人教版初一数学总复习资料全上课讲义
人教版七年级数学上册第一章至第四章知识总结复习课件
指数分别相等.
解:
mn=+25,=3,解得
m=-2, n=2.
所以 mn=(-2)2=4.
针对训练
3、若5x2 y与x m yn是同类项,则m=2( ) ,n=1( ) 若5x2 y与x m yn的和是单项式,则m=2( ) , n=1( )
只有同类项才 能合并成一项
考点三 去括号
例3 已知A=x3+2y3-xy2,B=-y3+x3+2xy2, 求:(1)A+B;(2)2B-2A. 【解析】 把A,B所指的式子分别代入计算. 解:(1)A+B=(x3+2y3-xy2)+(-y3+x3+2xy2)
5.绝对值 (1)一个数在数轴上对应的点到原点的距离 叫做这个数的绝对值 (2)一个正数的绝对值是它本身.
一个负数的绝对值是它的相反数. 0的绝对值是0.
6.有理数大小的比较 (1)数轴上表示的两个数,右边的总比左边的大. (2)正数大于0,0大于负数,正数大于负数;
两个负数,绝对值大的反而小.
三、有理数的运算 1.有理数的加法
例4 若A是一个三次多项式,B是一个四次多项式,
则A+B一定是( B )
A.三次多项式 B.四次多项式或单项式
C.七次多项式
D.四次七项式
【解析】A+B的最高次项一定是四次项,至于是否含 有其它低次项不得而知,所以A+B只可能是四次多项式或 单项式.故选B.
你能举出对应 的例子吗?
针对训练
5.若A是一个四次多项式,B是一个二次多项式, 则A-B( ) C
第一章 有理数
小结与复习
要点梳理
考点讲练
当堂练习
课堂小结
要点梳理
一、正数和负数 1.小学学过的除0以外的数都是正数. 在正数前面加上符号“-”(负)的数叫做负数. 2.用正、负数表示具有相反意义的量
人教版七年级数学上册知识点归纳上课讲义
1.1正数和负数(1)正数: 大于0的数;负数: 小于0的数;(2)0既不是正数, 也不是负数;(3)在同一个问题中, 分别用正数和负数表示的量具有相反的意义;(4) — a不一定是负数, +a也不一定是正数;(5)自然数: 0和正整数统称为自然数;(6) a>0 a是正数;a>0 a是正数或0 a是非负数;a< 0 a是负数;a< 0 a是负数或0 a是非正数.1.2有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式, 这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:第一章有理数正有理数正整数正整数整数有理数零有理数负有理数负整数分数负整数正分数(4)数轴: 规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5) 一般地, 当a是正数时, 则数轴上表示数 a的点在原点的右边, 距离原点点在原点的左边, 距离原点 a个单位长度;(6)两点关于原点对称: 一般地, 设 a是正数, 则在数轴上与原点的距离为a的点有两个, 它们分别在原点的左右, 表示-a和a,我们称这两个点关于原点对称;(7)相反数: 只有符号不同的两个数称为互为相反数;(8) 一般地, a的相反数是一a;特别地, 0的相反数是0;(9)相反数的几何意义: 数轴上表示相反数的两个点关于原点对称;(10)a、b互为相反数a+b=0 ;(即相反数之和为0)a ,b ,(11)a、b互为相反数一1或一1;(即相反数之商为—1)b a(12)a、b互为相反数|a|=|b| ;(即相反数的绝对值相等)(13)绝对值: 一般地, 在数轴上表示数a的点到原点的距离叫做 a的绝对值;([a|R)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;a (a 0)(15)绝对值可表示为: a 0 (a 0)a (a 0)(16) —1 a 0 ;— 1 a 0;a a(17)有理数的比较: 在数轴上表示有理数, 它们从左到右的顺序, 就是从小到大的顺序。
人教版七年级数学上册讲义
数学学习效率低的三种情况及解决方法很多同学,上课一听就会,但做题确实一做就错;更有很多同学,会做的题总因为粗心出错;还有些同学,学习心态不端正。
以上三种情况,就是导致学习效率低下的最主要原因。
现象一:一听就会,一做就错,总是在看到答案后恍然大悟很多学生在看到题目时觉得面熟,能肯定自己以前做过原题或类似的题目,但就是想不起来该怎么做,越是回忆以前做过的类似题目越是没有思路,等到答案时才大喊一声,哇,原来是这样的啊。
于是再做,发现还是不能独立的把题目完整的做出来,于是再看答案,在做。
原因:原来在做题目时没有真正理解题目的解法,只能是跟着老师的思路吧题目抄下来,没有自己动手整理,导致自己觉得会做了,其实只是在当时把题目背过了,一段时间以后就只记得题目不记得的解法了。
所以,“背题”是万万要不得的,考试的题目千千万万,背得过来吗?解决方法:在做完一道题目后,让孩子讲解给家长听,也可让同学帮你检查你对这个题目的理解还有什么欠缺,发现问题立即问老师,力争当堂把题目理解透彻。
家长可以在一两周之后把这道题目的数据换一下,在让孩子做一遍,这样就能做到让孩子彻底的掌握这种类型题目的解法,海能达到举一反三的效果。
现象二:会做,但总是粗心,不是抄错题就是算错数很多家长都反映说自己的孩子很粗心,经常把会做的题目算错,甚至有家长说孩子期末考试考了96分,丢掉的那4分全是粗心算错的,并对这个成绩很满意,还有很多学生也说,这些题目我会做就可以了,这次算错了没关系,到考试时能算对就可以了。
其实,作为多年教学经验的老师,我们告诉各位家长,会做做不对才是最可怕。
原因:粗心的原因有两个,一是心态问题,这个问题后面会详细的说。
第二个原因就是对知识掌握得不牢固,模棱两可,错误总是在你掌握不牢固的地方出现,那些看似是粗心犯的错,其实都是因为在应用知识的时候不熟练,导致出错。
解决方法:有选择的多做题目,在数学学习中,我们反对搞题海战术,但是要想学好数学,不做题目不进行针对性训练是无法把学到的知识掌握牢固的。
人教版七年级数学(上)期末总复习讲义
《有理数》复习讲义一、正数与负数1.正数与负数表示具有相反意义的量。
问:收入+10元与支出-10元意义相反吗? 2.有理数的概念与分类①整数和分数统称有理数,能写成两个整数之比的数就是有理数 。
判断:有理数可分为正有理数和负有理数( )②零既不是正数,也不是负数。
判断:0是最小的正整数( ),正整数负整数统称整数( ),正分数负分数统称分数( )③有限小数和无限循环小数因都能化成分数,故都是有理数。
判断:0是最小的有理数( )④无限不循环小数因为不能化成两个整数之比,固称为无理数,如π,π/2等。
判断:整数和小数统称有理数( ) 二、数轴1.数轴三要素:原点、正方向、单位长度 (另:数轴是一条有向直线)2.作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在逐渐变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。
3.数轴上点的移动规律:“正加负减”向数轴正方向(或负方向)则对应的数应加(或减)4.数轴上以数a 和数b 为端点的线段中点为a 与b 和的一半(如何用代数式表示?) 三、相反数1. 定义:若a+b=0,则a 与b 互为相反数 特例:因为0+0=0,所以0的相反数是0 2.性质:①若a 与b 互为相反数,则a+b=②-a 不一定表示负数,但一定表示a 的相反数(仅仅相差一个负号)③若a 与b 互为相反数且都不为零,ab= ④除0以外,互为相反数的两个数总是成双成对的分布在原点两侧且到原点的距离相等。
⑤互为相反数的两个数绝对值相等,平方也相等。
即:a=a -,()22aa =-四、绝对值1.定义:在数轴上表示数a 点到原点的距离,称为a 的绝对值。
记作a2.法则:1)正数的绝对值等于它本身;2)0的绝对值是0;3)负数的绝对值是它的相反数。
即()()()000a a a a a a >⎧⎪==⎨⎪-<⎩ 0()()00a a a a a ≥⎧⎪=⎨-<⎪⎩()()00a a a a a >⎧⎪=⎨-≤⎪⎩ 3.一个数的绝对值越小,说明这个数越接近0(离原点越近)。
七年级上册 数学讲义《第3讲 数轴动点(二)》人教版 初一数学
人教版·七年级上册数学讲义第3讲 数轴动点(二)疯狗问题知识导航疯狗问题的难度并不大,特征也很明显,即一个较高的速度动点(疯狗)不断在两低速动点间往返运动,两低速动点相遇时,高速度动点随之停止.在这个运动过程中,我们并不能清晰的分析出这里的运动状态,但可以通过两低速动点相遇所花费的时间来得到高速动点的运动时间,结合其速度求出它的路程.例题1点A 、B 、C 在数轴上表示的数a 、b 、c 满足:()()222240b c ++-=,且多项式32321a x y ax y xy +-+-是五次四项式.若数轴上有三个动点M 、N 、P ,分别从点A 、B 、C 开始同时出发,在数轴上运动,速度分别为每秒1个单位长度、7个单位长度、3个单位长度,其中点P 向左运动,点M 向右运动,点N 先向左运动,遇到点M 后回头再向右运动,遇到点P 后回头向左运动,……,这样直到点P 遇到点M 时三点都停止运动,求点N 所走的路程.练习1已知数轴上的点A 、B 对应的数分别为x 、y ,且()21002000x y ++-=.点P 为数轴上从原点出发的一个动点,速度为30单位长度/秒,若点A 沿数轴向右运动,速度为10单位长度/秒,点B 沿数轴向左运动,速度为20单位长度秒,点A 、B 、P 三点同时开始运动.点P 先向右运动,遇到点B 后立即掉头向左运动,遇到点A 后再立即掉头向右运动……如此往返.当A 、B 两点相距30个单位长度时,点P 立即停止运动,求此时点P 移动的路程为多少个单位长度? 挡板问题到达挡板后停止例题2已知点A 、B 在数轴上表示的数分别为a 、b ,且满足2a -与()290b -互为相反数.(1)a 值为_____,b 值为_____.(2)已知电子狗P 从点A 出发,向右匀速运动,速度为每秒1个单位长度,另一电子狗Q 从点B出发,向左匀速运动,速度为每秒3个单位长度,且Q比P先运动2秒,已知在原点O处有病毒,若电子狗遇到病毒则停止运动,未遇到病毒则继续运动.问电子狗P经过多长时间,有P、Q 两只电子狗相距70个单位长度?练习2数轴上A、B两点对应的数分别为-80、20,一电子蚂蚁P从点A出发,以每秒1个单位长度的速度向右匀速运动,目的地为B点;另一电子蚂蚁Q从点B出发,以每秒4个单位长度的速度向左匀速运动,目的地为A点.(1)运动多长时间后,P、Q两只电子蚂蚁相距20个单位长度?(2)运动多长时间后,P、Q两只电子蚂蚁相距80个单位长度?到达挡板后返回例题3如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足++=.+a b a430(1)求A、B两点之间的距离.(2)若在原点O处放一挡板,一小球甲从点A处以2个单位/秒的速度向左运动;两秒后另一个小球乙从点处以3个单位秒的速度也向左运动,左碰到挡板后(忽略球的大小,可以看作一点)乙球以4个单位/秒的速度向相反的方向运动,设甲球的运动的时间为t(秒).①分别表示甲、乙两小球到原点的距离(用含的式子表示).②求甲、乙两小球到原点的距离相等时,甲球所在位置对应的数.数轴上有A、B、C三点,分别表示有理数-26、-10、20,动点P从A出发,以每秒1个单位的速度向右移动,当P点运动到C点时运动停止设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:__________.(2)当P点运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回A点.①用含t的代数式表示Q在由A到C过程中对应的数:__________.②当t=__________时,动点P、Q到达同一位置(即相遇).③当PQ=3时,求的值.练习32019~2020学年10月湖北武汉江岸区武汉市七一华源中学初一上学期月考第24题12分已知数轴上的A、B两点分别对应数字a、b,且a、b满足()2-+-=.440a b a(1)直接写出a、b的值.(2)数轴上还有一点C对应的数为36,若点P从A出发,以每秒3个单位长度的速度向点C运动,同时点Q从点B出发,以每秒1个单位长度的速度沿数轴向正方向运动,点P运动到点C立即返回再沿数轴向左运动.当10PQ=时,求P点对应的数.例题4已知多项式26233---中,多项式的项数为a,多项式的次数为b,常数项为c,且a、25320m n m n nb、c分别是点A、B、C在数轴上对应的数.(1)写出a=_____;b=_____;c=_____.(2)若甲、乙、丙三个动点分别从A、B、C三点同时出发沿数轴负方向运动,它们的速度分别是1、2、3,(单位/秒),当乙追上甲时,甲、乙继续前行,丙此时以原速向相反方向运动,问甲、乙、丙三个动点分别从A、B、C三点同时出发到乙、丙相距2个单位长度时所经历的时间是多少秒?总结归纳无论是遇到挡板后停止的动点问题,还是遇到挡板后返回的动点问题,其本质都是,在遇到挡板的前后,该动点的运动状态发生了改变.因此,必须以到达终点或碰到挡板的时间为界,分别表示出在不同时间段内动点的位置表达式(含t的代数式),即分段讨论,在此基础上再来研究相关点的距离关系,这样才不会漏解.同学们可以体会挡板问题和一般的动点问题的不同之处,自己归纳易错点和相应解法,这样印象更深刻,能真正理解动点问题的本质以及各题型之间的异同.练习42018~2019学年10月湖北武汉洪山区武汉市卓刀泉中学初一上学期月考第24题12分已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足()2++++-=.动点a b c2410100P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,(1)求a、b、c的值.(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.例题52018~2019学年湖北武汉东湖高新区初一上学期期中第24题12分数轴上m,n,q所对应的点分别为点M,点N,点Q.若点Q到点M的距离表示为QM,点N到点Q的距离表示为NQ.我们有QM q m=-.=-,NQ n q(1)点A,点B,点C在数轴上分别对应的数为-4,6,c.且BC CA=,直接写出c的值_____.(2)在(1)的条件下,两只电子蚂蚁甲,乙分别从A,C两点出发向右运动,甲的速度为4个单位每秒,乙的速度为1个单位每秒.求经过几秒,点B与两只蚂蚁的距离和等于7.(3)在(1)(2)的条件下,电子蚂蚁乙运动到点B后立即以原速返回,到达自己的出发点后停止运动,电子蚂蚁甲运动至B点后也以原速返回,到达自己的出发点后又折返向B点运动,当电子蚂蚁乙停止运动时,电子蚂蚁甲随之停止运动,运动时间为多少时,两只蚂蚁相遇.练习52019~2020学年10月湖北武汉武昌区武昌首义中学初一上学期月考第24题12分如图,数轴上点A、C对应的数分别是a、c,且a、c满足()2a c++-=,点B对应的数是-3.410(1)求数a、c.(2)点A、B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间为t秒,在运动过程中,点B运动到点C处后立即以原速返回,到达自己的出发点后停止运动,点A运动至点C处后又以原速返回,到达自己的出发点后又折返向点C运动,当点B停止运动时,点A随之停止运动,求在此运动过程中,A、B两点同时到达的点在数轴上表示的数是_____(直接写出答案)挑战压轴题2017~2018学年湖北武汉江岸区武汉二中广雅中学初一上学期期中第24题如图,A、B两点在数轴上对应的数分别为-20、40,C点在A、B之间.在A,B、C三点处各放一个档板,M、N两个小球都同时从C处出发,M向数轴负方向运动,N向数轴正方向运动,碰到档板后则向反方向运动,一直如此下去(当N小球第二次碰到B档板时,两球均停止运动)(1)若两个小球的运动速度相同,当M小球第一次碰到A档板时,N小球刚好第二次碰到B档板求C点所对应的数.(2)在(1)的结论下,若M,N小球的运动速度分别为2个单位/秒,3个单位/秒,则N小球前三次碰到档板的时间依次为a,b,c秒钟,设两个球的运动时间为t秒钟.①请直接写出下列时段内小球所对应的数(用含t的代数式表示)当0t a≤≤时,N小球对应的数为_____,当a t b<≤时,N小球对应的数为_____,当b t c<≤时,N小球对应的数为_____.②当M、N两个小球的距离等于30时,求t的值.(3)移走A、B、C三处的挡板,点P从A点出发,以6个单位/秒的速度沿数轴向右运动,同时点Q从B点出发,以4个单位/秒的速度沿数轴向左运动.已知E为AP中点,点F在线段BQ上,且14QF BQ=,问出发多少秒后,点E到点F的距离是点E到原点O的距离的4倍?巩固加油站巩固12019~2020学年12月湖北武汉蔡甸区经济技术开发区第一中学初一上学期月考第24题12分如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴的正方向运动,3秒后,两点相距15个单位长度.已知动点A,B的速度之比为1:4(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A,B两点从原点出发运动3秒时的位置.(2)若A,B两点从(1)中的位置同时按原速度向数轴负方向运动,几秒后,两动点到原点的距离相等?(3)在(2)中若B在A的右侧,A、B两点继续同时开始向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后立即返回向B点运动,遇到B点后又立即返回向点A运动……如此往返,直到点B追上点A时,点C立即停止运动.若点C一直以20单位长度秒的速度匀速运动,那么点C从开始到停止运动,行驶的路程是多少个单位?巩固2数轴上A、B两点表示的有理数为a、b,且()2350a b-++=.小蜗牛甲以1个单位长度秒的速度从点B出发向其左边6个单位长度处的食物爬去,3秒后位于点A的小蜗牛乙收到它的信号,以2个单位长度秒的速度也迅速爬向食物,小蜗牛甲到达后背着食物立即返回,与小蜗牛乙在数轴上D 点相遇,则点D表示的有理数是什么?从出发到此时,小蜗牛甲共用去多少时间?巩固3数轴上A点对应的数是-1,B点对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位的速度爬行至C点,再以同样速度立即返回到A点,共用了4秒钟.(1)求点C对应的数.(2)若小虫甲返回到A点后再做如下运动:第1次向右爬行3个单位,第2次向左爬行5个单位,第3次向右爬行7个单位,第4次向左爬行9个单位……依此规律爬下去,求它第10次爬行后停在点所对应的数.(3)回答下列各问:①若小虫甲返回到A点后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从出发沿着数轴的负方向以每秒6个单位的速度爬行,则运动t秒后,甲、乙两只小虫的距离为_____(用含t的整式表示).②若小虫甲返回到A点后继续沿着数轴的负方向以每秒4个单位的速度爬行,同时另两只小虫乙、丙分别从点B和点C出发背向而行,乙的速度是每秒2个单位,丙的速度是每秒1个单位.假设运动t秒后,甲、乙、丙三只小虫对应的点分别是D、E、F,则32DE EF-是定值吗?如果是,请求出这个定值.巩固4如图,在数轴上每相邻两点间的距离为一个单位长度,点A、B、C、D对于的数分别是a、b、c、d,且214d a-=.(1)那么a=_____,b=_____.(2)点A以3个单位/秒的速度沿着数轴的正方向运动,1秒后点B以4个单位/秒的速度也沿着数轴的正方向运动.当点A到达D点处立刻返回,与点B在数轴的某点处相遇,求这个点对应的数.(3)如果A、B两点以(2)中的速度同时向数轴的负方向运动,点C从图上的位置出发也向数轴的负方向运动,且始终保持23AB AC=.当点C运动到-12时,点A对应的数是多少?。
新人教版七年级数学上册专题复习课件(共105张ppt)
(3)原式=-6.(4)原式=-35.
3. 计算: (1)2(x+y)-(-5x+2y); (2)(8mn-3m2)-5mn-2(3mn-2m2); (3)2(4x2-3x+2)-3(1-4x2+x); (4)3x2-[7x-(4x-3)-2x].
解:(1)原式=7x. (2)原式=-3mn+m2. (3)原式=20x2-9x+1. (4)原式=3x2-x-3.
4.化简求值: (1)5x2-[4x2-(2x-1)-3x],其中x=3; (2)-2(a2b- 1 ab2)-(-2a2b+3ab2)+ab,其中 a=1,b=-3. 2
解:(1)原式=5x2-(4x2-2x+1-3x)= 5x2-4x2+2x-1+3x=x2+5x-1. 当x=3时,原式=32+5×3-1=9+15-1=23. (2)原式=-2a2b+ab2+2a2b-3ab2+ab=-2ab2+ab. 当a=1,b=-3时,原式=-2×1×(-3)2+1×(-3) =-18-3=-21.
4
(8)23×(
1
3
)2=____2____.
2
2.计算 (1)1+(-2)+|-2-3|-5-(-9); (2) 11 1 1 3 5 ;
3 3 2 11 4
(3) 5 2 3 12 ; (4)-1322+(3 -42)2×(-5)-|-6|.
解:(1)原式=8.(2)原式= 2 .
10.现规定 , 其中x=2,y=1.
=a-b+c-d,试计算
解:原式=(xy-3x2)-(-2xy-x2)+(-2x2-3)(-5+xy)=-4x2+2xy+2. 当x=2,y=1时, 原式=-4×22+2×2×1+2=-16+4+2=-10.
初一人教版必备数学精讲讲义
初一人教版必备数学精讲讲义一、整数与分数1. 整数的概念及表示整数是由自然数、零和负数组成的数集,表示为Z。
2. 整数的运算2.1 加法整数加法的运算规则:同号相加,异号相减,结果的符号由绝对值较大的数决定。
2.2 减法整数减法的运算规则:减去一个数等于加上这个数的相反数。
2.3 乘法整数乘法的运算规则:同号相乘得正,异号相乘得负。
2.4 除法整数除法的运算规则:同号相除得正,异号相除得负。
3. 分数的概念及表示分数是表示整体中的一部分的数,由分子和分母组成,表示为a/b (b≠0)。
4. 分数的运算4.1 加法和减法分数的加法和减法运算规则:将分数转化为相同分母后,对分子进行加或减。
4.2 乘法分数的乘法运算规则:将两个分数的分子和分母分别相乘。
4.3 除法分数的除法运算规则:将除法转化为乘法,将除数的倒数作为乘法的因数。
二、代数式与方程1. 代数式的概念及表示代数式是由数字、字母和运算符号组成的表达式,可以表示数或量。
2. 代数式的运算2.1 合并同类项合并同类项是将具有相同字母变量的项进行加减运算。
2.2 提取公因式提取公因式是将代数式中的公共因子提取出来。
2.3 展开式和因式展开式是将乘积式或幂式展开为加减式;因式是将加减式写成乘积式或幂式的形式。
3. 方程的概念及解法方程是含有未知数的等式,通过求解未知数的值来满足等式成立。
4. 一元一次方程一元一次方程的一般形式为ax + b = 0,其中a、b为已知常数,x为未知数。
5. 一元一次方程的解法5.1 用逆运算法解方程根据一元一次方程的定义,通过逆运算法求解方程。
5.2 用等式变形法解方程利用等式的性质进行变形,将方程转化为更简单的形式以求解。
三、图形的认识与几何运算1. 点、线、面的概念及表示点是几何图形的基本要素,用大写字母表示;线是由无数个点组成的集合,用小写字母表示;面是由无数个连在一起的线组成的集合。
2. 直线、射线和线段直线是一定方向上无限延伸的线段;射线是起点固定,沿着一定方向无限延伸的线段;线段是由两个点确定的有限部分。
人教版初一数学(七年级)课程讲义第一章:有理数的意义(学生版)-word文档资料
有理数的概念知识定位讲解用时:3分钟A、适用范围:人教版初一,基础一般;B、知识点概述:本讲义主要用于人教版初一新课,本节课我们要学习正负数、数轴、相反数、绝对值的概念;核心部分是相反数的概念、数轴和绝对值性质的运用。
知识梳理讲解用时:20分钟【例题1】体育课上,华英学校对九年级男生进行了引体向上测试,以能做7个为标准,超过的次数记为正数,不足的次数记为负数,其中8名男生的成绩如下:2,-1,0,3,-2,-3,1,0(1) 这8名男生有百分之几达到标准?(2) 他们共做了多少引体向上?【练习1.1】中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )A .支出20元B .收入20元C .支出80元D .收入80元【例题2】如图所示是几位同学所画的数轴,其中正确的是 ( )A .(1)(2)(3)B .(2)(3)(4)C .只有(2)D .(1)(2)(3)(4)【练习2.1】填空:(1)数轴上离原点5个单位长度的点表示的数是________;(2)从数轴上观察,-3与3之间的整数有________个.【例题3】如图,数轴上有A ,B ,C ,D 四个点,其中表示2的相反数的点是( )A .点AB .点BC .点CD .点D【练习3.1】51 的相反数是( )A .5B .51C .51-D.-5 【例题4】当a ≠0时,请解答下列问题:(1)求a a的值;(2)若b ≠0,且0=+bb a a ,求ab ab 的值. 【练习4.1】计算:已知|x|=32,|y|=21,且x <y <0,求6÷(x ﹣y )的值. 【例题5】如图,数轴上的三点A ,B ,C 分别表示有理数a,b,c ,化简|a ﹣b|﹣|a+c|+|b ﹣c|.【练习5.1】已知|a ﹣1|=9,|b+2|=6,且a+b <0,求a ﹣b 的值.【例题6】有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b ﹣c 0,a+b 0,c ﹣a 0.(2)化简:|b ﹣c|+|a+b|﹣|c ﹣a|.【练习6.1】已知a 、b 、c 都是负数,且0x a y b z c -+-+-=,则x + y + z______0.(填“>”、“<”、“=”).【例题7】已知:a=3,|b|=2,求(a+b)3的值.【练习7.1】数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:①数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是.②数轴上表示x和﹣2的两点之间的距离表示为|.数轴上表示x和5的两点之间的距离表示为.③若x表示一个有理数,则|x﹣1|+|x+3|的最小值=.④若x表示一个有理数,且|x+3|+|x﹣2|=5,则满足条件的所有整数x的是.⑤若x表示一个有理数,当x为,式子|x+2|+|x﹣3|+|x﹣5|有最小值为.若﹣1<x<4,化简|x+1|+|4﹣x|.课后作业【作业1】下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是1【作业2】一只可爱的小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【作业3】同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数的点之间的距离.试探索:(1)求|5﹣(﹣2)|=.(2)若|x﹣3|=|x+1|,则x=.。
人教版全初中数学讲义
人教版初中数学讲义第一章有理数一、正数和负数1、正数、负数:大于零的数叫做正数〃小于零的数叫做负数。
应用:生产收入〃海拔高低〃气温的冷热〃方位的指向〃比赛的胜负〃比例的增长等等。
二、有理数1、概念:整数和分数统称为有理数。
2、分类负分数负整数负数零正分数正整数正数或负分数正分数分数负整数零正整数整数注:分数和小数可以互化〃所以小数可以归为分数类。
3、“0”表示的意义:(1)0既不是正数也不是负数(2)0是整数(3)0不是表示没有〃有时表示一种趋于正负的状态(4)0是最小的自然数〃即是最小的非负整数(5)0不能作为分母(6)0等相反数是0(7)0的绝对值是0(8)0没有倒数(9)0乘以任何数都为0(10)0除以任何不为0的数都为0.4、数轴:通常用一条直线上的点表示数〃这条直线叫做数轴。
数轴的三要素:原点〃正方向〃单位长度。
数学中规定:在数轴上表示有理数〃它们从左到右的顺序〃就是从小到大的顺序〃即左边的数小于右边的数。
5、相反数:只有符号不同的两个数叫做互为相反数。
与原点距离相等的两个数互为相反数。
互为相反数的两个数相加得0(a〃b互为相反数〃则a+b=0)6、绝对值:一般地〃数轴上表示数a的点与原点的距离叫做数a的绝对值〃记作|a| |a|= 两个负数〃绝对值大的反而小。
三、有理数的加减法 1、有理数的加法:(1)加法法则:同号两数相加〃取相同的符号〃并把绝对值相加;绝对值不相等的异号两数相加〃取绝对值较大的加数的符号〃并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0. 一个数同0相加〃仍得这个数。
(2)运算律:加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c) 2、有理数的减法:减法法则:减去一个数〃等于加上这个数的相反数。
a-b=a+(-b))引入相反数后〃加减混合运算可以统一为加法运算。
四、有理数的乘除法 1、有理数的乘法:(1)乘法法则:两数相乘〃同号得正〃异号得负〃并把绝对值相乘。
人教版初一数学总复习资料全
人教版七年级数学上册期末总复习第一章有理数1.有理数:(1)凡能写成形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(3)自然数0和正整数;a>0 a是正数;a<0 a是负数;a≥0 a是正数或0 a是非负数;a≤ 0 a是负数或0 a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 a+b=0 a、b互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) |a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若ab=1 a、b互为倒数;若ab=-1 a、b互为负倒数.相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
人教版初一数学上下册知识点全版教学提纲
初一(七年级)上册数学知识点:一元一次方程1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。
5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。
6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。
7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。
一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.8.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。
9.方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
人教版初中初一七年级数学上册七年级数学上册总复习精品课件
线段、射线、直线的比较
名称
图形
线段
a
A
射线 O
M
表示方法
线段 AB 线段 BA B 线段 a
延伸 方向
无
射线OM 一方
直线
A
直线 AB
l 直线 BA
B
直线 l
两方
端点 个数
2
1
0
长度
可 度 量 不 可 度 量 不 可 度 量
角是由两条具有公共端点的射线 组成的图形.
如果两个角的和等于90° (直角), 就说这两个角 互为余角,简称“互 余”
五个基本运算——加、减、乘、除、乘方; 混合运算——运算顺序 五条运算律——加法交换律、结合律、乘
法交换律、结合律、分配律. 精确度——表示近似数的两种形式
•有没有最大的数?
非
•有没有最小的数? •有没有最大的正数?
负 数
•有没有最小的正数? •有没有最小的负数?
非 正
•有没有最大的负数? 数
均客运量各为多少万人次? x
x(4x69)1696 1 343万、 353万人次,
x&1&3x&1
2x12
3 |a | 3 x 6 a 1
3| a | 3 0 a 1 0 3| a | 3 0 a 1 0
第四章 图形认识初步
直线上某一点一旁的部分是 射线 直线上两点间的部分是线段 射线、线段都是直线的一部分 线段的延长线和反向延长线
关于期末考试
考试内容: 第一章《有理数》 第二章《整式的加减》 第三章 《一元一次方程》 第四章 《图形认识初步》
代数三章比例大约为1:1:1; 几何一章半比例大约为4:1
易、中、难比约为 7 2 1 代数、几何比例约为 6 4
新人教版七年级数学上册重点知识复习资料(全册)
新人教版七年级数学上册重点知识复习资
料(全册)
单元一:整数
- 整数的概念:整数由正整数、0和负整数组成。
- 整数的比较:比较整数大小时,先比较绝对值大小,再根据
正负确定大小关系。
- 整数的加法和减法:同号相加减取结果的绝对值,符号与原
值相同;异号相加减取结果的绝对值,符号与较大数相同。
- 整数的乘法和除法:同号相乘除结果为正,异号相乘除结果
为负。
单元二:分数
- 分数的概念:分数由分子和分母组成,表示真数、假数和零。
- 分数的相等:两个分数相等表示代表同一量的两个数。
- 分数的大小比较:分数大小比较可以通过求公共分母,比较
分子大小进行。
- 分数的加法和减法:分数加减法可以通过通分,然后对分子进行加减。
- 分数的乘法:分数乘法可以直接对分子和分母进行相乘。
- 分数的除法:分数除法可以先求倒数,再进行相乘。
单元三:代数式
- 代数式的概念:含有变量的数学式子称为代数式。
- 代数式的运算:代数式的运算包括加法、减法和乘法。
- 代数式的化简:对代数式进行合并同类项、提取公因式、运用分配律等方法进行化简。
...
(继续写下去,覆盖全册)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初一数学总复习资料全精品资料人教版七年级数学上册期末总复习第一章有理数1.有理数:(1)凡能写成形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(3)自然数? 0和正整数; a>0 ? a是正数; a<0 ? a是负数;a≥0 ? a是正数或0 ? a是非负数;a≤ 0 ? a是负数或0 ? a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 ? a+b=0 ? a、b互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) |a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .(简便运算)12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a²是重要的非负数,即a²≥0;若a²+|b|=0 a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.混合运算法则:先乘方,后乘除,最后加减;注意:不省过程,不跳步骤。
18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。
第二章整式的加减1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数; .5.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.6.合并同类项法则:系数相加,字母与字母的指数不变.7.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.8.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)9..多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).第三章一元一次方程1.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!4.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.5.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程. 6.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).7.一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号(留下靠前)合并同类项--------合并后符号系数化为1---------除前面8.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题:距离=速度?时间;(2)工程问题:工作量=工效?工时;工程问题常用等量关系:先做的+后做的=完成量(3)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;顺水逆水问题常用等量关系:顺水路程=逆水路程(4)商品利润问题:售价=定价,;利润问题常用等量关系:售价-进价=利润(5)配套问题:(6)分配问题第四章图形初步认识(一)多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看2、几何体的三视图侧(左、右)视图-----从左(右)边看俯视图---------------从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA)射线AB 线段a线段AB(BA)作法叙述作直线AB;作直线a 作射线AB 作线段a;作线段AB;连接AB延长叙述不能延长反向延长射线AB 延长线段AB;反向延长线段BA2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.4、线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短.5、两点的距离连接两点的线段长度叫做两点的距离.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):3、角的度量单位及换算4、角的分类∠β锐角直角钝角平角周角范围 0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°5、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:等角的补(余)角相等.(4)两条直线相交,有公共顶点但没有公共边的两个角叫做对顶角;或者一个角的反相延长线与这个角是对顶角。
对顶角的性质:对顶角相等。
(5)两条直线相交,有公共顶点且有一条公共边的两个角互为邻补角。
(相邻且互补)(四)、三线八角:两直线被第三条直线所截①在两直线的相同位置上,在第三条直线的同侧(旁)的两个角叫做同位角。
②在两直线之间(内部),在第三条直线的两侧(旁)的两个角叫做内错角。
③在两直线之间(内部),在第三条直线的同侧(旁)的两个角叫做同旁内角。
三、平行线的判定①同位角相等②内错角相等两直线平行③同旁内角互补四、平行线的性质①两直线平行,同位角相等。
②两直线平行,内错角相等。
③两直线平行,同旁内角互补。
第三章三角形一、认识三角形1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形。
2、三角形三边的关系:两边之和大于第三边;两边之差小于第三边。
(已知三条线段确定能否组成三角形,已知两边求第三边的取值范围)3、三角形的内角和是180°;直角三角形的两锐角互余。
锐角三角形 (三个角都是锐角)4、三角形按角分类直角三角形 (有一个角是直角)钝角三角形 (有一个角是钝角)5、三角形的特殊线段:a) 三角形的中线:连结顶点与对边中点的线段。
(分成的两个三角形面积相等)b) 三角形的角平分线:内角平分线与对边的交点到内角所在的顶点的线段。