第四章功率放大电路
南邮模电 第四章 差动放大电路和功率放大电路
RC
+
V1 + Uid1 - -
Uid2
V2
Uid=Uid1-Uid2
-
+
11
图4―13基本差动放大器的差模等效通路
U od 1. 差模电压放大倍数 Aud U id 在双端输出时 U od U od 1 U od 2 2U od 1 2U od 2
U id U id1 U id 2 2U id1 2U id 2
+
~ U i1 U i 2 2 ~ U i1 U i 2 2
~
RE -UEE
U i1 U i 2 2 2
~ U i1 U i 2
32
双端输出时: Uo AudUid Aud (Ui1 Ui 2 )
1 单端输出时: U o1 AudU id Auc (单)U ic 2 1 U o 2 Aud U id Auc (单)U ic 2
6
图4―12 基本差动放大器
RC UC1 U i1 + V1
RL Uo - V2
RC UC2
U CC
U CE1Q U CE 2Q U CC 0.7 I C1Q RC
U C1Q U C 2Q U CC I C1Q RC
静态时,差动放 大器两输出端之 间的直流电压为 零。
7
34
六、放大电路的四种接法
差动放大电路有两个输入端和两个输出端, 所以信号的输入端和输出端有四种不同的连 接方式,即(1)单端输入,单端输出;(2) 双端输入,双端输出;(3)单端输入,双端 输出;(4)双端输入,单端输出。图4.2.6 给出了电路图。
35
(a)双端输入、双端输出 (b)双端输入、单端输出
功放电路习题
第四章 功率放大电路1.如图所示OCL 功放电路。
已知V CC =18V ,R L =16Ω,R 1=10k Ω,R f =150k Ω,运放最大输出电流为±25mA ,T 1、T 2管饱和压降V CES =2V 。
试回答下列问题:(1)若输出信号出现交越失真,电路应如何调整方可消除?(2)为使负载R L 上获最大的不失真输出电压,输入信号的幅度V im 为多少?(3)试计算负载R L 上最大的不失真输出功率P omax ,电路的效率η。
解 (1)若输出信号出现交越失真,通常可调整图中R 3电阻使其阻值适当加大,注意不可过大,否则会造成T 1、T 2的过流甚至烧毁。
(2)输入信号幅度V im 应满足V im ≤v om A V 式中V om 由图可得 V om =V CC -V CES =16V 而电压放大倍数A v 为 A v =(R 1+ R f )/ R 1=16 因此 V im ≤(16V/16)=1V(3)R L 上最大的不失真输出功率P omaxP omax =8]2/)[(2=-LCES CC R V V W 电路的效率η=V o P P max 式中P V 为电源的总功率,其值为 P V =5.112=Lom CC R V V πW 所以η= 8/11.5= 70% 2.在乙类互补对称功率放大器中,因晶体管输入特性的非线性而引起的失真叫做 。
解: 交越失真3.在功率放大电路中,甲类放大电路是指放大管的导通角等于 ,乙类放大电路是指放大管的导通角等于 ,甲乙类放大电路是指放大管的导通角等于 。
解:360° 180° 大于180°而小于360°4.有一OTL 电路,其电源电压V CC =16V ,R L =8Ω。
在理想情况下,可得到最大输出功率为 W 。
解:4W5.乙类互补功率放大电路的效率较高,在理想情况下其数值可达 ,但这种电路会产生一种被称为 失真的特有非线性失真现象。
《模拟电子》杨素行第三版第4章第10章习题答案
第四章功率放大电路习题答案题4-6 分析OTL电路原理,已知V CC =10V,R3=1.2K,R L=16 Ω,电容足够大。
(1)静态时,电容C2两端的电压应该等于多少?调整哪个电阻才能达到上述要求。
(2)设R1=1.2K,三极管的β=50,P CM =200mW,若电阻R2或某个二极管开路,三极管是否安全?解: (1) 静态时,电容C2两端的电压应该等于V CC/2 =5V.达到上述要求应调整R1 (2)题4-7 分析OCL电路原理,(1)静态时,负载R L中的电流应为多少?如不符合要求应调整哪个电阻?(2)若输出电压出现交越失真,应调整哪个电阻?如何调整?(3)若二极管VD1或VD2的极性接反将产生什么后果?(4)若VD1、VD2、R2中任意一个开路,将产生什么后果?解: (1)静态时,负载R L中的电流应为0. 如不符合要求应调整R1(2)若输出电压出现交越失真,应调整R2,增大R2(3)若二极管VD1或VD2的极性接反,三极管因电流和功耗过大将被烧毁(4) 同(3)第十章直流电源习题答案题10-1 在图中的单相桥式整流电路中,已知变压器二次电压有效值为U2=10V,试问:(1)正常时直流输出电压U O(AV)=?(2)二极管VD1虚焊,将会出现什么现象?(3)如果VD1极性接反,可能出现什么问题?(4)如果四个二极管全部接反,则U O(AV)=?解: (1) U O(AV)=0.9 U2=9 V (2) 将成为半波整流,U O(AV)=0.45 U2=4.5 V(4)如果四个二极管全部接反,则U O(AV)=-0.9 U2=-9 V解: (1)R L C =0.04s T/2 = 0.02s/2 =0.01s。
《功率放大电路 》课件
xx年xx月xx日
• 功率放大电路概述 • 功率放大电路的工作原理 • 功率放大电路的设计与实现 • 功率放大电路的常见问题与解决
方案 • 功率放大电路的发展趋势与展望
目录
01
功率放大电路概述
定义与特点
总结词:基本概念
详细描述:功率放大电路是一种电子电路,其主要功能是将微弱的输入信号放大 至足够大的功率,以满足各种应用需求。其主要特点包括高输出功率、高效率、 良好的线性度和稳定性等。
功率放大电路的效率问题
01
功率放大电路的效率直接影响到能源利用率和设备发热情况。
02
功率放大电路的效率是指在输出功率中有效功率所占的比例。
如果效率不高,会导致能源利用率低,设备发热严重。
解决方案: 采用高效功率放大器件和拓扑结构减小能量损耗。
05
电流连续工作模式,晶体管在整个信号周期内均 处于导通状态,适用于低频信号放大。
乙类功率放大电路
采用两个晶体管分别放大正负半周期信号,以实 现功率放大,适用于高频信号放大。
3
甲乙类功率放大电路
结合甲类和乙类放大电路的特点,晶体管在信号 正负半周期内导通,适用于一般信号放大。
功率放大电路的效率分析
01
失真
由于非线性效应引起的输出信 号畸变程度。
带宽
表示功率放大电路能够正常工 作的频率范围。
03
功率放大电路的设计与实 现
功率放大电路的设计原则
效率优先
设计时应优先考虑效率,确保电路在放大信 号的同时,尽可能减少能量损失。
线性度
在放大过程中,应保持信号的线性关系,避 免失真。
稳定性
为避免自激振荡,电路设计应确保功率放大 电路的稳定性。
第四章谐振功率放大器
4.1 概述 4.2 谐振功率放大器的原理 4.3 晶体管线形分析放大器的折线
近似分析法
4.4 谐振功率放大器电路
4.5 谐振功率放大器实例 4.6 晶体管倍频器
退出
4.1 概述
1、使用高频功率放大器的目的: 放大高频大信号使发射机末级获得足够大的 发射功率。
2、高频功率信号放大器使用中需要解决的两个 问题?
高效率输出 高功率输出
联想对比: 高频功率放大器和低频功率放大器的共同 特点都是输出功率大和效率高。
退出
4.1 概述(续)
3、谐振功率放大器与小信号谐振放大器的异同之处。
相同之处:它们放大的信号均为高频信号,而且放大器的负 载均为谐振回路。
不同之处:激励信号幅度大小不同;放大器工作点不同; 晶体管动态范围不同。
退出423谐振功率放大器的折线近似分析法临界状态的特点是输出功率最大效率也较高比最大效率差不了许多可以说是最佳工作状态发射机的末级常设计成这种状态在计算谐振功率放大器时也常以此状过压状态的优点是当负载阻抗变化时输出电压比较平稳且幅值较大在弱过压时效率可达最高但输出功率有所下降发射机的中间级集电极调幅级常采用这种状欠压状态的功率和效率都比较低集电极耗散功率也较大输出电压随负载阻抗变化而变化因此较少采用
基极偏置为负值;半通角c<90,即丙类工作状态; 负载为LC谐振回路。
退出
4.3 谐振功率放大器的折线近似分析法
一、折线法 所谓折线法是将电子器件的特性曲线理想化,用一组折线 代替晶体管静态特性曲线后进行分析和计算的方法。 对谐振功率放大器进行分析计算,关键在于求出电 流的直流分量Ic0和基频分量Icm1。
iB≈0,iC≈0,uCE≈UCC。三极管呈现高阻抗,类似于 开关断开。 2)放大状态 : uB>0,发射结正偏,集电结反偏, iC=βiB。 3)饱和状态 : uB>0,两个PN结均为正偏, iB≥IBS(基极临界饱和电流)≈UCC/βRc ,此时 iC=ICS(集电极饱和电流)≈UCC/Rc 。三极管呈现 低阻抗,类似于开关接通。
功率放大电路教学课件
此时的效率为多少?
3、乙类功放的失真及电路改进
R1 T1
··
Vi R2
T2
+EC
RL
四、无输出变压器的功率放大器
1、互补对称式OTL电路
B
+
Vi
-
+EC T1 A+
T2 RL
电路工作之前,调节电路参数使 VA = VB = 1/2 EC
可变电阻
典型的实用电路
VBE扩大电路
+EC R3
T1
R1
+ +
准互补对称式OTL电路 复合管的结构形式
c
b
T1
T2
e
c
T2
b
T1
e
c b
e
c b
e
c
T2
b
T1
e
c
b T1
T2
e
β≈β1β2
c b
e
c b
e
rbe ≈rbe1+ β1rbe2
准互补对称式OTL电路
+ 放大器
Vi
-
+EC
T1
T2
+
+
T3
T4 RL Vo
-
# OTL电路的指标计算和乙类推挽功放完全 一样,只须将变压器耦合中的EC换成1/2EC。
效率η→ηmax 负载上的信号功率与电源提供的直流功率之比。
额定功率下的失真度
提高输出功率和减小失真是一对矛盾。在音频和视频设 备中,对失真度要求较高;在继电器的推动电路中,只要求输 出较大的功率。
3、功放的特点(与电压放大器相比)
工作原理相同 功能不同
大一电路第四章总结知识点
大一电路第四章总结知识点电路是电子学的基础,是电子设备能够正常工作的重要组成部分。
大一电路课程的第四章主要介绍了放大电路和运算放大器的原理和应用。
通过学习这一章节的内容,我对电路的工作原理和相关的数学模型有了更深入的理解。
以下是我对该章节的总结和知识点的梳理。
一、放大电路的基本原理和分类放大电路是指能够将输入信号经过放大处理后输出的电路。
在第四章中,我们学习了放大电路的基本原理和分类。
放大电路按照放大的方式可以分为电压放大、电流放大和功率放大电路。
常见的放大电路有共射、共集和共基的晶体管放大电路,以及差动放大器和运放等。
各种放大电路有各自的适用范围和特点,在实际中需要根据具体的应用场景选择合适的放大电路。
二、运算放大器及其应用运算放大器是一种特殊的放大电路,在现代电子设备中得到了广泛应用。
运算放大器具有高增益、高输入阻抗、低输出阻抗等优点,被广泛用于信号放大、滤波、比较、计算以及反馈控制等方面。
在第四章中,我们深入学习了运算放大器的原理和应用。
运算放大器是一种差分放大电路,具有两个输入端和一个输出端。
它的输入电阻非常大,可以看作无穷大,输出电阻非常小,可以看作零。
运算放大器具有非常高的增益,通常达到几万甚至几十万倍以上。
通过在输入端加入反馈电阻,我们可以实现运算放大器的各种应用。
运算放大器在实际中有很多应用,比如滤波器、振荡器、比较器、积分器、微分器等。
通过对运算放大器的输入电压和反馈电阻的选择,我们可以实现各种不同的功能。
三、电路分析方法在第四章的学习中,我们还了解了一些常用的电路分析方法。
比如节点分析法、戴维南定理、叠加原理等。
这些方法可以使我们更加方便地对电路进行分析和计算。
节点分析法是一种常用的电路分析方法,通过对电路中各个节点电压的求解,来推导电路中各个元件的电流和电压关系。
戴维南定理是一种用于简化电路的方法,通过将电路中的电压源或电流源用等效电阻替代,简化电路的复杂性,实现更简单的电路分析。
第四章 高频功率放大器
第四章 高频功率放大器4-1)若非线性特性用折线近似表示,如题图4-1所示,,/10,1V mA g V V bz ==偏压,2V V bb -=激励电压V U 2.5=。
求电流i 的各个分量幅度.,,210I I I 若要加大1I ,应怎样改动U V bb 和?【解】 (1) )c o s(bz bb V wt U V g i -+=当 ,,0Φ==wt i 即 0)cos (=-Φ+bz bb V U V g故552.5)2(1cos cos 11=--=-=Φ--U V V bb bz又 I i wt ==,0故mA I a I mAI a I mA I a I a I mA V V mA V U V g I m m m m bZ bb m 622273.0)55(05.822366.0)55(4.422201.0)55()(22)12.52(/10)(2211000=⨯===⨯===⨯==Φ==-+-∙=-+=(2)因m I a I )(11Φ=要 ,1↑I 应 .,)(1↑↑Φm I a 要使,)(1↑Φa 在 120<Φ时,应增加Φ,即减小b b V;要使,↑m I 应增大U 。
4-2)题图4-2所示为晶体管转移特性,用它作二倍频器,为了使c i 中的二次谐波的成分最大,bb V 应如何选取?(bb V 是直流偏压,设U V bz ,均固定不变)。
【解】 因U V V bbbz -=ϕcos当60=ϕ时,二次谐波分量最大,而,2160cos =故有U V V bbbz -=21,即UV V bz bb 21-= 4-3)某谐振高频功率放大器原理如题图4-3所示,已知信号电压为.cos t w U u s s =假设0f 远小于晶体管的特征频率T f ,负载回路为谐振于0ω的高Q 回路,试画出cc c c b bc u u i i u ,,,,的波形示意图(要求各波形图的时间轴对齐)。
第四章高频功率放大器
P0
P=
P0
P0+PC
集电极效率:
可见,提高效率ηc的关键是减小集电极耗散功率Pc。
集电极耗散功率PC的计算式为:
可见,减小Pc的方法有三种: 减小半流通角θc。 在2 θc内,iC最大时,vCE最小。 在2 θc内之外, 虽然vCE最大,但iC=0。
由谐振功率放大器中各部分电压与电流的波形可知,iC于vCE正好满足上述几个条件。此即丙类谐振功率放大器效率高的原因。
(2)过压状态:集电极最大点电流正好位于临界线左方饱和区。 此时,c较高(弱过压状态最高);负载阻抗变化时,vCE 基本不变;用于发射机中间级。
(3)欠压状态:集电极最大点电流正好位于临界线右放大区。 Po较小; c较低;PC大;输出电压不稳定;很少采用, 基极调幅电路工作于此状态。
解:1.根据右图可求 根据
,可求得
∴ 晶体管安全工作
4. 求交流电压的振幅
5. 求各功率与效率
∴ 晶体管安全工作
6. 激励(输入)功率
例4. 3 某高频功率放大器工作在临界状态,已知其工作频率f=520MHz,电源电压VCC=25v,集电极电压利用系数ξ=0.8,输入激励信号电压的幅度Vbm =6v,回路谐振阻抗RP=50Ω,放大器的效率ηC=75%。求(1) Vcm 、Icm1、输出功率Po、集电极直流能源P=及集电极功耗PC. (2) 当激励电压Vbm增加时,放大器过渡到何种工作状态?当负载阻抗Rp增 加时,放大器由临界状态过渡到何种工作状态?
§4.1 概述
§4.2 谐振功率放大器的工作原理
由上堂课折线化分析法可知:
由于晶体管基极偏置电压为负值,在输入信号的一个周期内,晶体管的导通时间小于半个周期。因此,工作于丙类工作状态。晶体管的集电极电流是一个脉冲电流串,产生了严重的非线性失真。
第四章高频功率放大器
0 120 • n 次谐波取最大值时的流通角为: n
= 60。 • 三次谐波最大值出现在 = 40。
可以看出,基波最大值出现在 = 120处。
1 1 .32 ,这与效率有关。 但是此时 0
因此, 值的选择需综合考虑。
例:如果某个非线性器件的伏安特性可用折线 表示,其中, V B Z =1V,g=10mA/V。现加偏置 电压为VB=-1V,输入余弦信号的幅值Vim=4V, 查表(pp366-368)计算电流中的直流、基波 和二倍频分量幅值。
谐振功率放大器的各 极电压、电流波形
7.2.1
二、输出功率与效率
在谐振功率放大器中,由于其静态工作点选择在集电极电流 为零的情况,因而消除了静态功耗,提高了工作效率。
如何进一步提高效率,则是需要研究的问题。这涉及如何合 理地利用好晶体管转移特性的非线性。 Po Po:输出信号的功率 谐振功放的效率定义为: PD PD:电源提供的功率
三、谐振功率放大器与低频功率放大器的异同点
相同点:1、都要求输出功率大和效率高;2、激励信号幅度均 为大信号。 不同点:1、工作频率与相对频宽不同;2、放大器的负载不同; 3、放大器的工作状态不同。
四、谐振功率放大器与小信号谐振放大器的异同点
相同点:1、放大的信号均为高频信号;2、放 大器的负载均为谐振回路。 不同点:1、激励信号幅度大小不同;2、放大 器的工作点不同;晶体管动态范围不同。
2 1 12 V c m 输出信号功率为 :P I V I R o c m 1 c m c m 1 2 2 2 R
i () • Icm1: 集电极电流中的基波分量幅度 I cm 1 c max 1
1 P i V o c m ax 1 cm 因此得: 2
最新模电课件(第四章功率放大电路).PPT
⑶ 最后在两管的集电极合成一个完整的正弦波, 再
通过T2耦合到负载RL上。
3、图解分析:
iC1
4、 传统的乙类推挽功率放大电路 的
缺点: ⑴ 输入/输出变压器的体积大、重; ⑵ 因为是变压器耦合,故频带窄; ⑶ 存在交越失真和不对称失真; ⑷ 电路采用反馈时,易自激振荡。
合理选取R1、R2, 使
两管均微通,其发射 极电位为VCC/2。大 电容C已充满电,UC
⑵ 当也u为I为VC正C/半2。周时:
VT1放大、VT2截止。 其正半周的信号通过VT1管、C到达负载。 VT1的 供电电压为:VCC-UC=VCC-VCC/2=VCC/2。
⑶ 当uI为负半周时:
VT1截止、VT2放大。 其负半周的信号通过 VT2管和电容C到达 负 载。VT2的供电电压 ⑷ V为T1:和UVC=T2-V各C负C/2责。输 入信号半周波形的放
返 回
4.2 互补对称式功率放大器
4.2.1 OTL互补对称电路
一、OTL乙类互补对称电路
1、电路结构: ⑴ VT1 和VT2 分别由
NPN和PNP管组成, 然后共同对RL组成 ⑵ 射电极路输只出有器一。个电源,NPN管由VCC供电, PNP管 由电容C供电。R1和R2分别为两管的偏置电 阻。
2、工作原理: ⑴ 静态时:
用 微变等效电路来分析“功放”。一般常 用 图解法分析“功放”静态和动态参数。
三、传统的推挽功率放大电路(乙类功率放大 器1、) 电路结构(变压器耦合):
T1:输入变压器;
T2:输出变压器;
VT1和VT2: 对称放大管。
2、工作原理: ⑴ 当uI为正半周时:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
iL=ic2
ic1
iL RL
uo
ic2
T2
-VCC
注意:T1、T2两个晶体管都只在半个周期内工作。
输入输入波形图 ui
uo ´
死区电压 T1
+VCC
uo
ui
iL RL
uo
uo
T2
-VCC
交越失真
二、特点:
(1) 静态电流 ICQ、IBQ等于零; (2) 每管导通时间为半个周期 ; T1 (3) 存在交越失真。
将Uom=0.64VCC代入PT1表达式:
PT1max0.2V 2R CC L2 0.2PoM
选管条件
1. PCM PT1max =0.2PoM
PoM
VCC 2 2R L
2. V(BR)CEO2VCC
3. ICM ICQ
4.3 采用复合管的互补对称功率放大电路
增加复合管的目的:扩大电流的驱动能力。
PE
Pomax : 负载上得到的交流信号功率。 PE : 电源提供的直流功率。
(5)功放管散热和保护问题
二. 功率放大器分析方法(图解法)
三极管的静态功耗: PE UCEQ ICQ
若 UCEQ 12VCC
则三极管和负载 RL的 电功 阻耗相等
PE PRL12VCCICQ
动态功耗 (当输入信号Ui时)
电路
Re7 Re9 T6
保险管 BX
差动放大级
C3
R3
偏置电路
T8 T10
C5
T3 Re3
D1 D2
T5 恒流源
负载 Re5
C4 RC8
R4 Re10
RL
负载
-24V
集成功放 LM384管脚说明:
14 -- 电源端( Vcc)
)
1
14
2
13
3
12
4
11
5
10
6
9
7
8
3、4、5、7 -- 接地端( GND) 10、11、12 -- 接地端(GND) 2、6 -- 输入端
(1)最大不失真输出功率Pomax
最大不失真输出电压Uom
Uom=VCCUCES
Pom= ax(VCC R 2 U LCE)2S(VCC 2 R U LCE )2SV 2C RL 2 C
实际输出功率Po
P o=UoIoUo 2m
Uom Uom 2 2RL 2RL
(2)管耗PT
单个管子在半个周期内的管耗
放大电路向电阻性负载提供的输出功率
Po Uo2mIo2m1 2Uo m Io m
在输出特性曲线上,正
好是三角形ABQ的面积,这
一三角形称为功率三角形。
要想PO大,就要使功率三角形的
面积大,即必须使Uom 和Iom 都要大
最大输出功率
P0 12(12VCC)ICQ
电源提供的功率
PE
1
2
02VCCiCd(t)
(2) 功放电路中电流、电压要求都比较大,
注意:电路参数不能超过晶体管的极限值: ICM 、
UCEM 、 PCM 。
Ic ICM
PCM
uce UCEM
(3) 电流、电压信号比较大,必须注意防止波形失真
(4) 电源提供的能量尽可能转换给负载,减少 晶体管及
线路上的损失。注意提高电路的效率()
Pomax 100%
动态时:集电极最大 电流
消除交越失真的OTL电路
Icm
VCC 2
U CES RL
二. OCL互补对称电路:
一、工作原理(设ui为正弦波)
+VCC
静态时:
T1
ui = 0V ic1、ic2均=0(乙 类工作状态) uo = 0V
动态时:
ui
ui > 0V
T1导通,T2截止
ui 0V
iL= ic1 ; T1截止,T2导通
P T1 =2 1 π0π(VCC uo)R uo Ld( t)
2 1 π0 π(V C C U os mitn )U oR s m Litn d(t)
1π(V CU C om sitn U o2 m si2n t)d(t)
2 π0 R L
R L
1
(VCCUo
mUo
2
m)
RL
4
两管管耗
21 02VCC(ICQIcmsint)dtVCCICQ
此电路的最高效率
P0m 0.25
PE
甲类功率放大器存在的缺点:
• 输出功率小
• 静态功率大,效率低
三. 几种工作状态
根据在正弦信号整个周期 内的导通情况,三极管可 分为几个工作状态: 甲类:一个周期内均导通 乙类:导通角等于180° 甲乙类:导通角大于180°
PV 4 VCC
Uom VCC时, 78.5%
4
四.三极管的最大管耗
PT
1 1=2π
0π(VCCUomsi nt)•Uom RsLi ntd(t)
1 (VCC UomUom2)
RL
4
问:Uom=? PT1最大, PT1max=?
用PT1对Uom求导得出: PT1max发生在Uom=0.64VCC处。
R1
合理选择R1、R2大小,b3、b5间便
可得到 UBE2 任意倍数的电压。 R2
T3、T4、T5、T6:复合管构成互补 对称功放
准互补
T1
+VCC
T3
T4 T2
T5 RL T6
-VCC
输出级中的T4、T6均为NPN型晶体管,两者特性容易对称。
总结:互补对称功放的类型
互补对称功放的类型
无输出变压器形式 无输出电容形式
PT=PT1PT2 2 (VCCUomUom2)
RL
4
(3)电源供给的功率PV
P V = V C C 1 π0 πR u o Ld (t)π 2 V CIC cm 2 V π CU L C o R m
PV=PoPT2VCCRUL om
当
Vo
mVC
时
C
,
PVm
2
VCC2 RL
(4)效率
= Po Uom
丙类:导通角小于180°
4.2 互补对称功率放大电路
一. OTL互补对称电路:
基本结构:电路中采用两个晶体管:NPN、 PNP各一支;两管特性一致。组成互补对 称式射极输出器
ic1
注意:T1、T2
两个晶体管都只
在半个周期内工
作。
ic2
交越失真
T2集电极电压:VCC/2
静态时:iL= iC1- Ic2=0
1.功率放大器的特点:工作在大信号状态下,输出电压和输 出电流都很大。要求是在允许的失真条件下,尽可能提高输出 功率和效率。 2.为了提高效率,在功率放大器中,BJT常工作在乙类和甲 乙类状态下,并用互补对称结构使其基本不失真。这种功率放 大器理论上的最大输出效率可以达到78.5%。 3.互补对称功率放大器的几种主要结构:
( OTL电路)
( OCL电路)
OTL: Output TransformerLess OCL: Output CapacitorLess
实用的OCL准互补功放电路:
Rc1
ui T1
反馈级 R1
T2 Rf
共射放大级 Re4
T4
UCB2E R2
准互补功放级 +24V T7 T9
倍增
Rb1
Rb2 C1
波形关系:
iB
iB
uBE
特点:存在较小的静态
电流 ICQ 、IBQ 。
每管导通时间大
IBQ t
于半个周期,基 本不失真。
uB1
iC
t UT ICQ
iC USC /RE ib IBQ Q USC uce
组合特性分析——图解法
负载上的最大不失真电压为Uom=VCC- UCES
uo=-uce
三、OCL互补对称电路分析计算
ui T2
+VCC
iL RL
uo
-VCC
消除交越失真的OCL电路
基本原理:
电路中增加 R1、D1、R、D2、R2支路
静态时: T1、T2两管发射结电位分别为二极管 D1、 D2的正向导通压降,致使两管均处于 微弱导通状态——甲乙类工作状态
动态时:设 ui 加入正弦信号。正半周 T2 截止,T1 基极电位进一步提高,进入良好的导通状态; 负半周T1截止,T2 基极电位进一步提高,进入 良好的导通状态。
4.1功率放大电路的主要特点 4.2 互补对称功率放大电路 4.3 采用复合管的互补对称功率放大电路
4.1功率放大电路的主要特点
功率放大器的作用: 用作放大电路的输出级,以驱 动执行机构。如使扬声器发声、继电器动作、 仪表 指针偏转等。
例: 扩音系统
信
电
功
号
压
率提放源自放取大大
一. 功放电路的特点 (1)输出功率Po尽可能大
c ic
e
b ib T1
b ib T1
T2
c
T2
e
ic eb ib
c ic ib
b
复合NPN型
e
1 2
复合PNP型 c ic
晶体管的类型由复合管中的第一支管子决定。
改进后的OCL准互补输出功放电路:
T1:电压推动级(前置放大级)
倍压电路:T2、R1、R2,