流体包裹体及应用ppt课件
合集下载
第十一章典型矿床中的流体包裹体
表11.2流体包裹体显微测温结果(℃)
• 2.盐度 • 流体包裹体的盐度有两种,一种是产于IV到 VI带中的流体熔融包裹体和含子矿物 • 包裹体,这类属于高盐度包裹体,而在Ⅹ带石英 中的流体包裹体则盐度较低。对流体熔融包裹体 和二类流体包裹体的盐度进行了测定,其结果为: 流体熔融包裹体29,40wt%Na(、1~32。Owt% NaCl含子矿物流体包裹体28。5wt%NaCl~ 31.5wt%:NaCl,液体包裹体4.9wt%NaCl~9.1wt %NaCl。液体包裹体的盐度是从产于石英一长石 核钉英中的包裹体中测得的。
图11.5可可托海三号伟晶岩脉形成的物理化学条件 A.绿柱石和I到III带的形成P-T条件;B.结晶出原生的透锂长石,箭头表示伟晶岩冷却的 趋势;C.透裡长石被锂辉石和石英所交代;D.形成原生的锤辉石和石英,相对于第V和 VI带;E.酸盐烙融体分出一个流体相,其中主要是H2O,含少量NaCl和CO2;F.硅酸盐熔融 体继续分出流体相,并且流体相又发生相分离,分出―个富含CO2流体,另一个是富含 NaCl-CO2的相,相当于第VI带或Ⅶ带;G.部分锂辉石被锂霞石+石英或锂沸石、锂云母和 石英所代替,进一 步分异到石英时,流体代替硅酸盐熔体;Bsp.β锂辉石; Pet.透锂长 石;A.Spd.锂辉石;Ecr.锂霞石
图11.2可可托海三号花岗伟晶者矿脉平面图〈据卢焕章,1997〉1.辉长岩; 2罾文象和变文象带(Ⅰ带〉;榇粒状钠长石带(Ⅱ带〉;块状黴斜长石带 (Ⅲ带〉;白云母带 (Ⅳ带〉;叶钠长石锂辉石带(Ⅴ带);1.石英锂辉石 带〈Ⅵ带、1白云母钠长石带(Ⅶ带); 1钠长石锂 云母带(Ⅷ带);10.石英 铯榴石带(Ⅸ带):11.核部块状石英坛石带(Ⅹ带);12.花岗岩带
• 表11.1 三号伟晶岩脉中的包裹体
• 2.盐度 • 流体包裹体的盐度有两种,一种是产于IV到 VI带中的流体熔融包裹体和含子矿物 • 包裹体,这类属于高盐度包裹体,而在Ⅹ带石英 中的流体包裹体则盐度较低。对流体熔融包裹体 和二类流体包裹体的盐度进行了测定,其结果为: 流体熔融包裹体29,40wt%Na(、1~32。Owt% NaCl含子矿物流体包裹体28。5wt%NaCl~ 31.5wt%:NaCl,液体包裹体4.9wt%NaCl~9.1wt %NaCl。液体包裹体的盐度是从产于石英一长石 核钉英中的包裹体中测得的。
图11.5可可托海三号伟晶岩脉形成的物理化学条件 A.绿柱石和I到III带的形成P-T条件;B.结晶出原生的透锂长石,箭头表示伟晶岩冷却的 趋势;C.透裡长石被锂辉石和石英所交代;D.形成原生的锤辉石和石英,相对于第V和 VI带;E.酸盐烙融体分出一个流体相,其中主要是H2O,含少量NaCl和CO2;F.硅酸盐熔融 体继续分出流体相,并且流体相又发生相分离,分出―个富含CO2流体,另一个是富含 NaCl-CO2的相,相当于第VI带或Ⅶ带;G.部分锂辉石被锂霞石+石英或锂沸石、锂云母和 石英所代替,进一 步分异到石英时,流体代替硅酸盐熔体;Bsp.β锂辉石; Pet.透锂长 石;A.Spd.锂辉石;Ecr.锂霞石
图11.2可可托海三号花岗伟晶者矿脉平面图〈据卢焕章,1997〉1.辉长岩; 2罾文象和变文象带(Ⅰ带〉;榇粒状钠长石带(Ⅱ带〉;块状黴斜长石带 (Ⅲ带〉;白云母带 (Ⅳ带〉;叶钠长石锂辉石带(Ⅴ带);1.石英锂辉石 带〈Ⅵ带、1白云母钠长石带(Ⅶ带); 1钠长石锂 云母带(Ⅷ带);10.石英 铯榴石带(Ⅸ带):11.核部块状石英坛石带(Ⅹ带);12.花岗岩带
• 表11.1 三号伟晶岩脉中的包裹体
流体包裹体概念及其分类59页PPT
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank 特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
讲课3-流体地质学-第二章
折射率的差异造成的,相边界的形态是由物质的润湿 性和密度决定的。低密度的流体相通常分布在FI 的中 部和上部。由于镜下观察是二维看三维状态,其所见 的气泡(相)面积比通常要高于实际的体积比。
3. FI 镜下可见相态及特征
最常见的FI 是由一个水溶液相和气相组成的包裹体。
结晶固相
FI中可能出现的结晶相包括两类:子矿物和捕虏晶。前者是
液相
流体捕获后随主矿物冷却因过饱和而结晶出来的矿物,后者
是矿物缺陷等捕获流体时偶尔捕获的其他结晶相。 气相
区分它们主要通过检查同一世代的包裹体中是否都有同样的
结晶相、是否在各个包裹体中都有稳定的相比例;捕虏晶在 包裹体中往往异常的大,子矿物中往往会有相同的固体包裹 俘虏晶
子矿物 体出现。 气相
常见的情况是FI中出现1-2种盐类矿物(石盐和钾石盐),有
VCO2 LCO2
LH2O
⑦ 二氧化碳(CO2 )包裹体或纯二氧化碳包裹体
(Carbon dioxide inclusion)
由二氧化碳气相(VCO2)和二氧化碳液相(LCO2)组 成,说明流体中富含二氧化碳。
识别:气相(VCO2)与液相(LCO2)只要稍加温就会 均一,一般≤31.1℃。 常见于深变质岩、金矿之中。
次生包裹体的成因标志:
※ 次生包裹体的鉴定特点——受微裂隙控制
① 常沿裂隙定向分布,成群出现;沿裂隙、裂面分布 ② 分布方向常与主矿物生长要素无关,常切割生长要
素、生长环带; ③ 切割或穿出主矿物; ④ 往往形态不规则,且粒度较小。
假次生包裹体的鉴定特征:
其分布、个体等特点与次生包裹体相似,但它的分布 不会穿出主矿物的颗粒边界,只存在于主矿物的某一部 位或某一位置上。
包裹体分析技术页PPT文档
1.1.2 包裹体研究意义
(1)与现代测试技术紧密结合; (2)先进的手段和有效的方法; (3)研究内容:组分、温度、压力、盐度、逸散度、pH值、 Eh值、密度、体积、流动速度、稳定同位素、地热史…… (4)广泛应用:环境恢复、能源地质、流体研究、成矿预 测…… (5)时效性:直观、省时、经济、准确,广泛应用于地学各 领域。
(9)无论是在被包裹前或被包裹后,包裹体与主矿 物间几乎不发生物质的溶解、交换或其它化学反应;
(10)现今所见包裹体的外壁就是主矿物与包裹体 的相界限。由于界限的存在,包裹体与主矿物之间互 为独立。
二、包裹体成因与分类 2.1 流体包裹体的形成 2.2 包裹体形成后的可能变化 2.3 包裹体分类
2.1 流体包裹体的形成 2.1.1 包裹体的形成
从系统角度看,包裹体的最终形成可分为5种情况,即均 匀流体中的包裹体形成、非均匀流体中的包裹体形成、变生包 裹体的形成、次生包裹体的形成以及包裹体形成后的变化等。
均匀流体中包裹体的形成具有代表性。即在一个晶体完整 的结晶过程中,任何阻碍或抵制晶体生长的因素都可造成晶体 缺陷,从而产生包裹体。
1.1 包裹体研究意义 1.1.1 包裹体研究简史
(1)萌芽阶段(公元10世纪-1858)
我国是最早发现包裹体并有文字记载的国家。北宋 (1031-1095)时期沈括的《梦溪笔谈》:“滴翠珠”
李时珍的《本草纲目》中都有记载:“空青者,中空 有水如油,治盲立效…”
在国外有Boyle(1672)、D.Brewter(1823)、 H.Davy(1822)等人都先后在水晶、黄玉、石英、绿柱石中 发现包裹体存在,认为是矿物显微结构的一部分。
2.1.1.1 从均匀流体中结晶出的矿物包裹体
(1)晶体生长速度:培养基供应不均匀,影响晶体的点、 线、面发育。晶体快速生长时,形成树枝状;慢速生长时, 致密层封闭培养基,捕获包裹体。
地球化学 第7讲(1)-流体包裹体
外来物质的影响,包裹体与主矿物共存,一直保留至今, 它与主矿物有着相的界限,并成为独立体系。
最常见流体包裹体的矿物为:石英、萤石、石盐、方解石、石榴子石、磷灰石、白 云石、重晶石、黄玉和闪锌矿。
流体包裹体长径一般小于100μm,常为10μm。
矿物包裹体可自成为一个独立的地球化学体系,这包括:
(1)均一体系:包裹体形成时,捕获在包裹体内的物质为均 匀相。
原生包裹体
变生包裹体
(1)晶面出现凹凸不平形成包 裹体:
这是由于晶体的培养基供应不均匀, 影响晶体的点、线、面均匀发育的 结果。 又分成两种情况,当晶体快速生长 时,培养基供应充足部位先生长, 而供应较少或来不及供应处则形成 空洞,在一个晶面上出现多孔的树 枝状;
当晶体慢速生长时,培养基供应不均匀,会形成 多孔层与致密层相间,致密层暂时封闭培养基, 从而捕获了包裹体(图a),构成层状包裹体。这 种情况在天然水晶和长石中是常见的。
(2)晶体的生长螺旋形成的 包裹体 :
在人工合成的水晶中可见 到,在相邻的大生长螺旋 之间,有时也在生长螺旋 中心,常常形成流体包裹 体。
在绿柱石晶体中常有平行于c轴的细长管状包裹体,它是沿生 长螺旋中心形成的。 如果某些螺旋比另外一些螺旋生长得快,则晶面粗糙,形成许 多带角的凹沟,后来的生长层将它盖上,可形成负晶形包裹体。 这种包裹体通常比较大,呈孤立或随机分布状产出。
沉积岩、变质岩的包裹体研究、包裹体年代学等与国外还有差距。
第二节
流体包裹体的概念和分类
一、矿物中包裹体的定义
矿物包裹体是成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿物结晶生 长过程中,被包裹在矿物晶格缺陷或穴窝中的、至今尚在主矿物中封存并 与主矿物有着相界限的那一部分物质。
最常见流体包裹体的矿物为:石英、萤石、石盐、方解石、石榴子石、磷灰石、白 云石、重晶石、黄玉和闪锌矿。
流体包裹体长径一般小于100μm,常为10μm。
矿物包裹体可自成为一个独立的地球化学体系,这包括:
(1)均一体系:包裹体形成时,捕获在包裹体内的物质为均 匀相。
原生包裹体
变生包裹体
(1)晶面出现凹凸不平形成包 裹体:
这是由于晶体的培养基供应不均匀, 影响晶体的点、线、面均匀发育的 结果。 又分成两种情况,当晶体快速生长 时,培养基供应充足部位先生长, 而供应较少或来不及供应处则形成 空洞,在一个晶面上出现多孔的树 枝状;
当晶体慢速生长时,培养基供应不均匀,会形成 多孔层与致密层相间,致密层暂时封闭培养基, 从而捕获了包裹体(图a),构成层状包裹体。这 种情况在天然水晶和长石中是常见的。
(2)晶体的生长螺旋形成的 包裹体 :
在人工合成的水晶中可见 到,在相邻的大生长螺旋 之间,有时也在生长螺旋 中心,常常形成流体包裹 体。
在绿柱石晶体中常有平行于c轴的细长管状包裹体,它是沿生 长螺旋中心形成的。 如果某些螺旋比另外一些螺旋生长得快,则晶面粗糙,形成许 多带角的凹沟,后来的生长层将它盖上,可形成负晶形包裹体。 这种包裹体通常比较大,呈孤立或随机分布状产出。
沉积岩、变质岩的包裹体研究、包裹体年代学等与国外还有差距。
第二节
流体包裹体的概念和分类
一、矿物中包裹体的定义
矿物包裹体是成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿物结晶生 长过程中,被包裹在矿物晶格缺陷或穴窝中的、至今尚在主矿物中封存并 与主矿物有着相界限的那一部分物质。
流体包裹体实验PPT课件(模板)
FORTRAN program SALTY (Bodnar et al. Tm(NaCl)=Th=t3。 以及与之配套显微镜及温度测量仪器等。 (1) H2O-NaCl体系包裹体 (1)包裹体要有代表性。 用记录本或专用表格记录或绘制流体包裹体镜下的特征。 (3) 根据包裹体的物理相态可以分为固体包裹体、热水溶液包裹体和熔融包裹体三类。 ① 加热速度的选择取决于所研究的子矿物的溶解度。 8℃)NaCl-H2O体系低共结点温度时,水石盐熔化,出现液相。 加热过程中,在-57. 加热过程中,在-57. 7、对于热水溶液两相包裹体,要根据包裹体中液相所占体积与包裹体总体积的百分比来确定包裹体的充填度。 这是由于笼形物形成所致。
实验一、流体包裹体显微镜岩相学研究
一、实验目的
流体包裹体的镜下识别 流体包裹体的镜下特征的认识 认识流体包裹体的不同物理相态 掌握流体包裹体的物相分类和成因分
类
二、基本原理
1. 均匀体系。包裹体形成时,被捕获的流体 是均匀体系,即主矿物是在均匀体系中生长 的。
2. 封闭体系。充填(滞留)在晶体缺陷中的 流体为主矿物封闭,形成独立的封闭体系, 没有外来物质的加入和内部物质的逸出。
(3) 根据包裹体的物理相态可以分为固体包裹体、 热水溶液包裹体和熔融包裹体三类。热水溶液包裹体 可以进一步分为纯液相包裹体、纯气相包裹体、富液 相包裹体、富气相包裹体、含子矿物的多相包裹体、 含液体CO2包裹体和有机包裹体7大类,而熔融包裹 体还可以分为非晶质熔融包裹体、晶质熔融包裹体和 熔融-溶液包裹体3类。
FIG.4-2. Vapor-saturated phase relations in the NaCl-H2O system. I = ice; L = liquid; HH = hydrohalite; H = halite; P = peritectic(包晶 反应点) (0.1°C, 26.3 wt.% NaCl); E = eutectic (-21.2°C, 23.2
实验一、流体包裹体显微镜岩相学研究
一、实验目的
流体包裹体的镜下识别 流体包裹体的镜下特征的认识 认识流体包裹体的不同物理相态 掌握流体包裹体的物相分类和成因分
类
二、基本原理
1. 均匀体系。包裹体形成时,被捕获的流体 是均匀体系,即主矿物是在均匀体系中生长 的。
2. 封闭体系。充填(滞留)在晶体缺陷中的 流体为主矿物封闭,形成独立的封闭体系, 没有外来物质的加入和内部物质的逸出。
(3) 根据包裹体的物理相态可以分为固体包裹体、 热水溶液包裹体和熔融包裹体三类。热水溶液包裹体 可以进一步分为纯液相包裹体、纯气相包裹体、富液 相包裹体、富气相包裹体、含子矿物的多相包裹体、 含液体CO2包裹体和有机包裹体7大类,而熔融包裹 体还可以分为非晶质熔融包裹体、晶质熔融包裹体和 熔融-溶液包裹体3类。
FIG.4-2. Vapor-saturated phase relations in the NaCl-H2O system. I = ice; L = liquid; HH = hydrohalite; H = halite; P = peritectic(包晶 反应点) (0.1°C, 26.3 wt.% NaCl); E = eutectic (-21.2°C, 23.2
第三章流体包裹体
第三章流体包裹体
• 二 颗粒载法的制备 • 筛选样品,测温,观测用。 制备方法P91。 • 三 抛光片的制备 • 两面抛光 高度抛光 厚度0.2㎜—0.5㎜。
切晶体中P平行C轴。 • 抛光法制备工艺程序 切片、粗磨、细磨、抛光、粘片、另一面
第三章流体包裹体
• 四 显微测温样品的制备 • 把抛光片从载玻璃上卸下,破碎成小片。 • 五 爆裂法测温样品的制备 • 破碎 筛分和提纯-单矿物(0.2㎜—0.5
第三章流体包裹体
三 研究目的和意义
获得成岩成矿的可靠信息 可测T、 P、C、D (密度)、盐度 、同位 素组成 pH Eh粘度 年龄等。 找矿勘探
第三章流体包裹体
第二节 包裹体的成因与分类
• 一般认为只有符合均匀体系,封闭 体系和等容体系这三个基本条件的 包裹体才能提供有价值的信息。
第三章流体包裹体
第三章流体包裹体
第六节 组分和盐度的估测方法
一、冷冻法 (一)H2O-NaCl (二) H2O-NaCl-CO2
第三章流体包裹体
新疆阿合奇县布隆 石英重晶石脉型金矿成矿机理探讨
第三章流体包裹体
1.矿床地质特征 2.流体包裹体研究 3.微量元素特征 4.同位素分析(氦、氩同位素、硫同位素、 碳、氧、氢同位素 ) 5.成矿作用
和掌握。包裹体常见的相态特点:
(一)水溶液+气泡 (二)液体CO2和碳氢化合物 (三)子矿物 (四)熔融包裹体中的玻璃质,结晶质和气相
第三章流体包裹体
三、包裹体特征的记录和描述
(一)充填度(F)和气体百分数(N) (二)颜色 (三)形状 (四)大小 (五)数量 (六)分布 (七)包裹体定位和记录格式
第三章流体包裹体
第五节 温度的测定方法
• 二 颗粒载法的制备 • 筛选样品,测温,观测用。 制备方法P91。 • 三 抛光片的制备 • 两面抛光 高度抛光 厚度0.2㎜—0.5㎜。
切晶体中P平行C轴。 • 抛光法制备工艺程序 切片、粗磨、细磨、抛光、粘片、另一面
第三章流体包裹体
• 四 显微测温样品的制备 • 把抛光片从载玻璃上卸下,破碎成小片。 • 五 爆裂法测温样品的制备 • 破碎 筛分和提纯-单矿物(0.2㎜—0.5
第三章流体包裹体
三 研究目的和意义
获得成岩成矿的可靠信息 可测T、 P、C、D (密度)、盐度 、同位 素组成 pH Eh粘度 年龄等。 找矿勘探
第三章流体包裹体
第二节 包裹体的成因与分类
• 一般认为只有符合均匀体系,封闭 体系和等容体系这三个基本条件的 包裹体才能提供有价值的信息。
第三章流体包裹体
第三章流体包裹体
第六节 组分和盐度的估测方法
一、冷冻法 (一)H2O-NaCl (二) H2O-NaCl-CO2
第三章流体包裹体
新疆阿合奇县布隆 石英重晶石脉型金矿成矿机理探讨
第三章流体包裹体
1.矿床地质特征 2.流体包裹体研究 3.微量元素特征 4.同位素分析(氦、氩同位素、硫同位素、 碳、氧、氢同位素 ) 5.成矿作用
和掌握。包裹体常见的相态特点:
(一)水溶液+气泡 (二)液体CO2和碳氢化合物 (三)子矿物 (四)熔融包裹体中的玻璃质,结晶质和气相
第三章流体包裹体
三、包裹体特征的记录和描述
(一)充填度(F)和气体百分数(N) (二)颜色 (三)形状 (四)大小 (五)数量 (六)分布 (七)包裹体定位和记录格式
第三章流体包裹体
第五节 温度的测定方法
讲课2-流体地质学-第一章
作用的影响、扰动,甚至改造,流体包裹体的形状、物理和化学 性质要发生许多变化。其中有些变化提供了FI 研究的可能性,有
一些变化则给研究和应用带来了不确定性。
1.
物相的变化 最容易察觉,也最有用。在高温下捕获的均匀相流体,当自然
冷却时会发生相变——由单一相变为多相。这种相变在实验室条
件下一般可以通过加温复原,即过程可逆,因而可以提供捕获时 流体的温度、压力、成分等有价值数据。
“卡脖子”现象
可逆过程,包 裹体体积不变
体积变化
伸展变形 渗漏和部分裂开
不可逆过程, 包裹体体积改 变
爆裂
为什么要学习流体包裹体这门课?
流体包裹体能解决什么问题? 流体包裹体的特征
①
唯一性:FI保存了地质历史上曾经发生过的许多地质事件中流 体的唯一样品,为研究他们提供最直接的研究对象。其它方 法途径都是间接的、局限性的。 代表性:是原始的成岩成矿母流体的样品,又处于封闭状态, 所以代表性极好。用其他方法,矿物的转变、矿物的蚀变都 会改变测量结果的准确性。而流体包裹体,只要主矿物没有 彻底被蚀变,就可以用。 普遍性:地壳中没有缺陷的矿物是不存在的。在月岩、陨石、 人工合成的晶体中也是如此。所以说流体包裹体是普遍存在 的。 微观性:一般情况下,流体包裹体很小,我们现在能看清的 只能是5—10微米(μm)的包裹体(由于设备条件所限,再小 就看不清其中的相态)。
始信息; 超微量分析技术分析流体包裹体成分和超微量成矿元素和稀有气 体——获得成岩成矿流体的主要成分,指导矿床成因研究和找矿工 作;为了解地幔释气、成矿年龄等提供可靠数据来源。
流体包裹体研究内容及解决问题:
流体相的捕获状态和沉淀机制:
流体相的均一方式,均匀捕获和非均匀捕获等(斑岩型矿床的
一些变化则给研究和应用带来了不确定性。
1.
物相的变化 最容易察觉,也最有用。在高温下捕获的均匀相流体,当自然
冷却时会发生相变——由单一相变为多相。这种相变在实验室条
件下一般可以通过加温复原,即过程可逆,因而可以提供捕获时 流体的温度、压力、成分等有价值数据。
“卡脖子”现象
可逆过程,包 裹体体积不变
体积变化
伸展变形 渗漏和部分裂开
不可逆过程, 包裹体体积改 变
爆裂
为什么要学习流体包裹体这门课?
流体包裹体能解决什么问题? 流体包裹体的特征
①
唯一性:FI保存了地质历史上曾经发生过的许多地质事件中流 体的唯一样品,为研究他们提供最直接的研究对象。其它方 法途径都是间接的、局限性的。 代表性:是原始的成岩成矿母流体的样品,又处于封闭状态, 所以代表性极好。用其他方法,矿物的转变、矿物的蚀变都 会改变测量结果的准确性。而流体包裹体,只要主矿物没有 彻底被蚀变,就可以用。 普遍性:地壳中没有缺陷的矿物是不存在的。在月岩、陨石、 人工合成的晶体中也是如此。所以说流体包裹体是普遍存在 的。 微观性:一般情况下,流体包裹体很小,我们现在能看清的 只能是5—10微米(μm)的包裹体(由于设备条件所限,再小 就看不清其中的相态)。
始信息; 超微量分析技术分析流体包裹体成分和超微量成矿元素和稀有气 体——获得成岩成矿流体的主要成分,指导矿床成因研究和找矿工 作;为了解地幔释气、成矿年龄等提供可靠数据来源。
流体包裹体研究内容及解决问题:
流体相的捕获状态和沉淀机制:
流体相的均一方式,均匀捕获和非均匀捕获等(斑岩型矿床的
流体包裹体成分分析PPT25页
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 பைடு நூலகம்头。 ——左
流体包裹体成分分析
•
46、寓形宇内复几时,曷不委心任去 留。
•
47、采菊东篱下,悠然见南山。
•
48、啸傲东轩下,聊复得此生。
•
49、勤学如春起之苗,不见其增,日 有所长 。
•
50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 பைடு நூலகம்头。 ——左
流体包裹体成分分析
•
46、寓形宇内复几时,曷不委心任去 留。
•
47、采菊东篱下,悠然见南山。
•
48、啸傲东轩下,聊复得此生。
•
49、勤学如春起之苗,不见其增,日 有所长 。
•
50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
临界点 等容线(g/cc)
液相
气相
CO2 体系
.
32
CO2-H2O体系 相图
温度降低
均一温度不正确
盐度不正确
. “卡脖子”
27
1. 流体包裹体定义
2. 流体包裹体岩相学
3. 流体包裹体相体系
4. 流体包裹体显微测温
5. 流体包裹体分析
6. 流体不混溶
7. 流体包裹体在地质学中应用
.
28
简单 H2O 体系相图
液相
冰 气相
.
T 29
简单水溶液体系温度-密度关系图
不同压力但都在 540℃下捕获的4类 包裹体(A,B, C, D), 具有不同的均一方 式。
若一群次生包裹体 的“卡脖子”发生在 和 L-V 曲线相交 之前:
均一温度正确 盐度正确
降温 至 和 L-V 曲线相交
.
25
捕获后变化 – 卡脖子-2
若一群次生包裹体
的“卡脖子”恰好发 生在 和 L-V 曲线 相交之时:
温度降低
均一温度不正确 盐度正确
.
“卡脖子”
26
捕获后变化 – 卡脖子-3
若一群饱和溶液 包裹体的“卡脖子” 发生在和 L-V 曲 线相交之时:
10
流体包裹体被捕获的机理
枝蔓状快速生长
层状包裹体群
包裹体在生长螺旋 之间或生长螺旋中
心被捕获
晶面裂纹、晶体不 良生长形成包裹体
晶体部分溶(熔)解产生蚀 坑,晶体再生后被捕获
晶体结构单元亚平行 生长,捕获.的包裹体
固体碎屑落在晶体 生长晶面上被捕获11
1. 流体包裹体定义
2. 流体包裹体岩相学
3. 流体包裹体相体系
.
16
原生和次生流体包裹体形成动画效果
.
17
原生和次生流体包裹体形成动画效果
.
18
原生和次生流体包裹体形成动画效果
S P
.
19
P和S包裹体具有不同相比例
降温后气泡出现
.
20
包裹体世代关系
早
晚
复杂世代的.流体包裹体
21
包裹体世代判别
原生包裹体和次生包裹体保存了 两种的形成主矿物的流体。原生
单偏光显微镜
紫外荧光显微镜
.
9
流体包裹体基本假设
1. 捕获在包裹体内的物质为均匀相-均一体系; 2. 包裹体的体积未发生变化-等容体系; 3. 捕获后未发生物质的渗漏或逃逸-封闭体系;
4. 压力对流体的效应已知或可以忽略; 5. 包裹体的形成原因可以确定; 6. 包裹体的均一温度可以精确的测定。
地质温度计和地质. 压力计的基础
成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿 物结晶生长过程中,被包裹在矿物晶格缺陷或穴窝中的、 至今尚在主矿物中封存并与主矿物有着相的界限的那一 部分物质。
气相 – H2O, CO2, CH4, N2, H2S
液相 - H2O, CO2, 石油
固相 – 石盐 (NaCl), 钾盐 (KCl)
赤铁矿, 硬石膏, 云母,
.
13
最常含有流体包裹体的10种矿物
石英
萤石
石盐
方解石 磷灰石
石榴石
闪锌矿
重晶石
黄玉
锡石
.
14
流体包裹体大小?
>mm: 博物馆藏品 3~25μm: 典型显微测温范围 1.5 μm: H2O或CO2 包裹体测试最小尺寸 5 μm: H2O + CO2 包裹体测试最小尺寸
9mm
20 μ m
.
15
流体包裹体成因分类
含CO2包裹体 溶液三相
有机包裹体
含有机质, 如甲烷、沥 青、高分子 碳氢化合物 等
除液相或气相
外,含有各种
子矿物如NaCl,
KCl, 赤铁矿, 方
解石等
. 熔融(岩浆)包裹体
由玻璃质+气
泡±流体组 成,有时见 少量结晶质
6
石油-水包裹体
气相
石油
.
7
紫外荧光显微镜
.
8
紫外荧光显微镜下含 石油包裹体的观察
流体包裹体及应用
资料来源:
中国科学院地质与地球物理研究所 范宏瑞研究员讲义
.
1
Edwin Roedder
.
(1919-20062)
1. 流体包裹体定义
2. 流体包裹体岩相学
3. 流体包裹体相体系
4. 流体包裹体显微测温
5. 流体包裹体分析
6. 流体不混溶
7. 流体包裹体在地质学中应用
.
3
什么是流体包裹体?
包裹体因捕获的是形成该主矿物
的母液,因此它的成分和热力学
参数,反映了矿物形成的化学环
境和物理化学条件的特点。而次
生包裹体是在主矿物形成之后,
捕获了与形成主矿物流体无关的
后期流体。因此,它只能反映主
矿物形成之后,经历过的化学环
境和物理化学条件。因为它们具
有不同的成因意义,如何正确区
分它们,在包裹题研究工作中是
原生 (P):与主矿物同时形
成,包裹的流体可代表主矿 物形成的流体和物理化学条 件。常为孤立状或束状分布, 有时呈平行生成带分布;
次生 (S):主矿物形成之后沿矿物
裂隙进入的热液在重结晶过程中 被捕获,常沿愈合的裂隙分布 。
假次生 (PS): 矿物生产过程中,
由于某种原因,晶体发生破裂或 形成蚀坑,成矿母液进入其中, 经封存愈合形成的包裹体。由于 晶体的继续生长,这种包裹体分 布在晶体内部。沿愈合的裂隙分 布但不切穿整个晶体。
4. 流体包裹体显微测温
5. 流体包裹体分析
6. 流体不混溶
7. 流体包裹体在地质学中应用
.
12
流体包裹体研究的步骤
野外 – 对最终结果解释影响极大
采集岩石(矿石)样品
采样
室内挑选
磨制两面光薄片(0.1-0.3mm)
素描
显微镜下观察
矿物共生组合及流体包裹体期次
划分
测试
测试
Thtot, ThCO2, Tm, 等
黄铜矿, 黄铁矿, 磁铁矿, 碳酸盐, …
硅酸盐玻璃 或 重结.晶熔体
4
S
LV
S S
.
5
流体包裹体分类
根据相态
液体包裹体 气体包裹体
含子矿物包裹体
液相占整个 包裹体体积 50%以上, 均一到液相
气相占整个 包裹体体积 至少大于 50%以上, 均一到气相
在低于CO2临 界温度时可见 气体CO2、液 体CO2、和水
非常重要的。
判别原生和次生包裹体要
. 格外小心
22
相比例估计
.
23
包裹体捕获后变化 – “卡脖子”
Necking down
“卡脖子”包裹 体群是指已形 成的包裹体, 在后来的重结 晶作用影响 下,被分离成 二个以上包裹 体的总称。
合成 NaNO3 晶体裂隙化后
的再愈合过程
.
24
捕获后变化 – 卡脖子-1
两类均一至液相, 一类均一至气相Fra bibliotek 一类临界均一。
AB
.
CD
30
H2O-NaCl体系温度-组分图解
4类代表性NaCl-H2O包裹体 (1,2,3,4)由于其含盐度不同(10, 23.5, 25 and 27 wt% NaCl)在冷
冻过程中显示的相变有显著差别。
.
31
CO2 体系P-T相图
液-气相线
液相
气相
CO2 体系
.
32
CO2-H2O体系 相图
温度降低
均一温度不正确
盐度不正确
. “卡脖子”
27
1. 流体包裹体定义
2. 流体包裹体岩相学
3. 流体包裹体相体系
4. 流体包裹体显微测温
5. 流体包裹体分析
6. 流体不混溶
7. 流体包裹体在地质学中应用
.
28
简单 H2O 体系相图
液相
冰 气相
.
T 29
简单水溶液体系温度-密度关系图
不同压力但都在 540℃下捕获的4类 包裹体(A,B, C, D), 具有不同的均一方 式。
若一群次生包裹体 的“卡脖子”发生在 和 L-V 曲线相交 之前:
均一温度正确 盐度正确
降温 至 和 L-V 曲线相交
.
25
捕获后变化 – 卡脖子-2
若一群次生包裹体
的“卡脖子”恰好发 生在 和 L-V 曲线 相交之时:
温度降低
均一温度不正确 盐度正确
.
“卡脖子”
26
捕获后变化 – 卡脖子-3
若一群饱和溶液 包裹体的“卡脖子” 发生在和 L-V 曲 线相交之时:
10
流体包裹体被捕获的机理
枝蔓状快速生长
层状包裹体群
包裹体在生长螺旋 之间或生长螺旋中
心被捕获
晶面裂纹、晶体不 良生长形成包裹体
晶体部分溶(熔)解产生蚀 坑,晶体再生后被捕获
晶体结构单元亚平行 生长,捕获.的包裹体
固体碎屑落在晶体 生长晶面上被捕获11
1. 流体包裹体定义
2. 流体包裹体岩相学
3. 流体包裹体相体系
.
16
原生和次生流体包裹体形成动画效果
.
17
原生和次生流体包裹体形成动画效果
.
18
原生和次生流体包裹体形成动画效果
S P
.
19
P和S包裹体具有不同相比例
降温后气泡出现
.
20
包裹体世代关系
早
晚
复杂世代的.流体包裹体
21
包裹体世代判别
原生包裹体和次生包裹体保存了 两种的形成主矿物的流体。原生
单偏光显微镜
紫外荧光显微镜
.
9
流体包裹体基本假设
1. 捕获在包裹体内的物质为均匀相-均一体系; 2. 包裹体的体积未发生变化-等容体系; 3. 捕获后未发生物质的渗漏或逃逸-封闭体系;
4. 压力对流体的效应已知或可以忽略; 5. 包裹体的形成原因可以确定; 6. 包裹体的均一温度可以精确的测定。
地质温度计和地质. 压力计的基础
成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿 物结晶生长过程中,被包裹在矿物晶格缺陷或穴窝中的、 至今尚在主矿物中封存并与主矿物有着相的界限的那一 部分物质。
气相 – H2O, CO2, CH4, N2, H2S
液相 - H2O, CO2, 石油
固相 – 石盐 (NaCl), 钾盐 (KCl)
赤铁矿, 硬石膏, 云母,
.
13
最常含有流体包裹体的10种矿物
石英
萤石
石盐
方解石 磷灰石
石榴石
闪锌矿
重晶石
黄玉
锡石
.
14
流体包裹体大小?
>mm: 博物馆藏品 3~25μm: 典型显微测温范围 1.5 μm: H2O或CO2 包裹体测试最小尺寸 5 μm: H2O + CO2 包裹体测试最小尺寸
9mm
20 μ m
.
15
流体包裹体成因分类
含CO2包裹体 溶液三相
有机包裹体
含有机质, 如甲烷、沥 青、高分子 碳氢化合物 等
除液相或气相
外,含有各种
子矿物如NaCl,
KCl, 赤铁矿, 方
解石等
. 熔融(岩浆)包裹体
由玻璃质+气
泡±流体组 成,有时见 少量结晶质
6
石油-水包裹体
气相
石油
.
7
紫外荧光显微镜
.
8
紫外荧光显微镜下含 石油包裹体的观察
流体包裹体及应用
资料来源:
中国科学院地质与地球物理研究所 范宏瑞研究员讲义
.
1
Edwin Roedder
.
(1919-20062)
1. 流体包裹体定义
2. 流体包裹体岩相学
3. 流体包裹体相体系
4. 流体包裹体显微测温
5. 流体包裹体分析
6. 流体不混溶
7. 流体包裹体在地质学中应用
.
3
什么是流体包裹体?
包裹体因捕获的是形成该主矿物
的母液,因此它的成分和热力学
参数,反映了矿物形成的化学环
境和物理化学条件的特点。而次
生包裹体是在主矿物形成之后,
捕获了与形成主矿物流体无关的
后期流体。因此,它只能反映主
矿物形成之后,经历过的化学环
境和物理化学条件。因为它们具
有不同的成因意义,如何正确区
分它们,在包裹题研究工作中是
原生 (P):与主矿物同时形
成,包裹的流体可代表主矿 物形成的流体和物理化学条 件。常为孤立状或束状分布, 有时呈平行生成带分布;
次生 (S):主矿物形成之后沿矿物
裂隙进入的热液在重结晶过程中 被捕获,常沿愈合的裂隙分布 。
假次生 (PS): 矿物生产过程中,
由于某种原因,晶体发生破裂或 形成蚀坑,成矿母液进入其中, 经封存愈合形成的包裹体。由于 晶体的继续生长,这种包裹体分 布在晶体内部。沿愈合的裂隙分 布但不切穿整个晶体。
4. 流体包裹体显微测温
5. 流体包裹体分析
6. 流体不混溶
7. 流体包裹体在地质学中应用
.
12
流体包裹体研究的步骤
野外 – 对最终结果解释影响极大
采集岩石(矿石)样品
采样
室内挑选
磨制两面光薄片(0.1-0.3mm)
素描
显微镜下观察
矿物共生组合及流体包裹体期次
划分
测试
测试
Thtot, ThCO2, Tm, 等
黄铜矿, 黄铁矿, 磁铁矿, 碳酸盐, …
硅酸盐玻璃 或 重结.晶熔体
4
S
LV
S S
.
5
流体包裹体分类
根据相态
液体包裹体 气体包裹体
含子矿物包裹体
液相占整个 包裹体体积 50%以上, 均一到液相
气相占整个 包裹体体积 至少大于 50%以上, 均一到气相
在低于CO2临 界温度时可见 气体CO2、液 体CO2、和水
非常重要的。
判别原生和次生包裹体要
. 格外小心
22
相比例估计
.
23
包裹体捕获后变化 – “卡脖子”
Necking down
“卡脖子”包裹 体群是指已形 成的包裹体, 在后来的重结 晶作用影响 下,被分离成 二个以上包裹 体的总称。
合成 NaNO3 晶体裂隙化后
的再愈合过程
.
24
捕获后变化 – 卡脖子-1
两类均一至液相, 一类均一至气相Fra bibliotek 一类临界均一。
AB
.
CD
30
H2O-NaCl体系温度-组分图解
4类代表性NaCl-H2O包裹体 (1,2,3,4)由于其含盐度不同(10, 23.5, 25 and 27 wt% NaCl)在冷
冻过程中显示的相变有显著差别。
.
31
CO2 体系P-T相图
液-气相线