲、乙相邻出场的概率是=.〔1〕根据方差公式和中位数的定义分别进展解答即可;〔2〕根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;〔3〕根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.此题考察了方差、平均数、中位数和画树状图法求概率,一般地设n个数据,x1,x2,…x n的平均数为,那么方差S2=[〔x1-x¯〕2+〔x2-x¯〕2+…+〔x n-x¯〕2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.17.【答案】40人;30【解析】解:〔1〕4÷10%=40〔人〕,m=100-27.5-25-7.5-10=30;故答案为40人,30.〔2〕平均数=〔13×4+14×10+15×11+16×12+17×3〕÷40=15,16出现12次,次数最多,众数为16;按大小顺序排列,中间两个数都为15,中位数为15.〔1〕频数÷所占百分比=样本容量,m=100-27.5-25-7.5-10=30;〔2〕根据平均数、众数和中位数的定义求解即可.此题考察了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.18.【答案】1;2;126;【解析】解:〔1〕调查的总人数为:10÷25%=40,∴1部对应的人数为40-2-10-8-6=14,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部,扇形统计图中“1部〞所在扇形的圆心角为:×360°=126°;故答案为:1,2,126;〔2〕条形统计图如下图,〔3〕将?西游记?、?三国演义?、?水浒传?、?红楼梦?分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P〔两人选中同一名著〕==.故答案为:.〔1〕先根据调查的总人数,求得1部对应的人数,进而得到本次调查所得数据的众数以及中位数,根据扇形圆心角的度数=局部占总体的百分比×360°,即可得到“1部〞所在扇形的圆心角;〔2〕根据1部对应的人数为40-2-10-8-6=14,即可将条形统计图补充完好;〔3〕根据树状图所得的结果,判断他们选中同一名著的概率.此题主要考察了扇形统计图以及条形统计图的运用,解题时注意:将一组数据按照从小到大〔或从大到小〕的顺序排列,假如数据的个数是奇数,那么处于中间位置的数就是这组数据的中位数.假如这组数据的个数是偶数,那么中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.19.【答案】解:〔1〕由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,∴其中位数a=6,乙组学生成绩的平均分b==7.2;〔2〕∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于小组中上游,∴小英属于甲组学生;〔3〕①乙组的平均分高于甲组,即乙组的总体平均程度高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.【解析】〔1〕由折线图中数据,根据中位数和加权平均数的定义求解可得;〔2〕根据中位数的意义求解可得;〔3〕可从平均数和方差两方面阐述即可.此题主要考察折线统计图、加权平均数、中位数及方差,纯熟掌握加权平均数、中位数及方差的定义是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章数据的分析单元测试卷一、选择题:1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A.40 B.42 C.38 D.22.一城市准备选购一千株高度大约为2米的某种风景树来进行街道绿化,有四个苗圃基地投标(单株树的价相同),采购小组从四个苗圃中任意抽查了20株树苗的高度,得到下表中的数据.你认为应选( )A.甲苗圃的树苗 B.乙苗圃的树苗 C.丙苗圃的树苗 D.丁苗圃的树苗3.衡量样本和总体的波动大小的特征数是( )A.平均数B.方差 C.众数 D.中位数4.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( )A.8,9 B.8,8 C.8.5,8 D.8.5,95.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( )A.1个B.2个C.3个D.4个6.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:班级参加人数中位数方差平均数甲55 149 191 135乙55 151 110 135某同学根据表中数据分析得出下列结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是( )A.(1)(2)(3) B.(1)(2) C.(1)(3) D.(2)(3)7.某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( ) 纸笔测试实践能力成长记录甲90 83 95乙88 90 95丙90 88 90A.甲B.乙丙 C.甲乙 D.甲丙8.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:甲=乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是( ) A.甲班 B.乙班C.两班成绩一样稳定 D.无法确定9.期中考试后,学习小组长算出该组5位同学数学成绩的平均分为M ,如果把M 当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N ,那么M :N 为( )A .B .1C .D .210.下列说法错误的是( )A .一组数据的平均数、众数、中位数可能是同一个数B .一组数据中中位数可能不唯一确定C .一组数据中平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D .一组数据中众数可能有多个二.填空题11.下图是根据某地相邻两年6月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是__________年.12.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是__________;众数是__________.13.有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是__________.14.某公司欲招聘工人,对候选人进行三项测试:语言,创新,综合知识,并把测试得分按1:4:3比例确定测试总分,已知某候选人三项得分分别为88,72,50,则这位候选人的招聘得分为__________.15.如果样本方差S 2=[(x 1﹣2)2+(x 2﹣2)2+(x 3﹣2)2+(x 4﹣2)2],那么这个样本的平均数为__________,样本容量为__________.16.已知x 1,x 2,x 3的平均数=10,方差S 2=3,则2x 1,2x 2,2x 3的平均数为__________,方差为__________.三.解答题17.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数 540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?18.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服,为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(单位:cm ).并且数据15,16,16,14,14,15的方差S 甲2=,数据11,15,18,17,10,19的方差S 乙2=).19.为了了解学校开展“尊敬父母,从家务事做起”活动的实施情况,该校抽取初二年级50名学生,调查他们一周(按七天计算)的家务所用时间(单位:小时),得到一组数据,并绘制成下表,请根据该表完成下列各题:(1)填写频率分布表中未完成的部分;(2)这组数据的中位数落在什么范围内;(3)由以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比.频数分布表分组频数累计频数频率0.55~1.05正正14 0.281.05~1.55正正正15 0.301.55~2.05正7 __________2.05~2.554 0.082.55~3.05正 5 0.103.05~3.553 __________3.55~4.05 __________0.04合计50 1.00第3章 数据的分析单元测试卷一、选择题:1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A .40B .42C .38D .2【考点】算术平均数.【分析】根据所有数据均减去40后平均数也减去40,从而得出答案.【解答】解:一组数据中的每一个数减去40后的平均数是2,则原数据的平均数是42;故选B .【点评】本题考查了算术平均数,解决本题的关键是牢记“一组数据减去同一个数后,平均数也减去这个数”.2.一城市准备选购一千株高度大约为2米的某种风景树来进行街道绿化,有四个苗圃基地投标(单株树的价相同),采购小组从四个苗圃中任意抽查了20株树苗的高度,得到下表中的数据.你认为应选( )A .甲苗圃的树苗B .乙苗圃的树苗C .丙苗圃的树苗D .丁苗圃的树苗【考点】标准差.【专题】图表型.【分析】根据标准差和平均数的意义进行选择.【解答】解:由于标准差和方差可以反映数据的波动大小,所以甲苗圃与丁苗圃比较合适;又因为丁苗圃树苗平均高度大于甲苗圃,所以应选丁苗圃的树苗.故选D .【点评】本题考查了平均数和标准差的意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.标准差即方差的算术平方根.3.衡量样本和总体的波动大小的特征数是( )A .平均数B .方差C .众数D .中位数【考点】方差.【分析】根据方差的意义可以选出合适的选项.【解答】解:根据方差的概念知,方差反映了一组数据的波动大小.故选B .【点评】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( )A .8,9B .8,8C .8.5,8D .8.5,9【考点】众数;中位数.【专题】常规题型.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选B.【点评】本题考查的是众数和中位数.注意掌握中位数和众数的定义是关键.5.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( )A.1个B.2个C.3个D.4个【考点】众数;加权平均数;中位数.【分析】先把数据按大小排列,然后根据定义分别求出众数、中位数和平均数,最后逐一判断.【解答】解:从小到大排列此数据为:2,2,3,3,3,3,3,3,6,6,10.数据3出现了6次,最多,为众数;第6位是3,3是中位数;平均数为(2+2+3+3+3+3+3+3+6+6+10)÷11=4.故选A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.6.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:班级参加人数中位数方差平均数甲55 149 191 135乙55 151 110 135某同学根据表中数据分析得出下列结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是( )A.(1)(2)(3) B.(1)(2) C.(1)(3) D.(2)(3)【考点】方差;算术平均数;中位数.【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是135,(1)正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;甲班的方差大于乙班的,又说明甲班的波动情况小,所以(3)错误.(1)(2)正确.故选:B.【点评】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.7.某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( ) 纸笔测试实践能力成长记录甲90 83 95乙88 90 95丙90 88 90A.甲B.乙丙 C.甲乙 D.甲丙【考点】加权平均数.【专题】图表型.【分析】利用平均数的定义分别进行计算成绩,然后判断谁优秀.【解答】解:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,乙的总评成绩=88×50%+90×20%+95×30%=90.5,丙的总评成绩=90×50%+88×20%+90×30%=89.6,∴甲乙的学期总评成绩是优秀.故选C.【点评】本题考查了加权平均数的计算方法.8.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:甲=乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是( )A.甲班 B.乙班C.两班成绩一样稳定 D.无法确定【考点】方差.【专题】应用题.【分析】根据方差的意义判断.方差越小,波动越小,越稳定.【解答】解:∵s甲2>s乙2,∴成绩较为稳定的班级是乙班.故选B.【点评】本题考查方差的意义:一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.9.期中考试后,学习小组长算出该组5位同学数学成绩的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M:N为( )A.B.1 C.D.2【考点】算术平均数.【专题】计算题;压轴题.【分析】根据5位同学数学成绩的平均分为M,求得5位同学的总分;再把M当成另一个同学的分数,与原来的5个分数一起,求得总分,再求这6个分数的平均值即为N;这样即可求得M与N的比值.【解答】解:∵5位同学数学成绩的平均分为M,∴5位同学的总分为5M,把M当成另一个同学的分数,与原来的5个分数一起,总分就为5M+M.这6个分数的平均值=(5M+M)=M=N,∴M:N=1.故选B.【点评】本题考查了样本平均数的求法.所有数据的和除以这些数据的个数叫这些数据的平均数.10.下列说法错误的是( )A.一组数据的平均数、众数、中位数可能是同一个数B.一组数据中中位数可能不唯一确定C.一组数据中平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个【考点】统计量的选择.【分析】根据平均数、众数、中位数的概念分析各个选项.【解答】解:A、在一组数据的平均数、众数、中位数有可能相同如全部相等的数据,正确;B、中位数是将数据按从大到小,或从小到大顺序排列,最中间的那个数或两个数的平均数,所以只有一个,故错误;C、众数、中位数和平均数是从不同的角度描述了一组数据集中趋势的,符合意义,正确;D、根据众数的概念即数据出现次数最多的数据,可能有多个,正确;故选C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义,了解各个统计量的意义是解答本题的关键.二.填空题11.下图是根据某地相邻两年6月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是2005年.【考点】折线统计图.【专题】图表型.【分析】折线统计图中折线越起伏的表示数据越不稳定,相反,折线越平稳的表示数据越稳定;从两幅图中可以看出:2004年6月上旬折线起伏较大,所以2004年6月上旬气温比较不稳定,则2005年6月上旬折线较平稳,则2005年6月上旬气温比较稳定.【解答】解:从两幅图中可以看出:2004年6月上旬折线起伏较大,所以2004年6月上旬气温比较不稳定,则2005年6月上旬折线较平稳,则2005年6月上旬气温比较稳定.【点评】本题考查的是折线统计图的综合运用.从折线统计图中不仅能看出数据的多少,还能看出数据的变化情况.12.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是7;众数是8.【考点】中位数;众数.【分析】根据中位数和众数的定义解答.【解答】解:数据按从小到大排列:3,5,7,8,8,所以中位数是7;数据8出现2次,次数最多,所以众数是8.故填7;8.【点评】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.13.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是2.【考点】方差;算术平均数.【专题】压轴题.【分析】先由平均数计算出a 的值,再计算方差.一般地设n 个数据,x 1,x 2,…x n 的平均数为,=(x 1+x 2+…+x n ),则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].【解答】解:a=4×5﹣2﹣3﹣5﹣6=4,s 2=[(2﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(6﹣4)2]=2.故填2.【点评】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.某公司欲招聘工人,对候选人进行三项测试:语言,创新,综合知识,并把测试得分按1:4:3比例确定测试总分,已知某候选人三项得分分别为88,72,50,则这位候选人的招聘得分为65.75. 【考点】加权平均数.【专题】计算题.【分析】运用加权平均数的计算公式求解.【解答】解:这位候选人的招聘得分=(88+72×4+50×3)÷8=65.75(分).故答案为:65.75.【点评】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.此题难度不大. 15.如果样本方差S 2=[(x 1﹣2)2+(x 2﹣2)2+(x 3﹣2)2+(x 4﹣2)2],那么这个样本的平均数为2,样本容量为4.【考点】方差.【分析】先根据方差公式S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]中所以字母所代表的意义,n 是样本容量,是样本中的平均数进行解答即可.【解答】解:∵在公式S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]中,平均数是,样本容量是n ,∴在S 2=[(x 1﹣2)2+(x 2﹣2)2+(x 3﹣2)2+(x 4﹣2)2]中,这个样本的平均数为2,样本容量为4;故答案为:2,4.【点评】此题考查了方差,解题的关键是根据方差的定义以及公式中各个字母所表示的意义进行解答.16.已知x 1,x 2,x 3的平均数=10,方差S 2=3,则2x 1,2x 2,2x 3的平均数为20,方差为12.【考点】方差;算术平均数.【分析】设2x 1,2x 2,2x 3的平均数为,把数据代入平均数计算公式计算即可,再利用方差公式即可计算出新数据的方差.【解答】解:∵=10,∴=10,设2x 1,2x 2,2x 3的方差为,则==2×10=20;∵S 2=[(x 1﹣10)2+(x 2﹣10)2+(x 3﹣10)],∴S ′2='[(2x 1﹣)2+(2x 2﹣)+(2x 3﹣], =[4(x 1﹣10)2+4(x 2﹣10)2+4(x 2﹣10)],=4×3=12.故答案为:20;12.【点评】本题考查了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.三.解答题17.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数 540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?【考点】中位数;算术平均数;众数.【专题】应用题.【分析】(1)平均数=加工零件总数÷总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.本题中应是第7个数.众数又是指一组数据中出现次数最多的数据.240出现6次.(2)应根据中位数和众数综合考虑.【解答】解:(1)平均数:=260(件);中位数:240(件);众数:240(件);(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.【点评】在做本题的平均数时,应注意先算出15个人加工的零件总数.为了大多数人能达到的定额,制定标准零件总数时一般应采用中位数或众数.18.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服,为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(单位:cm ).并且数据15,16,16,14,14,15的方差S 甲2=,数据11,15,18,17,10,19的方差S 乙2=).【考点】方差;算术平均数;中位数;极差.【专题】应用题.【分析】(1)分别求出甲、乙的中位数、方差和极差进而分析得出即可;(2)根据方差的性质得出即可;(3)根据方差的稳定性得出即可.【解答】解:(1)∵从小到大排列出台阶的高度值:甲的,14,14,15,15,16,16,乙的,10,11,15,17,18,19,甲的中位数、方差和极差分别为,15cm;;16﹣14=2(cm),乙的中位数、方差和极差分别为,(15+17)÷2=16(cm),,19﹣10=9(cm)平均数:(15+16+16+14+14+15)=15(cm);∴(11+15+18+17+10+19)=15(cm).∴相同点:两段台阶路高度的平均数相同.不同点:两段台阶路高度的中位数、方差和极差均不相同.(2)甲路段走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数),使得方差为0.【点评】本题考查了样本中的平均数,方差,极差,中位数在生活中的意义和应用.19.为了了解学校开展“尊敬父母,从家务事做起”活动的实施情况,该校抽取初二年级50名学生,调查他们一周(按七天计算)的家务所用时间(单位:小时),得到一组数据,并绘制成下表,请根据该表完成下列各题:(1)填写频率分布表中未完成的部分;(2)这组数据的中位数落在什么范围内;(3)由以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比.频数分布表分组频数累计频数频率0.55~正正14 0.281.05正正正15 0.301.05~1.55正7 0.141.55~2.054 0.082.05~2.552.55~正 5 0.103.053.05~ 3 0.06& 鑫达捷致力于精品文档 精心制作仅供参考 &鑫达捷 3.553.55~4.052 0.04合计 50 1.00【考点】频数(率)分布表;中位数.【分析】(1)根据频率、频数及样本容量的关系求得表中相关数据即可; (2)根据总人数确定中位数的位置即可;(3)用相关频率乘以100%即可求得百分率.【解答】解:(1)分组 频数累计 频数 频率0.55~1.05 正正 14 0.281.05~1.55正正正 15 0.301.55~2.05正 7 0.142.05~2.554 0.082.55~3.05正 5 0.103.05~3.553 0.063.55~4.052 0.04合计 50 1.00(2)∵共50人,其中第25和第26人的平均数是中位数,∴中位数落在1.05﹣1.55小组内;(3)每周做家务的时间不超过1.5小时的学生所占的百分比为(0.28+0.30)×100%=58%.【点评】本题考查了频数分布表的知识,解题的关键是能够读懂统计表并从中整理出进一步解题的有关信息,难度不大.初中数学试卷桑水出品。

相关文档
最新文档