电场磁场综合专题

合集下载

压轴题08 电磁场综合专题(原卷版)-2020年高考物理挑战压轴题(尖子生专用)

压轴题08 电磁场综合专题(原卷版)-2020年高考物理挑战压轴题(尖子生专用)

压轴题08电磁场综合专题1.如图所示,真空区域中存在匀强电场与匀强磁场;每个磁场区域的宽度均为0.20m h =,边界水平,相邻两个区域的距离也为h ,磁感应强度大小 1.0T B =、方向水平且垂直竖直坐标系xoy 平面向里;电场在x 轴下方的整个空间区域中,电场强度的大小 2.5N/C E =、方向竖直向上。

质量41.010kg m -=⨯、电荷量44.010C q -=⨯的带正电小球,从y 轴上的P 点静止释放,P 点与x 轴的距离也为h ;重力加速度g 取10m/s 2,sin 370.6=,cos370.8=,不计小球运动时的电磁辐射。

求小球:(1)射出第1区域时的速度大小v(2)射出第2区域时的速度方向与竖直方向之间的夹角θ(3)从开始运动到最低点的时间t 。

2.如图甲所示,平行金属板M 、N 水平放置,板长L =5m 、板间距离d =0.20m 。

在竖直平面内建立xOy 直角坐标系,使x 轴与金属板M 、N 的中线OO ′重合,y 轴紧靠两金属板右端。

在y 轴右侧空间存在方向垂直纸面向里、磁感应强度大小B =5.0×10-3T 的匀强磁场,M 、N 板间加随时间t 按正弦规律变化的电压u MN ,如图乙所示,图中T 0未知,两板间电场可看作匀强电场,板外电场可忽略。

比荷q m=1.0×107C/kg 、带正电的大量粒子以v 0=1.0×105m/s 的水平速度,从金属板左端沿中线OO ′连续射入电场,进入磁场的带电粒子从y 轴上的 P 、Q (图中未画岀,P 为最高点、Q 为最低点)间离开磁场。

在每个粒子通过电场区域的极短时间内,电场可视作恒定不变,忽略粒子重力,求:(1) 进入磁场的带电粒子在电场中运动的时间t 0及在磁场中做圆周运动的最小半径r 0;(2) P 、Q 两点的纵坐标y P 、y Q ;(3) 若粒子到达Q 点的同时有粒子到达P 点,满足此条件的电压变化周期T 0的最大值。

高二物理-磁场专题训练及答案(全套)

高二物理-磁场专题训练及答案(全套)

中学物理磁场专题训练一、磁场、安培力练习题一、选择题1.关于磁场和磁感线的描述,正确的说法有[]A.磁极之间的相互作用是通过磁场发生的,磁场和电场一样,也是一种物质B.磁感线可以形象地表现磁场的强弱与方向C.磁感线总是从磁铁的北极动身,到南极终止D.磁感线就是细铁屑在磁铁四周排列出的曲线,没有细铁屑的地方就没有磁感线2.一束带电粒子沿水平方向飞过小磁针上方,并与磁针指向平行,能使磁针的S极转向纸内,如图1所示,那么这束带电粒子可能是[]A.向右飞行的正离子束B.向左飞行的正离子束C.向右飞行的负离子束D.问左飞行的负离子束3.铁心上有两个线圈,把它们和一个干电池连接起来,已知线圈的电阻比电池的内阻大得多,如图2所示的图中,哪一种接法铁心的磁性最强[]4.关于磁场,以下说法正确的是[]A.电流在磁场中某点不受磁场力作用,则该点的磁感强度肯定为零B.磁场中某点的磁感强度,依据公式B=F/I·l,它跟F,I,l都有关C.磁场中某点的磁感强度的方向垂直于该点的磁场方向D.磁场中任一点的磁感强度等于磁通密度,即垂直于磁感强度方向的单位面积的磁通量5.磁场中某点的磁感应强度的方向[]A.放在该点的通电直导线所受的磁场力的方向B.放在该点的正检验电荷所受的磁场力的方向C.放在该点的小磁针静止时N极所指的方向D.通过该点磁场线的切线方向6.下列有关磁通量的论述中正确的是[]A.磁感强度越大的地方,穿过线圈的磁通量也越大B.磁感强度越大的地方,线圈面积越大,则穿过线圈的磁通量越大C.穿过线圈的磁通量为零的地方,磁感强度肯定为零D.匀强磁场中,穿过线圈的磁感线越多,则磁通量越大7.如图3所示,条形磁铁放在水平桌面上,其中心正上方固定一根直导线,导线与磁铁垂直,并通以垂直纸面对外的电流,[]A.磁铁对桌面的压力减小、不受桌面摩擦力的作用B.磁铁对桌面的压力减小、受到桌面摩擦力的作用C.磁铁对桌面的压力增大,个受桌面摩擦力的作用D.磁铁对桌面的压力增大,受到桌面摩擦力的作用8.如图4所示,将通电线圈悬挂在磁铁N极旁边:磁铁处于水平位置和线圈在同一平面内,且磁铁的轴线经过线圈圆心,线圈将[]A.转动同时靠近磁铁B.转动同时离开磁铁C.不转动,只靠近磁铁D.不转动,只离开磁铁9.通电矩形线圈平面垂直于匀强磁场的磁感线,则有[]A.线圈所受安培力的合力为零B.线圈所受安培力以任一边为轴的力矩为零C.线圈所受安培力以任一对角线为轴的力矩不为零D.线圈所受安培力必定使其四边有向外扩展形变的效果二、填空题10.匀强磁场中有一段长为0.2m的直导线,它与磁场方向垂直,当通过3A的电流时,受到60×10-2N的磁场力,则磁场的磁感强度是______特;当导线长度缩短一半时,磁场的磁感强度是_____特;当通入的电流加倍时,磁场的磁感强度是______特.11.如图5所示,abcd是一竖直的矩形导线框,线框面积为S,放在磁场中,ab边在水平面内且与磁场方向成60°角,若导线框中的电流为I,则导线框所受的安培力对某竖直的固定轴的力矩等于______.12.一矩形线圈面积S=10-2m2,它和匀强磁场方向之间的夹角θ1=30°,穿过线圈的磁通量Ф=1×103Wb,则磁场的磁感强度B______;若线圈以一条边为轴的转180°,则穿过线圈的磁能量的改变为______;若线圈平面和磁场方向之间的夹角变为θ2=0°,则Ф=______.三、计算题13.如图6所示,ab,cd为两根相距2m的平行金属导轨,水平放置在竖直向下的匀强磁场中,通以5A的电流时,棒沿导轨作匀速运动;当棒中电流增加到8A时,棒能获得2m/s2的加速度,求匀强磁场的磁感强度的大小;14.如图7所示,通电导体棒AC静止于水平导轨上,棒的质量为m长为l,通过的电流强度为I,匀强磁场的磁感强度B的方向与导轨平面成θ角,求导轨受到AC棒的压力和摩擦力各为多大?一、磁场、安培力练习题答案一、选择题1.AB 2.BC 3.D 4.D5.CD 6.D 7.A 8.A 9.AB二、填空题三、计算题13.1.2T 14.mg-BIlcosθ,BI lsinθ二、洛仑兹力练习题一、选择题1.如图1所示,在垂直于纸面对内的匀强磁场中,垂直于磁场方向放射出两个电子1和2,其速度分别为v1和v2.假如v2=2v1,则1和2的轨道半径之比r1:r2及周期之比T1:T2分别为 [ ] A.r1:r2=1:2,T1:T2=1:2B.r1:r2=1:2,T1:T2=1:1C.r1:r2=2:1,T1:T2=1:1D.r1:r2=1:1,T1:T2=2:12.如图2所示,ab是一弯管,其中心线是半径为R的一段圆弧,将它置于一给定的匀强磁场中,磁场方向垂直于圆弧所在平面,并且指向纸外、有一束粒子对准a端射入弯管,粒子有不同的质量、不同的速度,但都是一价正离子. [ ]A.只有速度大小肯定的粒子可以沿中心线通过弯管B.只有质量大小肯定的粒子可以沿中心线通过弯管C.只有动量大小肯定的粒子可以沿中心线通过弯管D.只有能量大小肯定的粒子可以沿中心线通过弯管3.电子以初速V0垂直进入磁感应强度为B的匀强磁场中,则 [ ]A.磁场对电子的作用力始终不变B.磁场对电子的作用力始终不作功C.电子的动量始终不变D.电子的动能始终不变它们以相同的速度沿垂直于磁场方向射入匀强磁场(磁场方向垂直纸面对里).在图3中,哪个图正确地表示出这三束粒子的运动轨迹?[ ]5.一个带电粒子,沿垂直于磁场的方向射入一匀强磁场,粒子的一段径迹如图4所示,径迹上的每一小段可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量渐渐减小(带电量不变).从图中可以确定 [ ]A.粒子从a到b,带正电B.粒子从b到a,带正电C.粒子从a到b,带负电 D.粒子从b到a,带负电6.三个相同的带电小球1、2、3,在重力场中从同一高度由静止起先落下,其中小球1通过一附加的水平方向匀强电场,小球2通过一附加的水平方向匀强磁场.设三个小球落到同一高度时的动能分别为E1、E2和E3,忽视空气阻力,则 [ ]A.E1=E2=E3B.E1>E2=E3C.E1<E2=E3D.E1>E2>E37.真空中同时存在着竖直向下的匀强电场和垂直纸面对里的匀强磁场,三个带有等量同种电荷的油滴a、b、c在场中做不同的运动.其中a静止,b向右做匀速直线运动,c向左做匀速直线运动,则三油滴质量大小关系为 [ ]A.a最大 B.b最大C.c最大 D.都相等8.一个带正电荷的微粒(重力不计)穿过图5中匀强电场和匀强磁场区域时,恰能沿直线运动,则欲使电荷向下偏转时应采纳的方法是[ ]A.增大电荷质量B.增大电荷电量C.削减入射速度D.增大磁感强度E.减小电场强度二、填空题9.一束离子能沿入射方向通过相互垂直的匀强电场和匀强磁场区域,然后进入磁感应强度为B′的偏转磁场内做半径相同的匀速圆周运动(图6),则这束离子必定有相同的______,相同的______.10.为使从炙热灯丝放射的电子(质量m、电量e、初速为零)能沿入射方向通过相互垂直的匀强电场(场强为E)和匀强磁场(磁感强度为B)区域,对电子的加速电压为______.11.一个电子匀强磁场中运动而不受到磁场力的作用,则电子运动的方向是______.12.一质量为m、电量为q的带电粒子在磁感强度为B的匀强磁场中作圆周运动,其效果相当于一环形电流,则此环形电流的电流强度I=______.三、计算题13.一个电视显像管的电子束里电子的动能E K=12000eV.这个显像管的位置取向刚好使电子水平地由南向北运动.已知地磁场的竖直向下重量B=5.5×10-5T,试问(1)电子束偏向什么方向?(2)电子束在显像管里由南向北通过y=20cm路程,受洛仑兹力作用将偏转多少距离?电子质量m=9.1×10-31kg,电量e=1.6×10-19C.14.如图7所示,一质量m、电量q带正电荷的小球静止在倾角30°、足够长的绝缘光滑斜面.顶端时对斜面压力恰为零.若快速把电场方向改为竖直向下,则小球能在斜面上滑行多远?洛仑兹力练习题答案一、选择题1.B 2.C 3.BD 4.C5.B 6.B 7.C 8.C二、填空题三、计算题三、单元练习题一、选择题1.安培的分子环流假设,可用来说明 [ ]A.两通电导体间有相互作用的缘由B.通电线圈产生磁场的缘由C.永久磁铁产生磁场的缘由D.铁质类物体被磁化而具有磁性的缘由2.如图1所示,条形磁铁放在水平桌面上,在其正中心的上方固定一根长直导线,导线与磁铁垂直,给导线通以垂直纸面对外的电流,则[ ]A.磁铁对桌面压力减小,不受桌面的摩擦力作用B.磁铁对桌面压力减小,受到桌面的摩擦力作用C.磁铁对桌面压力增大,不受桌面的摩擦力作用D.磁铁对桌面压力增大,受到桌面的摩擦力作用3.有电子、质子、氘核、氚核,以同样速度垂直射入同一匀强磁场中,它们都作匀速圆周运动,则轨道半径最大的粒子是 [ ]A.氘核 B.氚核C.电子D.质子4.两个电子以大小不同的初速度沿垂直于磁场的方向射入同一匀强磁场中.设r1、r2为这两个电子的运动轨道半径,T1、T2是它们的运动周期,则 [ ]A.r1=r2,T1≠T2B.r1≠r2,T1≠T2C.r1=r2,T1=T2 D.r1≠r2,T1=T25.在垂直于纸面的匀强磁场中,有一原来静止的原子核.该核衰变后,放出的带电粒子和反冲核的运动轨迹分别如图2中a、b所示.由图可以判定 [ ]A.该核发生的是α衰变B.该核发生的是β衰变C.磁场方向肯定是垂直纸面对里D.磁场方向向里还是向外不能判定6.如图3有一混合正离子束先后通过正交电场磁场区域Ⅰ和匀强磁场区域Ⅱ,假如这束正离子束流在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径又相同,则说明这些正离子具有相同的 [ ] A.速度 B.质量C.电荷 D.荷质比7.设空间存在竖直向下的匀强电场和垂直纸面对里的匀强磁场,如图4所示,已知一离子在电场力和洛仑兹力的作用下,从静止起先自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽视重力,以下说法中正确的是 [ ]A.这离子必带正电荷B.A点和B点位于同一高度C.离子在C点时速度最大D.离子到达B点后,将沿原曲线返回A点8.如图5所示,在正交的匀强电场和磁场的区域内(磁场水平向内),有一离子恰能沿直线飞过此区域(不计离子重力) [ ]A.若离子带正电,E方向应向下B.若离子带负电,E方向应向上C.若离子带正电,E方向应向上D.不管离子带何种电,E方向都向下9.一根通有电流I的直铜棒用软导线挂在如图6所示匀强磁场中,此时悬线中的张力大于零而小于铜棒的重力.欲使悬线中张力为零,可采纳的方法有 [ ]A.适当增大电流,方向不变B.适当减小电流,并使它反向C.电流大小、方向不变,适当增加磁场D.使原电流反向,并适当减弱磁场10.如图7所示,一金属直杆MN两端接有导线,悬挂于线圈上方,MN与线圈轴线均处于竖直平面内,为使MN垂直纸面对外运动,可以[ ]A.将a、c端接在电源正极,b、d端接在电源负极B.将b、d端接在电源正极,a、c端接在电源负极C.将a、d端接在电源正极,b、c端接在电源负极D.将a、c端接在沟通电源的一端,b、d接在沟通电源的另一端11.带电为+q的粒子在匀强磁场中运动,下面说法中正确的是 [ ]A.只要速度大小相同,所受洛仑兹力就相同B.假如把+q改为-q,且速度反向大小不变,则洛仑兹力的大小,方向均不变C.洛仑兹力方向肯定与电荷速度方向垂直,磁场方向肯定与电荷运动方向垂直D.粒子只受到洛仑兹力作用,其运动的动能、动量均不变12.关于磁现象的电本质,下列说法中正确的是 [ ]A.有磁必有电荷,有电荷必有磁B.一切磁现象都起源于电流或运动电荷,一切磁作用都是电流或运动电荷之间通过磁场而发生的相互作用C.除永久磁铁外,一切磁场都是由运动电荷或电流产生的D.依据安培的分子环流假说,在外界磁场作用下,物体内部分子电流取向大致相同时,物体就被磁化,两端形成磁极二、填空题13.一质子及一α粒子,同时垂直射入同一匀强磁场中.(1)若两者由静止经同一电势差加速的,则旋转半径之比为______;(2)若两者以相同的动进入磁场中,则旋转半径之比为______;(3)若两者以相同的动能进入磁场中,则旋转半径之比为______;(4)若两者以相同速度进入磁场,则旋转半径之比为______.14.两块长5d,相距d的水平平行金属板,板间有垂直于纸面的匀强磁场.一大群电子从平行于板面的方向、以等大小的速度v从左端各处飞入(图8).为了不使任何电子飞出,板间磁感应强度的最小值为______.15.如图9所示,M、N为水平位置的两块平行金属板,板间距离为d,两板间电势差为U.当带电量为q、质量为m的正离子流以速度V0沿水平方向从两板左端的中心O点处射入,因受电场力作用,离子作曲线运动,偏向M板(重力忽视不计).今在两板间加一匀强磁场,使从中心O处射入的正离流在两板间作直线运动.则磁场的方向是______,磁感应强度B=______.16.如图10所示,质量为m,带电量为+q的粒子,从两平行电极板正中心垂直电场线和磁感线以速度v飞入.已知两板间距为d,磁感强度为B,这时粒子恰能直线穿过电场和磁场区域(重力不计).今将磁感强度增大到某值,则粒子将落到极板上.当粒子落到极板上时的动能为______.17.如图11所示,绝缘光滑的斜面倾角为θ,匀强磁场B方向与斜面垂直,假如一个质量为m,带电量为-q的小球A在斜面上作匀速圆周运动,则必需加一最小的场强为______的匀强电场.18.三个带等量正电荷的粒子a、b、c(所受重力不计)以相同的初动能水平射入正交的电场磁场中,轨迹如图12,则可知它们的质量m a、m b、m c大小次序为______,入射时的初动量大小次序为______.19.一初速为零的带电粒子,经过电压为U的电场加速后垂直进入磁感强度为B的匀强磁场中,已知带电粒子的质量是m,电量是q,则带电粒子所受的洛仑兹力为______,轨道半径为______.20.如图13在x轴的上方(y≥0)存在着垂直于纸面对外的匀强磁场,磁感强度为B.在原点O有一个离子源向x轴上方的各个方向放射出质量为m、电量为q的正离子,速率都为v,对那些在xy平面内运动的离子,在磁场中可能到达的最大x=______,最大y=______.三、计算题21.以速率v垂直于屏S经过小孔O射入存在着匀强磁场的真空室中,如图14所示,磁感强度B的方向与离子的运动方向垂直,并垂直于纸面对里.(1)求离子进入磁场后到达屏S上时的位置与O点的距离.(2)假如离子进入磁场后经过时间t到达位置P,试证明:直线OP与离子入射方向之间的夹角θ跟t的关系是22.如图16所示,AB为一段光滑绝缘水平轨道,BCD为一段光滑的圆弧轨道,半径为R,今有一质量为m、带电为+q的绝缘小球,以速度v0从A点向B点运动,后又沿弧BC做圆周运动,到C点后由于v0较小,故难运动到最高点.假如当其运动至C点时,突然在轨道区域加一匀强电场和匀强磁场,使其能运动到最高点此时轨道弹力为0,且贴着轨道做匀速圆周运动,求:(1)匀强电场的方向和强度;(2)磁场的方向和磁感应强度.单元练习题答案一、选择题1.CD 2.A 3.B 4.D 5.BD 6.AD7.ABC 8.AD 9.AC 10.ABD 11.B 12.BD二、填空题三、计算题21.(1)2mv/qB。

电磁场练习题电场与磁场的叠加与相互作用

电磁场练习题电场与磁场的叠加与相互作用

电磁场练习题电场与磁场的叠加与相互作用电磁场练习题——电场与磁场的叠加与相互作用在物理学中,电磁场是电荷与电流所产生的场,由电场和磁场组成。

电磁场的相互作用以及叠加是电磁学的重要内容。

下面,我们将通过一些实例来解析电场与磁场的叠加与相互作用。

1. 实例一:平行板电容器中的带电粒子假设有一个带正电荷q的质点,位于距离一个平行板电容器距离为d的位置。

平行板电容器的两个平行的金属板分别带上正电荷和负电荷,形成了一个匀强电场。

此时,电场的电势差为ΔV,根据电场的叠加原理,带电粒子所受到的电场力为F1 = qΔV。

假设带电粒子的速度v与电场垂直,则带电粒子还受到一个宽度为d的磁场,根据磁场的叠加原理,粒子在磁场中受到的洛伦兹力为F2 = qvB。

因此,带电粒子所受到的合力为F = F1 + F2 = qΔV + qvB。

2. 实例二:电流通过直导线考虑一个长直导线,导线中有电流I,与导线平行的方向定义为x轴方向。

在导线周围产生一个以导线为轴线的环形磁场。

现在,我们再在导线周围和导线之间施加一个电场,即有一个电场E与导线方向相同。

根据磁场的叠加原理,磁场B和电场E的合力为F1 = qE。

根据电场的叠加原理,导线所带来的电场力为F2 = ILB,其中L为导线的长度,B为导线周围的磁场强度。

所以,导线受到的总合力为F = F1 + F2 = qE + ILB。

3. 实例三:异向电场和磁场中的运动粒子假设有一个粒子,同时存在电场和磁场。

电场E方向为x轴方向,磁场B方向为z轴方向。

粒子的速度v方向既不与电场方向也不与磁场方向垂直,而是与两者夹角θ。

粒子在电场中受到的电场力为F1 = qE。

粒子在磁场中受到的洛伦兹力为F2 = qvBsinθ。

所以,粒子所受到的合力为F = F1 + F2 = qE + qvBsi nθ。

当粒子在电磁场中运动时,合力将改变粒子的运动轨迹。

总结起来,电场与磁场的叠加与相互作用是电磁学中的基本概念。

磁场综合题整理版

磁场综合题整理版

磁场综合题1、(2013大纲理综)(20分)如图所示,虚线OL 与y 轴的夹角为θ=60°,在此角范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B 。

一质量为m 、电荷量为q (q >0)的粒子从左侧平行于x 轴射入磁场,入射点为M 。

粒子在磁场中运动的轨道半径为R 。

粒子离开磁场后的运动轨迹与x 轴交于P 点(图中未画出),且OD =R 。

不计重力。

求M 点到O 点的距离和粒子在磁场中运动的时间。

2、(2013北京理综)(16分)如图所示,两平行金属板间距为d ,电势差为U ,板间电场 可视为匀强电场;金属板下方有一磁感应强度为B 的匀强磁场。

带电量为+q 、质量为m 的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动。

忽略重力的影响,求: ⑴匀强电场场强E 的大小;⑵粒子从电场射出时速度ν的大小;⑶粒子在磁场中做匀速圆周运动的半径R 。

3、(2013天津理综)(18分)一圆筒的横截面如图所示,其圆心为O。

筒内有垂直于纸面向里的匀强磁场,磁感应强度为B。

圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷,N板带等量负电荷。

质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中,粒子与圈筒发生两次碰撞后仍从S孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:(1)M、N间电场强度E的大小;(2)圆筒的半径R;(3)保持M、N间电场强度E不变,仅将M板向上平移2d/3,粒子仍从M板边缘的P处由静止释放粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。

4、(2013山东理综)(18分)如图所示,在坐标系xOy的第一、第三象限内存有相同的匀强磁场,磁场方向垂直于xOy平面向里;第四象限内有沿y轴正方向的匀强电场,电场强度大小为E。

一带电量为+q、质量为m的粒子,自y轴的P点沿x轴正方向射入第四象限,经x轴上的Q点进入第一象限,随即撤去电场,以后仅保留磁场。

高考物理带电粒子在磁场中的运动压轴难题综合题及答案解析

高考物理带电粒子在磁场中的运动压轴难题综合题及答案解析

高考物理带电粒子在磁场中的运动压轴难题综合题及答案解析一、带电粒子在磁场中的运动压轴题1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。

y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。

现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。

求: (1)带电粒子的初速度;(2)粒子从P 点射出到再次回到P 点所用的时间。

【答案】(1)8qBLv m=;(2)41(1)45m t qB π=+ 【解析】 【详解】(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:5sin37o QC L =15sin37OOQO Q L ==在y 轴左侧磁场中做匀速圆周运动,半径为1R ,11R OQ QC =+21v qvB m R =解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oo t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。

高中物理-专题四第1课时 电场和磁场基本问题

高中物理-专题四第1课时 电场和磁场基本问题

专题四电场和磁场第1课时电场和磁场基本问题1.电场强度的三个公式(1)E=Fq是电场强度的定义式,适用于任何电场。

电场中某点的场强是确定值,其大小和方向与试探电荷q无关,试探电荷q充当“测量工具”的作用。

(2)E=k Qr2是真空中点电荷所形成的电场场强的决定式,E由场源电荷Q和场源电荷到某点的距离r决定。

(3)E=Ud是场强与电势差的关系式,只适用于匀强电场。

注意:式中d为两点间沿电场方向的距离。

2.电场能的性质(1)电势与电势能:φ=E p q。

(2)电势差与电场力做功:U AB=W ABq=φA-φB。

(3)电场力做功与电势能的变化:W=-ΔE p。

3.等势面与电场线的关系(1)电场线总是与等势面垂直,且从电势高的等势面指向电势低的等势面。

(2)电场线越密的地方,等差等势面也越密。

(3)沿等势面移动电荷,电场力不做功,沿电场线移动电荷,电场力一定做功。

4.带电粒子在磁场中的受力情况(1)磁场只对运动的电荷有力的作用,对静止的电荷无力的作用。

(2)洛伦兹力的大小和方向:F洛=q v B sin θ。

注意:θ为v与B的夹角。

F的方向由左手定则判定,四指的指向应为正电荷运动的方向或负电荷运动方向的反方向。

5.洛伦兹力做功的特点由于洛伦兹力始终和速度方向垂直,所以洛伦兹力永不做功。

1.主要研究方法(1)理想化模型法。

如点电荷。

(2)比值定义法。

如电场强度、电势的定义方法,是定义物理量的一种重要方法。

(3)类比的方法。

如电场和重力场的类比;电场力做功与重力做功的类比;带电粒子在匀强电场中的运动和平抛运动的类比。

2.静电力做功的求解方法(1)由功的定义式W=Fl cos α来求。

(2)利用结论“电场力做功等于电荷电势能变化量的负值”来求,即W=-ΔE p。

(3)利用W AB=qU AB来求。

3.电场中的曲线运动的分析采用运动合成与分解的思想方法。

4.匀强磁场中的圆周运动解题关键找圆心:若已知进场点的速度和出场点,可以作进场点速度的垂线,依据是F洛⊥v,与进出场点连线的垂直平分线的交点即为圆心;若只知道进场位置,则要利用圆周运动的对称性定性画出轨迹,找圆心,利用平面几何知识求解问题。

物理电场和磁场试题

物理电场和磁场试题

专题八、电场和磁场一、单项选择题(2分题)1、下列实验中准确测定元电荷电量的实验是( B )(A )库仑扭秤实验 (B )密立根油滴实验 (C )用DIS 描绘电场的等势线实验 (D )奥斯特电流磁效应实验 2、如右图所示,一线圈放在通电螺线管的正中间A 处,现向右移动到B 处,则在移动过程中通过线圈的磁通量如何变化( B ) A .变大 B .变小 C .不变 D .无法确定3、某电场的分布如右图所示,带箭头的实线为电场线,虚线为等势面。

A 、B 、C 三点的电场强度大小分别为A E 、B E 、C E ,电势分别为A ϕ、B ϕ、C ϕ,关于这三点的电场强度和电势的关系,以下判断正确的是( D ) A .A E <B E ,B ϕ=C ϕ B .A E =B E ,B ϕ=C ϕC .A E <B E ,A ϕ<B ϕD .AE >B E ,A ϕ>B ϕ4.分别置于a 、b 两处的长直导线垂直纸面放置,通有大小相等的恒定电流,方向如图所示,a 、b 、c 、d 在一条直线上,且ac=cb=bd 。

已知c 点的磁感应强度大小为B 1,d 点的磁感应强度大小为B 2。

若将b 处导线的电流切断,则( A )(A )c 点的磁感应强度大小变为12B 1,d 点的磁感应强度大小变为12B 1- B 2(B )c 点的磁感应强度大小变为12B 1,d 点的磁感应强度大小变为12B 2- B 1(C )c 点的磁感应强度大小变为B 1-B 2,d 点的磁感应强度大小变为12B 1- B 2(D )c 点的磁感应强度大小变为B 1- B 2,d 点的磁感应强度大小变为12B 2- B 15、关于静电的利用和防范,以下说法正确的是A .没有安装避雷针的建筑物一定会被雷电击毁B .油罐车行驶途中车尾有一条铁链拖在地上,避免产生电火花引起爆炸C .飞机起落架的轮胎用绝缘橡胶制成,可防止静电积聚D .手术室的医生和护士都要穿绝缘性能良好的化纤制品,可防止麻醉药燃烧 答案B 6、一个点电荷从静电场中a 点移动到b 点,其电势能变化为零,则C(A )ab 两点场强一定相等 (B )此点电荷一定沿着等势面移动(C )a 、b 两点的电势一定相等 (D )作用于此电荷的电场力与其移动方向总是垂直的vIA Bca× d7、某电场的分布如右图所示,带箭头的实线为电场线,虚线为等势面。

高二物理《磁场》重难知识点解析及综合能力精析

高二物理《磁场》重难知识点解析及综合能力精析

高二《磁场》重难点精析及综合能力强化训练高中,物流,高一力学是基础,高二电磁学是根本,高三知识综合用,所以高二部分,往往是高考的难点和重点,应当全面掌握这一块的方法和内容,综合利用。

I. 重难知识点精析一、知识点回顾1、磁场(1)磁场的产生:磁极周围有磁场;电流周围有磁场(奥斯特实验),方向由安培定则(右手螺旋定则)判断(即对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向);变化的电场在周围空间产生磁场(麦克斯韦)。

(2)磁场的基本性质:磁场对放入其中的磁极、电流(安培力)和运动电荷(洛仑兹力)有力的作用(对磁极一定有力的作用;对电流和运动电荷只是可能有力的作用,当电流、电荷的运动方向与磁感线平行时不受磁场力作用)。

2、磁感应强度ILF B =(条件:L ⊥B ,并且是匀强磁场中,或ΔL 很小)磁感应强度B 是矢量。

3、磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。

磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。

磁感线的疏密表示磁场的强弱。

⑵磁感线是封闭曲线(和静电场的电场线不同)。

⑶要熟记常见的几种磁场的磁感线4、安培力——磁场对电流的作用力(1)BIL F =(只适用于B ⊥I ,并且一定有F ⊥B, F ⊥I ,即F 垂直B 和I 确定的平面。

B 、I 不垂直时,对B 分解,取与I 垂直的分量B ⊥)(2)安培力方向的判定:用左手定则。

通电环行导线周围磁场地球磁场 通电直导线周围磁场另:只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则判定。

5、洛仑兹力——磁场对运动电荷的作用力,是安培力的微观表现(1)计算公式的推导:如图,整个导线受到的安培力为F 安 =BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为F ,则F 安=NF 。

电场与磁场专题(2024高考真题及解析)

电场与磁场专题(2024高考真题及解析)

电场与磁场专题1.(多选)[2024·安徽卷] 空间中存在竖直向下的匀强电场和垂直于纸面向里的匀强磁场,电场强度大小为E ,磁感应强度大小为B.一质量为m 的带电油滴a ,在纸面内做半径为R 的圆周运动,轨迹如图所示.当a 运动到最低点P 时,瞬间分成两个小油滴Ⅰ、Ⅰ,二者带电荷量、质量均相同.Ⅰ在P 点时与a 的速度方向相同,并做半径为3R 的圆周运动,轨迹如图所示.Ⅰ的轨迹未画出.已知重力加速度大小为g ,不计空气浮力与阻力以及Ⅰ、Ⅰ分开后的相互作用,则 ( )A .油滴a 带负电,所带电荷量的大小为mgE B .油滴a 做圆周运动的速度大小为gBREC .小油滴Ⅰ做圆周运动的速度大小为3gBRE ,周期为4πEgB D .小油滴Ⅰ沿顺时针方向做圆周运动1.ABD [解析] 油滴a 做圆周运动,故重力与电场力平衡,可知带负电,有mg =Eq ,解得q =mgE ,故A 正确;根据洛伦兹力提供向心力有Bqv =m v 2R ,得R =mvBq ,解得油滴a 做圆周运动的速度大小为v =gBR E ,故B 正确;设小油滴Ⅰ的速度大小为v 1,得3R =m 2v 1B q 2,解得v 1=3BqR m =3gBRE ,周期为T =2π·3R v 1=2πEgB ,故C 错误;带电油滴a 分离前后动量守恒,设分离后小油滴Ⅰ的速度为v 2,取油滴a分离前瞬间的速度方向为正方向,得mv =m 2v 1+m 2v 2,解得v 2=-gBRE,由于分离后的小油滴受到的电场力和重力仍然平衡,分离后小油滴Ⅰ的速度方向与正方向相反,根据左手定则可知小油滴Ⅰ沿顺时针方向做圆周运动,故D 正确.2.[2024·北京卷] 如图所示,两个等量异种点电荷分别位于M 、N 两点,P 、Q 是MN 连线上的两点,且MP=QN.下列说法正确的是()A.P点电场强度比Q点电场强度大B.P点电势与Q点电势相等C.若两点电荷的电荷量均变为原来的2倍,P点电场强度大小也变为原来的2倍D.若两点电荷的电荷量均变为原来的2倍,P、Q两点间电势差不变2.C[解析] 由等量异种点电荷的电场线分布特点知,P、Q两点电场强度相等,A错误;由沿电场线方向电势越来越低知,P点电势高于Q点电势,B错误;由电场叠加得P点电场强度E=k QMP2+k QNP2,若仅两点电荷的电荷量均变为原来的2倍,则P点电场强度大小也变为原来的2倍,同理Q点电场强度大小也变为原来的2倍,而P、Q间距不变,根据U=Ed定性分析可知P、Q两点间电势差变大,C正确,D错误.3.[2024·北京卷] 我国“天宫”空间站采用霍尔推进器控制姿态和修正轨道.图为某种霍尔推进器的放电室(两个半径接近的同轴圆筒间的区域)的示意图.放电室的左、右两端分别为阳极和阴极,间距为d.阴极发射电子,一部分电子进入放电室,另一部分未进入.稳定运行时,可视为放电室内有方向沿轴向向右的匀强电场和匀强磁场,电场强度和磁感应强度大小分别为E和B1;还有方向沿半径向外的径向磁场,大小处处相等.放电室内的大量电子可视为处于阳极附近,在垂直于轴线的平面绕轴线做半径为R的匀速圆周运动(如截面图所示),可与左端注入的氙原子碰撞并使其电离.每个氙离子的质量为M、电荷量为+e,初速度近似为零.氙离子经过电场加速,最终从放电室右端喷出,与阴极发射的未进入放电室的电子刚好完全中和.已知电子的质量为m、电荷量为-e;对于氙离子,仅考虑电场的作用.(1)求氙离子在放电室内运动的加速度大小a;(2)求径向磁场的磁感应强度大小B2;(3)设被电离的氙原子数和进入放电室的电子数之比为常数k,单位时间内阴极发射的电子总数为n,求此霍尔推进器获得的推力大小F.3.(1)eEM (2)mEB1eR(3)nk√2eEMd1+k[解析] (1)氙离子在放电室时只受电场力作用,由牛顿第二定律有eE=Ma解得a=eEM(2)电子处于阳极附近,在垂直于轴线的平面绕轴线做半径为R的匀速圆周运动,沿轴向向右的匀强磁场的洛伦兹力提供向心力,则有B1ev=m v 2R可得v=B1eRm轴线方向上所受电场力(水平向左)与径向磁场的洛伦兹力(水平向右)平衡,即Ee=evB2解得B2=mEB1eR(3)单位时间内阴极发射的电子总数为n,设单位时间内被电离的氙原子数为N,根据被电离的氙原子数和进入放电室的电子数之比为常数k,可知进入放电室的电子数为Nk又由于这些电离氙原子数与未进入放电室的电子刚好完全中和,说明未进入放电室的电子数也为N即有n=N+Nk则单位时间内被电离的氙离子数N=nk1+k氙离子经电场加速,有eEd=12M v12-0可得v1=√2eEdM设时间Δt内氙离子所受到的作用力为F',由动量定理有F'·Δt=N·Δt·Mv1解得F'=nk√2eEMd1+k由牛顿第三定律可知,霍尔推进器获得的推力大小F=F'则F=nk√2eEMd1+k4.[2024·福建卷] 以O点为圆心,半径为R的圆上八等分放置电荷,除G为-Q,其他为+Q,M、N为半径上的点,OM=ON,已知静电力常量为k,则O点场强大小为,M点电势(选填“大于”“等于”或“小于”)N点电势.将+q点电荷从M沿MN移动到N点,电场力(选填“做正功”“做负功”或“不做功”).4.2kQR2大于做正功[解析] 根据点电荷的场强特点可知,除了MN连线上的正负电荷外,其余的6个电荷形成的电场在O点处相互抵消,故O点场强大小为E O=kQR2+kQR2=2kQR2;根据对称性可知,若没有沿水平直径方向上的正电荷和负电荷,则M和N点的电势相等,由于M点靠近最左边的正电荷,N点靠近最右边的负电荷,故M点电势大于N点电势;将+q点电荷从M沿MN移动到N点,由于电势降低,故电场力做正功.5.[2024·甘肃卷] 一平行板电容器充放电电路如图所示.开关S接1,电源E给电容器C充电;开关S接2,电容器C对电阻R放电.下列说法正确的是()A.充电过程中,电容器两极板间电势差增加,充电电流增加B.充电过程中,电容器的上极板带正电荷、流过电阻R的电流由M点流向N点C.放电过程中,电容器两极板间电势差减小,放电电流减小D.放电过程中,电容器的上极板带负电荷,流过电阻R的电流由N点流向M点5.C[解析] 充电过程中,随着电容器带电荷量的增加,电容器两极板间电势差增加,充电电流在减小,故A错误;根据电路图可知,充电过程中,电容器的上极板带正电荷,流过电阻R的电流由N点流向M点,故B错误;放电过程中,随着电容器带电荷量的减小,电容器两极板间电势差减小,放电电流在减小,故C正确;根据电路图可知,放电过程中,电容器的上极板带正电荷,流过电阻R的电流由M点流向N点,故D错误.6.(多选)[2024·甘肃卷] 某带电体产生电场的等势面分布如图中实线所示,虚线是一带电粒子仅在此电场作用下的运动轨迹,M、N分别是运动轨迹与等势面b、a的交点,下列说法正确的是 ( )A .粒子带负电荷B .M 点的电场强度比N 点的小C .粒子在运动轨迹上存在动能最小的点D .粒子在M 点的电势能大于在N 点的电势能6.BCD [解析] 根据粒子所受电场力指向曲线轨迹的凹侧可知,带电粒子带正电荷,故A 错误;等差等势面越密集的地方场强越大,故M 点的电场强度比N 点的小,故B 正确;粒子带正电,因为M 点的电势大于N 点的电势,故粒子在M 点的电势能大于在N 点的电势能,故D 正确;由于带电粒子仅在电场作用下运动,电势能与动能总和不变,故可知当电势能最大时动能最小,故粒子在运动轨迹上到达最大电势处时动能最小,故C 正确.7.[2024·甘肃卷] 质谱仪是科学研究中的重要仪器,其原理如图所示.Ⅰ为粒子加速器,加速电压为U ;Ⅰ为速度选择器,匀强电场的电场强度大小为E 1,方向沿纸面向下,匀强磁场的磁感应强度大小为B 1,方向垂直纸面向里;Ⅰ为偏转分离器,匀强磁场的磁感应强度大小为B 2,方向垂直纸面向里.从S 点释放初速度为零的带电粒子(不计重力),加速后进入速度选择器做直线运动,再由O 点进入分离器做圆周运动,最后打到照相底片的P 点处,运动轨迹如图中虚线所示. (1)粒子带正电还是负电?求粒子的比荷. (2)求O 点到P 点的距离.(3)若速度选择器Ⅰ中匀强电场的电场强度大小变为E 2(E 2略大于E 1),方向不变,粒子恰好垂直打在速度选择器右挡板的O'点上.求粒子打在O'点的速度大小.7.(1)正电E 122UB 12(2)4UB 1E 1B 2 (3)2E 2-E1B 1[解析] (1)由于粒子在偏转分离器Ⅰ中向上偏转,根据左手定则可知粒子带正电;设粒子的质量为m ,电荷量为q ,粒子进入速度选择器Ⅰ时的速度为v 0,在速度选择器中粒子做匀速直线运动,由平衡条件有qv 0B 1=qE 1在粒子加速器Ⅰ中,由动能定理有 qU =12m v 02联立解得粒子的比荷为q m =E 122UB 12(2)在偏转分离器Ⅰ中,洛伦兹力提供向心力,有qv 0B 2=m v 02r可得O点到P点的距离为OP=2r=4UB1E1B2(3)粒子进入速度选择器Ⅰ瞬间,粒子受到向上的洛伦兹力F洛=qv0B1向下的电场力F=qE2由于E2>E1,且qv0B1=qE1所以通过配速法,如图所示其中满足qE2=q(v0+v1)B1则粒子在速度选择器中水平向右以速度v0+v1做匀速运动的同时,在竖直面内以速度v1做匀速圆周运动,当速度转向到水平向右时,满足垂直打在速度选择器右挡板的O'点的要求,故此时粒子打在O'点的速度大小为v'=v0+v1+v1=2E2-E1B18.(多选)[2024·广东卷] 污水中的污泥絮体经处理后带负电,可利用电泳技术对其进行沉淀去污,基本原理如图所示.涂有绝缘层的金属圆盘和金属棒分别接电源正、负极,金属圆盘置于容器底部,金属棒插入污水中,形成如图所示的电场分布,其中实线为电场线,虚线为等势面.M点和N点在同一电场线上,M点和P点在同一等势面上.下列说法正确的有()A.M点的电势比N点的低B.N点的电场强度比P点的大C.污泥絮体从M点移到N点,电场力对其做正功D.污泥絮体在N点的电势能比其在P点的大8.AC[解析] 电场线的疏密程度反映电场强度大小,电场线越密则电场强度越大,由于N点附近的电场线比P点附近的稀疏,故N点的电场强度比P点的小,B错误;沿电场线方向电势逐渐降低,故M点的电势比N点的低,污泥絮体带负电,故其受到的电场力方向与电场强度方向相反,若从M点移到N点,则电场力对其做正功,A、C正确;由于M点和P点在同一等势面上,故M点电势等于P点电势,则N点电势高于P点电势,污泥絮体带负电,即q<0,根据电势能E p=qφ可知,污泥絮体在N点的电势能比其在P点的小,D错误.9.[2024·广东卷] 如图甲所示,两块平行正对的金属板水平放置,板间加上如图乙所示幅值为U0、周期为t0的交变电压.金属板左侧存在一水平向右的恒定匀强电场,右侧分布着垂直纸面向外的匀强磁场,磁感应强度大小为B.一带电粒子在t=0时刻从左侧电场某处由静止释放,在t=t0时刻从下板左端边缘位置水平向右进入金属板间的电场内,在t=2t0时刻第一次离开金属板间的电场、水平向右进入磁场,并在t=3t0时刻从下板右端边缘位置再次水平进入金属板间的电场.已知金属板的板长是板间距离的π3倍,粒子质量为m.忽略粒子所受的重力和场的边缘效应.(1)判断带电粒子的电性并求其所带的电荷量q;(2)求金属板的板间距离D和带电粒子在t=t0时刻的速度大小v;(3)求从t=0时刻开始到带电粒子最终碰到上金属板的过程中,电场力对粒子做的功W.9.(1)带正电πmBt0(2)√3πU0t08B√π3U024Bt0(3)(π3+16π)mU048Bt0[解析] (1)由带电粒子在左侧电场中由静止释放后加速运动的方向可知粒子带正电(或由带电粒子在磁场中做圆周运动的方向结合左手定则可知粒子带正电).设粒子在磁场内做圆周运动的速度为v,半径为r,根据洛伦兹力提供向心力有qvB=m v 2r粒子在磁场中运动半个圆周所用的时间Δt=3t0-2t0粒子在磁场中做圆周运动的周期为T=2Δt又知T=2πrv联立解得q=πmBt0(2)设金属板间的电场强度为E,粒子在金属板间运动的加速度为a,则有E=U0Da=qEmt 0~2t 0内,粒子在金属板间的电场内做两个对称的类平抛运动,在垂直于金属板方向的位移等于在磁场中做圆周运动的直径,即y =2r 在垂直于金属板方向有y =2×12a (t 02)2在沿金属板方向有π3D =vt 0 联立解得D =√3πU 0t 08B ,v =√π3U 024Bt 0(3)由(1)(2)可知y =2D3由对称性可知,3t 0~4t 0内,粒子第二次进入金属板间的电场内,粒子在竖直方向的位移仍为y ,由于y <D ,故粒子不会碰到金属板.t =4t 0后,粒子进入左侧电场,先减速到速度为零,后反向加速,并在t =6t 0时刻第三次进入金属板间的电场内,此时粒子距上板的距离为h =D -y =D3,注意到h =y2,故粒子恰在加速阶段结束时碰到金属板.粒子第一次、第二次进出金属板间的电场过程中,电场力做功为0,粒子第三次进入金属板间的电场后,电场力做功为qEh ,设粒子在左侧电场中运动时电场力做功为W 左,根据动能定理有 W 左=12mv 2电场力对粒子做的总功为W =W 左+qEh联立解得W =(π3+16π)mU 048Bt 010.[2024·广西卷] xOy 坐标平面内一有界匀强磁场区域如图所示,磁感应强度大小为B ,方向垂直纸面向里.质量为m ,电荷量为+q 的粒子,以初速度v 从O 点沿x 轴正向开始运动,粒子过y 轴时速度与y 轴正向夹角为45°,交点为P .不计粒子重力,则P 点至O 点的距离为 ( )A .mv qBB .3mv2qBC .(1+√2)mvqB D .(1+√22)mvqB10.C [解析] 粒子运动轨迹如图所示,在磁场中,根据洛伦兹力提供向心力有qvB =m v 2r ,可得粒子做圆周运动的半径为r =mvqB ,根据几何关系可得P 点至O 点的距离为L PO =r +r sin45°=(1+√2)mvqB ,故选C .11.[2024·广西卷] 如图所示,将不计重力、电荷量为q 的带负电的小圆环套在半径为R 的光滑绝缘半圆弧上,半圆弧直径两端的M 点和N 点分别固定电荷量为27Q 和64Q 的负点电荷.将小圆环从靠近N 点处静止释放,小圆环先后经过图上P 1点和P 2点,己知sin θ=35,则小圆环从P 1点运动到P 2点的过程中 ( )A .静电力做正功B .静电力做负功C .静电力先做正功再做负功D .静电力先做负功再做正功11.A [解析] 沿电场线越靠近负电荷则电势越低,画出两个不等量负点电荷的电场线分布如图甲所示,半圆与电场线的交点中其电场强度沿半径方向时,该点对应的电势最高,设该点为P ,如图乙所示,设连线PM 与直径MN 的夹角为α,则P 点到M 点的距离d M =2R cos α,P 点到N 点的距离为d N =2R sin α,M 点处点电荷在P 点产生的电场强度为E M =k 27Q d M2,N点处点电荷在P点产生的电场强度为E N =k64Qd N 2,P 点的电场强度沿着圆半径方向,由电场叠加原理可知E NE M=tan α,联立解得α=53°,已知P 2点和N 点连线与直径MN 的夹角恰好为37°,则P 2点和M 点连线与直径MN 的夹角恰好为53°,故半圆上P 2点的电势最高,因此带负电的圆环从P 1点运动到P 2点的过程中,电势一直升高,静电力一直做正功,选项A 正确.12.(多选)[2024·海南卷] 真空中有两个点电荷,电荷量均为-q (q ≥0),固定于相距为2r 的P 1、P 2两点,O 是P 1P 2连线的中点,M 点在P 1P 2连线的中垂线上,距离O 点为r ,N 点在P 1P 2连线上,距离O 点为x (x ≪r ),已知静电力常量为k ,则下列说法正确的是 ( )A .P 1P 2中垂线上电场强度最大的点到O 点的距离为√33rB .P 1P 2中垂线上电场强度的最大值为4√3kq9r 2C .在M 点放入一电子,从静止释放,电子的加速度一直减小D .在N 点放入一电子,从静止释放,电子的运动可视为简谐运动12.BCD [解析] 设P 1处的点电荷在P 1P 2中垂线上某点A 处产生的场强与竖直方向的夹角为θ,则根据场强的叠加原理可知,A 点的合场强为E =k 2qr 2sin 2 θcos θ,根据均值不等式可知当cos θ=√33时E 有最大值,且最大值为E m =4√3kq9r 2,此时A 点到O 点的距离为y =√22r ,故A 错误,B 正确;在M 点放入一电子,从静止释放,由于r >y =√22r ,可知电子向上运动的过程中所受电场力一直减小,则电子的加速度一直减小,故C 正确;根据等量同种电荷的电场线分布可知,电子运动过程中,O 点为平衡位置,可知当发生的位移为x 时,粒子受到的电场力为F =keq ·4rx(r -x )2(r+x )2,由于x ≪r ,整理后有F =4keqr 3·x ,在N 点放入一电子,从静止释放,电子的运动可视为以O 点为平衡位置的简谐运动,故D 正确.13.[2024·海南卷] 如图,在xOy 坐标系中有三个区域,圆形区域Ⅰ分别与x 轴和y 轴相切于P 点和S 点.半圆形区域Ⅰ的半径是区域Ⅰ半径的2倍.区域Ⅰ、Ⅰ的圆心O 1、O 2连线与x 轴平行,半圆与圆相切于Q 点,QF 垂直于x 轴,半圆的直径MN 所在的直线右侧为区域Ⅰ.区域Ⅰ、Ⅰ分别有磁感应强度大小为B 、B 2的匀强磁场,磁场方向均垂直纸面向外.区域Ⅰ下方有一粒子源和加速电场组成的发射器,可将质量为m 、电荷量为q 的粒子由电场加速到v 0.改变发射器的位置,使带电粒子在OF 范围内都沿着y 轴正方向以相同的速度v 0沿纸面射入区域Ⅰ.已知某粒子从P 点射入区域Ⅰ,并从Q 点射入区域Ⅰ.(不计粒子的重力和粒子之间的影响) (1)求加速电场两板间的电压U 和区域Ⅰ的半径R.(2)在能射入区域Ⅰ的粒子中,某粒子在区域Ⅰ中运动的时间最短,求该粒子在区域Ⅰ和区域Ⅰ中运动的总时间t.(3)在区域Ⅰ加入匀强磁场和匀强电场,磁感应强度大小为B ,方向垂直纸面向里,电场强度的大小E =Bv 0,方向沿x 轴正方向.此后,粒子源中某粒子经区域Ⅰ、Ⅰ射入区域Ⅰ,进入区域Ⅰ时速度方向与y 轴负方向成74°角.当粒子动能最大时,求粒子的速度大小及所在的位置到y 轴的距离(sin37°=35,sin53°=45).13.(1)mv 022qmv 0qB (2)πmqB(3)2.6v 0172mv 025qB[解析] (1)根据动能定理得qU =12m v 02解得U =mv 022q粒子进入区域Ⅰ做匀速圆周运动,根据题意某粒子从P 点射入区域Ⅰ,并从Q 点射入区域Ⅰ,故可知此时粒子的运动轨迹半径与区域Ⅰ的半径R 相等,粒子在磁场中做匀速圆周运动,由洛伦兹力提供向心力qBv 0=m v 02R 解得R =mv0qB(2)带电粒子在OF 范围内都沿着y 轴正方向以相同的速度v 0沿纸面射入区域Ⅰ,由(1)可得,粒子在区域Ⅰ中做匀速圆周运动,轨迹半径为R ,因为在区域Ⅰ中的磁场半径和轨迹半径相等,所以粒子射入点、区域Ⅰ圆心O 1、粒子出射点、轨迹圆心O'四点构成一个菱形,由几何关系可得,区域Ⅰ圆心O 1和粒子出射点连线平行于粒子射入点与轨迹圆心O'连线,则区域Ⅰ圆心O 1和粒子出射点连线水平,根据磁聚焦原理可知粒子都从Q 点射出,粒子射入区域Ⅰ,仍做匀速圆周运动,由洛伦兹力提供向心力q B2v 0=m v 02R '解得R'=2R如图甲所示,要使粒子在区域Ⅰ中运动的时间最短,轨迹所对应的圆心角最小,可知在区域Ⅰ中运动的圆弧所对的弦长最短,即此时最短弦长为区域Ⅰ的磁场圆半径2R ,根据几何知识可得此时在区域Ⅰ和区域Ⅰ中运动的轨迹所对应的圆心角都为60°,粒子在两区域磁场中运动周期分别为 T 1=2πR v 0=2πmqBT 2=2π·2R v 0=4πmqB 故可得该粒子在区域Ⅰ和区域Ⅰ中运动的总时间为 t =60°360°T 1+60°360°T 2=πmqB甲(3)如图乙所示,将速度v 0分解为沿y 轴正方向的速度v 0及速度v',因为E =Bv 0,可得qE =qBv 0,故可知沿y 轴正方向的速度v 0产生的洛伦兹力与电场力平衡,粒子同时受到另一方向的洛伦兹力qBv',故粒子沿y 轴正方向做旋进运动,根据几何关系可知 v'=2v 0sin 53°=1.6v 0故当v'方向为竖直向上时粒子速度最大,最大速度为 v m =v 0+1.6v 0=2.6v 0根据几何关系可知此时所在的位置到y 轴的距离为 L =R'+R'sin 53°+2R +2R =6.88R =172mv 025qB乙14.[2024·河北卷] 我国古人最早发现了尖端放电现象,并将其用于生产生活,如许多古塔的顶端采用“伞状”金属饰物在雷雨天时保护古塔.雷雨中某时刻,一古塔顶端附近等势线分布如图所示,相邻等势线电势差相等,则a 、b 、c 、d 四点中电场强度最大的是 ( )A .a 点B .b 点C .c 点D .d 点14.C [解析] 在静电场中,等差等势线的疏密程度反映电场强度的大小,等差势线越密,则电场强度越大.由题图可知,c 点等差等势线最密集,故c 点电场强度最大,C 正确.15.[2024·河北卷] 如图所示,真空中有两个电荷量均为q (q >0)的点电荷,分别固定在正三角形ABC 的顶点B 、C.M 为三角形ABC 的中心,沿AM 的中垂线对称放置一根与三角形共面的均匀带电细杆,电荷量为q2.已知正三角形ABC 的边长为a ,M 点的电场强度为0,静电力常量为k.顶点A 处的电场强度大小为( )A .2√3kq a 2B .kq a 2(6+√3)C .kq a 2(3√3+1)D .kqa2(3+√3)15.D [解析] 如图所示,B 、C 两处点电荷在M 处产生的电场强度大小E 1=E 2=kq(√33a )2=3kqa 2,由于M 点的电场强度为0,故带电细杆在M 点产生的电场强度大小E 3=E 1cos 60°+E 2cos 60°=3kq a 2,B 、C 两处点电荷在A 处产生的电场强度大小E 4=E 5=kqq 2,合场强E 合'=E 4cos 30°+E 5cos 30°=√3kqa 2,方向向上,由于M 点与A 点关于带电细杆对称,故细杆在A 处产生的电场强度大小E 6=E 3=3kqa 2,方向向上,因此A 点的电场强度大小E =E 合'+E 6=kqa 2(√3+3),D 正确.16.(多选)[2024·河北卷] 如图所示,真空区域有同心正方形ABCD 和abcd ,其各对应边平行,ABCD 的边长一定,abcd 的边长可调,两正方形之间充满恒定匀强磁场,方向垂直于正方形所在平面.A处有一个粒子源,可逐个发射速度不等、比荷相等的粒子,粒子沿AD方向进入磁场.调整abcd的边长,可使速度大小合适的粒子经ad边穿过无磁场区后由BC边射出.对满足前述条件的粒子,下列说法正确的是()A.若粒子穿过ad边时速度方向与ad边夹角为45°,则粒子必垂直BC射出B.若粒子穿过ad边时速度方向与ad边夹角为60°,则粒子必垂直BC射出C.若粒子经cd边垂直BC射出,则粒子穿过ad边时速度方向与ad边夹角必为45°D.若粒子经bc边垂直BC射出,则粒子穿过ad边时速度方向与ad边夹角必为60°16.ACD[解析] 若粒子穿过ad边时速度方向与ad边夹角为45°,则粒子必经过cd边,作出粒子运动轨迹图,如图甲所示,由对称性可知,粒子从C点垂直于BC射出,A、C正确;若粒子穿过ad边时速度方向与ad边夹角为60°,则粒子可能从cd边再次进磁场,作出粒子运动轨迹如图乙所示,此时粒子不能垂直BC射出,粒子也可能经bc边再次进入磁场,作出粒子运动轨迹如图丙所示,此时粒子垂直BC边射出,B错误,D正确.17.[2024·河北卷] 如图所示,竖直向上的匀强电场中,用长为L的绝缘细线系住一带电小球,在竖直平面内绕O点做圆周运动.图中A、B为圆周上的两点,A点为最低点,B点与O点等高.当小球运动到A 点时,细线对小球的拉力恰好为0,已知小球的电荷量为q (q >0),质量为m ,A 、B 两点间的电势差为U ,重力加速度大小为g ,求: (1)电场强度E 的大小.(2)小球在A 、B 两点的速度大小.17.(1)U L(2)√Uq -mgLm√3(Uq -mgL )m[解析] (1)A 、B 两点沿电场线方向的距离为L ,在匀强电场中,由电场强度与电势差的关系可知E =U L(2)当小球运动到A 点时,细线对小球的拉力为0,由牛顿第二定律得Eq -mg =mv A 2L解得v A =√Uq -mgLm小球由A 点运动到B 点,由动能定理得 Uq -mgL =12m v B 2-12m v A 2 解得v B =√3(Uq -mgL )m18.[2024·湖北卷] 如图所示,在以O 点为圆心、半径为R 的圆形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B.圆形区域外有大小相等、方向相反、范围足够大的匀强磁场.一质量为m 、电荷量为q (q >0)的带电粒子沿直径AC 方向从A 点射入圆形区域.不计重力,下列说法正确的是 ( )A .粒子的运动轨迹可能经过O 点B .粒子射出圆形区域时的速度方向不一定沿该区域的半径方向C .粒子连续两次由A 点沿AC 方向射入圆形区域的最小时间间隔为7πm3qBD.若粒子从A点射入到从C点射出圆形区域用时最短,粒子运动的速度大小为√3qBR3m18.D[解析] 根据磁场圆和轨迹圆相交形成的圆形具有对称性可知,在圆形匀强磁场区域内,沿着径向射入的粒子总是沿径向射出,所以粒子的运动轨迹不可能经过O点,故A、B错误;粒子连续两次由A点沿AC方向射入圆形区域的时间间隔最短对应的轨迹如图甲所示,则最小时间间隔为Δt=2T=4πmqB,故C错误;粒子从A点射入到从C点射出圆形区域用时最短对应的轨迹如图乙所示,设粒子在磁场中运动的半径为r,根据几何关系可知r=√33R,根据洛伦兹力提供向心力有qvB=m v 2r ,解得v=√3qBR3m,故D正确.19.(多选)[2024·湖北卷] 关于电荷和静电场,下列说法正确的是()A.一个与外界没有电荷交换的系统,电荷的代数和保持不变B.电场线与等势面垂直,且由电势低的等势面指向电势高的等势面C.点电荷仅在电场力作用下从静止释放,该点电荷的电势能将减小D.点电荷仅在电场力作用下从静止释放,将从高电势的地方向低电势的地方运动19.AC[解析] 根据电荷守恒定律可知,一个与外界没有电荷交换的系统,电荷的代数和保持不变,故A正确;根据电场线和等势面的关系可知,电场线与等势面垂直,且由电势高的等势面指向电势低的等势面,故B错误;点电荷仅在电场力作用下从静止释放,则电场力做正功,该点电荷的电势能将减小,根据φ=E pq可知,正电荷将从电势高的地方向电势低的地方运动,负电荷将从电势低的地方向电势高的地方运动,故C正确,D错误.20.[2024·湖南卷] 真空中有电荷量为+4q和-q的两个点电荷,分别固定在x轴上-1和0处.设无限远处电势为0,x正半轴上各点电势φ随x变化的图像正确的是()。

【关键问题】专题4---电场与磁场

【关键问题】专题4---电场与磁场

专题4---电场与磁场福建省普通教育教学研究室物理学科编写组【材料导读】本专题包括高中物理的两个关键问题“电场的性质”与“磁场的性质”。

对于“电场的性质”问题,高考中常以选择题的形式出现,考查利用电场线和等势面确定场强的大小和方向,判断电势高低、电场力变化、电场力做功和电势能的变化等,电场力做功与电势能的变化及带电粒子在电场中的运动与牛顿运动定律、动能定理、功能关系相结合的题目是考查的另一热点,电场知识与生产技术、生活实际、科学研究等的联系,如示波管、电容式传感器、静电分选器等,都可成为新情景题的命题素材,应引起重视。

而“磁场的性质”在高考中呈现题型主要为选择题,偶尔也为会在计算题中组成考点,要求考生重点掌握:通电直导线和通电线圈周围的磁场;安培力公式、安培定则及磁感应强度的叠加;通电直导线或线框在磁场中的平衡和运动问题。

本专题通过具体试题呈现这两个关键问题在高考中的考查特点,并以问题串形式引导学生体会用不同方法解决物理问题的异同,再从中归纳问题解决过程中的关键线索和一般方法。

材料中的例题和练习按难度从易到难分为A、B、C三个层次,使用者可根据自身情况选用。

【典例分析】【A】例1(2019年全国Ⅰ卷第15题)如图,空间存在一方向水平向右的匀强电场,两带电小球P和Q用相同的绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,则() A.P和Q都带正电荷B.P和Q都带负电荷C.P带正电荷,Q带负电荷P Q D.P带负电荷,Q带正电荷【答案】D【解析】对P、Q整体进行受力分析可知,在水平方向上整体所受电场力为零,所以P、Q 必带等量异种电荷,选项AB错误;对P进行受力分析可知,匀强电场对它的电场力应水平向左,与Q对它的库仑力平衡,所以P带负电荷,Q带正电荷,选项D正确,C错误.【A】变式1:在光滑绝缘的水平地面上放置着四个相同的金属小球,小球A、B、C位于等边三角形的三个顶点上,小球D位于三角形的中心,如图所示。

专题14 磁场+电场模型-2023年高考物理磁场常用模型精练(解析版)

专题14 磁场+电场模型-2023年高考物理磁场常用模型精练(解析版)

2023年高考物理《磁场》常用模型最新模拟题精练专题14.磁场+电场模型1.(2023湖北五校联盟高二期中)16.(13分)如图所示,在x 轴上方有一匀强磁场,方向垂直纸面向里;在x 轴下方有一匀强电场,方向竖直向上;一质量为m ,电荷量为q ,重力不计的带电粒子从y 轴上的a 点(0,h )处沿y 轴正方向以初速度v =2v 0开始运动,一段时间后,粒子速度方向与x 轴正方向成45°角进入电场,经过y 轴上b 点时速度方向恰好与y 轴垂直;求:(1)判断粒子的电性(2)匀强磁场的磁感应强度大小;(3)匀强电场的电场强度大小;(4)粒子从a 点开始运动到再次经过a点的时间。

【参考答案】.(1)正电;(2)0mv qh ;(3)20(21)mv qh-;(4)05(222)2h v π++【名师解析】(1)带电粒子做逆时针偏转,该粒子带正电(1分)(2)根据题意可得粒子的运动轨迹如下由图可得cos 45r h ︒=①(1分)粒子在磁场中做圆周运动,故由牛顿第二定律有2mv qvB r=②(1分)结合题意联立可得2r h =(1分)0=mv B qh(1分)(3)分析可知,粒子在电场中做斜抛运动,即在水平方向上做匀速直线运动,竖直方向上做匀减速直线运动,且到达b 点时,竖直方向速度恰好为零,故在水平方向上有11sin 45sin 45v t r r ︒=+︒③(1分)在竖直方向有qE ma =④(1分)11cos 45v at ︒=⑤(1分)联立可得10(12)h t v =(1分)2(21)mv E -=(1分)(4)由粒子的运动轨迹图可知,粒子在磁场中的运动的总圆心角为555=+rad=rad 442πππθ()⑥(1分)故粒子在磁场中运动的总时间为0125222rht v v v θπ⋅==⨯⑦(1分)由对称性可知,粒子在y 轴左侧和右侧电场中的运动时间相等,故粒子从开始运动至再次经过a 点所用的总时间为0100052(12)52(222)22h h ht t t v v ππ+=+=+++⑧(1分)2.(2022山东聊城重点高中质检)如图所示,在x 轴上方存在磁感应强度为B 、方向垂直纸面向里的匀强磁场,在x 轴下方存在竖直向上的匀强电场。

高三物理二轮复习专题三电场和磁场

高三物理二轮复习专题三电场和磁场

通过场的类比(电场与重力场类比、电场与磁场的类比),形象理解电场的性质,掌握电场力和洛伦兹力的特性;围绕两大性质,理顺电场中基本概念的相互联系;熟知两大定则(安培定则和左手定则),准确判定磁场及磁场力的方向;认识两类偏转模型(类平抛和圆周运动),掌握带电粒子在场中的运动性质、规律和分析处理方法.第6讲带电粒子在电场中的运动1.[2015·全国卷Ⅰ] 如图6­1所示,直线a、b和c、d是处于匀强电场中的两组平行线,M、N、P、Q是它们的交点,四点处的电势分别为φM、φN、φP、φQ.一电子由M点分别运动到N点和P点的过程中,电场力所做的负功相等,则( )A.直线a位于某一等势面内,φM>φQB.直线c位于某一等势面内,φM>φNC.若电子由M点运动到Q点,电场力做正功D.若电子由P点运动到Q点,电场力做负功【考题定位】难度等级:容易出题角度:本题考查了考生对电场能的性质的理解,要求考生掌握匀强电场的电场强度与电势差的关系.2.[2015·全国卷Ⅱ] 如图6­2所示,两平行的带电金属板水平放置.若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态.现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°,再由a点从静止释放一同样的微粒,该微粒将( )A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动D.向左下方做匀加速运动【考题定位】难度等级:容易出题角度:本题考查了力电综合的力与运动关系问题,涉及平行板电容中电场特点、牛顿运动定律的应用等考点.考点一电场的性质1 如图6­4所示,半径为R的水平绝缘圆盘可绕竖直轴OO′转动,水平虚线AB、CD互相垂直,一电荷量为+q的可视为质点的小物块置于距转轴r处,空间有方向由A指向B的匀强电场.当圆盘匀速转动时,小物块相对圆盘始终静止.小物块转动到位置Ⅰ(虚线AB上)时受到的摩擦力为零,转动到位置Ⅱ(虚线CD上)时受到的摩擦力为f.求:(1)圆盘边缘两点间电势差的最大值;(2)小物块由位置Ⅰ转动到位置Ⅱ克服摩擦力做的功.导思①小物块分别转动到位置Ⅰ、位置Ⅱ时由哪些力提供向心力?②小物块由位置Ⅰ转动到位置Ⅱ电场力做了多少功?克服摩擦力做了多少功?归纳1.电场力:电场对放入其中的电荷有力的作用,电场力的大小和方向由电场强度和电荷共同决定,大小为F=qE,正电荷所受的电场力方向与电场方向相同.2.电势能:电势能是标量,电场中电荷的电势能与电势的高低及电荷所带的电荷量及电性有关,即E p=qφ,而电场力做的功等于电势能变化的相反数,即W=qU=-ΔE p.变式1 (多选)图6­5是某空间部分电场线分布图,在电场中取一点O,以O为圆心的圆周上有M、Q、N三个点,连线MON与直电场线重合,连线OQ垂直于MON.下列说法正确的是( )A.M点的场强大于N点的场强B.O点的电势等于Q点的电势C.将一负点电荷由M点移到Q点,电荷的电势能增加D.一静止的正点电荷只受电场力作用能从Q点沿圆周运动至N点变式2 (多选)如图6­6所示,图中五点均在匀强电场中,它们刚好是一个半径为R=m 的圆的四个等分点和圆心.b、c、d三点的电势如图所示.已知电场线与圆所在的平面平行,关于等分点a处和圆心O处的电势及电场强度,下列描述正确的是( )A.a点的电势为4 VB.O点的电势为5 VC.电场强度方向由O点指向b点D.电场强度的大小为10 5 V/m考点二带电粒子在电场中的加速和偏转2 图6­7为两组平行金属板,一组竖直放置,一组水平放置,今有一质量为m、电荷量为e的电子静止在竖直放置的平行金属板的A点,经电压U0加速后通过B点进入两板间距为d、电压为U的水平放置的平行金属板间,若电子从两块水平平行板的正中间射入,且最后电子刚好能从右侧的两块平行金属板间穿出,求:(1)电子通过B点时的速度大小;(2)右侧平行金属板的长度;(3)电子穿出右侧平行金属板时的动能.导思①电子通过A、B做什么运动?怎样计算电子在B点的速度?②电子在两块水平平行金属板间做什么运动?水平位移和竖直位移分别满足什么关系?③电子在运动过程中,电场力一共做了多少功?归纳1.带电粒子在电场中的加速可以应用牛顿运动定律结合匀变速直线运动的公式求解,也可应用动能定理qU =12mv 22-12mv 21求解,其中U 为带电粒子初、末位置之间的电势差.2.带电粒子在电场中的偏转带电粒子在匀强电场中做匀变速曲线运动,属类平抛运动,要应用运动的合成与分解的方法求解,同时要注意:(1)明确电场力的方向,确定带电粒子到底向哪个方向偏转;(2)借助画出的运动示意图寻找几何关系或题目中的隐含关系.带电粒子在电场中的运动可从动力学、能量等多个角度来分析和求解.考点三 带电体在电场中的运动3 [2015·四川卷] 如图6­8所示,粗糙、绝缘的直轨道OB 固定在水平桌面上,B 端与桌面边缘对齐,A 是轨道上一点,过A 点并垂直于轨道的竖直面右侧有大小E =×106N /C 、方向水平向右的匀强电场.带负电的小物体P 电荷量是×10-6C ,质量m = kg ,与轨道间动摩擦因数μ=,P 从O 点由静止开始向右运动,经过 s 到达A 点,到达B 点时速度是5 m /s ,到达空间D 点时速度与竖直方向的夹角为α,且tan α=,P 在整个运动过程中始终受到水平向右的某外力F 作用,F 大小与P 的速率v 的关系如下表所示.P 视为质点,电荷量保持不变,忽略空气阻力,g 取10 m /s 2.求:(1)小物体P 从开始运动至速率为2 m /s 所用的时间; (2)小物体P 从A 运动至D 的过程,电场力做的功.归纳带电体通常是指需要考虑重力的物体,如带电小球、带电液滴、带电尘埃等.带电体在电v/(m ·s -1)0≤v≤22<v<5 v≥5 F/N263场中运动的研究方法与力学综合题的分析方法相近,一般应用牛顿运动定律、运动学规律、动能定理和能量守恒定律求解.当带电体同时受重力和电场力时,可以应用等效场的观点处理.变式1 如图6­9所示,CD左侧存在场强大小 E=mgq、方向水平向左的匀强电场,一个质量为m、电荷量为+q的光滑绝缘小球从底边BC长为L、倾角为53°的直角三角形斜面顶端A 点由静止开始下滑,运动到斜面底端C点后进入一竖直半圆形细圆管内(C处为一小段长度可忽略的光滑圆弧,圆管内径略大于小球直径,半圆直径CD在竖直线上),恰能到达细圆管最高点D点,随后从D点离开后落回斜面上某点P.(重力加速度为g , sin 53°=, cos 53°=求:(1)小球到达C点时的速度;(2)小球从D点运动到P点的时间t.变式2 如图6­10所示,空间有一水平向右的匀强电场,半径为r的绝缘光滑圆环固定在竖直平面内,O是圆心,AB是竖直方向的直径.一质量为m、电荷量为+q的小球套在圆环上,并静止在P点,且OP与竖直方向的夹角θ=37°.不计空气阻力.已知重力加速度为g,sin37°=,cos 37°=.(1)求电场强度E的大小;(2)要使小球从P点出发能做完整的圆周运动,求小球初速度v应满足的条件.4 如图6­11甲所示,一对平行金属板M、N长为L,相距为d,O1O为中轴线.当两板间加电压U MN=U0时,两板间为匀强电场,忽略两极板外的电场,某种带负电的粒子从O1点以速度v0沿O1O方向射入电场,粒子恰好打在上极板M的中点,粒子重力忽略不计.(1)求带电粒子的比荷q m ;(2)若MN间加如图乙所示的交变电压,其周期T=Lv0,从t=0开始,前T3内U MN=2U,后2T3内U MN=-U,大量的上述粒子仍然以速度v0沿O1O方向持续射入电场,最终所有粒子恰好能全部离开电场而不打在极板上,求U的值.图6­11导思①MN间加交变电压后,粒子在水平方向做什么运动?运动时间是多少?②MN间加交变电压后,粒子在竖直方向做什么运动?可以分成几个阶段?每阶段的加速度是多少?归纳交变电场中粒子的运动往往属于运动的多过程问题,关键是搞清楚电场力或加速度随时间变化的规律,进而分析速度的变化规律,通过绘制v­t图像来分析运动过程比较直观简便.【真题模型再现】平行板电容器中带电粒子的运动2011 ·安徽卷交变电场中粒子的运动2012·新课标全国卷带电粒子在电容器中的匀速直线运动2013·广东卷加速偏转模型应用2014·安徽卷带电粒子在电容器中运动的功能关系2014·天津卷带电体在复合场中的功能转化2015·海南卷带电粒子在电场中加速(续表)【真题模型再现】平行板电容器中带电粒子的运动2015·山东卷带电体在变化电场中运动2015·北京卷带电粒子在电场中的功能转化2015·全国卷Ⅱ带电粒子在电场中的动力学问题【模型核心归纳】带电体在平行板电容器间的运动,实际上就是在电场力作用下的力电综合问题,依然需要根据力学解题思路求解,解题过程要遵从以下基本步骤:(1)确定研究对象(是单个研究对象还是物体组);(2)进行受力分析(分析研究对象所受的全部外力,包括电场力.其中电子、质子、正负离子等基本微观粒子在没有明确指出或暗示时一般不计重力,而带电油滴、带电小球、带电尘埃等宏观带电体一般要考虑其重力);(3)进行运动分析(分析研究对象所处的运动环境是否存在束缚条件,并根据研究对象的受力情况确定其运动性质和运动过程);(4)建立物理等式(由平衡条件或牛顿第二定律结合运动学规律求解,对于涉及能量的问题,一般用动能定理或能量守恒定律列方程求解.例在真空中水平放置平行板电容器,两极板间有一个带电油滴,电容器两极板间距为d,当平行板电容器的电压为U0时,油滴保持静止状态,如图6­12所示.当给电容器突然充电使其电压增加ΔU1,油滴开始向上运动;经时间Δt后,电容器突然放电使其电压减少ΔU2,又经过时间Δt,油滴恰好回到原来位置.假设油滴在运动过程中没有失去电荷,充电和放电的过程均很短暂,这段时间内油滴的位移可忽略不计,重力加速度为g.试求:(1)带电油滴所带电荷量与质量之比;(2)第一个Δt与第二个Δt时间内油滴运动的加速度大小之比;(3)ΔU1与ΔU2之比.展如图6­13所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板的中央各有一小孔M和N.今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N 在同一竖直线上),空气阻力忽略不计,到达N孔时速度恰好为零,然后沿原路返回.若保持两极板间的电压不变,则不正确的是( )图6­13A.把A板向上平移一小段距离,质点自P点自由下落后仍能返回B.把A板向下平移一小段距离,质点自P点自由下落后将穿过N孔继续下落C.把B板向上平移一小段距离,质点自P点自由下落后仍能返回D.把B板向下平移一小段距离,质点自P点自由下落后将穿过N孔继续下落第7讲带电粒子在磁场及复合场中的运动1.(多选)[2014·新课标全国卷Ⅱ] 图7­1为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是( )图7­1A.电子与正电子的偏转方向一定不同B.电子与正电子在磁场中运动轨迹的半径一定相同C.仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D.粒子的动能越大,它在磁场中运动轨迹的半径越小【考题定位】难度等级:中等出题角度:本题主要考查学生对左手定则、带电粒子在匀强磁场中运动规律的掌握情况.2.[2015·全国卷Ⅰ] 两相邻匀强磁场区域的磁感应强度大小不同、方向平行.一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的( )A.轨道半径减小,角速度增大B.轨道半径减小,角速度减小C.轨道半径增大,角速度增大D.轨道半径增大,角速度减小【考题定位】难度等级:容易出题角度:本题主要考查学生对带电粒子在匀强磁场中运动结论的掌握情况,属于较简单题目.3.(多选)[2015·全国卷Ⅱ] 两个匀强磁场区域Ⅰ和Ⅱ,Ⅰ的磁感应强度是Ⅱ的k倍,两个速率相同的电子分别在两磁场区域做圆周运动.与Ⅰ中运动的电子相比,Ⅱ中的电子( )A.运动轨迹的半径是Ⅰ中的k倍B.加速度的大小是Ⅰ中的k倍C.做圆周运动的周期是Ⅰ中的k倍D.做圆周运动的角速度与Ⅰ中的相等【考题定位】难度等级:容易出题角度:本题主要考查学生对带电粒子在匀强磁场中运动规律的掌握情况,考查了应用牛顿运动定律、圆周运动的规律解决物理问题的能力.考点一通电导体在磁场中的安培力问题1 [2015·重庆卷] 音圈电机是一种应用于硬盘、光驱等系统的特殊电动机.图7­2是某音圈电机的原理示意图,它由一对正对的磁极和一个正方形刚性线圈构成,线圈边长为L,匝数为n,磁极正对区域内的磁感应强度方向垂直于线圈平面竖直向下,大小为B,区域外的磁场忽略不计.线圈左边始终在磁场外,右边始终在磁场内,前后两边在磁场内的长度始终相等.某时刻线圈中电流从P流向Q,大小为I.(1)求此时线圈所受安培力的大小和方向.(2)若此时线圈水平向右运动的速度大小为v,求安培力的功率.导思①单根通电直导线垂直磁场放置,安培力的大小、方向如何?n根呢?②安培力的功率与哪些因素有关?归纳安培力与动力学综合问题已成为高考的热点,解决这类问题的关键是把电磁学问题力学化,把立体图转化为平面图,即画出平面受力分析图,其中安培力的方向切忌跟着感觉走,要用左手定则来判断,注意F安⊥B、F安⊥I.其次是选用牛顿第二定律或平衡条件建立方程解题.变式如图7­3所示,一劲度系数为k的轻质弹簧下面挂有匝数为n的矩形线框边长为l,线框的下半部分处在匀强磁场中,磁感应强度大小为B,方向垂直线框平面向里.线框中通以电流I,方向如图所示,开始时线框处于平衡状态,弹簧处于伸长状态.令磁场反向,磁感应强度的大小仍为B,线框达到新的平衡.则在此过程中线框位移的大小Δx及方向是( )A.Δx=2nIlBk,方向向上B.Δx=2nIlBk,方向向下C.Δx=nIlBk,方向向上D.Δx=nIlBk,方向向下考点二带电粒子在有界磁场中的运动2 如图7­4所示,在xOy平面内以O为圆心、R0为半径的圆形区域Ⅰ内有垂直于纸面向外、磁感应强度为B1的匀强磁场.一质量为m、带电荷量为+q的粒子以速度v0从A(R0,0)点沿x轴负方向射入区域Ⅰ,经过P(0,R0)点,沿y轴正方向进入同心环形区域Ⅱ,为使粒子经过区域Ⅱ后能从Q点回到区域Ⅰ,需在区域Ⅱ内加一垂直于纸面向里、磁感应强度为B2的匀强磁场.已知OQ与x轴负方向成30°角,不计粒子重力.求:(1)区域Ⅰ中磁感应强度B1的大小;(2)环形区域Ⅱ的外圆半径R的最小值;(3)粒子从A点出发到再次经过A点所用的最短时间.导思①粒子以速度v0从A到P,经过P点的速度方向如何?②粒子在区域Ⅱ从P到Q,圆心角是多少?③粒子从A点出发到再次经过A点,经过哪些圆弧?圆心角分别为多少?归纳解答带电粒子在匀强磁场中运动的关键是画粒子运动轨迹的示意图,确定圆心、半径及圆心角.此类问题的解题思路是:(1)画轨迹:即确定圆心,用几何方法求半径并画出运动轨迹.(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、入射方向、出射方向相联系,在磁场中运动的时间与周期相联系.(3)用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式和半径公式.变式1 如图7­5所示,横截面为正方形abcd的有界匀强磁场的磁场方向垂直纸面向里.一束电子以大小不同、方向垂直ad边界的速度飞入该磁场.对于从不同边界射出的电子,下列判断不正确的是( )图7­5A.从ad边射出的电子在磁场中运动的时间都相等B.从c点离开的电子在磁场中运动时间最长C.电子在磁场中运动的速度偏转角最大为πD.从bc边射出的电子的速度一定大于从ad边射出的电子的速度变式2 (多选)如图7­6所示,ab是匀强磁场的边界,质子(11H)和α粒子(42He)先后从c点射入磁场,初速度方向与ab边界的夹角均为45°,并都到达d点.不计空气阻力和粒子间的作用.关于两粒子在磁场中的运动,下列说法正确的是( )图7­6A.质子和α粒子运动轨迹相同B.质子和α粒子运动动能相同C.质子和α粒子运动速率相同D.质子和α粒子运动时间相同考点三带电粒子在复合场中的运动3 [2015·福建卷] 如图7­7所示,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场方向垂直纸面向外,磁感应强度大小为B.一质量为m、电荷量为q的带正电的小滑块从A点由静止开始沿MN下滑,到达C 点时离开MN做曲线运动.A、C两点间距离为h,重力加速度为g.(1)求小滑块运动到C点时的速度大小v C;(2)求小滑块从A点运动到C点过程中克服摩擦力做的功W f;(3)若D点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D点时撤去磁场,此后小滑块继续运动到水平地面上的P点.已知小滑块在D点时的速度大小为v D,从D点运动到P点的时间为t,求小滑块运动到P点时速度的大小v P.【规范步骤】[解析] (1)小滑块沿MN运动过程,水平方向受力满足qvB +N=qE小滑块在C点离开MN时,有N=0解得v C=E B .(2)由动能定理,有___________________________________________解得______________________________________.(3)如图7­8所示,小滑块速度最大时,速度方向与电场力、重力的合力方向垂直.撤去磁场后小滑块将做类平抛运动,等效加速度为g′g ′=⎝⎛⎭⎫qE m 2+g 2 且v 2P =v 2D +g′2t 2解得_______________________________.归纳带电粒子在复合场中常见的运动形式:①当带电粒子在复合场中所受的合力为零时,粒子处于静止或匀速直线运动状态;②当带电粒子所受的合力大小恒定且提供向心力时,粒子做匀速圆周运动;③当带电粒子所受的合力变化且与速度方向不在一条直线上时,粒子做非匀变速曲线运动.如果带电粒子做曲线运动,则需要根据功能关系求解,需要注意的是洛伦兹力始终不做功.4 如图7­9所示,直线MN 上方有平行于纸面且与MN 成45°角的有界匀强电场,电场强度大小未知;MN 下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B.今从MN 上的O 点向磁场中射入一个速度大小为v 、方向与MN 成45°角的带正电粒子,该粒子在磁场中运动时的轨道半径为R.若该粒子从O 点出发记为第一次经过直线MN ,而第五次经过直线MN 时恰好又通过O 点.不计粒子的重力.求:(1)电场强度的大小;(2)该粒子再次从O 点进入磁场后,运动轨道的半径; (3)该粒子从O 点出发到再次回到O 点所需的时间. 导思①粒子从O 点出发到第五次经过直线MN ,经过哪些运动过程,分别做什么运动?②粒子第四次经过直线MN ,进入电场,沿电场线和垂直电场线方向分别做什么运动?其位移分别是多少?③粒子再次从O 点进入磁场后,运动的速度是多少?归纳电场(或磁场)与磁场各位于一定的区域内并不重叠,或在同一区域电场与磁场交替出现,这种情景就是组合场.粒子在某一场中运动时,通常只受该场对粒子的作用力.其处理方法一般为:①分析带电粒子在各场中的受力情况和运动情况,一般在电场中做直线运动或类平抛运动,在磁场中做匀速圆周运动;②正确地画出粒子的运动轨迹图,在画图的基础上注意运用几何知识寻找关系;③注意确定粒子在组合场交界位置处的速度大小与方向,该速度是联系两种运动的桥梁.【真题模型再现】带电粒子在电磁场中运动的科技应用2013·重庆卷霍尔效应原理2014·浙江卷离子推进器2014·福建卷电磁驱动原理2015·浙江卷回旋加速器引出离子问题2015·重庆卷回旋加速器原理2015·江苏卷质谱仪(续表)【模型核心归纳】带电粒子在电场、磁场中的运动与现代科技密切相关,应重视以科学技术的具体问题为背景的考题.涉及带电粒子在复合场中运动的科技应用主要是速度选择器、磁流体发电机、电磁流量计、质谱仪等,对应原理如下:装置名称装置图示原理及结论速度选择器粒子经加速电场加速后得到一定的速度v0,进入正交的电场和磁场,受到的电场力与洛伦兹力方向相反,若使粒子沿直线从右边孔中射出,则有qv0B=qE,即v0=EB,故若v=v0=EB,粒子必做匀速直线运动,与粒子电荷量、电性、质量均无关.若v<EB,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.若v>EB,洛伦兹力大,粒子向洛伦兹力方向偏,电场力做负功,动能减少磁流体发电机正、负离子(等离子体)高速喷入偏转磁场中,在洛伦兹力作用下,正、负离子分别向上、下极板偏转、积累,从而在板间形成一个场强向下的电场,两板间形成一定的电势差.当qvB=qUd时,电势差达到稳定,U=dvB,这就相当于一个可以对外供电的电源电磁流量计一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正、负离子)在洛伦兹力作用下纵向偏转,a、b间出现电势差.当自由电荷所受电场力和洛伦兹力平衡时,由Bqv=Eq=Uqd,可得v=UBd,则流量Q=Sv=πUd4B质谱仪选择器中v=EB1;偏转场中d=2r,qvB2=mv2r,解得比荷qm=2EB1B2d,质量m=B1B2dq2E.作用:主要用于测量粒子的质量、比荷,研究同位素霍尔效应在匀强磁场中放置一个矩形截面的载流导体,当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现了电势差,这种现象称为霍尔效应例[2015·浙江卷] 使用回旋加速器的实验需要把离子束从加速器中引出,离子束引出的方法有磁屏蔽通道法和静电偏转法等.质量为m,速度为v的离子在回旋加速器内旋转,旋转轨道是半径为r的圆,圆心在O点,轨道在垂直纸面向外的匀强磁场中,磁感应强度为B.为引出离子束,使用磁屏蔽通道法设计引出器.引出器原理如图7­10所示,一对圆弧形金属板组成弧形引出通道,通道的圆心位于O′点(O′点图中未画出).引出离子时,令引出通道内磁场的磁感应强度降低,从而使离子从P点进入通道,沿通道中心线从Q点射出.已知OQ 长度为L,OQ与OP的夹角为θ.(1)求离子的电荷量q并判断其正负;(2)离子从P点进入,Q点射出,通道内匀强磁场的磁感应强度应降为B′,求B′;(3)换用静电偏转法引出离子束,维持通道内的原有磁感应强度B不变,在内外金属板间加直流电压,两板间产生径向电场,忽略边缘效应.为使离子仍从P点进入,Q点射出,求通道内引出轨迹处电场强度E的方向和大小.图7­10。

(浙江选考)2020-2021届高考物理二轮复习 专题三 电场与磁场专题综合训练

(浙江选考)2020-2021届高考物理二轮复习 专题三 电场与磁场专题综合训练

专题三电场与磁场专题综合训练(三)1.如图所示,某区域电场线左右对称分布,M、N为对称线上两点。

下列说法正确的是()A.M点电势一定高于N点电势B.M点电场强度一定大于N点电场强度C.正电荷在M点的电势能小于在N点的电势能D.将电子从M点移动到N点,静电力做正功2.如图所示,菱形ABCD的对角线相交于O点,两个等量异种点电荷分别固定在AC连线上的M点与N点,且OM=ON,则()A.A、C两处电势、电场强度均相同B.A、C两处电势、电场强度均不相同C.B、D两处电势、电场强度均相同D.B、D两处电势、电场强度均不相同3.如图所示,正方形线框由边长为L的粗细均匀的绝缘棒组成,O是线框的中心,线框上均匀地分布着正电荷,现在线框上边框中点A处取下足够短的带电量为q的一小段,将其沿OA连线延长线向上移动的距离到B点处,若线框的其他部分的带电量与电荷分布保持不变,则此时O点的电场强度大小为()A.kB.kC.kD.k4.如图,在竖直方向的匀强电场中有一带负电荷的小球(初速度不为零),其运动轨迹在竖直平面(纸面)内,截取一段轨迹发现其相对于过轨迹最高点O的竖直虚线对称,A、B为运动轨迹上的点,忽略空气阻力,下列说法不正确的是()A.B点的电势比A点高B.小球在A点的动能比它在B点的大C.小球在最高点的加速度不可能为零D.小球在B点的电势能可能比它在A点的大5.如图所示,真空中同一平面内MN直线上固定电荷量分别为-9Q和+Q的两个点电荷,两者相距为L,以+Q点电荷为圆心,半径为画圆,a、b、c、d是圆周上四点,其中a、b在MN直线上,c、d 两点连线垂直于MN,一电荷量为q的负点电荷在圆周上运动,比较a、b、c、d四点,则下列说法错误的是()A.a点电场强度最大B.负点电荷q在b点的电势能最大C.c、d两点的电势相等D.移动负点电荷q从a点到c点过程中静电力做正功6.真空中,两个固定点电荷A、B所带电荷量分别为Q1和Q2,在它们共同形成的电场中,有一条电场线如图实线所示,实线上的箭头表示电场线的方向,电场线上标出了C、D两点,其中D点的切线与AB连线平行,O点为AB连线的中点,则()A.B带正电,A带负电,且|Q1|>|Q2|B.O点电势比D点电势高C.负检验电荷在C点的电势能大于在D点的电势能D.在C点静止释放一带正电的检验电荷,只在电场力作用下将沿电场线运动到D点7.如图所示,矩形虚线框的真空区域内存在着沿纸面方向的匀强电场(具体方向未画出),一粒子从bc边上的M点以速度v0垂直于bc边射入电场,从cd边上的Q点飞出电场,不计粒子重力。

高中物理磁场专题

高中物理磁场专题

高中物理磁场专题(总5页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除七、带电粒子在复合场中的运动 测试题1.如图,在两个平行板间有正交的匀强电场和匀强磁场,一个带电粒子垂直于电磁场方向射入场中,射出时发现粒子的动能减少了。

为使粒子射出时动能有所增加,不计重力的情况下,可采取的办法是( )A .增大粒子射入时的速度B .减小磁场的磁感应强度C .增大电场的电场强度D .改变粒子的带电性质2.如图所示,质量为m 、带电量为+q 的三个相同的带电小球A 、B 、C ,从同一高度以初速度v 0水平抛出,B 球处于竖直向下的匀强磁场中,C 球处于垂直纸面向里的匀强电场中,它们落地的时间分别为t A 、t B 、t C ,落地时的速度大小分别为v A 、v B 、v C ,则以下判断正确的是( )A .t A =tB =tC B .t A =t C <t B C .v B <v A <v CD .v A =v B <v C3.如图所示,粗糙程度均匀的绝缘斜面下方O 点处有一正点电荷,带负电的小物体以初速度V 1从M 点沿斜面上滑,到达N 点时速度为零,然后下滑回到M 点,此时速度为V 2(V 2<V 1)。

若小物体电荷量保持不变,OM =ON ,则( )A .小物体上升的最大高度为22124V V gB .从N 到M 的过程中,小物体的电势能逐渐减小C .从M 到N 的过程中,电场力对小物体先做负功后做正功D .从N 到M 的过程中,小物体受到的摩擦力和电场力均是先增大后减小4.如图所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场。

一带电粒子a (不计重力)以一定的初速度由左边界的O 点射入磁场、电场区域,恰好沿直线由区域右边界的O′点(图中未标出)穿出。

若撤去该区域内的磁场而保留电场不变,另一个同样的粒子b (不计重力)仍以相同 初速度由O 点射入,从区域右边界穿出,则粒子b ( )A .穿出位置一定在O′点下方B .穿出位置一定在O′点上方C .运动时,在电场中的电势能一定减小D .在电场中运动时,动能一定减小5.如图所示,在某一真空中,只有水平向右的匀强电场和竖直向下的重力场,在竖直平面内有初速度为v 0的带电微粒,恰能沿图示虚线由A 向B 做直线前进。

二轮复习专题电场与磁场——带电粒子在电场中的加速与偏转讲义(含解析)

二轮复习专题电场与磁场——带电粒子在电场中的加速与偏转讲义(含解析)

2023届二轮复习专题电场与磁场——带电粒子在电场中的加速与偏转讲义(含解析)本专题主要讲解带电粒子(带电体)在电场中的直线运动、偏转,以及带电粒子在交变电场中运动等相关问题,强调学生对于直线运动、类平抛运动规律的掌握程度。

高考中重点考查学生利用动力学以及能量观点解决问题的能力,对于学生的相互作用观、能量观的建立要求较高。

探究1带电粒子在电场中的直线运动典例1:(2021湖南联考)如图所示,空间存在两块平行的彼此绝缘的带电薄金属板A、B,间距为d,中央分别开有小孔O、P。

现有甲电子以速率v0从O点沿OP方向运动,恰能运动到P点。

若仅将B板向右平移距离d,再将乙电子从P′点由静止释放,则()A.金属板A、B组成的平行板电容器的电容C不变B.金属板A、B间的电压减小C.甲、乙两电子在板间运动时的加速度相同D.乙电子运动到O点的速率为2v0训练1:(2022四川联考题)多反射飞行时间质谱仪是一种测量离子质量的新型实验仪器,其基本原理如图所示,从离子源A处飘出的离子初速度不计,经电压为U的匀强电场加速后射入质量分析器。

质量分析器由两个反射区和长为l的漂移管(无场区域)构成,开始时反射区1、2均未加电场,当离子第一次进入漂移管时,两反射区开始加上电场强度大小相等、方向相反的匀强电场,其电场强度足够大,使得进入反射区的离子能够反射回漂移管。

离子在质量分析器中经多次往复即将进入反射区2时,撤去反射区的电场,离子打在荧光屏B上被探测到,可测得离子从A到B的总飞行时间。

设实验所用离子的电荷量均为q,不计离子重力。

(1)求质量为m的离子第一次通过漂移管所用的时间T1;(2)反射区加上电场,电场强度大小为E,求离子能进入反射区的最大距离x;(3)已知质量为m0的离子总飞行时间为t0,待测离子的总飞行时间为t1,两种离子在质量分析器中反射相同次数,求待测离子质量m1。

探究2 带电粒子在电场中的偏转典例2:(2022北京月考)让氕核(1H)和氘核(21H)以相同的动能沿与电场垂直的方向1从ab边进入矩形匀强电场(方向沿a→b,边界为abcd,如图所示)。

电磁场综合题

电磁场综合题

1. 在平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B 。

一质量为m 、电荷量为q 的带正电荷的粒子从y 轴正半轴上的M 点以速度0v 垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成︒=60θ角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示。

不计粒子重力。

求:(1)M 、N 两点间的电势差MN U ;(2)粒子在磁场中运动的轨道半径r ;(3)粒子从M 点运动到P 点的总时间t 。

2. 如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径42A A 为边界的两个半圆形区域Ⅰ、Ⅱ中,42A A 与31A A 的夹角为60°。

一质量为m 、带电荷量为+q 的粒子以某一速度从Ⅰ区的边缘点1A 处沿与31A A 成30°角的方向射入磁场,随后该粒子以垂直于42A A 的方向经过圆心O 进入Ⅱ区,最后再从4A 处射出磁场。

已知该粒子从射入到射出磁场所用的时间为t ,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力)。

3 .如图所示,在xOy 平面的第一象限有一匀强电场,电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外.有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场.质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d .接着,质点进入磁场,并垂直于OC 飞离磁场.不计重力影响.若OC 与x 轴的夹角为φ,求: ⑴粒子在磁场中运动速度的大小; ⑵匀强电场的场强大小.4、如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。

在x轴上方空间的第一、第二象限内,既无电场也无磁场,在第三象限,存在沿y轴正方向的匀强电场和垂直xy平面(纸面)向里的匀强磁场。

在第四象限,存在沿y轴负方向,场强大小与第三象限电场点以场强相等的匀强电场。

高考物理电场与磁场知识点总结

高考物理电场与磁场知识点总结

高考物理电场与磁场知识点总结一、电场1、库仑定律库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们距离的平方成反比,作用力的方向在它们的连线上。

表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$ 是静电力常量,约为$90×10^9 N·m^2/C^2$ 。

要理解库仑定律,需要注意以下几点:(1)库仑定律适用于真空中的点电荷。

如果电荷分布在一个带电体上,当带电体的大小远小于它们之间的距离时,可以将带电体视为点电荷。

(2)库仑力是一种“超距作用”,即电荷之间不需要接触就能产生相互作用力。

2、电场强度电场强度是描述电场强弱和方向的物理量。

放入电场中某点的电荷所受的电场力$F$ 跟它的电荷量$q$ 的比值,叫做该点的电场强度,简称场强。

表达式为:$E =\frac{F}{q}$。

电场强度是矢量,其方向与正电荷在该点所受电场力的方向相同。

常见的电场强度的计算方法:(1)真空中点电荷产生的电场:$E = k\frac{Q}{r^2}$,其中$Q$ 是产生电场的点电荷的电荷量,$r$ 是该点到点电荷的距离。

(2)匀强电场:电场强度处处相等的电场叫匀强电场。

其电场强度大小为:$E =\frac{U}{d}$,其中$U$ 是两点间的电势差,$d$ 是沿电场线方向两点间的距离。

3、电场线电场线是为了形象地描述电场而引入的假想曲线。

电场线上每一点的切线方向都跟该点的场强方向一致,电场线的疏密表示电场的强弱。

常见的电场线形状:(1)正点电荷的电场线:从正电荷出发,终止于无穷远。

(2)负点电荷的电场线:从无穷远出发,终止于负电荷。

(3)等量同种电荷的电场线:分布不均匀,越靠近电荷,电场线越密集。

(4)等量异种电荷的电场线:从正电荷出发,终止于负电荷,两电荷连线的中垂线上电场强度的方向始终与中垂线垂直。

4、电势能与电势(1)电势能:电荷在电场中具有的势能叫电势能。

2022高考物理第一轮复习 09 磁场及综合

2022高考物理第一轮复习 09 磁场及综合

2022高考物理第一轮复习 09 磁场及综合一、单选题(共15题;共30分)1.(2分)截面为正方形的绝缘弹性长管中心有一固定长直导线,长管外表面固定着对称分布的四根平行长直导线,若中心直导线通入电流I1,四根平行直导线均通入电流I2,I1≫I2,电流方向如图所示,下列截面图中可能正确表示通电后长管发生形变的是()A.B.C.D.2.(2分)如图,圆形区域内有垂直纸面向里的匀强磁场,质量为m、电荷量为q(q>0) 的带电粒子从圆周上的M点沿直径MON方向射入磁场。

若粒子射入磁场时的速度大小为v1,离开磁场时速度方向偏转90° ;若射入磁场时的速度大小为v2,离开磁场时速度方向偏转60° ,不计重力,则v1v2为()A.12B.√33C.√32D.√33.(2分)两足够长直导线均折成直角,按图示方式放置在同一平面内,EO与O′Q在一条直线上,PO′与OF在一条直线上,两导线相互绝缘,通有相等的电流I,电流方向如图所示。

若一根无限长直导线通过电流I时,所产生的磁场在距离导线d处的磁感应强度大小为B,则图中与导线距离均为d的M、N两点处的磁感应强度大小分别为()A.B、0B.0、2B C.2B、2B D.B、B4.(2分)如图,距离为d的两平行金属板P、Q之间有一匀强磁场,磁感应强度大小为B1,一束速度大小为v的等离子体垂直于磁场喷入板间,相距为L的两光滑平行金属导轨固定在与导轨平面垂直的匀强磁场中,磁感应强度大小为B2,导轨平面与水平面夹角为θ ,两导轨分别与P、Q相连,质量为m、电阻为R的金属棒ab垂直导轨放置,恰好静止,重力加速度为g,不计导轨电阻、板间电阻和等离子体中的粒子重力,下列说法正确的是()A.导轨处磁场的方向垂直导轨平面向上,v=mgRsinθB1B2LdB.导轨处磁场的方向垂直导轨平面向下,v=mgRsinθB1B2LdC.导轨处磁场的方向垂直导轨平面向上,v=mgRtanθB1B2LdD.导轨处磁场的方向垂直导轨平面向下,v=mgRtanθB1B2Ld5.(2分)如图所示是通有恒定电流的环形线圈和螺线管的磁感线分布图。

电场磁场综合附答案

电场磁场综合附答案

专题九 电场磁场综合例1、来自质子源的质子(初速度为零),经一加速电压为800kV 的直线加速器加速,形成电流强度为1mA 的细柱形质子流。

已知质子电荷量e=1.60×10-19C 。

这束质子流每秒打到靶上的质子数为_____。

假定分布在质子源到靶之间的加速电场是均匀的,在质子束中与质子源相距l 和4l 的两处,各取一段极短的相等长度的质子流,其中的质子数分别为n 1和n 2,则n 1/n 2=_____。

例2、如图所示,竖直平面内存在水平匀强电场,带电体在O 点以6J 的动能竖直向上运动,到达最高点A 时动能为8J ,则带电粒子回到水平轴Ox 的B 点时动能为 J例3、如图所示,水平固定的小圆盘A,带电量为Q,电势为零,从盘心处O由静止释放一质量为m,带电量为+q的小球,由于电场的作用,小球竖直上升的高度可达盘中心竖直线上的c点,Oc=h,又知道过竖直线上的b点时,小球速度最大,由此可知在Q所形成的电场中,可以确定的物理量是 [ ] A.b点场强 B.c点场强 C.b点电势 D.c点电势例4.如图所示,带电体Q固定,带电体P的带电量为q,质量为m,与绝缘的水平桌面间的动摩擦因数为μ,将P在A点由静止放开,则在Q的排斥下运动到B点停下,A、B相距为s,下列说法正确的是 [ ]A.将P从B点由静止拉到A点,水平拉力最少做功2μmgs B.将P从B点由静止拉到A点,水平拉力做功μmgs C.P从A点运动到B点,电势能增加μmgs D.P从A点运动到B点,电势能减少μmgs例5.如图所示,一个初速为零的带正电的粒子经过M、N两平行板间电场加速后,从N板上的孔射出,当带电粒子到达P点时,长方形abcd区域内出现大小不变、方向垂直于纸面且方向交替变化的匀强磁场.磁感强度B=0.4T.每经t=(π/4)×10-3s,磁场方向变化一次.粒子到达P点时出现的磁场方向指向纸外,在Q处有一个静止的中性粒子,P、Q间距离s=3m.PQ直线垂直平分ab、cd.已知D=1.6m,带电粒子的荷质比为1.0×104C/kg,重力忽略不计.求 (1)加速电压为200V时带电粒子能否与中性粒子碰撞? (2)画出它的轨迹.(3)能使带电粒子与中性粒子碰撞,加速电压的最大值是多少?例6.某空间存在着一个变化的电场和一个变化的磁场,电场方向向右(如图(a )中由B 到C 的方向),电场变化如图(b)中E -t 图象,磁感应强度变化如图(c )中B-t 图象.在A 点,从t =1 s (即1 s )开始,每隔2 s ,有一个相同的带电粒子(重力不计)沿AB 方向(垂直于BC )以速度v 射出,恰能击中C 点,若BC AC 2 =2d 且粒子在AC 间运动的时间小于1 s ,求(1)图线上E0和B0的比值,磁感应强度B的方向.(2)若第1个粒子击中C点的时刻已知为(1+Δt)s,那么第2个粒子击中C点的时刻是多少?例7、一宇宙人在太空(万有引力可以忽略不计)玩垒球。

2020届高三物理第二轮复习近四年全国高考卷电场和磁场综合练习含答案

2020届高三物理第二轮复习近四年全国高考卷电场和磁场综合练习含答案

电场和磁场综合练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图所示,三点的电势分别为10 V 、17 V 、26 V . 下列说法不正确的是( ) A .电场强度的大小为2. 5 V/cm B .坐标原点处的电势为1 VC .电子在a 点的电势能比在b 点的低7 eVD .电子从b 点运动到c 点,电场力做功为9 eV2.真空中有一半径为r 0的带电金属球,以球心O 为坐标原点沿某一半径方向为正方向建立x 轴,x 轴上各点的电势φ随x 的分布如图所示,其中x 1、x 2、x 3分别是x 轴上A 、B 、C 三点的位置坐标.根据φ-x 图象,下列说法正确的是 A .该金属球带负电B .A 点的电场强度大于C 点的电场强度 C .B 点的电场强度大小为2332x x φφ--D .电量为q 的负电荷在B 点的电势能比在C 点的电势能低|q (φ2-φ3)|3.一圆筒处于磁感应强度大小为B 的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN 的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M 射入筒内,射入时的运动与MN 成30°角.当筒转过90°时,该粒子恰好从小孔N 飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为( )A .3BωB .2BωC .BωD .2Bω4.现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比约为( )A .11B .12C .121D .1445.如图所示,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c ,已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动,下列选项正确的是( )A .m a >m b >m cB .m b >m a >m cC .m c >m a >m bD .m c >m b >m a二、多选题6.如图所示,在点电荷Q 产生的电场中,实线MN 是一条方向未标出的电场线,虚线AB 是一个电子只在静电力作用下的运动轨迹.设电子在A 、B 两点的加速度大小分别为A a 、B a ,电势能分别为PA E 、PB E .下列说法正确的是( )A .电子一定从A 向B 运动B .若A a >B a ,则Q 靠近M 端且为正电荷C .无论Q 为正电荷还是负电荷一定有PA E <PB ED .B 点电势可能高于A 点电势7.如图所示,空间存在水平向右、电场强度大小为E 的匀强电场,一个质量为m 、电荷量为+q 的小球,从A 点以初速度v 0竖直向上抛出,经过一段时间落回到与A 点等高的位置B 点(图中未画出),重力加速度为g .下列说法正确的是A .小球运动到最高点时距离A 点的高度为20v gB .小球运动到最高点时速度大小为qEv mgC .小球运动过程中最小动能为()222022mq E v mg qE +D .AB 两点之间的电势差为22022qE v mg三、解答题8.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy 平面内的截面如图所示:中间是磁场区域,其边界与y 轴垂直,宽度为l ,磁感应强度的大小为B ,方向垂直于xOy 平面;磁场的上、下两侧为电场区域,宽度均为l ´,电场强度的大小均为E ,方向均沿x 轴正方向;M 、N 为条状区域边界上的两点,它们的连线与y 轴平行,一带正电的粒子以某一速度从M 点沿y 轴正方向射入电场,经过一段时间后恰好以从M 点入射的速度从N 点沿y 轴正方向射出,不计重力. (1)定性画出该粒子在电磁场中运动的轨迹; (2)求该粒子从M 点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x 轴正方向的夹角为6π,求该粒子的比荷及其从M 点运动到N 点的时间.9.如图,在y >0的区域存在方向沿y 轴负方向的匀强电场,场强大小为E ;在y <0的区域存在方向垂直于xOy 平面向外的匀强磁场.一个氕核11H 和一个氘核21H 先后从y 轴上y =h 点以相同的动能射出,速度方向沿x 轴正方向.已知11H 进入磁场时,速度方向与x 轴正方向的夹角为45︒,并从坐标原点O 处第一次射出磁场. 氕核11H 的质量为m ,电荷量为q . 氘核21H 的质量为2m ,电荷量为q ,不计重力.求: (1)11H 第一次进入磁场的位置到原点O 的距离; (2)磁场的磁感应强度大小;(3)21H 第一次进入磁场到第一次离开磁场的运动时间.10.如图,空间存在方向垂直于纸面(xOy 平面)向里的磁场.在0x ≥区域,磁感应强度的大小为0B ;<0x 区域,磁感应强度的大小为0B λ(常数>1λ).一质量为m 、电荷量为q (q >0)的带电粒子以速度0v 从坐标原点O 沿x 轴正向射入磁场,此时开始计时,不计粒子重力,当粒子的速度方向再次沿x 轴正向时,求: (1)粒子运动的时间; (2)粒子与O 点间的距离.参考答案1.C 【解析】 【详解】A .如图所示,在ac 连线上,确定一b ′点,电势为17V ,将bb ′连线,即为等势线,那么垂直bb ′连线,则为电场线,再依据沿着电场线方向,电势降低,则电场线方向如下图,因为匀强电场,则有:cb U E d =,由比例关系可知:'26178cm 4.5cm 2610b c -=⨯=- 依据几何关系,则有:3.6cm b c bcd bb '⨯==='因此电场强度大小为:2617 2.5V/cm 3.6cb U E d -=== 故A 正确,不符合题意;B .根据φc -φa =φb -φo ,因a 、b 、c 三点电势分别为:φa =10V 、φb =17V 、φc =26V ,解得原点处的电势为φ0=1 V .故B 正确,不符合题意;C .因U ab =φa -φb =10-17=-7V ,电子从a 点到b 点电场力做功为:W =qU ab =-e×(-7V )=7 eV因电场力做正功,则电势能减小,那么电子在a 点的电势能比在b 点的高7eV ,故C 错误,符合题意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电场磁场综合专题章末网络构建物理思想万注如图所示,半径为/?的绝缘细圆环均匀带电,带电量为+ 0,圆环上有一小缺口,缺口宽度为/, l«R,在圆环中心放一带电量为+ q的点电荷,求点电荷q所受的库仑力的大小和方向.(由圆环中心指向缺口)(多选)如图所示,在水平向右的匀强电场中,某带电粒子从A点运动到〃点,在A点时速度竖直向上,在〃点时速度水平向右,在这一运动过程中粒子只受V L电场力和重力,所受电场力是重力的羽倍,并且克服重力做的功为1J,电场力做的正功为3 J,则下列说法中正确的是()A.粒子带正电B.粒子在A点的动能比在〃点多2 JC.粒子在A点的机械能比在3点少3 JD.粒子由A点到3点过程中速度最小时,速度的方向与水平方向的夹角为60。

.【即学即用】1 (多选)如图6—4, M、7V是在真空中竖直放置的两块平行金属板,板间有匀强电场,质量为加、电荷量为一q的带电粒子,以初速度co由小孔进入电场,当N间电压为" 时,粒子刚好能到达N板,如果要使这个带电粒子能到达M、N两板间距的1/2处返回,则下述措施能满足要求的是()A.使初速度减为原来的1/2B.使M、N间电压提高到原来的2倍C.使M、N间电压提高到原来的4倍D.使初速度和M、N间电压都减为原来的1/2(2014-海淀一模)如图7所示,质量"7 = 2.0X10 ° kg、电荷量q =1.0X 10'6C的带正电微粒静止在空间围足够大的电场强度为E的匀强电场中.取g=10m/s2.(1)求匀强电场的电场强度E的大小和方向;⑵在f=0时刻,电场强度大小突然变为E0=4.0X103 N/C,方向不变.求在r=0.20 s时间电场力做的功;⑶在f=0.20 s时刻突然撤掉电场,求带电微粒回到出发点时的动能(2.0 X103 N/C 方向向上 (2)8.0X10 4J (3)8.0X10 4 J)课堂练习1. (2010-高考)如图所示,在xOy 平而有一个以O 为圆心、半径/?=0.1 m 的圆,P 为圆周上的一点,0、P 两点连线与x 轴正方向 的夹角为&•若空间存在沿>■轴负方向的匀强电场,场强大小£=100V/m,则0、P 两点的电势差可表示为(A )A ・(7OP = —lOsin 巩V )B ・ U o p — lOsin ^(V )C ・ 〃”= —lOcos $V )D ・ 〃OP =10COS &V )2-如图所示,有两个固泄的、电量相等、电性相反的点电荷,心〃是它们连线的中垂线上两个位置,6•是它们产生的电场中列一位置,以无穷远处为电势的零点,则以下认识中正确的有(B )3、(07年18题)•两个质量相同的小球用不可伸长的细线连结,置于场强为F 的匀强电场中,小球i 和2均带正电,电量分别为%和%(@>的)。

将细线拉直并使之与电场方向平行,如图所示。

若将两小球同时从静止状态释放,则释放后细线 中的力7■为(不计重力及两小球间的库仑力)( A )A. 〃点的电势比"点电势髙B. 。

点电势为负值C.心b 两点场强相同D. 将一正电荷从h 点移到C 点电场力做负功A.r=^ (°厂 %)E (0 + 彳2)EB.T=( §[ 一 心)ED.T 二(q 、+q? ) E4、(07年21题)•匀强电场中的三点A 、B 、C 是一个三角形的三个顶点,的长度为 lm, D 为血的中点,如图所示。

已知电场线的方向平行于△&BC 所在平面,A 、B 、C 三点的电势分别为14 V 、6 V 和2 V,设场强大小为F, —电量为1X10" C 的正电荷从D 点移 到C 点电场力所做的功为W,则(A )A.W=8X 10"6 J £>8 V/mB.W=6X IO"6 J E>6 V/m C ・必8X10" J £<8V/m D ・W 二6X10" J FW6V/5、(08年21题)•如图所示,C 为中间插有电介质的电容器,a 和b 为其两极板:a 板接地: P 和Q 为两竖直放垃的平行金属板,在两板间用绝缘线悬挂一带电小球:P 板与b 板用导 线相连,Q 板接地。

开始时悬线静I 匕在竖直方向,在b 板带电后,悬线偏转了角度a 。

在 以下方法中,能使悬线的偏角a 变大的是(BC ) A.缩小a 、b 间的距离B.加大a 、b 间的距离 C •取岀a 、b 两极板间的电介质 D.换一块形状大小相同、介电常数更大的电介质6. (1 0年17题)•静电除尘器是目前普遍采用的一种髙效除尘器。

某除尘器模型的收尘板是很长的条形金属板,图中直线db 为该 收尘板的横截面。

工作时收尘板带正电,其左侧的电场线分布如图所 示;粉尘带负电,在电场力作用下向收尘板运动,最后落在收尘板上•若用粗黑曲线表示原来静止于P 点的带电粉尘颗粒的运动轨迹,下列4幅图中可能正确的7、(1 1年2 0题).一带负电荷的质点,在电场力作用下沿曲线ebc 从a 运动到c,已知 质点的速率是递减的。

关于b 点电场强度f •的方向,下列图示中可能正确的是(虚线是 曲线在b 点的切线)是(忽略重力和空气阻力)( bA )8、( 1 2年1 8题)•如图,平行板电容器的两个极板与水平地而成一角度,两极板与一直 流电源相连。

若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒A ・所受重力与电场力平衡B.电势能逐渐增加C.动能逐渐增加 D •做匀变速直线运动9(13年1 8题)如图,在光滑绝缘水平面上,三个带电小球a 、b 和c 分别位于边长为I 的正三角形的三个顶点上;a 、b 带正电电荷呈均为q , c 带负电。

整个系统置于方向水平的匀强电场中。

已知静电力常量为k ,若三个小球均处于静止状态,则匀强电场场强的大小 为(B )A .B .C .D .1 0、( 1 4年1 9题)关于静电场的电场强度和电势,下列说确的是(A D) A.电场强度的方向处处与等电势而垂直 B.电场强度为零的地方,电势也为零 C.随着电场强度的大小逐渐减小,电势也逐渐降低 D. 任一点的电场强度总是指向该点电势降落最快的方向1 I (2015年I 4题)如图,两平行的带电金属板水平放置。

若在两板中间a 点从静止释放一带电微粒,微粒恰好保持静止状态。

现将两板绕过3点的轴(垂AB C , D直于纸面)逆时针旋转45°,再山a点从静止释放一同样的微粒,该微粒将DA.保持静止状态B.向左上方做匀加速运动C •向正下方做匀加速运动D •向左下方做匀加速运动1 2 ( I 5年24题).(12分)如图,一质量为m、电荷量为q (q〉0)的例子在匀强电场中运动,A、B为其运动轨迹上的两点。

已知该粒子在A点的速度大小为v。

, 方向与电场方向的夹角为60° ;它运动到B点时速度方向与电场方向的夹角为30°。

不计重力。

求A、B两点间的电势差。

章末网络构建......... .................................... .. ...................... )⑴与速度方向垂直的直线和圆上弦的中垂线一定过圆心.(2)画出粒子运动轨迹,应用勾股定理、三角函数关系等数学方法可确定半径・(3)找出粒子在磁场中运动对应的圆心角,根据周期公式可求出运动时间•(2014 -中质检)如图所示,在空间中存在垂直纸而向外、宽度为〃的有界匀强磁场,一质量 为加、带电荷量为q 的粒子自下边界的P 点处以速度0沿与下边界成30。

角的方向垂直射入 磁场,恰能垂直于上边界射出,不计粒子重力,题中厶〃八q 、Q 均为已知量.则(1) 粒子带何种电荷:(2) 磁场磁感应强度为多少.【即学即用】1・(2013・、髙三统考)如图所示,一匀强磁场磁感应强度为B.方向垂直纸而向里,英边界是半径为/?的圆,AB 为圆的一直径.在A 点有一粒子源向圆平面 的各个方向发射质量为川、电量为一彳的粒子,粒子重力不计.(1)有一带电粒子以5=警的速度垂直磁场进入圆形区域,恰从B 点射出.求此粒子在磁场中运动的时间:(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A 点,则该粒子的速度为多大?P动、磁场中的匀速圆周运动三个方面・(1)在电场和磁场组成的复合场中做匀速直线运动时r符合二力平衡,qE^qvB.2)若撤去磁场,带电粒子在电场中做类平抛运动r应用运动的合成与分解的方法分析.⑶若撤去电场,带电粒子在磁场中做匀速圆周运动,符合洛伦兹力提供向心力:qvB = n^. (2013--中质检)如图8—4所示,一个质量为加、带电荷量为+g的小球以初速度%自力髙度处水平抛出.不计空气阻力,重力加速度为g・(1) 若在空间竖直方向加一个匀强电场,发现小球水平抛出后做匀速直线运动,求该匀强电场的场强E的大小;(2) 若在空间再加一个垂直纸而向外的匀强磁场,小球水平抛出后恰沿圆弧轨迹运动,落地点P到抛出点的距离为羽k求该磁场磁感应强度B的大小.【即学即用】1 .如图所示,在正交的匀强电场和匀强磁场中,一带电粒子在竖直平而做匀速圆周运动,则微粒带电性质和环绕方向分别是()Z- (7)如图所示,在xOy 平面的第一象限有一匀强电场,电场的方向平行于y 轴向下:在 X 轴和第四象限的射线0C 之间有一匀强磁场,磁感应强度的大小为B.方向垂直于纸面向外。

有一质量为m,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。

质点 到达x 轴上A 点时,速度方向与x 轴的夹角0, A 点与原点0的距离为cL 接着,质点 进入磁场,并垂直于0C 飞离磁场。

不计重力影响。

若0C 与x 轴的夹角为0,求(1) 粒子在磁场中运动速度的大小:(2) 匀强电场的场强大小。

【即学即用】1. (18分)如图所示,在第一象限有一均强电场,场强大小为E, 方向与y 轴平行;在x 轴下方有一均强磁场,磁场方向与纸而垂直。

一质量为m 、电荷量为-q (q>0)的粒子以平行于x 轴的速度从y 轴上 的P 点处射入电场,在x 轴上的Q 点处进入磁场,并从坐标原点0 离开磁场。

粒子在磁场中的运动轨迹与y 轴交于M 点。

已知 0P 二/,O0 = 2问。

不计重力。

求(1)M 点与坐标原点0间的距离:(2)粒子从P 点运动到H 点所用的时间。

2. (19分)如图所示,在真空中,左侧有一平行板电容器,板长L=40cm >板间距离d=20cm, 英右侧的竖直线恰与一半径R=30cm 的圆相切。

相关文档
最新文档