SURF算法分析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
N表示突起部分总和,对于Dxx模板和Dyy模板来说,N=3,对于Dxy模 板来说,N=4;Sn表示突起部分的面积,如对于9x9的Dxx模板和Dyy模板 来说,突起部分的面积都是是15(即像素数量),而对于9x9的Dxy模板 来说,突起部分面积都是9,除以Sn的作用是对模板进行归一化处理; Wn表示第n个突起部分的权值;而后面的括号部分就是前面的公式,求 模板的每个突起部分对应于图像四个点A、B、C、D所组成的矩阵区域 的灰度之和。
用stitching算法 进行图像拼接
• 第一部分:用surf算法提 取特征点 • 第二部分:特征点匹配 • 第三部分:构建透视矩阵 完成拼接 • 第四部分 : 图像融合
一.用SURF算法 提取特征点
1.SURF 介绍
SURF (Speeded Up Robust Feature)是一种高鲁棒性的局 部特征点检测器。由Herbert Bay 等人在2006年提出。该算法 可以用于计算机视觉领域例如物体识别或者三维重建。根据 作者描述该算法比SIFT更快更加具有鲁棒性。该算法中采用 积分图像、Haar小波变换和近似的Hessian矩阵运算来提高时 间效率,采用Haar小波变换增加鲁棒性。
旋转到主方向
主方向 5s*5s
Hear小波模板
生成特 征描述符
• 每个子块中又有25个采样像素,对于每 个区域内,我们需要累加所有25个采样 像素的dx和dy,这样形成描述符的一部 分,而为了把强度变化的极性信息也包 括今描述符中,我们还需要对dx和dy的 绝对值进行累加。这样每个区域就可以 用一个4维特征矢量表示,把所有4x4子 区域组合起来,就形成了一个64维特征 矢量,即surf描述符。
• 加权平均法对于重叠部分的像素值不是简单的叠加求 平均值,而是先进行加权后,再进行叠加平均。假设 现在有两幅图像中的重叠部分分别定义一个权值,取 为d1和d2,并且d1和d2都满足条件属于(0,1),且 d1+d2=1。那么选择合适的权值,就能够使得重叠区 域实现平滑的过度。在重叠部分中,d1由1渐渐过渡到 0,到由0渐渐过渡到1。通过这样的监渐进变化进行融 合,其公式为:
• •
最后总结
• Stitching函数不足之处:在拼接过程中 如遇到图像特征不明显,如一面墙的图 片,则无法采集到有用的特征点,在采 用此方法过程中会出现越界现象。
•Thank you for your attention!
99
147 195
Octaves
6*n
75 99 构建尺 度空间
39 51
变化量 n*6
9
21 27
Scale
1.6极值点抑制
为了在目标影像上确定SURF特征点,我们使用了 3*3*3的模板在3维尺度空间进行非最大化抑制,根据 预设的Hessian阈值H,当h大于H,而且比临近的26 个点的响应值都大的点才被选为兴趣点。最后进行插 值精确。
Hessian矩阵的行列式的极值处即为特征点 而盒装滤波器代替高斯二阶微分算子要加 一定的权值w,作用是平衡因近似所带来的 误差,w约为0.9
Lxx是高斯模板与图像卷积 Dxx是盒子模板与图像卷积 用Dxx近似代替Lxx 加权系数 如果行列式的结果符号为负,则特征值有不同的符号,则 不是局部极值点。 如果行列式的符号为正,则该行列式的两个特征值同为正 或负,所以该点可以归类为极值点。
通过(3.3)式和(3.4)式可以知道,选取4组对应点,就能够 计算出透视变换模型的8个参数,但是随机选取的对应 点不一定就能够得到模型的准确参数,所以在求其最 小值的过程中采用Levenberg—Marguqrdt迭代非线性 最小化方法对透视变换矩阵进行求精。
• 首先对于8个未知参数m,求偏导数,即:
• •
(3.1)
•
(3.2)
• 其中,I(x,y)和Iʹ(xʹ,yʹ) 分别为两幅图像的对应点坐标 ,可以看出,计算透视变换矩阵H,实质上就是计算矩 阵中的8个参数。将(3.1)模型的矩阵形式进行改写,得 到
•
(3.3)
•
(3.4)
对于所有的对应点对,如果要确定8个未知参数,需要使 下式的值达到最小: (3.5)
1.3盒子滤波器
• 下面介绍利用积分图像求Dxx、Dyy、Dxy的方法首先用前面的积分公式 把输入图像转化为积分图像,然后应用和状滤波器逐一对积分图像进行 处理,盒装滤波器灰色部分权值为0,不参与计算,Dxx模板和Dyy模板 各有两个白色部分和一个黑色部分,因此他们的盒装滤波器共有三个突 起部分,而Dxy模板有两个白色部分和两个黑色部分,因此它的盒装滤 波器共有四个突起部分,利用盒装滤波器对图像进行滤波处理得到响应 值得一般公式为:
特征点 匹配
特征点匹配后图像
•三.构建透视矩 阵完成拼接
三.构建透视矩阵完成拼接
• 在参考图像和待拼接图像的重叠区域中提取到相应的 特征点集后,就需要构造变换透视矩阵,通过特征点 集不断进行迭代对透视矩阵求精,然后根据求得的透 视变换矩阵将待拼接图像变换到了参考图像的坐标。 但是从透视变换矩阵求得的变换坐标并不是整数,所 以还需要对求得的坐标进行灰度插值计算,以使图像 变换到正确的坐标系中。 • 透视变换矩阵是由Szeliski提出的图像变换法,首先通 过建立图像序列之间的变换模型,然后通过迭代算法 求出模型的变换参数,实现对图像序列的拼接,这就 是著名的8参数透视变换模型。对于相邻两幅图像之间 的变换关系,可以用一个具有8个参数的变换模型来描 述:
位置
尺度
快速 Hessian
• Lxx(x, ϭ )是高斯二阶微分在点X=(x,y)处与图像I的卷积 。 • Bay指出,高斯函数虽然是最佳的尺度空间分析工具, 但由于在实际应用中总要对高斯函数进行离散化和剪 切处理,从而损失了一些特性(如重复性)。这一因 素为我们用其他工具代替高斯函数对尺度空间的分析 提供了可能,只要误差不大就可以。所以就引入了盒 装滤波器。
构建尺 度空间
图片 SIFT构建尺度空间 SURF构建尺度空间
1.5构建尺度空间
与SIFT相类似,SURF也将尺度空间划分成若干组 (Octaves)。一个组代表了逐步放大的滤波模板对同一个 输入图像进行滤波的一系列响应图像。每一组又有若干 固定的层组成。
变 化 量
51 27 15 27 15 51
极值点 抑制
1.7.特征点方向分配 为了保证旋转不变性,需要对每一个特征点分配一个主要
方向。需要以特征点为中心,以6s(s为特征点的尺度)为半 径的圆形区域内,对图像进行Haar小波响应运算。这样做实 际就是对图像进行了梯度运算,但是利用积分图像,可以提 高计算图像梯度的效率。为了求取主方向值,需要设计一个 以方向为中心,张角为PI/3的扇形滑动窗口,以步长为0.2弧 度左右,旋转这个滑动窗口,并对窗口内的图像Haar小波的 响应值进行累加。 主方向为最大的Haar响应累加值对应的方 向。
•
(3.6)
• 式中的Di是(3.3)和(3.4)式的分母,然后计算两个矩阵 A和b,其中A中的元素为:
•
(3.7)
△
•
• 总结:采用这种变换矩阵的方法可以处 理图像之间存在平移、旋转、缩放等变 化条件下的拼接。
四.图像融合
• 四:图像融合
• 通过图像匹配将两幅图像变换到了同一坐标系后,得 到了两幅图像的拼接结果。但是,由于图像采集所带 来的光照、视野等的差异,拼接好的两幅图片在相结 合的部分会出现明显的拼接缝隙,图像融合技术就是 为了去除这种拼接缝隙的有力工具。图像融合应当满 足几个方面的要求:首先,为了消除图像的拼接缝隙 ,就必须采用一种渐变的方法来将拼接的缝隙部分像 素转变为从第一副图片渐变为第二幅图片;其次,图 像的融合应当只针对于拼接的结合部分有效,对于图 像的其他部分不能够产生影响;最后, • 融合算法在算法的复杂度上不能太高,不能影响了图 像拼接的整体速度。
SURF 提取特征点
快速 Hessian
1.4构建金字塔
由于采用的盒子滤波和积分图像,不需要像SIFT算法 那样去直接建立金字塔图像,而是采用不断增大的盒子滤 波模板的尺寸的间接方法。通过不同尺寸盒子滤波模板和 积分图像求取Hessian矩阵行列式的响应图像,然后,在 响应图像上采用3D非最大值抑制,求取各种不同尺度的斑 点。 模板
SURF 提取特征点
• 如下图所示第一行图像就是经过离散化,被剪切成9X9方格,=1.2的沿x 方向、y方向和xy方向的高斯二阶微分算子,即Lxx,Lxy,Lyy模板,这些 微分算子可以用9x9的盒装滤波器—Dxx模板、Dxy模板、Dyy模板替代 ,即图中第二行图像。盒装滤波器中白色部分权值为1,灰色部分权值为 0,Dxx和Dyy模板黑色部分的权值为-2,Dxy模板黑色部分权值为-1,白 色部分和黑色部分统称突起。
标出特征点的图像
二.特征点 匹配
特征点匹配
步骤1. 在检测特征点的过程中,计算了 Hessian 矩阵 的行列式,与此同时,计算得到了 Hessian 矩阵的迹,矩 阵的迹为对角元素之和。 按照亮度的不同,可以将特征点分为两种,第一种为 特征点及其周围小邻域的亮度比背景区域要亮,Hessian 矩阵的迹为正;另外一种为特征点及其周围小邻域的亮度 比背景区域要暗,Hessian 矩阵为负值。根据这个特性, 首先对两个特征点的 Hessian 的迹进行比较。如果同号, 说明两个特征点具有相同的对比度;如果是异号的话,说 明两个特征点的对比度不同,放弃特征点之间后续的相似 特征点 性度量。
匹配
特征点匹配
步骤2.对于两个特征点描述符的相似性度量,我们采用 欧式距离进行计算:
式中,Xik表示待配准图中第 i 个特征描述符的第 k 个元素, Xjk是参考图中第 j个特征描述子的第k 个元素, n表示特征向量的维数。 。
特征点 匹配
Fra Baidu bibliotek
特征点匹配
对于待配准图上的特征点,计算它到参考图像上所有 特征点的欧氏距离,得到一个距离集合。通过对距离集 合进行比较运算得到小欧氏距离和次最小欧式距离。设 定一个阈值,一般为 0.8,当最小欧氏距离和次最小欧式 距离的比值小于该阈值时,认为特征点与对应最小欧氏 距离的特征点是匹配的,否则没有点与该特征点相匹配。 阈值越小,匹配越稳定,但极值点越少。
1.1积分图像
A
C
B
D
积分图像
1.2Hessian矩阵
在SURF中,采用近似的Hessian矩阵的行列式的局部 最大值来定位感兴趣点的位置。当Hessian行列式的局部值 最大的时候,所检测出来的就是感兴趣点。感兴趣点的特 征为比周围邻域更亮或者更暗一些。 给定图像f(x,y)中一个点 (x,y),其Hessian矩阵H(x,o) 定义如下:
特征点 方向分配
旋转窗口
1.8生成特征描述符
生成特征点的特征描述符需要计算图像的Haar小波响 应。在一个矩形的区域内,以特征点为中心,沿主方向将 20s*20s的图像划分成4*4个子块,每个子块利用尺寸2s 的Haar小波模板进行响应计算,然后对响应值进行统 计 dx , dx , dy , dy 形成的特征矢量 。