流体包裹体及应用144页PPT
第十一章典型矿床中的流体包裹体
• 2.盐度 • 流体包裹体的盐度有两种,一种是产于IV到 VI带中的流体熔融包裹体和含子矿物 • 包裹体,这类属于高盐度包裹体,而在Ⅹ带石英 中的流体包裹体则盐度较低。对流体熔融包裹体 和二类流体包裹体的盐度进行了测定,其结果为: 流体熔融包裹体29,40wt%Na(、1~32。Owt% NaCl含子矿物流体包裹体28。5wt%NaCl~ 31.5wt%:NaCl,液体包裹体4.9wt%NaCl~9.1wt %NaCl。液体包裹体的盐度是从产于石英一长石 核钉英中的包裹体中测得的。
图11.5可可托海三号伟晶岩脉形成的物理化学条件 A.绿柱石和I到III带的形成P-T条件;B.结晶出原生的透锂长石,箭头表示伟晶岩冷却的 趋势;C.透裡长石被锂辉石和石英所交代;D.形成原生的锤辉石和石英,相对于第V和 VI带;E.酸盐烙融体分出一个流体相,其中主要是H2O,含少量NaCl和CO2;F.硅酸盐熔融 体继续分出流体相,并且流体相又发生相分离,分出―个富含CO2流体,另一个是富含 NaCl-CO2的相,相当于第VI带或Ⅶ带;G.部分锂辉石被锂霞石+石英或锂沸石、锂云母和 石英所代替,进一 步分异到石英时,流体代替硅酸盐熔体;Bsp.β锂辉石; Pet.透锂长 石;A.Spd.锂辉石;Ecr.锂霞石
图11.2可可托海三号花岗伟晶者矿脉平面图〈据卢焕章,1997〉1.辉长岩; 2罾文象和变文象带(Ⅰ带〉;榇粒状钠长石带(Ⅱ带〉;块状黴斜长石带 (Ⅲ带〉;白云母带 (Ⅳ带〉;叶钠长石锂辉石带(Ⅴ带);1.石英锂辉石 带〈Ⅵ带、1白云母钠长石带(Ⅶ带); 1钠长石锂 云母带(Ⅷ带);10.石英 铯榴石带(Ⅸ带):11.核部块状石英坛石带(Ⅹ带);12.花岗岩带
• 表11.1 三号伟晶岩脉中的包裹体
流体包裹体
•
4、纯液相包裹体(liquid inclusion)
• 这类包裹体中只出现液体相一个相。密度比 较高(freezing识别,出现冰、气泡)。
• 由二氧化碳气和二氧化碳液相组成
• 只要稍加温,气相(VCO2)与液相(LCO2) 就会均一(≤31.1℃)。
• 常见于深变质岩、金矿之中。
8、含子矿物(daughter mineral)的 多相包裹体
• 此类包裹体:气、液、固共存。 ↓ ↓ ↓ V L D(daughter mineral) • 说明流体中溶质含量较高 • 伟晶岩、矽卡岩、斑岩型矿床较为常见
只有在低温 或 高压和低温高压条件下形成 , 密度较高。
•
5、气-液包裹体 或 气液包裹体 (vapor-liquid inclusion)
此类包裹体最为常见,包裹体中气相与液相共存。 • 由于它们的气体、液体与包裹体体积的比例变 化大,我们可以把它们进一步划分成两类: • 富气相(vapor-rich)的(气液)包裹体和富液相 (liquid-rich)的(气液)包裹体。 • 富气相包裹体:气液比=气体体积╱气体体积+ 液体体积×100% >50% • 富液相包裹体:气液比=气体体积∕气体体积+液 体体积×100% <50%
1、异常包裹体(non-normal inclusion) ——在形成过程中捕获的是多相流体的包裹体。
2、正常包裹体(normal inclusion) ——在形成过程中捕获的是单相流体(均匀流 体)的包裹体。
包裹体分析技术页PPT文档
1.1.2 包裹体研究意义
(1)与现代测试技术紧密结合; (2)先进的手段和有效的方法; (3)研究内容:组分、温度、压力、盐度、逸散度、pH值、 Eh值、密度、体积、流动速度、稳定同位素、地热史…… (4)广泛应用:环境恢复、能源地质、流体研究、成矿预 测…… (5)时效性:直观、省时、经济、准确,广泛应用于地学各 领域。
(9)无论是在被包裹前或被包裹后,包裹体与主矿 物间几乎不发生物质的溶解、交换或其它化学反应;
(10)现今所见包裹体的外壁就是主矿物与包裹体 的相界限。由于界限的存在,包裹体与主矿物之间互 为独立。
二、包裹体成因与分类 2.1 流体包裹体的形成 2.2 包裹体形成后的可能变化 2.3 包裹体分类
2.1 流体包裹体的形成 2.1.1 包裹体的形成
从系统角度看,包裹体的最终形成可分为5种情况,即均 匀流体中的包裹体形成、非均匀流体中的包裹体形成、变生包 裹体的形成、次生包裹体的形成以及包裹体形成后的变化等。
均匀流体中包裹体的形成具有代表性。即在一个晶体完整 的结晶过程中,任何阻碍或抵制晶体生长的因素都可造成晶体 缺陷,从而产生包裹体。
1.1 包裹体研究意义 1.1.1 包裹体研究简史
(1)萌芽阶段(公元10世纪-1858)
我国是最早发现包裹体并有文字记载的国家。北宋 (1031-1095)时期沈括的《梦溪笔谈》:“滴翠珠”
李时珍的《本草纲目》中都有记载:“空青者,中空 有水如油,治盲立效…”
在国外有Boyle(1672)、D.Brewter(1823)、 H.Davy(1822)等人都先后在水晶、黄玉、石英、绿柱石中 发现包裹体存在,认为是矿物显微结构的一部分。
2.1.1.1 从均匀流体中结晶出的矿物包裹体
(1)晶体生长速度:培养基供应不均匀,影响晶体的点、 线、面发育。晶体快速生长时,形成树枝状;慢速生长时, 致密层封闭培养基,捕获包裹体。
流体包裹体
流体包裹体在地学中的应用一.概述流体包裹体在矿物晶体中出现是普遍的,它几乎是和主矿物同时并由相同物质形成的。
流体充填在晶体缺陷中后,立即为继续生长的主矿物所封闭,基本没有物质的渗漏,体积基本不变。
因此,流体包裹体是原始成矿,成岩溶液或岩浆熔融体的代表。
流体包裹体作为成矿流体样品是矿物最重要的标型特征之一,通过研究流体包裹体,可为解决一些地质问题提供可靠资料[1]。
二.流体包裹体的基本概念流体是一个在应力作用下发生流动, 并且与周围介质处于相对平衡状态下的物体。
矿物中流体包裹体是成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿物结晶生长过程中, 被包裹在矿物晶格缺陷或穴窝中的至今尚在主矿物中封存并与主矿物有着相的界限的那一部分物质。
根据成因, 包裹体可分为原生、假次生和次生等。
矿物流体包裹体作为一种研究方法, 起初主要被应用于矿床学的研究。
目前, 流体包裹体的分析已广泛应用于矿床学、构造地质学、壳幔演化、地壳尺度上的流体迁移石油勘探以及岩浆岩系统的演化过程等地学领域。
流体包裹体研究的基本任务之一, 即是尽可能地提供准确详细的有关古流体组成的物理化学信息, 以便于建立古流体作用过程的地球化学模型[2]。
三.流体包裹体研究方法流体包裹体研究是地质流体研究的一个重要组成部分。
自20世纪70年代以来,流体包裹体研究有重大进展,尤其在单个流体包裹体成分分析方面。
随着激光拉曼显微探针(LRM)、扫描质子微探针( PIXE)、同步加速X—射线荧光分析(SXRF)及一些质谱测定法的应用与发展,我们巳经能够较精确的测定单个流体包裹体成分,并且己有可能对流体包裹体中最重要的参数一重金属元素进行较精确的测定。
相对而言,流体包裹体镜下观察和均一温度的研究手段较为单一,主要为测温分析与扫描电子显微镜等方法,而成分分析研究方法则多样化。
成分测试主要向微区方向发展,可分为显微测温(对包裹体盐度的测试)及包裹体成分的仪器分析,仪器分析又可分为三类,即非破坏性单个包裹体的成分分析(如红外光谱法),破坏性单个包裹体成分分析(如激光等离子光谱质谱法)和破坏性群体包裹体的成分分析(如色谱—质谱法)。
流体包裹体课件ppt
1、熔融包裹体(melt inclusion)
熔融包裹体也称为硅酸盐包裹体
(silicate inclusion),可以分为:晶质熔融 包裹体(crystalline melt inclusion)和非晶 质熔融包裹体(amorphous melt inclusion)。
非晶质熔融(硅酸盐)包裹体也可以
⑵ VCO2与LCO2的均一化温度(ThCO2)一般<31.
第二章流体包裹体(Fluid inclusion)
(三)、物相分类(classification of physical phase)
分类依据:在成因分类基础上,根据现 在常温、常压条件下所见到的包裹体中所 出现物理相态及组合来进行的分类。
Na2CO3: -3℃;
④ 溶解的先后: 先溶解,
后溶解;
P136—137 图9-3,图9-4。
镜下的鉴定工作是我们研究流体包裹体的基础。
非晶质熔融(硅酸盐)包裹体也可以称为玻璃质包裹体(glass inclusion)。
4、子矿物(D— daughter mineral)
2)气+液→加温→气体变大,液体变小→液体消失→均一为气相(等容线下部)。
有机酸的脱酸反应会涉及CO2、CH4等气体,直接影响到成矿体系的Eh条件。
主要研究成岩成矿的年龄。
们的任务,就是通过我们的工作,找出成 富气相(vapor-rich)的(气液)包裹体和富液相(liquid-rich)的(气液)包裹体。
会形成水石盐(NaCl·2H2O),据其熔点,求盐度。
矿的规律性(根本原因的外部表现的集 1℃(纯二氧化碳的均一温度为31.
• 一个矿床的形成,归纳起来主要有两大方
面的控制条件:地质条件(地层、构造、
地球化学 第7讲(1)-流体包裹体
最常见流体包裹体的矿物为:石英、萤石、石盐、方解石、石榴子石、磷灰石、白 云石、重晶石、黄玉和闪锌矿。
流体包裹体长径一般小于100μm,常为10μm。
矿物包裹体可自成为一个独立的地球化学体系,这包括:
(1)均一体系:包裹体形成时,捕获在包裹体内的物质为均 匀相。
原生包裹体
变生包裹体
(1)晶面出现凹凸不平形成包 裹体:
这是由于晶体的培养基供应不均匀, 影响晶体的点、线、面均匀发育的 结果。 又分成两种情况,当晶体快速生长 时,培养基供应充足部位先生长, 而供应较少或来不及供应处则形成 空洞,在一个晶面上出现多孔的树 枝状;
当晶体慢速生长时,培养基供应不均匀,会形成 多孔层与致密层相间,致密层暂时封闭培养基, 从而捕获了包裹体(图a),构成层状包裹体。这 种情况在天然水晶和长石中是常见的。
(2)晶体的生长螺旋形成的 包裹体 :
在人工合成的水晶中可见 到,在相邻的大生长螺旋 之间,有时也在生长螺旋 中心,常常形成流体包裹 体。
在绿柱石晶体中常有平行于c轴的细长管状包裹体,它是沿生 长螺旋中心形成的。 如果某些螺旋比另外一些螺旋生长得快,则晶面粗糙,形成许 多带角的凹沟,后来的生长层将它盖上,可形成负晶形包裹体。 这种包裹体通常比较大,呈孤立或随机分布状产出。
沉积岩、变质岩的包裹体研究、包裹体年代学等与国外还有差距。
第二节
流体包裹体的概念和分类
一、矿物中包裹体的定义
矿物包裹体是成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿物结晶生 长过程中,被包裹在矿物晶格缺陷或穴窝中的、至今尚在主矿物中封存并 与主矿物有着相界限的那一部分物质。
流体包裹体实验PPT课件(模板)
实验一、流体包裹体显微镜岩相学研究
一、实验目的
流体包裹体的镜下识别 流体包裹体的镜下特征的认识 认识流体包裹体的不同物理相态 掌握流体包裹体的物相分类和成因分
类
二、基本原理
1. 均匀体系。包裹体形成时,被捕获的流体 是均匀体系,即主矿物是在均匀体系中生长 的。
2. 封闭体系。充填(滞留)在晶体缺陷中的 流体为主矿物封闭,形成独立的封闭体系, 没有外来物质的加入和内部物质的逸出。
(3) 根据包裹体的物理相态可以分为固体包裹体、 热水溶液包裹体和熔融包裹体三类。热水溶液包裹体 可以进一步分为纯液相包裹体、纯气相包裹体、富液 相包裹体、富气相包裹体、含子矿物的多相包裹体、 含液体CO2包裹体和有机包裹体7大类,而熔融包裹 体还可以分为非晶质熔融包裹体、晶质熔融包裹体和 熔融-溶液包裹体3类。
FIG.4-2. Vapor-saturated phase relations in the NaCl-H2O system. I = ice; L = liquid; HH = hydrohalite; H = halite; P = peritectic(包晶 反应点) (0.1°C, 26.3 wt.% NaCl); E = eutectic (-21.2°C, 23.2
流体包裹体及其在含油气盆地研究中应用
摘要流体包裹体及其在含油气盆地研究中应用流体包裹体是成矿成岩流体(含气液的流体或硅酸盐熔融体)在矿物结晶过程中,被包裹在矿物晶格缺陷或穴窝中的、至今尚在主矿物中封存并与主矿物有着明显的相边界的那一部分物质。
矿物包裹体的形成贯穿在整个地质作用过程中。
它记录并保存地质作用不同阶段的物理-化学特征包括温度、压力、PH、EH、化学组成、矿化度、同位组成、热动力条件等。
油气运移过程中形成的流体包裹体,往往产自于碳酸盐岩和碎屑岩中的方解石脉、石英脉、石英次生加大边、石英颗粒裂缝愈合处或与其同期形成的萤石、硬石膏等自生矿物中,特别是被包裹在晶格缺陷或窝穴内的那部分由有机的液体、气体组成的包裹体,称为有机包裹体,它们是油气运移聚集过程的直接标志。
流体包裹体作为一个独立的地球化学体系,可以反映成矿时的流体性质(包括温度、压力、pH值等),作为流体活动的唯一原始样品和直接标志,正日益受到国内外地质学家的高度重视。
有机包裹体研究在盆地演化史分析、恢复盆地古地温、分析断裂构造、研究油气运移通道、确定油气运移成藏期次、确定油气演化程度和形成阶段、确定油气勘探深度和预测远景区以及油气源对比等领域取得了明显的进展,已成为生油盆地研究的重要手段之一。
流体包裹体的均一温度、冰点和成分是目前研究流体包裹体最为关心的内容,特别是在油气勘探方面。
包裹体的均一温度反映的是包裹体形成时的温度,对于油气包裹体而言也就是油气充注时的温度,因此利用包裹体的均一温度可以研究成藏期次及充注时间。
包裹体的冰点可以用于研究流体的盐度,从而恢复古环境。
包裹体的成分还可以直接反映流体的组分。
一、流体包裹体的分类流体包裹体可根据组成的不同分为七个亚类:1)、纯液体包裹体。
在室温下为单相液体包裹体,纯液体包裹体通常是从均匀流体中捕获的,形成温度一般较低(图1);2)、纯气体包裹体。
在室温下为单相气体包裹体,一般是在火山喷气、气成条件或沸腾条件下形成的;3)、液体包裹体。
包裹体分析技术页PPT文档99页PPT
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
包裹体分析技术页PPT文档
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
56、书不仅是生活,而且是现在、过 去次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
讲课3-流体地质学-第三章
流体包裹体的定义
物相变化
是指矿物形成和改造期间,以流体相的形式(溶液相 包裹体壁上的重 结晶和再溶解 和熔体相)捕获在矿物生长的各种缺陷中,至今尚在
收缩 裹体体积不变 主矿物中封存并与主矿物有着相的界限的那一部分物
可逆过程,包
一相变多相
化学变化
质。
子矿物的形成
FI捕获后的变化 形状变化
纯H2O包裹体的相变过程
• 具有等容线 4 的包裹体——富液 相FI
捕获后自然相变过程:L-LG-SLGSG 实验室加热时相变过程:SG-SLGLG-L • 具有等容线5的包裹体——具临界摩 尔体积FI
加热时相变过程:SG-SLG-LG-SCF
(超临界流体) • 具有等容线6的包裹体——富气相FI 加热时相变过程:SG-SLG-LG-G
三个应用前提——“等容等组分无物质交换” 不可逆过程,
体积变化
伸展变形物理变化来自“卡脖子”现象渗漏和部分裂开
爆裂
包裹体体积改 变
流体包裹体的分类
捕获物相状态分类
正常包裹体
成因分类 物相分类
熔融包裹体 (硅酸盐包裹体) G+V
过渡型包裹体 (熔—流包裹体) G+V+L
异常包裹体
纯气相包裹体 V 纯液相包裹体 L
原生包裹体 次生包裹体 假次生包裹体
含液态二氧化碳 的三相包裹体 LH2O+LCO2+VCO
2
气-液包裹体 L+V
纯二氧化碳 包裹体 含子矿物的 多相包裹体 L+V+S1+S2 有机质包裹体
第三章 流体包裹体的相平衡
Chapter 3 Phase equilibrium of fluid inclusion