大学物理精品课件:机械振动作业答案

合集下载

大学物理(第四版)课后习题及答案 机械振动

大学物理(第四版)课后习题及答案 机械振动

大学物理(第四版)课后习题及答案机械振动13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m,周期T=1.0s,初相ϕ=3π/4。

试写出它的运动方程,并做出x--t图、v--t 图和a--t图。

13-1分析弹簧振子的振动是简谐运动。

振幅A、初相ϕ、角频率ω是简谐运动方程x=Acos(ωt+ϕ)的三个特征量。

求运动方程就要设法确定这三个物理量。

题中除A、ϕ已知外,ω可通过关系式ω=2π确定。

振子运动的速度T和加速度的计算仍与质点运动学中的计算方法相同。

解因ω=2π,则运动方程 T⎛2πt⎛x=Acos(ωt+ϕ)=Acos t+ϕ⎛⎛T⎛根据题中给出的数据得x=(2.0⨯10-2m)cos[(2πs-1)t+0.75π]振子的速度和加速度分别为v=dx/dt=-(4π⨯10-2m⋅s-1)sin[(2πs-1)t+0.75π] a=d2x/dt2=-(8π2⨯10-2m⋅s-1)cos[(2πs-1)t+0.75πx-t、v-t及a-t图如图13-l所示π⎛⎛13-2 若简谐运动方程为x=(0.01m)cos⎛(20πs-1)t+⎛,求:(1)振幅、频率、角频率、周期和4⎛⎛初相;(2)t=2s 时的位移、速度和加速度。

13-2分析可采用比较法求解。

将已知的简谐运动方程与简谐运动方程的一般形式x=Acos(ωt+ϕ)作比较,即可求得各特征量。

运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t值后,即可求得结果。

解(l)将x=(0.10m)cos[(20πs-1)t+0.25π]与x=Acos(ωt+ϕ)比较后可得:振幅A= 0.10 m,角频率ω=20πs-1,初相ϕ=0.25π,则周期T=2π/ω=0.1s,频率ν=1/T=10Hz。

(2)t= 2s时的位移、速度、加速度分别为x=(0.10m)cos(40π+0.25π)=7.07⨯10-2m v=dx/dt=-(2πm⋅s-1)sin(40π+0.25π)a=d2x/dt2=-(40π2m⋅s-2)cos(40π+0.25π)13-3 设地球是一个半径为R的均匀球体,密度ρ5.5×103kg•m。

大学物理机械振动习题解答

大学物理机械振动习题解答

习题四4-1 符合什么规律的运动才是谐振动分别分析下列运动是不是谐振动: (1)拍皮球时球的运动;(2)如题4-1图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短).题4-1图解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统 是在 自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用0d d 222=+ξωξt描述时,其所作的运动就是谐振动.(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线 性回复力.(2)小球在题4-1图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中 ,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题4-1图(b)所示.题 中所述,S ∆<<R ,故RS∆=θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有θθmg tmR -=22d d令Rg=2ω,则有 0d d 222=+ωθt4-2 劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题4-2图所示的两种方式连 接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.题4-2图解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有111x k F x k F -=-=串222x k F -=又有 21x x x +=2211k F k F k Fx +==串 所以串联弹簧的等效倔强系数为2121k k k k k +=串即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为2121)(222k k k k m k mT +===ππωπ串 (2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有2211x k x k x k +=并故 21k k k +=并 同上理,其振动周期为212k k mT +='π4-3 如题4-3图所示,物体的质量为m ,放在光滑斜面上,斜面与水平面的夹角为θ,弹簧的倔强系数为k ,滑轮的转动惯量为I ,半径为R .先把物体托住,使弹簧维持原长,然 后由静止释放,试证明物体作简谐振动,并求振动周期.题4-3图解:分别以物体m 和滑轮为对象,其受力如题4-3图(b)所示,以重物在斜面上静平衡时位置为坐标原点,沿斜面向下为x 轴正向,则当重物偏离原点的坐标为x 时,有221d d sin t xm T mg =-θ ①βI R T R T =-21 ②βR tx=22d d )(02x x k T +=③式中k mg x /sin 0θ=,为静平衡时弹簧之伸长量,联立以上三式,有kxR txR I mR -=+22d d )(令 ImR kR +=222ω 则有0d d 222=+x txω 故知该系统是作简谐振动,其振动周期为)/2(22222K R I m kRI mR T +=+==ππωπ4-4 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按20.1cos(8)(SI)3x t ππ=+的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等(3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=,即 )21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t4-5 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动; (3)过2Ax =处向负向运动; (4)过2A x -=处向正向运动.试求出相应的初位相,并写出振动方程. 解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x4-6 一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量.解:由题已知 s 0.4,m 10242=⨯=-T A ∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x 故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt(3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E 4-7 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4.用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后 ,给予向上的初速度10s cm 0.5-⋅=v ,求振动周期和振动表达式.解:由题知12311m N 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k 而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x ( 设向上为正) 又 s 26.12,51082.03===⨯==-ωπωT m k 即 m102)5100.5()100.1()(22222220---⨯=⨯+⨯=+=∴ωv x A45,15100.1100.5tan 022000πφωφ==⨯⨯⨯=-=--即x v ∴ m )455cos(1022π+⨯=-t x4-8 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x 01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯= ∴ πω65=故 m t x b )3565cos(1.0ππ+= 4-9 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动.(1)此时的振动周期与空盘子作振动时的周期有何不同 (2)此时的振动振幅多大(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程. 解:(1)空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增大.(2)按(3)所设坐标原点及计时起点,0=t 时,则kmgx -=0.碰撞时,以M m ,为一系统动量守恒,即0)(2v M m gh m +=则有 Mm ghm v +=20于是gM m khk mg M m gh m k mg v x A )(21))(2()()(22222++=++=+=ω(3)gm M khx v )(2tan 000+=-=ωφ (第三象限),所以振动方程为 ⎥⎦⎤⎢⎣⎡+++++=g m M kh t Mm k gM m khk mg x )(2arctan cos )(214-10 有一单摆,摆长m 0.1=l ,摆球质量kg 10103-⨯=m ,当摆球处在平衡位置时,若给小球一水平向右的冲量14s m kg 100.1--⋅⋅⨯=∆t F ,取打击时刻为计时起点)0(=t ,求振动的初位相和角振幅,并写出小球的振动方程. 解:由动量定理,有0-=∆⋅mv t F∴ 1-34s m 01.0100.1100.1⋅=⨯⨯=∆⋅=--m t F v按题设计时起点,并设向右为x 轴正向,则知0=t 时,100s m 01.0,0-⋅==v x >0∴ 2/30πφ=又 1s rad 13.30.18.9-⋅===l g ω∴ m 102.313.301.0)(30202-⨯===+=ωωv v x A 故其角振幅rad 102.33-⨯==ΘlA小球的振动方程为rad )2313.3cos(102.33πθ+⨯=-t4-11 有两个同方向、同频率的简谐振动,其合成振动的振幅为m 20.0,位相与第一振动的位相差为6π,已知第一振动的振幅为m 173.0,求第二个振动的振幅以及第一、第二两振动的位相差.题4-11图解:由题意可做出旋转矢量图如下. 由图知01.02/32.0173.02)2.0()173.0(30cos 222122122=⨯⨯⨯-+=︒-+=A A A A A ∴ m 1.02=A 设角θ为O AA 1,则θcos 22122212A A A A A -+=即 01.0173.02)02.0()1.0()173.0(2cos 2222122221=⨯⨯-+=-+=A A A A A θ 即2πθ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π.4-12 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅: (1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm )343cos(5cm )33cos(521ππt x t x 解: (1)∵ ,233712πππφφφ=-=-=∆ ∴合振幅 cm 1021=+=A A A(2)∵ ,334πππφ=-=∆ ∴合振幅 0=A4-13 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m )652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。

大物参考答案

大物参考答案

©物理系_2015_09《大学物理AII 》作业 No.01 机械振动一、 判断题:(用“T ”表示正确和“F ”表示错误) [ F ] 1.只有受弹性力作用的物体才能做简谐振动。

解:如单摆在作小角度摆动的时候也是简谐振动,其回复力为重力的分力。

[ F ] 2.简谐振动系统的角频率由振动系统的初始条件决定。

解:根据简谐振子频率mk=ω,可知角频率由系统本身性质决定,与初始条件无关。

[ F ] 3.单摆的运动就是简谐振动。

解:单摆小角度的摆动才可看做是简谐振动。

[ T ] 4.孤立简谐振动系统的动能与势能反相变化。

解:孤立的谐振系统机械能守恒,动能势能反相变化。

[ F ] 5.两个简谐振动的合成振动一定是简谐振动。

解: 同向不同频率的简谐振动的合成结果就不一定是简谐振动。

二、选择题:1. 把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相位为[ C ] (A) θ; (B) π23; (C) 0; (D) π21。

解:对于小角度摆动的单摆,可以视为简谐振动,其运动方程为: ()()0cos ϕωθθ+=t t m ,根据题意,t = 0时,摆角处于正最大处,θθ=m ,即:01cos cos 0000=⇒=⇒==ϕϕθϕθθ2.一个简谐振动系统,如果振子质量和振幅都加倍,振动周期将是原来的 [D] (A) 4倍(B) 8倍(C) 2倍(D)2倍解: m T k m T m k T ∝⇒=⇒⎪⎭⎪⎬⎫==/2/2πωωπ,所以选D 。

3. 水平弹簧振子,动能和势能相等的位置在:[ C ] (A)4A x =(B) 2A x = (C) 2A x = (D)3Ax =解:对于孤立的谐振系统,机械能守恒,动能势能反相变化。

那么动能势能相等时,有:221412122Ax kx kA E E E p k =⇒====,所以选C 。

大学物理机械的振动答案详解

大学物理机械的振动答案详解

机械振动答案 一、填空题 1.初位移、初速度、角频率 劲度系数、振子质量 2.4,2π 3.2:1 4.m t x )361cos(10.0ππ+= 5.2π 6.1:2 1:4 1:2 7.±A 0 8.k+0.5(k 为整数) k (k 为整数) 2k+0.5(k 为整数)9.0.173 2π10.3π )(1072m -⨯; 32π- )(1012m -⨯ 11.m t x )2cos(04.0ππ-= 二、选择题 1.B 2.D 3.C 4.B 5.B 6.D 7.C 8.D 9.B 10.D 11.B 12.C三、计算题1.解: (1)可用比较法求解.根据]4/20cos[1.0]cos[ππϕω+=+=t t A x得: 振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==,周期1/0.1T s ν==,/4rad ϕπ=(2)2t s =时,振动相位为:20/4(40/4)t rad ϕππππ=+=+由cos x A ϕ=,sin A νωϕ=-,22cos a A x ωϕω=-=-得20.0707, 4.44/,279/x m m s a m s ν==-=-2.解(1)质点振动振幅A =0.10m.而由振动曲线可画出t 0=0 和t 1=4s时旋转矢量,如图(b ) 所示.由图可见初相3/π0-=ϕ(或3/π50=ϕ),而由()3/2/01ππω+=-t t 得1s 24/π5-=ω,则运动方程为()m 3/π24π5cos 10.0⎪⎭⎫ ⎝⎛-=t x(2)图(a )中点P 的位置是质点从A /2 处运动到正向的端点处.对应的旋转矢量图如图(c ) 所示.当初相取3/π0-=ϕ时,点P 的相位为()000=-+=p p t ωϕϕ(如果初相取成3/π50=ϕ,则点P 相应的相位应表示为()π200=-+=p p t ωϕϕ.(3) 由旋转矢量图可得()3/π0=-p t ω,则s 61.=p t . 3.解:设该物体的振动方程为)cos(ϕω+=t A x 依题意知:2//,0.06T rad s A m ωππ=== 据A x 01cos -±=ϕ得)(3/rad πϕ±= 由于00v >,应取)(3/rad πϕ-= 可得:)3/cos(06.0ππ-=t x(1)0.5t s =时,振动相位为:/3/6t rad ϕπππ=-=据22cos ,sin ,cos xA v A a A x ϕωϕωϕω==-=-=- 得20.052,0.094/,0.512/x m v m s a m s ==-=-(2)由A 旋转矢量图可知,物体从0.03x m =-m 处向x 轴负方向运动,到达平衡位置时,A 矢量转过的角度为5/6ϕπ∆=,该过程所需时间为:/0.833t s ϕω∆=∆=4.解:211k 2K P E E E A =+=() 1/2[2()/k]0.08()K P A E E m =+= 221(2)k 2/22K P K P P P E E E A E E E E E kx =+====因为,当时,有,又因为 222/20.0566()x A x A m ==±=±得:,即21(3)02K P x E E E mv ==+=过平衡点时,,此时动能等于总能量 1/2[2()/]0.8(/)K P v E E m m s =+=±5.解:(1))2cos(21ϕπ+=+=t A x x x按合成振动公式代入已知量,可得合振幅及初相为22224324cos(/2/4)10 6.4810A m ππ--=++-⨯=⨯4sin(/4)3sin(/2) 1.124cos(/4)3cos(/2)arctg rad ππϕππ+==+ 所以,合振动方程为))(12.12cos(1048.62SI t x+⨯=-π (2)当πϕϕk 21=-,即4/2ππϕ+=k 时,31x x +的振幅最大. 当πϕϕ)12(2+=-k ,即2/32ππϕ+=k 时,32x x +的振幅最小.6.解:)6/4sin(10322π-⨯=-t x )2/6/4cos(1032ππ--⨯=-t )3/24cos(1032π-⨯=-t作两振动的旋转矢量图,如图所示.由图得:合振动的振幅和初相分别为3/,2)35(πφ==-=cm cm A .合振动方程为))(3/4cos(1022SI t x π+⨯=-。

机械振动学习题解答(一).PPT24页

机械振动学习题解答(一).PPT24页
机械振动学习题解答(一).
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特

(完整版)大学机械振动课后习题和答案(1~4章总汇)

(完整版)大学机械振动课后习题和答案(1~4章总汇)

1.1 试举出振动设计、系统识别和环境预测的实例。

1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3 设有两个刚度分别为1k ,2k 的线性弹簧如图T —1.3所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k Px k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++1.4 求图所示扭转系统的总刚度。

两个串联的轴的扭转刚度分别为1t k ,2t k 。

解:对系统施加扭矩T ,则两轴的转角为: 1122t t Tk T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+故等效刚度为:12111eq t t k k k =+1.5 两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。

解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为:1122P c x P c x =⎧⎨=⎩&& 由力的平衡有:1212()P P P c c x =+=+&故等效刚度为:12eq P c c c x ==+& 2)对系统施加力P ,则两个减振器的速度为: 1122P x c P x c ⎧=⎪⎪⎨⎪=⎪⎩&&,系统的总速度为:121211()x x x P c c =+=+&&& 故等效刚度为:1211eq P c x c c ==+&1.6 一简谐运动,振幅为0.5cm,周期为0.15s,求最大速度和加速度。

大学物理 第五章机械振动习题集答案

大学物理 第五章机械振动习题集答案

一、选择题B C D A B B B B B A 二、填空题22121221. cos() , cos() ;232 2. 100; 3. A -A , (A -A )cos()2x A t x A t T T t T πππππππ=-=++ 三、计算题 1、解:3223220.09(-)0.0100,, 0.01cos()33gl gl b b m gl b x gl gl x A m t x A v k gl x t ρρρρρϕπρωπ'=⇒=''-=-⇒===-=⇒='=⇒==⇒=+设物体在平衡位置时被浸没深度为b ,则物体受合外力F=物体作简谐振动当物体全被浸没时可知时,令简谐振动方程2、解:222222221d sin sin 2d 1sin 3d 1d 300d 2d 22πM Mgl kl J tJ Ml l Mg kl Mg kl t J t Ml T θθθθθθθθθθθθ=--=≈=⎡⎤+=⇒+=⎢⎥⎣⎦⇒=当杆向右摆动角时,重力矩与弹力矩均与相反,有很小,,,(+2)(+)3、解:设物体平衡时两弹簧分别伸长X 1, X 2由物体受力平衡得:1122121222211122111212121212sin (1)x sin sin (2)(1)(2) (3), mg k x k x x x x x x x F mg k x x mg k x x F k x k x FFx x x x x k k k k F x kx k k θθθω==''''=+''=-+=-+''=-=-''''=-=-=+⋅=-=-⇒=+物体沿轴移动位移时,两弹簧又分别被拉长,即则()() 将代入得:2v πω==4、解:04140000.05,02340,02-54245π0.1cos()243-0, 1.6P P A t x m t x st x t t sπϕπϕϕϕφπωπϕϕφϕωω-===>⇒=-==<⇒=∆===∆⇒=-∆=∆===由振动方程为,0v v5、解:222,22 0-0.05-,0232π0.1cos()237(1)1,0.1cos,620(2),8000==2s, =2s24(4)==s33TAt x mx tt s x mF kx m x Nt t tt tππωπϕππωφωππφω=====<⇒=⇒=+===-=-=-=∆∆=⇒∆∆∆=⇒∆振动方程为,(3)由,即由,v6、解:21-211221122313323π3ππ(1)-44210m sin sin tan 11 =1.48radcos cos 3π(2)2, =2+ (0 1, )45π2+1, =2+ (0 1, )4A A A A A k k k k k k ϕϕϕϕϕϕϕϕϕϕϕϕπϕπϕϕϕπϕπ∆=-=-==⨯+==⇒+∆=-=⇒=±∆=-=⇒=± ,,,,(),,。

机械振动学习题解答1ppt课件

机械振动学习题解答1ppt课件

解:
2 x x 2c X o s (t ) c o s ( t )
1 2
当ε<< ω时,
x x 2 X c o s (t ) c o s t
1 2
2
2
f 拍振的振幅为2X,拍频为 (不是 ) 2 4 例 : 当 = 8 0 , = 4 , X 5 时 , x x 1 0 c o s ( 2 t ) c o s ( 8 0 t ) 1 2
能量法 1)设系统相对于平衡位置发生了广义位移x(或θ); 2)写出系统势能U(包括重力势能mgh和弹簧弹性势 1 1 2 1 2 dP 2 2 m x J c x k x 能 ),动能V= 2 (或 2 ),耗散能P: d t 2 d ( UVP ) 0列方程。 3)由能量守恒原理 d t
2-5 求图示弹簧-质量-滑轮系统的振动微分方程。 解:(力法)静平衡时有: mg k (Δ为弹簧的伸长量)
M, r F F k x mg
假设弹簧相对于平衡位置伸长x,则圆 盘沿逆时针方向转过x/r角
质量m 圆盘M
m x m g F
2 M r x F r k ( x ) r 2 r
F 2k sin 2
i
θ
F
T 由动量矩定理 J i

m L L L Fc o s m g s i n 3 2 2
sin , cos 1
2
mg
又由于
上式可化简为
m mg k 0 3 2 L 2
(能量法)设系统处于静平衡位置时势能为0。当 杆顺时针偏转θ角时 势能 动能
2 1 L L U 2 k mg 1 cos sin 2 2 2 2 1 1 mL 2 2 V J 2 2 3

第十三章 机械振动作业答案(1)

第十三章  机械振动作业答案(1)

一. 选择题:[ C ] 1. (基础训练4) 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B)T /8. (C) T /6. (D) T /4.【提示】如图,在旋转矢量图上,从二分之一最大位移处到最大位移处矢量转过的角位移为3π,即 3t πω=,所以对应的时间为()332/6Tt T ππωπ=== .[ B ] 2. (基础训练8) 图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π.(C) π21. (D) 0.【提示】如图,用旋转矢量进行合成,可得合振动的振幅为2A,初相位为π.[ B ]3、(自测提高2)两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 (A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x .(D) )cos(2π++=αωt A x .【提示】由旋转矢量图可见,x 2的相位比x 1落后π/2。

[ B ] 4、(自测提高3)轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了∆x .若将m 2移去,并令其振动,则振动周期为A/ -·O1A 2A A 合(A) gm xm T 122∆π= . (B) g m x m T 212∆π=.(C) g m x m T 2121∆π=. (D) gm m xm T )(2212+π=∆.【提示】对轻弹簧和m 1构成的弹簧振子,其周期表达式:2T π= 因为加载另一质量为m 2的物体后弹簧再伸长∆x ,显然2m g k x =∆,由此得2m gk x=∆; 代入周期公式,即可求出周期T.[ C ] 5、(自测提高6)如图13-24所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为4m 的物体,最后将此弹簧截断为两个等长的弹簧并联后悬挂质量为m 的物体,则这三个系统的周期值之比为(A) 1∶2∶2/1. (B) 1∶21∶2 . (C) 1∶2∶21. (D) 1∶2∶1/4 . 【提示】从左到右三个弹簧振子分别记为1,2和3; 第一个:1112 T πωω==; 第二个:2121, 22T T ωω==∴= 第三个:将一根弹簧一分为二,每节的弹性系数变成2k ,然后并联,总的弹性系数为4k ,所以31312, 2T T ωω==∴=; 得:1231::1:2:2T T T =.[ D ]6、(自测提高7)一物体作简谐振动,振动方程为)21cos(π+=t A x ω.则该物体在t = 0时刻的动能与t = T /8(T 为振动周期)时刻的动能之比为:(A) 1:4. (B) 1:2. (C) 1:1. (D) 2:1. (E) 4:1. 【提示】在t=0时,cos02πx A ==,势能0p E =,动能212K E E kA ==; t=T/8,cos()422πx A A π=+=-,势能221124p E kx kA ==,所以动能为214K p E E E kA =-=.图13-24二 填空题1、(基础训练12)一系统作简谐振动, 周期为T ,以余弦函数表达振动时,初相为零.在0≤t ≤T 41范围内,系统在t =T/8时刻动能和势能相等. 【提示】初相为零,所以()cos x t A t ω=,在0≤t ≤T 41范围内,0A x ≤≤;依题意,动能和势能相等,为总能量的一半,即22111222kx kA ⎛⎫= ⎪⎝⎭,2x A =,所以4t πω=,48Tt πω==.2、(基础训练15)一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的3/4(设平衡位置处势能为零).当这物块在平衡位置时,弹簧的长度比原长长∆l ,这一振动系统的周期为gl∆π2. 【提示】当物体偏离平衡位置为振幅的一半时,2Ax =±,2211284P E E kx kA ===,34k P E E E E E -==; 当物体在平衡位置时,合力为零:mg k l =∆ ,mg k l =∆,222T πω∴===3、(基础训练16)两个同方向同频率的简谐振动,其振动表达式分别为:)215cos(10621π+⨯=-t x (SI) , )5c o s(10222t x -π⨯=- (SI)它们的合振动的振辐为210()m -,初相为101108.4323tg π-+= 【提示】用旋转矢量图求解。

《大学物理AII》作业 No.01 机械振动 参考答案

《大学物理AII》作业 No.01 机械振动 参考答案
1 x2 2 10 2 cos(5t ) 2 利旋转矢量法,可知,它们合振动的振幅为 0.04(SI)初相
A
A1
1
O
A2
x
位为 2 。
12、图(a)、(b)、(c)为三个不同的简谐振动系统。组 成各系统的各弹簧的原长、 各弹簧的劲度系数及重物 质量均相同。(a)、(b)、(c)三个振动系统的固有角频 率值之比为___1: 2 :2_.
1 2 kA sin(t ) ) 、势能表达式为 2 1 1 ( Ek kA2 cos(t ) ) ;系统总的机械能表达式为( E kA2 ) 。 2 2
统平衡位置时,其动能表达式为( Ek
4、两个同方向同频率简谐振动合成,合振动的频率(等于)分振动的频率(填
等于或不等于) ;通常合振动的振幅除了与分振动振幅有关之外,还与两分振动 的 (相位差)有关。当两分振动同相时,合振动振幅 (最大); 两分振动反相 时,合振动振幅 (最小) 。 (填最大或最小)
T 2 m ms 2 0.42 s k F l ,其 v
以平衡位置为势能零点,弹簧的势能 E p
2 2
1 dx m dx 1 E M kx 2 常量 将上式对时间求导,经整理最后可得: 2 dt 6 dt 2 。
5
(M
m dx k 。由此可知,该振动是简谐振动,其周 ) kx 0 ,令 2 M m/3 3 dt M m/3 。与不考虑弹簧质 m 时的周期相长,其周期增长了。 k
d2 。小角度情况下, d t2
d2 g sin 则上式简化为: 2 0 ,为二阶线性齐次微分方程,满足简谐振 dt R

NO1机械振动答案

NO1机械振动答案

N O1机械振动答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March《大学物理AII 》作业 机械振动一、选择题:1.假设一电梯室正在自由下落,电梯室天花板下悬一单摆(摆球质量为m ,摆长为l ) 。

若使单摆摆球带正电荷,电梯室地板上均匀分布负电荷,那么摆球受到方向向下的恒定电场力F 。

则此单摆在该电梯室内作小角度摆动的周期为:[ C ] (A) Fm l π2 (B) Flmπ2(C) Fmlπ2 (D) mlF π2 解: 2.图(a)、(b)、(c)为三个不同的简谐振动系统。

组成各系统的各弹簧的原长、各弹簧的劲度系数及重物质量均相同。

(a)、(b)、(c)三个振动系统的2(为固有角频率)值之比为[ B ] (A) 2∶1∶21(B)1∶2∶4(C) 2∶2∶1 (D) 1∶1∶2解:由弹簧的串、并联特征有三个简谐振动系统的等效弹性系数分别为:2k,k ,k 2 则由m k=2ω可得三个振动系统的2(为固有角频率)值之比为:m k 2 :m k :m k2,即1∶2∶4 故选B 3.两个同周期简谐振动曲线如图所示。

则x 1的相位比x 2的相位 [ A ] (A) 超前/2 (B) 落后 (C) 落后 解:由振动曲线画出旋转矢量图可知x 1的相位比x 2的相位超前k m m mk k k k (b) (c) t x O x 1 x 2x 2A1A ω4.一物体作简谐振动,振动方程为)21cos(π+=t A x ω。

则该物体在t = T /8(T 为振动周期)时刻的动能与t = 0时刻的动能之比为: [ B ] (A) 1:4 (B) 1:2 (C) 1:1 (D) 2:1 (E) 4:1解:由简谐振动系统的动能公式:)21(sin 2122πω+=t kA E k有t = 0时刻的动能为:22221)2102(sin 21kA T kA =+⋅ππt = T /8时刻的动能为:22241)2182(sin 21kA T T kA =+⋅ππ,则在t = T /8时刻的动能与t = 0时刻的动能之比为:1:2二、填空题:1.用40N 的力拉一轻弹簧,可使其伸长10cm 。

振动作业答案

振动作业答案

《大学物理(下)》作业 机械振动(电气、计算机、詹班)班级 学号 姓名 成绩一 选择题1. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) . (B) /2. (C) 0 . (D) .[ C ][参考解答] 开始计时时,位移达到最大值。

2. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A) )3232cos(2π+π=t x .(B) )3232cos(2π-π=t x .(C) )3234cos(2π+π=t x .(D) )3234cos(2π-π=t x .(E) )4134cos(2π-π=t x .[ C ][参考解答] A=2 cm ,由旋转矢量法(如下图)可得:3/20πϕ==t ,πϕ21==t ,s rad t /4314/3ππϕω==∆∆=,旋转矢量图:3.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的 (A )7/16 (B )9/16(C )11/16 (D )13/16 (E )15/16[ E ][参考解答] 4/)cos(A t A x =+=ϕω,16/15)(sin ,4/1)cos(2=+=+ϕωϕωt t 即,1615)(sin max2max k k k E t E E =+=ϕωtO-1-212-2-1Ot=0t=14.图中所画的是两个简谐振动的振动曲线,若这两个简谐振动可叠加,则合成的余弦振动的初相位为:(A )2π(B )π(C )23π (D )0[ B ][参考解答] t=0时刻的旋转矢量图:二 填空题1.一竖直悬挂的弹簧振子,自然平衡时弹簧的伸长量为x 0,此振子自由振动的周期T = g x /20π.[参考解答] 受力分析如右图,以平衡位置为原点,向下为x 轴正方向,有:22/22)/(dtXd m kX k mg x k mg kx dt xd m kmg x X =-=--=+-=-=令 对坐标X ,其运动为简谐运动, 其角频率满足:,mk =2ω g x T /2/20πωπ==2. 一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有正最大值的那一时刻为t = 0,则振动表达式为 )()2325cos(2cm t x π+=. [参考解答] s rad cm A A v m /5.2,2,=∴==ωω t =0时,质点通过平衡位置向正方向运动,初相为:230πϕ=πA/2-A A 合mgF kox3.一弹簧简谐振子的振动曲线如图所示,振子处在位移为零,速度为-ωA ,加速度为零和弹性力为零的状态,对应于曲线上的 b, f 点,振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-KA 的状态,则对应于曲线上的 a, e 点。

大学物理机械振动习题含答案

大学物理机械振动习题含答案

t (s )v (m.s -1)12m v m vo1.3题图题图 第三章 机械振动一、选择题1.质点作简谐振动,距平衡位置2。

0cm 时,加速度a=4.0cm 2/s ,则该质点从一端运动到另一端的时间为(一端运动到另一端的时间为( C )A:1.2s B: 2.4s C:2.2s D:4.4s 解:解:s T t T xax a 2.2422,2222,22===\=====p pw pw w2.一个弹簧振子振幅为2210m -´,当0t =时振子在21.010m x -=´处,且向正方向运动,则振子的振动方程是:[ A ] A :2210cos()m3x t p w -=´-;B :2210cos()m 6x t pw -=´-;C :2210cos()m 3xt pw -=´+ ;D :2210cos()m 6x t pw -=´+;解:由旋转矢量可以得出振动的出现初相为:3p-3.用余弦函数描述一简谐振动,若其速度与时间(v —t )关系曲线如图示,则振动的初相位为:[ A ] A :6p ;B :3p ;C :2p ;D :23p ;E :56p解:振动速度为:max 0sin()v v t w j =-+0t =时,01sin2j =,所以06p j =或056p j = 由知1.3图,0t =时,速度的大小是在增加,由旋转矢量图知,旋转矢量在第一象限内,对应质点的运动是由正最大位移向平衡位置运动,速度是逐渐增加的,旋转矢量在第二象限内,对应质点的运动是由平衡位置向负最大位移运动,速度是逐渐减小的,所以只有06pj =是符合条件的。

符合条件的。

4.某人欲测钟摆摆长,将钟摆摆锤上移1毫米,测得此钟每分快0。

1秒,则此钟摆的摆长为(长为( B )A:15cm B:30cm C:45cm D:60cm 解:单摆周期解:单摆周期 ,2glT p=两侧分别对T ,和l 求导,有:求导,有:cm m m T dT dl l l dl T dT 3060)1.0(2121,21=-´-==\= 1.2题图题图xyoxy二、填空题1.有一放置在水平面上的弹簧振子。

机械振动作业答案

机械振动作业答案

7.上面放有物体的平台,以每秒5周的频 率沿竖直方向做简谐振动,若平台振幅 超过(1cm),物体将会脱离平台 .(g=9.8m/s) 8.两个同方向同频率的简谐振动,其合振 动的振幅20cm,与第一个简谐振动的相 位差为Ф - Ф 1= π/6.若第一个简谐振动 的振幅为 则第二个简谐振 10 3cm 17.3cm 动的振幅为( 10 )cm,第一,二个简谐振 动的相位差Ф 1- Ф 2为( -π /2 )
2. 两个近地点各自做简谐振动,它们的 振 幅 相 同。第 一 个 质 点的振动方 程 x1 A cos(t ) ,当第一个质点从相 对平衡位置的正位移回到平衡位置时, 第二个质点在正最大位移处,第二个质 点的振动方程为:( ) A. x2 A cos(t / 2)
B. x2 A cos(t / 2) C. x2 A cos(t 3 / 2) D. x2 A cos(t )
3. 质点作周期为 T ,振幅为 A 的谐振 动,则质点由平衡位置运动到离平 衡位置 A/2 处所需的最短时间是 : ( ) A.T/4 B.T/6 C.T/8 D.T/12 4. 一质点在x轴上作谐振动振幅A=4cm, 周期 T=2s ,其平衡位置取作坐标原点, 若t=0时刻近质点第一次通过x=-2cm处, 且向x轴正方向运动,则质点第二次通过 x = - 2 c m , 处 时 刻 为 : [ ] A.1s B.3s/2 C.4s/3 D.2s
(二) 填空题
1 1 1 2 2 2 2 2 m A m A kA ________ 或 _____ ,平均动能为 ______ ,平均势 2 4 2 1 2 2 m A 。 能为______ 4
2. 一简谐振动的表达式为 , x A cos(3t ) 已知t=0时的位移是0.04m,速度是0.09m· s-1。 0.05m 则振幅A=_____ ,初相φ=_____ 。 ห้องสมุดไป่ตู้ 37
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)振子在平衡位置向正方向运动,则初位相为
-____2_。
(3)振子在位移A/2处,向负方向运动,则初位
相为___3__。
6. 将复杂的周期性振动分解为一系列的简谐振 动之和,从而确定出该振动包含的频率成分 以及各频率对应的振幅的方法,称为频谱分 析。
7.上面放有物体的平台,以每秒5周的频率沿竖
自由振动的振幅是 2A 。
能量守恒:
1 2
m(20 )2
A2
1 2
m(0 )2
A2
12.两个线振动合成为一个圆振动,条件是:
(1)振动方向垂直 (2)频率相同
(3)振幅相同 (4)相位差是/2
计算题
1.一沿x轴的弹簧振子,振幅为A,周期为T。在t =0时的状态是:(1)x0=-A;(2)过平衡位 置且向正方向运动;(3) x0=A/2且向负方向运 动;(4) x0= A 2 2且向正方向运动。求相 应的初位相和运动方程。
9.一简谐振动的旋转矢量图如图,振幅矢量长
2cm,该简谐振动的初位相是
方程是 2cos(t 。)
/4
,振动

4
10.物体共振频率与系统自身性质以及 阻尼 有 关。系统 阻尼 越大,共振振幅越小,共振频
率越小。
12. 一物体质量为0.25kg,在弹性力作用下作 简谐振动,弹簧的倔强系数 k = 25 Nm-1,如果 起始振动时具有势能0.06J和动能0.02J,求: (1) 振幅; (2) 动能恰好等于势能时的位移; (3) 经过平衡位置时物体的速度。
直方向做简谐振动,若平台振幅超过 1cm ,物
体将会脱离平台.(g=9.8m/s)
8.两个同方向同频率的简谐振动,其合振动的振 幅20cm,与第一个简谐振动的相位差为Ф- Ф1= π/6.若第一个简谐振动的振幅为 10 3cm 17.3cm
则第二个简谐振动的振幅为 10 cm,第一, 二个简谐振动的相位差Ф1- Ф2为 -/2
A.物体处在运动正方向的端点时,速度和加速 度都达到最大值
B.物体位于平衡位置且向负方向运动时,速度 和加速度都为零
C.物体位于平衡位置且向正方向运动时,速度 最大,加速度最小
D.物体处在负方向的端点时,速度最大,加速度 为零
8. 当质点以 f频率作简谐振动时,它动能的变 化频率为
A. f B. 2 f C. 4 f D. 0.5 f
9.两个振动方向相互垂直、频率相同的简谐振动 的合成运动的轨迹为一正椭圆,则这两个分振 动的相位差可能为
A. 0或π/2
B. 0或3π/2
C. 0或π
D. 3π/2 或 π/2
10.竖直弹簧振子系统谐振周期为T,将小球 放入水中,水的浮力恒定,粘滞阻力及弹簧 质量不计,使振子沿铅直方向振动起来,则:
(一)选择题
1.两个相同的弹簧,一端固定,另一端 分别悬挂质量为 m1, m2的两个物体。若 两个物体的振动周期之比为 T1 :T2 2 :1 则m1 : m2 =( )
A. 2 :1 C. 1: 4
B. 4 :1 D. 1: 2
2. 两个近地点各自做简谐振动,它们的 振 幅 相 同。第 一 个 质 点的振动方
4.两个相同的弹簧以相同的振幅作谐振动,
当挂着两个质量相同的物体时其能量_相__同_ ,
当挂着两个质量不同的物体仍以相同的振幅 振动,其能量_相__同_,振动频率不 ___同_。
5. 一弹簧振子作简谐振动,振幅为A,周期为T, 运动方程用余弦函数表示,若t=0时,
(1)振子在负的最大位移处,则初位相为_____。
A.振子仍作简谐振动,但周期<T B.振子仍作简谐振动,但周期>T C.振子仍作简谐振动,且周期仍为T D.振子不再作简谐振动。
(二) 填空题
1.已知谐振动方程为 x1 Acos(t ) ,振子
质量为m,振幅为A,则振子最大速度为___A__,
最大加速度为___2_A__,振动系统总能量为
_12_m___2_A__2 或_12__k_A_,2 平均动能为_14_m___2_A,2 平均势 能为_14_m____2 A。2
解:(1)
E总
1 kA2 2
0.08
A 0.08(m)
(2) 1 kx2 1 kA2 x 2 A 0.04 2(m)
24
2
(3)
1 2
m
2 m
1 kA2 2
m
0.8ms -1
11.固有频率为0的弹簧振子,在阻尼很小时,受 到频率为2 0的余弦策动力的作用,当稳定时, 振幅是A。若振子经平衡位置时撤去策动力,则
3. 质点作周期为T,振幅为A的谐振动,则质点 由平衡位置运动到离平衡位置A/2处所需的最 短时间是: ( )
A.T/4 B.T/6 C.T/8 D.T/12
4. 一质点在x轴上作谐振动振幅A=4cm,周期 T=2s,其平衡位置取作坐标原点,若t=0时刻 近质点第一次通过x=-2cm处,且向x轴正方向 运动,则质点第二次通过x=-2cm,处时刻为:[]
2. 一简谐振动的表达式为 x Acos(3t ) ,
已知t=0时的位移是0.04m,速度是0.09m·s-1。 则振幅A=0_._0_5_m_ ,初相φ=___3_7_0。
3. 无阻尼自由简谐振动的周期和频率由
_系 ___统__所决定,对于给定的简谐振动,其振
幅、初相由_初_始__状__态__决定。
A.1s B.3s/2 C.4s/3 D.2s
5. 一质点同时参与两个在同一直线上的谐振动,
其振动方程分别为
7
x1 4cos(2t 6 ),
x2 3cos(2t
) 6
则关于合振动有结论:[]
A.振幅等于1cm, 初相等于
B.振幅等于7cm,
初相等于
4
3
C.振幅等于1cm,
初相等于
7 6
D.振幅等于1cm,
初相等于
6
6.一质点做简谐振动,振动方程为
x Acos(t )
当时间t=T/2(T为周期)时,质点的速度为
A. A sin B. A sin C. A cos
A sin(t ) A sin( T )
2
D. A cos
7.对一个作简谐振动的物体,下面哪种说法是 正确的
程 x1 Acos(t ) ,当第一个质点从相
对平衡位置的正位移回到平衡位置时, 第二个质点在正最大位移处,第二个质 点的振动方程为:( )
A. x2 Acos(t / 2)
B. x2 Acos(t / 2)
C. x2 Acos(t 3 / 2)
D. x2 Acos(t )
相关文档
最新文档