静电场习题课答案(2005

合集下载

静电场习题课1-14答案

静电场习题课1-14答案

静电场习题课1-14答案静电场习题课1.如图示真空中有两个半径分别为R 1和R 2的同心导体球壳,设内、外导体球壳上分别带有净电荷Q 1和Q 2,外球壳的厚度忽略不计,并以无穷远处为电位参考点,试求: (1)导体球壳内、外电场强度E 的表达式; (2)内导体球壳()r R =1的电位?。

解:(1)外导体球壳的外表面所带电荷21Q Q Q =+外,则r<="" p="">12R r R <<时,20124rQ E e rπε=;r>R2时,202134r r Q Q E e πε+=;(2)12122211321221200001111()()4444R R R R Q Q Q Q Q E dr E dr R R R R R ?πεπεπεπε∞+=+=-+-=+∞??2.真空中有一个半径为3cm 的无限长圆柱形区域内,有体密度ρ=10 mC m 3均匀分布的电荷。

求:r r r ===234cm, cm, cm 处的电场强度E 。

解:利用高斯定理,设R 为圆柱形区域的半径,0.Q E dS s ε=3r cm <当时,2E rρε=e ρ方向沿方向;r>3cm 当时,202R E e rρρε=方向沿方向。

所以23r=cm E =v/m r=3cm E =v/m r=4cm E =v/m 77712,1.1310, 1.6910, 1.27103.内导体半径为2cm 和外导体的内半径为4cm 的球形电容器,其间充满介电常数ε=2F m的电介质。

设外导体接地,而内导体带电,试求电容器介质内某点电位为内导体电位的一半时,该处的ε值。

解:224,48.s Qr Q Q E E r rD dS QD ππεπ====沿径向0.040.02=ln 288Q Qdr r ?ππ=?内导体的电位:000.040.04=88r Q Q r dr r r ?ππ=?1设处电位001ln2=2=0.04lnr r ??==ε4.一同轴线内圆柱导体半径为a ,外圆柱导体半径为b ,其间填充相对介电常数ερr =a的介质,当外加电压为U (外导体接地)时,试求:(1)介质中的电通密度(电位移)D 和电场强度E 的分布; (2)介质中电位?的分布;解:(1)由高斯通向定理0,.20()()r bUa b D e b a DabUE e b a ρρερρεερ<<=-==-时,(2) 11=()(()babU Ed b a bρρρ=--?以外导体为电位参考点)5. 图示空气中一输电线距地面的高度3h m =,输电线的半径为5a mm =,输电线的轴线与地面平行,旦对地的电压为3000U V =,试求地面上感应电荷分布的规律。

基础物理学第五章(静电场)课后习题答案

基础物理学第五章(静电场)课后习题答案

第五章 静电场 思考题5-1 根据点电荷的场强公式2041rqE ⋅=πε,当所考察的点与点电荷的距离0→r 时,则场强∞→E ,这是没有物理意义的。

对这个问题该如何解释? 答:当时,对于所考察点来说,q 已经不是点电荷了,点电荷的场强公式不再适用.5-2 0FE q =与02014q E r r πε=⋅两公式有什么区别和联系? 答:前式为电场(静电场、运动电荷电场)电场强度的定义式,后式是静电点电荷产生的电场分布。

静电场中前式是后一式的矢量叠加,即空间一点的场强是所有点电荷在此产生的场强之和。

5-3 如果通过闭合面S 的电通量e Φ为零,是否能肯定面S 上每一点的场强都等于零?答:不能。

通过闭合面S 的电通量e Φ为零,即0=⋅⎰SS d E,只是说明穿入、穿出闭合面S的电力线条数一样多,不能讲闭合面各处没有电力线的穿入、穿出。

只要穿入、穿出,面上的场强就不为零,所以不能肯定面S 上每一点的场强都等于零。

5-4 如果在闭合面S 上,E 处处为零,能否肯定此闭合面一定没有包围净电荷? 答:能肯定。

由高斯定理∑⎰=⋅内qS d E S1ε,E 处处为零,能说明面内整个空间的电荷代数和0=∑内q,即此封闭面一定没有包围净电荷。

但不能保证面内各局部空间无净电荷。

例如,导体内有一带电体,平衡时导体壳内的闭合高斯面上E 处处为零0=∑内q,此封闭面包围的净电荷为零,而面内的带电体上有净电荷,导体内表面也有净电荷,只不过它们两者之和为零。

5-5 电场强度的环流lE dl ⋅⎰表示什么物理意义?0lE dl⋅=⎰表示静电场具有怎样的性质?答:电场强度的环流lE dl ⋅⎰说明静电力是保守力,静电场是保守力场。

0lE dl⋅=⎰表示静电场的电场线不能闭合。

如果其电场线是闭合曲线,我们就可以将其电场线作为积分回路,由于回路上各点沿环路切向,得⎰≠⋅Ll d E 0,这与静电场环路定理矛盾,说明静电场的电场线不可能闭合。

静电场练习题及答案解析

静电场练习题及答案解析

静电场练习题及答案解析练习1一、选择题1. 一带电体可作为点电荷处理的条件是( )A. 电荷必须呈球形分布;B. 带电体的线度与其它有关长度相比可忽略不计;C. 电量很小;D. 带电体的线度很小。

2. 试验点和q0在电场中受力为F⃗,其电场强度的大小为F,以下说法正确的( )q0A. 电场强度的大小E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定;B. 电场强度的大小E正比于F且反比与q0;C. 电场强度的大小E反比与q0;D. 电场强度的大小E正比于F。

3. 如果通过闭合面S的电通量Φe为零,则可以肯定( )A. 面S内没有电荷;B. 面S内没有净电荷;C. 面S上每一点的场强都等于零;D. 面S上每一点的场强都不等于零。

4. 如图所示为一具有球对称性分布的静电场的E~r关系曲线,产生该静电场的带电体是( ) A 半径为R的均匀带电球面;B半径为R的均匀带电球体;C半径为R的、电荷体密度为ρ=Ar(A为常数)的非均匀带电球体;D半径为R的、电荷体密度为ρ=A r⁄(A为常数)的非均匀带电球体。

5. 在匀强电场中,将一负电荷从A移动B,如图所示,则( )A. 电场力做负功,负电荷的电荷能增加;B. 电场力做负功,负电荷的电势能减少;C. 电场力做正功,负电荷的电势能增加;D. 电场力做正功,负电荷的电势能减少。

二、填空题1. 点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量∮E⃗⃗∙dS⃗=,式中E⃗⃗是点电荷在闭合曲面上任一点产生的场强的矢量和。

2. 真空环境中正电荷q均匀地分布在半径为R的细圆环上.在环环心O处电场强度为,环心的电势为。

=0,这表3. 在静电场中,场强沿任意闭合路径的线积分等于零,即∮E⃗⃗∙dl⃗L明静电场中的电场线。

4. 一半径为R的均匀带电球面,其电荷面密度为σ,该球面内、外的场强分布为(r⃗表示从球心引出的矢径):E⃗⃗r=(r<R);E⃗⃗r=(r>R)。

静电场习题-参考答案

静电场习题-参考答案

静电场习题参考答案一、选择题1C 2D 3D 4D 5B 6C 7C 8B 9D 10B 11B 12B 13C 二、填空1. 002-3E ε、0043E ε2. 06q ε3. 不变 减小4. ⎪⎪⎭⎫ ⎝⎛-π00114r r q ε5. ⎪⎭⎫ ⎝⎛-πR r Q 1140ε6.⎪⎪⎭⎫ ⎝⎛-π20114r R Qq ε7.10114q r R ε⎛⎫- ⎪π⎝⎭8. 2202dSU ε 9.204R q επ10. 2021+4q L επ() 11. C Fd /2 FdC 212. 不变 、 减小三、计算1. 解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε 总场强为 ⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε方向沿x 轴,即杆的延长线方向.P Ldd q x(L+d -d ExO2. 解:选杆的左端为坐标原点,x 轴沿杆的方向.在x 处取一电荷元λd x ,它在点电荷所在处产生场强为:()204d d x d xE +π=ελ整个杆上电荷在该点的场强为:()()l d d lx d x E l+π=+π=⎰00204d 4ελελ 点电荷q 0所受的电场力为:()ld d lq F +π=004ελ=0.90 N 沿x 轴负向3. 解:设内球上所带电荷为Q ,则两球间的电场强度的大小为204r QE επ= (R 1<r <R 2) 两球的电势差⎰⎰π==212120124d R R R R r dr Q r E U ε⎪⎪⎭⎫ ⎝⎛-π=21114R R Q ε∴ 12122104R R U R R Q -π=ε=2.14×10-9 C4. (1)由高斯定理 024επQE r =求出 204rQ E πε=21R r R <<)11(421021R R Q Edr U R R -==⎰πε5. 解:由高斯定理当r >R 时,20141r QE πε=当r <R 时,r R Q r r R QE 302330241343441πεπππε==以无穷远处为参考点,球内离球心r 处的P 点的电势为⎰⎰⎰∞∞⋅+⋅=⋅=RR r PP l E l E l E V Pϖϖϖϖϖϖd d d 12q沿径向路径积分得32202030122)3(41d 41d 41d d R r R Q r r Qr r R Q rE r E V P R Rr RRr P PP-=⋅+⋅=⋅+⋅=⎰⎰⎰⎰∞∞πεπεπε6. 解:未插导体片时,极板A 、B 间场强为: E 1=V / d 插入带电荷q 的导体片后,电荷q 在C 、B 间产生的场强为:E 2=q / (2ε0S ) 则C 、B 间合场强为:E =E 1+E 2=(V / d )+q / (2ε0S )因而C 板电势为: U =Ed / 2=[V +qd / (2ε0S )] / 27. 解:应用动能定理,电场力作功等于粒子的动能增量0212-=v m qEl无限大带电平面的电场强度为: E = σ / (2ε0) 由以上两式得 σ = ε0m v 2 / (ql )8. 解:设试验电荷置于x 处所受合力为零,即该点场强为零.()()0142142020=+π-+-πx qx q εε 得 x 2-6x +1=0, ()223±=x m因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得 ()223+=x md d。

[工学]静电场习题解答

[工学]静电场习题解答

习题 22-1 两个点电荷q 和-q 分别位于+y 轴和+x 轴上距原点为a 处,求:(1)z 轴上任一点处电场强度的方向a E ; (2)平面y = x 上任一点的a E 。

解:(1)源点坐标q (0,a ,0)、-q (0,a ,0),场点坐标(0,0,z )3030π4)(π4)(--++'-'--'-'-=r r r r r r r r E εεq q 3030π4)(π4)(az a z q az a z q x z x z y z y z a a a a a a a a -----=εε2/3220)(π4)(a z qa y x +-=εa a)(22E y x E a a E a -==(2)位于平面y = x 上任一点的场点坐标(x ,x ,z ),电场为3030π4)(π4)(--++'-'--'-'-=r r r r r r r r E εεq q 3030π4)(π4)(az x x a z x x q az x x a z x x q x z y x x z y x y z y x y z y x a a a a a a a a a a a a a a a a -++-++--++-++=εε2/32220])([π4)(z a x x qa y x +-+-=εa a)(22E y x E a a E a -==2-2 xy 平面上半径为 a 圆心位于原点的半圆环关于 x 轴对称,且开口朝向+x 轴。

若半环上电荷线密度为ρl ,求位于原点的点电荷 q 所受到的作用力。

解:⎰⎰+===2/3π2/π2020d π4)sin cos (d π4ϕεϕϕρερa q l R q q y x l l Rl a a a E F a q a q lx y x l 03ππ/2/π20π2π4)cos sin (ερεϕϕρa a a =-= 2-3 卢瑟福在1911年采用的原子模型为:半径为r a 的球体积中均匀分布着总电量为- z e 的电子云,球心有一正电荷z e (z 为原子序数, e 是质子的电量),试证明他得到的原子内的电场和电位的表示式:230e 1ra z r r r πε⎛⎫=- ⎪⎝⎭E a230e 13422a a z r r r r Φπε⎛⎫=-+⎪⎝⎭证明:球内的体电荷均匀分布,密度为3f π34ea r z -=ρ由高斯定律,取同心球面为高斯面,得()⎰∑⎰+-==∙ττρεεd e 11d f 00z q SS E()330023021e d π4)π34e (e 1)(π4ar a r r r z r r r z z E r -=⎪⎭⎫ ⎝⎛-=⎰εεr于是得球内任意点的电场强度为 ⎪⎪⎭⎫ ⎝⎛-==3201π1)(a r r r r r r E εa r a E球外的电场强度为零。

静电场习题解答

静电场习题解答

习题 22-1 两个点电荷q 和-q 分别位于+y 轴和+x 轴上距原点为a 处,求:(1)z 轴上任一点处电场强度的方向a E ; (2)平面y = x 上任一点的a E 。

解:(1)源点坐标q (0,a ,0)、-q (0,a ,0),场点坐标(0,0,z )3030π4)(π4)(--++'-'--'-'-=r r r r r r r r E εεq q 3030π4)(π4)(a z a z q az a z q x z x z y z y z a a a a a a a a -----=εε 2/3220)(π4)(a z qa y x +-=εa a)(22E y x E a a E a -==(2)位于平面y = x 上任一点的场点坐标(x ,x ,z ),电场为3030π4)(π4)(--++'-'--'-'-=r r r r r r r r E εεq q 3030π4)(π4)(az x x a z x x q az x x a z x x q x z y x x z y x y z y x y z y x a a a a a a a a a a a a a a a a -++-++--++-++=εε2/32220])([π4)(z a x x qa y x +-+-=εa a)(22E y x E a a E a -==2-2 xy 平面上半径为 a 圆心位于原点的半圆环关于 x 轴对称,且开口朝向+x 轴。

若半环上电荷线密度为ρl ,求位于原点的点电荷 q 所受到的作用力。

解:⎰⎰+===2/3π2/π2020d π4)sin cos (d π4ϕεϕϕρερa q l R q q y x l l Rl a a a E F a q a q lx y x l 03ππ/2/π20π2π4)cos sin (ερεϕϕρa a a =-= 2-3 卢瑟福在1911年采用的原子模型为:半径为r a 的球体积中均匀分布着总电量为- z e 的电子云,球心有一正电荷z e (z 为原子序数, e 是质子的电量),试证明他得到的原子内的电场和电位的表示式:230e 1ra z r r r πε⎛⎫=- ⎪⎝⎭E a230e 13422a a z r r r r Φπε⎛⎫=-+ ⎪⎝⎭证明:球内的体电荷均匀分布,密度为3f π34ea r z -=ρ由高斯定律,取同心球面为高斯面,得()⎰∑⎰+-==∙ττρεεd e 11d f 00z q SS E()330023021e d π4)π34e (e 1)(π4ar a r r r z r r r z z E r -=⎪⎭⎫ ⎝⎛-=⎰εεr于是得球内任意点的电场强度为 ⎪⎪⎭⎫ ⎝⎛-==3201π1)(a rr r r r r E εa r a E球外的电场强度为零。

静电场的基础知识课后习题(仅供参考)

静电场的基础知识课后习题(仅供参考)

4.4解:如图所示建立坐标系,在半圆 环上取一小段圆弧,其长度为θRd则其带电量为θλ=Rd q d此段圆弧在环心O 点产生的电场强度为R4d R 4dq dE 020πεθλ=πε=由半圆环的对称性可知0点的场强E沿y 轴负向,所以有R4d sin sin dE dE 0y πεθθλ=θ=故环心处的电场强度大小R2R 4d sin dE E E 000y y πελ=πεθθλ===⎰⎰π所以 j R2E 0πελ-=4.5解:(1)两电荷同号时,在其连线外侧电场强度方向相同,内侧电场强度方向相反,故电场强度为零的点在两电荷连线内侧,设该点与q 1距离为r 1 ,(r 1>0),由场强叠加原理有0)(4421022101=--r d q rq πεπε 可得2111q q d q r +=(2)两电荷异号时,在其连线内侧电场强度方向相同,外侧电场强度方向相反。

故电场强度为零的点在两电荷连线外侧,又由于q 2>q 1 ,所以电场强度为零的点在q 1的外侧,设该点与q 1的距离为2r ,由场强叠加原理得0)r d (4q r 4q 22022201=+πε-πε可得 1212q q d q r -=4.7 解:建立如图所示的坐标系。

将带电 线分成两部分半圆环和两条半无 限长直线进行考虑。

设带电线线电荷密度为λ,分析半圆环部分:在半圆环上取一小段圆弧,其长度为dl ,则其带电量为 θλ=λ=d R dl dq 此段圆弧在环心0点产生的电场强度为: 20Rd R 41E d θλπε=电场分布关于x 轴对称:0=y E ,θθλπε=θ=sin R d R 41sin dE dE 20x所以R2d sin R 4sin R rd 41sin E E 000020πελ=θθπελ=θθλπε=θ=⎰⎰⎰ππ 方向沿x 轴正方向 分析两个半无限长直线:建立如图所示的坐标系,在带电直线上取电荷元dx dq λ=,它在O 点产生的电场强度大小为O ′)(4422020R x dxr dq dE +==πελπε 由带电线的对称性可知O 点的电场强度E沿x 轴负方向,所以有2/322022220)(4)(4cos R x xdxRx x R x dxdE dE x +=++==πελπελθ所以剩下部分在O 点产生的场强大小RR x xdxdE E E x x 002/32202)(4πελπελ=+===⎰⎰∞方向水平向左。

05静电场——习题课

05静电场——习题课

1.14(1)点电荷 位于边长为 的正立方体的中心, ( )点电荷q位于边长为 的正立方体的中心, 位于边长为a 通过此立方体的每一面的电通量各是多少? 通过此立方体的每一面的电通量各是多少? (2)若电荷移至正方体的一个顶点上,那么通过每 )若电荷移至正方体的一个顶点上, 个面的电通量又各是多少? 个面的电通量又各是多少? q 解: 1)由于立方体的 6 个侧面对于其 ( ) ● 中心对称, 则由Gauss定理知,通过各 定理知, 中心对称, 则由 定理知 个面的电通量都相等。 个面的电通量都相等。且等于整个闭合 q ● 高斯面电能量的六分之一, 高斯面电能量的六分之一,所以每个面 通过的电通量应为 q / (6ε0)。 。 填空题1039 (本题 分)在边长为 的正 本题3分 在边长为a的正 填空题 a 方形平面的中垂线上,距中心o点 方形平面的中垂线上,距中心 点a/2 处 q 有一电量q的正电荷,则通过该平面的电 有一电量 的正电荷, 的正电荷 ● a a/2 场强度通量为 q / (6ε0) 。 为边长作一个正六面体。 解:以a 为边长作一个正六面体。
ε0
E = 0 (r < a ) r > a , q int = 2π al σ , E 在筒外, 在筒外, δa (r ≥ a ) E = ε 0r o E-r 曲线如图。 曲线如图。
E∝1 r
a
r
1.18 两个无限长同轴圆筒半径分别为R1和R2,单位长 两个无限长同轴圆筒半径分别为 度带电量分别为+λ和 。求内筒内、 度带电量分别为 和-λ。求内筒内、两筒间及外筒外的 电场分布。 电场分布。 根据电场分布的轴对称性, 解:根据电场分布的轴对称性,可以选与圆筒同轴的圆 柱面(上下封顶 作高斯面。再根据高斯定律即可得出: 上下封顶)作高斯面 柱面 上下封顶 作高斯面。再根据高斯定律即可得出: 在筒内, 在筒内,r < R1 : E = 0 在筒间, 在筒间, R1 < r < R2 :

静电场练习(含答案)

静电场练习(含答案)

静电场练习一、选择题(本题共10小题,每小题4分,共40分.有的小题只有一个选项正确,有的小题有多个选项正确,把正确的选项前的符号填在括号内) 1.在真空中的一个点电荷的电场中,离该点电荷距离为r0的一点引入电荷量为q的检验电荷,所受静电力为F,则离该点电荷为r处的场强大小为() A.F/q B.Fr20/(qr2)C.Fr0/qr D.Fqrr0解析由库仑定律,得:F=kqQr20,在r处的场强E=kQr2,得E=Fr20qr2,故B选项正确.答案 B2.如图所示,一电场的电场线分布关于y轴(沿竖直方向)对称,O、M、N是y轴上的三个点,且OM=MN.P点在y轴右侧,MP⊥ON.则()A. M点的电势比P点的电势高B.将负电荷由O点移动到P点,电场力做正功C. M、N两点间的电势差大于O、M两点间的电势差D.在O点静止释放一带正电粒子,该粒子将沿y轴做直线运动解析过M、P、N做等势线,可得到过P点的等势线通过M、N之间,因顺着电场线电势降低,则有φM>φP>φN,故A选项正确;将负电荷由O点移到P 点,因U OP>0,所以W=-qU OP<0,则电场力做负功,故B选项错误;由U=Ed可知,MN间的平均场强小于OM间的平均场强,故MN两点间的电势差小于OM两点间的电势差,C选项错误;根据电场线的分布特点会发现,电场线关于y轴两边对称,故y轴上的场强方向在y轴上,所以在O点静止释放一带正电粒子,其所受电场力沿y轴正方向,则该粒子将沿y轴做直线运动,故D选项正确.答案AD3.空间存在竖直向上的匀强电场,质量为m的带正电的微粒水平射入电场中,微粒的运动轨迹如图所示.在相等的时间间隔内()A.重力做的功相等B.电场力做的功相等C.电场力做的功大于重力做的功D.电场力做的功小于重力做的功解析本题考查了带电粒子在电场中运动的功能问题.带电粒子进入电场后做水平方向的匀速直线运动和竖直方向的匀加速直线运动,即为类平抛运动,故-带电微粒的动能增大,且在运动过程中,重力做负功,电场力做正功,即W电W G=ΔE k>0,故W电>W G.答案 C4.如图所示,在点电荷Q的电场中有a、b两点,两点到点电荷的距离r a<r b.设a、b两点场强大小分别为E a和E b,电势分别为φa和φb,则() A.E a一定大于E b,φa一定大于φbB.E a一定大于E b,φa可能小于φbC.E a一定大于E b,φa可能大于φbD.E a可能小于E b,φa可能小于φb解析电场中某点的电场强度E和电势φ没有联系,电场中某点的电势与零势点的选取有关,故B、C选项正确.答案BC5.A、B是一条电场线上的两个点,一带负电的微粒仅在电场力作用下以一定初速度从A点沿电场线运动到B点,其速度-时间图象如图所示.则这一电场可能是()解析由v-t图象可知微粒的速度减小,加速度增大,可知微粒所受电场力方向由B指向A,从A到B的过程中电场力逐渐增大,结合粒子带负电,可以判断电场线方向由A指向B且越来越密,故A选项正确.答案 A6.一平行板电容器的两个极板水平放置,两极板间有一带电量不变的小油滴,油滴在极板间运动时所受空气阻力的大小与其速率成正比.若两极板间电压为零,经一段时间后,油滴以速率v匀速下降;若两极板间的电压为U,经一段时间后,油滴以速率v匀速上升.若两极板间电压为-U,油滴做匀速运动时速度的大小、方向将是()A.2v、向下B.2v、向上C.3v、向下D.3v、向上解析由电容器两极板间电压为0,油滴以速度v匀速下降时,油滴受力如图①所示,则有mg=Ff1,①Ff1=k v.②若极板间电压为U时,受力如图②所示,=Ff2+mg,③则有F电Ff2=k v,④若极板间电压为-U时,油滴受力如图③所示,则有F电+mg=Ff3,⑤Ff3=k v′.⑥由①②③④⑤⑥联立可解得v′=3v,且方向向下,故选C.答案 C7.(2012·新课标全国)如图,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连.若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子()A.所受重力与电场力平衡B.电势能逐渐增加C.动能逐渐增加D.做匀变速直线运动解析带电粒子在平行板电容器之间受到两个力作用,一是重力mg,方向竖直向下,二是电场力F=qE,方向垂直极板向上.因为二力均为恒力,已知带电粒子做直线运动,所以此二力的合力一定在粒子运动的直线轨迹上,根据牛顿第二定律可知,该粒子做匀减速直线运动,故选项D正确,选项A、C错误;从粒子运动的方向和电场力的方向可判断出,电场力对粒子做负功,粒子的电势能增加,故选项B正确.答案BD8.如图所示,在两个电荷量均为+q的点电荷连线中点O与中垂线上某点P 中,正确的关系是()A. φO<φP,EO>EPB. φO>φP,EO<EPC.将正电荷从O点移到P点,电场力做正功D.将正电荷从O点移到P点,电场力做负功解析等量同种电荷连线中点场强为零,中垂线上其他点合场强沿中垂线向外,所以E P>E O,φP<φO,选项A错误,选项B正确.将正电荷由O点移到P 点,是沿着电场力移动,电场力做正功,选项C正确,选项D错误.答案BC9.如图所示是一个说明示波管工作的原理图,电子经加速电场(加速电压为U1)加速后垂直进入偏转电场,离开偏转电场时偏转量是h,两平行板间的距离为d,电压为U2,板长为l,每单位电压引起的偏移hU2叫做示波管的灵敏度,为了提高灵敏度,可采用下列哪些方法()A.增大U1B.减小lC.减小d D.增大U2解析电子经过加速电场U1加速,由动能定理,可得eU1=12m v21,进入偏转电场后,偏转量h=12at2=eU2l22dm v21=eU2l24eU1d=U2l24U1d,可得hU2=l24U1d,由此式可知C选项正确.答案 C10.如图所示,用绝缘细线拴一带负电小球,在竖直平面内做圆周运动,匀强电场方向竖直向下,则()A.当小球运动到最高点a时,线的张力一定最小B.当小球运动到最低点b时,小球的速度一定最大C.当小球运动到最高点a时,小球的电势能最小D.小球在运动过程中机械能不守恒解析若qE=mg,小球将做匀速圆周运动,球在各处对细线的拉力一样大.若qE<mg,球在a处速度最小,对细线的拉力最小.若qE>mg,球在a处速度最大,对细线的拉力最大.故选项A、B错误.a点电势最高,负电荷在电势最高处电势能最小,故选项C正确.小球在运动过程中除重力外,还有电场力做功,机械能不守恒,选项D正确.答案CD第Ⅱ卷(非选择题,共60分)二、填空题(每小题5分,共20分)11.质量为m,电荷量为q的质点,在静电力作用下以恒定速率v沿圆弧由A运动到B,其速度方向改变θ角,AB弧长为s,则A、B两点的电势差U AB=________,AB中点的场强大小E=________.解析由动能定理qU AB=ΔE k=0,所以U AB=0.质点做匀速圆周运动R=s θ静电力提供向心力有qE=m v2 R.解得E=m v2θqs.答案0m v2θqs12.在真空中两个带等量异种电荷的点电荷,电荷量均为2×10-8C,相距20 cm,则它们之间的相互作用力为________N,在两者连线的中点处,电场强度大小为________N/C.答案9×10-5 3.6×10413.如图所示,实线为电场线,虚线为等势面,且相邻两等势面的电势差相等,一正电荷在等势面φ3上时具有动能60 J,它运动到等势面φ1上时,速度恰好为零,令φ2=0,那么,当该电荷的电势能为12 J时,其动能大小为________J.解析以φ2的电势为零,由能量守恒可知,电荷的电势能和动能的总和保持不变,由题意可知每经过一个等势面带电粒子的动能减少30 J,则在等势面φ2上时动能为30 J,电势能为0,则总能量为30 J,故当电势能为12 J时,动能为18 J.答案1814.如图所示,真空中有一电子束,以初速度v0沿着垂直场强方向从O点进入电场,以O点为坐标原点,沿x轴取OA=AB=BC,再自A、B、C作y轴的平行线与电子径迹分别交于M、N、P点,则AM:BN:CP=________,电子流经M、N、P三点时沿x轴的分速度之比为________.答案1:4:91:1:1三、计算题(本题共3小题,共40分.解答时应写出必要的文字说明、方程式和重要的演算步骤)15.(10分)如图所示是示波器的示意图,竖直偏转电极的极板长L1=4 cm,板间距离d=1 cm.板右端距离荧光屏L2=18 cm,电子沿中心线进入竖直偏转电场的速度是v =1.6×107 m/s ,电子电荷量e =1.6×10-19 C ,质量m =0.91×10-30kg.要使电子束不打在偏转电极上,加在竖直偏转电极上的最大偏转电压U 不能超过多大?解析 由类平抛运动的知识,得d 2=12at 2. 由牛顿第二定律,得a =Uedm . 飞行时间t =L 1v .联立以上各式,得最大偏转电压U =md 2v 2eL 21=91 V .即加在竖直偏转电极上的最大偏转电压不能超过91 V . 答案 91 V 16.(14分)如图所示,ab 是半径为R 的圆的一条直径,该圆处于匀强电场中,场强大小为E ,方向一定,在圆周平面内,将一带正电荷q 的小球从a 点以相同的动能抛出,抛出方向不同时,小球会经过圆周上不同的点,在所有的这些点中,到达c 点时小球的动能最大.已知∠cab =30°,若不计重力和空气阻力,试求:(1)电场方向与ac 间的夹角θ为多大?(2)若小球在a 点时初速度方向与电场方向垂直,则小球恰好能落在c 点,那么初动能为多大?解析(1)带正电小球从a 点抛出后,仅在电场力作用下,运动到圆周上的c 点,且具有最大动能,则说明在圆周上c 点与a 点的电势差最大,过c 点做圆的切线即为该匀强电场的等势线,故电场的方向沿Oc 方向,如图所示.电场方向与ac 间的夹角为30°.(2)设初速度为v 0,垂直电场方向带正电小球做匀速运动,有R ·sin60°=v 0t ; 平行于电场方向带正电小球做匀加速直线运动,有 R +R cos60°=12at 2,根据牛顿第二定律得qE =ma , 联立以上各式解得 E k a =12m v 20=EqR 8. 答案 (1)30° (2)EqR 8 17.(16分)如图所示,光滑斜面倾角为37°,一带有正电的小物块质量为m ,电荷量为q ,置于斜面上,当沿水平方向加有如图所示的匀强电场时,带电小物块恰好静止在斜面上,从某时刻开始,电场强度变化为原来的12,求:(1)原来的电场强度大小;(2)物块运动的加速度;(3)沿斜面下滑距离为L 时物块的速度大小.(g 取10 m/s 2,sin37°=0.6,cos37°=0.8)解析 (1)物体受到的力有重力mg ,支持力F N .静电力F =qE ,如图. qE =mg tan37°∴E =mg tan37°q=3mg 4q . (2)当电场强度变为原来的12时,物块在斜面方向有mg sin θ-q E 2cos θ=ma .∴a =g sin37°-12g sin37°=3.0 m/s 2.方向沿斜面向下.(3)由动能定理,得mgL sin37°-qE′L cos37°=12m v2-0.解得v=6L m/s.答案(1)3mg 4q(2)3.0 m/s2方向沿斜面向下(3)6L m/s。

大学物理第05章 静电场习题解答

大学物理第05章 静电场习题解答

第5章 静电场习题解答5.1一带电体可作为点电荷处理的条件是( C ) (A )电荷必须呈球形分布。

(B )带电体的线度很小。

(C )带电体的线度与其它有关长度相比可忽略不计。

(D )电量很小。

5.2图中所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x >0)和 -λ(x < 0),则 oxy 坐标平面上点(0,a )处的场强 E 为:( B ) ( A ) 0 ( B )02aλπεi ( C )04a λπεi ( D ) ()02aλπε+i j 5.3 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( d )(C) (D)5.4 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( d )(A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变;(D) 穿过S 面的电通量不变,O 点的场强大小不变。

5.5如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( c ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。

5.6关于高斯定理的理解有下面几种说法,其中正确的是 ( c )(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。

5.7 下面说法正确的是 [ D ](A)等势面上各点场强的大小一定相等; (B)在电势高处,电势能也一定高; (C)场强大处,电势一定高;(D)场强的方向总是从电势高处指向低处.5.8 已知一高斯面所包围的体积内电量代数和0i q =∑ ,则可肯定:[ C ] (A )高斯面上各点场强均为零。

静电场练习及答案

静电场练习及答案

静电场练习题一、选择题1、设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ] 2、关于高斯定理的理解有下面几种说法,其中正确的是:[ ] (A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D)如果高斯面内有净电荷,则通过高斯面的电场强度 通量必不为零.3、一个带正电荷的质点,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递增的,下面关于C点场强方向的四个图示中正确的是:[ ]4、如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为λ1和λ2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E为:[ ] (A) r0212ελλπ+. (B) 20210122R R ελελπ+π(C) 1012R ελπ. (D) 0. 5、边长为a 的正方形的四个顶点各有一个电量为q 的点电荷,若将点电荷Q由远处移到正方形中心处,电场力的功是[ ]aQq A02πεaQq B 02πε-aQq C0πεaQq D 0πε-6、在X 轴上,点电荷Q 位于x =a 处,负的点电荷–Q 位于x = – a 处,点P 位于轴上x 处,当x»a 时,P 点的场强 E =[ ]xQq A04πε20x QaBπε30x Qa Cπε204xQ Dπε7、孤立导体球A 的半径为R ,带电量Q ,其电场能为W A ,孤立导体球B 的半径为R /2,带电量Q /2,xEAB C其电场能为W B ,则[]A W A =WB B W A =2W BC W A =W B /2D 以上都不对8、真空中一半径为R 的球面均匀带电Q ,在球心O 处有一带电为q 的点电荷。

静电场习题答案[1]解析共26页文档

静电场习题答案[1]解析共26页文档

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
静电场习题答案[1]解析

26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯

29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

静电场习题答案及小结

静电场习题答案及小结

2 0 a
qቤተ መጻሕፍቲ ባይዱ
a
a
O
QU o
3 3q Uo 2 0 a
a
2q
10
6.如图所示 ,半径为 R的导体球原来带电为 Q,现将 一点电荷 q 放在球外离球心距离为 x(>R) 处 , 导体球 上的电荷在P点(OP = R/2)产生的场强和电势.

解:由于静电感应,使电荷重 + 新分布 , 球内处处场强为零 . 因 + R O .R/2P. 此P点总的电场强度也为零. + + q + E 0 EP P 2 4 0 ( x R / 2)
E内 0 2、均匀带电球面 q E外 4 r 2
q E 2 4 r U q 4 r
q U内 4 R U q 外 4 r
E内 0 3、“无限长”均匀带电柱面 E外 2 r
8. 有两个点电荷电量都是 +q,相距为2a。今以左边的点 电荷所在处为球心,以a为半径作一球形高斯面, 在球 面上取两块相等的小面积S1和S2, 其位臵如图所示。设通 过S1 和 S2的电场强度通量分别为1和2,通过整个球面 的电场强度通量为S,则 A. Φ Φ , Φ q /
S2

we E 2
二、静电场的基本规律 l E dl 0 s D ds q 静电 导体 静电感应 E内 0;U 常数 场中 电介质 电极化 端面出现q束 , 引入D
各向均匀电介质,有 D E
三、重要结论
1、点电荷
I II
III
x
4.半径为R1和R2的两个同轴金属圆筒,其间充 满着相对介电常数为r的均匀介质,设两筒上单 位长度带电量分别为+ 和-,则介质中的电位移 / 20 r r . / 2 r ,电场强度大小E= 矢量的大小D=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 静 电 场 习 题 课 (2005.8.10)说明:数学表达式中字母为黑体者表示矢量Ⅰ 教学基本要求 电磁学1.掌握静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理。

掌握电势与电场强度的积分关系。

能计算一些简单问题中的电场强度和电势。

2.理解静电场的规律;高斯定理和环路定理。

理解用高斯定理计算电场强度的条件和方法。

3.了解导体的静电平衡条件,了解介质的极化现象及其微观解释。

了解各向同性介质中D 和E 、H 和B 之间的关系和区别。

了解介质中的高斯定理。

Ⅱ 内容提要一、电荷守恒定律(略) .二、库仑定律 : F=q 1q 2r /(4πε0r 3) . 三、电场强度E :1.定义:E=F /q 0 (F 为试验电荷q 0在电场E 中所受作用力);2. 电场叠加原理i E E ∑= (矢量叠加); 点电荷系激发的电场:)4/(30r q i πεi r E ∑=;连续带电体激发的电场: E=∫ q r d q /(4πε0r 3) . 四、高斯定理: 1.电力线(略);2.电场强度通量 Фe =∫S E∙d S (计算电场强度通量时注意曲面S 的法线正方向);3.高斯定理(过闭合曲面的电场强度通量):真空中 0d εiS e qΦ∑=⋅=⎰S E ;介质中 i Sq0d ∑=⋅⎰S D ;4.库仑电场为有源场. 五、环路定理: 1.表达式⎰=⋅l0d l E ;2. 静电场为保守场. 六、电势U :1.定义式 (场强与电势的积分关系.下式 中p 表示场点,(0) 表示电势零点):⎰⋅=)0(d pU l E ;2. 电势差 ⎰⋅=-=BAB A AB U U U l E d ;3. 电势叠加原理 U U i ∑=(标量叠加); 点电荷系激发的电势:)4/(0r q U i πε∑=; 连续带电体激发的电势)[]⎰=qr q U 04d πε.4.静电场力的功 W AB =qV AB ;5. 场强与电势的微分关系E=-grad V=[(∂V/∂x )i+(∂V/∂y )j+(∂V/∂z )k ] . 七、电偶极子: 1.定义(略); 2.电矩 P e =q l ; 3.激发的电场:延长线上 E=[1/(4πε0)] (2P e /r 3); 中垂线上 E=[1/(4πε0)] (-P e /r 3); 4. 激发的电势 U =P e ·r / (4πε0r 3) ; 5. 在均匀电场中受力矩 M= P e ×E . 八、导体:1.静电平衡条件 导体内E=0, 导体表面附近外E 垂直表面;2.推论(1)导体为等势体,导体表面为等势面, (2)导体表面曲率半径小处面电荷密度大, (3) 导体表面外附近电场E=σ/ε0, 3.静电屏蔽(1) 空腔导体内的物体不受腔外电场的影响,(2)接地空腔导体外物体不受腔内电场的影响.九、电介质:1.有极分子取向极化,无极分子位移极化;2.极化强度P=∑p e/ΔV,在各向同性介质中P=χε0E;3.电位移矢量D=ε0E+P,在各向同性介质中D=ε0εr E=εE ,εr=1+χ.十、电容:1.定义式C=Q/∆U=Q/(U1-U2);2.几种电容器的电容(1)平行板电容器C=εS/d,(2)圆柱形电容器C=2πεl/ln(R2/R1),(3)球形电容器C=4πεR2R1 /(R2-R1),(4)孤立导体球C=4πεR;3.并联C=C1+C2+C3+…;4串联1/C=1/C1+1/C2+1/C3+….十一、静电场的能量:1.点电荷系相互作用能W e= (1/2)∑q i U i;2.连续带电体的能量W e=(1/2)∫q U d q;3.电容器电能W e=(1/2)qU=(1/2)CU2=q2/(2C);4.静电场的能量密度w e=(1/2)D·E,W e=∫V w e d V=(1/2)∫V D·E d V. 十二、几种特殊带电体激发电场:1.无限长均匀带电直线激发电场的场强E=λr/(2πε0r2);2.均匀带电园环轴线上的场强与电势E=Qx/[4πε0 (x2+R2)3/2],U= Q/[4πε0 (x2+R2)1/2];3. 无限大均匀带电平面激发电场的场强E=σ/(2ε0);4. 均匀带电球面激发的场强与电势:球面内E=0, U= Q/(4πε0R)球面外E= Q r/(4πε0r3), U= Q/(4πε0r);5. 均匀带电球体激发的场强与电势:球体内E=Q r/(4πε0R3), U=Q(3R2-r)/(8πε0R3); 球体外E= Q r/(4πε0r3), U= Q/(4πε0r);6. 无限长均匀带电圆柱面激发的场强:柱面内E=0,柱面外E=λr/(2πε0r2);7. 无限长均匀带电圆柱体激发的场强:柱体内E=λr/(2πε0R2),柱体外E=λr/(2πε0r2)十三、电源电动势:⎰+-⋅=lE dε⎰⋅=llE dεⅢ练习一至练习八答案及简短解答练习一库伦定律电场强度一.选择题 D B A D C二.填空题1.Q=aλ, 异.2.f1/q<E<f2/q.3. qd/(8π2ε0R3), 水平向右.三.计算题1. 带电体的横截面及坐标选取如图,取宽d l=R dθ的无限长窄条微元,其电荷线密度为λ'=(λ/π)dθ,在P点产生场强为d E=λ'/(2πε0R)=λd/(2π2ε0R) 方向如图根据对称性可知,P点场强沿x方向。

REEx22dcos)cos(ddεπθθλπθ-=+=P点场强⎰⎰===ππεπθθλ32/22cosREEExddR2επλ=方向沿x正方向.2.取电荷元d l=R dϕ.d q=λd l=λ0sinϕR dϕd E=d q/(4πε0R2)=λ0sinϕdϕ/(4πε0R)d E x=d E cos(π+ϕ)=-λ0sinϕcosϕdϕ/(4πε0R)23d E y =d E sin(π+ϕ)=-λ0sin 2ϕd ϕ/(4πε0R ) d E x =)[]⎰-ππεϕϕϕλ0004cos sin R d =0d E Y =)[]⎰-ππεϕϕλ0204sin R d=-λ0/(8ε0R )E =E y =-λ0/(8ε0R )负号表示电场方向沿y 轴负向练习二 电场强度(续)电通量一.选择题 D A B A D 二.填空题1. λ/(πε0d ),-λ/(3πε0d ) .2. 2πr d r , 2πr σd r , σd r .3. -ES 0sin θ. 三.计算题1. 选坐标xy 如图.取微元d l=R d θ,d q =λd l =[Q/(πR )]R d θ=Q d θ/π d E=d q/(4πε0R 2)= Q d θ/(4π2ε0R 2)d E x =d E cos(π+θ) =-Q cos θd θ/(4π2ε0R 2)d E y =d E sin(π+θ)=-Q sin θd θ/(4π2ε0R 2) d E x =()[]⎰-2/32/2024cos ππεπθθR Q d=Q/(2π2ε0R 2)d E Y =)[]⎰-2/32/2024sin ππεπθθR Q d=0E =E x = Q/(2π2ε0R 2)方向沿x 轴正向2. 取同心线圆环面元 d S=2πr d rd Φ=E ⋅d S =E d S cos θ={Q/[4πε0(r 2+h 2)]}(2πr d r )[h/((r 2+h 2)1/2)= Qhr d r/[2ε0(r 2+h 2)3/2]⎰+-=+=RR h hQ r h r Qhr Φ022023220)1(2)(2d εε练习三 高斯定理一.选择题 D B D C A二.填空题1. σ/(2ε0),向右;3σ/(2ε0),向右;σ/(2ε0),向左.2. Q/ε0,5Q r 0/(18πε0R 2), 0.3. (q 2+q 4)/ε0, q 1、q 2、q 3、q 4 三.计算题1.因电荷面对称,电场也面对称:(1)距中心面等距离处E 大小相等; (2)E 方向垂直板向外.作以板中心面对称的柱形高斯面,如图(此图为垂直板的截面图).有SE S∆=⋅⎰2d S E当场点在板外: q int =ρ∆Sd得 E =ρd /(2ε0) 方向垂直板向外 当场点在板内 q int =2ρ∆Sx得 E =ρx /ε0 方向垂直板向外2. 此带电体可认为是实心均匀带正电(电荷密度ρ)的大球和均匀带负电(电荷密度-ρ,位置在原空腔处)的小球组成.Q 1=ρ(4πR 3/3), Q 2=-ρ(4πa 3/3),用高斯定理可求Q 1在大球内(r 1<R )产生的场. E 1= Q 1r 1/(4πε0R 3)=ρr 1/(3ε0)Q 2在小球内(r 2<a )外(r 2>a )产生的场.E 2内= Q 2r 2/(4πε0a 3)=-ρr 2/(3ε0) E 2外= Q r 2/(4πε0r 23)=-ρa 3r 2/(3ε0r 3) (1)O ' 点处:r 1=d ,r 2=0. E 1=ρd 1/(3ε0), E 2=0E 0=E 1+E 2=ρd 1/(3ε0) 方向向右 (2)P 点处:r 1=d ,r 2=2d. E 1=ρd 1/(3ε0), E 2=-ρa 3/(12ε0d 2) E 0=E 1+E 2=ρd 1/(3ε0) -ρa 3/(12ε0d 2)= ρ (4d 3-a 3)/(12ε0d 2)方向向左练习四 静电场的环路定理 电势 一.选择题 C B A D B. 二.填空题1. R q q q 02318)22(πε++2. Ed3. q /(6πε0R )4三.计算题1. 选无穷远处为电势零点,在带电细杆上取微元d q=λd x ,(λ=q /(2l )).则P 点电势U 为()[]()[]⎰⎰++==la a la ax x x q U 202044πελπεd d =λln[(2l +a )/a ]/(4πε0) =q ln[(2l +a )/a ]/(8πε0l )2. 一法,用电势定义求因电荷球对称,电场球对称,作与带电体对称的球形高斯面,有0int 2/4d επq E r S==⋅⎰S E 球内,r<R 1: q int =0 E 1=0 球层中R 1<r<R 2, q int =ρ4π( r 3-R 13)/3 E 2=ρ( r 3-R 13)/3ε0r 2球外r>R 2: q int =ρ4π( R 23-R 13)/3E 2=ρ( R 23-R 13)/3ε0r 2故 ⎰∞⋅=rU l E d⎰⎰⎰∞⋅+⋅+⋅=2211321R R R R rl E l E l E d d d ()()[]+⋅-+⋅=⎰⎰211203130R R 3R r r r R rr d d ερ()()[]⎰∞⋅-+2231323R r r R R d ερ=0+[ρ/(3ε0)][(R 12-R 22)/2-R 13(1/R 1-1/R 2)]+[ρ/(3ε0)](R 23-R 13)/R 2 =[ρ/(2ε0)](R 12-R 22) 二法,用电势叠加求取同心的薄球壳微元d q ==4πr 2ρd r ,它在空腔内产生的电势为 d U =d q/(4πε0r )= ρr d r/ε0, 所以⎰⎰==210R R r r U U ερd d =[ρ/(2ε0)](R 12-R 22)练习五 场强与电势的关系静电场中的导体一.选择题 B D E C A 二.填空题1. A =-2Ep cos α.2. E =0,匀强电场.3. v =[λq /(2πε0m )]1/2. 三.计算题1. 因B 内外表面的线电荷密度为λ2和λ1,则A 内表面,C 外表面的线电荷密度为-λ2和-λ1,则BC 间与AB 间的电场强度为E 1=-λ1/(2πε0r ), E 2=λ2/(2πε0r )则有)ln(2d 20202B AR RBA R R r r U ABπελπελ⎰== )ln(2d 20101CB R R BC R R r r U CBπελπελ⎰=-=因U BA =U BC 有λ1 ln(R A /R B )//(2πε0)= λ2ln(R B /R C )//(2πε0) 得 λ1/λ2=ln(R A /R B )/ln(R B /R C )2. E x =-∂U /∂x =x /(x 2+y 2)1/2-1/x =0.55N/CE y =-∂U /∂y =y /(x 2+y 2)1/2=0.6N/CE x =-∂U /∂z =0练习六 静电场中的导体(续)静电场中的电介质一.选择题 A D B C E 二.填空题1. U 0/2+Qd/(4ε0S ).2. 8.85⨯10-9C/m 2,负3. (Q 1+Q 2)/(2S ), (Q 1-Q 2)/(2S ), -(Q 1-Q 2)/(2S ), (Q 1+Q 2)/(2S ). 三.计算题1.设两球连接后电势相等U 1=U2.有 q 1'/(4πε0r 1)=q 2'/(4πε0r 2) q 1'/r 1=q 2'/r 2 而 q 1'+q 2'=2q所以 q 1'=2qr 1/(r 1+r 2)=6.67⨯10-9Cq 2'=2qr 2/(r 1+r 2)=1.33⨯10-8C U =U 1= q 1'/(4πε0r 1)=[2qr 1/(r 1+r 2)]/(4πε0r 1)=q /[2πε0(r 1+r 2)]=6⨯103V2. (1)导体球等势U =U 球心注意到导体球原先不带电,故 U =()[]()[]⎰⎰+带电线球面r q r q 004d 4d πεπε5=()[]⎰⎰++lxd xq R 02204d 2d 41πελπε球面]ln )[ln(2220d d l l -++=πελ (2)导体球接地,电势为0,有 0=()[]()[]⎰⎰+带电线球面r q r q 004d 4d πεπε=()[]⎰⎰++lx d xq R 02204d 2d 41πελπε球面]ln )[ln(242200d d l l RQ -+++=πελπε ]ln )[ln(222d d l l R Q -++-=λ练习七 静电场中的电介质(续)电容 静电场的能量一.选择题 D C B B D 二.填空题 1. 1/εr , 1/εr .2. 3.36⨯1011V/m. 1/εr , 1/εr 3. ε0εr U 2/(2d 2). 三.计算题1.令内外极板单位长度电量分别为λ,-λ,由高斯定理可知,极板间场强为E =λ/(2πε0εr r )两极板电势差 U =⎰⋅ll E d=()[]⎰21R R rr r επελ02d =λln(R 2/R 1)/(2πε0εr)E /U =1/[r ln(R 2/R 1)] E =U /[r ln(R 2/R 1)] A 点场强E A =U /[R ln(R 2/R 1)]=998V/m A 点与外筒间电势差 U ' =⎰⋅ll E d=()[]⎰2R Rrr r επελ02d =λln(R 2/R )/(2πε0εr)U '/U =ln(R 2/R )/ln(R 2/R 1) U '=U ln(R 2/R )/ln(R 2/R 1)=12.5V2.(1) U =q /(4πε0R )d A =-d Ae =-d q (0-U )= q d q /(4πε0R ))[])R Q R qdq A Q020084πεπε==⎰练习八 静电场习题课一.选择题 B A B D C 二.填空题1. λd/ε0, λd/[4πε0(R 2-d 2/4),水平向左2. 负,<.3. F /4. 三.计算题1. 该均匀带电圆在距平面a 米处产生场强为[]{}⎰⎰+==qa r adq E E 23220)(4d πε]{}⎰+=Ra r r a 03220)(4d 2πεπσ=[σ/(2ε0)][1-a /(R 2+a 2)1/2] “无限大”均匀带电平面在该点产生的场强为E '=σ/(2ε0),由题意E '=2 E .故σ/(2ε0)=2[σ/(2ε0)][1-a /(R 2+a 2)1/2]a /(R 2+a 2)1/2=1/2解得 a R 3=2. 设两无限长导线带电线密度为λ±,取坐标如图,由叠加原理可求得两导体间的场强: E =λ/(2πε0x )+λ/[2πε0(d -x )]⎰⋅=∆baU l E d()[]()[]⎰--+=000112r d r x r d x d πελ=[λ/(πε0)]ln[(d -r 0)/r 0]≈[λ/(πε0)]ln(d /r 0) 取导线长度L ,则所带电量Q=λL ,则此段导线的电容为 C L =Q/∆U=πε0L/ln(d /r 0) 单位长度电容为 C 0=C L /L =πε0/ln(d /r 0)6Ⅳ 课堂例题一、选择题1. 如图3.1, 两个完全相同的电容器C 1和C 2,串联后与电源连接. 现将一各向同性均匀电介质板插入C 1中,则:(A) 电容器组总电容减小.(B) C 1上的电量大于C 2上的电量. (C) C 1上的电压高于C 2上的电压. (D) 电容器组贮存的总能量增大.2.一空气平行板电容器,接电源充电后电容器中储存的能量为W 0,在保持电源接通的条件下,在两极间充满相对电容率为εr 的各向同性均匀电介质,则该电容器中储存的能量W 为(A) W = W 0/εr .(B) W = εr W 0. (C) W = (1+εr )W 0.(D) W = W 0.3. 如图3.2所示,两个“无限长”的半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的带电量分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A)r0212πελλ+. (B))(2)(2202101R r R r -+-πελπελ. (C) )(22021R r -+πελλ.(D)20210122R R πελπελ+.4. 如图3.3,有一带电量为+q ,质量为m 的粒子,自极远处以初速度v 0射入点电荷+Q 的电场中, 点电荷+Q 固定在O 点不动.当带电粒子运动到与O 点相距R 的P 点时,则粒子速度和加速度的大小分别是(A) [v 02+Qq /(2πε0Rm )]1/2, Qq /(4πε0Rm ). (B) [v 02+Qq /(4πε0Rm )]1/2, Qq /(4πε0Rm ). (C) [v 02-Qq /(2πε0Rm )]1/2, Qq /(4πε0R 2m ). (D) [v 02-Qq /(4πε0Rm )]1/2, Qq /(4πε0R 2m ).P图3.2图 3.1图3.375 空间有一非均匀电场,其电场线如图3.4所示.若在电场中取一半径为R 的球面,已知通过球面上∆S 面的电通量为∆Φe ,则通过其余部分球面的电通量为(A) -∆Φe(B) 4πR 2∆Φe /∆S , (C) (4πR 2-∆S ) ∆Φe /∆S , (D) 0二、填空题1. 一个平行板电容器的电容值C = 100pF, 面积S = 100cm 2, 两板间充以相对电容率为εr = 6的云母片. 当把它接到50V 的电源上时,云母片中电场强度的大小E = ,金属板上的自由电荷电量q = .2. 半径为R 的细圆环带电线(圆心是O ),其轴线上有两点A 和B ,且OA=AB=R ,如图3.5.若取无限远处为电势零点,设A 、B 两点的电势分别为U 1和U 2,则U 1/U 2为 .3. 真空中半径为R 1和R 2的两个导体球相距很远,则两球的电容之比C 1/C 2 = . 当用细长导线将两球相连后,电容C = . 今给其带电,平衡后球表面附近场强之比E 1 / E 2 = .三、计算题1. 一平行板空气电容器,极板面积为S ,极板间距为d ,充电至带电Q 后与电源断开,然后用外力缓缓地把两极间距拉开到2d ,求:(1)电容器能量的改变;(2)在此过程中外力所作的功,并讨论此过程中的功能转换关系.2. 在带电量为+Q 半径为R 的均匀带电球体中沿半径开一细洞并嵌一绝缘细管,一质量为m 带电量为-q 的点电荷在管中运动(设带电球体固定不动,且忽略点电荷所受重力)如图3.6所示.t =0时,点电荷距球心O 为a (a <R ),运动速度v 0=0,试写出该点电荷的运动方程(即点电荷到球心的距离r 随时间的变化关系式).图3.5图3.4图3.68。

相关文档
最新文档