Matlab数值计算(函数)

合集下载

Matlab中常用的数值计算方法

Matlab中常用的数值计算方法

Matlab中常用的数值计算方法数值计算是现代科学和工程领域中的一个重要问题。

Matlab是一种用于数值计算和科学计算的高级编程语言和环境,具有强大的数值计算功能。

本文将介绍Matlab中常用的数值计算方法,包括数值积分、数值解微分方程、非线性方程求解和线性方程组求解等。

一、数值积分数值积分是通过数值方法来近似计算函数的定积分。

在Matlab中,常用的数值积分函数是'quad'和'quadl'。

'quad'函数可以用于计算定积分,而'quadl'函数可以用于计算无穷积分。

下面是一个使用'quad'函数计算定积分的例子。

假设我们想计算函数f(x) = x^2在区间[0, 1]上的定积分。

我们可以使用如下的Matlab代码:```f = @(x) x^2;integral = quad(f, 0, 1);disp(integral);```运行这段代码后,我们可以得到定积分的近似值,即1/3。

二、数值解微分方程微分方程是描述自然界各种变化规律的数学方程。

在科学研究和工程应用中,常常需要求解微分方程的数值解。

在Matlab中,可以使用'ode45'函数来求解常微分方程的数值解。

'ode45'函数是采用基于Runge-Kutta方法的一种数值解法。

下面是一个使用'ode45'函数求解常微分方程的例子。

假设我们想求解一阶常微分方程dy/dx = 2*x,初始条件为y(0) = 1。

我们可以使用如下的Matlab代码:```fun = @(x, y) 2*x;[x, y] = ode45(fun, [0, 1], 1);plot(x, y);```运行这段代码后,我们可以得到微分方程的数值解,并绘制其图像。

三、非线性方程求解非线性方程是指方程中包含非线性项的方程。

在很多实际问题中,我们需要求解非线性方程的根。

如何使用MATLAB进行数值计算

如何使用MATLAB进行数值计算

如何使用MATLAB进行数值计算使用MATLAB进行数值计算一、引言数值计算是现代科学与工程领域中不可或缺的一部分,它能够解决许多实际问题,包括求解方程、优化问题和模拟实验等。

而MATLAB作为一种功能强大的数值计算软件,被广泛应用于各个领域。

本文将介绍如何使用MATLAB进行数值计算,并结合实例进行说明。

二、MATLAB基础首先,我们需要了解MATLAB的基本操作和语法,以便能够熟练运用。

MATLAB使用矩阵和数组来存储和处理数据,因此,熟悉矩阵和数组操作是非常重要的。

MATLAB中的矩阵和数组是通过方括号来定义的,例如:A = [1 2 3; 4 5 6; 7 8 9]表示一个3x3的矩阵A,其中每个元素由空格或分号隔开。

我们可以使用括号或索引来访问矩阵中的元素。

例如,要访问矩阵A的第二行第三列的元素,可以使用A(2,3)。

MATLAB提供了大量内置的数学函数,包括算术运算、三角函数、指数和对数函数等。

这些函数可以直接应用于矩阵和数组,简化了数值计算的过程。

三、方程求解方程求解是数值计算中的一个重要任务,MATLAB提供了多种方法来求解方程,包括代数方法和数值方法。

1. 代数方法对于一些简单的方程,例如一元一次方程或二次方程,可以直接使用MATLAB内置的解方程函数进行求解。

例如,对于一元一次方程ax + b = 0,可以使用solve函数来求解。

代码示例:syms x;eqn = a*x + b == 0;sol = solve(eqn, x);其中,syms x;指定x为符号变量,eqn为方程表达式,sol为方程的解。

2. 数值方法对于一些复杂的方程,无法用解析方法求解。

这时,可以使用数值方法来近似求解。

MATLAB提供了多种数值求解方法,包括二分法、牛顿法和割线法等。

这些方法可以通过迭代逼近的方式求解方程的根。

代码示例:f = @(x) x^2 - 4;x0 = 2;x = fzero(f, x0);其中,f为方程的表达式,x0为初始猜测值,x为方程的根。

第06章_MATLAB数值计算_参考解答

第06章_MATLAB数值计算_参考解答

%可参见教材第 157 页例 6.19
运行结果: dx =
000
%当 x=pi/2 时单独计算 x=pi/2; f=inline('sin(x).^2+cos(x).^2'); dx=diff(f([x, pi]))/(pi/2)
dx = 0
(2) 程序设计: clear all; close all; clc; x=1:3; f=inline('sqrt(x.^2+1)'); dx=diff(f([x, 4]))
运行结果:
U= 1.0e-004 * -0.0675
0.1715
fmin = 1.9920e-010
(2) 程序设计: clear all; close all; clc; f=inline('-sin(x)-cos(x.^2)'); fmax=fminbnd(f, 0, pi)
%用内联函数,求负的最小值 %注意函数名 f 不加单引号'
高教社刘卫国《MATLAB 程序设计与应用》(第二版)习题参考解答
第 6 章:MATLAB 数值计算
教材 P189 习题六
第 6 章 MATLAB 数值计算
1. 利用 MATLAB 提供的 randn 函数生成符合正态分布的 10×5 随机矩阵 A,进行如下操 作:
(1) A 各列元素的均值和标准方差。 (2) A 的最大元素和最小元素。 (3) 求 A 每行元素的和以及全部元素之和。 (4) 分别对 A 的每列元素按升序、每行元素按降序排列。 答:
运行结果: P=
0
15.0000
7.0000 -3.5000
0.5000 -2.0000 -2.0000

matlab数值积分 函数嵌套

matlab数值积分 函数嵌套

数值积分在科学计算和工程领域中扮演着至关重要的角色。

作为一种近似计算方法,数值积分能够帮助研究人员和工程师在处理复杂的数学问题时提供有效的解决方案。

而在实际的数值积分计算中,函数嵌套则是一个常见的问题,它需要我们对嵌套函数的积分进行合理的计算和处理。

本文将以Matlab为例,探讨如何使用Matlab进行数值积分计算,并针对函数嵌套的情况给出相应的解决方案。

二、Matlab中的数值积分Matlab作为一种常用的科学计算工具,提供了丰富的数值积分计算函数,如trapz、quad等。

这些函数可以帮助用户对给定函数进行数值积分计算,从而得到函数的近似积分值。

在使用这些函数时,我们需要指定被积函数、积分区间等参数,以确保得到准确的积分结果。

下面以一个简单的例子来说明Matlab中的数值积分计算方法:```matlab定义被积函数f = (x) sin(x);指定积分区间a = 0;b = pi;使用trapz函数进行数值积分计算integral_value = trapz(linspace(a, b, 1000), f(linspace(a, b,disp(['The integral value of sin(x) from 0 to pi is: ',num2str(integral_value)]);```以上代码使用了Matlab中的trapz函数对sin(x)函数在区间[0, π]上进行数值积分计算,并输出了积分结果。

通过这样的方式,我们可以很快得到函数在给定区间上的积分值,而无需手动进行复杂的求解过程。

三、函数嵌套的数值积分计算虽然Matlab提供了丰富的数值积分计算函数,但在处理函数嵌套的情况时,我们需要对嵌套函数的积分进行合理的处理。

函数嵌套是指一个函数中包含了另一个函数作为变量,例如f(g(x)),在这样的情况下,我们需要对内层函数和外层函数进行逐层的积分计算。

对于函数嵌套的数值积分计算,Matlab提供了一个简单而有效的解决方案,即使用匿名函数进行嵌套积分计算。

MATLAB数值运算.pdf

MATLAB数值运算.pdf

第3章 MATLAB 数值运算教学提示:每当难以对一个函数进行积分或者微分以确定一些特殊的值时,可以借助计算机在数值上近似所需的结果,从而生成其他方法无法求解的问题的近似解。

这在计算机科学和数学领域,称为数值分析。

本章涉及的数值分析的主要内容有插值与多项式拟合、数值微积分、线性方程组的数值求解、微分方程的求解等,掌握这些主要内容及相应的基本算法有助于分析、理解、改进甚至构造新的数值算法。

教学要求:本章主要是让学生掌握数值分析中多项式插值和拟合、牛顿-科茨系列数值求积公式、3种迭代方法求解线性方程组、解常微分方程的欧拉法和龙格-库塔法等具体的数值算法,并要求这些数值算法能在MATLAB 中实现。

3.1 多 项 式在工程及科学分析上,多项式常被用来模拟一个物理现象的解析函数。

之所以采用多项式,是因为它很容易计算,多项式运算是数学中最基本的运算之一。

在高等数学中,多项式一般可表示为以下形式:120121()n n n n n f x a x a x a x a x a −−−=+++++…。

当x 是矩阵形式时,代表矩阵多项式,矩阵多项式是矩阵分析的一个重要组成部分,也是控制论和系统工程的一个重要工具。

3.1.1 多项式的表达和创建在MATLAB 中,多项式表示成向量的形式,它的系数是按降序排列的。

只需将按降幂次序的多项式的每个系数填入向量中,就可以在MATLAB 中建立一个多项式。

例如,多项式43231529s s s s +−−+在MATLAB 中,按下面方式组成一个向量x = [1 3 -15 -2 9]MATLAB 会将长度为n +1的向量解释成一个n 阶多项式。

因此,若多项式某些项系数为零,则必须在向量中相应位置补零。

例如多项式41s +在MATLAB 环境下表示为y = [1 0 0 0 1]3.1.2 多项式的四则运算多项式的四则运算包括多项式的加、减、乘、除运算。

下面以对两个同阶次多项式MATLAB 基础及其应用教程·66··66·32()234a x x x x =+++,32()4916b x x x x =+++做加减乘除运算为例,说明多项式的四则运算过程。

第四章_MATLAB的数值计算功能

第四章_MATLAB的数值计算功能

第四章MATLAB 的数值计算功能Chapter 4: Numerical computation of MATLAB数值计算是MATLAB最基本、最重要的功能,是MATLAB最具代表性的特点。

MATLAB在数值计算过程中以数组和矩阵为基础。

数组是MATLAB运算中的重要数据组织形式。

前面章节对数组、矩阵的特征及其创建与基本运算规则等相关知识已作了较详尽的介绍,本章重点介绍常用的数值计算方法。

一、多项式(Polynomial)`多项式在众多学科的计算中具有重要的作用,许多方程和定理都是多项式的形式。

MATLAB提供了标准多项式运算的函数,如多项式的求根、求值和微分,还提供了一些用于更高级运算的函数,如曲线拟合和多项式展开等。

1.多项式的表达与创建(Expression and Creating of polynomial)(1) 多项式的表达(expression of polynomial)_Matlab用行矢量表达多项式系数(Coefficient)和根,系数矢量中各元素按变量的降幂顺序排列,如多项式为:P(x)=a0x n+a1x n-1+a2x n-2…a n-1x+a n则其系数矢量(V ector of coefficient)为:P=[a0 a1… a n-1 a n]如将根矢量(V ector of root)表示为:ar=[ ar1 ar2… ar n]则根矢量与系数矢量之间关系为:(x-ar1)(x- ar2) … (x- ar n)= a0x n+a1x n-1+a2x n-2…a n-1x+a n(2)多项式的创建(polynomial creating)a,系数矢量的直接输入法利用poly2sym函数直接输入多项式的系数矢量,就可方便的建立符号形式的多项式。

例1:创建给定的多项式x3-4x2+3x+2poly2sym([1 -4 3 2])ans =x^3-4*x^2+3*x+2也可以用poly2str.求一个方阵对应的符号形式的多项式。

如何在MATLAB中进行数值计算

如何在MATLAB中进行数值计算

如何在MATLAB中进行数值计算1.基本数学操作:-加法、减法、乘法、除法:使用+、-、*、/操作符进行基本算术运算。

-幂运算:使用^或.^(点乘)操作符进行幂运算。

- 开平方/立方:可以使用sqrt(或power(函数进行开平方和立方运算。

2.矩阵操作:- 创建矩阵:可以使用矩阵构造函数如zeros(、ones(、rand(等创建矩阵。

- 矩阵运算:使用*操作符进行矩阵相乘,使用transpose(函数进行矩阵转置。

- 矩阵求逆和求解线性方程组:使用inv(函数求矩阵的逆,使用\操作符求解线性方程组。

3.数值积分和微分:- 数值积分:使用integral(函数进行数值积分。

可以指定积分函数、积分上下限和积分方法。

- 数值微分:使用diff(函数进行数值微分。

可以指定微分函数和微分变量。

4.解方程:- 一元方程:使用solve(函数可以解一元方程。

该函数会尝试找到方程的精确解。

- 非线性方程组:使用fsolve(函数可以求解非线性方程组。

需要提供初始值来开始求解过程。

-数值方法:可以使用牛顿法、二分法等数学方法来求解方程。

可以自定义函数来实现这些方法。

5.统计分析:- 统计函数:MATLAB提供了丰富的统计分析函数,如mean(、std(、var(等用于计算均值、标准差、方差等统计量。

- 直方图和密度估计:使用histogram(函数可以绘制直方图,并使用ksdensity(函数进行核密度估计。

- 假设检验:使用ttest(或anova(函数可以进行假设检验,用于比较多组数据之间的差异。

6.数值优化:- 非线性最小化:使用fminunc(函数可以进行非线性最小化。

需要提供目标函数和初始点。

- 线性规划:使用linprog(函数可以进行线性规划。

需要提供目标函数和限制条件。

- 整数规划:使用intlinprog(函数可以进行整数规划。

需要提供目标函数和整数约束。

7.拟合曲线:- 线性拟合:使用polyfit(函数进行线性拟合。

MATLAB数值计算

MATLAB数值计算

(1)代数多项式求值
y = polyval(P,x)
若x为一数值,则求多项式在该点的值;若x为向量或矩阵,则 对向量或矩阵中的每个元素求其多项式的值。
(2)矩阵多项式求值 Y = polyvalm(P,X)

polyvalm函数要求x为方阵,它以方阵为自变量求多项式的值
设A为方阵,P代表多项式x3-5x2,那么polyvalm(P,A)的含义是: A*A*A-5*A*A 而polyval(P,A)的含义是: A.*A.*A-5*A.*A
[I,n]=quad(fx,1,2.5,1e-10)
(2) k = polyder(P,Q)
例:求有理分式的导数。 命令如下: P=[1]; Q=[1,0,5]; [p,q]=polyder(P,Q)
求两个多项式乘积P·Q的导函数
(3) [p,q] = polyder(P,Q)
求两个多项式除法P/Q的导函数,导函数的分子存入p,分母存入q。
8. 多项式积分
例:求定积分。 (1) 建立被积函数文件fesin.m。
function f=fesin(x) f=exp(-0.5*x).*sin(x+pi/6); (2) 调用数值积分函数quad求定积分。 [S,n]=quad('fesin',0,3*pi) S=
0.9008 n= 77
(2) 牛顿-柯特斯法
➢ method 用 于 指 定 插 值 的 方 法 : ‘ l i n e a r ’ 、 ‘nearest’、‘cubic’、‘spline’
➢ X1,Y1的取值范围不能超出X,Y的给定范围,否则,会 给出“NaN”错误。
运行结果如下图所示。
代数方程
线性方程

Matlab数值函数

Matlab数值函数

例:求一元函数最小值 fminbnd 求一元函数最小值(fminbnd 求一元函数最小值 fminbnd命令) 对于例2中所定义函数的fy(x),求其在区间[0.2,0.8]上的最小值。 ► fy=inline('1./((x-0.3).^2+0.01)+1./((x-0.9).^2+0.04)-6'); ► [xmin,fmim]=fminbnd(fy,0.2,0.8)
► f=inline('1./((x-0.3).^2+0.01)+1./((x-0.9).^2+0.04)-6'); ► s=quad(f,0,1) ◄s
.
% 求f(x)在[0,1]上定积分
= 29.8583
例3: 求二重积分 ∫∫
xydσ
[0,1]×[1,2]
及三重积分 ∫∫∫
( xe y + z 2 ) dxdydz
► h=inline('x.*exp(y)+z.^2',
► t=triplequad(h,0,1,0,1,0,1)
% 求h(x,y,z)在[0,1] ×[0,1] ×[0,1]上的三重积分
◄t
= 1.1925
另外,对于定积分,如果已知积分区间[a,b]的一 个划分向量 X=[x1,x2,…,xn] 以及被积函数y在对应划分点处的函数值向量 Y=[y1,y2,…,yn] (函数表达式未必知道),那么可以用梯形近似计 算方法计算定积分,MATLAB提供了命令trapz.
3、 数值函数的零点 当一个函数f(x)与x轴相交时,交点(又称为函数 的零点)是方程f(x)=0的一个实根。如何求函数的零点, MATLAB提供了一个重要命令fzero。其使用方法有两种: fzero。 fzero 求函数f(x)在x0附近的零点c,格式: c=fzero(f , x0) 求函数f(x)在区间[a,b]内的零点c,格式: c=fzero(f , [a,b]) 这里要求函数在区间两端点处函数值要异号。

matlab 二重积分 数值计算

matlab 二重积分 数值计算

在MATLAB 中,你可以使用integral2函数进行二重积分的数值计算。

integral2函数接受四个参数:被积函数、积分变量x 的范围、积分变量y 的范围以及任何额外的参数(如果被积函数需要的话)。

下面是一个简单的例子,计算函数f(x,y) = x^2 + y^2 在区域0 <= x <= 1 和0 <= y <= 1 上的二重积分:matlab复制代码% 定义被积函数f = @(x,y) x.^2 + y.^2;% 定义积分范围xmin = 0; xmax = 1;ymin = @(x) 0; ymax = @(x) 1;% 计算二重积分result = integral2(f, xmin, xmax, ymin, ymax);% 显示结果disp(result);在这个例子中,xmin和xmax是x 的积分范围,ymin和ymax是y 的积分范围。

注意ymin和ymax是函数句柄,这意味着它们的值可能会根据x 的值变化。

在这个特定的例子中,y 的范围并不依赖于x,所以ymin和ymax是常数函数。

如果你的被积函数或积分范围更复杂,你可能需要调整这个示例以适应你的具体需求。

另外,请注意integral2使用的是自适应的数值积分方法,这意味着它会自动调整步长以尝试达到所需的精度。

如果你需要更高的精度,你可以尝试增加integral2的AbsTol和RelTol参数的值。

例如:matlab复制代码result = integral2(f, xmin, xmax, ymin, ymax, 'AbsTol', 1e-10, 'RelTol', 1e-6);这将设置绝对误差容限为1e-10,相对误差容限为1e-6。

MATLAB的数值运算

MATLAB的数值运算
➢ 对角矩阵:对角元素向量 V=[a1,a2,…,an] A=diag(V)
➢ A为方阵,V=diag(A)提取A的对角元素 构成向量V。
➢ 随机矩阵:rand(m,n) m×n的均匀分布
3.利用冒号表达式建立向量
e1: e2: e3
a=[1:2:10]
a=
初始值 :步长: 终止值
13579
linspace(a,b,n)
49
72
90
85 133 172
矩阵的点除
例: a=[1 2 3];b=[4 5 6]; c1=a.\b; c2=b./a c1 = 4.0000 2.5000 2.0000
c2 = 4.0000 2.5000 2.0000
a./b=b.\a —— 给出a,b对应元素间的商. a.\b=b./a a./b=b.\a — 都是a的元素被b的对应元素除 a.\b=b./a — 都是a的元素被b的对应元素除
第三节 多项式运算
一、多项式的建立与表示方法
多项式 → 一个行向量
元素按多项式降幂排列
f(x)=anxn+an-1xn-1+……+a0
p=[an an-1 …… a1 a0]
x4 12x3 0x2 25x 116 p=[1 -12 0 25 116]
roots 多项式等于0的根,列向量
polynomial 已知多项式等于0的根,求 出相应多项式
第二章 MATLAB的数值运算
第一节 基本语法结构
一、变量与赋值
1.变量
命名 字母+任意字母(数字、下划线) 规则 字母的大小写、标点符号
存储
变量操作 命令窗口
命令、变量值
调用

第二讲 MATLAB的数值计算 —— matlab 具有出色的数值计算能力,占据世界上数值计算软件的主导地位

第二讲 MATLAB的数值计算 ——  matlab 具有出色的数值计算能力,占据世界上数值计算软件的主导地位
x= 2.00 3.00
x=a\b x= 2.00 3.00
2.超定方程组的解
方程 ax=b ,m<n时此时不存在唯一解。 方程解 (a ' a)x=a ' b
x=(a' a)-1 a ' b —— 求逆法 x=a\b —— matlab用最小二乘法找一
个准确地基本解。
例: x1+2x2=1 2x1+3x2=2 3x1+4x2=3
特征多项式一定是n+1维的
特征多项式第一个元素一定是1
例:a=[1 2 3;4 5 6;7 8 0]; p=poly(a)
p =1.00 -6.00 -72.00 -27.00 p是多项式p(x)=x3-6x2-72x-27的
matlab描述方法,我们可用: p1=poly2str(p,‘x’) — 函数文件,显示 数学多项式的形式
matlab函数名必须小写。
3. 矩阵的修改
直接修改 可用键找到所要修改的矩阵,用键
移动到要修改的矩阵元素上即可修改。 指令修改
可以用A(,)= 来修改。
例如
a=[1 2 0;3 0 5;7 8 9]
a =1 2 0
305 789
还可以用函数subs
a(3,3)=0 a =1 2 0
p1 =x^3 - 6 x^2 - 72 x - 27
2.roots —— 求多项式的根
a=[1 2 3;4 5 6;7 8 0];p=poly(a) p=
1.00 -6.00 -72.00 -27.00 r=roots(p) r = 12.12
-5.73 ——显然 r是矩阵a的特征值 -0.39
用除法求的解x是具有最多零元素的 解 是具有最小长度或范数的解,这个 解是基于伪逆pinv求得的。

常见数值计算问题的MATLAB函数命令的使用方法

常见数值计算问题的MATLAB函数命令的使用方法
x=-1:0.2:1;y=1./(1+25*x.^2);%在区间[1, 1]取插值点
xx=-1:0.2/3:1;%将每一小段三等分
yy=spline(x,y,xx);%对数据(x, y)的三次样条插值
for k=1:10;%循环的每一步为每一小段
p(k,1)=k;%对每一小段作标注
p(k,2:5)=polyfit(xx(3*k-2:3*k+1),yy(3*k-2:3*k+1),3);
plot(xx,yy,’-‘,x,y,’o’)%作出多项式p的图形
运行后得多项式p的图形,并且插值点用圈“o”标注。
注:可用以下方法得线性最小二乘估计
p=polyfit(x,y,1) %线性最小二乘估计
运行后得:p=1.0000 1.6000
表示y=1.0000x+1.6000
样条插值
命令:spline
%对每一小段的四个点作三次多项式插值
end
p%显示每一小段内的三次多项式
第五章函数的平方逼近
第六章最小二乘法与快速Fourier变换
线性最小二乘法
命令:\
格式:变量=矩阵\向量
t= A\y
注:若A为mn矩阵(m>n),则t是线性方程组At=y的最小二乘解
单变量线性最小二乘法和非线性最小二乘法(多项式)
p=polyfit(x,y,n1)
运行后得:p=0.0655 -1.2857 8.3750 -19.1071 14.9524
表示y=0.0655x41.2857x3+8.3750x219.1071x+14.9524
xx=0:0.01:10;%在区间[0, 10]取点
yy=polyval(p,xx); %yy是多项式p在点xx处的函数值

matlab数值计算杜哈梅尔积分

matlab数值计算杜哈梅尔积分

Matlab是一种用于数学建模、仿真和数据分析的计算机软件,它广泛应用于工程、科学和经济领域。

杜哈梅尔积分是一种常见的数值积分方法,它可以用来计算一些特定类型的积分。

在本文中,我们将介绍matlab如何用于进行杜哈梅尔积分的数值计算。

一、杜哈梅尔积分的原理在数学中,积分是求曲线下面积的一个常见操作。

而杜哈梅尔积分是一种数值积分方法,它通过将被积函数进行离散化处理,然后采用插值方法来近似计算积分值。

具体原理如下:1. 网格划分:首先将积分区间进行网格划分,将被积函数在每个网格点上进行采样。

2. 插值:利用插值方法对采样点进行插值,得到近似的积分函数。

3. 积分计算:对插值得到的积分函数进行数值积分,得到最终的积分值。

二、Matlab中的杜哈梅尔积分计算Matlab提供了丰富的数值计算工具和函数,其中包括了用于进行杜哈梅尔积分计算的函数。

在Matlab中,可以使用以下步骤进行杜哈梅尔积分的数值计算:1. 网格划分:利用linspace函数对积分区间进行网格划分,得到采样点。

2. 采样:将被积函数在采样点上进行采样,得到函数值。

3. 插值:利用interp1函数对采样点进行插值,得到近似的积分函数。

4. 积分计算:利用trapz函数对插值得到的积分函数进行数值积分,得到最终的积分值。

三、实例分析下面通过一个具体的实例来演示在Matlab中如何进行杜哈梅尔积分的数值计算。

假设我们要计算下面的积分:∫(2x+3)dx,积分区间为[0,5]。

我们可以使用linspace函数对积分区间进行网格划分,得到采样点:x = linspace(0, 5, 1000);将被积函数在采样点上进行采样,得到函数值:y = 2 .* x + 3;接下来,利用interp1函数对采样点进行线性插值,得到近似的积分函数:f = interp1(x, y, 'linear');利用trapz函数对插值得到的积分函数进行数值积分,得到最终的积分值:integral_value = trapz(x, f);通过上述步骤,我们可以在Matlab中得到该积分的数值近似值。

matlab 数值解方程

matlab 数值解方程

MATLAB 是一个强大的数值计算和数据分析工具,可以用来求解各种数学方程。

以下是一些基本的 MATLAB 函数,用于求解不同类型的方程。

1. **符号方程求解**:使用 `syms` 和 `solve` 函数。

```matlab
syms x
solution = solve(x^2 + 3*x - 4 = 0);
```
2. **数值方程求解**:使用 `fzero` 函数。

```matlab
f = @(x) x^2 - 3; % 定义函数
solution = fzero(f, 1); % 在区间 [1,2] 内寻找零点
```
3. **系统方程求解**:使用 `fsolve` 函数。

```matlab
fun = @(x) [x(1)^2 + x(2)^2 - 4; x(1) + x(2) - 2]; % 定义系统函数
solution = fsolve(fun, [1,1]); % 使用初始值 [1,1] 进行求解
```
4. **非线性方程求解**:使用 `fminbnd` 或 `fminunc` 函数。

```matlab
fun = @(x) x^3 - x - 1; % 定义函数
solution = fminbnd(fun, -10, 10); % 在区间 [-10,10] 内寻找最小值点
```
注意:以上所有的解决方案都需要先定义方程或系统,然后选择合适的初始值和参数范围进行求解。

MATLAB 的文档提供了更详细的例子和说明,可以帮助你理解如何使用这些函数。

数值计算方法实验指导(Matlab版)

数值计算方法实验指导(Matlab版)

《数值计算方法》实验指导(Matlab版)学院数学与统计学学院计算方法课程组《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之相近数相减、大数吃小数和简化计算步骤) 2. 实验题目(1) 取1610=z ,计算z z -+1和)1/(1z z ++,验证两个相近的数相减会造成有效数字的损失.(2) 按不同顺序求一个较大的数(123)与1000个较小的数(15310-⨯)的和,验证大数吃小数的现象.(3) 分别用直接法和九韶算法计算多项式n n n n a x a x a x a x P ++++=--1110)(在x =1.00037处的值.验证简化计算步骤能减少运算时间.对于第(3)题中的多项式P (x ),直接逐项计算需要2112)1(+=+++-+n n n 次乘法和n 次加法,使用九韶算法n n a x a x a x a x a x P ++++=-)))((()(1210则只需要n 次乘法和n 次加法. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免两个相近的数相减、防止大数吃小数、简化计算步骤减少运算次数以减少运算时间并降低舍入误差的积累.两相近的数相减会损失有效数字的个数,用一个大数依次加小数,小数会被大数吃掉,乘法运算次数太多会增加运算时间. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程(1) 直接计算并比较;(2) 法1:大数逐个加1000个小数,法2:先把1000个小数相加再与大数加; (3) 将由高次项到低次项的系数保存到数组A[n]中,其中n 为多项式次数.7. 结果与分析 (1) 计算的z z -+1= ,)1/(1z z ++.分析:(2) 123逐次加1000个6310-⨯的和是 ,先将1000个6310-⨯相加,再用这个和与123相加得.分析:(3) 计算次的多项式:直接计算的结果是,用时;用九韶算法计算的结果是,用时.分析:8. 附录:程序清单(1) 两个相近的数相减.%*************************************************************%* 程序名:ex1_1.m *%* 程序功能:验证两个相近的数相减会损失有效数字个数 *%*************************************************************z=1e16;x,y======================================================================(2) 大数吃小数%*************************************************************%* 程序名:ex1_2.m *%* 程序功能:验证大数吃小数的现象. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数z=123; % 大数t=3e-15; % 小数x=z; % 大数依次加小数% 重复1000次给x中加上ty=0; % 先累加小数% 重复1000次给y中加上ty=z + y; % 再加到大数x,y======================================================================(3) 九韶算法%*************************************************************%* 程序名:ex1_3.m *%* 程序功能:验证九韶算法可节省运行时间. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数A=[8,4,-1,-3,6,5,3,2,1,3,2,-1,4,3,1,-2,4,6,8,9,50,-80,12,35,7,-6,42,5,6,23,74,6 5,55,80,78,77,98,56];A(10001)=0; % 扩展到10001项,后面的都是分量0% A为多项式系数,从高次项到低次项x=1.00037;n=9000; % n为多项式次数% 直接计算begintime=clock; % 开始执行的时间 % 求x的i次幂% 累加多项式的i次项endtime=clock; % 完毕执行的时间time1=etime(endtime,begintime); % 运行时间disp('直接计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time1),'秒']);% 九韶算法计算begintime=clock; % 开始执行的时间% 累加九韶算法中的一项endtime=clock; % 完毕执行的时间time2=etime(endtime,begintime); % 运行时间disp(' ');disp('九韶算法计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time2),'秒']);《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之数值稳定性) 2. 实验题目 计算定积分⎰==-1110,1,0,d n x e xI x nn ,分别用教材例1-7推导出的算法A 和B ,其中:算法A :⎩⎨⎧≈-=-6321.0101I nI I n n 算法B :⎪⎩⎪⎨⎧≈-=-0)1(1101I I nI n n 验证算法不稳定时误差会扩大.3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应采用数值稳定性好的算法.数值稳定的算法,误差不会放大,甚至会缩小;而数值不稳定的算法会放大误差. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程分别用数组IA[ ]和IB[ ]保存两种算法计算的结果. 7. 结果与分析 运行结果:(或拷屏)8. 附录:程序清单%*************************************************************%* 程序名:ex1_4.m *%* 程序功能:验证数值稳定性算法可控制误差. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数I=[0.856, 0.144, 0.712, 0.865, ...0.538, 0.308, 0.154, 0.938, ...0.492, 0.662, 0.843];% 保留14位小数的精确值, …是Matlab中的续行符% 算法AIA(1) = 0.6321; % Matlab下标从1开始,所以要用IA(n+1)表示原问题中的I(n)% 算法Bdisp('n 算法A 算法B 精确值');for n=1:11fprintf('%2d %14.6f %14.6f %14.6f\n',n-1,IA(n),IB(n),I(n));end% n显示为2位整数, 其它显示为14位其中小数点后显示6位的小数《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则(除数绝对值不能太小) 2. 实验题目将线性方程组增广矩阵利用初等行变换可化为⎪⎪⎭⎫⎝⎛→-⎪⎪⎭⎫ ⎝⎛→-⎪⎪⎭⎫ ⎝⎛''0'0''02221112'12221121112222211121122121121b a b a r r b a b a a r r b a a b a a a a a a由此可解得'/',/'22221111a b x a b x ==.分别解增广矩阵为161011212-⎛⎫ ⎪⎝⎭和162121011-⎛⎫⎪⎝⎭的方程组,验证除数绝对值远小于被除数绝对值的除法会导致结果失真. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免除数绝对值远小于被除数绝对值的除法,否则绝对误差会被放大,使结果失真. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程用二维数组A 和B 存放方程组的增广矩阵,利用题目所给初等行变换求解方程组. 7. 结果与分析第1种顺序的方程组的解为x =,y =;第2种顺序的方程组的解为x =,y =. 分析:8. 附录:程序清单%************************************************************* %* 程 序 名:ex1_5.m * %* 程序功能:验证除数的绝对值太小可能会放大误差. * %*************************************************************clc;A=[1e-16, 1, 1; 2, 1, 2];B=[2, 1, 2; 1e-16, 1, 1]; % 增广矩阵% 方程组A% m = - a_{21}/a_{11} 是第2行加第1行的倍数% 消去a_{21}% m = - a_{12}/a_{22} 是第1行加第2行的倍数% 消去a_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组A的解: x1=',num2str(A(1,3)),', x2=',num2str(A(2,3))]); disp(' ');% 方程组B% m = - b_{21}/b_{11} 是第2行加第1行的倍数% 消去b_{21}% m = - b_{12}/b_{22} 是第1行加第2行的倍数% 消去b_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组B的解: x1=',num2str(B(1,3)),', x2=',num2str(B(2,3))]);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之简单迭代法) 2. 实验题目用简单迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握非线性方程的简单迭代法. 4. 基础理论简单迭代法:将方程0)(=x f 改写成等价形式)(x x ϕ=,从初值0x 开始,使用迭代公式)(1k k x x ϕ=+可以得到一个数列,若该数列收敛,则其极限即为原方程的解.取数列中适当的项可作为近似解. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 迭代法) 2. 实验题目用Newton 迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握求解非线性方程的Newton 迭代法. 4. 基础理论Newton 迭代法:解方程0)(=x f 的Newton 迭代公式为)(')(1k k k k x f x f x x -=+.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之对分区间法) 2. 实验题目用对分区间法求方程310x x --=在区间[1, 1.5]的一个实根,取绝对误差限为410-. 3. 实验目的掌握求解非线性方程的对分区间法. 4. 基础理论对分区间法:取[a ,b ]的中点p ,若f (p ) ≈ 0或b – a < ε,则p 为方程0)(=x f 的近似解;若f (a ) f (p ) < 0,则说明根在区间取[a ,p ]中;否则,根在区间取[p ,b ]中.将新的有根区间记为 [a 1,b 1],对该区间不断重复上述步骤,即可得到方程的近似根. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程用宏定义函数f (x );为了循环方便,得到的新的有根区间始终用[a ,b ]表示;由于新的有根区间可能仍以a 为左端点,这样会反复使用函数值f (a ),为减少运算次数,将这个函数值保存在一个变量fa 中;同样在判断新的有根区间时用到函数值f (p ),若新的有根区间以p 为左端点,则下一次用到的f (a )实际上就是现在的f (p ),为减少运算次数,将这个函数值保存在一个变量fp 中.算法的伪代码描述:Input :区间端点a ,b ;精度要求(即误差限)ε;函数f (x );最大对分次数N Output :近似解或失败信息7. 结果与分析8. 附录:程序清单说明: 源程序中带有数字的空行,对应着算法描述中的行号%**********************************************************%* 程序名:Bisection.m *%* 程序功能:使用二分法求解非线性方程. *%**********************************************************f=inline('x^3-x-1'); % 定义函数f(x)a=input('有根区间左端点: a=');b=input('右端点:b=');epsilon=input('误差限:epsilona=');N=input('最大对分次数: N=');1 % 对分次数计数器n置12 % 左端点的函数值给变量fafprintf('\n k p f(p) a(k) f(a(k))'); fprintf(' b(k) b-a\n');% 显示表头fprintf('%2d%36.6f%12.6f%12.6f%12.6f\n',0,a,fa,b,b-a);% 占2位其中0位小数显示步数0, 共12位其中小数6位显示各值3% while n≤ N 4 % 取区间中点p5% 求p 点函数值给变量fpfprintf('%2d%12.6f%12.6f',n,p,fp); % 输出迭代过程中的中点信息p 和f(p)6 % 如果f(p)=0或b-a 的一半小于误差限εfprintf('\n\n 近似解为:%f\n',p);% 则输出近似根p (7)return;% 并完毕程序 (7)89 % 计数器加110% 若f(a)与f(p)同号11% 则取右半区间为新的求根区间, 即a 取作p 12 % 保存新区间左端点的函数值 13% 否则14 % 左半区间为新的求根区间, 即b 取作p 15fprintf('%12.6f%12.6f%12.6f%12.6f\n',a,fa,b,b-a); %显示新区间端点与左端函数值、区间长度 16fprintf('\n\n 经过%d 次迭代后未达到精度要求.\n',N); % 输出错误信息(行17)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Aitken-Steffensen 加速法) 2. 实验题目用Aitken-Steffensen 加速法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉求解非线性方程的Aitken-Steffensen 加速法. 4. 基础理论将方程0)(=x f 改写成等价形式)(x x ϕ=,得到从初值0x 开始的迭代公式)(1k k x x ϕ=+后,基于迭代公式)(1k k x x ϕ=+的Aitken-Steffensen 加速法是通过“迭代-再迭代-加速”完成迭代的,具体过程为kk k k k k k k k k k x y z z y x x y z x y +---===+2)(),(),(21ϕϕ. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程为了验证Aitken-Steffensen 加速法可以把一些不收敛的迭代加速成迭代收敛,我们使用将方程组变形为31021x x -=,取迭代函数31021)(x x -=ϕ,并利用宏定义出迭代函数.由于不用保存迭代过程,所以用x0表示初值同时也存放前一步迭代的值,y 和z 是迭代过程中产生的y k 和z k ,x 存放新迭代的结果.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;迭代函数φ(x );最大迭代次数N7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Aitken_Steffensen.m * %* 程序功能:用Aitken-Steffensen 加速法求方程. * %************************************************************* clc;clear all;phi=inline('0.5 * sqrt( 10 - x^3)'); % 迭代函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon='); N=input('最大迭代次数: N=');disp(' n 迭代中间值y(n-1) 再迭代结构z(n-1) 加速后的近似值x(n)'); fprintf('%2d%54.6f\n',0,x0);% 占2位整数显示步数0, 为了对齐, 占54位小数6位显示x01 % n 是计数器2 % while n<=Ny= 3 ; % 迭代 z= 3 ; % 再迭代 x= 3 ; % 加速% x0初值与前一步的近似值, y 和z 是中间变量, x 是下一步的近似值fprintf('%2d%18.6f%18.6f%18.6f\n',n,y,z,x);%显示中间值和迭代近似值6 % 如果与上一步近似解差的绝对值不超过误差限 fprintf('\n\n 近似解 x≈x(%d)≈%f \n',n,x);% 则输出近似根 (7), 可简略为: fprintf('\n\n 近似解 x=%f',x); return; % 并完毕程序(7) 8 % 相当于endif9 % 计数器加110 % 新近似值x 作为下一次迭代的初值 11fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N); %输出错误信息(12)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 下山法) 2. 实验题目用Newton 下山法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉非线性方程的Newton 下山法. 4. 基础理论Newton 下山法:Newton 下山法公式为)(')(1k k kk k x f x f x x λ-=+,使|)(||)(|1k k x f x f <+,其中10≤<k λ.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程定义函数f(x)和df(x),其中df(x)是f(x)的导函数.每步迭代时先取下山因子为1,尝试迭代,判断尝试结果是否满足下山因子,若满足则作为这步的迭代结果;否则将下山因子减半,然后再尝试.为防止当前的x k 是极小值点,附近不会有满足下述条件的其它点,使尝试陷入死循环,同时计算机中能表示出的浮点数也有下界,因此我们设置了最大尝试次数.当超过最大尝试次数时,不再进行下山尝试.由于反复尝试迭代且要判断下山条件,所以f (x 0)和f ‘(x 0)会反复使用,为避免重复计算浪费运行时间,将这两个值分别保存在变量fx0和dfx0.而尝试产生的节点,判断下山条件时要用到它的函数值,若尝试成功,这个点会作为下一步的初值再使用,所以把该点的函数值也保存在变量fx 中.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;函数与其导函数f (x )和f’(x);最大迭代次数N ;K 下山尝试最大次数Output :近似解或失败信息7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:NewtonDownhill.m *%* 程序功能:用Newton下山法求解非线性方程. *%*************************************************************clc;clear all;f=inline('x^3-x-1'); % 函数f(x)df=inline('3*x^2-1'); % 函数f(x)的导函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');K=input('最大下山尝试次数: K=');1 % 迭代次数计数器2 % 存x0点函数值fprintf('\n\n n x(n) f(x(n))\n'); % 显示表头fprintf('%2d%14.6f%14.6f\n',0,x0,fx0); % 2位整数显示0, 共14位小数6位显示x0和fx03 % while n≤ Ndisp(''); % 换行显示下山尝试过程的表头disp(' 下山因子尝试x(n) 对应f(x(n)) 满足下山条件');disp('');4 % 存x0点导数值, 每次下山尝试不用重新计算ifdfx0==0 % 导数为0不能迭代disp(‘无法进行Newton迭代’);return;endlambda=1.0; % 下山因子从1开始尝试k=1; % k下山尝试次数计数器while k<=K % 下山最多尝试K次% 下山公式fx=f(x); % 函数值fprintf('%22.6f%14.6f%14.6f',lambda,x,fx); % 显示尝试结果if (abs(fx)<abs(fx0)) % 判断是否满足下山条件fprintf(' 满足\n');break; % 是, 则退出下山尝试的循环elsefprintf(' 不满足\n');endlambda=lambda/2; % 不是, 则下山因子减半k=k+1; % 计数器加1endif k>Kfprintf('\n 下山条件无法满足, 迭代失败.\n\n');return;endfprintf('%2d%14.6f%14.6f\n',n,x,fx);% 2位整数显示步数n, 共14位小数6位显示下步迭代结果22 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n',x); % (23)return; % 达到, 则显示结果并完毕程序(23) end % (24)% 用x0,fx0存放前一步的近似值和它的函数值, 进行循环迭代25262728fprintf('\n 迭代%d次还不满足误差要求.\n\n',N);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之弦截法) 2. 实验题目用弦截法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-. 3. 实验目的熟悉非线性方程的弦截法. 4. 基础理论将Newton 迭代法中的导数用差商代替,得到弦截法(或叫正割法)公式)()()(111k k k k k k k x f x f x f x x x x --+---=.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程不保存迭代过程,所以始终以x 0和x 1分别存放x k -1和x k ,而x 存放新产生的迭代值x k +1,这样,下一次迭代时需要把上一步的x 1(即x k )赋值于x 0(做新的x k -1).这些点的函数值会重复用到,在迭代公式中也要用到,上一步的x 1作为下一步的x 0也会再一次用它的函数值,为减少重新计算该点函数值的运行时间,将x 1点的函数值保存在变量fx1中.算法的伪代码描述:Input :初值x 0,x 1;精度要求(即误差限)ε;函数f (x );最大迭代次数N7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:SecantMethod.m *%* 程序功能:用弦截法求解非线性方程. *%*************************************************************clc;clear all;f=inline('2*x^3-5*x-1'); % 函数f(x)x0=input('第一初值: x0 = ');x1=input('第二初值: x1 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');fprintf('\n n x(n)\n'); % 显示表头fprintf('%2d%14.6f\n', 0, x0); % 占2位显示步数0, 共14位其中小数6位显示x0fprintf('%2d%14.6f\n', 1, x1); % 占2位显示步数1, 共14位其中小数6位显示x11 % 存x0点函数值2 % 存x1点函数值3 % 迭代计数器4 % while n≤ N% 弦截法公式fprintf('%2d%14.6f\n', n, x); %显示迭代过程6 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n', x);return; % 达到, 则显示结果并完毕程序89 % 原x1做x0为前两步的近似值10 % 现x做x1为一两步的近似值11 % x0点函数值12 % 计算x1点函数值, 为下一次循环13 % 计数器加1 14fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N);《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 消去法) 2. 实验题目用Gauss 消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 消去法. 4. 基础理论Gauss 消去法是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 消去法的第k 步(1≤k≤n -1)消元:若0≠kk a ,则依次将增广矩阵第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 列主元消去法) 2. 实验题目用Gauss 列主元消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 列主元消去法. 4. 基础理论Gauss 列主元消去法也是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 列主元消去法的第k 步(1≤k≤n -1)消元:先在nk k k kk a a a ,,,,1 +中找绝对值最大的,将它所在的行与第k 行交换,然后将第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Doolittle 分解) 2. 实验题目对矩阵A 进行Doolittle 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的掌握矩阵的Doolittle 分解. 4. 基础理论矩阵的Doolittle 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵和一个上三角矩阵的乘积.若设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n n n u u u u u u u u u u U l l ll l l L000000,1010010001333223221131211321323121则可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=+=-=∑∑-=-=1111,,2,1,/)(,,1,,k t kk tk it ik ik k r rj kr kj kj nk k i u u l a l nk k j u l a u其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)按计算公式依次计算一行u 同时计算一列l ;(2)因为计算完u ij (或l ij )后,a ij 就不再使用,为节省存储空间,将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(3)使用L 矩阵和U 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线上的元素为1,上三角部分为0,下三角部分为A 中对应的元素;U 的下三角部分为0,上三角部分为A 中对应的元素.算法的伪代码描述: Input :阶数n ;矩阵A7. 结果与分析8. 附录:程序清单%****************************************************% 程序名: Doolittle.m *% 程序功能: 矩阵LU分解中的Doolittle分解. *%****************************************************clc;clear all;n=4; % 矩阵阶数A=[6 2 1 -1;2 4 1 0; 1 1 4 -1; -1 0 -1 3]disp('A=');disp(A);% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L 在A 下三角, U 在上三角(对角线为1) enddisp('分解结果:'); disp('L='); for i=1:n for j=1:nif i>j % 在下三角部分, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));elseif i==j % 在对角线上, 则显示1 fprintf(' %8d',1);else % 在上三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 enddisp('U='); for i=1:n for j=1:nif i<=j % 在上三角部分或对角线上, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));else % 在下三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之LU 分解法) 2. 实验题目用LU 分解(Doolittle 分解)法求解线性方程组⎪⎩⎪⎨⎧=++=++=++104615631552162321321321x x x x x x x x x 3. 实验目的熟悉解线性方程组LU 分解法.4. 基础理论若将矩阵A 进行了Doolittle 分解,A = LU ,则解方程组b x A=可以分解求解两个三角方程组b y L=和y x U =.它们都可直接代入求解,其中b y L=的代入公式为∑-==-=11,,2,1,k j j kj k k n k y l b y而y x U=的代入公式为∑+=-=-=nk j kk j kjk k n n k u x uy x 11,,1,,/)( .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)Doolittle 分解过程依次计算一行u 同时计算一列l 完成,并将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(2)求解方程组的代入公式中用到的u ij 和l ij 都直接在A 的相应位置取值即可. 算法的伪代码描述:Input :阶数n ;矩阵A ;常数项向量b7. 结果与分析8. 附录:程序清单%**************************************************** % 程序名: LinearSystemByLU.m *% 程序功能: 利用LU分解(Doolittle分解)解方程组. *%****************************************************clc;clear all;n=3; % 矩阵阶数A=[1 2 6; 2 5 15; 6 15 46];b=[1;3;10];% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L在A下三角, U在上三角(对角线为1) endfor k=1:n % 用代入法求解下三角方程组Ly=by(k)=b(k);3 %∑-==-=11,,2,1,kjj kjk knkylby33enddisp('方程组Ly=b的解:y=');disp(y');for k=n:-1:1 % 回代求解上三角方程组Ux=y x(k)=y(k);6 %∑+=-=-=nkjj kjk knnkxuyx11,,1,,666 enddisp('原方程组的解:x='); disp(x');《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之Cholesky 分解) 2. 实验题目对矩阵A 进行Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A . 3. 实验目的理解矩阵的Cholesky 分解. 4. 基础理论矩阵的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个下三角矩阵L 和L 转置的乘积,即A =LL T,其中L 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t kktk it ik ik k r kr kk kk nk k i l l l a l l a l其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算一列对角线上的元素l kk ,再计算这列其他元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完l ij 后,a ij 就不再使用,为节省存储空间,将计算的l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 上三角部分为0,对角线和下三角部分为A 中对应的元素.算法的伪代码描述:Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)行号 伪代码注释1 for k ← 1 to n2∑-=-=112k r krkk kk l a l3 for i ← k to n4 ∑-=-=11/)(k t kk tk it ik ik l l l a l计算结果存放在a ij5 endfor6 endfor7return L输出L7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Cholesky.m * %* 程序功能:对称正定矩阵的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数 A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A ='); for i=1:n for j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n');% 一行完毕换行end% Cholesky 分解 for k=1:n % 计算对角线上的l _{kk}% 计算其他的l _{ik} % 和l _{ki}end % L 在A 下三角, L^T 在上三角disp('分解结果:'); disp('L='); for i=1:n for j=1:n if i>=j % 在下三角部分或对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 在上三角部分, 则显示0 fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之改进的Cholesky 分解) 2. 实验题目对矩阵A 进行改进的Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的理解矩阵改进的Cholesky 分解. 4. 基础理论矩阵的改进的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵L 和对角矩阵D 与L 转置的乘积,即A =LDL T,其中L 和D 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t k kt it t ik ik k r kr r kk k nk k i d l l d a l l d a d其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算D 的一个元素d k ,再计算L 中这列的元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完d k 和l ij 后,a kk 或a ij 就不再使用,为节省存储空间,将计算的a kk 或l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线和上三角部分为0,下三角部分为A 中对应的元素;D 对角线为A 中对应的元素,其余都是0.算法的伪代码描述: Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:ImprovedCholesky.m * %* 程序功能:对称正定矩阵的改进的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A =');for i=1:nfor j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n'); % 一行完毕换行end% Cholesky分解for k=1:n% 计算D对角线上的u_{kk}% 计算L的元素l_{ik}% 和L转置的元素l_{ki} end % L在A下三角, D在对角线disp('分解结果:');disp('L=');for i=1:nfor j=1:nif i>j % 在下三角部分, 则取A对于的元素显示fprintf('%10.4f',A(i,j));elseif i==j % 在对角线上, 则显示1fprintf('%10d',1);else % 在上三角部分, 则显示0fprintf('%10d',0);endendfprintf('\n'); % 换行enddisp('D='); for i=1:n for j=1:n if i==j % 在对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 其余显示0fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之追赶法) 2. 实验题目用追赶法求解线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----101053001210023100124321x x x x 3. 实验目的熟悉解线性方程组的追赶法. 4. 基础理论对于系数矩阵为三对角矩阵的方程组,其Crout 分解可分解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=------11111211122111122211n n nn n n nn n n t t t s a s a s a s b a c b a c b a c b A这样,解方程组可以由如下2步完成:“追”:,,,3,2,/)(,,/,/,1111111111n i s y a f y t a b s s c t s f y b s i i i i i i i i i i i i =-=-====-----其中:Tn f f ),,(1 为方程组的常数项,n t 没用;“赶”:.1,,2,1,,1 --=-==+n n i x t y x y x i i i i n n5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程在“追”的过程中,向量s 和y 都有n 个元素,t 只有n -1个元素,又1s 和1y 的计算公式与其它i s 和i y 不同,所以先单独计算1s 和1y ,然后在一个n -1次循环中,求其它i s 和i y 以与i t .由于在“追”的过程中,i b ,i c 和i f 在分别计算完对应的i s ,i t 和i y 后就不再使用,所以借用数组b ,c 和f 存储向量s ,t 和y ;同样在“赶”的过程中,i y 在计算完对应的i x 后就不再使用,所以再一次借用数组f 存储向量x .追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x改进的追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"s(1) = b(1);y(1) = f(1); % 先单独求s_1和y_1 for k = 1 : n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"x(n) = y(n); % 先单独求x_nfor k = n-1 : -1 : 1% 再求x_i(i=n-1,n-2, (1)endx=x' % 输出解向量-------------------------------------------------------------------------------------------------------------------改进的程序:%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"% b(1)=b(1); % s_1仍在b_1中,不用重新计算y(1)=f(1)/b(1); % 先单独y_1for k=1:n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"% f(n)=f(n); % x_n等于y_n仍在f_n中for k=n-1:-1:1% 再求x_i(i=n-1,n-2, (1)endx=f' % 输出解向量《数值计算方法》实验4报告班级:20##级####x班学号:20##2409####:##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Jacobi迭代)2. 实验题目用Jacobi迭代法求解线性方程组1231231232251223x x x x x x x x x +-=⎧⎪++=⎪⎨++=⎪⎪⎩任取3. 实验目的掌握解线性方程组的Jacobi 迭代法. 4. 基础理论将第i (n i ≤≤1)个方程i n in i i b x a x a x a =+++ 2211移项后得到等价方程ii n in i i i i i i i i i a x a x a x a x a b x /)(11,11,11------=++--便可构造出Jacobi 迭代公式,1,0,/)()()(11,)(11,)(11)1(=------=++--+k a x a x a x a x a b x ii k n in k i i i k i i i k i i k i . 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验4报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Gauss-Seidel 迭代) 2. 实验题目用Gauss-Seidel 迭代法求解线性方程组。

matlabceil函数

matlabceil函数

matlabceil函数Matlabceil函数是一种Matlab数学计算函数,用来返回大于指定数值的最小整数。

Matlabceil函数可以帮助用户快速计算大于指定数值的最小整数,特别是在实际应用中,例如数学算法、金融计算和技术分析,它可以很好地处理浮点数值,节省了不少时间和精力。

Matlabceil函数在Matlab程序设计语言中是一个很有用的工具,可以帮助用户将数据中的浮点数转换为大于指定值的最小整数,例如,如果在Matlab中输入ceil(2.81),函数将返回3作为最小整数。

Matlabceil函数的参数是一个浮点型数,可以是一个实数也可以是一个虚数,如果是一个虚数,它的实部舍入到下一个整数,即ceil(2.1+3i)=3+3i。

Matlabceil函数的应用非常广泛,可以应用在金融计算、算法设计、技术分析、统计学和科学计算中。

例如,在金融计算中,可以使用Matlabceil函数对价格进行舍入,保证价格的精度;在科学计算中,可以用Matlabceil函数对大量数字进行计算和分析,这样可以更加有效地处理数据和计算结果;在技术分析中,可以利用Matlabceil函数比较浮点数的大小,以确定投资者买进或卖出信号;在统计学中,可以使用Matlabceil函数计算数据分布的众数等。

另外,Matlabceil函数还可以用于处理图像数据等。

例如,在图像处理中时常需要将原始图像数据截取为一个最大尺寸的图像,此时可以使用Matlabceil函数将图像的边界尺寸截取到最大尺寸,同时保持图像的完整性。

总的来说,Matlabceil函数是Matlab数学计算函数中的一种,它的功能是将数据中的浮点数转换为大于指定值的最小整数,它可以用于金融计算、算法设计、技术分析、统计学和科学计算等方面,同时也可以用于图像处理,从而极大提高了计算效率,减少了计算时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

In inline.subsref at 25
In quad at 63 Isim = 0.8862
2014-8-24 Application of Matlab Language 19
6.4 元素排序
Matlab中对向量X排序的函数是sort(X), 函数返回一个对X中 的元 素按升序排列的新向量。 sort函数也可以对矩阵A的各列(或行)重新排序,其调用 格式为: [Y,I] = sort(A,dim) dim=1,按列排序;dim=2, 按行排序, 8 5 Y 1 是排序后的矩阵,I记 录Y中 A 4 12 6 的元素在A中的位置。 13 7 13 例:对下列矩阵做各种排序。
2014-8-24 Application of Matlab Language 6
6.1 多项式(polynomial)
• 多项式加法: MATLAB没有提供进行加法运算的函数。 • 如果两个多项式向量大小相同,标准的数组加法有效。 把多项式a(x)与上面给出的b(x)相加。 >> d=a+b d= 2 6 12 20 结果: d(x)= 2x3+6x2+12x+20 • 当两个多项式阶次不同,低阶的多项式必须用首零填补,使其与 高阶多项式有同样的阶次。 考虑上面多项式c和d相加: >> e=c+[0 0 0 d] e= 1 6 20 52 81 96 84 结果: d(x)= x6+6x5+20x4+52x3+81x2+96x+84
2014-8-24 Application of Matlab Language 4
6.1 多项式(polynomial)
• 已知多项式的根,求解多项式 ?
– 能! – 使用poly指令
• 举例:由上例所得的根求其多项式
>> pp=poly(r) pp = 1.0000 -12.0000 -0.0000 25.0000 116.0000 即:x4-12x3+25x+116
Application of Matlab Language
2014-8-24
20
命令如下: A = [1,-8,5;4,12,6;13,7,-13]; sort(A) ans = 1 -8 -13 4 7 5 13 12 6 -sort(-A,2) %对A的每行按降序排列 ans = 5 1 -8 12 6 4 13 7 -13
Application of Matlab Language
8
6.1 多项式(polynomial)
• 函数文件的编写
function p_out=poly_sum(p1, p2) % calculate the sum of two polynomials
if length(p1)==length(p2) p_out=p1+p2; elseif length(p1)>length(p2) p2=[zeros(1,length(p1)-length(p2)), p2]; p_out=p1+p2; else p1=[zeros(1,length(p2)-length(p1)), p1]; p_out=p1+p2; end
2014-8-24 Application of Matlab Language 9
6.1 多项式(polynomial)
• 多项式的除法(deconv) • 举例说明:
c(x)=x6+6x5+20x4+50x3+75x2+84x+64 除以b(x)= x3+4x2+9x+16
>> c=[1 6 20 50 75 84 64]; >> b=[1 4 9 16]; >> [q , r]=deconv(c , b) q= 1 2 3 4 r= 0 0 0 0 0 0 0
Isim = 0.7468
I8 = 0.7468
2014-8-24
Application of Matlab Language
18
6.3 数值积分(续)
I
• 举例:求解定积分 用quad指令求积分

1
0
1 ln dx x
>>ff=inline('sqrt(log(1./x))','x'); >>Isim=quad(ff,0,1) Warning: Divide by zero. > In inlineeval at 13
– 函数的内部处理
• 如p1、p2两参数大小相等,则直接相加: p_out=p1+p2 • 如p1、p2两参数大小不等:
– If length(p1)>length(p2) » P2前面要补0元素,使p1、p2两参数大小相等 – 否则 » P1前面要补0元素,使p1、p2两参数大小相等
2014-8-24
2014-8-24 Application of Matlab Language 17
6.3 数值积分(续)
• 举例:求定积分
I e
0 1 x2
dx
MATLAB指令quad和quadl求积分 >>fun=inline(‘exp(-x.*x)’,‘x’); %数组乘符号.*的采用是必须的 >>Isim=quad(fun,0,1), I8=quadl(fun,0,1)
p(x) = x3+4x2-7x-10在[-1, 3]段上的曲线:
2014-8-24
Application of Matlab Language
13
6.2 函数的数值导数
• 导数定义为:
dy f ( x h) f ( x ) lim dx ( x h) ( x ) h0
• 则y=f(x)的导数可近似为: dy f ( x h) f ( x ) dx ( x h) ( x )
Matlab数值计算
第10讲
6.1 多项式(polynomial)
• 多项式的MATLAB表达
– 多项式由一个行向量表示
• 该向量元素是该多项式的系数 • 且按降幂次序排列
如:多项式x4-12x3+25x+116由行向量: p=[1 -12 0 25 116]表示。 注意,必须包括具有零系数的项。
8 7.5 7 6.5 6 5.5 5 4.5 -3
-2
-1
0
1
2
3
2014-8-24
Application of Matlab Language
16
6.3 数值积分
一元函数的数值积分
– 常用积分指令:quad和quadl。
一般说来,quadl比quad更有效。
– 具体调用格式如下:
q = quadl(fun,a,b) q = quadl(fun,a,b,tol) q = quadl(fun,a,b,tol,trace) [q,fcnt] = quadl(fun,a,b,...) • 输入量fun为被积函数的句柄。 • 输入量a, b分别是积分的下限、和上限,都必须是确定的数值; • 前3个输入参数是调用积分指令所必须的,其他可以缺省; • 输入量tol是一个标量,控制绝对误差; • 输入量trace为非0值时,将随积分的进程逐点画出被积分函数; • 输出参数fcnt返回函数的执行次数。 Note:quad的调用格式与quadl相同
2014-8-24 Application of Matlab Language 7
6.1 多项式(polynomial)
• 问题:编写一个多项式加法运算的函数文件 • 明确需求
– 定义一个函数,需要有两个输入参数(比如:p1、p2),一 个输出参数p_out。
• p1、p2表示两个待计算的多项式。 • p_out表示两个多项式的求和结果
% choose 100 data points between -1and 3.
plot(x, v); title('x^{3}+4x^{2}-7x-10'); xlabel('x')
2014-8-24 Application of Matlab Language 12
Байду номын сангаас
6.1 多项式(polynomial)
2014-8-24 Application of Matlab Language 11
6.1 多项式(polynomial)
• 多项式的估值(polyval) • 举例:绘制p(x) = x3+4x2-7x-10在[-1, 3]段上的 曲线。
x=linspace(-1, 3); p=[1 4 -7 -10]; v=polyval(p, x);
这里h>0
它是y的有限差分除以x的有限差分。

MATLAB中没有直接提供数值导数的函数,只有计算向 前差分的函数diff,其调用格式为:
DX = diff(X) 计算向量X的向前差分 DX = diff(X,n) 计算向量X的n阶向前差分
2014-8-24
Application of Matlab Language
• 求解多项式的根?
roots指令
2014-8-24 Application of Matlab Language 3
6.1 多项式(polynomial)
• 举例:求解多项式x4-12x3+25x+116的根 >>p=[1 -12 0 25 116] p= 1 -12 0 25 116 >>r=roots(p) r= 11.7473 2.7028 -1.2251 + 1.4672i -1.2251 - 1.4672i MATLAB按惯例规定,多项式是行向量,根是列向量
14
相关文档
最新文档