压型钢楼板的计算

压型钢楼板的计算
压型钢楼板的计算

压型钢板组合楼板

1.定义

组合楼板由压型钢板、混凝土板通过抗剪连接措施共同作用形成。

2.组合楼板的优点

1)压型钢板可作为浇灌混凝土的模板,节省了大量木模板及支撑;

2)压型钢板非常轻便,堆放、运输及安装都非常方便;

3)使用阶段,压型钢板可代替受拉钢筋,减少钢筋的制作与安装工作。

4)刚度较大,省去许多受拉区混凝土,节省混凝土用量,减轻结构自重;

5)有利于各种管线的布置、装修方便;

6)与木模板相比,施工时减小了火灾发生的可能性;

7)压型钢板也可以起到支撑钢梁侧向稳定的作用。

3.组合楼板的发展

二十世纪30-50年代

早在三十年代,人们就认识到压型钢板与混凝土楼板组合结构具有省时、节力、经济效益好的优点,到50年代,第一代压型钢板在市场上出现。

二十世纪60年代-70年代

六十年代前后,欧美、日本等国多层和高层建筑的大量兴起,开始使用压型钢板作为楼板的永久性模板和施工平台,随后人们很自然的想到在压型钢板表面做些凹凸不平的齿槽,使它和混凝土粘结成一个整体共同受力,此时压型钢板可以代替或节省楼板的受力钢筋,其优越性很大。

二十世纪80年代-现在

组合板的试验和理论有了新进展,特别是在高层建筑中,广泛地采用了压型钢板组合楼板。日本、美国、欧洲一些国家相应的制定了相关规程。

我国对组合楼板的研究和应用是在20世纪80年代以后,与国外相比起步较晚,主要是由于当时我国钢材产量较低,薄卷材尤为紧缺,成型的压型钢板和连接件等配套技术未得到开发。近年来由于新技术的引进,组合楼板技术在我国已较为成熟。

4 常用的压型钢板的截面形式

给出了几种实际工程中采用的压型钢板,通过图片使学生对压型钢板有感性的认识,图中所示设置凹槽的压型钢板,设置凹槽后可明显提高钢板和混凝土板的组合作用。

2.1.1 常用压型钢板截面形式

§2.2 组合楼板的材料及受力特性分析

组合板:由压型钢板和混凝土板两部分组成;压型钢板按其在组合板中的作用可以分为三类:(一)以压型钢板作为组合板的主要承重构件,混凝土只是作为楼板的面层以形成平整的表面及起到分布荷载的作用;(二)压型钢板作为浇筑混凝土的永久性模板,并作为施工时的操作平台;(三)考虑组合作用的压型钢板组合楼板,这种结构构件在工程中最为广泛应用。本章主要讲述第三类考虑组合作用的压型钢板混凝土组合楼板,在施工阶段压型钢板作为模版及浇筑混凝土的作业平台,在施工阶段仅进行强度和刚度验算;在使用阶段,压型钢板相当于钢筋混凝土板中的受拉钢筋,在全部静载及活荷载作用下,考虑两者的组合作用,因此按照组合楼板进行计算。

§2.3组合楼板的设计

组合板的计算可分施工与使用两个阶段进行。组合板的施工阶段,需对压型钢板作为浇注混凝土底模的强度和挠度进行验算;组合板的使用阶段,对组合板在全部荷载作用下的强度和挠度进行计算。

组合板或非组合板在施工阶段,只计算顺助(强边)方向压型钢板强度和挠度。

1 施工阶段

当不加临时支撑时,压型钢板的正截面抗弯承载能力应满足以下要求:

s ay W f M ≤ (2.3.1)

)

( W st c s s c s sc x h I I I W -==

或 (2.3.2)

M -弯矩设计值;

f ay -压型钢板强度设计值;

W s -压型钢板截面抵抗短,取受压区W sc 或受拉区W st 的较小值; I s -单位宽度压型钢板对荷载重心轴的惯性矩; x c -从压型钢板受压翼绕外边缘到中和轴的距离;

h s -压型钢板截面抵抗短,取受压区W sc 或受拉区W st 的较小值。 压型钢板在施工阶段,应进行挠度计算,当均布荷载时: 对于简支板

[]4

5384z s s

p l w w E I =≤ (2.3.3)

P z -单位宽度均布短期荷载值,取荷载标准值; E s -压型钢板弹性模量;

I s -单位宽度压型钢板的惯性矩; L -板的计算跨度; 对于双跨连续板

[]4

1185z s s

p l w w E I =≤ (2.3.4)

[w ]-板的允许挠度,取L /200及20mm 的较小值。

2. 使用阶段

组合板强边方向的正弯矩和挠度,均按全部荷载作用的强边(顺肋)方向单向板计算。此时,不论实际支承情况如何,均按简支板考虑。

压型钢板与混凝土形成整体共同工作。主要进行以下几个方面的验算:○1正截面抗弯能力;○

2叠合面抗剪能力;○3抗冲切能力;○4斜截面抗剪能力;○5变形验算。 1)正截面抗弯能力

采用塑性设计方法,计算中考虑作为受拉区的压型钢板没有混凝土保护以及中和轴附近

材料强度发挥不充分等原因,对压型钢板的强度设计值乘以折减系数0.9;对混凝土抗压强度乘以折减系数0.8。

a )当s c cm A f bh f ≤时

塑性中和轴在压型钢板上翼缘以上的混凝土内,组合板的抗弯强度按下式计算:

cm M xbyf ≤ (2.3.5) /s cm x A f f b = (2.3.6)

式中x 为组合板受压区高度。当00.55x h >时,取00.55x h =;0h 为组合板的有效高度;y 为压型钢板截面应力合力至混凝土受压区截面应力合力的距离,取0/2y h x =-;b 为压型钢板的

波距;A s 为压型钢板波距内的截面面积;f 为压型钢板的抗拉强度设计值;f cm 为混凝土弯曲抗压强度设计值;h c 为压型钢板上翼缘以上浇筑混凝土厚度。

b )当s

c cm A f bh f >时

塑性中和轴在压型钢板内,组合板横截面抗弯强度按下列公式进行计算:

12c cm sc M bh f y A fy =+ (2.3.7) 0.5(/)sc s cm c A A f bh f =- (2.3.8)

其中A sc 为塑性中和轴以上压型钢板面积;y1、y2为压型钢板受拉区截面拉应力的合力分别至受压区混凝土板截面和压型钢板压应力合力的距离。

图2.3.1 组合板正截面抗弯能力计算图

2)叠合面抗剪承载力

通过对国内压型钢板加工的组合板叠合面抗剪能力进行试验研究,并对试验结果进行一次回归正交方差分析,得出组合板叠合面抗剪强度公式如下:

01203u s V a a a a w h a t =-++ 且u V V ≤ (2.3.9) 式中V u 为组合板的抗剪能力;V 为组合板叠合面的纵向剪力设计值;a 0-a 3为剪力粘结系数由试验确定或者参考下列数值:

012378.1420.0980.003638.625

a a a a ====

a 为组合板剪跨,/a M V =,均布简支板取/4a L =(L 为板的计算跨度);M 为与剪力设计值相对应的弯矩设计值;W z 组合板平均槽宽;h 0组合板的有效宽度;t 压型钢板厚度。 3)斜截面抗剪承载力

组合板的斜截面受剪承载力应按下式计算:

007.0bh f V c v ≤ (2.3.10)

V v -组合板斜截面上的最大剪力设计值; f c -混凝土轴心抗压强度设计值; b -计算宽度。 4)抗冲切计算

图2.3.2 组合板中的抗冲切面积

组合板在集中荷载作用下的抗冲切强度按下式计算:

c m t l h u f F 6.0= (2.3.11)

u m -临界周边长度,见图2.3.2; f t -混凝土轴心抗拉强度设计值; h c -混凝土板最小厚度;

h 0-组合板有效高度,即压型钢板截面重心轴至混凝土受压区最外边缘的距离。

5)变形验算

组合板的变形按弹性理论进行,按短期荷载作用时,可将混凝土面积除以钢材与混凝土弹性模量比n 换算为钢面积;按长期荷载作用时,将截面中的混凝土的弹性模量除以2n 换算成钢截面。

组合板全截面发挥作用时的短期荷载作用下等效截面惯性矩I

2'02'')(])([1n s s c n c c x h A I h x A I n

I -++-+= (2.3.12)

s

c s c c n

nA A h nA h A x ++=

'' (2.3.13) '

n

x -全截面有效时组合板中和轴至受压区边缘的距离; A s -压型钢板截面面积; A c -混凝土截面面积;

h 0-组合板有效高度(组合板受压边缘至压型钢板截面重心的距离);

'

h -组合板受压边缘至混凝土重心距离; I s -压型钢板对其中和轴惯性矩; I c -混凝土对其中和轴惯性矩。

把上式中的n 用2n 来替代,即可得到在长期荷载作用下组合截面的等效惯性矩。组合板的挠度,应按荷载的短期效应组合,并考虑永久荷载的长期作用的影响。对于承受均布荷载的简支组合板,其挠度可以按照下列公式进行计算:

[]44

00

55384384e

ql gl E I E I ?=+≤? (2.3.14) ''2'2

0001()()c c h c s s e I I A x h I A h x a ??=

+-++-?

? (2.3.15) 0''2'2001()()2c c c h c s s e

I I A x h I A h x a ??=

+-++-?? (2.3.16) 其中q 为均布可变荷载;g 为均布永久荷载;I 0换算成钢截面的组合截面惯性矩;0c

I 考虑永久荷载长期作用影响的组合截面惯性矩;'0x 为全截面有效时组合板中和轴至受压区边缘的距

离 ''0c c E s n

c E s

A h a A h x A a A +=+;A s 为压型钢板截面面积;A c 为混凝土截面面积;h 0为组合板有效高度;

'c h 为组合板受压边缘至混凝土重心距离;I s 为压型钢板对其中和轴惯性矩。

6)自振频率控制

振动感觉与环境条件有关,组合板理想的自振频率在20Hz 以上,如果自振频率在12Hz 以下,则产生振动的可能性较大。因此对组合板或钢筋混凝土板的自振频率控制在15Hz 以上。自振频率和板的刚度及端部支撑条件有关。

自振频率v 的计算:

??

?

?

?==δK T Hz T v 1 (2.3.17) T -自振周期;

K -由支撑条件确定的系数;两端简支,K =0.178;一端简支一端固定,K =0.177;两端固定,K =0.175;

δ-仅为自重与恒载所产生的挠度。

§2.4 构造要求

1. 压型钢板

组合板中采用的压型钢板净厚度不小于0.75mm ,最好控制在1.0mm 以上。为便于浇筑混

凝土,要求压型钢板平均槽宽不小于50mm ,当在槽内设置圆柱头焊钉时,压型钢板总高度(包括压痕在内)不应超过80mm 。组合楼板中压型钢板外表面应有保护层以防御施工和使用过程中大气的侵蚀。

图2.4.1组合板构造

2. 配筋要求

以下情况组合板内应配置钢筋:

1)连续板或悬臂板的负弯矩区应配置纵向受力钢筋;

2)在较大集中荷载区段和开洞周围应配置附加钢筋;

3)当防火等级较高时,可配置附加纵向受力钢筋;

4)为提高组合板的组合作用,光面开口压型钢板,应在剪跨区(均布荷载在板两端L/4范围内)布置直径为6mm间距150至300mm的横向钢筋,纵肋翼缘板上焊缝长度不小于50mm。

5)组合板应设置分布钢筋网,分布钢筋两个方向的配劲率不宜少于0.002。

3. 混凝土板裂缝宽度

连续组合板负弯矩的开裂宽度,室内正常环境下不应超过0.3 mm,室内高温度环境或露天时不应超过0.2mm。

连续组合板按简支板设计时,支座区的负钢筋断面不应小于混凝土截面的0.2%;抗裂钢筋的长度从支承边缘起,每边长度不应小于跨度的1/4,且每米不应小于5根。

4. 组合板厚度

组合板总厚度h不应小于90mm,压型钢板翼缘以上混凝土厚度h c不应小于50mm。支撑于混凝土或砌体上时,支撑长度分别为100mm和75mm;支撑于钢梁上连续板或搭接板,最小支撑长度为75mm。

图2.4.2 组合板厚度构造要求

参考文献:

1. 周起敬,姜维山,潘泰华.钢与混凝土组合结构设计施工手册.中国建筑工业出版社.1991

2. 赵鸿铁,张素梅. 组合结构设计原理. 高等教育出版社. 2005.

3. 赵鸿铁. 钢与混凝土组合结构. 科学出版社. 2001

4.

Johnson, R.P., Composite Structures of Steel and Concrete: Beams, Slabs, Columns, and Frames for buildings. Blackwell Scientific Publications, 3nd ed., 2004 (Paperback)

5. Oehlers, D.J. and Bradford, M.A., Elementary Behavior of Composite Steel and Concrete Structural Members,

Butterworth Heinemann, Feb. 2000 (Paperback)

6. Gaylord, E.H.Structural Engineering Handbook, 4th ed. Mcgrow-Hill, 1997(Paperback)

压型钢板组合楼板由压型钢板、混凝土板通过抗剪连接措施共同作用形成。

(a ) (b )

(c)

(d)

(e)

(f)

简介

压型钢板与混凝土组合楼板是指由压型钢板上浇筑混凝土组成的组合楼板,根据压型钢板是否与混凝土共同工作可分为组合板和非组合板。

组合板是指压型钢板除用作浇筑混凝土的永久性模板外,还充当板底受拉钢筋的现浇混凝土楼(屋面)板。

非组合板是指压型钢板仅作为混凝土楼板的永久性模板,不考虑参与结构受力的现浇混凝土楼(屋面)板。

材料

1、压型板:组合楼板中采用的压型钢板的形式有开口型板、缩口型板、和闭口型板。

压型钢板组合楼板计算与构造

2、栓钉:

压型钢板组合式楼板的整体连接是由栓钉(又称抗剪螺钉)将钢筋混凝土、压型钢板和钢梁组合成整体。

栓钉是组合楼板的剪力连接件,楼面的水平荷载通过它传递到梁、柱、框架,所以又称剪力螺钉。其规格、数量是按楼板与钢梁连接处的剪力大小确定,栓钉应与钢梁牢固焊接。

优质DL钢或ML15号钢。栓钉直径按下列规定采用:

板跨<3m:栓钉直径宜取13mm~16mm

3m≤板跨≤6m:栓钉直径宜取16mm~19mm

板跨>6m:栓钉直径宜取19mm

特点

1、由于压型板轻便,易于搬运和架设,大大缩短安装时间,又因压型板不需拆卸,工地劳动力可减少。

2、与木模相比,压型钢板施工时发生火灾的可能性大为减少。

3、压型钢板便于铺设通讯、电力、通风、采暖等管线;还能敷设保温、隔音、隔热、隔震材料;压型钢板表面直接做顶棚;若需吊顶,可在压型钢板槽内固定吊顶挂钩,使用十分方便。

4、在多高层建筑中采用压型钢板,有利推广多层作业,可大大加快工程进度。

5、压型钢板的运输、储存、堆放和装卸都极为方便。

6、压型钢板和混凝土通过叠合板的粘结作用使二者形成整体,从而使压型钢板起到混凝土楼板受拉钢筋的作用。施工中,压型钢板还可起到增强支承钢梁侧向稳定的作用。

施工机具

1、栓焊机(QZL-2000)。

2、带锯机(压型钢板切割)。

3、电钻(压型钢板钻孔)。

发展

二十世纪30-50年代

早在三十年代,人们就认识到压型钢板与混凝土楼板组合结构具有省时、节力、经济效益好的优点,到50年代,第一代压型钢板在市场上出现。

二十世纪60年代-70年代

六十年代前后,欧美、日本等国多层和高层建筑的大量兴起,开始使用压型钢板作为楼板的永久性模板和施工平台,随后人们很自然的想到在压型钢板表面做些凹凸不平的齿槽,使它和混凝土粘结成一个整体共同受力,此时压型钢板可以代替或节省楼板的受力钢筋,其优越性很大。

二十世纪80年代-现在

组合板的试验和理论有了新进展,特别是在高层建筑中,广泛地采用了压型钢板组合楼板。日本、美国、欧洲一些国家相应的制定了相关规程。

中国对组合楼板的研究和应用是在20世纪80年代以后,与国外相比起步较晚,主要是由于当时中国钢材产量较低,薄卷材尤为紧缺,成型的压型钢板和连接件等配套技术未得到开发。近年来由于新技术的引进,组合楼板技术在中国已较为成熟。

常用压型钢板截面形式

组合楼板的材料及受力特性分析

组合板:由压型钢板和混凝土板两部分组成;压型钢板按其在组合板中的作用可以分为三类:

(一)以压型钢板作为组合板的主要承重构件,混凝土只是作为楼板的面层以形成平整的表面及起到分布荷载的作用;

(二)压型钢板作为浇筑混凝土的永久性模板,并作为施工时的操作平台;

(三)考虑组合作用的压型钢板组合楼板,这种结构构件在工程中最为广泛应用。

本章主要讲述第三类考虑组合作用的压型钢板混凝土组合楼板,在施工阶段压型钢板作为模版及浇筑混凝土的作业平台,在施工阶段仅进行强度和刚度验算;在使用阶段,压型钢板相当于钢筋混凝土板中的受拉钢筋,在全部静载及活荷载作用下,考虑两者的组合作用,因此按照组合楼板进行计算。

组合楼板的设计

组合板的计算可分施工与使用两个阶段进行。组合板的施工阶段,需对压型钢板作为浇注混凝土底模的强度和挠度进行验算;组合板的使用阶段,对组合板在全部荷载作用下的强度和挠度进行计算。

组合板或非组合板在施工阶段,只计算顺助(强边)方向压型钢板强度和挠度。

组合板的变形按弹性理论进行,按短期荷载作用时,可将混凝土面积除以钢材与混凝土弹性模量比n换算为钢面积;按长期荷载作用时,将截面中的混凝土的弹性模量除以2n换算成钢截面。

构造要求

1. 压型钢板

组合板中采用的压型钢板净厚度不小于0.75mm,最好控制在1.0mm以上。为便于浇筑混凝土,要求压型钢板平均槽宽不小于50mm,当在槽内设置圆柱头焊钉时,压型钢板总高度(包括压痕在内)不应超过80mm。组合楼板中压型钢板外表面应有保护层以防御施工和使用过程中大气的侵蚀。

2. 配筋要求

以下情况组合板内应配置钢筋:

1)连续板或悬臂板的负弯矩区应配置纵向受力钢筋;

2)在较大集中荷载区段和开洞周围应配置附加钢筋;

3)当防火等级较高时,可配置附加纵向受力钢筋;

4)为提高组合板的组合作用,光面开口压型钢板,应在剪跨区(均布荷载在板两端L/4范围内)布置直径为

6mm间距150至300mm的横向钢筋,纵肋翼缘板上焊缝长度不小于50mm。

5)组合板应设置分布钢筋网,分布钢筋两个方向的配劲率不宜少于0.002。

3. 混凝土板裂缝宽度

连续组合板负弯矩的开裂宽度,室内正常环境下不应超过0.3 mm,室内高温度环境或露天时不应超过0.2mm。连续组合板按简支板设计时,支座区的负钢筋断面不应小于混凝土截面的0.2%;抗裂钢筋的长度从支承边缘起,每边长度不应小于跨度的1/4,且每米不应小于5根。

4. 组合板厚度

组合板总厚度h不应小于90mm,压型钢板翼缘以上混凝土厚度hc不应小于50mm。支撑于混凝土或砌体上时,支撑长度分别为100mm和75mm;支撑于钢梁上连续板或搭接板,最小支撑长度为75mm。

施工工艺

1、施工前应绘制压型钢板平面布置图,在图上注明柱、梁和压型钢板相互关系尺寸与连接方法,尽可能减少在现场的切割工作量。

2、根据压型钢板平面布置图,统计好板的型号、规格及数量,以便制造厂按订货单准确地生产。

3、铺设前的准备工作:铺设前要认真清扫钢梁顶面的杂物,并对有弯曲和扭曲的压型钢板进行矫正,使板与钢梁顶面的最小间隙控制在1mm以下,以保证焊接质量。

4、结构防锈:除焊接部位附近和灌注混凝土接触面等处外,均应事先做好防锈处理。

5、板的敷设:铺板工作按板的布置图进行,首先在梁上用墨线标出每块板的位置,将运来的板按型号和使用顺序堆放好,并按墨线排列在梁上,然后对切口、开洞的板做补强处理。

6、板的临时支撑:设计图纸如注明压型钢板在施工中需设置临时支撑时,在压型钢板安装以后,就应设置支撑。

7、浇灌混凝土:铺设的压型钢板即成为施工模板,在板上直接绑扎钢筋,浇灌混凝土。

注意事项

1、布置压型板时,要注意凹凸角等问题,尽量避免特殊加工工序,将吊挂预埋件、开口补强等工序统筹考虑。

2、强边方向板的接头,原则上应设置在梁的上部,不要在跨中设置接头;若为连续板时,板的长度、重量等,应按其搬运、铺设等作业是否方便来考虑。

3、弱边方向板的布置,当其宽度不合适时,应在纵向挪动后将波形对准再切割;另外压型钢板宽度尺寸由于制造施工等原因引起的误差,也可以采用这种办法处理。

4、无外包装的压型钢板,装卸时应采用吊具,严禁使用钢丝绳直接捆绑起吊。

5、压型板的切割和钻孔,原则上应采用机械加工,不要损害压型钢板的材质和形状。压型钢板在切割之前必须矫正弯曲和变形,切割时产生的毛刺、卷边应清除掉。

安全、文明、环保施工措施

1、压型板安装属高空作业,应采取可靠措施,指定安全操作细则并严格执行。

2、由于现场施焊作业多,必须配备足够数量的干粉灭火器。

3、压型钢板一般不需支撑,跨度过大或设计要求支撑的,必须可靠支撑。

型钢规格表及型钢理论重量表

工字钢规格表及工字钢理论重量表 工字钢也称钢梁,是截面为工字形的长条钢材。其规格以腰高( h)*腿宽(b)*腰厚(d)的毫数表示,如“工160*88*6”,即表示腰高为160毫米,腿宽为88毫米,腰厚为6毫米的工字钢。工字钢的规格也可用型号表示,型号表示腰高的厘米数,如工16#。腰高相同的工字钢,如有几种不同的腿宽和腰厚,需在型号右边加a b c 予以区别,如32a# 32b# 32c#等。工字钢分普通工字钢和轻型工字钢,热轧普通工字钢的规格为10-63#。经供需双方协议供应的热轧普通工字钢规格为12-55#。工字钢广泛用于各种建筑结构、桥梁、车辆、支架、机械等。工字钢规格重量表:

工字钢单位重量表:

方通规格表 方管规格壁厚规格壁厚15×15 0.8-1.2 50×50 1.2-4.0 16×16 0.6-1.5 60×60 1.5-4.0

18×18 0.6-1.8 70×70 1.5-4.0 20×20 0.6-1.8 80×80 1.7-4.0 25×25 0.8-2.5 90×90 1.7-4.0 30×30 0.8-2.75 100×100 1.5-4.0 40×40 1.0-4.0 0 0 方管最大可做到400*400壁厚12毫米 矩形管规格壁厚规格壁厚 20×10 0.8-2.5 50×40 1.5-4.0 30×20 0.8-2.5 50×70 1.5-4.0 40×20 0.8-2.75 60×30 1.5-4.0 40×25 1.2-3.0 60×80 1.5-4.0 40×30 1.5-3.75 60×90 1.5-4.0 40×60 1.5-4.0 80×100 1.5-4.0 40×80 1.0-4.0 100×40 1.5-4.0 50×25 1.0-4.0 100×50 1.5-4.0 50×30 1.0-4.0 120×50 1.5-4.0 矩形管最大到400*300壁厚12毫米 方钢管规格: 方管100*100*6mm方管150*150*(5-20mm)方管250*250*(5-25mm)方管180*180* (5-18mm)方管280*280*(5-25mm)方管356*356*(5-25mm) 方管200*200*(5-20mm)方管300*300* (5-25mm)方管

H型钢计算公式及理论重量表.doc

H型钢计算公式及理论重量表 一、计算公式 关于 h 型钢重量和 h 型钢重量计算公式的问题,我们整理了一下 热轧 H 型钢理论重量计算公式:热轧H 型钢理论重量 =*L*7.85*1/100 其中 h----高度(MM),b----脚宽(MM),d----腰厚(MM),r----内面圆角半径(MM)r1----边 端圆角半径( MM), L-----长度(M) 二、对照表 规格单重规格单重规格单重

100*50*5*7 9.54 294*302*12*12 85 482*300*11*15 115 100*100*6*8 17.2 300*300*10*15 94.5 488*300*11*18 129 125*60*6*8 13.3 300*305*15*15 106 496*199*9*14 79.5 125*125*6.5*9 23.8 338*351*13*13 106 500*200*10*16 89.6 148*100*6*9 21.4 340*250*9*14 79.7 582*300*12*17 137 150*75*5*7 14.3 344*354*16*16 131 588*300*12*20 151 150*150*7*10 31.9 346*174*6*9 41.8 596*199*10*15 95.1 175*90*5*8 18.2 350*175*7*11 50 600*200*11*17 106 175*175*7.5*11 40.3 344*348*10*16 115 700*300*13*24 185 194*150*6*9 31.2 350*350*12*19 137 198*99*4.5*7 18.5 388*402*15*15 141 200*100*5.5*8 21.7 390*300*10*16 107 200*200*8*12 50.5 394*398*11*18 147

压型钢板组合楼板施工工艺方案

压型钢板组合楼板施工工艺方案

一、施工准备 组合楼板施工前,应对压型钢板的搬运、堆放、铺设、连接方法、板内配筋、预埋件以及浇筑混凝土的方法等等都应作详细规划,并绘制压型钢板平面排板图,梁和压型钢板连接的节点图,同时统计好板的型号、规格和数量,配件详图、规格和数量。 本工程压型钢板选用YX46-200-600型压型钢板。 板型图如下: 二、压型钢板加工 1、压型钢板的原材料应有生产厂的质量证明书。 2、压型钢板采用的卷板其质量应符合下表: 3、成型后的压型钢板及包角板的基板不得有裂纹;漆膜应无裂 纹、剥落等缺陷。

4、压型钢板长度的容许偏差不应大于±7mm,横向剪刀差不应大 于5mm。 5、压型钢板截面尺寸的容许偏差不应超过下表: 8、压型钢板出厂时必须有产品合格证。 三、压型钢板运输和保管 1、装卸无外包装的压型钢板时,严禁直接用钢丝绳绑扎起吊。 2、用车辆运输无外包装的压型钢板时,应在车上设置衬有橡胶 衬垫的枕木,间距不得大于3米。 3、对于采用汽车运输的压型板等,采用角钢框架分层固 定,绑扎牢固后进行运输。 4、压型钢板装卸时的悬伸长度不应大于1.5m。 5、压型钢板应按材质、板型分别堆放,压型钢板上不得堆放重 物,应避免污染。 6、板型规格的堆放顺序应与施工安装顺序相配合。 7、压型钢板在工地可采用枕木架空(架空枕木要保持约5%的倾

斜度)堆放。应堆放在不妨碍交通、不被高空重物撞击的安全地带,并应采取遮雨措施。 8、安装压型钢板时,施工人员必须穿软底鞋,且不得聚集在一 起。在压型钢板上行走频繁的地方应设置临时木支撑。吊放在钢梁上的压型钢板,应于当日安装完毕。未安装完毕的,必须用绳具与钢梁捆绑牢固。 9、栓钉和瓷环的成品包装箱在运输中不得有损坏,运到现场后 要存放在干燥的小库房中,以免栓钉和瓷环受潮.在施工中用多少料取多少料,以免来回搬运. 四、压型钢板切割、割孔和局部处理 1、切割和钻孔,原则上应采用机械加工,不要损害压型钢板的 材质和形状,不得已时可采用气割。考虑采用带锯机和全能锯机进行。 2、压型钢板在切割前必须校正弯曲和变形,切割时产生的毛刺、 卷边应及时清除。 3、压型钢板的端头未做封闭处理时,应设堵头板和挡板,防止施 工时混凝土的泄漏。 4、在压型钢板现场开洞的部位,应对其进行局部补强。 5、穿过楼板的水管,套管和各种悬挂件等都应事先固定在压型 钢板上或埋在槽内。 6、清扫压型钢板表面的各种杂物,以便下道工序的施工。 五、压型钢板铺设 1、清扫钢梁顶面的杂物,对变形的压型钢板进行矫正。 2、除去焊接部位附近和混凝土接触面以外的钢结构部分都应做 好防

(整理)压杆稳定计算.

第16章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s(或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5 图16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于

型钢计算公式汇总

常用金属材料重量计算公式(每千只重量) 园钢重量(公斤)=0.00617×直径×直径×长度方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 螺纹钢重量(公斤)=0.00617×计算直径×计算直径×长度 角钢重量(公斤)=0.00785×(边宽+边宽-边厚)×边厚×长度 扁钢重量(公斤)=0.00785×厚度×边宽×长度 钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 钢板重量(公斤)=7.85×厚度×面积 园紫铜棒重量(公斤)=0.00698×直径×直径×长度 园黄铜棒重量(公斤)=0.00668×直径×直径×长度 园铝棒重量(公斤)=0.0022×直径×直径×长

度 方紫铜棒重量(公斤)=0.0089×边宽×边宽×长度 方黄铜棒重量(公斤)=0.0085×边宽×边宽×长度 方铝棒重量(公斤)=0.0028×边宽×边宽×长度 六角紫铜棒重量(公斤)=0.0077×对边宽×对边宽×长度 六角黄铜棒重量(公斤)=0.00736×边宽×对边宽×长度 六角铝棒重量(公斤)=0.00242×对边宽×对边宽×长度 紫铜板重量(公斤)=0.0089×厚×宽×长度 黄铜板重量(公斤)=0.0085×厚×宽×长度 铝板重量(公斤)=0.00171×厚×宽×长度 园紫铜管重量(公斤)=0.028×壁厚×(外径-壁厚)×长度 园黄铜管重量(公斤)=0.0267×壁厚×(外径-壁厚)×长度 园铝管重量(公斤)=0.00879×壁厚×(外径-壁厚)×长度

压型钢板组合楼板计算与构造

压型钢板组合楼板 1.定义 组合楼板由压型钢板、混凝土板通过抗剪连接措施共同作用形成。 2.组合楼板的优点 1)压型钢板可作为浇灌混凝土的模板,节省了大量木模板及支撑; 2)压型钢板非常轻便,堆放、运输及安装都非常方便; 3)使用阶段,压型钢板可代替受拉钢筋,减少钢筋的制作与安装工作。 4)刚度较大,省去许多受拉区混凝土,节省混凝土用量,减轻结构自重; 5)有利于各种管线的布置、装修方便; 6)与木模板相比,施工时减小了火灾发生的可能性; 7)压型钢板也可以起到支撑钢梁侧向稳定的作用。 3.组合楼板的发展 二十世纪30-50年代 早在三十年代,人们就认识到压型钢板与混凝土楼板组合结构具有省时、节力、经济效益好的优点,到50年代,第一代压型钢板在市场上出现。 二十世纪60年代-70年代 六十年代前后,欧美、日本等国多层和高层建筑的大量兴起,开始使用压型钢板作为楼板的永久性模板和施工平台,随后人们很自然的想到在压型钢板表面做些凹凸不平的齿槽,使它和混凝土粘结成一个整体共同受力,此时压型钢板可以代替或节省楼板的受力钢筋,其优越性很大。 二十世纪80年代-现在 组合板的试验和理论有了新进展,特别是在高层建筑中,广泛地采用了压型钢板组合楼板。日本、美国、欧洲一些国家相应的制定了相关规程。 我国对组合楼板的研究和应用是在20世纪80年代以后,与国外相比起步较晚,主要是由于当时我国钢材产量较低,薄卷材尤为紧缺,成型的压型钢板和连接件等配套技术未得到开发。近年来由于新技术的引进,组合楼板技术在我国已较为成熟。 4 常用的压型钢板的截面形式 给出了几种实际工程中采用的压型钢板,通过图片使学生对压型钢板有感性的认识,图中所示设置凹槽的压型钢板,设置凹槽后可明显提高钢板和混凝土板的组合作用。

压型钢板混凝土组合楼承板计算实例

压型钢板混凝土楼承组合板计算书 工程资料: 该工程楼层平台采用压型钢板组合楼板,计算跨度m l 4=,剖面构造如图1所示。压型钢板的型号为YX76-305-915,钢号Q345,板厚度mm t 5.1=,每米宽度的截面面积m mm A S /20492=(重量0.152/m kN ),截面惯性矩m mm I S /1045.20044?=。顺肋两跨连续板,压型钢板上浇筑mm 89厚C35混凝土。 图1 组合楼板剖面

1 施工阶段压型钢板混凝土组合板计算 1.1 荷载计算 取m b 0.1=作为计算单元 (1)施工荷载 施工荷载标准值m kN p k /0.10.10.1=?= 施工荷载设计值m kN p /4.10.14.1=?= (2)混凝土和压型钢板自重 混凝土取平均厚度为mm 127 混凝土和压型钢板自重标准值 m kN m m kN m kN m k /325.30.1)/15.0/25127.0(g 23=?+?= 混凝土和压型钢板自重设计值 m kN m kN g /0.4/325.32.1=?= (3)施工阶段总荷载 m kN m kN m kN g p q k k k /325.4/325.3/0.1=+=+= 1.2 内力计算 跨中最大正弯矩为 m kN m kN l g p M ?=??+?=+=+05.60.4)0.44.1(07.0)(07.022max 支座处最大负弯矩为 m kN m kN l g p M ?=??+?=+=-8.100.4)0.44.1(125.0)(125.022max 故m kN M M ?==- 8.10max max 支座处最大剪力 kN kN l g p V 5.130.4)0.44.1(625.0)(625.0max =?+?=+= 1.3 压型钢板承载力计算 压型钢板受压翼缘的计算宽度et b

H型钢理论重量表及H型钢计算公式

热轧H型钢理论重量表 2012-9-24 H型钢理论重量表及H型钢计算公式 截面尺寸Kg/m截面尺寸Kg/m 100*50*5*79.54344*354*16*16131 100*100*6*817.2346*174*6*941.8 125*60*6*813.3350*175*7*1150 125*125*6.5*923.8344*348*10*16115 148*100*6*921.4350*350*12*19137 150*75*5*714.3388*402*15*15141 150*150*7*1031.9390*300*10*16107 175*90*5*818.2394*398*11*18147 175*175*7.5*1140.3400*150*8*1355.8 194*150*6*931.2396*199*7*1156.7 198*99*4.5*718.5400*200*8*1366 200*100*5.5*821.7400*400*13*21172 200*200*8*1250.5400*408*21*21197 200*204*12*1272.28414*405*18*28233 244*175*7*1144.1440*300*11*18124 244*252*11*1164.4446*199*7*1166.7 248*124*5*825.8450*200*9-1476.5 250*125*6*929.7482*300*11*15115 250*250*9*1472.4488*300*11*18129 250*255*14*1482.2496*199*9*1479.5 294*200*8*1257.3500*200*10*1689.6 300*150*6.5*937.3582*300*12*17137 294*302*12*1285588*300*12*20151 300*300*10*1594.5596*199*10*1595.1 300*305*15*15106600*200*11*17106 338*351*13*13106700*300*13*24185 340*250*9*1479.7 热轧H型钢理论重量计算公式:热轧H型钢理论重量==*L*7.85*1/1000

组合楼板计算实例

组合楼板计算 用于组合楼板的压型钢板净厚度(不包括涂层)不应小于0.75mm ,也不得超过1.6mm 。波槽平均宽度(对闭口式压型钢板为上口槽宽)不应小于50mm ;当在槽内设置栓钉时,压型钢板的总高度不应大于80mm 。根据上述构造要求,选用型号为60020075---XY 的压型钢板,厚度1.2mm 。 组合板总厚度不应小于90mm ,压型钢板顶面以上的混凝土厚度不应小于50mm 。此外,对于简支组合板的跨高比不宜大于25,连续组合板的跨高比不宜大于35。根据以上构造要求,压型钢板上混凝土厚度取c h =60mm 。 mm b 1121= mm b 582=mm b 49.763= 23() 31.2h b b c mm b += =∑压型钢板的形心高度 即单槽口对于上边(用s 代表)及下边(用x 代表)的截面模量为: 压型钢板的惯性模量s I :4233212357691) 32 (mm b b b b b b th I s =∑-∑+= 2123323 2 ()3s x x th b b b b b I W c b b +-==+∑ 22 1.275(1125876.49(1125876.49)76.49) 35876.49 ???+??++-==+114523mm 2123313 2 ()3x x x th b b b b b I W h c b b +-==-+∑ x x

2 2 1.275(1125876.49(112 5876.49)76.49) 311276.49 ???+??++-= =+81713mm 压型钢板的截面抵抗矩s W 取s x W 和x x W 的较小值,故: s W =x x W =81713mm 压型钢板的截面面积21000 1.240033 p l A t mm =?= ?= 施工阶段荷载 恒载 钢筋混凝土自重:5×[(58+88)×75/2+70×200] ×25=2.43kN/m 2 压型钢板自重: 0.16kN/m 2 荷载总重=2.43+0.16=2.59kN/m 2 活载 施工活载:1.5kN/m 2 2/208.55.14.159.22.1mm kN q =?+?= 2/04.1208.52.02.0mm kN q q x =?== m kN l q M x ?=??==17.1304.18 1 812max m kN q /818.02.0)5.159.2(0=?+= 强度验算 正应力验算:226 max max /205/2.14381711017.1mm N f mm N W M s =?=?==σ 剪应力验算kN l q V x 56.1304.12 1 21max =??== 腹板最大剪应力:23 3max max /7.122.149.76221056.1323mm N t b V =?????=∑=τ 挠度验算: []mm l w mm EI l q w s 7.1620,180min 7.113576911006.23843000818.053845540max =??? ???=?=?????== 使用阶段 1.2厚压型钢板自重:2 /16.0mm kN

各类钢材理论重量计算公式大全

各类钢材理论重量计算公式大全,欢迎收藏哦! 1.钢板重量计算公式 公式:7.85×长度(m)×宽度(m)×厚度(mm) 例:钢板6m(长)×1.51m(宽)×9.75mm(厚) 计算:7.85×6×1.51×9.75=693.43kg 2.钢管重量计算公式 公式:(外径-壁厚)×壁厚mm×0.02466×长度m 例:钢管114mm(外径)×4mm(壁厚)×6m(长度) 计算:(114-4)×4×0.02466×6=65.102kg 3.圆钢重量计算公式 公式:直径mm×直径mm×0.00617×长度m 例:圆钢Φ20mm(直径)×6m(长度) 计算:20×20×0.00617×6=14.808kg 4.方钢重量计算公式 公式:边宽(mm)×边宽(mm)×长度(m)×0.00785 例:方钢 50mm(边宽)×6m(长度) 计算:50×50×6×0.00785=117.75(kg)

5.扁钢重量计算公式 公式:边宽(mm)×厚度(mm)×长度(m)×0.00785 例:扁钢 50mm(边宽)×5.0mm(厚)×6m(长度) 计算:50×5×6×0.00785=11.7.75(kg) 6.六角钢重量计算公式 公式:对边直径×对边直径×长度(m)×0.00068 例:六角钢 50mm(直径)×6m(长度) 计算:50×50×6×0.0068=102(kg) 7.螺纹钢重量计算公式 公式:直径mm×直径mm×0.00617×长度m 例:螺纹钢Φ20mm(直径)×12m(长度) 计算:20×20×0.00617×12=29.616kg 8.扁通重量计算公式 公式:(边长+边宽)×2×厚×0.00785×长m 例:扁通 100mm×50mm×5mm厚×6m(长) 计算:(100+50)×2×5×0.00785×6=70.65kg 9.方通重量计算公式 公式:边宽mm×4×厚×0.00785×长m 例:方通 50mm×5mm厚×6m(长) 计算:50×4×5×0.00785×6=47.1kg

各种型钢的理论重量计算公式

各种型钢的理论重量计算公式 钢材理论重量计算 钢材理论重量计算的计量单位为公斤(kg )。其基本公式为: W(重量,kg )=F(断面积mm2)×L(长度,m)×ρ(密度,g/cm3)×1/1000 各种钢材理论重量计算公式如下: 名称(单位) 计算公式 符号意义 计算举例 圆钢盘条(kg/m) W= 0.006165 ×d×d d = 直径mm 直径100 mm 的圆钢,求每m 重量。每m 重量= 0.006165 ×1002=61.65kg 螺纹钢(kg/m) W= 0.00617 ×d×d d= 断面直径mm

断面直径为12 mm 的螺纹钢,求每m 重量。每m 重量=0.00617 ×12 2=0.89kg 方钢(kg/m) W= 0.00785 ×a ×a a= 边宽mm 边宽20 mm 的方钢,求每m 重量。每m 重量= 0.00785 ×202=3.14kg 扁钢 (kg/m) W= 0.00785 ×b ×d b= 边宽mm d= 厚mm 边宽40 mm ,厚5mm 的扁钢,求每m 重量。每m 重量= 0.00785 ×40 ×5= 1.57kg 六角钢 (kg/m) W= 0.006798 ×s×s s= 对边距离mm 对边距离50 mm 的六角钢,求每m 重量。每m 重量= 0.006798 ×502=17kg

八角钢 (kg/m) W= 0.0065 ×s ×s s= 对边距离mm 对边距离80 mm 的八角钢,求每m 重量。每m 重量= 0.0065 ×802=41.62kg 等边角钢 (kg/m) = 0.00785 ×[d (2b –d )+0.215 (R2 –2r 2 )] b= 边宽 d= 边厚 R= 内弧半径 r= 端弧半径 求20 mm ×4mm 等边角钢的每m 重量。从冶金产品目录中查出4mm ×20 mm 等边角钢的R 为3.5 ,r 为1.2 ,则每m 重量= 0.00785 ×[4 ×(2 ×20 – 4 )+0.21 5 ×(3. 52 –2 ×1.2 2 )]=1.15kg 不等边角钢

型钢理论重量计算公式

一、H350*350*12*19理论计算公式 (350*12+350*19*2)/1000 *7.85 =139.73kg/m (腹板长度*腹板厚+翼缘宽度*翼缘厚度*2)*7.85 请注意单位最后是kg/m 二、钢板的理论重量计算公式是怎样的?最后举个例子。 重量=厚度*宽度*长度*7.85 比如:20mm*2000mm*10000mm 单重:0.02*2*10*7.85=3.14T 注:单位要换算为米(M) ... 三、钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 四、角钢重量(公斤)=0.00785×(边宽+边宽-边厚)×边厚×长 度 五、圆钢重量(公斤)=0.00617×直径×直径×长度 六、C型钢每米重量计算公式:举例C100*50*20*2 每米重量=(100+50*2+20*2)*2*7.85/1000 C型钢计算公式 (宽+高*2+小边*2)*厚度*7.85/1000 例: 外输泵房GZ1 H450*250*6*10 计算公式:(450*6+250*10*2)/1000*7.85=60.445kg/m 外输泵房GZ8 H(450-300)*250*6*10 计算公式:<(450+300)/2*6+250*10*2>/1000*7.85=56.912 kg/m 外输泵房角钢∠63*5 计算公式:(63+63-5)*5*0.00785=4.75 kg/m 外输泵房 XG1 Φ114*5 计算公式:0.02466*5*(114-5)=13.4397 kg/m 外输泵房LT1 Φ12 计算公式:0.00617*12*12=0.88848 kg/m 外输泵房 QL1 C180*60*20*3 计算公式:(180+60*2+20*2)*3*0.00785=8.007 kg/m

关于钢结构防腐中型钢表面积的计算及数值对照表

刚接触防腐的预算才知道动力除锈要用表面积找了半天希望能帮助大家!!!每1m表面积(m2)=2(h-d)+4b-0.8584(r+r1) h:高度(14a为140mm) b:腿宽度(14a为58mm) d:腰厚度(14a为6.0mm) r:内圆弧半径(14a为9.5mm) r1:腿端圆弧半径(14a为4.8mm) 计算时各个数据均以"m"为单位,这样算出来的是正反两面表面积之和 槽钢表面积对照表 序号型号理论重量表面积kg/m M2/t 1 [5 5.438 44.846 2 [6. 3 6.63 4 42.492 3 [6.5 6.709 42.57 4 [8 8.04 5 39.304 5 [10 10.007 38.826 6 [12 12.059 37.294 7 [12.6 12.318 37.488 8 [14a 14.535 35.088 9 [14b 16.733 30.7 10 [16a 17.24 33.078 11 [16 19.752 29.059 12 [18a 20.174 31.255 13 [18 23 27.576 14 [20a 22.637 30.558 15 [20 25.777 26.98 16 [22a 24.999 29.934 17 [22 28.453 26.463 18 [24a 26.86 29.551 19 [24b 30.628 26.037 20 [24c 34.396 23.319 21 [25a 27.41 29.702 22 [25b 31.335 26.1 23 [25c 35.26 23.326 24 [27a 30.838 28.205 25 [27b 35.077 24.929

压型钢板组合楼板施工工艺标准

压型钢板组合楼板施工工艺 一、施工准备 组合楼板施工前,应对压型钢板的搬运、堆放、铺设、连接方法、板内配筋、预埋件以及浇筑混凝土的方法等等都应作详细规划,并绘制压型钢板平面排板图,梁和压型钢板连接的节点图,同时统计好板的型号、规格和数量,配件详图、规格和数量。 本工程压型钢板选用YX46-200-600型压型钢板。 板型图如下: 、压型钢板加工 1、压型钢板的原材料应有生产厂的质量证明书。 2、压型钢板采用的卷板其质量应符合下表:

3、成型后的压型钢板及包角板的基板不得有裂纹;漆膜应无 裂纹、剥落等缺陷。 4、压型钢板长度的容许偏差不应大于士 7mm横向剪刀差 不应大于5mm 5、压型钢板截面尺寸的容许偏差不应超过下表: 6、包角板几何尺寸的容许偏差不应超过下表限值: 7、压型钢板的几何尺寸应进行抽样检查。 8 压型钢板出厂时必须有产品合格证。 三、压型钢板运输和保管 1、装卸无外包装的压型钢板时,严禁直接用钢丝绳绑扎

起吊。 2、用车辆运输无外包装的压型钢板时,应在车上设置衬有 橡胶衬垫的枕木,间距不得大于 3米。 3、对于采用汽车运输的压型板等,采用角钢框架分层固 定,绑扎牢固后进行运输。 4、压型钢板装卸时的悬伸长度不应大于 1.5m。 5、压型钢板应按材质、板型分别堆放,压型钢板上不得堆 放重物,应避免污染。 6、板型规格的堆放顺序应与施工安装顺序相配合。 7、压型钢板在工地可采用枕木架空(架空枕木要保持约 5%勺倾斜度)堆放。应堆放在不妨碍交通、不被高空重物撞击的安 全地带,并应采取遮雨措施。 8 安装压型钢板时,施工人员必须穿软底鞋,且不得聚集在一 起。在压型钢板上行走频繁的地方应设置临时木支撑。吊放在钢梁 上的压型钢板,应于当日安装完毕。未安装完毕的,必须用绳具与 钢梁捆绑牢固。 9、栓钉和瓷环的成品包装箱在运输中不得有损坏,运到现场 后要存放在干燥的小库房中,以免栓钉和瓷环受潮.在施工中用多少 料取多少料,以免来回搬运. 四、压型钢板切割、割孔和局部处理 1、切割和钻孔,原则上应采用机械加工,不要损害压型钢板的材质 和形状,不得已时可采用气割。考虑采用带锯机和全能锯机进行。

H型钢理论重量表、计算公式

H型钢理论重量表 规格单重规格单重规格单100*50*5*7 9.54 294*302*12*12 85 482*300*11*15 11 100*100*6*8 17.2 300*300*10*15 94.5 488*300*11*18 12 125*60*6*8 13.3 300*305*15*15 106 496*199*9*14 79 125*125*6.5*9 23.8 338*351*13*13 106 500*200*10*16 89 148*100*6*9 21.4 340*250*9*14 79.7 582*300*12*17 13 150*75*5*7 14.3 344*354*16*16 131 588*300*12*20 15 150*150*7*10 31.9 346*174*6*9 41.8 596*199*10*15 95 175*90*5*8 18.2 350*175*7*11 50 106 175*175*7.5*11 40.3 344*348*10*16 115 185 194*150*6*9 31.2 350*350*12*19 137 198*99*4.5*7 18.5 388*402*15*15 141 200*100*5.5*8 21.7 390*300*10*16 107 200*200*8*12 50.5 394*398*11*18 147 200*204*12*12 72.28 400*150*8*13 55.8 244*175*7*11 44.1 396*199*7*11 56.7 244*252*11*11 64.4 400*200*8*13 66 248*124*5*8 25.8 400*400*13*21 172 250*125*6*9 29.7 400*408*21*21 197 250*250*9*14 72.4 414*405*18*28 233 250*255*14*14 82.2 440*300*11*18 124 294*200*8*12 57.3 446*199*7*11 66.7 300*150*6.5*9 37.3 450*200*9-14 76.5 热轧H型钢理论重量计算公式:热轧H型钢理论重量 =*L*7.85*1/1000 其中 h----高度(MM),b----脚宽(MM),d----腰厚(MM),r----内面圆角 半径(MM)r1----边端圆角半径(MM),L-----长度(M)

各类钢材理论重量计算公式大全

各类钢材理论重量计算 公式大全 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

各类钢材理论重量计算公式大全,欢迎收藏哦!1.钢板重量计算公式 公式:7.85×长度(m)×宽度(m)×厚度(mm) 例:钢板6m(长)×1.51m(宽)×9.75mm(厚) 计算:7.85×6×1.51×9.75=693.43kg 2.钢管重量计算公式 公式:(外径-壁厚)×壁厚mm×0.02466×长度m 例:钢管114mm(外径)×4mm(壁厚)×6m(长度) 计算:(114-4)×4×0.02466×6=65.102kg 3.圆钢重量计算公式 公式:直径mm×直径mm×0.00617×长度m 例:圆钢Φ20mm(直径)×6m(长度) 计算:20×20×0.00617×6=14.808kg 4.方钢重量计算公式 公式:边宽(mm)×边宽(mm)×长度(m)×0.00785 例:方钢 50mm(边宽)×6m(长度)

计算:50×50×6×0.00785=117.75(kg) 5.扁钢重量计算公式 公式:边宽(mm)×厚度(mm)×长度(m)×0.00785 例:扁钢 50mm(边宽)×5.0mm(厚)×6m(长度) 6.六角钢重量计算公式 公式:对边直径×对边直径×长度(m)×0.00068 例:六角钢 50mm(直径)×6m(长度) 计算:50×50×6×0.0068=102(kg) 7.螺纹钢重量计算公式 公式:直径mm×直径mm×0.00617×长度m 例:螺纹钢Φ20mm(直径)×12m(长度) 计算:20×20×0.00617×12=29.616kg 8.扁通重量计算公式 公式:(边长+边宽)×2×厚×0.00785×长m? 例:扁通 100mm×50mm×5mm厚×6m(长) 计算:(100+50)×2×5×0.00785×6=70.65kg

(整理)压杆稳定计算.

第16 章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F 由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F 达到屈服强度载荷F s (或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a 所示的同样粗细而比较长的杆件(图16-1b),当压力F 比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F 逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图 16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的 稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的 O 点处于平衡状态,如图 16-5a 所示。先用外加干 扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。 因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的 O 点处于平衡状态,如图 16-5c 所示。当用外加干 扰力使其偏离原有的平衡位置后, 小球将继续下滚, 不再回到原来的平衡位置。 因此, 小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的 O 点处于平衡状态,如图 16-5b 所示,当用外加干 扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置 O 1 再次处于平 衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡 状态为随遇平衡。 图 16-5 图 16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏 离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于 图 16-3

各种型钢重量计算公式

型钢重量计算公式 圆钢重量计算公式 圆钢重量(公斤)=0.00617×直径×直径×长度 其他钢(管)材重量计算公式 1、角钢:每米重量=0.00785×(边宽+边宽—边厚)×边厚 2、管材:每米重量=0.02466×壁厚×(外径—壁厚) 3、圆钢:每m重量=0.00617×直径×直径 (螺纹钢和圆钢相同) 4、方钢:每m重量=0.00786×边宽×边宽 5、六角钢:每m重量=0.0068×对边直径×对边直径 6、八角钢:每m重量=0.0065×直径×直径 7、等边角钢:每m重量=边宽×边厚×0.015 8、扁钢:每m重量=0.00785×厚度×宽度 9、无缝钢管:每m重量=0.02466×壁厚×(外径-壁厚) 10、电焊钢:每m重量=无缝钢管 11、钢板:每㎡重量=7.85×厚度 12、黄铜管:每米重量=0.02670×壁厚×(外径-壁厚) 13、紫铜管:每米重量=0.02796×壁厚×(外径-壁厚) 14、铝花纹板:每平方米重量=2.96×厚度 15、有色金属密度:紫铜板8.9黄铜板8.5锌板7.2铅板11.37 16、有色金属板材的计算公式为:每平方米重量=密度×厚度 17、方管:每米重量=(边长+边长)×2×厚×0.00785 18、不等边角钢:每米重量=0.00785×边厚(长边宽+短边宽--边厚) 19、工字钢:每米重量=0.00785×腰厚[高+f(腿宽-腰厚)] 20、槽钢:每米重量=0.00785×腰厚[高+e(腿宽-腰厚)] 各种钢管(材)重量换算公式 钢管的重量=0.25×π×(外径平方-内径平方)×L×钢铁比重其中:π = 3.14 L=钢管长度钢铁比重取7.8 所以,钢管的重量=0.25×3.14×(外径平方-内径平方)×L×7.8 * 如果尺寸单位取米(M),则计算的重量结果为公斤(Kg)

压型钢板混凝土组合楼承板计算实例(材料相关)

压型钢板混凝土楼承组合板计算书 工程资料: 该工程楼层平台采用压型钢板组合楼板,计算跨度m l 4=,剖面构造如图1所示。压型钢板的型号为YX76-305-915,钢号Q345,板厚度mm t 5.1=,每米宽度的截面面积m mm A S /20492=(重量0.152/m kN ), 截面惯性矩m mm I S /1045.20044?=。顺肋两跨连续板,压型钢板上浇 筑mm 89厚C35混凝土。 图1 组合楼板剖面

1 施工阶段压型钢板混凝土组合板计算 1.1 荷载计算 取m b 0.1=作为计算单元 (1)施工荷载 施工荷载标准值m kN p k /0.10.10.1=?= 施工荷载设计值m kN p /4.10.14.1=?= (2)混凝土和压型钢板自重 混凝土取平均厚度为mm 127 混凝土和压型钢板自重标准值 m kN m m kN m kN m k /325.30.1)/15.0/25127.0(g 23=?+?= 混凝土和压型钢板自重设计值 m kN m kN g /0.4/325.32.1=?= (3)施工阶段总荷载 m kN m kN m kN g p q k k k /325.4/325.3/0.1=+=+= 1.2 内力计算 跨中最大正弯矩为 m kN m kN l g p M ?=??+?=+=+05.60.4)0.44.1(07.0)(07.022max 支座处最大负弯矩为 m kN m kN l g p M ?=??+?=+=-8.100.4)0.44.1(125.0)(125.022max 故m kN M M ?==-8.10max max 支座处最大剪力

最新(整理)压杆稳定计算.

第16章压杆稳定 1 2 16.1 压杆稳定性的概念 3 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对4 5 短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧6 失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然7 不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 8 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始9 终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根 10 11 与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小12 时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某13 —数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失14 了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此15 时,F1可能远小于F s(或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 16 - 363 -精品文档

17 18 图16-1 19 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下, 20 21 会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压 22 23 力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。 24 - 364 -精品文档

相关文档
最新文档