七年级数学培优汇总精华
七年级上册数学培优
七年级上册数学培优一、有理数。
1. 知识点梳理。
- 有理数的定义:整数和分数统称为有理数。
包括正整数、0、负整数、正分数、负分数。
- 数轴:规定了原点、正方向和单位长度的直线。
数轴上的点与有理数一一对应。
- 相反数:绝对值相等,符号相反的两个数互为相反数。
例如,2和 - 2是相反数,0的相反数是0。
- 绝对值:一个数在数轴上所对应点到原点的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
2. 典型例题。
- 例1:已知a = - 3,求a的相反数和绝对值。
- 解:a=-3,a的相反数是-a=-(-3) = 3,a的绝对值| a|=| - 3| = 3。
- 例2:在数轴上表示-2,1.5,0,并比较它们的大小。
- 解:先画出数轴,标注原点、正方向和单位长度。
在数轴上找到对应的点,从左到右的顺序为-2<0<1.5。
3. 培优练习。
- 练习1:若| x| = 5,求x的值。
- 练习2:比较-(3)/(4)和-(4)/(5)的大小。
二、整式的加减。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如,3x,-5,a都是单项式。
- 多项式:几个单项式的和叫做多项式。
例如,2x + 3y是多项式。
- 整式:单项式和多项式统称为整式。
- 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
例如,3x^2y和-5x^2y是同类项。
- 合并同类项:把同类项合并成一项叫做合并同类项,合并同类项时,系数相加,字母和字母的指数不变。
2. 典型例题。
- 例1:化简3x^2 - 2x+5x^2 - 4x。
- 解:首先找出同类项,3x^2和5x^2是同类项,-2x和-4x是同类项。
- 合并同类项得(3x^2 + 5x^2)+(-2x - 4x)=8x^2 - 6x。
- 例2:已知A = 2x^2 - 3x+1,B=-x^2 + 2x - 3,求A - B。
- 解:A - B=(2x^2 - 3x + 1)-(-x^2+2x - 3)- 去括号得2x^2 - 3x + 1+x^2 - 2x + 3- 合并同类项得(2x^2+x^2)+(-3x - 2x)+(1 + 3)=3x^2 - 5x+4。
学而思初一数学资料培优汇总(精华)
一、【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。
2、有理数的两种分类:3、有理数的本质定义,能表成(互质)。
4、性质:①顺序性(可比较大小);②四则运算的封闭性(0不作除数);③稠密性:任意两个有理数间都存在无数个有理数。
5、绝对值的意义与性质:①②非负性③非负数的性质:i)非负数的和仍为非负数。
ii)几个非负数的和为0,则他们都为0。
二、【典型例题解析】:1、若的值等于多少?2.如果是大于1的有理数,那么一定小于它的()A.相反数B.倒数C.绝对值D.平方3、已知两数、互为相反数,、互为倒数,的绝对值是2,求的值。
4、如果在数轴上表示、两上实数点的位置,如下图所示,那么化简的结果等于(A. B. C.0 D.5、已知,求的值是()A.2B.3C.9D.66、有3个有理数a,b,c,两两不等,那么中有几个负数?7、设三个互不相等的有理数,既可表示为1,的形式式,又可表示为0,,的形式,求。
一、【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。
2、有理数的两种分类:3、有理数的本质定义,能表成(互质)。
4、性质:①顺序性(可比较大小);②四则运算的封闭性(0不作除数);③稠密性:任意两个有理数间都存在无数个有理数。
5、绝对值的意义与性质:①②非负性③非负数的性质:i)非负数的和仍为非负数。
ii)几个非负数的和为0,则他们都为0。
二、【典型例题解析】:1、若的值等于多少?2.如果是大于1的有理数,那么一定小于它的()A.相反数B.倒数C.绝对值D.平方3、已知两数、互为相反数,、互为倒数,的绝对值是2,求的值。
4、如果在数轴上表示、两上实数点的位置,如下图所示,那么化简的结果等于(A. B. C.0 D.5、已知,求的值是()A.2B.3C.9D.66、有3个有理数a,b,c,两两不等,那么中有几个负数?7、设三个互不相等的有理数,既可表示为1,的形式式,又可表示为0,,的形式,求。
七年级数学培优教辅
七年级数学培优教辅一、教材知识巩固板块。
1. 有理数。
- 知识点梳理。
- 有理数的概念:整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
例如,2是正整数, - 3是负整数,0.5是有限小数属于分数,(1)/(3)是无限循环小数也属于分数。
- 有理数的分类:- 按定义分类:有理数整数正整数 0 负整数分数正分数负分数- 按性质符号分类:有理数正有理数正整数正分数 0 负有理数负整数负分数- 典型例题。
- 例1:将下列数分类: - 5,(3)/(4),0, - 0.3,π,3.14159,-(22)/(7)。
- 解:有理数有 - 5,(3)/(4),0, - 0.3,3.14159,- (22)/(7);π是无理数(不属于有理数范畴)。
2. 整式的加减。
- 知识点梳理。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如,3x是单项式, - 5也是单项式。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如3x的系数是3,次数是1;-5的系数是 - 5,次数是0。
- 多项式:几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式里次数最高项的次数,叫做这个多项式的次数。
例如,2x^2+3x - 1,它有三项,分别是2x^2、3x、 - 1,其中 - 1是常数项,这个多项式的次数是2。
- 整式:单项式与多项式统称为整式。
- 整式的加减:实质就是合并同类项。
同类项是指所含字母相同,并且相同字母的指数也相同的项。
例如,3x^2y和-5x^2y是同类项。
合并同类项时,把同类项的系数相加,字母和字母的指数不变。
- 典型例题。
- 例2:化简3a + 2b - 5a - b。
- 解:3a+2b - 5a - b=(3a - 5a)+(2b - b)= - 2a + b。
七年级数学培优知识点
七年级数学培优知识点数学是人类智慧的结晶,是学习、思考和解决问题的基础。
在七年级的数学学习中,培优是非常重要的一步,因为七年级数学知识是整个初中数学学习的基础。
下面,我们来总结一下七年级数学培优的知识点。
一、整数的加减运算整数是由正整数、0、负整数组成,在数轴上可以用有向线段表示,它的数值可以表示为有向线段的长度。
整数的加减运算是指两个整数的加、减运算,它们的和、差是一个整数。
二、分数的加减运算分数是指一个整数除以另一个整数的结果,其中,分子表示被除数,分母表示除数。
分数的加减运算是指两个分数的加、减运算,它们的和、差也是一个分数。
三、小数的加减运算小数是指整数和分数相结合的数,可以表示为有限小数、循环小数和无限不循环小数。
小数的加减运算是指两个小数的加、减运算,它们的和、差也是一个小数。
四、倍数和约数倍数是指一个数是另一个数的倍数,即一个数能被另一个数整除,例如6是3的倍数。
约数是指一个数能被另一个数整除,例如3是6的约数。
五、比例和比例的应用比例是指两个量之间的比值,常用于数量关系的比较,例如长宽比、速度比等。
比例的应用主要包括比例的扩大和缩小、比例的合并和分离、写简单比例等。
六、平均数、中位数和众数平均数是指一组数值的和除以它们的个数得到的结果;中位数是指一组数值按大小顺序排列后,中间数的值;众数是指一组数值中出现次数最多的数。
七、初步代数概念初步代数概念包括代数式、方程式、不等式等,其主要涉及到一些变量和常量的运用。
代数式是由常数、变量和运算符组成的式子;方程式是指含有未知数的等式;不等式是指两个式子的大小关系。
通过七年级数学培优的学习,可以使学生进一步巩固和加强基础数学知识,更好地为后面的数学学习打下坚实的基础。
学而思初一数学资料培优汇总(精华)
第一讲数系扩张--有理数(一)一、【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。
2、有理数的两种分类:3、有理数的本质定义,能表成mn(0,,n m n≠互质)。
4、性质:①顺序性(可比较大小);②四则运算的封闭性(0不作除数);③稠密性:任意两个有理数间都存在无数个有理数。
5、绝对值的意义与性质:①(0)||(0)a aaa a≥⎧=⎨-≤⎩②非负性2(||0,0)a a≥≥③非负数的性质:i)非负数的和仍为非负数。
ii)几个非负数的和为0,则他们都为0。
二、【典型例题解析】:1、若||||||0,a b ababa b ab+-f则的值等于多少?2.如果m是大于1的有理数,那么m一定小于它的()A.相反数B.倒数C.绝对值D.平方3、已知两数a、b互为相反数,c、d互为倒数,x的绝对值是2,求220062007()()()x a b cd x a b cd-+++++-的值。
4、如果在数轴上表示a、b两上实数点的位置,如下图所示,那么||||a b a b-++化简的结果等于(A.2aB.2a- C.0 D.2b5、已知2(3)|2|0a b-+-=,求b a的值是()A.2B.3C.9D.66、有3个有理数a,b,c,两两不等,那么,,a b b c c ab c c a a b------中有几个负数?7、设三个互不相等的有理数,既可表示为1,,a b a+的形式式,又可表示为0,ba,b的形式,求20062007a b+。
8、 三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac =+++++则321ax bx cx +++的值是多少?9、若,,a b c 为整数,且20072007||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。
三、课堂备用练习题。
七年级数学培优讲义整理汇编
目录第01讲与有理数有关的概念(2--8)第02讲有理数的加减法(3--15)第03讲有理数的乘除、乘方(16--22)第04讲整式(23--30)第05讲整式的加减(31--36)第06讲一元一次方程概念和等式性质(37--43)第07讲一元一次方程解法(44--51)第08讲实际问题与一元一次方程(52--59)第09讲多姿多彩的图形(60--68)第10讲直线、射线、线段(69--76)第11讲角(77--82)第12讲与相交有关概念及平行线的判定(83--90)第13讲平行线的性质及其应用(91--100)第14讲平面直角坐标系(一)(101--106)第15讲平面直角坐标系(二)(107--112)第16讲认识三角形(113--119)第17讲认识多边形(120--126)第18讲二元一次方程组及其解法(127--134)第19讲实际问题与二元一次方程组(135--145)第20讲三元一次方程组和一元一次不等式组(146--155)第21讲一元一次不等式(组)的应用(156--164)第22讲一元一次不等式(组)与方程(组)的结合(165--174) 第23讲数据的收集与整理(175--186)模拟测试一模拟测试二模拟测试三第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8% 02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l 5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1.-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.【变式题组】 01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 . 02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____.【例4】(2008年河北张家口)若l +m2的相反数是-3,则m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m2=-4,m =-8【变式题组】 01.(四川宜宾)-5的相反数是( )A .5B . 15C . -5D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0 【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b |>a ,则a ,b 、-a ,-b 的大小顺序是( )A . b <-a <a <-bB . –a <b <a <-bC . –b <a <-a <bD . –a <a <-b <b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a |,用式子表示为|a |=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a 、b ,依相反数的意义标出-b ,-a ,故选A .【变式题组】01.推理①若a =b ,则|a |=|b |;②若|a |=|b |,则a =b ;③若a ≠b ,则|a |≠|b |;④若|a |≠|b |,则a ≠b ,其中正确的个数为( )A . 4个B . 3个C . 2个D . 1个 02.a 、b 、c 三个数在数轴上的位置如图,则|a |a +|b |b +|c |c= .03.a 、b 、c 为不等于O 的有理散,则a |a |+b |b |+c|c |的值可能是____.【例6】(江西课改)已知|a -4|+|b -8|=0,则a +bab的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a |≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a +b ab =1232=38【变式题组】01.已知|a |=1,|b |=2,|c |=3,且a >b >c ,求a +b +C . 02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( )A . -4B . -1C . 0D . 403.已知|a |=8,|b |=2,且|a -b |=b -a ,求a 和b 的值【例7】(第l 8届迎春杯)已知(m +n )2+|m |=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n )2+|m |的符号,挖掘出m 的符号特征,从而把问题转化为(m +n )2=0,|2m -n -2|=0,找到解题途径.解:∵(m +n )2≥0,|m |≥O∴(m +n )2+|m |≥0,而(m +n )2+|m |=m∴ m ≥0,∴(m +n )2+m =m ,即(m +n )2=0 ∴m +n =O ① 又∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】 01.已知(a +b )2+|b +5|=b +5且|2a -b –l |=0,求a -B . 02.(第16届迎春杯)已知y =|x -a |+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最大值.演练巩固·反馈提高01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )A . 156B . 172C . 190D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b 05.数轴上表示互为相反数的两点之间距离是6,这两个数是( )A . 0和6B . 0和-6C . 3和-3D . 0和3 06.若-a 不是负数,则a ( )A . 是正数B . 不是负数C . 是负数D . 不是正数 07.下列结论中,正确的是( )①若a =b ,则|a |=|b | ②若a =-b ,则|a |=|b | ③若|a |=|b |,则a =-b ④若|a |=|b |,则a =b A . ①② B . ③④ C . ①④ D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b |的大小关系正确的是( )A . |b |>a >-a >bB . |b | >b >a >-aC . a >|b |>b >-aD . a >|b |>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a |a +|b |b +|abc |abc +|c |c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、ba的形式,试求a 、b 的值.13.已知|a |=4,|b |=5,|c |=6,且a >b >c ,求a +b -C .14.|a|具有非负性,也有最小值为0,试讨论:当x为有理数时,|x-l|+|x-3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b| 当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是 , 数轴上表示-2和-5的两点之间的距离是 , ,数轴上表示1和-3的两点之间的距离是;⑵数轴上表示x和-1的两点分别是点A和B,则A、B之间的距离是,如果|AB|=2,那么x=;⑶当代数式|x+1|+|x-2|取最小值时,相应的x的取值范围是.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 2001 02.(第l 8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b |+|b -c |=|a -c |;③(a -b )(b -c )(c -a )>0;④|a |<1-bc .其中正确的结论有( )A . 4个B . 3个C . 2个D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a |+b |b |+c |c |+abc|abc |的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-2 04.已知|m |=-m ,化简|m -l |-|m -2|所得结果( )A . -1B . 1C . 2m -3D . 3- 2m05.如果0<p <15,那么代数式|x -p |+|x -15|+|x -p -15|在p ≤x ≤15的最小值( )A . 30B . 0C . 15D . 一个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a |+|x -b |=a -b 成立的x 取值范围 . 08.(武汉市选拔赛试题)非零整数m 、n 满足|m |+|n |-5=0所有这样的整数组(m ,n )共有 组 09.若非零有理数m 、n 、p 满足|m |m +|n |n +|p |p =1.则2mnp|3mnp |= .10.(19届希望杯试题)试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.已知(|x +l |+|x -2|)(|y -2|+|y +1|)(|z -3|+|z +l |)=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)【例3】计算111112233420082009++++⨯⨯⨯⨯【解法指导】依111(1)1n n n n =-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111(1)()()()2233420082009-+-+-++-=111111112233420082009-+-+-++-=112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+ … +99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=__________. 【例4】如果a <0,b >0,a +b <0A .a >b >-b >-a B .a >-a >b >-b C .b >a >-b >-a D .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b>a【变式题组】01.若m >0,n <0,且| m |>| n |,则m +n ________ 0.(填>、<号) 02.若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811=4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511 ()()()()(1) 32632 --+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+3 5+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+2 50+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+ (49)49(491)2⨯+=1225 ∴S=12252【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+1 2004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±5 03.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-3 04.两个有理数的和是正数,下面说法中正确的是()05.下列等式一定成立的是()A.|x|-x=0 B.-x-x=0 C.|x|+|-x|=0 D.|x|-|x|=0 06.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-等于( ) A .14 B .14- C .12 D .12- 02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,则31a +41b +51c+61d 等于( ) A .18 B .316 C .732 D .1564 03.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是( )A .30B .32C .34D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c534333231305.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯的值得整数部分为( )A .1B .2C .3D .406.(-2)2004+3×(-2)2003的值为( )A .-22003B .22003C .-22004D .2200407.(希望杯邀请赛试题)若|m |=m +1,则(4m +1)2004=__________ 08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________ 10.1+2-22-23-24-25-26-27-28-29+210=__________11.求32001×72002×132003所得数的末位数字为__________12.已知(a +b )2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+...+n 3的公式并计算出13+23+33+43+ (1003)值.第03讲 有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算 ⑴11()24⨯- ⑵1124⨯ ⑶11()()24-⨯- ⑷25000⨯ ⑸3713()()(1)()5697-⨯-⨯⨯- 【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积. 解:⑴11111()()24248⨯-=-⨯=- ⑵11111()24248⨯=⨯= ⑶11111()()()24248-⨯-=+⨯= ⑷250000⨯= ⑸3713371031()()(1)()()569756973-⨯-⨯⨯-=-⨯⨯⨯=- 【变式题组】01.⑴(5)(6)-⨯- ⑵11()124-⨯ ⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯- ⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯ 3.1111(2345)()2345⨯⨯⨯⨯---04.111(5)323(6)3333-⨯+⨯+-⨯A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a 、b 异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab <0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D .【变式题组】01.若a +b +c =0,且b <c <0,则下列各式中,错误的是( )A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >002.已知a +b >0,a -b <0,ab <0,则a___________0,b___________0,|a|___________|b|. 03.(山东烟台)如果a +b <0,0b a>,则下列结论成立的是( ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >004.(广州)下列命题正确的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若ab =0,则a =0或b =0D .若ab =0,则a =0且b =0【例3】计算⑴(72)(18)-÷- ⑵11(2)3÷- ⑶13()()1025-÷ ⑷0(7)÷- 【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184-÷-=÷= ⑵17331(2)1()1()3377÷-=÷-=⨯-=-⑶131255()()()()10251036-÷=-⨯=- ⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷- ⑵112(1)36÷- ⑶10(2)3÷- ⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷ ⑶530()35÷-⨯03.113()(10.2)(3)245÷-+-÷⨯-【例4】(茂名)若实数a 、b 满足0a b +=,则ab =___________.【解法指导】依绝对值意义进行分类讨论,得出a 、b 的取值范围,进一步代入结论得出结果.解:当ab >0,2(0,0)2(0,0)a b a b a b a b >>⎧+=⎨-<<⎩; 当ab <0,0a b a b+=,∴ab <0,从而ab ab =-1. 【变式题组】01.若k 是有理数,则(|k|+k )÷k 的结果是( )A .正数B .0C .负数D .非负数02.若A .b 都是非零有理数,那么ab a b a b ab ++的值是多少?03.如果0x y x y +=,试比较x y -与xy 的大小.【例5】已知223(2),1x y =-=-⑴求2008xy 的值; ⑵求32008x y的值. 【解法指导】n a 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=-⑴当2,1x y ==-时,200820082(1)2xy=-= 当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=-⑵当2,1x y ==-时,332008200828(1)x y ==- 当2,1x y =-=-时,3320082008(2)8(1)x y -==-- 【变式题组】01.(北京)若2(2)0m n m -+-=,则nm 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()n n x y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为( )A .0.135×106B .1.35×106C .0.135×107D .1.35×107【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( )A .1.03×105B .0.103×105C .10.3×104D .103×10302.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( )A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ 【解法指导】找出21005000k k -+的通项公式=22(50)50k -+ 原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+ 222222222495150[](4950)50(5150)50(5050)50++-+-+-+ =49222+1++⋅⋅⋅+个=99【变式题组】3333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅A .31003 B .31004 C .1334 D .1100002.(第10届希望杯试题)已知11111111 1.2581120411101640+++++++= 求111111112581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为( )A .1个B .2个C .3个D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数( )A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数 03.已知abc >0,a >0,ac <0,则下列结论正确的是( )A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >004.若|ab |=ab ,则( )A .ab >0B .ab ≥0C .a <0,b <0D .ab <005.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a b m cd m +-+的值为( )A .-3B .1C .±3D .-3或106.若a >1a,则a 的取值范围( ) A .a >1 B .0<a <1 C .a >-1 D .-1<a <0或a >1 07.已知a 、b 为有理数,给出下列条件:①a +b =0;②a -b =0;③ab <0;④1a b =-,其中能判断a 、b 互为相反数的个数是( )A .1个B .2个C .3个D .4个08.若ab≠0,则a b a b+的取值不可能为( ) A .0 B .1 C .2 D .-209.1110(2)(2)-+-的值为( )A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是( )A .2.89×107B .2.89×106C .2.89×105D .2.89×10411.已知4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,则a +b +c +d =___________.12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=___________.13.如果2x y x y +=,试比较x y-与xy 的大小.14.若a 、b 、c 为有理数且1a b c a b c ++=-,求abc abc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c c b b a -+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y------中负数的个数是( ) A .1个 B .2个 C .3个 D .0个或2个 02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是( )A .1B .3C .7D .5 03.已知23450ab c d e <,下列判断正确的是( )A .abcde <0B .ab 2cd 4e <0 C .ab 2cde <0 D .abcd 4e <0 04.若有理数x 、y 使得,,,xx y x y xy y+-这四个数中的三个数相等,则|y |-|x |的值是( ) A .12-B .0C .12D .3205.若A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A -1996的末位数字是( )A .0B .1C .7D .9 06.如果20012002()1,()1a b a b +=--=,则20032003a b +的值是( )A .2B .1C .0D .-1 07.已知5544332222,33,55,66a b c d ====,则a 、b 、c 、d 大小关系是( )A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c 08.已知a 、b 、c 都不等于0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,则2005()m n +=___________. 09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753- 第二组:112,315-第三组:52.25,,412-10.一本书的页码从1记到n ,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少? 11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,32,41,15,24,23,42,51,16,…(*),在(*)中左起第m 个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.13.(第12届“华杯赛”试题)已知m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+ 111111(1)(1)(1)(1)(1)(1).2233B n n=-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++== ⑵126A B -=,求m 、n 的值.第04讲整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念.3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,错误!未找到引用源。
人教版七年级数学上册培优资料(精华)
七年级数学上册培优训练第一讲 有理数〔一〕一、【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。
2、有理数的两种分类:3、有理数的本质定义,能表成mn〔0,,n m n ≠互质〕。
4、性质:① 顺序性〔可比拟大小〕;② 四那么运算的封闭性〔0不作除数〕;③ 稠密性:任意两个有理数间都存在无数个有理数。
5、绝对值的意义与性质:① (0)||(0)a a a a a ≥⎧=⎨-≤⎩ ② 非负性 2(||0,0)a a ≥≥③ 非负数的性质: i 〕非负数的和仍为非负数。
ii 〕几个非负数的和为0,那么他们都为0。
二、【典型例题解析】:1、假设||||||0,a b ab ab a b ab+-则的值等于多少? 2. 如果m 是大于1的有理数,那么m 一定小于它的〔 〕 A.相反数 B.倒数 C.绝对值 D.平方3、两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值。
4、如果在数轴上表示a 、b 两上实数点的位置,如以下图所示,那么||||a b a b -++化简的结果等于〔 ) A.2a B.2a - C.0 D.2b5、2(3)|2|0a b -+-=,求b a 的值是〔 〕 A.2 B.3 C.9 D.66、有3个有理数a,b,c ,两两不等,那么,,a b b c c ab c c a a b------中有几个负数?7、设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,ba ,b 的形式,求20062007a b +。
8三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac=+++++那么321ax bx cx +++的值是多少?9、假设,,a b c 为整数,且20072007||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。
人教版本初中七年级数学上册的培优学习资料精华
七年级数学上册培优训练第一讲有理数(一)一、【问题引入与概括】1、正负数,数轴,相反数,有理数等观点。
2、有理数的两种分类:3、有理数的实质定义,能表成m(n0,m,n互质)。
n4、性质:①次序性(可比较大小);②四则运算的关闭性(0不作除数);③浓密性:随意两个有理数间都存在无数个有理数。
5、绝对值的意义与性质:①|a|a(a0)②非负性(|a|0,a20) a(a0)③非负数的性质:i)非负数的和仍为非负数。
ii)几个非负数的和为0,则他们都为0。
二、【典型例题分析】:1、若abf0,则|a||b||ab|的值等于多少?a b ab2.假如m是大于1的有理数,那么m必定小于它的()A.相反数B.倒数C.绝对值D.平方3、已知两数a、b互为相反数,c、d互为倒数,x的绝对值是2,求x2(abcd)x(a b)2006(cd)2007的值。
4、假如在数轴上表示a、b两上实数点的地点,以以下图所示,那么|ab||a b|化简的结果等于()A.2aB.2a D.2b5、已知(a3)2|b2|0,求a b的值是()6、有3个有理数a,b,c,两两不等,那么a b,b c,c a中有几个负数?b cc aa b7、设三个互不相等的有理数,既可表示为1,a b,a的形式式,又可表示为0,b,b的形式,求a2006b2007。
a8三个有理数a,b,c的数,和正数,且X ab c|ab||bc||ac|ax3bx2cx1的是多少?|a||b||c|ab bc ac9、若a,b,c整数,且|a b|2007|ca|20071,求|c a||ab||bc|的。
三、堂用。
1、算:1+2-3-4+5+6-7-8+⋯+2005+20062、算:1×2+2×3+3×4+⋯+n(n+1)3、算:59173365129132481632644、已知a,b非整数,且足|a b|ab1,求a,b的全部可能。
学而思初一数学资料培优汇总(总74页)
学而思初一数学资料培优汇总(精华)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一讲 数系扩张--有理数(一)一、【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。
2、有理数的两种分类:3、有理数的本质定义,能表成m n (0,,n m n ≠互质)。
4、性质:① 顺序性(可比较大小);② 四则运算的封闭性(0不作除数);③ 稠密性:任意两个有理数间都存在无数个有理数。
5、绝对值的意义与性质:① (0)||(0)a a a a a ≥⎧=⎨-≤⎩ ② 非负性2(||0,0)a a ≥≥ ③ 非负数的性质: i )非负数的和仍为非负数。
ii )几个非负数的和为0,则他们都为0。
二、【典型例题解析】:1、若||||||0,a b ab ab a b ab +-则的值等于多少?2. 如果m 是大于1的有理数,那么m 一定小于它的( )A.相反数B.倒数C.绝对值D.平方3、已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值。
4、如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于(A.2aB.2a - D.2b5、已知2(3)|2|0a b -+-=,求b a 的值是( )6、 有3个有理数a,b,c ,两两不等,那么,,a b b c c a b c c a a b ------中有几个负数?7、 设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,ba ,b 的形式,求20062007a b +。
8、 三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac =+++++则321ax bx cx +++的值是多少?9、若,,a b c 为整数,且20072007||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。
(完整版)初一数学资料培优汇总(精华),推荐文档
第一讲 数系扩张--有理数(一)一、【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。
2、有理数的两种分类:3、有理数的本质定义,能表成(互质)。
m n 0,,n m n ≠4、性质:① 顺序性(可比较大小);② 四则运算的封闭性(0不作除数);③ 稠密性:任意两个有理数间都存在无数个有理数。
5、绝对值的意义与性质:① ② 非负性 (0)||(0)a a a a a ≥⎧=⎨-≤⎩2(||0,0)a a ≥≥③ 非负数的性质: i )非负数的和仍为非负数。
ii )几个非负数的和为0,则他们都为0。
二、【典型例题解析】: 1、若的值等于多少?||||||0,a b ab ab a b ab+- 则 2. 如果是大于1的有理数,那么一定小于它的( )m m A.相反数 B.倒数 C.绝对值 D.平方3、已知两数、互为相反数,、互为倒数,的绝对值是2,求a b c d x的值。
220062007()()()x a b cd x a b cd -+++++-4、如果在数轴上表示、两上实数点的位置,如下图a b 所示,那么化简的结果等于(||||a b a b -++ A. B. C.0 D.2a 2a -2b5、已知,求的值是( )2(3)|2|0a b -+-=b a A.2 B.3 C.9 D.66、 有3个有理数a,b,c ,两两不等,那么中有几个负数?,,a b b c c a b c c a a b------ 7、 设三个互不相等的有理数,既可表示为1,的形式式,又可表示,a b a +为0,,的形式,求。
b ab 20062007a b +8、三个有理数的积为负数,和为正数,且,,a b c 则的值是多少?||||||||||||a b c ab bc ac X a b c ab bc ac=+++++321ax bx cx +++9、若为整数,且,试求的,,a b c 20072007||||1a b c a -+-=||||||c a a b b c -+-+-值。
七年级数学培优汇总精华
七年级数学培优汇总精华Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】第一讲 数系扩张--有理数(一)一、【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。
2、有理数的两种分类:3、有理数的本质定义,能表成mn(0,,n m n ≠互质)。
4、性质:① 顺序性(可比较大小);② 四则运算的封闭性(0不作除数);③ 稠密性:任意两个有理数间都存在无数个有理数。
5、绝对值的意义与性质:① (0)||(0)a a a a a ≥⎧=⎨-≤⎩ ② 非负性 2(||0,0)a a ≥≥③ 非负数的性质: i )非负数的和仍为非负数。
ii )几个非负数的和为0,则他们都为0。
二、【典型例题解析】:1、若||||||0,a b ab ab a b ab+-则的值等于多少 2. 如果m 是大于1的有理数,那么m 一定小于它的( ) A.相反数 B.倒数 C.绝对值 D.平方3、已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值。
4、如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于( A.2a B.2a - D.2b5、已知2(3)|2|0a b -+-=,求b a 的值是( ) .3 C6、 有3个有理数a,b,c ,两两不等,那么,,a b b c c ab c c a a b------中有几个负数7、 设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,ba,b 的形式,求20062007a b +。
8、 三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac=+++++则321ax bx cx +++的值是多少 9、若,,a b c 为整数,且20072007||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。
学而思初一数学资料培优汇总(精华)
第一讲数系扩张--有理数(一)一、【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。
2、有理数的两种分类:3、有理数的本质定义,能表成mn(0,,n m n≠互质)。
4、性质:①顺序性(可比较大小);②四则运算的封闭性(0不作除数);③稠密性:任意两个有理数间都存在无数个有理数。
5、绝对值的意义与性质:①(0)||(0)a aaa a≥⎧=⎨-≤⎩②非负性2(||0,0)a a≥≥③非负数的性质:i)非负数的和仍为非负数。
ii)几个非负数的和为0,则他们都为0。
二、【典型例题解析】:1、若||||||0,a b ababa b ab+-则的值等于多少?2.如果m是大于1的有理数,那么m一定小于它的()A.相反数B.倒数C.绝对值D.平方3、已知两数a、b互为相反数,c、d互为倒数,x的绝对值是2,求220062007()()()x a b cd x a b cd-+++++-的值。
4、如果在数轴上表示a、b两上实数点的位置,如下图所示,那么||||a b a b-++化简的结果等于(A.2aB.2a- C.0 D.2b5、已知2(3)|2|0a b-+-=,求b a的值是()A.2B.3C.9D.66、有3个有理数a,b,c,两两不等,那么,,a b b c c ab c c a a b------中有几个负数?7、设三个互不相等的有理数,既可表示为1,,a b a+的形式式,又可表示为0,ba,b的形式,求20062007a b+。
8、 三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac=+++++则321ax bx cx +++的值是多少? 9、若,,a b c 为整数,且20072007||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。
三、课堂备用练习题。
初一数学资料培优汇总
9
的值。
(7)已知 (1 x)2 (1 x) a bx cx2 dx3 ,求 a b c d 的值。 (8)当多项式 m2 m 1 0 时,求多项式 m3 2m2 2006 的值。
3、找规律:
Ⅰ.(1) (1 2)2 12 4(11) ; (2) (2 2)2 22 4(2 1) (3) (3 2)2 32 4(31) (4) (4 2)2 42 4(4 1)
3 4
3
2
4
10
3 4
0.5
7、计算:(13 47) [0.253 ( 1)3] (5 1 1.25 4 1) [(0.45)2 (2 3 )3] (1)2002
81 63
4
2
4
2001
:
6
第四讲 数系扩张--有理数(四)
一、【能力训练点】:
1、运算的分级与运算顺序;
81 63
4
2
4
2001
8、已知 a 、 b 是有理数,且 a b ,含 c a 2b , x a 2c , y c 2b ,请将
3
3
3
a,b, c, x, y 按从小到大的顺序排列。
三、【备用练习题】:
7
1、计算(1) 1 1 1 1 1 (2) 2 2 2
4 28 70 130 208
2、有理数的加、减、乘、除及乘方运算的法则。
(1)加法法则:同号相加取同号,并把绝对值相加;异号相加取绝对值较
大数的符号,并用较大绝对值减较小绝对值;一个数同零相加得原数。
(2)减法法则:减去一个数等于加上这个数的相反数。
(3)乘法法则:几个有理数相乘,奇负得负,偶负得正,并把绝对值相乘。
(4)除法法则:除以一个数,等于乘以这个数的倒数。
初一数学资料培优汇总精华(K12教育文档)
(直打版)初一数学资料培优汇总精华(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)初一数学资料培优汇总精华(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)初一数学资料培优汇总精华(word版可编辑修改)的全部内容。
第一讲 数系扩张—-有理数(一)一、【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。
2、有理数的两种分类:3、有理数的本质定义,能表成m n (0,,n m n ≠互质).4、性质:① 顺序性(可比较大小);② 四则运算的封闭性(0不作除数);③ 稠密性:任意两个有理数间都存在无数个有理数。
5、绝对值的意义与性质:① (0)||(0)a a a a a ≥⎧=⎨-≤⎩ ② 非负性 2(||0,0)a a ≥≥ ③ 非负数的性质: i )非负数的和仍为非负数。
ii)几个非负数的和为0,则他们都为0。
二、【典型例题解析】:1、若||||||0,a b ab ab a b ab+-则的值等于多少? 2. 如果m 是大于1的有理数,那么m 一定小于它的( )A.相反数 B 。
倒数 C.绝对值 D.平方3、已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值。
4、如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于(A.2a B 。
2a - C.0 D 。
2b5、已知2(3)|2|0a b -+-=,求b a 的值是( )A.2 B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 数系扩张--有理数(一)一、【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。
2、有理数的两种分类:3、有理数的本质定义,能表成m n (0,,n m n ≠互质)。
4、性质:① 顺序性(可比较大小);② 四则运算的封闭性(0不作除数);③ 稠密性:任意两个有理数间都存在无数个有理数。
5、绝对值的意义与性质:① (0)||(0)a a a a a ≥⎧=⎨-≤⎩ ② 非负性 2(||0,0)a a ≥≥ ③ 非负数的性质: i )非负数的和仍为非负数。
ii )几个非负数的和为0,则他们都为0。
二、【典型例题解析】:1、若||||||0,a b ab ab a b ab+-则的值等于多少? 2. 如果m 是大于1的有理数,那么m 一定小于它的( )A.相反数B.倒数C.绝对值D.平方3、已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值。
4、如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于(A.2aB.2a -C.0D.2b5、已知2(3)|2|0a b -+-=,求b a 的值是( )A.2B.3C.9D.66、 有3个有理数a,b,c ,两两不等,那么,,a b b c c a b c c a a b------中有几个负数? 7、 设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,b a,b 的形式,求20062007a b +。
8、 三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac=+++++则321ax bx cx +++的值是多少? 9、若,,a b c 为整数,且20072007||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。
三、课堂备用练习题。
1、计算:1+2-3-4+5+6-7-8+…+2005+20062、计算:1×2+2×3+3×4+…+n(n+1)3、计算:5917336512913248163264+++++- 4、已知,a b 为非负整数,且满足||1a b ab -+=,求,a b 的所有可能值。
5、若三个有理数,,a b c 满足||||||1a b c a b c ++=,求||abc abc的值。
第二讲 数系扩张--有理数(二)一、【能力训练点】:1、绝对值的几何意义① |||0|a a =-表示数a 对应的点到原点的距离。
② ||a b -表示数a 、b 对应的两点间的距离。
2、利用绝对值的代数、几何意义化简绝对值。
二、【典型例题解析】:1、 (1)若20a -≤≤,化简|2||2|a a ++-(2)若0x ,化简|||2||3|||x x x x --- 2、设0a ,且||a x a ≤,试化简|1||2|x x +-- 3、a 、b 是有理数,下列各式对吗?若不对,应附加什么条件?(1)||||||;a b a b +=+ (2)||||||;ab a b =(3)||||;a b b a -=- (4)若||a b =则a b =(5)若||||a b ,则a b (6)若a b ,则||||a b4、若|5||2|7x x ++-=,求x 的取值范围。
5、不相等的有理数,,a b c 在数轴上的对应点分别为A 、B 、C ,如果||||||a b b c a c -+-=-,那么B 点在A 、C 的什么位置?6、设a b c d ,求||||||||x a x b x c x d -+-+-+-的最小值。
7、abcde 是一个五位数,ab c d e ,求||||||||a b b c c d d e -+-+-+-的最大值。
8、设1232006,,,,a a a a 都是有理数,令1232005()M a a a a =++++ 2342006()a a a a ++++,1232006()N a a a a =++++2342005()a a a a ++++,试比较M 、N 的大小。
三、【课堂备用练习题】:1、已知()|1||2||3||2002|f x x x x x =-+-+-++-求()f x 的最小值。
2、若|1|a b ++与2(1)a b -+互为相反数,求321a b +-的值。
3、如果0abc ≠,求||||||a b c a b c++的值。
4、x 是什么样的有理数时,下列等式成立?(1)|(2)(4)||2||4|x x x x -+-=-+-(2)|(76)(35)|(76)(35)x x x x +-=+-5、化简下式:||||x x x -第三讲 数系扩张--有理数(三)一、【能力训练点】:1、运算的分级与运算顺序;2、有理数的加、减、乘、除及乘方运算的法则。
(1)加法法则:同号相加取同号,并把绝对值相加;异号相加取绝对值较大数的符号,并用较大绝对值减较小绝对值;一个数同零相加得原数。
(2)减法法则:减去一个数等于加上这个数的相反数。
(3)乘法法则:几个有理数相乘,奇负得负,偶负得正,并把绝对值相乘。
(4)除法法则:除以一个数,等于乘以这个数的倒数。
3、准确运用各种法则及运算顺序解题,养成良好思维习惯及解题习惯。
二、【典型例题解析】:1、计算:3510.752(0.125)124478⎛⎫⎛⎫⎛⎫+-+++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2、计算:(1)、()()560.9 4.48.11+-++-+(2)、(-18.75)+(+6.25)+(-3.25)+18.25(3)、(-423)+111362324⎛⎫⎛⎫⎛⎫-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3、计算:①()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②111142243⎛⎫⎛⎫⎛⎫-+--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭4、 化简:计算:(1)711145438248⎛⎫⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)35123.7540.1258623⎡⎤⎛⎫⎛⎫⎛⎫----+-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ (3)()()340115477⎡⎤⎛⎫⎛⎫+-----+--+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (4)235713346⎛⎫⎛⎫⎛⎫-⨯+÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(5)-4.035×12+7.535×12-36×(79-57618+) 5、计算: (1)()()()3242311-+⨯---(2)()()219981110.5333⎡⎤---⨯⨯--⎣⎦ (3)22831210.52552142⎛⎫⎛⎫⎛⎫÷--⨯--÷⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭6、计算:()3413312100.51644⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫+--⨯-÷---⎢⎥⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭7、计算:3323200213471113()[0.25()](5 1.254)[(0.45)(2)](1)81634242001-⨯+----÷++- :第四讲 数系扩张--有理数(四)一、【能力训练点】:1、运算的分级与运算顺序;2、有理数的加、减、乘、除及乘方运算的法则。
3、巧算的一般性技巧:① 凑整(凑0); ② 巧用分配律③ 去、添括号法则; ④ 裂项法4、综合运用有理数的知识解有关问题。
二、【典型例题解析】:1、计算:237970.716.6 2.20.7 3.31173118⨯-⨯-÷+⨯+÷ 2、1111111111(1)()(1)2319962341997231997----⨯++++-----1111()2341996⨯++++ 3、计算:①2232(2)|3.14|| 3.14|(1)ππ-+------- ②{}235324[3(2)(4)(1)]7-⨯-+⨯-⨯---÷--4、化简:111()(2)(3)(9)122389x y x y x y x y +++++++⨯⨯⨯并求当2,x =9y =时的值。
5、计算:2222222221314112131411n n S n ++++=++++---- 6、比较1234248162n n n S =+++++与2的大小。
7、计算:3323200213471113()[0.25()](5 1.254)[(0.45)(2)](1)81634242001-⨯+----÷++- 8、已知a 、b 是有理数,且a b ,含23a b c +=,23a c x +=,23c b y +=,请将,,,,a b c x y 按从小到大的顺序排列。
三、【备用练习题】:1、计算(1)1111142870130208++++ (2)222133599101+++⨯⨯⨯2、计算:11111120072006200520041232323-+-+-3、计算:1111(1)(1)(1)(1)2342006-⨯-⨯-⨯⨯-4、如果2(1)|2|0a b -++=,求代数式220062005()()2()b a a b ab a b -++++的值。
5、若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求2221(12)a b m m cd -+÷-+的值。
第五讲代数式(一)一、【能力训练点】:(1)列代数式; (2)代数式的意义;(3)代数式的求值(整体代入法)二、【典型例题解析】:1、用代数式表示:(1)比x y 与的和的平方小x 的数。
(2)比a b 与的积的2倍大5的数。
(3)甲乙两数平方的和(差)。
(4)甲数与乙数的差的平方。
(5)甲、乙两数和的平方与甲乙两数平方和的商。
(6)甲、乙两数和的2倍与甲乙两数积的一半的差。
(7)比a 的平方的2倍小1的数。
(8)任意一个偶数(奇数)(9)能被5整除的数。
(10)任意一个三位数。
2、代数式的求值:(1)已知25a b a b -=+,求代数式2(2)3()2a b a b a b a b-+++-的值。
(2)已知225x y ++的值是7,求代数式2364x y ++的值。
(3)已知2a b =;5c a =,求624a b c a b c+--+的值(0)c ≠ (4)已知113b a -=,求222a b ab a b ab ---+的值。
(5)已知:当1x =时,代数式31Px qx ++的值为2007,求当1x =-时,代数式31Px qx ++的值。