2009数学解题能力展示读者评选活动五年级组

合集下载

2014年数学解题能力展示(原迎春杯):五年级初赛试卷(含答案

2014年数学解题能力展示(原迎春杯):五年级初赛试卷(含答案

2014“数学解题能力展示”读者评选活动试题五年级组一.选择题(每小题8 分,共32 分)1. 在所有分母小于10 的最简分数中,最接近20.14 的分数是()【考点】计算,分小互化【难度】☆【答案】B 【分析】可观察分数,进行估算;或进行精算,易知2. 下面的四个图形中,第()幅图只有2 条对称轴(A)图1 (B)图2 (C)图3 (D)图4【考点】几何【难度】☆【答案】C 【分析】如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.观察易知,符合题意的是(C)3. 一辆大卡车一次可以装煤2.5 吨,现在要一次运走48 吨煤,那么至少需要()辆这样的大卡车.(A)18 (B)19 (C)20 (D)21【考点】应用题【难度】☆【答案】C 【分析】辆4. 已知a、b、c、(D)四个数的平均数是12.345,a>b>c>(D),那么b().(A)大于12.345 (B)小于12.345 (C)等于12.345 (D)无法确定【考点】计算,平均数【难度】☆【答案】D 【分析】排除法,(A)(B)(C)三个选项均可找到反例,故无法确定二.选择题(每小题10 分,共70 分)5. 如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是()(A)25 (B)40 (C)49 (D)50【考点】几何,弦图【难度】☆☆【答案】C 【分析】如下图所示,图①逆时针旋转90°,阴影部分可拼成一等腰直角三角形,6. 甲、乙、丙、丁四人拿出同样多的钱,一起订购同样规格的若干件新年礼物,礼物买来后,甲、乙、丙分别比丁多拿了3,7,14 件礼物,最后结算时,乙付给了丁14 元钱,并且乙没有付给甲钱.那么丙应该再付给丁()元钱.(A)6 (B)28 (C)56 (D)707. 在下列算式的空格中填入互不相同的数字:.其中五个一位数的和最大是()(A)15 (B)24 (C)30 (D)358. 已知4 个质数的积是它们和的11 倍,则它们的和为()(A)46 (B)47 (C)48 (D)没有符合条件的数9. 为了减少城市交通拥堵的情况,某城市拟定从2014 年1 月1 日起开始试行新的限行规则,规定尾号为1、6 的车辆周一、周二限行,尾号2、7 的车辆周二、周三限行,尾号3、8 的车辆周三、周四限行,尾号4、9 的车辆周四、周五限行,尾号5、0 的车辆周五、周一限行,周六、周日不限行.由于1 月31 日是春节,因此,1 月30 日和1 月31 日两天不限行.已知2014 年1 月1 日是周三并且限行,那么2014 年1 月份()组尾号可出行的天数最多.(A)1、6 (B)2、7 (C)4、9 (D)5、010. 4 个选项之中各有4 个碎片,用碎片将下图铺满. 选项()是不能将下图恰好不重不漏地铺满的(碎片可以旋转、翻转).11. 如下图所示,将15 个点排成三角形点阵或者梯形点阵共有3 种不同方法(规定:相邻两行的点数均差1).那么将2014 个点排成三角形点阵或者梯形点阵(至少两层)共有()种不同的方法.三.选择题(每小题12 分,共48 分)12. 今天是2013 年12 月21 日,七位数恰好满足:前五位数字组成的五位数是2013 的倍数,后五位数字组成的五位数是1221 的倍数. 那么四位数的最小值是().A. 1034B. 2021C. 2815D. 303613. 甲、乙两人比赛折返跑,同时从A 出发,到达B 点后,立即返回,先回到A 点的人获胜.甲先到达B 点,在距离B 点24 米的地方遇到乙.相遇后,甲的速度减为原来的一半,乙的速度保持不变.在距离终点48 米的地方,乙追上甲.那么,当乙到达终点时,甲距离终点还有__________米.A. 6B. 8C. 12D. 1614. 如图,一只蚂蚁从中心A 点出发,连走5 步后又回到A 点,且中间没有回到过A 点.有____种不同的走法.(每一步只能从任意一点走到与它相邻的点,允许走重复路线.)A. 144B.156C.168D.18015. 如图,请将0、1、2、……、14、15 填入一个的表格中,使得每行每列的四个数除以4 的余数都恰为0、1、2、3 各一个,而除以4 的商也恰为0、1、2、3 各一个.表格中已经填好了几个数,那么,这个表格中最下方一行的四个数的乘积是().44A. 784B.560C.1232D.528。

2009年数学解题能力展示(迎春杯)中年级组复赛试题及详细解析

2009年数学解题能力展示(迎春杯)中年级组复赛试题及详细解析

2009“数学解题能力展示”读者评选活动中年级组复试题(活动时间:2009年2月4日11:00—12:00;满分120分)(请将答案填入答题卡中)一、填空题(每题8分)1. 200917123+⨯=_____________.2. 右图是体操运动员小燕倒立时看到镜子中另一正常站立的运动员小杰的号码,则小杰的号码是_____________.3. 由数字1、2、3组成的不同的两位数共有9个,老师将这9个数写在一个九宫格上,让同学选数,每个同学可以从中选5个数来求和.小刚选的5个数的和是120,小明选的5个数的和是111.如果两人选的数中只有一个是相同的,那么这个数是_____________.4. 如图,有一张长为12厘米,宽为10厘米的长方形纸片,按照虚线将这个纸片剪为两部分,这两部分的周长之和是_____________厘米.二、填空题(每题10分)5. A,B,C,D,E,F 六个足球队进行单循环比赛,每两个队之间都要赛一场,且只赛一场.胜者得3分,负者得0分,平局每队各得1分.比赛结果,各队得分由高到低恰好为一个等差数列,获得第3名的队得了8分,那么这次比赛中共有_____________场平局.6. 将1、2、3、4、5、6、7、8、9这九个数排成一行,使得第一个数是第二个数的整数倍,前两个数的和是第三个数的整数倍,前三个数的和是第四个数的整数倍,……,前八个数的和是第九个数的整数倍.如果第一个数是6,第四个数是2,第五个数是1,最后一个数是_____________.7.过年了,妈妈买了7件不同的礼物,要送给亲朋好友的5个孩子每人一件。

其中姐姐的儿子小强想从智力拼图和遥控汽车中选一个,朋友的女儿小玉想从学习机和遥控汽车中选一件.那么妈妈送出这5件礼物共有____________种方法.8.早上8点,小明和小强从甲、乙两地同时出发,以不变的速度相向而行.9点20时两人相距10千米,10点时,两人相距还是10千米.11点时小明到达乙地,这时小强距甲地_____________千米.三、填空题(每题12分)9.一个数列,从第3项起,每一项都等于其前面两项的和.这个数列的第2项为39,第10项为2009,那么前8项的和是_____________.10.幼儿园老师买了同样多的巧克力、奶糖和水果糖.她发给每个小朋友2块巧克力,7块奶糖和8块水果糖.发完后清点一下,水果糖还剩15块,而巧克力恰好是奶糖的3倍.那么共有_____________个小朋友.11.在下图中,在每个圆圈中填入一个数,使每条直线上所有圆圈中数的和都是234,那么标有★的圆圈中所填的数是_____________.12.客、武士、弓箭手、法师、猎人、牧师.为公平起见,分组比赛的规则是:两人或三人分为一组,若两人一组,则这两人级别必须相同;若三人一组,则这三名高手级别相同,或者是连续的三个级别各一名.现有13个人,其中有三名游侠、三名牧师,其它七类高手各一名.若此时再有一人加入,所有这些人共分为五组比赛,那么新加入这个人的级别可以有____________种选择.2009年迎春杯中年级组复试试卷解析一、填空题(每题8分) 1.123172009⨯+=_____________.【分析】 123172009⨯+4131741494151494100=⨯⨯+⨯=⨯+=()2.右图是体操运动员小燕倒立时看到镜子中另一正常站立的运动员小杰的号码,则小杰的号码是_____________.a) (方法一)这个题目涉及到“倒立看”和从“镜中看”两种情况,我们可以分步进行分析,采用倒推的方法找到小杰的号码.倒立看到的镜中号码镜中小杰的号码小杰的号码(方法二)也可以从纸张的背面,倒着看.3.由数字1、2、3组成的不同的两位数共有9个,老师将这9个数写在一个九宫格上,让同学选数,每个同学可以从中选5个数来求和.小刚选的5个数的和是120,小明选的5个数的和是111.如果两人选的数中只有一个是相同的,那么这个数是_____________.【分析】 这9个数的和:111213212223313233++++++++10203031233=++⨯+++⨯=()() 由小刚和小明选的数中只有一个是相同的,可知他们正好把这9个数全部都取到了,且有一个数取了两遍.所以他们取的数的总和比这9个数的和多出来的部分就是所求的数.那么,这个数是12011119833+-=.4.如图,有一张长为12厘米,宽为10厘米的长方形纸片,按照虚线将这个纸片剪为两部分,这两部分的周长之和是_____________厘米. a) 所求的周长之和=原长方形的周长2+⨯虚线的总长度.原长方形的周长=(1210)244+⨯=(厘米),虚线的总长度=10(1234)325+--⨯=(厘米),则所求周长之和=4422594+⨯=(厘米).二、填空题(每题10分)5. A,B,C,D,E,F 六个足球队进行单循环比赛,每两个队之间都要赛一场,且只赛一场.胜者得3分,负者得0分,平局每队各得1分.比赛结果,各队得分由高到低恰好为一个等差数列,获得第3名的队得了8分,那么这次比赛中共有【分析】 六个足球队进行单循环比赛,总共有5432115++++=(场)比赛.平局的两队总分为112+=(分),非平局总分为033+=(分),因此,如果全是非平局总分有1534⨯=(分),否则多一场平局少1分.如果得分的等差数列公差为1,则这六个队的总分为87345+⨯=()(分),有0场平局,与第3名得8分不符.如果得分的等差数列公差为2,则这六个队的总分为86342+⨯=()(分),有45423-=(场)平局.6.将1、2、3、4、5、6、7、8、9这九个数排成一行,使得第一个数是第二个数的整数倍,前两个数的和是第三个数的整数倍,前三个数的和是第四个数的整数倍,……,前八个数的和是第九个数的整数倍.如果第一个数是6,第四个数是2,第五个数是1,最后一个数是_____________.a) 根据题意有:621⑨⑧⑦⑥⑤④③②①由6=②号的整数倍知:②号只能填3. 由639+==③号的整数倍知:③号只能填9.又由6392121++++==⑥号的整数倍知:⑥号只能填7.同理可得其它序号上的数,填法如下:987654321⑨⑧⑦⑥⑤④③②①7.过年了,妈妈买了7件不同的礼物,要送给亲朋好友的5个孩子每人一件.其中姐姐的儿子小强想从智力拼图和遥控汽车中选一个,朋友的女儿小玉想从学习机和遥控汽车中选一件.那么妈妈送出这5件礼物共有____________种方法.【分析】 假如给小强的是智力拼图,则有2543120⨯⨯⨯=(种)方法.假如给小强的是遥控汽车,则有154360⨯⨯⨯=(种)方法. 总共有12060180+=(种)方法.8.早上8点,小明和小强从甲、乙两地同时出发,以不变的速度相向而行.9点20时两人相距10千米,10点时,两人相距还是10千米.11点时小明到达乙地,这时小强距甲地_____________千米.a) 由题意知:9:208:0080-=(分钟),则全程=速度和8010⨯+,又由“10点时,两人相距还是10千米”知:过20分钟,两人相遇且合走了:速度和2010⨯=(千米),那么全程=(速度和20⨯)41050⨯+=(千米),从早上8点到11点,两人合走了:速度和180⨯=(速度和20⨯)910990⨯=⨯=(千米),这时小强距甲地是:5029010⨯-=三、填空题(每题12分)9. 一个数列,从第3项起,每一项都等于其前面两项的和.这个数列的第2项为39,第10项为2009,那么前8项的和是_____________.【分析】 把这个数列从第一项开始依次记为:1a ,2a ,3a ,则有:312a a a =+ 423a a a =+ 534a a a =+1098a a a =+ 将上面7个式子相加,有34510239128a a a a a a a a a a ++++=+++++++()()将左右两边相同的项消去,则有102128a a a a a =++++()得1281022009391970a a a a a +++-=-==.10. 幼儿园老师买了同样多的巧克力、奶糖和水果糖.她发给每个小朋友2块巧克力,7块奶糖和8块水果糖.发完后清点一下,水果糖还剩15块,而巧克力恰好是奶糖的3倍.那么共有_____________个小朋友. a) 画线段图分析,由题意知:从奶糖的7份中取2份,那么剩下的5份就和上面的2小段相等.如图:那么2小段和5份都看成10份量,那么总量就相当于19份量,水果糖中原有的8份就是现在的16份,则剩下的15块水果糖就占有3份,则1份就是5块,给小朋友们分出去的水果糖数量是:16580⨯=(块),小朋友的人数是:80810÷=(人).那么标有★的圆圈中所填的数是_____________.【分析】 为表述方便,将圆圈中数用字母替代(如右图).根据题意,有 234a f ++=★ ⑴ 234bc ++=★ ⑵ 234e d ++=★⑶ 234a b e ++=⑷ 234c d f ++=⑸⑴+⑵+⑶-⑷-⑸,有3234⨯=★,即234378=÷=★.12. 某次武林大会有九个级别的高手参加,按级别从高到低分别是游侠、火枪手、骑士、剑客、武士、弓箭手、法师、猎人、牧师.为公平起见,分组比赛的规则是:两人或三人分为一组,若两人一组,则这两人级别必须相同;若三人一组,则这三名高手级别相同,或者是连续的三个级别各一名.现有13个人,其中有三名游侠、三名牧师,其它七类高手各一名.若此时再有一人加入,所有这些人共分为五组比赛,那么新加入这个人的级别可以有____________种选择. a) 现在总共是有14个人,且分为五组,则必然是下面的这种情况:第组第组第组第组组第⑤④③②①。

2009年第七届小学希望杯全国数学邀请赛五年级第1试及答案(重点

2009年第七届小学希望杯全国数学邀请赛五年级第1试及答案(重点

第七届小学“希望杯”全国数学邀请赛五年级第 1试以下每题 6分,共 120分。

1、计算:...0.30.030.003--= 。

(结果写成分数形式 2、计算:100÷1.2×3÷541615⨯= 。

3、如右图,从起点走到终点,要求取走每个站点上的棋子,并且每个站点只允许通过一次,有 _________种不同的走法。

4、三个数:23, 51, 72,各除以大于 1的同一个自然数,得到同一个余数。

则这个除数是 ___________。

5、有 2克、 5克、 20克的砝码各 1个,只用砝码和一架已经调节平衡了的天平能称出 ___________种不同的质量。

67、中心对称图形是 :绕某一点旋转 180°后能和原来的图形重合的图形。

轴对称图形是 :沿着一条直线对折后两部分完全重合的图形。

图 2的 4个图形中 , 既是中心对称图形又是轴对称图形的有 __________个。

图 28、如图 3, 小明做减法时看错了减数 . 这个减数应当是 ___________。

图 3 9、已知 A =1+11111112345678++++++, 则 A 的整数部分是 ___________。

10、小羽和小曼分别住在一座山两侧的山脚下。

一天,小羽在上午 9:00从家里出发到小曼家做客。

小羽在小曼家玩了 2个半小时后回家,到家时是下午 14:00。

若小羽山每小时走 2里地,下山每小时走 3里地,则小羽家和小曼家之间的山路长 __________里。

11、今年,小军和小勇的年龄的比是 3:5,两年后,两人的年龄的比是 2:3。

那么,小军今年 ________岁,小勇 ________岁。

12、一只蚂蚁“侦察兵”在洞外发现了食物,他立刻回到洞穴通知同伴。

假设一只蚂蚁在 1分钟内可以把消息传达给 4个同伴,那么,不超过 _______分钟,蚁穴里的全部 2000只蚂蚁都知道了这个消息。

(结果取整数13、如图 4,李明和王亮以不同的方式赛跑,最终获胜的是 _________。

2012五年级数学解题能力展示初赛试题+详解

2012五年级数学解题能力展示初赛试题+详解
E、F、G、H 代表 1~8 中不同的数字(不同的字母代表不 同的数字) .那么四位数 ABCD = . H
12. 有一个 6×6 的正方形,分成 36 个 1×1 的正方形.选出其
中一些 1×1 的正方形并画出它们的对角线, 使得所画出的任何 两条对角线都没有公共点,那么最多可以画出 角线. 条对
8. 今天是 2011 年 12 月 17 日,在这个日期中有 4 个 1、2 个 2、1 个 0、1 个 7.用这 8 个
数字组成若干个合数再求和 (每个数字恰用一次, 首位数字不能为 0, 例如 21110 与 217 的和是 21327) ,这些合数的和的最小值是 .
1/8
【杯赛真题】 · 【迎春杯】 · 【五年级】 · 【初赛】
4. 在右图中,共能数出
知识点:几何计数 难度:★★ 答案:40
个三角形.
解:按组成三角形的块数来分类.
3/8
【杯赛真题】 · 【迎春杯】 · 【五年级】 · 【初赛】
一块的三角形:16;两块的三角形:16;三块的三角形:8. 所以,三角形一共 16+16+8=40(个)
二.填空题(每小题 10 分,共 40 分) 5. 一个电子钟表上总把日期显示为八位数, 如 2011 年 1 月 1 日显示为 20110101. 如果 2011
. E F A
2. 在右图中,BC = 10,EC = 6,直角三角形 EDF 的面积比直角三 D
角形 FAB 的面积小 5. 那么长方形 ABCD 的面积是 . C
3. 龙腾小学五年级共有四个班. 五年级一班有学生 42 人, 五年级二
班是一班人数的 年级共有
B
6 5 ,五年级三班是二班人数的 ,五年级四班是三班人数的 1.2 倍.五 7 6

五年级计算数阵图与数字谜学生版

五年级计算数阵图与数字谜学生版

数阵图与数字谜知识要点解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型,因此要求同学们能够很好地掌握上述知识点,并加以灵活运用.数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.数论知识【例1】(第一届“华罗庚金杯”少年数学邀请赛决赛一试)如图,4个小三角形的顶点处有6个圆圈。

如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形3个顶点上的数之和相等。

问这6个质数的积是多少?【例2】 一个整数乘以13后,乘积的最后三位数是123,这样的整数中最小的是多少?【例3】 红、黄、蓝和白色卡片各一张,每张上写有一个数字。

小明将这4张卡片如图放置,使它们构成一个四位数,并计算这个四位数与它的数字之和的10倍的差。

结果小明发现,无论白色卡片上是什么数字,计算结果都是1998。

问:红、黄、蓝3张卡片上各是什么数字?蓝白黄红【例4】 如图算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字,请求出这个算式。

春夏秋冬四季季年年年年年年【例5】 将1~9分别填入这九个区域,使得每个圆里的数字和相等。

【例6】已知76⨯=⨯,相同的字母代表相同的数字,不同的字母代表不同的数字,求ABCXYZ XYZABCABCXYZ是多少?【例7】三位数AAA乘三位数AAB等于六位数CCCDDD,求A,B,C,D分别是多少?【例8】(第二届“华罗庚金杯”少年数学邀请赛复赛)试将1,2,3,4,5,6,7分别填入下面的方框中,每个数字只用一次:(这是一个三位数)、(这是一个三位数)、(这是一个一位数),使得这三个数中任意两个都互质。

奥数精品讲义第9讲[操作与计数技巧--深圳清华实验学校佘珊珊

奥数精品讲义第9讲[操作与计数技巧--深圳清华实验学校佘珊珊

操作类问题与计数类问题由于其灵活性和本身的趣味性,非常受出题和供题者青睐,如今各类数学竞赛的出题越来越趋向于新奇和趣味化,因此操作类问题和计数问题在竞赛中的比重将会加大。

鉴于操作类问题和计数问题没有一般性的算法或解题通式,本讲将以近年来各类竞赛以及小升初考试中的出现过的真题为例,引导学生发现关键并解决问题。

1.常见操作类问题2.计数技巧与操作【例1】(2006年《小学生数学报》读报竞赛)把一张正方形的餐巾纸先上下对折,再左右对折(如右图),然后用剪刀将所得的小正方形沿直线剪一刀。

问能把餐巾纸:⑴剪成2块吗?⑵剪成3块吗?⑶剪成4块吗?⑷剪成5块吗?如果你认为能剪成,请在下面图中各画出一种你的剪法;如果你认为不能,那么只需回答“不行”即可。

【分析】⑴剪开成两块,如下图:⑵剪开成3块,如下图:常见操作类问题经典精讲教学目标操作与计数技巧第九讲⑶剪开成4块,如下图:⑷剪开成5块,如下图:【巩固】(2008年华杯赛)将等边三角形纸片按图所示的步骤折迭3次(图中的虚线是三边中点的连线),然后沿两边中点的连线剪去一角。

将剩下的纸片展开、铺平,得到的图形是( ).【分析】折迭3次,纸片的厚度为4,所以剪去的面积即应等于4倍小三角形的面积,所以答案是A。

【例2】A、B、C、D四个盒子中依次放有6,4,5,3个球。

第1个小朋友找到放球最少的盒子,从其他盒子中各取一个球放入这个盒子;然后第2个小朋友找到放球最少的盒子,从其他盒子中合取一个球放入这个盒子;如此进行下去,……。

求当34位小朋友放完后,B盒子中放有球多少个?【分析】盒子A B C D初始状态 6 4 5 3第1人放过后 5 3 4 6第2人放过后 4 6 3 5第3人放过后 3 5 6 4第4人放过后 6 4 5 3第5人放过后 5 3 4 6由此可知:每经过4人,四个盒子中球的情况重复出现一次,因为34482÷=L L,所以第34次后的情况与第2次后的情况相同,即B盒子中有球6个。

数学解题能力展示五年级真题汇编0712

数学解题能力展示五年级真题汇编0712

5.如图,7×7 的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一 起(相连的两个方格必须有公共边),现在已经给出了 1,2,3,4,5 各两个, 那么,表格中所有数的和是________。
-4-
指南针小升初
6.甲、乙两人从 A 地步行去 B 地。乙早上 6:00 出发,匀速步行前往;甲早上 8:00 才出发,也是匀速步行。甲的速度是乙的速度的 2.5 倍,但甲每行进半小时都需 要休息半小时。甲出发后经过________分钟才能追上乙。
三、填空题Ⅲ(每题12 分,共48 分)
-6-
指南针小升初
9.甲、乙两人分别从AB两地同时出发,相向而行。第一次迎面相遇在距离B地100米 处,相遇后甲的速度提高到原来的 2倍;甲到 B 后立即调头,追上乙时,乙还有 50米才到A。那么,AB间的路程长________米。 10.在右图中,线段AE、FG将长方形ABCD分成了四块;已知 其中两块的面积分别是 2 cm2、 11cm2,且E 是 BC 的中点, O是AE的中点;那么长方形ABCD的面积是________cm2。
-7-
指南针小升初
2011 年“数学解题能力展示”读者评选活动 五年级组初试试题
一、填空题(每题8分,共40分) 1.算式 1 2 3 4 5 6 7 8 9 10 的计算结果是________。
2.十 二 月 份 共 有 31天 , 如 果 某 年 12月 1 日 是 星 期 一 , 那 么 该 年 12月 19日 是 星 期 ________。(星期一至星期日用数字1至7表示) 3.如图的等腰梯形上底长度等于3,下底长度等于9,高等 于4,那么这个等腰梯形的周长等于________。 4.某乐团女生人数是男生人数的2倍,若调走24名女生,则男生人数是女生人数的2 倍,那么该乐团原有男女学生一共有________人。 5.规定 1※2=0.1+0.2=0.3 , 2※3=0.2+0.3+0.4=0.9 , 5※4=0.5+0.6+0.7+0.8=2.6 。 如果 a ※15=16.5,那么 a 等于________。

五年级一笔画与多笔画全

五年级一笔画与多笔画全

一笔画问题(A级)知识框架如果用笔在纸上连续不断又不重复,一笔画成某种图形,这种图形就叫一笔画。

那么是不是所有的图形都能一笔画成呢?这一讲我们就一起来学习一笔画的规律。

能否一笔画成,先看是不是连通图形,不连通图形一定不能一笔画成。

连通图形,关键在于判别奇点、偶点的个数。

一、只有偶点,可以一笔画,并且可以以任意一点作为起点。

二、只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点。

三、奇点超过两个,则不能一笔画。

对于一些比较复杂的路线问题,可以先转化为简单的几何图形,然后根据判定是否能一笔画的方法进行解答。

例题精讲【例1】下面这些图形,哪个能一笔画?哪个不能一笔画?(1)(2)(3)(4)【例2】下面这些图形,哪个能一笔画?哪个不能一笔画?(1)(2)(3)(4)【例3】下面的各个小图形都是由点和线组成的.请你仔细观察后回答:①标出与一条线相连的有哪些点?【写①】②标出与二条线相连的有哪些点?【写②】③标出与三条线相连的有哪些点?【写③】④标出与四条线或四条以上的线相连的有哪些点?【写④】【例4】下面各图能否一笔画成?(1)(2)(3)【例5】下面这几个字都能一笔写出来吗?【例6】下面这几个字母都能一笔写出来吗?【例7】下面的图形,哪些能一笔画出?哪些不能一笔画出?【例8】下图中,至少要画几笔才能画成?【随练1】德国有个城市叫哥尼斯堡.城中有条河,河中有个岛,河上架有七座桥,这些桥把陆地和小岛连接起来,这样就给人们提供了一个游玩的好去处(见下图).俗话说,“人是万物之灵”,他们就是在游玩时候想出了这样一个问题:如果在陆地上可以随便走,而对每座桥只许通过一次,那么一个人要连续地走完这七座桥怎么个走法?好动脑筋的小朋友请先不要接着往下读,你也试一试,走一走.AB CD课堂检测【随练2】 在我国著名数学家陈景润写的《数学趣谈》一书中,有下面的这样一道题,大意是说:在法国的首都巴黎有一条河,河中有两个小岛,那里的人们建了15座桥把两个小岛和河岸连接起来,如下图所示,请你说一说,从任一岸出发,一次连续地通过所有的桥到达另一岸,可能吗?(每座桥只能走一次)【作业1】 下面的图形都是由点和线组成的.请你仔细观察后回答:①与一条线相连的有哪些点? ②与三条线相连的有哪些点?③与四条线或四条以上的线相连的有哪些点?PONMLKJIHGFEDCBA【作业2】 下面各图能否一笔画成?(1) (2) (3) (4)家庭作业【作业3】下面这几个字母都能一笔写出来吗?【作业4】下面这几个字都能一笔写出来吗?【作业5】下图中,至少要画几笔才能画成?教学反馈老师对本次课的评价○特别满意(积分3分)○满意(积分2分)○一般(积分1分)注:积分满100分,有惊喜礼品。

2009年五年级决赛详解

2009年五年级决赛详解

考点分析:图形的拼合。
1
1 3 5 9 10 6
3 12
9 7 5
12
10
4
2 7
5 1 6 3
拼出的最大面积是 35。
H G C F
D
D
C
B
在直角三角形 AEG 中,∠EAG = 30° , 所以有 EG =
∠EGH = 30° ,所以有 EH =
1 AE ; 在直角三角形 EHG 中, 2
1 1 EG ;那么 EH = AE 。 2 4 HG AH 3 3 3 由于 HG 平行于 BC ,所以有 = = ,那么 HG = EC = BC 。 EC AE 4 4 8 1 1 1 3 3 3 15 所以 S ∆EGH = EH × HG = × AE × BC = S ∆ABC = × 10 = cm 2 。 2 2 4 8 32 32 16 注:有一个角是 30° 的直角三角形非常特殊, ∠BAC = 30° ,那么作 ∠DBA = 30° , 三角形 ABD 是等腰三角形,且 ∠CBD = 60° ,那么三角形 BCD 就是等边三角形, 1 那么有 BC = BD = CD = AD ,即 BC = AC 。 2
9.11 头牛 10 天可吃完 5 公顷的草地上的草,12 头牛 14 天可吃完 6 公顷的草地上 的草。假设每公顷草地上的草量相等,每天新生长的草量相等,每头牛每天的吃草 量也相等,那么 8 公顷草地可供 19 头牛吃(8)天。 考点分析:牛吃草问题。 草地大小不一样,先变成一样的: 120 公顷的草地:(120 ÷ 5 ) × 11 = 264 头牛 10 天可吃完,(120 ÷ 6 ) × 12 = 240 头牛 14 天可吃完,问 (120 ÷ 8 ) × 19 = 285 头牛多少天可吃完。

2008年“数学解题能力展示”复试读者评选活动中年级组题(B版)

2008年“数学解题能力展示”复试读者评选活动中年级组题(B版)

2008“数学解题能力展示”读者评选活动中年级组复试题填空题(每小题10分,共100分):1. 计算:1119121813171416⨯+⨯+⨯+⨯= .【解析】 原式209216221224870=+++=.2. 如图1所示,一个花坛的道路由3个圆和5条线段组成,小兔要从A 处做到B 处,如果它在圆上只能顺时针方向走,在线段上只能从小圆走向大圆,且每条道路最多走一次,那么小兔可以选择的不同路线有 条.图1【解析】 采用标数法,如图所示,不同路线共有6条.3. 在3棵树上栖息着15只黄鹂和14只白鹭,每棵树上至少有4只黄鹂和2只白鹭,如果每棵树上的白鹭都不比黄鹂多,那么一棵树最多有 鸟.【解析】 由于每棵树上至少有4只黄鹂,所以每棵树上最多有15427-⨯=只黄鹂,而每棵树上的白鹭都不比黄鹂多,所以每棵树上的白鹭最多也只有7只,那么每棵树上的鸟数不超过7714+=只.另外,当三棵树上的黄鹂、白鹭的只数分别为(4、3),(4、4)和(7、7)时,有一棵树上恰好有14只鸟.所以一棵树最多有14只鸟.4. 小张将一些同样大小的正方形纸片摆放在桌上,第一次在桌子中间放1个纸片(如图2-1);第二次在这个小正方形纸片四周再放一圈纸片(如图2-2);第三次在第二次摆放的图形外再放一圈纸片(如图2-3);…….他按此规律共摆了十次,那么她共用了正方形纸片个. ……图2-1 图2-2 图2-3【解析】 第一次用的正方形纸片的个数为1,第二次后用的正方形纸片的个数为131++,第三次后用的正方形纸片的个数为13531++++,……,那么第十次后用的正方形纸片的个数为1317191731181++++++++= 个.5. 老师在3个小箱中各放了一个彩色球,让小明、小强、小亮、小佳四人猜一下各个箱子中放了什么颜色的球.小明说:“1号箱子中放的是黄色的,2号箱子中放的是黑色的,3号箱子中放的是红色的.” 小亮说:“1号箱子中放的是橙色的,2号箱子中放的是黑色的,3号箱子中放的是绿色的.” 小强说:“1号箱子中放的是紫色的,2号箱子中放的是黄色的,3号箱子中放的是蓝色的.”小佳说:“1号箱子中放的是橙色的,2号箱子中放的是绿色的,3号箱子中放的是紫色的.” 老师说:“你们中有一个人恰好猜对了两个,其余三人都只猜对了一个.”那么3号箱子中放的是 色的球.【解析】 观察可知,小明、小强、小佳三人所猜的每一个箱中的颜色都各不相同,如果他们三人中有一个人猜中了两个,那么另外两个人猜中的都是这个人猜错的那个箱子的颜色,但是这另外的两个人猜的颜色也不相同,矛盾.所以他们三人中没有人猜中两个,而是各猜中一个,猜中两个的是小亮.由于小亮猜的1号箱子颜色与小佳猜的相同,2号箱子颜色与小明相同,所以小亮猜中了1、2号箱子,小佳猜中1号箱子,小明猜中2号箱子,那么小强猜中3号箱子,故3号箱子中放的是蓝色的球.6. 在下面两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么四位数ABCD为 .2008A B C DE F G H- 2424A E F G E F G H -【解析】 如果8D H -=,那么将有0C G -=,即C G =,与题意不符,所以108D H +-=,即2D H +=.类似分析可知1100C G -+-=,即9C G +=,故0C =,9G =.由9G =知4G H -=,故5H =,3D =.由102F G +-=得1F =,由10B F --=得2B =,由14E F --=得6E =,由2A E -=得8A =,故四位数ABCD 为8203.7. 如图3所示,一个长方形广场的正中央有一个长方形的水池,水池长8米、宽3米,水池周围用边长为1米的方砖一圈一圈的向外铺.恰好铺了若干圈,共用了152块方砖,那么共铺了 圈.图3【解析】 由于水池的四周均铺上方砖,那么铺上方砖后得到的大长方形的长与宽之差等于水池的长与宽之差,为835-=.如果水池中也铺上方砖,需要8324⨯=块,那么整个大长方形需要15224176+=块,而1761611=⨯,16与11的差恰好为5,所以大长方形的长为16米,共铺了(168)24-÷=圈.8. 现有5段铁链,每段上有4个封闭的铁环.现在要打开一些铁环,把这20个铁环焊接成一个一环套一环的圆圈.如果每打开一个铁环要2分钟,焊接上一个铁环要3分钟,那么焊成这个圆圈,最少需要 分钟.图4【解析】 要焊成这个圆圈必须得打开若干个铁环,每打开一个铁环最后就得将它焊上,每一个铁环上花的时间为235+=分钟,为使用的时间最少,应打开最少的铁环.如果只打开3个铁环,那么还剩下5段铁链(尽管有可能有1段铁链只剩1个圈),用3个铁环无法将5段铁链连起来,所以只打开3个铁环无法焊成圆圈.如果打开4个铁环,可以将原来的某段铁链的4个铁环全打开,这样还剩下4段铁链,用打开的4个铁环可以将它们连成一个圆圈,所以最少需打开4个铁环,那么用的时间最少为5420⨯=分钟.9.在下面的表1中,一条直线穿过其中若干个方格,穿过的方格中各数之和为1513105649++++=。

2009数学解题能力展示读者评选活动五年级组

2009数学解题能力展示读者评选活动五年级组

2009 “数学解题能力展示”读者评选活动五年级组初赛试题(测评时间:2008年12月6日9:00—10:30)一、填空题Ⅰ(每题8分,共40分)1. 计算:82.54+835.27-20.38÷2+2×6.23-390.81-9×1.03= .2. 某班女同学人数是男同学的2倍,如果女同学的平均身高是150厘米,男同学的平均身高是162厘米.那么全班同学的平均身高是厘米.3. 如果两个合数互质,它们的最小公倍数是126,那么,它们的和是.4. 右图中三角形共有个.5. 从1,2,3,4,5,6中选取若干个数,使得它们的和是3的倍数,但不是5的倍数.那么共有种不同的选取方法.二、填空题Ⅱ(每题10分,共50分)6.某城市的交通系统由若干个路口(右图中线段的交点)和街道(右图中的线段)组成,每条街道都连接着两个路口.所有街道都是双向通行的,且每条街道都有一个长度值(标在图中相应的线段处).一名邮递员传送报纸和信件,要从邮局出发经过他所管辖的每一条街道最后返回邮局(每条街道可以经过不止一次).他合理安排路线,可以使得自己走过最短的总长度是.7. 如右图,一个面积为2009平方厘米的长方形,被分割成了一个长方形、两个等腰直角三角形、三个梯形.已知除了阴影长方形外,其它的五块面积都相等,且B是AC的中点;那么阴影长方形的面积是平方厘米.8. 将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是.9. 计算:= .10. 200名同学编为1至200号面向南站成一排.第1次全体同学向右转(转后所有的同学面朝西);第2次编号为2 的倍数的同学向右转;第3次编号为3的倍数的同学向右转;……;第200次编号为200的倍数的同学向右转;这时,面向东的同学有名.三、填空题Ⅲ(每题12分,共60分)11. 有一位奥运会志愿者,向看台上的一百名观众按顺序发放编号1,2,3,……100,同时还向每位观众赠送一个单色喇叭.他希望如果两位观众的编号之差是质数,那么他们拿到的喇叭就是不同颜色的.为了实现他自己的愿望,他最少要准备种颜色的喇叭.12. 一些棋子被摆成了一个四层的空心方阵(右图是一个四层空心方阵的示意图).后来小林又添入28个棋子,这些棋子恰好变成了一个五层的空心方阵(不能移动原来的棋子),那么最开始最少有个棋子.13. 请将1个1,2个2,3个3,…,8个8,9个9填入右图的表格中,使得相同的数所在的方格都连在一起(相连的两个方格必须有公共边).现在已经给出了其中8个方格中的数,并且知道A,B,C,D,E,F,G各不相同;那么,五位数是.14. A地位于河流的上游,B地位于河流的下游.每天早上,甲船从A地、乙船从B地同时出发相向而行.从12月1号开始,两船都装上了新的发动机,在静水中的速度变为原来的1.5倍,这时两船的相遇地点与平时相比变化了1千米.由于天气原因,今天(12月6号)的水速变为平时的2倍,那么今天两船的相遇地点与12月2号相比,将变化千米.15. 如右图,长方形ABCD中被嵌入了6个相同的正方形.已知AB=22厘米,BC=20厘米,那么每一个正方形的面积为平方厘米.。

2014“数学解题能力展示”读者评选活动五年级试题(有解析)

2014“数学解题能力展示”读者评选活动五年级试题(有解析)

2014“数学解题能力展示”读者评选活动复赛试题小学五年级(2014年2月6日)一、选择题(每小题8分,共32分)1.一个最大的三位数除以一个整数,得到的商四舍五入保留一位小数后是2.5,除数最小是( ).A .400B .396C .392D .3882.图中最大的正方形的面积为64,阴影部分的面积为( ).A . 28B .32C .36D .403.过年的时候,康康给客人倒啤酒,一瓶啤酒可以倒满4杯,球球倒酒的时候总是每杯中有半杯泡沫,啤酒倒成泡沫的体积会涨成原来的3倍,那么球球倒啤酒时,一瓶酒可以倒( )杯.A .5B .6C . 7D .84.整数除法算式:a b c r ÷=,若a 和b 同时扩大3倍,则( ). A .r 不变 B .c 扩大3倍 C .c 和r 都扩大3倍 D .r 扩大3倍二、选择题(每题10分,共70分)5.算式8264462811111⨯⨯的计算结果是( ).A .9090909091B .909090909091C .10000000001D .1000000000016.对于大于零的分数,有如下4个结论:①两个真分数的和是真分数;②两个真分数的积是真分数;③一个真分数与一个假分数的和是一个假分数;④一个真分数与一个假分数的积是一个假分数.其中正确的有( )个. A .1 B . 2 C .3 D .47.右面竖式成立时除数与商的和为( ).A .289B .351C .723D .1134126428.将一个数加上或减去或乘或除一个一位数(0不是一位数)视为一次操作,比如53可以通过加3,除以7,除以8三次操作变成1. 那么2014至少经过( )次操作可变成1.A .4B .5C .6D .79.我们定义像:31024、98567这样的五位数为位“神马数”,“神马数”是中间的数字最小,从中间往两边越来越大,且各位数字均不相同,那么,这样的五位数有( )个.A .1512B .3024C .1510D .302010.如右图所示,五边形ABCEF 面积是2014平方厘米,BC 与CE 垂直于C 点,EF 与CE垂直于E 点,四边形ABDF 是正方形,CD :ED =3:2,那么,三角形ACE 的面积是( )平方厘米.A .1325B .1400C .1475D .150011.三位数N ,分别减3、加4、除以5、乘6,得到四个整数,已知这四个数的数字和恰好是4个连续的自然数,那么满足条件的三位数N 有( )个. A .8 B .6 C . 4 D .2三、选择题(每题12分,共48分)12.右图是由15个点组成的三角形点阵,在右图中至少去掉( )个点,就不会再出现以图中的点为顶点的正三角形了.A .6B .7C . 8D .913.甲、乙两人从A 地出发,前往B 地,当甲走了100米时,乙走了50米,当甲到达B 地时,乙距离B 地还差100米.甲到达B 地后立即调头返回,两人在距离B 地60米处相遇,那么,A 、B 两地的距离( )米. A .150 B .200 C .250 D .30014.如图,一块草地被开垦出11块正六边形耕地,菲菲在这些耕地内种植向日葵、豌豆射手、闪电芦苇、冰冻西瓜4种植物,如果相邻的耕地种植的植物不能相同,她有( )种不同的种植办法.(相邻耕地是指有公共边,每块耕地内只能种植一种植物).A .6912B .6144C . 4608D .4224FEDC BA15.老师把某两位数的六个不同因数分别告诉了A~F六个聪明诚实的同学.A和B同时说:我知道这个数是多少了.C和D同时说:听了他们的话,我也知道这个数是多少了.E:听了他们的话,我知道我的数一定比F的大.F:我拿的数的大小在C和D之间.那么六个人拿的数之和是().A.141 B.152 C.171 D.1752014“数学解题能力展示”读者评选活动复赛试题小学五年级参考答案部分解析一、选择题(每小题8分,共32分)1.一个最大的三位数除以一个整数,得到的商四舍五入保留一位小数后是2.5,除数最小是()A.400 B.396 C.392 D.388【考点】计算【难度】☆☆【答案】C【解析】要使得除数最小,那么商就尽可能的大,因此商无限接近于2.54……;999除以2.54符合条件的结果是392.2.图中最大的正方形的面积为64,阴影部分的面积为()A.28 B.32 C.36 D.40【考点】几何【难度】☆☆【答案】A【解析】最大的正方形可分为16个小正方形,而空白部分组成了9个小正方形,剩下的阴影部分为7个小正方形.因此阴影部分的面积为64÷16×7=283.过年的时候,康康给客人倒啤酒,一瓶啤酒可以倒满4杯,球球倒酒的时候总是每杯中有半杯泡沫,啤酒倒成泡沫的体积会涨成原来的3倍,那么球球倒啤酒时,一瓶酒可以倒()杯.A.5 B.6 C.7 D.8【考点】应用题【难度】☆☆【答案】B【解析】根据题意可知,1份的啤酒可以变成3份的泡沫.球球倒的啤酒一半是泡沫,那么我们可以把球球倒的每杯酒分成6份,那么每倒一杯酒只有4份.而一瓶啤酒可以倒4杯共有4×6=24份.球球倒的每杯酒为4份,她共可以倒的杯数为:24÷4=6 .4.整数除法算式:a b c r÷=,若a和b同时扩大3倍,则().A.r不变B.c扩大3倍C.c和r都扩大3倍D.r扩大3倍【考点】计算【难度】☆☆【答案】D【解析】被除数和除数同时扩大或者缩小相同的倍数商不变,但是余数相应的扩大或缩小相同的倍数.二、选择题(每题10分,共70分)5.算式8264462811111⨯⨯的计算结果是().A.9090909091 B.909090909091 C.10000000001D.100000000001【考点】计算【难度】☆☆【答案】D【解析】根据11乘法的特征“两边一拉,中间相加”可得到结果D6.对于大于零的分数,有如下4个结论:①两个真分数的和是真分数;②两个真分数的积是真分数;③一个真分数与一个假分数的和是一个假分数;④一个真分数与一个假分数的积是一个假分数.其中正确的有()个.A.1 B.2 C.3 D.4【考点】数论【难度】☆☆ 【答案】B【解析】对于这种类型的题目,我们可以采取“反驳”的方法来做,找出每个不成立的案例来,若找不到则正确. ①反例:11+=122,437+=555;④反例:133=224⨯,188=5525⨯.7.右面竖式成立时除数与商的和为( )A .289B .351C .723D .1134 【考点】数字谜 【难度】☆☆☆ 【答案】C【解析】首先根据倒数第三行可以确定0A =,4B =;再根据顺数第三行最后一位为1可以确定,第一行D 和C 的取值为(1,1)或(3,7)或(9,9)或(7,3),根据尝试只有(1,1)符合题意.再依次进行推理,可得商和除数分别为:142和581.8.将一个数加上或减去或乘或除一个一位数(0不是一位数)视为一次操作,比如53可以通过加3,除以7,除以8三次操作变成1. 那么2014至少经过( )次操作可变成1 .126420241ECB A 60D22112611322440854815252824160120A .4B .5C .6D .7 【考点】数论 【难度】☆☆☆ 【答案】B【解析】2014要变成1就需要除以一个数,而除数只能是一位数,那么这个除数显然是越大越好. 第一次操作2014+2=2016;第二次操作20169=224÷;第三次操作2248=28÷; 第四次操作287=4÷;第五次操作44=1÷.9.我们定义像:31024、98567这样的五位数为位“神马数”,“神马数”是中间的数字最小,从中间往两边越来越大,且各位数字均不相同,那么,这样的五位数有( )个 . A .1512 B .3024 C .1510 D .3020 【考点】排列组合 【难度】☆☆☆ 【答案】A【解析】考察是计数问题中的排列组合.0~9是个数中任意挑选5个都可以组成“神马数”,51010987625254321C ⨯⨯⨯⨯==⨯⨯⨯⨯种;在被挑选的5个数中,最小的放中间,剩下的4个数进行组合,从中任意挑选2个可以放在左边或者右边,246C =种; 在此一定要注意:4个数中任选2个放在左边然后再放到右边数的顺序改变了. 所以共有“神马数”252×6=1512个.10.如右图所示,五边形ABCDEF 面积是2014平方厘米,BC 与CE 垂直于C 点,EF 与CE垂直于E 点,四边形ABDF 是正方形,:3:2CD DE =.那么,三角形ACE 的面积是 ( )平方厘米.A .1325B .1400C .1475D .1500 【考点】几何 【难度】☆☆☆ 【答案】A【解析】作正方形ABCD 的“弦图”,如右图所示,FEDC BA假设CD 的长度为3a ,DE 的长度为2a ,那么3BG a =,2DG a =,根据勾股定理可得2222229413BD BG DG a a a =+=+=,所以,正方形ABDF 的面积为213a ;因为CD EF =,BC DE =,所以三角形BCD 和三角形DEF 的面积相等为23a ; 又因为五边形ABCEF 面积是2014平方厘米,所以222136192014a a a +==,解得2106a =, 三角形ACE 的面积为:2255522a a a ⨯÷=,即2510613252⨯=11.三位数N ,分别减3、加4、除以5、乘6,得到四个整数,已知这四个数的数字和恰好是4个连续的自然数,那么满足条件的三位数N 有( )个 A .8 B .6 C . 4 D .2 【考点】数论 【难度】☆☆☆ 【答案】C【解析】考虑到一定会有进位,退位.设原数数字和为a ,则3-,+4定不是差7,否则无法成为连续4个自然数.5÷说明末位为0或5,当末位为5时,3-,+4均不进位退位.当末位为0时,3-退位,符合.所以3- 相当于数字和多6,6a +;+4相当于数字和多4,4a +;5÷ 相当于数字和2⨯,2a ⨯;2a ⨯、2a +、4a +连续,2a ⨯为7a +,5a +,3a +中的一个. 分类讨论得到25a a ⨯=+成立,所以5a =,数字和为5,尾数为0的有,500(舍弃),410,320,230,140,共4个.三、选择题(每题12分,共48分)12.右图是由15个点组成的三角形点阵,在右图中至少去掉( )个点,就不会再出现以图中的点为顶点的正三角形了.A .6B .7C . 8D .9 【考点】几何IH GFEDCBA【难度】☆☆☆ 【答案】B【解析】如图1所示,以A 为顶点可以组成变成为4、3、2、1的等边三角形,所以A 点必须去掉,同理B 、C 也必须去掉.如图2所示(空白表示必须去掉的点),围成了四个边长为2的等边三角形和若干个边长为1的等边三角形,所以必须去掉O 、D 、E 、F .因此共去掉7个点.13.甲、乙两人从A 地出发,前往B 地,当甲走了100米时,乙走了50米,当甲到达B 地时,乙距离B 地还差100米.甲到达B 地后立即调头返回,两人在距离B 地60米处相遇,那么,A 、B 两地的距离( )米 . A .150 B .200 C .250 D .300 【考点】行程 【难度】☆☆☆ 【答案】C【解析】如图所示,甲从B 地调头返回的同时乙从E 出发,甲乙在F 处相遇共走了100米.假设单位时间t 内,甲走60米,乙走40米,那么甲走100米需要1005=603t ;甲和乙分别从C 、D 两地同时出发,当甲到达B 地时,乙到达E ,甲比乙多行50米,所用的时间为:550(6040)2t ÷-=,甲从A 到B 共用时间为:5525326t t t +=,所以AB 两地的距离为:2560=2506⨯(米).14.如图,一块草地被开垦出11块正六边形耕地,菲菲在这些耕地内种植向日葵、豌豆射手、闪电芦苇、冰冻西瓜4种植物,如果相邻的耕地种植的植物不能相同,她有( )种不同的种植办法.(相邻耕地是指有公共边,每块耕地内只能种植一种植物).ABA CFEDCBA 乙甲A .6912B .6144C . 4608D .4224 【考点】计数 【难度】☆☆☆☆ 【答案】D【解析】染色问题.分情况讨论,发现阴影六边形一圈是关键,中间选好144C =种后, 周围一圈3种植物,532⨯-(A F 、同色,相当于5个围一圈),5个围一圈4=32⨯-(4个围一圈),4个围一圈3=32⨯-(3个围一圈),3个围一圈=321=6⨯⨯ 中间一圈54332[3232321]66⨯-⨯-⨯-⨯⨯=() 有44662=4224⨯⨯(种)15.老师把某两位数的六个不同因数分别告诉了A F 六个聪明诚实的同学.A 和B 同时说:我知道这个数是多少了.C 和D 同时说:听了他们的话,我也知道这个数是多少了.E :听了他们的话,我知道我的数一定比F 的大. F :我拿的数的大小在C 和D 之间.那么六个人拿的数之和是( )A .141B .152C .171D .175 【考点】数论 【难度】☆☆☆☆ 【答案】A【解析】(1)这个数的因数个数肯定不低于6个,因为若有1存在,拿到1的人永远不会知道.假定这个数为N ,且拿到的6个数从大到小分别是A B C D E F 、、、、、. (2)有两个人同时第一时间知道结果,这说明以下几个问题:F ED CBA第一种情况:有一个人知道了最后的结果,这个结果是怎么知道的呢?很简单,他拿到的因数在5099之间(也就是说A的2倍是3位数,所以A其实就是N)第二种情况:有一个人拿到的不是最后结果,但是具备以下条件:1)这个数的约数少于6个,比如:有人拿到36,单他不能断定N究竟是36还是72.2)这个数小于50,不然这个数就只能也是N了.3)这个数大于33,比如:有人拿到29,那么他不能断定N是58还是87;这里有个特例是27,因为272=54⨯,因数个数⨯,因数个数不少于6个;273=81少于6个,所以如果拿到27可以判断N只能为54)4)这个数还不能是是质数,不然不存在含有这个因数的两位数.最关键的是,这两人的数是2倍关系但是上述内容并不完全正确,需要注意还有一些“奇葩”数:17、19、23也能顺利通过第一轮.因此,这两个人拿到的数有如下可能:(54,27)(68,34)(70,35)(76,38)(78,39)(92,46)(98,49)(3)为了对比清晰,我们再来把上面所有的情况的因数都列举出来:(54,27,18,9,6,3,2,1)(68,34,17,4,2,1)(×)(70,35,14,10,7,5,2,1)(76,38,19,4,2,1)(×)(78,39,26,13,6,3,2,1)(92,46,23,4,2,1)(×)(98,49,14,7,2,1)对于第一轮通过的数,我们用红色标注,所以N不能是68、76、92中的任意一个.之后在考虑第二轮需要通过的两个数.用紫色标注的6、3、2、1,因为重复使用,如果出现了也不能判断N是多少,所以不能作为第二轮通过的数.用绿色标注的14和7也不能作为第二轮通过的数,这样N也不是98.那么通过第二轮的数只有黑色的数.所以N只能是54、70、78中的一个.我们再来观察可能满足E和F所说的内容:(54,27,18,9,6,3,2,1)(70,35,14,10,7,5,2,1)(78,39,26,13,6,3,2,1)因为F说他的数在C和D之间,我们发现上面的数据只有当70F=,N=的时候,7在C D、(10和5)之间,是唯一满足条件的一种情况.又因为E确定自己比F的大,那么他拿到的数一定是该组中剩余数里最大的.所以E拿到的是14(70N=).所以70N=,六个人拿的数之和为:70+35+14+10+7+5=141.。

2009年数学解题能力展示(四年级)初赛试题

2009年数学解题能力展示(四年级)初赛试题

3. 有 60 名学生,男生、女生各 30 名,他们手拉手围成一个圆圈.如果让原本牵着手的
男生和女生放开手,可以分成 18 个小组.那么,如果原本牵着手的男生和男生放开手 时,分成了_ _个小组.
解答:每个男生能牵 2 次手,一共牵 30 2 60 次,这 60 次牵手有重复计算. 当男生与男生牵手时,会将牵手次数计算两次,因此男生与男生的牵手对数共有
5. 小明在桌上将若干个红球排成一排,然后在每相邻的 2 个球之间放 2 个黄球,最后在
每相邻的 2 个球之间再放 2 个蓝球,这时桌上共有 2008 个球,那么其中黄球有 个.
6. 如图所示,某小区花园的道路为一个长 480 米,宽 200 米的长方形;一个边长为
260 米的菱形和十字交叉的两条道路组成.一天,王大爷 A 处进入花园,走遍花园的 所有道路并从 A 处离开.如果他每分钟走 60 米,那么他从进入花园到走出花园最少 要用 分. A
【杯赛真题】·【迎春杯】·【四年级】·【初赛】
2009“数学解题能力展示”读者评选活动 四年级组初赛试题
(测评时间:2008 年 12 月 6 日 11:00—12:00)
一、填空题Ⅰ(每题 10 分,共 60 分) 1. 计算: 2009 37 300 (37 3) . 2. 老师买了同样数目的田格本、横线本和练习本.他发给每个同学 1 个田格本、3 个横
1/8
【杯赛真题】·【迎春杯】·【四年级】·【初赛】
二、填空题Ⅱ(每题 15 分,共 90 分) 7. 有一类多位数,从左数第 3 位数字开始,每位上的数都等于其左边第 2 个数减去左边
第 1 个数的差.如 74312、6422.那么这类数中最大的是 .
8. 一些奇异的动物在草坪上聚会.有独脚兽(1 个头、1 只脚)

三年级上册数学试题-奥数.几何.一笔画与多笔画(C级)沪教版(含答案)

三年级上册数学试题-奥数.几何.一笔画与多笔画(C级)沪教版(含答案)
小结 :本题属于最短邮递路线问题 . 解决这样的题目时,有两点值得注意:①在所给图中,每 条边都有具体的长度,这与前面其他问题中不考虑长度是不同的;②邮递路线中,邮递员必须以邮 局作为起点和终点, 即在最后能一笔画出的图中, 所有的点都必须是偶点 . 这也与前面游人可以选择 进出口的问题不同 .
【例 4 】 右图是某地区街道的平面图,图上的数字表示那条街道的长度 所有的街道,最后再回到 A. 问:如何设计洒水路线最合理?
一、 一笔画的认识
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一
次,不准重复 . 从上图中容易看出:能一笔画出的图首先必须是连通图
. 但是否所有的连通图都可以一笔画
出呢?下面,我们就来探求解决这个问题的方法
.
什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏 是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复 .
图中线段的交点)和街道(右图中的线段)组成,每条街道都连接着两个路口.所有街道都是双
向通行的, 且每条街道都有一个长度值 (标在图中相应的线段处) .一名邮递员传送报纸和信件,
要从邮局出发经过他所管辖的每一条街道最后返回邮局(每条街道可以经过不止一次)
.他合理
安排路线,可以使得自己走过最短的总长度是
【答案】
【例 6 】 如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否从
入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线,
如果不能,应关闭哪个门
就可以办到?
【考点】一笔画问题 【难度】 4 星 【题型】解答
【解析】 可 以将图中的五个小厅以及厅外的部分都抽象成点,为方便解题,给它们分别编号.这时,连通 厅与厅之间的门就相当于各点之间的连线.于是题目中餐厅平面图就抽象成为一个连通的图形, 如下:

解题能力展示初赛五级(Word解析)

解题能力展示初赛五级(Word解析)

2013“数学解题能力展示”读者评选活动笔试试题小学五年级(2012年12月22日)一、填空题(每小题8分,共24分)1.算式999999999888888887777777666666555554444333221-+-+-+-+的计算结果的各位数字之和是___________.2.如图竖式中,使得乘积最小的两个乘数和是___________.213×3.把1~8这8个数字放到一个正方体的八个顶点处,然后在每条棱的中点处写上这条棱的两个顶点处所写的数的平均数.如果上底面的四个中点和下底面的四个中点上写的数都是整数,那么另外四个中点处所写的数中,有___________个不是整数.二、填空题(每小题12分,共36分)4.如图,在等腰直角三角形ABC中,斜边AB上有一点D.已知=5CD,BD比AD长2,那么三角形ABC 的面积是___________.DC BA5.如图,77⨯的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了1,2,3,4,5各两个,那么,表格中所有数的和是___________.6.甲、乙两人从A 地步行去B 地,乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时,那么甲出发后经过________分钟才能追上乙.三、填空题(每小题15分,共60分)7.五支足球队伍比赛,每两个队伍之间比赛一场;胜者得3分,负者得0分,平局各得1分.比赛完毕后,发现各队得分均不超过9分,且恰有两支队伍同分.设五支队伍的得分从高到低依次为A 、B 、C 、D 、E (有两个字母表示的数是相同的).若ABCDE 恰好是15的倍数,那么此次比赛中共有______场平局.8.由2013个边长为1的小正三角形拼成的四边形中,周长的最小值是__________.9.如图,正六边形ABCDEF 的面积为1222,K 、M 、N 分别AB 、CD 、EF 的中点,那么三角形PQR 的面积是___________.N MK R Q PF EDCBA10.一个自然数恰有9个互不相同的约数,其中有3个约数A 、B 、C 满足:①79A B C ++= ②A A B C ⨯=⨯那么,这个自然数是___________.11.有一个奇怪的四位数(首位不为0),它是完全平方数,它的数字和也是完全平方数,用这个四位数除以它的数字和得到的结果还是完全平方数,并且它的约数个数还恰好等于它的数字和,那当然也是完全平方数,如果这个四位数的各位数字互不相同,那么这个四位数是__________.2013“数学解题能力展示”读者评选活动笔试试题小学五年级参考答案1 2 3 4 545 160 4 24 1506 7 8 9 10 11 330 3 127 141 4412601部分解析一、填空题(每小题8分,共24分)1.算式999999999888888887777777666666555554444333221-+-+-+-+的计算结果的各位数字之和是___________.【考点】计算【难度】☆☆【答案】45【解析】方法一:多位数计算,算出结果918273645,求得各位数字和为45.方法二:由于计算过程没有产生进位或借位,故结果的数字和是99887766554433221145⨯-⨯+⨯-⨯+⨯-⨯+⨯-⨯+⨯=2.如图竖式中,使得乘积最小的两个乘数和是___________.213×【考点】数字谜【难度】☆☆☆【答案】160【解析】首先判断出第一,第二,第三,第四排第一个数均为1(如图1)11111213×73A11111213×进而求出两个乘数的末尾数字(如图2),这时经测试发现A可取4和5,由题意要求最小则两个乘数分别为143和17,求和得160.3.把1~8这8个数字放到一个正方体的八个顶点处,然后在每条棱的中点处写上这条棱的两个顶点处所写的数的平均数.如果上底面的四个中点和下底面的四个中点上写的数都是整数,那么另外四个中点处所写的数中,有___________个不是整数.【考点】奇偶性【难度】☆☆【答案】4【解析】奇偶性问题1~8八个数4奇4偶,上下两组各4个数同时满足相邻和为偶数,唯一情况为上下另组数分别同奇同偶.即上面4个为奇数,下面4个为偶数或者上面4个为偶数,下面4个为奇数.所以上下4组数和都是奇数,即它们的平均数都不是整数.所以有4个不是整数.二、填空题(每小题12分,共36分)4.如图,在等腰直角三角形ABC中,斜边AB上有一点D.已知=5CD,BD比AD长2,那么三角形ABC 的面积是___________.ADC B 【考点】几何【难度】☆☆☆【答案】24【解析】等腰直角三角形,面积等于斜边高的平方.ADEC B过C点做斜边AB的垂线,交AB于点E,由于2BD ADDE=-=得到1根据勾股定理,22222=-=-=5124CE CD DE所以24S =ABC5.如图,77⨯的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了1,2,3,4,5各两个,那么,表格中所有数的和是___________.【考点】数阵图【难度】☆☆☆☆ 【答案】150【解析】首先理解题目,找出唯一填法的空格,例如第一行第一个1,与其唯一相邻的空白空格必须为1,以此类推,第二行第一个5也具有唯一相邻空格.逆推得出唯一图形.相加求和为150.44444444444445555555333333333333332222221111111116.甲、乙两人从A 地步行去B 地,乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时,那么甲出发后经过________分钟才能追上乙. 【考点】行程问题 【难度】☆☆☆ 【答案】330【解析】有休息间隔的追及问题和工程问题,直接用平均的速度进行计算容易产生错误.此题可列表解决,假设甲一小时走5米,乙一小时走2米,列表如下: 时间 甲(米) 乙(米) 时间 甲(米) 乙(米) 0小时 0 4 3小时 7.5 10 0.5小时 2.5 5 3.5小时 10 11 1小时 2.5 6 4小时 10 12 1.5小时 5 7 4.5小时 12.5 13 2小时 5 8 5小时 12.5 14 2.5小时7.595.5小时1515观察得5.5小时恰好追上(如果这时间超过了乙,就要用具体追及公式计算追及时间)5.560=330⨯(分钟)三、填空题(每小题15分,共60分)7.五支足球队伍比赛,每两个队伍之间比赛一场;胜者得3分,负者得0分,平局各得1分.比赛完毕后,发现各队得分均不超过9分,且恰有两支队伍同分.设五支队伍的得分从高到低依次为A 、B 、C 、D 、E (有两个字母表示的数是相同的).若ABCDE 恰好是15的倍数,那么此次比赛中共有______场平局. 【考点】逻辑推理 【难度】☆☆☆☆☆ 【答案】3【解析】体育比赛得分问题,首先算出比赛一共10场,总分在20到30分之间.五位数ABCDE 是15的倍数,利用整除性可知,E 可为0或者5,考虑到E 最小,如果5E =,总分最小为 8+7+6+5+5=31分,不成立,所以=0E ,即第五名4场全负积0分.第五名负四场,则平局最多为6场,总分最少为24分.又考虑到分数和为3的倍数,总分可能情况为30,27,24.对三种情况分别讨论: (1)总分30分:即无平局情况,那么前四名队伍得分只可能为9,6,3分.不能在只有两个重复的情况下凑出30.所以总分30分情况不存在. (2)总分27分:经测试,存在9+8+5+5=27,满足题目分数要求,且四个队7场胜3场负,恰好满足第五队的4场负,所以此为一解,比赛3场平局. (3)总分24分:在24分情况下,只有前四名只能各胜1场平2场,但不满足只有两队得分相同. 所以总分24分情况不存在.综上,唯一存在总分27分情况下,比赛中共有3场平局.8.由2013个边长为1的小正三角形拼成的四边形中,周长的最小值是__________. 【考点】几何 【难度】☆☆☆☆☆ 【答案】127【解析】正三角形组成两种四边形,平行四边形和梯形.平行四边形要求偶数个三角形,而此题为2013个正三角形,所以一定构成梯形.那么在构造的梯形中,相邻层数间都差2个三角形,且都是奇数个,则可以构造一个梯形: 第一次层有:21a +个三角形;最后一层有21b +个三角形,则有层数为1b a -+层. 利用等差数列求和公式得:(2121)(1)22013a b b a +++⨯-+÷= 化简得(1)(1)2013b a b a ++⨯-+=再考虑这个梯形上底长:a ;下底长1b +;腰为:1b a -+;则周长可列为:33b a -+ 由于2013=31161⨯⨯,考虑到要想周长最小,即b 尽量大,a 尽量小取161b a ++=,133b a -+=,得14a =,46b =.带入得最小周长33127b a --=.9.如图,正六边形ABCDEF 的面积为1222,K 、M 、N 分别AB 、CD 、EF 的中点,那么三角形PQR 的面积是___________.N MK R Q PF EDCBA【考点】几何 【难度】☆☆☆☆☆ 【答案】141【解析】如图延长BA 和EF 交于点O ,并连接AE ,ON M K RQ PF EDCBA由正六边形的性质,我们可知13ABCM CDEN EFAK S S S ===六边形面积根据容斥原理,重叠部分三个三角形面积和等于阴影部分面积,且因为对称,AKP ∆,CMQ ∆,ENR ∆三个三角形是一样的,有KP RN =,AP ER =,RP PQ =,13AK OK =,则34EN EO =,34KP AP =,由鸟头定理可知道3KP AP RP PQ ⨯⨯=⨯ 综上可得:322PR KP RE ==,那么由三角形AEK 是六边形面积的16,且14123APK AKE S S ∆∆=⨯++,14726APK ABCDEF S S ∆=⨯=,所以阴影面积为473=141⨯10.一个自然数恰有9个互不相同的约数,其中有3个约数A 、B 、C 满足:①79A B C ++= ②A A B C ⨯=⨯那么,这个自然数是___________. 【考点】数论 【难度】☆☆☆☆☆ 【答案】441【解析】一个自然数N 恰有9个互不相同的约数,则可得22N x y =⨯,或者8N x =,(1)当8N x =,则九个约数分别是:23456781,,,,,,,,x x x x x x x x ,其中有3个约数A 、B 、C 且满足A A B C ⨯=⨯,不可能.(2)当22N x y =⨯,则九个约数分别是:2222221,,,,,,,,x y x xy y x y xy x y ,其中有3个约数A 、B 、C 且满足A A B C ⨯=⨯,① A x =,1B =,2C x =,则2179x x ++=,无解. ② A xy =,1B =,22C x y =,则22179xy x y ++=,无解. ③ A xy =,B x =,2C xy =,则279xy x xy ++=,无解.④ A xy =,2B x =,2C y =,则2279xy x y ++=,解得:37x y =⎧⎨=⎩,则2237441N =⨯=.⑤ 2A x y =,22B x y =,2C x =,则222279x y x y x ++=,无解.11.有一个奇怪的四位数(首位不为0),它是完全平方数,它的数字和也是完全平方数,用这个四位数除以它的数字和得到的结果还是完全平方数,并且它的约数个数还恰好等于它的数字和,那当然也是完全平方数,如果这个四位数的各位数字互不相同,那么这个四位数是__________.【考点】数论【难度】☆☆☆☆☆【答案】2601【解析】四位数中,各个位数不重复的情况下,和可以为9,16,25.且因为完全平方数的约数为奇数个,则可以是9,25两种情况.9的情况下,该数为223a=,得符合要求四位数2601.a⨯形式,因为a为质数,经测试可取1725的情况下,该数为445a⨯形式,故a取任何质数不能满足条件.所以符合题意要求的四位数为2601.。

2009学年第二学期小学数学五年级40校数据采

2009学年第二学期小学数学五年级40校数据采

2009学年第二学期小学数学五年级40校数据采集研究质量分析行动报告天河区教育局教研室数据采集研究小组周峰季山李东海一、概述2009学年第二学期40校数据采集研究(小学五年级数学平均分以下)是天河区教研室在2010年7月份组织的一次全区性采样测试实验。

实验由天河区小学数学教研员负责命题并组成课题研究小组,采取以校为采集点,分散网上阅卷的方式,通过天河区中小学学科质量监控系统采集样本数据,对全区41所样本学校中五年级数学平均分以下的学校学生试卷进行数据分析,从而发现教学中存在的普遍性及特殊性问题,制定有针对性的教学策略和指导意见,以便教师们及时采取必要的教学措施,提高学生学习数学的水平,减少差距。

本次命题范围是教育部全国制定义务教育数学人教版第十册的内容,较全面地考查了我区小学五年级学生对本学期数学基础知识和基本技能的掌握情况,考查考生的数学思维能力、空间观念、运算能力、灵活运用数学知识分析和解决实际问题的能力。

本报告对本区40所样本学校,78名教师所教的120多个班级的5021名考生成绩的样本数据进行评价分析,重点对45所学校中五年级数学平均分以下的 xxx 个班级的 xxx名考生成绩的样本数据进行评价分析。

二、数据与分析1.试卷结构(1)题型结构从上表可以看出:全卷命题的编排共46小题,因为本学期教学内容以概念教学与计算教学为主。

因此全卷侧重于对本学期基础概念的理解和基础计算掌握情况的考核。

概念(质数、合数、偶数、奇数、因数--最大公因数,倍数--最小公倍数、真、假分数—带分数及分数意义及基本性质占27%,而有关分数的计算及应用占40%。

空间图形(长方体、正方体的特征、表面积、体积---容积及应用)约占21%,分数与小数的互化、分数的大小比较占6%,其它知识约占6%。

知识点的覆盖面大,检测知识点较为集中(集中于概念与计算),在知识的应用上较为灵活。

基础题占83%,有较好的区分度和难度,能保证学生的合格率,同时能较全面地检测出学生的知识的形成情况,对样本学校的整体水平进行全面的有效的评价区分。

2009陈省身杯数学邀请赛五年级答案

2009陈省身杯数学邀请赛五年级答案

2009年“陈省身杯”国际青少年数学邀请赛五年级1. 计算314×0.45+62.8×2.6+9.42=_______答案:314分析:314×0.45+62.8×2.6+9.42=3.14×45+3.14×20×2.6+3.14×3=3.14×100=3142. 在所有的三位数中,满足其数字和等于12的三位数共有_______个。

答案:66个分析:按照百位数字进行分类百位数字为1时,这样的三位数有:129,138,147,…,192 共8个数; 百位数字为2时,这样的三位数有:219,228,…,291 共9个数;一次类推,可知当百位数字依次为3~9时,这样的三位数分别有10,9,8,7,6,5,4个。

所以这样的三位数共有8+9+10+9+8+7+6+5+4=66个3. 数列1,1,2,3,5,8,3,1,4,5,...,满足从第三个数开始,每个数都等于前面两个数之和的个位数字,则在这个数列的前2009个数中,共有________个奇数。

答案:1340个分析:这列数的规律为:奇,奇,偶,奇,奇,偶,……,这是以3为周期进行循环的。

因为2009÷3=669……2,所以在这个数列的前2009个数中,共有2×669+2=1340个4. 将1~9这9个数字分别填入上面的竖式中(每个数字只允许用一次),使得三个数之和最大,则这个最大的和等于______。

答案:10656分析:为是算式的和最大,应该尽量让较大的数字占高位,而较小的数字占低位,其最大值为9×1000+(8+7)×100+(6+5+4)×10+(3+2+1)=10656+……10987654321x41620第4题图 第5题图 第7题图 第10题图5. 数一数,上图中共有_______个不同正方形。

答案:15分析:数完正放的14个正方形外,再加上斜着的1个6.苹果、梨各有若干个,如果5个苹果和3个梨装一袋,那么梨正好装完,还多4个苹果;如果7个苹果和3个梨装一袋,苹果正好装完,梨还多12个。

第八届“走美杯”数学解题技能展示大赛初赛(五年级)

第八届“走美杯”数学解题技能展示大赛初赛(五年级)

15. 10:00 甲、乙两人分别同时从 A 、 B 两地出发相向而行,10:20 甲、乙两人相遇,10:30
乙与从 A 出发向 B 行走的丙相遇,10:45 甲、丙两人同时到 B 。丙从 A 出发时是 10 点 ________分,乙到 A 时是 10 点_______分;
2/9
【杯赛真题】 · 【走美杯】 · 【五年级】 · 【初赛】
走重复路线。 图中道路旁边的数值表示汽车经过这段公路所用的小时数, 小张完成计划 行程至少要用____________小时;
13. 在两个三位数相乘所得的乘法算式: AAA BBB CDEFGB ,其中, A
D , E , F , G 这 6 个字母恰好代表
B , B ,C ,
1 7
化成小数后循环节中的 6 个数字(顺序不一定
4. 小华每分钟吹一次肥皂泡泡,每次恰好吹出 100 个,肥皂泡泡吹出后,经过一分钟就有
3/9
【杯赛真题】 · 【走美杯】 · 【五年级】 · 【初赛】
一半破了,经过两分钟还有二十分之一没有破,经过两分半肥皂泡泡全破了。在第 20 次吹出了肥皂泡泡的时候,没有破的肥皂泡泡有 个;
分析:由已知条件,第 20 次吹出肥皂泡时,没有破的肥皂泡中有第 18、19、20 分钟吹 出来的。第 20 分钟吹出来的有 100 个,第 19 分钟吹出来的剩 100÷2=50(个) ,第 18 分钟吹出来的有 100÷20=5(个) ,所以共有 100+50+5=155(个)肥皂泡没有破 考点:本题难度较低,考查学生对题意的理解和分类讨论思想
9. 如图,梯形
2 cm ;
2 2 ABCD 中, V ABE 和 V A D E 的面积分别是 2cm , 3cm , VCDE 的面积是

“数学解题能力展示”(迎春杯)活动通知

“数学解题能力展示”(迎春杯)活动通知

“数学解题能力展示”(迎春杯)活动通知09迎春杯初赛解析(三年级)09迎春杯初赛解析(四年级)2009年解题能力展示(迎春杯)三年级初试试卷2009年解题能力展示(迎春杯)四年级初试试卷一、赛事简介数学解题能力展示活动由《中小学数学教学》报社组织,其前身即为举办多届的北京市中小学数学迎春杯竞赛,始于1984年,在目前小学奥数竞赛中含金量较高。

二、数学解题能力展示赛事解析根据前两年北京市小升初经验,证书依然是进入重点中学的一块敲门砖,因此,数学解题能力展示活动获奖证书,是获奖考生数学能力的一种证明,是一些重点中学在选拔优秀生源的重要参考依据之一!值得一提的是,作为唯一一个在寒假之前举办的奥数赛事,六年级的学生是绝不能错过的,年后就能拿到成绩,直接增加升学的砝码。

中低年级学生也一定要早参与早做准备。

根据去年的经验,只有在2019年数学解题能力展示活动进入复赛的学员才有资格报名参加明年的第十五届华杯赛。

新东方作为组委会协作单位之一,将设立初试考点,接受新东方学员以及非新东方学员的各年级优秀考生报名参赛!欢迎数学成绩优秀的学员报名!三、报名方法:【报名时间】2009年10月16日(星期五)-2009年11月6日(星期一)初赛时间原定12月6日,这与BESTS考试冲突,因此可能会将初赛时间提前(具体时间待定),担心本次比赛与BESTS撞车的同学放心报名!【报名地点】本次报名均采用现场报名的方式,新东方泡泡各中心均可报名。

【报名条件】数学成绩较好的小学三、四、五、六年级学生均可自愿报名参加。

请学生或学生家长持学生身份证(号)到中心前台登记填表报名。

【温馨提示】请学员报考时,务必登记学员姓名,性别,年级,就读学校,联系方式(手机号),确保资料齐全正确,以免影响学员成绩。

前台办公时间周一至周五为12:00-19:00,周六日为8:00-19:00,请家长注意。

(大赛组委会实际每人收取20元报名费,新东方学员凭09年秋季班听课证,免费报名!非新东方学员,代收20元报名费!)五、比赛时间:在2009年数学解题能力展示活动中,新东方POP少儿共组织238名学生参赛,其中60%的学员进入复赛,进入复赛的40%的学员分别获得了二等奖和三等奖!预祝今年参赛的同学们再获佳绩!同时,为了表示对热爱数学思维训练的同学们的鼓励和嘉奖,新东方少儿部特对本次2019年数学解题能力展示大赛设立奖学金如下:获得本次比赛一等奖者:奖励1000元课程优惠券;获得本次比赛二等奖者:奖励500元课程优惠券;获得本次比赛三等奖者:奖励9折课程优惠卡;注:以上课程优惠券仅限报新东方数学思维训练课程使用!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009 “数学解题能力展示”读者评选活动
五年级组初赛试题
(测评时间:2008年12月6日9:00—10:30)
一、填空题Ⅰ(每题8分,共40分)
1. 计算:8
2.54+835.27-20.38÷2+2×6.23-390.81-9×1.03= .
2. 某班女同学人数是男同学的2倍,如果女同学的平均身高是150
厘米,男同学的平均身高是162厘米.那么全班同学的平均身高
是厘米.
3. 如果两个合数互质,它们的最小公倍数是126,那么,它们的和
是.
4. 右图中三角形共有个.
5. 从1,2,3,4,5,6中选取若干个数,使得它们的和是3的倍数,但不是
5的倍数.那么共有种不同的选取方法.
二、填空题Ⅱ(每题10分,共50分)
6.
某城市的交通系统由若干个路口(右图中线段的交点)和街道
(右图中的线段)组成,每条街道都连接着两个路口.所有街
道都是双向通行的,且每条街道都有一个长度值(标在图中相
应的线段处).一名邮递员传送报纸和信件,要从邮局出发经
过他所管辖的每一条街道最后返回邮局(每条街道可以经过不
止一次).他合理安排路线,可以使得自己走过最短的总长度
是.
7. 如右图,一个面积为2009平方厘米的长方形,被分割成了一个
长方形、两个等腰直角三角形、三个梯形.已知除了阴影长方
形外,其它的五块面积都相等,且B是AC的中点;那么阴影长
方形的面积是平方厘米.
8. 将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那
么,这个6位数除以667的结果是.
9. 计算:= .
10. 200名同学编为1至200号面向南站成一排.第1次全体同学向右
转(转后所有的同学面朝西);第2次编号为2 的倍数的同学向
右转;第3次编号为3的倍数的同学向右转;……;第200次编号
为200的倍数的同学向右转;这时,面向东的同学有名.
三、填空题Ⅲ(每题12分,共60分)
11. 有一位奥运会志愿者,向看台上的一百名观众按顺序发放编号
1,2,3,……100,同时还向每位观众赠送一个单色喇叭.他
希望如果两位观众的编号之差是质数,那么他们拿到的喇叭就
是不同颜色的.为了实现他自己的愿望,他最少要准备
种颜色的喇叭.
12. 一些棋子被摆成了一个四层的空心方阵(右图是一个四层空心
方阵的示意图).后来小林又添入28个棋子,这些棋子恰好变
成了一个五层的空心方阵(不能移动原来的棋子),那么最开
始最少有个棋子.
13. 请将1个1,2个2,3个3,…,8个8,9个9填入右图的表格中,
使得相同的数所在的方格都连在一起(相连的两个方格必须有
公共边).现在已经给出了其中8个方格中的数,并且知
道A,B,C,D,E,F,G各不相同;那么,五位数是.
14. A地位于河流的上游,B地位于河流的下游.每天早上,甲船从
A地、乙船从B地同时出发相向而行.从12月1号开始,两船都装
上了新的发动机,在静水中的速度变为原来的1.5倍,这时两船
的相遇地点与平时相比变化了1千米.由于天气原因,今天(12
月6号)的水速变为平时的2倍,那么今天两船的相遇地点与12
月2号相比,将变化
千米.
15. 如右图,长方形ABCD中被嵌入了6个相同的正方形.已知
AB=22厘米,BC=20厘米,那么每一个正方形的面积为平方厘米.。

相关文档
最新文档