分数乘除复合应用题
人教版期中典例专练三:分数乘除法应用题“基础版”-2023-2024学年六年级数学上((原卷版)+(
人教版期中典例专练三:分数乘除法应用题“基础版”-2023-2024学年六年级数学上((原卷版)+(解析版)2023-2024学年六年级数学上册期中专练三:分数乘除法应用题“基础版”【第一部分】分数乘法应用题基本题型1.小红已经读了一本书的,已知这本书有160页,小红已经读了多少页?2.同学们参加植树活动,六年级去了90人,五年级去的人数是六年级的,五年级比六年级少去多少人?3.一瓶果汁的净含量是升,小明喝了这瓶果汁的,还剩多少升?4.某种原料原来要200元,现在比原来涨价,现在买这种原料需要多少钱?5.同学们给地震灾区捐款。
六年级捐款1500元,五年级的捐款数比六年级少,五年级捐款多少元?6.一堆煤有吨,第一次运走了吨,第二次运走了剩下的,还剩多少吨煤没有运走?7.一个等腰三角形的一个底角的度数是三个内角和的,那么这个三角形的底角和顶角分别是多少度?8.某种植户今年种棉花320公顷,种玉米面积比棉花面积的多40公顷。
种植户今年种玉米的面积是多少?9.学校五年级有故事书400本,科技书的本数是故事书的,文艺书的本数是科技书的,文艺书有多少本?10.宏星工厂里原有7吨煤,第一次用去它的,第二次用去吨,工厂里还剩多少吨煤?11.养殖场有鸡3200只,第一周卖出总数的,第二周卖出总数的,____________?选择一个合适的问题,把编号填在横线上,再解答出来。
A.养殖场一共卖出鸡和鸭多少只?B.两周一共卖出多少只鸡?C.养殖场这个月一共卖出多少只鸡?12.垃圾分类,从我做起。
通过分类的清运和回收可以使垃圾重新变成资源。
如:每回收1吨厨余垃圾,可以生产吨有机肥料,一个垃圾场一天收到30吨厨余垃圾,可以生产多少吨有机肥料?13.疫情期间,某县有80万人需要进行全员核酸检测。
第一天检测所有人数的,第二天检测所有人数的,还剩多少人未检测?14.阳光小学六年级有学生280人,五年级的学生人数比六年级少,五年级有多少人?15.花园里种植玫瑰花48平方米,种植的月季花比玫瑰花多,种植的月季花有多少平方米?16.越野赛跑全程12千米,其中环山路段占,海滨路段占,其余的是公路段。
六年级数学分数乘法试题
六年级数学分数乘法试题1.【答案】;100;25【解析】分数乘整数的意义和整数乘法的意义相同,都是求几个相同加数的和的简便运算;由此可知答案。
【考点】分数乘法的意义。
总结:本题主要考察分数乘法的意义的掌握情况。
2.爸爸身高是177厘米,小红的身高是爸爸的,小红身高厘米。
【答案】118【解析】把爸爸的身高看成单位“1”,用乘法求出它的就是小红的身高,由此求解。
解:177×=118(厘米)答:小红的身高是118厘米。
故答案为:118。
3.。
【答案】【解析】原式4.一只鸭重3千克,一只鸡的重量是鸭的,这只鸡重多少千克?【答案】这只鸡重2千克【解析】根据题意,一只鸡的重量是鸭的,把鸭的重量看作单位“1”,根据一个数乘分数的意义,用乘法解答.解:3×=2(千克);答:这只鸡重2千克.点评:此题属于分数乘法应用题的基本类型,求一个数的几分之几是多少,根据一个数乘分数意义解答即可.5.(2014秋•泰兴市期末)小林有36枚邮票,小新的邮票是小林的,小明的邮票是小新的,小明有多少枚邮票?【答案】小明有40枚邮票【解析】依据分数乘法意义,先求出小新的邮票数:36×=30枚,再根据小明的邮票是小新的解答.解:36××,=30×,=40(枚);答:小明有40枚邮票.点评:本题主要考查学生运用分数乘法意义解答应用题能力.6.(2012秋•德江县校级期末)商店运来一些水果.苹果有20筐,梨的筐数是苹果的,同时又是桔子的.桔子有多少筐?【答案】桔子有25筐【解析】苹果有20筐,梨的筐数是苹果的,梨的筐数就是20筐的,既(20×)筐,梨同时又是桔子的,就是桔子的是(20×)筐,桔子的筐数就是(20×)筐,据此解答.解:20×,=15,=25(筐).答:桔子有25筐.点评:本题考查了学生根据分数乘除法的意义解答应用题的能力.7.(1)甲乙两地间公路长216千米,一辆汽车从甲地开往乙地,行了全程的,离乙地还有多少千米?(2)一辆汽车从甲地开往乙地,行了全程的,正好行了81千米,甲乙两地间公路长多少千米?(3)一辆汽车从甲地开往乙地,行了全程的,离乙地还有135千米.甲乙两地间公路长多少千米?(4)一辆汽车从甲地开往乙地,第一小时行了全程的,第二小时行了全程的,两小时行了114千米.甲乙两地间公路长多少千米?【答案】(1)离乙地还有135千米(2)甲乙两地间公路长216千米(3)甲乙两地间公路长216千米(4)甲乙两地间公路长216千米【解析】(1)把全程看成单位“1”,剩下的路程是全程的(1﹣),由此用乘法求出剩下的路程.(2)把全程看成单位“1”,它的对应的数量是81千米,由此用除法求出全程.(3)把全程看成单位“1”,它的1﹣对应的数量是135千米,由此用除法求出全程.(4)把全程看成单位“1”,两个小时一共行驶了全程的(+),它对应的数量是114千米,由此用除法求出全程.解:(1)216×(1﹣),=216×,=135(千米);答:离乙地还有135千米.(2)81=216(千米);答:甲乙两地间公路长216千米.(3)135÷(1﹣),=135,=216(千米);答:甲乙两地间公路长216千米.(4)114÷(+),=114÷,=216(千米);答:甲乙两地间公路长216千米.点评:解答此题的关键是分清两个单位“1”的区别,求单位“1”的几分之几是多少用乘法;已知单位“1”的几分之几是多少,求单位“1”用除法.8.吨=千克;小时=分.【答案】200,45【解析】此题是时间单位时、分和质量单位千克、吨之间的换算,用到的进率有1吨=1000千克、1时=60分,如果是大单位化成小单位,就乘单位间的进率;反之,就除以进率.吨=(200)千克,用×1000=200千克;时=(45)分,用×60=45分.解答:解:吨=(200)千克;小时=(45);故答案为:200,45.点评:此题是考查时间单位时、分和质量单位千克、吨之间的换算,要熟记单位间的进率,知道如果是大单位化成小单位,就乘单位间的进率;反之,就除以进率来解决.9.小明走千米的路程需要小时,他走1千米需要小时,他1小时可以走千米.【答案】,5【解析】小明走千米的路程需要小时,根据速度=路程÷时间可求出它1小时行的路程,再除1千米,就是行1千米所用的时间,据此解答.解答:解:1÷5=(小时)答:他走÷=5(千米/时)1千米需要小时,他1小时可以走5千米.故答案为:,5.点评:本题主要考查了学生对路程、速度和时间三者之间关系的掌握.10.拖拉机厂计划生产拖拉机3600台,已经生产了,生产了多少台?【答案】生产了900台【解析】把计划生产的总数量看成单位“1”,用总数量乘上就是已经生产的台数.解答:解:3600×=900(台)答:生产了900台.点评:本题的关键是找出单位“1”,已知单位“1”的量求它的几分之几是多少用乘法.11.学校商店买来一批桔子,第一天卖出240千克,第二天卖出余下的二分之一,这时剩下的部分占总数的三分之一.运来桔子多少千克?【答案】运来桔子720千克【解析】根据题意可知,第二天卖出余下的二分之一,还剩下余下的二分之一,正好等于总数的三分之一.据此求出第一天卖出240千克后剩下的占总数的几分之几,进而求出240千克占总数的几分之几,据此列式计算即可解答.解答:解:240÷(1﹣×2)=240÷=720(千克)答;运来桔子720千克.点评:本题主要考查分数复合应用题,熟练找出240千克对应总数的分率是解答本题的关键.12.数a(a大于0)乘以一个真分数,积()A.一定比a小B.一定比a大C.等于a【答案】B【解析】一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘大于1的数,积大于这个数;据此解答.解:真分数都小于1,所以一个大于0的数a乘以一个真分数,积比被乘数小.故选:B.点评:此题考查了不用计算判断因数与积之间大小关系之间大小关系的方法.13. 1吨的比4吨的要轻..(判断对错)【答案】×.【解析】先把1吨看成单位“1”,用乘法求出它的,就是1吨的是多少吨,同理求出4吨的是多少吨,然后比较即可.解答:解:1×=(吨)4×=(吨)=吨的和4吨的同样重,原题说法错误.故答案为:×.点评:解答此题的关键是分清两个不同的单位“1”,已知单位“1”的量,求它的几分之几是多少用乘法.14. 6×和×6的结果和意义均相同.(判断对错)【答案】×.【解析】根据乘法交换律可知,6×和×6的计算结果相同,根据分数乘法的意义,6×表示求6的是多少;根据乘法的意义,×6表示求6个相加的和是多少,或的6倍是多少.解答:解:根据以上分析:6×和×6的结果相等,但意义不同.故答案为:×.点评:完成本题要注意整数乘分数与分数乘整数的意义是不同的.15.下面各式中,计算结果比a大的是()(a>0)A.B.C.D.【答案】D【解析】(1)一个数乘大于1的数,积就大于被乘数;一个数乘小于1的数,积就小于被乘数.(2)一个数除以小于1的数,商就大于被除数,一个数除以大于1的数,商就小于被除数;然后根据以上规律,做出判断.解答:解:(A)a×,因为<1,所以a×<a;(B)a,因为>1,所以a<a;(C)a×,因为1,所以a×<a;(D)a÷,因为<1,所以a÷>a;因此,计算结果比a大的是a÷;故选:D.点评:掌握判断规律是解答此题的关键,在判断时,还应看清是乘法算式还是除法算式,以免搞错.16. 20×和×20相比较,它们的()A.意义和计算结果都相同B.意义相同,计算结果不同C.意义不同,计算结果相同D.意义和计算结果都不相同【答案】C【解析】20×属于一个数乘分数,它的意义是求20的是多少;而×20属于分数乘整数,它的意义是求20个是多少;所以它们的意义是不相同的.20×和×20的计算方法一样,所以它们的计算结果相同.据此选择.解答:解:20×表示求20的是多少,而×20表示求20个是多少,所以它们的意义是不相同的;20×=,×20=,所以它们的计算结果相同.故选:C.点评:解决此题关键是要区分开一个数乘分数与分数乘整数的意义.17.根据下面图示,可列算式:○表示:.【答案】,×,,求的是多少.【解析】左图是把这个正方形看作单位“1”,平均分成3份,涂色部分占了其中的1份,用分数表示为;再把这个正方形的平均分成4份,涂色部分占了其中的3份,也就相当于是求的是多少;根据一个数乘分数的意义,用乘法计算.解答:解:算式:×;表示求的是多少.故答案为:,×,,求的是多少.点评:此题考查一个数乘分数的意义,就是求这个数的几分之几是多少.18.一个农业专业户养的鸡和鸭共有180只,其中鸡的只数是鸭的.鸡和鸭各有多少只?【答案】鸡有72只,鸭有108只.【解析】根据“鸡的只数是鸭的.”知道鸡的只数是鸡和鸭总数的几分之几,根据一个数乘以分数的意义解答即可;解答:解;180×=180×=72(只)180﹣72=108(只)答:鸡有72只,鸭有108只.点评:这种类型的题目属于基本的分数乘法应用题,只要找清单位“1”,利用基本数量关系解决问题.19. 2.5的倒数是;和互为倒数.【答案】;.【解析】根据倒数的意义,乘积是1的两个数互为倒数.1的倒数是1,0没有倒数,求一个分数的倒数把分子和分母调换位置即可.据此解答.解答:解:2.5=,所以2.5的倒数为;和互为倒数.故答案为:;.点评:此题考查的目的是理解倒数的意义,掌握求倒数的方法.20.自然数都有它的倒数..(判断对错)【答案】错误.【解析】直接运用倒数的意义解答.注意0没有倒数.解答:解:自然数0没有倒数.故答案为:错误.点评:此题考查倒数的意义和求法:乘积是1的两个数互为倒数,是基础题目.21.甲数的等于乙数的,则()A.甲数>乙数 B.甲数=乙数 C.甲数<乙数【答案】C【解析】根据题意知:甲数×=乙数×,根据这一数量关系可求出甲数是乙数的多少,再进行选择即可.解答:解:甲数×=乙数×甲数=乙数×甲数=乙数×甲数是乙数的所以甲数小于乙数.故选:C.点评:本题主要考查了学生根据甲数×=乙数×这一数量关系式解答问题的能力.22.怎样简便就怎样算.+×+26×(﹣)÷×+×+3÷19++++++++…+.【答案】;196;1;;【解析】(1)先算乘法,再利用加结合律简算;(2)(3)利用乘法分配律简算;(4)把每一个分数拆分计算即可;(5)加上,逆着顺序计算加法,再减去即可.解答:解:(1)+×+=+(+)=+1=;(2)26×(﹣)÷=26×(﹣)×30=26××30﹣26××30=300﹣104=196;(3)×+×+3÷19=×(+)+=×1+=+=1;(4)+++++=1﹣+﹣+﹣+﹣+﹣+﹣=1﹣=;(5)+++…+=+++…++﹣=+++…++﹣=+++﹣=1﹣=.点评:根据数字的特点,灵活运用运算定律与适当的方法简算.23.计算下列各题.×××××.【答案】;8;;;1【解析】首先分子分母约分,然后分子分母分别相乘,即可得解.解答:解:①×=②×=8③×=④×=⑤×=1点评:此题是考查了分数的乘法,要首先化简,然后分子分母分别相乘,得到积的分子分母.24.的是,的是,米是米的.【答案】,,.【解析】(1)(3)求一个数的几分之几是多少用乘法计算,用乘,用乘即可;(2)已知一个数的几分之几是多少求这个数,用除法计算用除即可.解答:解:(1)×=÷=×=(米)答:的是,的是,米是米的故答案为:,,.点评:本题主要考查了学生根据分数乘法和分数除法的意义列式解答问题的能力.25.与互为倒数,没有倒数.【答案】,0.【解析】解:因为,所以互为倒数.0没有倒数.故答案为:,0.【点评】此题考查的目的是理解倒数的意义,掌握求倒数的方法及应用.26.的倒数大于1(b≠0)..(判断对错)【答案】×【解析】解:当b为1时,=1,又因1的倒数还是1,所以的倒数大于1,是错误的;故答案为:错误.【点评】此题主要考查倒数的意义,利用特殊值法,比较容易解答.27.计算下面各题.(要有过程)48×= ×=36×= ×=×= ×=35××= ××= ××=【答案】见解析【解析】通过约分进行计算即可.解:【点评】本题考查了分数的四则混合运算.注意约分要细心.28.真分数的倒数一定都是假分数,假分数的倒数一定都是真分数..(判断对错)【答案】×【解析】在分数中,分子小于分母的分数为真分数,真分数<1;分子大于或等于分母的分数为假分数,假分数≥1.乘积为1的两个数互为倒数.由此可知,真分数倒数的分母一定小于分子,即真分数的倒数一定为假分数.但假分数的倒数不一定是真分数,当假分数的分母等于分子时,则其倒数的分子与分母也相等,即还是假分数.解:根据真分数、假分数及倒数的意义可知,真分数倒数的分母一定小于分子,即真分数的倒数一定为假分数.但假分数的倒数不一定是真分数,当假分数的分母等于分子时,则其倒数的分子与分母也相等,即还是假分数.故答案为:×.【点评】完成本题的关键是考虑到假分数的分子与分母相等的这种情况.29.=( ×)= .【答案】,20,5.【解析】根据分数乘整数的意义,求几个相同加数的和是多少,用乘法解答.解:=(×20)=5;故答案为:,20,5.【点评】此题应根据分数乘整数的意义进行解答.30.杨树棵树的相当于柳树的棵树,是把柳树的棵树看作单位“1”..(判断对错)【答案】×【解析】根据判断单位“1”的方法:一般是把“比、占、是、相当于”后面的量看作单位“1”,即分数“的”字前面的量看作单位“1”,进行解答即可.解:杨树棵树的相当于柳树的棵树,是把杨树的棵树看作单位“1”.所以杨树棵树的相当于柳树的棵树,是把柳树的棵树看作单位“1”说法错误.故答案为:×.【点评】解答此题应根据判断单位“1”的方法(即标准量)进行解答.31.计算下面各题.(能简算的要简算)39×+×﹣× 87×(+﹣)×40 201××+×【答案】25;;86;14;199;.【解析】(1)运用乘法的分配律进行简算;(2)运用乘法的分配律进行简算;(3)把87化成88﹣1,再运用乘法的分配律进行简算;(4)运用乘法的分配律进行简算;(5)把201化成200+1,再运用乘法的分配律进行简算;(6)先算乘法,再算加法.解:(1)39×+=(39+1)×=40×=25;(2)×﹣×=×(﹣)=×3=;(3)87×=(88﹣1)×=88×﹣1×=87﹣=86;(4)(+﹣)×40=×40+×40﹣×40=10+16﹣12=26﹣12=14;(5)201×=(200+1)×=200×+1×=199+=199;(6)×+×=+=.【点评】此题考查的目的是理解掌握乘法的分配律,并且能够灵活运用进行简便计算.32.在长方形中表示算式的意义.【答案】见解析【解析】先把长方形平均分成4份,其中的3份就是,再把平均分成2份,其中的一份就是的,也就是大长方形的.解:;【点评】本题先根据分数的意义表示出分数,再根据分数乘法的意义求解.33.“一种商品降价出售”,其中的等量关系式是:× = .【答案】这种商品的原价、(1﹣)、这种商品的现价.【解析】解:“一种商品降价出售”,其中的等量关系式是:这种商品的原价×(1﹣)=这种商品的现价.故答案为:这种商品的原价、(1﹣)、这种商品的现价.34.5吨= 吨千克;1.2小时= 分.【答案】5,500,72.【解析】(1)5吨看作5吨与吨之和,把吨乘进率1000化成500千克.(2)高级单位单位小时化低级单位分乘进率60.解:(1)5吨=5吨500千克;(2)1.2小时=72分.故答案为:5,500,72.【点评】本题是考查质量的单位换算、时间的单位换算.单位换算首先要弄清是由高级单位化低级单位还是由低级单位化高级单位,其次记住单位间的进率.35.除0以外的自然数的倒数一定小于1..(判断对错).【答案】×【解析】乘积是1的两个数互为倒数,自然数1的倒数为1,这与题中自然数的倒数都小于1相违背.解:1是自然数,1的倒数是1,但1=1,故答案为,错误.【点评】在作答判断题时,可列举出符合题干要求的一个特殊例子来证明所给结论是错误的.36.因为×=1,所以()A.是倒数B.是倒数C.和是倒数D.和互为倒数【答案】D【解析】乘积是1的两个数互为倒数.这两个数是相互的不能单独存在.解:因为选项A和B是单独说,是倒数,是不符合倒数的定义的,所以错误,而选项C也没有互相的关键词,也是错误的,D符合倒数的定义,故选D.【点评】主要考查了倒数的定义,要牢记定义中的关键词.37.+++= × = .【答案】,4,.【解析】算式+++表示求几个相同加数的和的简便运算,用乘法计算.解:+++=×4=.故答案为:,4,.【点评】此题考查了分数乘整数的意义:与整数乘法的意义相同,表示求几个相同加数的和的简便运算.38.× =0.3× = ×40=1.【答案】,,.【解析】根据倒数的意义:乘积是1的两个数互为倒数.求一个分数的倒数,把分子和分母调换位置即可,整数(0除外)可以看做是分母是1的分数.据此解答.解:的倒数是0.3=,的倒数是40的倒数是故答案为:,,.【点评】此题考查的目的是理解倒数的意义,掌握求一个数的倒数的方法.39.两个真分数的积是()A.真分数 B.假分数 C.整数【答案】A【解析】真分数是指分子小于分母的分数,可见两个真分数的积一定还是真分数,可以举几个例子进行验证.解:如两个真分数分别是:和,×=,积也是真分数;再如两个真分数分别是:和,×=,积也是真分数;进而说明两个真分数的积一定还是真分数.故选:A.【点评】此题考查分数乘法的意义:一个数乘分数的意义,是求这个数的几分之几是多少;据此直接进行判断也可.40.看图列式计算。
第6单元 稍复杂分数应用题
《第6章分数四则混合运算》一、解答题1.玻璃厂九月份生产玻璃1200箱,十月份比九月份少生产,十月份生产玻璃多少箱?2.玻璃厂九月份生产玻璃1200箱,九月份比十月份多生产,十月份生产玻璃多少箱?3.一桶汽油倒出,还剩下40千克,这桶汽油重多少千克?4.一桶汽油重50千克,倒出,还剩下多少千克?5.商店运来800只塑料盒,上午买出,下午卖出.一天共卖出多少只?6.工地上运来800包水泥,第一周用去,第二周用去,还剩下多少包?7.看一本故事书,第一天看全书的,第二天看了全书的,第二天比第一天多看15页,这本故事书有多少页?8.一本书,已经看了这本书的,还剩下150页,这本书共有多少页?9.行一段路,客车第一小时行这段路的,第二小时行了这段路的,距终点还有140千米.这段路长多少千米?10.工程队修筑一条马路.第一天修全长的,第二天修了全长的,还剩630米没有修.这条马路全长多少米?11.一条裤子75元,是一件上衣价格的.一件上衣多少钱?12.小萍身高140厘米,小萍比小青矮.小青身高多少厘米?13.一堆煤用去35吨,正好占这堆煤的.这堆煤的是多少吨?14.一堆煤用去它的后还剩3.6吨,到用去它的时,还剩下多少吨?15.一只桶装了半桶油,倒出油的后,还剩15kg.这桶油能装油多少千克?16.汽车厂七月份生产轿车51辆,比第三季度计划产量的多11辆,第三季度计划生产轿车多少辆?17.一件衣服售价240元,比原来降低了.比原来降低了多少元?18.某车间五月份生产4200个零件,比计划增产.实际比原计划增产多少个?19.学校图书馆有三种书,已知连环画100本,文艺书比连环画少,连环画比科技书多.三种书共有多少本?20.水果批发部运来桔子比苹果多125千克,已知苹果的重量是桔子的,桔子、苹果共多少千克?21.公园里有芍药花20盆,是菊花盆数的,月季花盆数又是菊花盆数的.公园里有月季花多少盆?参考答案与试题解析一、解答题1.玻璃厂九月份生产玻璃1200箱,十月份比九月份少生产,十月份生产玻璃多少箱?,即十月份生产的是九月份的,根据分数乘法的意义,十月份生产了)箱.)×,2.玻璃厂九月份生产玻璃1200箱,九月份比十月份多生产,十月份生产玻璃多少箱?”)×,3.一桶汽油倒出,还剩下40千克,这桶汽油重多少千克?﹣)÷,4.一桶汽油重50千克,倒出,还剩下多少千克?﹣)×,5.商店运来800只塑料盒,上午买出,下午卖出.一天共卖出多少只?+×,6.工地上运来800包水泥,第一周用去,第二周用去,还剩下多少包?第一周用去,第二周用去﹣﹣﹣)包.﹣)×,7.汪明看一本故事书,第一天看了全书的,第二天看了全书的,第二天比第一天多看15页,这本故事书有多少页?(﹣8.一本书,已经看了这本书的,还剩下150页,这本书共有多少页?,已经看了这本书的))÷,9.某行一段路,客车第一小时行了这段路的,第二小时行了这段路的,距终点还有140千米.这段路长多少千米?﹣)÷,×,10.某工程队修筑一条马路.第一天修了全长的,第二天修了全长的,还剩630米没有修.这条马路全长多少米?﹣(]11.一条裤子75元,是一件上衣价格的.一件上衣多少钱?元,是一件上衣价格的75=112.512.小萍身高140厘米,小萍比小青矮.小青身高多少厘米?,小萍比小青矮,即小萍是小青的())÷,13.一堆煤用去35吨,正好占这堆煤的.这堆煤的是多少吨?正好占这堆煤的,吨,则用总重乘乘得这堆煤的×=84是14.一堆煤用去它的后还剩3.6吨,到用去它的时,还剩下多少吨?先求出用去它的后,后,剩余长度占总长度的分率,最后依据分)﹣××,15.一只桶装了半桶油,倒出油的后,还剩15kg.这桶油能装油多少千克?即是整桶油的,倒出倒出油的即倒出了全部的×,此时还剩下全部的﹣×﹣×)千克.(﹣×)﹣)÷,16.汽车厂七月份生产轿车51辆,比第三季度计划产量的多11辆,第三季度计划生产轿车多少辆?,因此第三季度计划生产轿车:÷,解决问题.÷,×,辆,得:17.一件衣服售价240元,比原来降低了.比原来降低了多少元?比原来降低了,﹣﹣)××18.某车间五月份生产4200个零件,比计划增产.实际比原计划增产多少个?1+)÷,19.(2013•广东模拟)学校图书馆有三种书,已知连环画有100本,文艺书比连环画少,连环画比科技书多.三种书共有多少本?)就是文艺书的本数,)就是科技书的本数,再加上﹣×,1+×,20.水果批发部运来桔子比苹果多125千克,已知苹果的重量是桔子的,桔子、苹果共多少千克?,把桔子的重量看作单位)=×1+=)÷×1+)×答:桔子、苹果共21.公园里有芍药花20盆,是菊花盆数的,月季花盆数又是菊花盆数的.公园里有月季花多少盆?×,×,参与本试卷答题和审题的老师有:王亚彬;齐敬孝;李斌;dgdyq;陆庆峰;zcb101(排名不分先后)菁优网2013年11月20日。
苏教版数学六年级下册教案 分数乘除复合应用题
苏教版数学六年级下册教案分数乘除复合应用题教学目标1.使学生能够区分分数乘、除法应用题,学会找数量间相等的关系,列方程解应用题。
2.提高学生的分析解题能力,发展学生的分析推理能力。
教学重点和难点重点:分析数量关系,帮助学生理解题意。
难点:找出数量间相等的关系,准确列方程解题。
教学过程(一)复习1.判断单位1练习。
的数量为单位1。
)单位1。
)2.找准单位1,并用乘法算式表示下面各题的数量关系。
3.准备题。
说出下面各题的特点,并列式解答。
导入:这两道题中出现三个量,即苹果、梨、桔子,下面老师把这两道题改编成这样一道题。
(二)讲授新课出示例5。
1.找出题中已知条件和未知条件。
老师根据学生的回答,指导他们画图。
提问:这道题里有几个量?需要用几条线段来表示?(有三个数量,需要画三条线段。
)提问:先根据哪个条件来画线段,表示哪个量?(根据梨的筐数是苹师:把苹果看成单位1,画在上面,梨和苹果比,画在苹果的下面。
线段画在梨的下面。
2.分析数量关系。
提问:苹果的筐数和哪个量有关系?有什么关系?(和梨的筐数有关提问:梨的筐数又和哪个量有关系?有什么关系?(梨的筐数和桔子提问:梨、苹果、桔子三量之间是什么关系?(组织学生讨论) 提问:你能根据题中的数量关系,列出等量关系式吗?如果学生回答不上来,老师可继续提问。
3.根据等量关系列方程。
解设桔子为x筐。
答:桔子有25筐。
列式后继续提问:(3)等号两边表示的都是谁的筐数?(4)等号两边都是根据什么列的算式?(根据分数乘法的意义,求一个数的几分之几用乘法来列式的。
)师:为了检验同学们对分数乘除复合应用题的掌握情况,请同学们做下面练习。
(三)巩固练习(投影片)1.第52页的练一练。
(讨论)(1)找出含有分率的句子,说说谁是单位1?的重量)2.看图列方程解题。
找出本题的等量关系,列方程解题。
3.填空并列式解答:(4)设( )为x万米。
(5)列方程为( )。
通过填空练习,可以帮助学生进行数量关系的分析,所以应让学生根据这几个填空进行讨论,老师可根据学生的讨论填空。
新苏教版六年级上册数学-分数除法知识题型归纳总结
分数除法(一)知识梳理1、分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2、分数除法的计算法则: 甲数除以乙数(0除外),等于甲数乘乙数的倒数。
模块一 分数除以整数例154里面有2个( ),38吨是40吨的)()(。
例2 5次运走了这堆货物的72。
(1)平均每次运走这堆货物的几分之几?(2)照这样计算,14次一共运走这堆货物的几分之几?例3 小明用56分钟从1楼跑到6楼,小明平均每上一层楼需要几分钟?变式1 一块菜地有127公顷,现在要将这块菜地平均分成4份种不同的蔬菜,每种蔬菜占地多少公顷,列式是( )变式2 一个正方体的棱长总和是1312米,这个正方体的棱长是多少米?变式3 如果n m ,都是不为0的自然数,请比较n m ÷1和m n÷1的大小。
模块二 整数除以分数例4 填空。
(1)一台拖拉机每小时耕地52公顷,要耕完2公顷地需要( )小时。
(2)某工程队30天修了一段地铁的53,平均每天修)()(,( )天可以修完。
例5 某化工厂生产了25吨化肥,如果每201吨装一袋,这些化肥能装多少袋?例6 一个同学在做题时,粗心大意,把除数53看成35,得到的商是18,那么正确的商是多少?变式4 食堂运来6吨煤,每天要用32吨,可以用几天?( )÷( )=( )(天)变式5 已知一块长方形玻璃的面积是18平方分米,宽是79分米,它的长是多少米?变式6 计算:2016201520152015÷模块三 分数除以分数例7 先比较大小,再填一填。
7289÷○72 7298÷○72 721÷○72 我发现:两个不为零的数相除,如果除数小于1,那么商就( )被除数;如果除数大于1,那么商 就( )被除数;如果除数等于1,那么商就( )被除数。
例8 一台磨面机,65小时磨面粉30千克。
分数乘除法应用题及解析
分数乘除法应用题及解析(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分数乘除法应用题及解析学会抓不变量解题:有些较复杂的分数应用题按常规的思路解题,一般的解法比较困难,如果抓住题中的不变量来思考,就可顺利地找到答案.1.育红小学原有科技书、文艺书若干本,其中科技书占.后来又买来科技书180本,这时科技书占两种书总数的.现在这两种书共有多少本这道题中,文艺书的本数是不变量.文艺书占原来两种书总数的,又占现在两种书总数的.设文艺书的本数为8本,那么原来与现在两种书的总数分别为10本、13本.因此,后来买进的180本书占其中(13﹣10)份.则现在两种书的总数为.180÷(13﹣10)×13=780(本).请你用此思路,解决下面的问题.2.有一堆糖果,其中奶糖占,再放人16块水果糖后,奶糖就只占,那么这堆糖中有奶糖多少块请你举出一个例子,并用这种思路解决.考点:分数四则复合应用题.专题:分数百分数应用题.分析:这道题中,奶糖的数量是不变的.奶糖占原来两种糖总数的,放人16块水果糖后,奶糖又占现在两种糖总数的 = ,设奶糖为9块,那么原来与现在两种糖的总数分别为20块、36块,因此,后来放进的16块水果糖占其中的(36﹣20)份.则现在两种糖的总数为16÷(36﹣20)×36=36(块),奶糖的数量为:36× =9(块),解决问题.然后举出例子,据此解答.解答:解:奶糖占原来两种糖总数的,后来奶糖又占现在两种糖总数的 = ,现在两种糖的总数为:16÷(36﹣20)×36=36(块),奶糖的数量为:36× =9(块).答:这堆糖中有奶糖9块.3.有文艺书和科技书共360本,其中科技数占总数的,现在又买来一些科技书,此时科技书占总数的,买来多少科技书在此题中文艺书的本数是不变的,文艺书的本数为360×(1﹣)=320(本),也就是320本占后来总数的(1﹣),那么后来两种书的总数为320÷(1﹣)=384(本),然后用总数减去原来的总数,就是买来科技书的本数.解:360×(1﹣)÷(1﹣)﹣360=360×÷﹣360=384﹣360=24(本).答:买来24本科技书.点评:有些较复杂的分数应用题按常规的思路解题,一般的解法比较困难,如果抓住题中的不变量来思考,就可顺利地找到答案.4.学校有杨树120棵,柳树的棵数是杨树的有柳树多少棵(补充一个条件,变成分数乘除法应用题,并解答.)考点:“提问题”、“填条件”应用题.分析:根据分数乘法和除法应用题的解题思路分别补充问题然后解答即可.解答:解:①补充问题:柳树的棵数是杨树的,120×=60(棵).答:有柳树60棵.②补充问题:杨树的棵数是柳树的,120÷=240(棵).答:有柳树240棵.点评:从补充的问题中找出单位“1”,根据已知还是未知确定用乘法还是除法.5.学校有杨树120棵,﹣﹣﹣﹣﹣﹣,有柳树多少棵(补充一个条件,变成分数乘除法应用题,并解答.)考点:“提问题”、“填条件”应用题.专题:分数百分数应用题.分析:变成分数乘法应用题,则需要单位“1”的量已知,所以可以把杨树的棵数看作单位“1”,补充条件为:柳树的棵数是杨树的几分之几,求柳树的棵数,就可以用分数的乘法解决;则补充条件为:柳树的棵数是杨树的.解答:解:补充条件为:柳树的棵数是杨树的.则:120×=90(棵).答:柳树有90棵.点评:解决本题要从要求出发,提出符合题意的问题.6.按要求补充条件和问题,并列式不计算.①小明去年身高140厘米,今年身高比去年增加,求小明今年身高是多少厘米列式140×(1+)(分数乘法应用题)②小明今年身高147厘米,今年身高比去年增加,小明去年身高是多少厘米列式147÷(1+)(分数除法应用题)考点:“提问题”、“填条件”应用题.分析:①根据已知条件和要求,则去年的身高为已知量,今年的身高为所求量.因此,所填的条件是:小明去年身高140厘米,所提的问题是:求小明今年身高多少厘米把去年的身高看作单位“1”,今年的身高就是去年的(1+),根据分数乘法的意义列式即可.②该题的要求是编一道分数除法应用题,根据已知所得:今年的身高是已知量,去年的身高为所求的量.因此所填的条件是:小明今年身高147厘米,所提的问题是:小明去年身高是多少厘米把去年的身高看作单位“1”,则今年的身高147厘米就是去年的(1+),根据分数除法的意义列式即可.解答:解:①140×(1+);②140÷(1+).点评:解决该题的难点是给题干“填条件”和“提问题”,关键是根据已知条件确定已知量和未知量.7.人们公园里有杨树120棵,柳树比杨树多,有柳树多少棵(补充一个条件,变成两步计算的分数应用题,并解答)考点:“提问题”、“填条件”应用题.专题:简单应用题和一般复合应用题.分析:已知杨树的棵数,求柳树的棵数,可以把杨树的棵数看作单位“1”,可补充条件为:柳树比杨树多;求柳树有多少棵,也就是求杨树的1+是多少,根据分数乘法的意义,用120×(1+)计算得解.解答:解:柳树比杨树多;120×(1+),=120×,=200(棵);答:有柳树200棵.故答案为:柳树比杨树多.点评:解答本题也可以把柳树的棵数看作单位“1”,可补充条件为:杨树比柳树多;求柳树的棵数,用具体的数量120除以对应分率1+,列式为120÷(1+)计算.8.小聪在做分数乘除法练习时把除以错写成除以得到的答案是你知道如何计算正确结果吗考点:分数的四则混合运算.专题:文字叙述题.分析:由“除以得到的答案是”可求出被除数,即×,然后除以即可.解答:解:×÷=××=答:正确结果是.点评:先求出被除数,是解答此题的关键.9.李大妈养了6只灰兔18只白兔,白兔的只数是灰色的几倍(把这道题改变成一道乘法应用题和一道除法应用题)考点:“提问题”、“填条件”应用题.分析:由原来的题目可知:白兔只数是灰兔的3倍;乘法问题就是根据这个倍数关系已知灰兔的只数,求白兔的只数;除法问题就是已知白兔的只数,求灰兔的只数.解答:解:(1)乘法问题:李大妈养了6只灰兔,白兔的只数是灰色的3倍,白兔有多少只解答:6×3=18(只);答:白兔有18只.(2)除法问题:李大妈养了18只白兔,是灰兔只数的3倍,灰兔有多少只解答:18÷3=6(只);答:白兔有6只.点评:本题考查了两个数的倍数关系,已知一个数,求它的几倍是多少,用乘法;已知一个数,和它是另一个数的几倍,求另一个数用除法.10.某粮仓去年存大米7000包,是今年的,今年存大米多少包(请填上合适的条件,使它成为分数应用题,并解答.).考点:“提问题”、“填条件”应用题.专题:分数百分数应用题.分析:要想变为分数问题,最简单的就填是今年的几分之几即可;根据题意今年是单位“1”,而单位“1”不知道,所以用除法解决即可.解答:解:条件为:是今年的7000÷=10500(包)答:今年存大米10500包.故答案为:是今年的.点评:解答这类问题,要看清算式中的数据在题中的含义,再填上条件解答即可.12.一个车队要运送1248吨救灾物品到灾区,要12次运完,平均每次要运送多少吨(1)解答.(2)不改变题意和数据,请你分别改编成一道用乘法和除法计算的应用题.(不计算)用乘法计算的应用题:用除法计算的应用题:考点:整数、小数复合应用题.专题:简单应用题和一般复合应用题.分析:(1)求平均每次要运送多少吨,用要运的总吨数除以运的次数;(2)用乘法计算的应用题:知道每次运的吨数和运的次数,根据这两个条件编即可,用除法计算的应用题:知道总吨数,和每次运的吨数,求次数编.解答:解:(1)平均每次要运送多少吨:1248÷12=104(吨);答:每次云104吨.(2)用乘法计算的应用题:一个车队要运送一批货物到灾区,每次运104吨,12次运完,这批货物有多少吨用除法计算的应用题:一个车队要运送1248吨救灾物品到灾区,每次运104吨,多少次运完点评:此题考查整数、小数复合应用题,解决此题的关键是求平均数等于总数量除以总份数.13.先看图写等量关系式,再编出一道乘法应用题和一道除法应用题并解答.(1)等量关系式:爸爸的体重×=小明的体重;小明的体重=爸爸的体重.(2)乘法应用题:爸爸的体重是75千克,小明体重有多少千克(3)除法应用题:小明的体重是是35千克,爸爸的体重是多少千克考点:分数乘法应用题;分数除法应用题.专题:分数百分数应用题.分析:由图可知,爸爸的体重为单位“1”,小明体重是爸爸体重的,由此可得:爸爸的体重×=小明的体重;小明的体重=爸爸的体重.(2)根据所给条件,可得乘法应用题:爸爸的体重是75千克,小明体重有多少千克(2)除法应用题:小明的体重是35千克,爸爸的体重是多少千克.据(1)关系式完成(2)(3)即可.解答:解:(1)等量关系式:爸爸的体重×=小明的体重;小明的体重=爸爸的体重.(2)爸爸的体重是75千克,小明体重有多少千克75×=35(千克).答:小明的体重是35千克.(3)小明的体重是35千克,爸爸的体重是多少千克35=75(千克).答:爸爸的体重是75千克.故答案为:爸爸的体重×=小明的体重;小明的体重=爸爸的体重;小明体重有多少千克;是35千克,爸爸的体重是多少千克.点评:完成本题要注意分析线段图中所表示的数量关系,然后写出数量关系式并提出问题.先把题目补充完整,使它成为乘减应用题,再列式,不计算.14.五年级有学生120人,六年级人数是五年级的倍,六年级比五年级多多少人或五年级比六年级少多少人列式:120×﹣120 .考点:“提问题”、“填条件”应用题.分析:根据题意可提问题:六年级比五年级多多少人或五年级比六年级少多少人列式时要先求出六年级人数,进一步求得问题即可.解答:解:问题:六年级比五年级多多少人或五年级比六年级少多少人列式:120×﹣120.故答案为:六年级比五年级多多少人或五年级比六年级少多少人,120×﹣120.点评:解决此题关键是审清已知条件,再根据已知条件和题目要求提出用乘减计算的问题,再列出算式即可.。
六年级数学上册2.分数混合运算(含详解)(北师大版)
北师大版小学六年级数学上册期末复习专题讲义分数混合运算【知识点归纳】一.分数四则复合应用题【典例分析】二.分数的四则混合运算分数四则混合运算的顺序与整数四则混合运算的顺序一致,先算括号内的数(按照小括号、中括号、大括号的顺序),同一括号内或括号外的数,要按照先算乘除、后算加减的顺序进行计算.如果是同级运算,要按照从左到右的顺序,依次进行.繁分数:在一个分数的分子和分母里,至少有一个又含有分数,这种形式的分数,叫做繁分数.繁分数中,把分子部分和分母部分分开的那条分数线,叫做繁分数的主分数线(也叫主分线),主分线比其他分数线要长一些.繁分数的化简:①先找出中主分线,确定分子部分和分母部分,然后,这两部分分别进行计算,每部分的计算结果能约分的要约分,最后,改成“分子部分÷分母部分”的形式,再求出结果.②根据分数的基本性质,把繁分数的分子部分和分母部分同时扩大相同的倍数(这个倍数必须是分子部分与分母部分所有分母的最小公倍数),从而去掉分子部分和分母部分的分母,然后,通过计算,化为最简分数或整数.【典例分析】=251; ②731÷[141÷(432-21)],=731÷[141÷625],=731÷103,=2494点评:本题主要考查分数四则混合运算的计算顺序.同步测试一.选择题(共10小题)1.120的相当于96的( )A .B .C .D .2.一件商品原价200元,涨价后再降价,现价( )原价.A .高于B .低于C .等于3.有两根绳,第一根长48米,截去它的后,恰好是第二根的3倍,第二根绳长( ) A .10米 B .16米 C .4米 D .12米4.李庄有良田320公顷,它的种小麦,其中是无公害麦田,李庄共有无公害麦田( ) A .46公顷 B .80公顷 C .64公顷 D .74公顷5.六(1)班学生人数的等于六(2)班学生人数的,已知六(2)班有48人,六(1)班有( )A .64人B .45人C .36人D .35人6.50的比一个数少7,求这个数是多少,正确列式是( )A .(50﹣7)×B .50×﹣7C .50×+77.在下面的选项中,不能用等号连接的一组算式是( )A .×99和×100﹣1B.×(×)和(×)×C.×和×D.﹣﹣和﹣(+)8.粮店新运来一批面粉,第一天卖出总袋数的,第二天卖出总袋数的.已知第一天卖出40袋,第二天卖出()A.160袋B.64袋C.100袋D.46袋9.甲数的等于乙数的,已知乙数的是50,甲乙两数共()A.45 B.60 C.75 D.13510.40的相当于80的()A.B.C.D.二.填空题(共8小题)11.×﹣+×27=12.一个数的是20,这个数的是.20m的等于m的.13.160千克减少它的,再减少千克,结果是千克.14.一本200页的书,第一天看全书的,第二天看余下的,第二天看了页,第3天应从页看起.15.一辆公交车载满了人,到一个站后下了12人,上来9人,这时车人数是原来的,这辆公交车原来有人.16.一根绳子长4m,第一次剪去它的,第二次剪去m,还剩m.17.甲数是12,乙数是9,甲数的和乙数的相等.18.只列式不计算.少先队大队部买回360本儿童读物,其中科技书占,文艺书占,其余是连环画.(1)科技书有多少本?(2)科技书和文艺书一共有多少本?(3)连环画有多少本?三.判断题(共5小题)19.甲数比乙数多,则乙数比甲数少..(判断对错)20.某景区的门票先提价,再降价,门票的价格不变.(判断对错)21.如果男生比女生多,那么女生就比男生少.(判断对错)22.20千克减少后再增加,结果还是20千克..(判断对错)23.(判断对错)四.计算题(共4小题)24.计算下面各题,能用简便的要用简便方法.(+)×27(﹣)÷×84×+×25.脱式计算(能简算的要简算)×10+÷(4﹣﹣)+(﹣)÷103×26.列式计算①一个数的是36的,这个数是多少?(列方程解)②加上的和与一个数的相等,这个数是多少?27.口算.6÷0.06=0.5=0.6=72÷=÷=÷3+=÷=÷26==五.应用题(共5小题)28.工程队要新修一条长8千米的公路,已经修了4天,修了全路的.照这样计算,修完这条路一共需要多少天?29.王叔叔开车从甲地到乙地,已行了全程的,再行20km就行了全程的一半,甲地到乙地一共多少千米?30.养殖场有鸡4000只,第一周卖出总数的,第二周卖出总数的.两周一共卖出多少只?31.果园儿里有梨树180棵,桃树的棵数是梨树的,又是杏树的,杏树有多少棵?32.两根1米长的绳子,第一根剪去它的,第二根剪去米,哪根剩余得多?参考答案与试题解析一.选择题(共10小题)1.【分析】先用乘法算出120的是多少,再除以96即可解答.【解答】解:120×÷96=48÷96=;答:120的相当于96的.故选:C.【点评】此题考查了已知一个数,求它的几分之几是多少,用乘法计算;求一个数是另一个数的几分之几,用除法计算.2.【分析】先把原价看作单位“1”,涨价后的价格是原价的1+,再降价后的价格是涨价后的1﹣,即是原价的(1+)×(1﹣).【解答】解:(1+)×(1﹣)=1.25×0.75=93.75%即此时价格是原价的93.75%,93.75%<1,低于原价.故选:B.【点评】完成本题要注意前后两个的单位“1”是不同的.3.【分析】根据题意,把第一根绳长看作单位“1”,则剩余长度为:48×(1﹣)=36(米),则第二根长度为36÷3=12(米).【解答】解:48×(1﹣)÷3=48×=12(米)答:第二根绳长12米.故选:D.【点评】本题主要考查分数四则运算的应用,关键找对单位“1”.4.【分析】先把良田的总面积看成单位“1”,小麦的面积是总面积的,用总面积乘即可求出小麦的面积,再把小麦的面积看成单位“1”,其中是无公害麦田,再用乘法即可求出无公害麦田的面积.【解答】解:320××=80×=64(公顷)答:李庄共有无公害麦田64公顷.故选:C.【点评】解答此题的关键是分清两个不同的单位“1”,已知单位“1”的量,求它的几分之几是多少用乘法求解.5.【分析】首先根据题意,把六(2)班的学生人数看作单位“1”,根据分数乘法的意义,用六(2)班的学生人数乘,求出六(1)班学生人数的是多少人;然后把六(1)班的学生人数看作单位“1”,根据分数除法的意义,用六(2)班学生人数的除以,求出六(1)班的学生人数是多少.【解答】解:48×÷=36÷=45(人)答:六(1)班有45人.故选:B.【点评】解答此类问题,首先找清单位“1”,进一步理清解答思路,列式的顺序,从而较好的解答问题.6.【分析】根据题意先求出50的即50×,再用50×加上7即可得解.【解答】解:50×+7=30+7=37答:这个数是37.故选:C.【点评】这类型的题目要分清楚数量之间的关系,先求什么再求什么,找清列式的顺序,列出算式即可.7.【分析】根据分数的四则混合运算的顺序及运算定律,逐项分析解答即可.【解答】解:A、×99=×(100﹣1)=×100﹣,所以×99和×100﹣1不能用等号连接;B、×(×)=(×)×,运用乘法的结合律进行简算,所以×(×)和(×)×能用等号连接;C、×=×,运用乘法的交换律进行简算;所以×和×能用等号连接;D、﹣﹣=﹣(+),运用减法的性质进行简算;所以﹣﹣和﹣(+)能用等号连接;即不能用等号连接的一组算式是选项A.故选:A.【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.8.【分析】把这批面粉的袋数看作单位“1”,根据分数除法的意义,用总袋数除以就是这批面粉的袋数;根据分数乘法的意义,用总袋数乘就是第二天卖出的袋数.【解答】解:40÷×=160×=64(袋)答:第二天卖出64袋.故选:B.【点评】已知一个数的几分之几是多少,求这个数,用已知数除以它所对应的分率;求一个数的几分之几是多少,用这个数乘分率.9.【分析】已知乙数的是50,用50除以求出乙数,然后再乘上,就是甲数的,然后再除以,就可以求出甲数,然后再把甲乙两数相加即可.【解答】解:50÷=7575×÷+75=45÷+75=60+75=135答:甲乙两数共135.故选:D.【点评】根据题意,先弄清运算顺序,然后再列式进行解答.10.【分析】先把40看成单位“1”,用乘法求出它的,再把80看成单位“1”,用求出的积除以80即可解答.【解答】解:40×÷80=32÷80=答:40的相当于80的.故选:D.【点评】解决本题关键是分清楚不同的单位“1”,已知单位“1”的量求它的几分之几是多少用乘法;求一个数是另一个数的几分之几,用除法.二.填空题(共8小题)11.【分析】先算乘法和除法,再算减法,最后算加法.【解答】解:×﹣+×27=﹣+=+=11故答案为:11.【点评】考查了分数四则混合运算,注意运算顺序和运算法则,然后再进一步计算.12.【分析】(1)把这个数看作单位“1”,根据分数除法的意义,用20除以求出这个数是多少;然后根据分数乘法的意义,用这个数乘以,求出这个数的是多少即可;(2)先把20米看成单位“1”,用20米乘求出20米的是多少,再把要求的长度看成单位“1”,它的就是20米乘的积,再根据分数除法的意义求出这个长度.【解答】解:(1)20÷×=36×=24(2)20×÷=8÷=32(米)答:一个数的是20,这个数的是24.20m的等于32m的.故答案为:24,32.【点评】解答此类问题,首先找清单位“1”,进一步理清解答思路,列式的顺序,从而较好的解答问题.13.【分析】160千克减少它的,就是160的(1﹣),然后再减去千克即可.【解答】解:160×(1﹣)﹣=160×﹣=120﹣=119.75(千克)答:结果是119.75千克.故答案为:119.75.【点评】根据题意,先弄清运算顺序,然后再列式进行解答.14.【分析】把这本书的总页数看作单位“1”,第一天看了,根据分数乘法的意义,用这本书的总页数乘就是第一天看的页数;用总页数减第一天看的页数就是看完第一天余下的页数;再把余下的页数看作单位“1”,根据分数乘法的意义,用余下的页数乘就是第二天看的页数.用第一天、第二天看的页数加1页就是第三天开始看的页数.【解答】解:200×=100(页)(200﹣100)×=100×=50(页)100+50+1=151(页)答:第二天看了50页,第3天应从151页看起.故答案为:50,151.【点评】根据分数乘法的意义即可分别求出第一天、第二天看的页数.前两天看的页数之和加1页就是第三天开始看的页数.15.【分析】把车上原有的人数看作单位“1”.到一个站后下了12人,上来9人,这时车上的人数比原有人数少(12﹣9)人,这(12﹣9)人是原来车上人数的(1﹣).根据分数除法的意义,用(12﹣9)人除以(1﹣)就是车上原有人数.【解答】解:(12﹣9)÷(1﹣)=3÷=36(人)答:这辆公交车原来有36人.故答案为:36.【点评】已知一个数的几分之几是多少,求这个数,用已知数除以它所对应的分率.关键是求出这辆车上减少的人数及减少的人数所占的分率.16.【分析】把这条绳子的长度看作单位“1”,第一次剪去它的,还剩下它的(1﹣),根据分数乘法的意义,用这条绳子的长度乘(1﹣)就是第一次剪去后剩下的长度;再用第一次剪去后剩下的长度减第二次剪去的长度就是最后剩下的长度.【解答】解:4×(1﹣)﹣=4×﹣=2﹣=1(m)答:还剩1m.故答案为:1.【点评】关键明白两个所表示的意义.第一个,表示这条绳子,也就是这条绳子的一半,即2米,第二个是米.17.【分析】先用12乘求出甲数的是多少,然后再除以9即可.【解答】解:12×÷9=3÷9=答:甲数是12,乙数是9,甲数的和乙数的相等.故答案为:.【点评】根据题意,先弄清运算顺序,然后再列式解答.18.【分析】把买回的360本儿童读物看作单位“1”,科技书占,等量关系式是:总本数×=科技书的本数,文艺书占,等量关系式是:总本数×=文艺书的本数,因为其余是连环画,所以用总本数分别减去科技书的本数和文艺书的本数的总和就等于连环画的本数.【解答】解:(1)360×=90(本)答:科技书有90本.(2)360×=240(本)240+90=330(本)答:科技书和文艺书一共有330本.(3)360﹣330=30(本)答:连环画有30本.故答案为:360×=90(本),360×=240(本)240+90=330(本),360﹣330=30(本).【点评】本题考查了分数乘法问题的解答方法的应用.三.判断题(共5小题)19.【分析】“甲数比乙数多”,是把乙数看作单位“1”,平均分成5份,那么甲数就是5+1=6份;求乙数比甲数少几分之几,也就是求乙数比甲数少的占甲数的几分之几;据此解答即可.【解答】解:把乙数看作5份,那么甲数就是5+1=6份,那么:(6﹣5)÷6=1÷6=,答:乙数比甲数少.所以原题干说法错误;故答案为:×.【点评】解答此题关键是分清两个单位“1”的区别,前一句话是把乙数看作单位“1”,而后一句话是把甲数看作单位“1”.20.【分析】先把原价看作单位“1”,根据分数乘法的意义,用原价乘(1+)就是提价后的票价;再把提价后的票价看作单位“1”,根据分数乘法的意义,用提价后的票价乘(1﹣)就是再降价后的票价,即现价.再把原价与现价比较即可确定门票的价格是否变了.【解答】解:1×(1+)×(1﹣)=1××=<1即门票的价格比原价低了原题说法错误.故答案为:×.【点评】此类题为常考题.无论先提后降还先降后提,都比原价低.21.【分析】根据“男生比女生多,”,把女生人数看作单位“1”,则男生人数就是它的(1+),再用男女生人数差除以男生人数,即可求出女生比男生少几分之几,再与比较即可.【解答】解::÷(1+)=÷=女生就比男生少,而不是.故答案为:×.【点评】解决此题也可以通过判断单位“1”的量来解答,前一句话的单位“1”是女生人数,后一句话的单位“1”是男生人数,单位“1”的量不同,所以分率就不同.22.【分析】将原重量当作单位“1”,则先减少后的重量是原重量的1﹣,将减少后再增加,将减少后的重量当作单位“1”,则此时重量是减少后重量的1+,根据分数乘法的意义,此时重量是原来的(1﹣)×(1+).【解答】解:(1﹣)×(1+)=×=即此时重量是原来的,比原来轻了.故答案为:×.【点评】完成本题要注意前后两个分率的单位“1”是不同的.23.【分析】先算乘法,再算除法,再算加法,最后算减法,求出结果,然后再进一步解答.【解答】解:×÷÷+﹣=÷÷+﹣=÷+﹣=1+﹣=1﹣=1.故答案为:×.【点评】考查了分数四则混合运算,注意运算顺序和运算法则.四.计算题(共4小题)24.【分析】(1)运用乘法的分配律进行简算;(2)先算小括号里的减法,再算括号外的除法;(3)把84化成85﹣1,再运用乘法的分配律进行简算;(4)运用乘法的分配律进行简算.【解答】解:(1)(+)×27=×27+×27=15+5=20;(2)(﹣)÷=÷=;(3)×84=×(85﹣1)=×85﹣×1=3﹣=2;(4)×+×=(+)×=×=.【点评】此题考查的目的是理解掌握分数四则混合运算的顺序以及它们的计算法则,并且能够灵活运用乘法的运算定律进行简便计算.25.【分析】(1)运用乘法的分配律进行简算;(2)小括号里的运用减法的性质进行简算,再算括号外的除法;(3)先算小括号里的减法,再算括号外的除法,最后算加法;(4)把103化成102+1,再运用乘法的分配律进行简算.【解答】解:(1)×10+=×(10+1)=×11=7;(2)÷(4﹣﹣)=÷[4﹣(+)]=÷[4﹣1]=÷3=;(3)+(﹣)÷=+÷=+=;(4)103×=(102+1)×=102×+1×=101+=101.【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.26.【分析】①设这个数是x,用x乘等于36乘,求出x即可;②先用加法算加上的和,再把一个数看作单位“1”,用算出的和除以即可.【解答】解:①设这个数是x,x=36×x÷=30x=50;答:这个数是50.②(+)÷==;答:这个数是.【点评】本题考查了混合运算的运算顺序,要明确先算什么再算什么.27.【分析】根据小数、分数四则混合运算的顺序,按照小数、分数四则运算的计算法则,直接进行口算即可.【解答】解:口算.6÷0.06=1000.5=1.250.6=0.4572÷=64÷=÷3+=÷=÷26==3【点评】此题考查的目的是理解掌握小数、分数四则混合运算的顺序以及它们的计算法则,并且能够正确熟练地进行口算,提高口算能力.五.应用题(共5小题)28.【分析】照这样计算,说明修的工作效率不变;工作效率一定工作时间和工作量成正比例;把用的总时间看成单位“1”,它的对应的数量是4天,由此用除法求出总时间即可.【解答】解:4÷=16(天)答:修完这条路需要16天.【点评】本题根据比例关系发现工作量的就是工作时间的,由此根据已知一个数的几分之几是多少,求这个数用除法解答.29.【分析】根据题意可得等量关系式:全程的﹣全程的=20千米,由此设甲地和乙地相距x千米,列方程解答即可.【解答】解:设甲地和乙地相距x千米,x﹣x=60x=60x=360答:甲地和乙地相距360千米.【点评】解答此题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.30.【分析】把总数看成单位“1”,用第一周卖出的分率加上第二周卖出的分率就是总数的几分之几;用总数的数量乘上一共卖出的分率就是一共卖出了多少只.【解答】解:4000×(+)=4000×=3100(只)答:两周一共卖出3100只.【点评】本题考查了分数乘法应用题,关键是确定单位“1”,解答依据是:求一个数的几分之几是多少用乘法计算.31.【分析】先把梨树棵数看作单位“1”,依据分数乘法意义,求出桃树的棵数,再把杏树的棵数看作单位“1”,依据分数除法意义即可解答.【解答】解:180×÷=270÷=324(棵)答:杏树有324棵.【点评】本题考查了分数乘除法应用题,关键是确定单位“1”,找到具体数量对应的分率;解答依据是:已知一个数的几分之几是多少,求这个数用除法计算.求一个数的几分之几是多少用乘法计算.32.【分析】把两根绳子的长度分别看作单位“1”,第一根剪去它的,还剩下这根绳子的(1),根据一个数乘分数的意义,用乘法求出第一根剩下多少米,第二根剪去米,根据减法的意义,直接用减法求出第二根剩下多少米,然后进行比较即可.【解答】解:1×(1)==(米);1=(米);米=米;答:剩余的一样多.【点评】此题考查的目的是理解掌握一个数乘分数的意义及应用,以及分数减法的意义及应用.。
分数乘除法解决实际问题
分数乘除法解决实际问题一、教学目的:1、让学生结合生活中具体情境经历探索分数乘除混合运算的计算方法的过程,掌握计算方法,并能解答有关的实际些简单的实际问题。
2、使学生掌握分数连除和分数乘除混合运算的计算方法,计算时能根据具体数据选择合适的约分程序。
3、进一步培养学生独立思考、主动与他合作交流、自觉检验等学习习惯,获得一些成功体验,增强学好数学的信心。
二、教学重难点:1、教学重点:使学生经历探索分数乘除混合运算的计算过程,理解乘除复合应用题的数量关系,掌握计算方法,正确解答一些简单的实际问题。
2、教学难点:正确分析分数连除、乘除复合应用题的数量关系,确定解题方法。
三、教学过程:(一)激趣引入1、谈话:同学们喜欢过生日吗?你的生日是怎么过的?(让几位学生简单说说)而小明过生日的时候,约了几个同学到家里一起庆祝,他准备了一个蛋糕和几盒果汁,准备与同学们好好地分享一下生日的快乐。
2、引入:小明首先拿了一盒果汁,要倒进杯子里,你能知道这盒果汁可以倒满几杯吗?(有的可能说:不能,很难判定)那为什么呢?(生:缺少条件。
不知道杯子有多大,这盒果汁有多少升)好!现在把这两个条件补充完整“每个可装3/10升;一盒有4/5升”,再添加一个条件“果汁有3盒”(电脑显示),你能求出3盒果汁可以倒满几杯吗?(二)新授1、出示例6。
小明把一盒4/5升的果汁,倒入每个可装3/10升的杯子里。
3盒果汁可以倒满几杯?2、整理信息。
(1)谈话:要正确解答应用题,首先就要做到认真审题,整理好有关数据,仔细分析题中的数量关系。
(2)提问:从题目中我们可以知道哪些信息?要我们解决什么问题。
(电脑显示)3盒果汁每杯3/10升可以倒满几杯?每盒4/5升3、小组讨论解决问题的策略。
(1)提出:怎样解决这个问题?学生先独立思考。
(2)学习小组合作,讨论交流,说说自己的思路,再整理出解决问题的方法。
(师巡视辅导)(3)学习小组汇报解决问题的方案,边展示边说说解决问题的思路和方法。
【教育资料】六年级下册数学同步拓展暑期课程第七讲 分数乘除法应用题 18 人教版学习精品
第七讲 分数除法应用题 课程目标 1.掌握分数乘除法应用题相互联系与区别,理解并灵活运用。
2.理解量率对应的解题思想。
3.用方程的方法解答应用题。
课程重点会画线段图理解题意,会分析题意,会写数量关系式。
课程难点 1.区别分数乘法应用题的区别与联系。
2.理解并会运用量率对应的解题思想解决问题。
用方程的方法解答分数除法应用题。
教学方法建议1.画线段图理解题意,每道题均写出数量关系式。
2.根据题意判断单位1是已知还是未知 ,归纳总结出单位1是已知用乘法,单位1是未知用除法。
一.知识梳理(一)单位“1”的量和数量关系:(二)已知一个数的几分之几是多少,求这个数的应用题:(三)已知一个数比另一个数多(或少)几分之几,求另一个数是多少的应用题。
二、方法归纳(一)单位“1”的量和数量关系:(1)故事书是科技书本数的54 。
故事书本数=科技书本数×54 (2)一批苹果已卖出83。
一批苹果的重量×83=已卖出的苹果的重量 (3)甲数比乙数少31。
乙数×(1+31)=甲数 (二)已知一个数的几分之几是多少,求这个数的应用题:多少÷几分之几=这个数(三)已知一个数比另一个数多(或少)几分之几,求另一个数是多少的应用题。
一个数÷(1+几几)=另一个数 或 一个数÷(1-几几)=另一个数 三、课堂精讲:【复习】1.列式计算下面个题:(1)41是65的几分之几? (2)41的65是多少? (3)一个数是65,它的31是多少? (4)一个数的31是65,这个数是多少? (5)一个数的31是65,这个数的54是多少? 2.写出下列数量关系式:(1) 故事书是科技书本数的54。
(2) 奶糖块数的31相当于水果糖块数。
(3) 实际造价比计划高81 (4) 甲数比乙数少31 (一)单位“1”的量和数量关系例1 完成数量关系式:1.已经加工了一批零件的116 2.一批苹果已卖出83 3.女同学人数比男同学多81 4.杨树的棵树是柳树的73 【规律方法】根据题意学会写不同类型的数量关系式。
六年级数学分数混合运算试题答案及解析
六年级数学分数混合运算试题答案及解析1.一本书120页,第一天看了全书的,第二天从第()页看起。
A.48B.72C.81D.49【答案】D【解析】120×+1=48+1=49(页)答:第二天从第49页看起。
2.饲养场养白兔51只,占兔子总数的,要求()可以列式为“51÷35”A.黑兔只数 B.兔子总数 C.无法确定【答案】B【解析】列式为“51÷”是求兔子总数是多少。
3.(+)×(1-)【答案】【解析】这道题里面有两个括号,需要先算括号里的加法和减法,再算括号外的乘法。
+=,1-=,×=【考点】分数四则混合运算。
4.×÷【答案】【解析】分数混合运算,此题只含有同一级运算,按从左到右的顺序进行计算,先算×=,再算÷=。
解:×÷=××=【考点】分数乘除混合运算。
5.++【答案】【解析】异分母分数加减计算关键是看是否可以进行简便计算,看是否有同分母的,可以先算同分母的;此题和同分母,而且相加的和是1,利用加法的交换律,把和交换位置,先计算+。
解:++=(+)+=1+=【考点】加法的交换律的应用。
规律总结:加法交换律、加法结合律、乘法交换律、乘法结合律和乘法分配律及减法和除法的性质的运用可以使计算简便。
6.÷[×﹙+﹚]【答案】【解析】思路分析:本题主要考查分数四则混合运算。
要看清算式中都包括什么,然后根据分数四则混合运算方法进行计算。
名师详解:先确定算式中包含哪些运算符号,按照计算顺序有中括号、小括号先算小括号里面的,再算中括号里面的,最后算括号外面的。
解题过程如下:÷[×﹙+﹚]=÷[×(+)]=÷[×]=÷=×=易错提示:读清题目,弄清计算顺序。
7.(浦口区)计算下面各题,怎样算简便怎样算.226÷2+14×5 8×(﹣) 1÷(1﹣0.9)×÷×【答案】183;3;10;.【解析】(1)先算除法和乘法,再算加法;(2)利用乘法分配律简算;(3)先算减法,再算除法;(4)调整运算顺序,先算除法,再算乘法.解答:解:(1)226÷2+14×5=113+70=183;(2)8×(﹣)=8×﹣8×=6﹣3=3;(3)1÷(1﹣0.9)=1÷0.1=10;(4)×÷×=÷××=.点评:混合运算的关键是抓住运算顺序,正确按运算顺序计算,适当运用运算定律计算.8.在横线上填“<”、“>”或“=”.×;÷.【答案】<,>【解析】一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘大于1的数,积大于这个数;一个数(0除外)除以小于1的数,商大于这个数;一个数(0除外)除以大于1的数,商小于这个数;据此解答.解答:解:×<;÷>故答案为:<,>.9.计算下面各题×+×9÷﹣÷÷(+)×75%3﹣×﹣(﹣÷6)×+×15﹣【答案】(1)×+×=×(+)=×1=;(2)9÷﹣÷=9×﹣×9=0;(3)÷(+)×75%=÷×=×2×=;(4)3﹣×﹣=3﹣﹣=3﹣(+)=3﹣1=2;(5)(﹣÷6)×+=(﹣)×+=+=;(6)×15﹣=×(15﹣1)=×14=10.【解析】解:(1)×+×=×(+)=×1=;(2)9÷﹣÷=9×﹣×9=0;(3)÷(+)×75%=÷×=×2×=;(4)3﹣×﹣=3﹣﹣=3﹣(+)=3﹣1=2;(5)(﹣÷6)×+=(﹣)×+=×+=+=;(6)×15﹣=×(15﹣1)=×14=10.【点评】分数混合运算的关键是抓住运算顺序,正确按运算顺序计算,适当利用运算定律简算.10.下面各题,怎样简便就怎样算÷÷(+)×54 14÷(×)×+××86 (+)÷.【答案】3;52;;;3;.【解析】(1)(3)(6)根据运顺序直接计算即可;(2)(4)(5)利用乘法分配律进行简算.解:(1)÷÷,=××,=3;(2)(+)×54,=×54+×54,=42+10,=52;(3)14÷(×),=14÷,=14×,=;(4)×+×,=×(+),=;(5)×86,=×85+,=3;(6)(+)÷,=×,=.【点评】解答此类计算题,注意运算顺序,合理运用运算定律进行简算.11.一件商品,先提价,再降价,现价是原价的()A.B.C.D.【答案】A【解析】提价的单位“1”是原价,设原价为1,那么提价后的价格就是原价的1+,用乘法求出提价后的价格;再把提价后的价格看成单位“1”,现价是提价后价格的1﹣,用乘法求出现价,然后除以原价即可.解:设原价是1,那么:1×(1+)×(1﹣)=1.1×0.9=0.99,0.99÷1=,故选:A.【点评】解答此题的关键是分清两个单位“1”的区别,找清各自以谁为标准,再把数据设出,问题容易解决.12.用递等式计算.+++×+× 5.93﹣0.64+0.07﹣0.361﹣÷÷4×÷(+)【答案】2;;5;;;.【解析】(1)利用加法交换律与结合律简算;(2)利用乘法分配律简算;(3)利用加法交换律与减法的性质简算;(4)先算除法,再算减法;(5)先算除法,再算乘法;(6)先算加法,再算除法.解:(1)+++=++(+)=1+1=2;(2)×+×=×(+)=×1=;(3)5.93﹣0.64+0.07﹣0.36=5.93+0.07﹣(0.36+0.64)=6﹣1=5;(4)1﹣÷=1﹣×=1﹣=;(5)÷4×=××=;(6)÷(+)=×=.【点评】分数四则混合运算的关键是抓住运算顺序,正确按运算顺序计算即可.13.植树节,东方小学把栽210棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人.三个班各应栽树多少棵?【答案】一班栽树69棵,二班栽树66棵,三班栽树75棵.【解析】解:46+44+50=140210×=69(棵)210×=66(棵)210×=75(棵)答:一班栽树69棵,二班栽树66棵,三班栽树75棵.14.一壶油,用去,还剩5kg,求为壶油原来有多少kg的正确列式是()A.5+5×B.5÷C.5÷(1﹣)D.5÷(1+)【答案】C【解析】将总量当作单位“1”,根据分数减法的意义可知,用去后还剩下全部的1﹣,又还剩5kg,根据分数除法的意义,用剩下数量除以其占总数的分率,即得这壶油原来重多少千克.解:5÷(1﹣)=5÷=(kg),答:这壶油原来有kg.故选:C.【点评】已知一个数的几分之几是多少,求这个数,用除法.15.脱式计算(写出主要过程,能简算的要简算)+++ 23﹣×÷÷(﹣)+×4+ 1÷[(﹣)×] ÷3+÷5.【答案】(1)+++=(+)+(+)=1+1=2(2)23﹣×÷=23﹣×18=23﹣6=17(3)÷(﹣)+=÷(﹣)+=﹣+=﹣(4)×4+=×(4+1)=×5=2(5)1÷[(﹣)×]=1÷[×]=1÷=(6)÷3+÷5=×(+)=×1=【解析】(1)运用加法交换律与结合律简算;(2)先算除法和乘法,再算减法;(3)先算括号内的减法,再算括号外的除法和加法;(4)运用乘法分配律简算;(5)先算小括号内的减法,再算中括号内的乘法,最后算括号外的除法;(6)把除法变为乘法,运用乘法分配律简算.解:(1)+++=(+)+(+)=1+1=2(2)23﹣×÷=23﹣×18=23﹣6=17(3)÷(﹣)+=÷(﹣)+=﹣+=﹣(4)×4+=×(4+1)=×5=2(5)1÷[(﹣)×]=1÷[×]=1÷=(6)÷3+÷5=×+×=×(+)=×1=【点评】完成此题,注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.16.求未知数X.x÷=﹣x=(1+)x=.【答案】(1)x÷=x÷×=×x=(2)﹣x=﹣x+x=+x=+x﹣=+x﹣=x÷=x÷×=x1=xx=1(3)x+x=(+)x=x=x÷=÷x=×x=(4)(1+)x=x=x÷=÷x=×x=【解析】(1)根据等式的性质,在方程两边同时除以求解.(2)根据等式的性质,在方程两边先同时加上x,再同时减去,最后同时除以求解.(3)先乘法分配律进行化简,再根据等式的性质,在方程两边同时除以求解.(4)先计算1+,再根据等式的性质,在方程两边同时除以求解.解:(1)x÷=x÷×=×x=(2)﹣x=﹣x+x=+x=+x﹣=+x﹣÷=x÷×=x1=xx=1(3)x+x=(+)x=x=x÷=÷x=×x=(4)(1+)x=x=x÷=÷x=×x=【点评】此题考查了根据等式的性质解方程,即方程两边同加、同减、同乘或同除以某数(0除外),方程的左右两边仍相等;注意“=”号上下要对齐.17.一个与的和等于4的,这个数是多少?【答案】.【解析】根据乘法的意义,先求出4的是多少;然后根据在加法中一个加数等于和减另一个加数,所以这个数为4×﹣.解:4×﹣=1﹣=答:这个数是.【点评】本题也可通过设这个数为x,列方程完成:x+=4×.18.计算下列各题(能简算的要简算)﹣+﹣0.6+÷×(÷)24×(﹣﹣)【答案】0;;;7【解析】(1)利用加法的结合律与减法性质计算;(2)先算除法,再算加法;(3)先算小括号内的除法,再算括号外的乘法;(4)利用乘法的分配律计算.=(+)﹣(+0.6)=1﹣1=0(2)+÷=+×=(3)×(÷)=×=(4)24×(﹣﹣)=24×﹣24×﹣24×=16﹣3﹣6=7【点评】考查学生对四则运算法则以及运算定律和运算性质的掌握情况.19.直接写出得数÷3= 1.39+0.11= ×= ﹣= 3﹣1=7×÷7= (+)×24= ×2÷= ﹣= +0.625=【答案】÷3= 1.39+0.11=1.5 ×=﹣= 3﹣1=7×÷7=(+)×24=14 ×2÷=﹣=+0.625=1【解析】根据分数、小数的四则运算的计算方法进行计算即可.解:÷3= 1.39+0.11=1.5 ×=﹣= 3﹣1=7×÷7=(+)×24=14 ×2÷=﹣=+0.625=1【点评】本题考查的是四则运算,计算的结果是分数的,要化为最简分数.20.计算下面各题,能简算的要简算.0.25×1.3×4﹣+﹣×+÷(1÷+÷1)×.【答案】1.3;;;;【解析】(1)根据乘法交换律和结合律简便计算;(2)根据加法交换律和减法的性质简便计算;(3)先算乘除法,再算加法;(4)先计算小括号里面的除法和加法,再计算括号外面的乘法.解:(1)0.25×1.3×4=0.25×4×1.3=1×1.3=1.3(2)﹣+﹣=1﹣=(3)×+÷=+=(4)(1÷+÷1)×=(6+)×=×=【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.21.一个饲养厂,养鸭1200只,养的鸡比鸭少,养的鸡有多少只?【答案】480只.【解析】根据“养的鸡比鸭少”,把鸭的只数看做单位“1”,单位“1”的量是已知的,要求养鸡的只数,也就是求1200只的(1﹣)是多少,根据分数乘法的意义,用乘法计算.解:1200×(1﹣),=1200×,=480(只);答:养的鸡有480只.【点评】此题考查分数四则复合应用题,解决关键是找准单位“1”,如果单位“1”的量是已知的,求比较量,就用乘法计算.22.计算.×÷×(+)×2.4÷7+×÷÷2﹣÷﹣.【答案】(1);(2)3.4;(3);(4);(5)0.【解析】(1)根据乘法交换律和结合律进行简算;(2)、(3)根据乘法分配律进行简算;(4)按照从左向右的顺序进行计算;(5)先算除法,再根据减法的性质进行简算.解:(1)×÷×=1×=;(2)(+)×2.4=×2.4+×2.4=1.6+1.8=3.4;(3)÷7+×=×+×=(+)×=×=;(4)÷÷=÷=;(5)2﹣÷﹣=2﹣﹣=2﹣(+)=2﹣2=0.【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.23.一件商品涨价后,又降价,现价与原价相比较()A.下降了 B.提高了 C.一样【答案】A【解析】将商品原价当做单位“1”,则涨价后的价格是原价的1+,再把涨价后的价格看作单位“1”,又降价,则降价后的价格是降价前的1﹣,即是原价的(1+)(1﹣),计算后比较即可.解:(1+)(1﹣)==,即现价是原价的,下降了.故选:A.【点评】完成本题要注意第一次涨价与第二次降价分率的单位“1”是不同的.24.计算下面各题,能简便计算的要简便计算。
分数连除和分数乘除复合应用题全面版
(1)黑羊的只数是白羊只数的4/5。
(2)一年级人数占全校人数的2/7。
(3)汽车速度相当于飞机速度的1/15。
2、光明小学美术组有30人,生物组的人数是美 术组人数的1/3,航模组的人数是生物组人数的 4/5。航模组有多少人?
30×1/3×4/5==8(人) 答:航模组有8人。
分数连除应用题
例4 光明小学航模组人数是生物组的4/5 ,生物组人数是 美术组人数的1/3。航模组有8人,美术组有多少人?
美术组:
生物组: 航模组:
?人
美术组× 1/3 = 生物组 生物组× 4/5 = 航模组 美术组生×物1组/3 × 4/5 = 8
算术生8÷方物美组4法术/÷5组:1/38答÷:4/美58÷术人1组/3=有303(0人人解。):设X×美1X术/×3组×4有/41XX/5X5====人38880×。15/4
24×2÷6/11=88(千克) 水果总数×1/4=香蕉
88×1/4=22(千克) 答:商店售出香蕉22千克。
五年级一班学生人数是本年级学生人数的1/3,五年级学生人 数是全校的1/6。五年级一班的学生人数是全校的几分之几? 如果五年级一班有48人,全校学生多少人?
五年级×1/3=五年一班 全校×1/6=五年级
答:美术组有30人。
商店运来一些水果,运来苹果20筐,梨的筐 数是苹果的3/4,同时又是桔子的3/5。运来 桔子多少筐?
苹果: 梨:
20筐
桔子:
?筐 解:设桔子有X筐。
X×3/5=20×3/4 X=20×3/4÷3/5 X=20×3/4×5/3 X=25 答:桔子有25筐。
只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过,其 目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中那小 小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向前看,向前进。所有的未来,都是靠脚步去 丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻彻底底的 渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、执着于 “我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来说,我们 奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知足的,因为我们清清楚楚的知道自己需要的是什么,隐隐约 约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这人生的终局, 或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花,落了又开了,开 了又落了。无数个岁月就这样在悄无声息的时光里静静的流逝。童年的玩伴,曾经的天真,只能在梦里回味,每回梦醒时分,总是多了很多伤感。不知不觉中,走过了青春年少, 走过了人世间风风雨雨。爱过了,恨过了,哭过了,笑过了,才渐渐明白,酸甜苦辣咸才是人生的真味!生老病死是自然规律。所以,面对生活中经历的一切顺境和逆境都学会 了坦然承受,面对突然而至的灾难多了一份从容和冷静。这世上没有什么不能承受的,只要你有足够的坚强!这世上没有什么不能放下的,只要你有足够的胸襟! 一生有多少 属于我们的时光?当你为今天的落日而感伤流泪的时候,你也将错过了明日的旭日东升;当你为过去的遗憾郁郁寡欢,患得患失的时候,你也将忽略了沿途美丽的风景,淡漠了 对未来美好生活的憧憬。没有十全十美的生活,没有一帆风顺的旅途。波平浪静的人生太乏味,抑郁忧伤的人生少欢乐,风雨过后的彩虹最绚丽,历经磨砺的生命才丰盈而深刻。 见过了各样的人生:有的轻浮,有的踏实;有的喧哗,有的落寞;有的激扬,有的低回。肉体凡胎的我们之所以苦恼或喜悦,大都是缘于生活里的际遇沉浮,走不出个人心里的 藩篱。也许我们能挺得过物质生活的匮乏,却不能抵挡住内心的种种纠结。其实幸福和欢乐大多时候是对人对事对生活的一种态度,一花一世界,一树一菩提,就是一粒小小的 沙子,也有自己精彩的乾坤。如果想到我们终有一天会灰飞烟灭,一切象风一样无影亦无踪,还去争个什么?还去抱怨什么?还要烦恼什么?未曾生我谁是我?生我之时我是谁? 长大成人方是我,合眼朦胧又是谁?一生真的没有多少时光,何必要和生活过不去,和自己过不去呢。你在与不在,太阳每天都会照常升起;你愁与不愁,生活都将要继续。时
苏教版小学数学六年级上册第五单元 分数四则混合运算 必考知识点重难点习题汇编(单元测试)【含答案】
苏教版小学数学六年级上册第五单元 分数四则混合运算 必考知识点重难点习题汇编(单元测试)(,完成)一、选择题(满分16分)1.一根绳子长35米,第一次用去,第二次用去米。
这根绳子短了( )米。
2727A .10B .20C .D .334721072.下面哪道题能用解答?( )33225÷A .一辆汽车行千米用汽油升,这辆汽车行1千米需要多少升汽油?32325B .一辆汽车油箱还剩升汽油,占油箱容量的。
这辆汽车的油箱容量是多少升?32325C .一只鹌鹑重千克,一只鹦鹉比一只鹌鹑重千克。
鹦鹉比鹌鹑重几分之几?325323.20cm 增加后是( )cm 。
14A .B .24C .2512044.估算下面算式的结果,得数最小的是( )。
A .988×(1+)B .988×(1-)C .988÷(1-)D .988÷(1+)181818185.姐姐读一本100页的故事书,第一天读了23页,第二天读了全书的,第三天应从第720( )页读起。
A .58B .36C .59D .426.估算下面3个算式的结果,最大的是( )。
A .B .C .1201913⎛⎫⨯+ ⎪⎝⎭1201913⎛⎫÷+ ⎪⎝⎭1201913⎛⎫÷- ⎪⎝⎭7.一本书有240页,小明第一天看了这本书的,从第二天开始,每天都比前一天多看318页,第3天小明该从第( )页开始看起。
A .36B .63C .64D .918.“一堆货物有吨,第一次运走了吨,第二次运走了总数的”。
算式“”341535331455⨯-解决的问题是( )。
A .两次一共运走多少吨B .还剩多少吨C .第二次运走了多少吨D .第二次比第一次多运多少吨二、填空题(满分16分)9.10米的绳子,先截下,再截下米,还剩( )米。
343410.学校阅览室里有36名学生在看书,其中女生占,后来又来了几名女生,这时女生人49数占总人数的,后来又来了( )名女生。
数学分数混合运算三试题
数学分数混合运算三试题1.(12分)(2014•临川区模拟)计算.42×(+﹣) 111×33﹣444×8 1.1×(2.41﹣5.6÷4)÷[×(﹣)]【答案】10;111;1.111;5.【解析】(1)利用乘法分配律简算;(2)把444化为111×4,再利用乘法分配律简算;(3)先算括号内的除法,再算减法,最后算括号外的乘法;(4)先算小括号里面的,再算中括号里面的,最后算括号外的除法.解:(1)42×(+﹣)=42×+42×﹣42×=7+6﹣3=10;(2)111×33﹣444×8=111×33﹣111×4×8=111×33﹣111×32=111×(33﹣32)=111×1=111;(3)1.1×(2.41﹣5.6÷4)=1.1×(2.41﹣1.4)=1.1×1.01=1.111;(4)÷[×(﹣)]=÷[×]=÷=×3=5.点评:分数的四则混合运算要按照混合运算的顺序进行,能用运算律简算的要简算.2.(24分)直接写出答案(1)2﹣+=(2)33×98+66=(3)4﹣(+0.5)=(4):=(5)2005×=(6)999+99+9+=【答案】2;3300;3.5;;2003;1110.【解析】根据分数、小数和整数加减乘除法的计算方法进行计算;(1)2﹣+根据加法交换律进行简算;(2)33×98+66根据乘法分配律进行简算;(3)4﹣(+0.5)根据减法的性质进行简算;(5)2005×根据乘法分配律进行简算;(6)999+99+9+根据加法交换律和结合律进行简算.解:(1)2﹣+=2;(2)33×98+66=3300;(3)4﹣(+0.5)=3.5(4):=;(5)2005×=2003;(6)999+99+9+=1110.点评:口算时,注意运算符号和数据,然后再进一步计算.3.计算:.【答案】3.【解析】通过观察可知,每个分数的分子与分母组成数字非常接近,所以可先据公式a2﹣b2=(a+b)(a﹣b)将分子分解,然后再进行巧算.解:=++,=++,=++,=1+1+1,=3.点评:公式a2﹣b2=(a+b)(a﹣b)也是分数巧算中常用到的公式.4.(3分)=.【答案】.【解析】通过观察发现分子中的分数分母分别是6、12、3.公分母是12,可以先通分.通分后分子中可以用简算.分母中的0.2化为.解:原式=,=,=,=.故答案为.点评:本题在化简时注意灵活运用运算定律.5.(4分)仓库有一批货物,第一次运走这批货物的,第二次运走300吨,这时运走的吨数与剩下的吨数比是7:5,这批货物一共有几吨?【答案】1200吨.【解析】首先根据运走的吨数与剩下的吨数比是7:5,可得运走了这批货物的;然后求出300吨占这批货物的分率是多少,再根据分数除法的意义,用300除以它占的分率,求出这批货物一共有几吨即可.解:300==300=1200(吨)答:这批货物一共有1200吨.点评:此题主要考查了分数四则复合应用题,解答此题的关键是求出300吨占这批货物的分率是多少.6.(16分)递等式计算(1)+1.75++3.25(2)×1.25×2.1×80(3)240÷1.5﹣0.24×150(4)6.2×+2.8÷(5)7.2×(﹣+)(6)(3﹣)×(+÷)(7)(×+÷8)×56(8)一个数的加上4.2的的和是5,这个数是多少?(列出综合算式或方程,计算出这个数)【答案】6;150;124;;7.1;;3;2.5;【解析】(1)根据加法交换律和结合律进行简算;(2)根据乘法交换律和结合律进行简算;(3)先算除法和乘法,再算减法;(4)根据乘法分配律进行简算;(5)根据乘法分配律进行简算;(6)先算减法和除法,再算加法,最后算乘法;(7)先算小括号里面的乘法和除法,再算加法,最后算括号外面的乘法;(8)先算4.2的,再用5减去所得的积,就是这个数的,然后再除以.解:(1)+1.75++3.25=(+)+(1.75+3.25)=1+5=6;(2)×1.25×2.1×80=(×2.1)×(1.25×80)=1.5×100=150;(3)240÷1.5﹣0.24×150=160﹣36=124;(4)6.2×+2.8÷=6.2×+2.8×=(6.2+2.8)×=9×=;(5)7.2×(﹣+)=7.2×﹣7.2×+7.2×=4.2﹣1.6+4.5=2.6+4.5=7.1;(6)(3﹣)×(+÷)=2×(+)=2×=;(7)(×+÷8)×56=(+)×56=×56=3;(8)(5﹣4.2×)÷=(5﹣3.5)÷=1.5÷=2.5.答:这个数是2.5.点评:考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.根据题意,先弄清运算顺序,然后再列式进行解答.7.(3分)有一些数字卡片,上面写的数都是2的倍数或3的倍数,其中2的倍数的卡片占,3的倍数的卡片占,6的倍数的卡片有13张,那么这些卡片共有张.【答案】30.【解析】由于2、3的最小公倍数是6,所以2、3的倍数的卡片里都包含了6的倍数的卡片,如果把卡片总数看作单位“1”,则6的倍数的卡片占卡片总数的+﹣1=;又由“6的倍数的卡片有13张”可知,13所对应的分率是,用对应量13除以对应分率,就能求得这些卡片的总数.解:13÷(+﹣1),=13÷,=30(张);答:这些卡片共有30张.故答案为:30.点评:解答此题的关键是明白2、3的倍数的卡片里都包含了6的倍数的卡片,找到13的对应分率,从而求得卡片总数.8.(2012•郑州模拟)第一个木箱里有303只螺帽,第二个木箱里的螺帽是全部螺帽的,第三口木箱里的螺帽占全部螺帽的(n是整数)问:三口木箱中的螺帽共有多少个?【答案】3535个【解析】根据题意,将三口木箱的全部螺帽看作单位1“,n的值只能在0、1、2、3、4、5这两个数中选取,(n不能等于6,因为+=>1,)经过尝试只有当n=5时,得到的是整数,用单位“1”分别减去第二箱和第三箱占总数的分数,那么得到的分数即是第一口箱子所占总数的几分之几,又知第一口箱子里有303个螺帽,所以用303除以所对应的分数即可得到答案,列式解答即可.解:当n=5时,303÷[1﹣(+)],=303÷,=3535(个);答:这三口木箱的螺帽共有3535个.点评:解答此题的关键是确定第三口木箱占总数的几分之几,然后再计算出第一口木箱占总数的几分之几,再用第一口木箱的个数除以它所占的分数即可得到答案.9.(3分)修一条公路,第一月修了全长的25%,第二个月修了全长的,已知第二月比第一月多修3千米,这条公路全长多少千米?(列方程解答)【答案】20千米.【解析】第一月修了全长的25%,第二个月修了全长的,则第二个月比第一个月多修了全长的(﹣25%),设这条公路全长为x千米,根据分数乘法的意义,则多修了(﹣25%)x,又已知第二月比第一月多修3千米,可得方程:(﹣25%)x=3.解:设这条公路全长为x千米,可得:(﹣25%)x=315%x=3x=20答:全长是20千米.点评:完成本题要注意分析条件中所给数量之间的关系,然后设未知数列出方程.10. A=(+)×1001,B=(+)×1003,C=(+)×1005,请将A、B、C按从大到小的顺序排列起来.【答案】A>B>C;【解析】将A、B、C按从大到小的顺序排列起来,实际上就是比较A、B、C的大小;本题既有分数,又有乘法,可将他们转化成具有一定规律的一组数,这样便于比较大小;通过观察发现A 可转划为1+,B可转化为1+,C可转化为1+,据此比较大小即可.解:A=(+)×1001=(+)×2002÷2=(+)÷2=(1++1﹣)÷2=(2+﹣)÷2=(2+)÷2=(2+)÷2=1+,同理,B=1+,C=1+,因为>>(分子相同,分母越大,分数越小.),所以A>B>C;答:A、B、C按从大到小的顺序排列为:A>B>C.点评:解答此题的关键是把这两个分数大小比较转化成比较它们的差的大小,从而利用分子相同,分母越大,分数越小的方法进行比较即可.。
六年级上册数学教案第三单元问题解决第3课时分数乘除混合运算应用题_西师大版
六年级上册数学教案第三单元问题解决第3课时分数乘除混合运算应用题_西师大版教学内容:教科书第42页例3,分数乘除混合运算应用题。
教学提示:本课时的教学内容是在学生差不多熟悉分数乘、除法的意义,初步把握分数乘除混合运算以及列方程解决实际问题的基础上,引导学生利用对“求一个数的几分之几是多少以及其他相关数量关系的已有认识,解答一些稍复杂的与分数有关的实际问题。
这些问题差不多上“求一个数的几分之几是多少”的实际问题的进展,需要学生用分数乘除法或列方程加以解决。
教材中只安排了一个例题——例3,这是用分数乘法和分数除法解决问题的综合应用。
教材只出现了一种解题思路:抓两个小孩对话框中“小明存钱(88元)的43=小红存钱(x 元)的56 ”的等量关系,用方程解。
教学目标:1.知识与技能:学会有条理分析信息,弄清数量之间的内在联系;学会列方程解决较复杂的分数乘、除法混合的实际问题。
2.过程与方法:经历解决问题的过程,学会从不同的角度去分析解决生活中的现实问题,摸索解决问题的不同策略和方案。
3.情感态度与价值观:学会分析解答分数复合应用题,进展学生的分析推理能力,同意勤俭节约的适应教育。
重点难点:教学重点:列方程解决较复杂的分数乘、除法混合的实际问题。
教学难点:能列方程解决较复杂的分数乘、除法混合的实际问题。
教学预备:教具预备:多媒体课件学具预备:米尺、练习本等 教学过程:(一)新课导入先请学生谈谈自己每月有多少零花钱。
然后请学生说一说自己零花钱的使用情形,谈谈对零花钱支配的看法。
教师结合课前对本班学生零花钱使用情形的了解,对学生进行勤俭节约的养成教育。
(颂扬一些同学把剩余的零花钱都存起来,在学校开展向贫困地区小孩献爱心的活动中,用自己存的零用钱积极捐款或买学习用具给贫困地区小孩,有的还主动关心小区里的孤残家庭,期望如此的精神在班上连续得到发扬)勤俭节约是我们中华民族的传统美德,在其他小学,也有许多同学把自己的零花钱存起来。
分数乘除法专题
教案模板相当于乙。
把、小红的书比小明少例2:复习分数乘法的意义,口述下列算式的意义,32×20 21 ×72 32×18 72× 107 21× 0.7 12×232 练习:复习分数乘法的计算法则 ,完成下面计算21 ×76103 ×18 5149 × 2817 113× 95× 4522倒数乘积是1的两个数互为倒数。
两个数…..倒数是一对…..别把它们拆散…….不能单独说某个数是倒数。
如:4是倒数、41是倒数.. 它们不是倒数….别把它们“夫妻俩”拆散了。
1有倒数,0没有倒数。
0为什么没有倒数:0乘任何数都等于0,而不是等于1。
例3(1)74与( )互为倒数,( )的倒数是1, 0( )倒数。
(2)41⨯( )= 89⨯( )=15⨯( )=1(3)31与它的倒数的和是多少? (4)54与它的倒数的51相乘是多少?练习:写出下列各数的倒数52的倒数是( ) 711的倒数是( )109的倒数是( )313的倒数是( )3的倒数是( )1的倒数是( ) 0.125的倒数是( ) 0.2的倒数是( )解方程例题:72+X=218 X ÷15 =65 X ÷277=24×81练习: X ÷72=167125 ÷X=31021x +61x = 4 98X=61×5116分数应用题第一类、一个数的几分之几1.(1)某校有男生240人,女生是男生的 65,女生有多少人?2.(1)果园里有梨树120棵,桃树棵数是梨树的41,果园里有桃树多少棵?练习1、某校美术组有40人,美术组人数是音乐组人数的32,音乐组人数又是数学组人数的43。
数学组有多少人?2、四年级有三好学生30人,是全年级人数的61,四年级人数占全校人数的92。
全校有学生多少人?第二类、两步连乘3.(1)鸡场养有小鸡2240只,中鸡是小鸡的 85,大鸡是中鸡的76,大鸡有多少只?4.(1)公园里有郁金香90棵,月季花是郁金香的 95 ,兰花的棵数是月季花的 52,兰花有多少棵?练习 1.小红看一本120页的故事书,第一天看全书的13,第二天看了剩下的12,第三天应从第几页开始看?2.大桥中学有女生600人,男生比女生多56,教师是女生的13。
分数除法简单应用题教案 分数连除应用题的解题方法优秀5篇
分数除法简单应用题教案分数连除应用题的解题方法优秀5篇分数除法简单应用题教案分数连除应用题的解题方法篇一一、综合应用题1、超市里有720个月饼,4个装一盒,2盒装一袋,一共可以装几袋?2、王老师用了100元钱买了5盒钢笔,每盒钢笔有4支,每支钢笔多少元?3、三年级一班同学为贫困山区小朋友捐款共720元,小丽捐了9元,三年级一班的捐款数是小丽捐的捐款数的多少倍?4、小明有88张卡片,小明的卡片数是小红的4倍,小明的卡片比小红的多几在张?5、艾飞高要折180只飞机送给张底同学,他已经折了87只,剩下的要3天折完,接下来艾飞高平均每天要折多少只纸飞机?6、张美香今年9岁,爸爸29岁,明年爸爸的年龄是张美香的多少倍?7、小嘎勒小学三年级的4位教师带领92位同学去春游,如果每4个同学租一辆小车,需要租多少辆小车?8、一个足球56元,一根跳绳4元,买1个足球的钱可以买几根跳绳?9、5千克鲜蘑菇可以晒成1千克干蘑菇,65千克鲜蘑菇可以晒成多少千克干蘑菇?10、学校图书馆买来文艺书和科技书共576本,买来的科技书是文艺书的3倍。
学校图书馆买来文艺书和科技书各多少本?11、今年张勤丰和奶奶的年龄共有72岁,奶奶的年龄是张勤丰的5倍,张勤丰和奶奶今年各有几岁?12、水果店今天卖出梨和苹果共834千克,其中卖出苹果的重量是卖出梨的重量的2倍,卖出梨和苹果各多少千克?一三、参观消防14、把804块月饼用包装盒包装起来,如果每盒装6块月饼,装这些月饼需要多少个包装盒?壹五、小嘎勒小学有603个同学去参观普者黑,组了9辆车,平均每辆车做多少人?16、有837盆花,放进8个花坛,平均每个花坛放几盆?还剩几盆?一qi、自来水公司要修一条长852米的自来水管道,如果每根自来水管长5米。
至少需要多少根水管?18、参观消防表演的成人人数是儿童人数的4倍,一共有650人参观,那么成人有多少人参观?儿童有多少人参观?19、一件上衣一qi9元,一双袜子9元,一条裤子1一qi元。
【精品】精选常考应用题(提高版)专题07《分数加减乘除复合应用题》2020年小升初数学金牌提分闯关练
2020年小升初数学精选常考题金牌提分闯关练(提高版)专题07《分数加减乘除复合应用题》1.(2019秋•天河区期末)中心小学五年级有学生200人,是四年级学生人数的45,六年级的学生人数比四年级学生人数多15,六年级一共有多少人?列式正确的是()A.41200(1)55⨯⨯+B.412055÷⨯C.4120018055÷⨯+D.41200(1)55÷⨯+【解答】解:41 200(155÷⨯+5620045=⨯⨯62505=⨯300=(人)答:六年级一共有小数300人.故选:D.2.(2019•西城区)甲、乙二人外出旅行,甲带了35000港元,乙所带的钱的15比甲所带钱的14少150港元,则乙所带的钱()A.比甲所带的钱少B.和甲所带的钱同样多C.比甲所带的钱多8000港元D.是甲所带钱的1.2倍【解答】解:11 (35000150)45⨯-÷1(8750150)5=-÷86005=⨯43000=(港元)4300035000800-=(港元)答:乙带的钱比甲带的钱多800港元. 故选:C .3.(2018秋•苍南县期末)“一堆货物有34吨,第一次运走了15吨,第二次运走了总数的35.”算式“331455⨯-”解决的问题是( ) A .两次一共运走多少吨 B .还剩多少吨C .第二次运走了多少吨D .第二次比第一次多运多少吨【解答】解:3345⨯表示第二次运走的质量; 331455⨯-就表示第二次比第一次多运多少吨.故选:D .4.(2019春•上海月考)一瓶饮料,一次喝掉一半饮料后,连瓶共重700克;如果喝掉饮料的13后,连瓶共重800克.瓶子重为( )克. A .300B .400C .500D .600【解答】解:11(800700)()23-÷- 11006=÷600=(克)17006002-⨯700300=- 400=(克)答:瓶子重为400克. 故选:B .5.(2018秋•淄博期末)两根钢管的长都是2米,第一根截去310米,第二根截去310,剩下的两根钢管相比( ) A .第一根长B .第二根长C .一样长【解答】解:第一根钢管剩下的长度: 32 1.710-=(米)第二根钢管剩下的长度:32210-⨯20.6=-1.4=(米)因1.7 1.4>,故选:A.6.(2019•株洲模拟)六(1)班学牛不到60人,在一次听读检测中,有17的学生得”优秀”,13的学生得“良好”,16的学生得“不合格”,六(1)班共有学生()人A.42B.49C.54D.60【解答】解:有分析可知,全班的人数应该是7、3、6的公倍数,其中只有42是7、3、6的公倍数,所以全班的人数应该是42人.故选:A.7.(2018•杭州模拟)如果从甲袋土豆中拿出15放入乙袋中.这时两袋土豆的质量相等.则甲、乙两袋土豆原来质量的关系是()A.甲袋比乙袋多15B.乙袋比甲袋少15C.甲袋比乙袋多25D.乙袋比甲袋少13【解答】解:14 155 -=413 555 -=32 155 -=答:甲、乙两袋土豆原来质量的关系甲袋比乙袋多2 5.故选:C.8.(2019秋•太原期末)六年级二班有48名学生,其中男生占58.全班有38人报名“周末小志愿者”活动.这个班报名“周末小志愿者”活动的男生最多有 30 人,最少有 人. 【解答】解:548308⨯=(人) 483018-=(人)当男生全部参加时,此时参加活动的男生人数就最多,就是30人; 当女生全部参加活动时,参加活动的男生人数最少,是:381820-=(人) 答:这个班报名“周末小志愿者”活动的男生最多有 30人,最少有 20人. 故答案为:30,20.9.(2019秋•迎江区期末)一种弹力球从高处自由下落后反弹高度是下落高度的34,现在从8米高的地方自由下落,第二次反弹的高度是 92米. 【解答】解:33844⨯⨯ 364=⨯92=(米)答:第二次反弹的高度是92米.故答案为:92.10.(2019秋•市中区期末)食堂有2吨大米,每天吃14吨,可吃 A 天;如果每天吃它的14,可吃 天. .8A .6B .4C .2D【解答】解:1284÷=(天)1144÷=(天)答:每天吃14吨,可吃 8天;如果每天吃14,可吃 4天.故答案为:A ,C .11.(2019秋•广州期末)只列式不计算. (1)一根绳子长30米,第一次用去它的25,第二次用去它的15,两次一共用去多少米?列式: 2130()55⨯+ .(2)李叔叔加工零件45个,比原计划多加工了5个,他实际加工的零件数比原计划增加了百分之几? 列式: .【解答】解:(1)2130()55⨯+. (2)5(455)÷-.故答案为:2130()55⨯+;5(455)÷-. 12.(2019•重庆)一杯水中溶有9克糖,搅匀后喝去23;添入6克糖,加满水搅匀,再喝去23;再添入6克糖,加满水搅匀,再喝去23;再添入6克糖,加满水搅匀,再喝去23.此时,所剩的糖水中有 3 克糖. 【解答】解:222{[9(1)6](1)6}(1)333⨯-+⨯-+⨯- 22{[36](1)6}(1)33=+⨯-+⨯- 29(1)3=⨯- 3=(克)2(36)(1)3+⨯-193=⨯3=(克)答:所剩的糖水中有 3克糖. 故答案为:3.13.(2019•金水区)有甲,乙两筐水果,如果从甲筐中取出10千克放入乙筐,则两筐相等;如果从两筐中各取出10千克,这时甲筐剩下的310比乙筐剩下的13多5千克.则开始甲筐有水果 60 千克.【解答】解:设乙筐有x 千克,则甲筐有(102)x +⨯千克. 31(10210)(10)5103x x +⨯-⨯--⨯=3110351033x x +-+= 311951033x x -+=1915330x -=1911153303030x x x-+=+ 1915330x=+1195303x +=119555303x +-=-14303x =11413030330x ÷=÷ 40x = 40102+⨯ 4020=+ 60=(千克)答:甲筐有香蕉60千克. 故答案为:60.14.(2019•重庆)一辆汽车从甲城开往乙城,第一天走了350千米,第二天比第一天多15,没走的比两天共走的多114,全程有 1595 千米. 【解答】解:1350(1)5⨯+ 63505=⨯420=(千米)350420770+=(千米)1770(1)14⨯+1577014=⨯825=(千米)7708251595+=(千米)答:全程有1595千米.股答案我:1595.15.(2018秋•江都区期末)学校合唱队女生人数原来占总人数的14,后来有6名女生加入,这样女生人数就占总人数的25.现在合唱队共有 30 人. 【解答】解:216()5241÷---216()33=÷- 163=÷63=⨯ 18=(人)218(1)5÷- 3185=÷ 5183=⨯30=(人)答:现在合唱队共有30人. 故答案为:30.16.(2019春•杨浦区月考)有两瓶重量相同的盐水,甲瓶中盐的重量是盐水重量的14,乙瓶中盐的重量是水重量的15,现把两瓶盐水混合在一起,盐的重量是水重量的 519.【解答】解:13144-=11516=+ 15166-=1135()()4646+÷+ 5191212=÷ 519=答:现把两瓶盐水混合在一起,盐的重量是水重量的519.故答案为:519.17.(2019春•咸安区期末)一杯纯牛奶,笑笑喝了半杯后,觉得有些凉,就兑满了热水,全部喝完后,就和妈妈出去散步了.她一共喝了 1 杯纯牛奶,喝了 杯水.【解答】解:有分析可得:牛奶只有一杯,水只有半杯,全部喝完后,她一共喝了1杯纯牛奶,喝了半杯水.故答案为:1,半.18.(2019秋•丹江口市期末)一种商品先降价15,再提价15,现价与原价相等. 错误 .(判断对错)【解答】解:(1)先降价15,是把原来的价格看做单位“1”; 再提价15,是把降价后的价格看做单位“1”;两个单位“1”不同,价格和原来就不同. (2)降价114:1555-=, 再提价14124:(155525⨯+=,说明现价是原价的2425. 故判断为:错误.19.(2018秋•黄冈期末)一根2m 长的绳子,截去14后,再接上余下的14,这时绳子仍长2m . ⨯ (判断对错)【解答】解:12(1)4⨯- 324=⨯32=(米)31(124⨯+ 3524=⨯ 158=(米)这时绳子的长度是158米,不是2米,原题说法错误.故答案为:⨯.20.(2018秋•太原期末)孙宇重50千克,放假一段时间体重增加了110,此后他加强锻炼,体重又减轻了110,这时他的体重还是50千克.⨯(判断对错)【解答】解:11 50(1)(1)1010⨯+⨯-119501010=⨯⨯49.5=(千克)答:现在孙宇的体重是49.5千克,原说法错误.故答案为:⨯.21.(2019秋•碑林区校级期中)一台电脑先涨价19,又降价19,现价比原价低一些.√(判断对错)【解答】解:11 1(1)(1)99⨯+⨯-108199=⨯⨯8081=80181<答:现价比原价低一些,原说法正确.故答案为:√.22.妈妈买来一个匹萨,分14给爸爸,下亚吃剩下的14,妈妈吃再剩下的14,其余的给阿姨吃,他们4个人吃得一样多.⨯.(判断对错)【解答】解:11 144⨯=11 (1)44-⨯3144=⨯316=31164<故答案为:⨯.23.把150米增加13,再减少13,结果不变. ⨯ .(判断对错)【解答】解:11150(1)(1)33⨯+⨯-, 4215033=⨯⨯, 22003=⨯,11333=(米),11331503<,答:结果变了, 故应填:⨯.24.(2019秋•无棣县期末)实验小学在世界环境日开展废旧书本回收活动.六(1)班回收旧书本240千克,六(2)班比六(1)班的512少21千克.六(2)班回收废旧书本多少千克? 【解答】解:52402112⨯-10021=-79=(千克)答:六(2)班回收废旧书本79千克.25.(2019秋•武川县期末)小华看一本书,第一天看了20页,第二天看了全书的15,还剩下全书的25没有看,这本书一共有多少页? 【解答】解:1220(155÷-- 2205=÷ 5202=⨯50=(页)答:这本书有关有50页.26.(2019秋•肥城市期末)筑路队修筑一段公路,第一天修了全部的16,第二天修了全部的14,这时还剩140米没有修.这段公路长多少米?【解答】解:11 140(1)64÷--714012=÷121407=⨯240=(米)答:这段公路长240米.27.(2019秋•肥城市期末)同学们要植300棵树.第一天已经植了23,其中是25五年级植的.第一天五年级植了多少棵树?【解答】解:22 30035⨯⨯22005=⨯80=(棵)答:第一天五年级植了80棵树.28.(2019秋•黔东南州期末)妈妈今年42岁,小方的年龄相当于妈妈年龄的314,又正好是外婆年龄的18,小方的外婆今年多少岁?【解答】解:31 42148⨯÷198=÷72=(岁)答:小方的外婆今年72岁.29.(2019秋•永福县期中)修一段公路,第一天修了全长的18,第二天修了全长的14,第三天修的是前两天的和,还剩100米,这段公路全长多少米?【解答】解:11 100[1()2]84÷-+⨯3 100[12]8=÷-⨯3 100[1]4=÷-41004=⨯ 400=(米)答:这段公路全长400米.30.(2019春•单县期末)六(1)班和六(2)班共108本课外阅读书,六(1)班的本数的14与六(2)班本数的15相等,两个班各有课外阅读书多少本?【解答】解:设六(1)班的本数为“1”,则六(2)班的本数为1151454⨯÷=5108(1)4÷+91084=÷48=(本)548604⨯=(本)答:六(1)班有课外阅读书48本,六(2)班有外阅读书60本.31.(2018秋•淄博期末)三年级的同学参加兴趣小组,参加舞蹈小组的有65人,参加音乐小组的人数比舞蹈小组人数的813多6人,参加音乐小组的有多少人? 【解答】解:865613⨯+406=+ 46=(人)答:参加音乐小组的有46人.32.(2019秋•郓城县期末)用拖拉机耕地,甲拖拉机7小时耕地6公顷,乙拖拉机每小时耕地56公顷.甲拖拉机比乙拖拉机平均每小时多耕地多少公顷? 【解答】解:5676÷-76 142=(公顷) 答:甲拖拉机比乙拖拉机平均每小时多耕地142公顷.33.(2019春•交城县期中)蚂蚁离大树有300米远,它要爬到大树下,第一天爬了全程的25,第二天爬了第一天路程的12. (1)第二天爬了全程的几分之几?画一画,再列式算一算. (2)第二天爬了多少米? 【解答】解:(1)作图如下:211525⨯=答:第二天爬了全程的15. (2)1300605⨯=(米)答:第二天爬了60米.34.(2018秋•福州期末)小明的爸爸从甲地到乙地,已经驾车行驶了全程的23,油箱的油量从开始的满满一箱消耗到现在剩下全箱的14. (1)他能行驶完全程吗?(2)请通过列式计算、文字简述或画示意图加以说明. 【解答】解:(1)13144-=39412=,28312= 981212>即43行了全程的23,用油量超过23,他不能行驶完全程答:他不能行驶完全程.(2)设满箱油为“1”12(1)43-÷3243=÷98=918>因为行定全程的用油量超过一箱油的量,因此,他能行驶完全程.35.(2018秋•江宁区期末)小刚从图书馆借来一本《民间故事》,第一天看了全书的27,第二天看的是第一天的一半,其余的第三天看完.第三天看了全书的()(),第二天比第三天少看了全书的()().【解答】解:221 1772 --⨯21 177 =--47=421 772 -⨯41 77 =-37=答:第三天看了全书的47,第二天比第三天少看了全书的37.故答案为:47;37.36.(2018秋•于都县期末)画出线段图表示出题中的数量关系:丁老师有红花60朵,有黄花的朵数是红花的43,又是紫花朵数的45,丁老师有紫花多少朵?【解答】解:画出线段图表示出题中的数量关系:446035⨯÷4805=÷100=(朵)答:丁老师有紫花100朵.37.(2019秋•宜昌期末)(变式题)(1)画图表示三人跳的下数之间的关系.(2)小亮跳了多少下?【解答】解:(1)(2)53 10064÷⨯6310054=⨯⨯90=(下)答:小亮跳了90下.38.(2019秋•红安县期末)学校举行朗诵比赛,获三等奖的有120人,获一等奖的人数是获三等奖的14,是获二等奖23.获二等奖的有多少人? 【解答】解:1212043⨯÷2303=÷45=(人)答:获二等奖的有45人.39.(2019秋•扶余市期中)中国农历中的“夏至”是一年中白昼最长、黑夜最短的一天.这一天,北京的黑夜时间是白天时间的35.白昼和黑夜分别是多少小时?【解答】解:52435⨯+ 5248=⨯15=(小时)32435⨯+ 3248=⨯9=(小时)答:白昼是15小时,黑夜是9小时.40.(2019•长沙模拟)水果批发商购进10吨水果,上午卖出了15,下午卖出了35吨,一共卖出了多少吨水果?【解答】解:131055⨯+325=+325=(吨)答:一共卖出了325吨水果.。