最新小学数学中的行程问题
小学数学中的行程问题公式及解析
小学数学中的行程问题公式及解析一、基本行程问题行程问题的三个基本量是距离、速度和时间,按所行方向的不同可分为三种:(1)相遇问题:(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度x时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和*时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差x时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关有助于迅速地找到解题思路。
(一)相遇问题行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题相遇问题。
数量关系:路程÷速度和=相遇时间路程÷相遇时间=速度和速度和x相遇时间=路程温馨提示:(1)在处理相遇问题时,一定要注意公式的使用时二者发生关系那一时刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。
(2)解题秘诀:(3)(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(4)(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
(二)追及问题追及问题也是行程问题中的一种情况。
这类应用题的特点是:①两个物体同时同一方向运动;②出发的地点不同(或从同一地点不同时出发,向同一方向运动);迫及路程=路程差=两个物体之间相距的路程迫及速度=速度差=快的速度-慢的速度慢的物体追上快的物体的所用的时间为追及时间③慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。
小学数学 行程问题
小学数学行程问题1.甲城到乙城的公路长470千米。
快慢两汽车同时从两城相对开出,快车每小时行50千米,慢车每小时行44千米,;两车经过多长时间相遇?2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
两地相距多少千米?3.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时比甲车多行20千米,经过3小时相遇。
两地相距多少千米?4.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米”两地相距多少千米?5、A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇?6.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
乙车行完全程要多少小时?7、电视机厂要装配2500台电视机,两个组同时装配,10天完成,一个组每天装配52台,另一个组每天装配多少台?8、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?甲船比乙船每小时多航行多少千米?9、甲地到乙地的公路长436千米。
两辆汽车从两地对开,甲车每小时行42千米,乙车每小时行46千米。
甲车开出2小时后,乙车才出发,再经过几小时两车相遇?10、两个工程队共同开凿一条隧道,各从一端相向施工。
甲队每天开凿4米,乙队每天开凿3.5米,21天完工,这条隧道长多少米?11、慢车以每小时45千米的速度从开往乙地,3小时后,快车以每小时60千米的速度也从甲地开往乙地,多少小时后快车追上慢车?12、两匹马在相距50千米的地方同时出发,出发时黑马在前白马在后,如果黑马每秒跑10米,白马每秒跑12米,几秒后两马相距70米?13、放学时,弟弟以每分钟40米的速度步行回家,7分钟后,同一所学校读书的哥哥以每分钟60米的速度步行回家,几分钟后,哥哥能追上弟弟?14、小胖以每分钟50米的速度步行回家,12分钟后,小巧骑车追小胖,结果在距离学校1000米处追上。
四年级数学行程问题
行程问题一、基本简单行程及变速问题1、强强跑100米用10秒,旗鱼每小时能游120千米,请问:谁的速度更快?2、墨墨练习慢跑,12分钟跑了3000千,按照这个速度慢跑25000米需要多少分钟?如果他每天都以这个速度跑10分钟,连续跑一个月,他一共跑了多少千米?3、A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了1小时,如果要按照原定的时间到达B城,汽车在后一半行程上每小时应该行驶多少千米?4、甲乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米,4小时后它们相距多少千米?这时甲提高速度打算用2小时追上乙,那么甲每小时应该飞行多少千米?5、萱萱一家开车去外地旅游,原计划每小时行驶45千米,实际上由于高速公路堵车,汽车每小时只行驶30千米,这样就晚到两小时,问:萱萱一家在路上实际花了几个小时?6、甲从A地出发去B地办事情,下午1点出发,晚上7点准时到达,如果他想下午两点出发,晚上7点准时到达,每小时就必须多行2千米,求AB两地之间的距离。
7、小欣家离学校1000米,平时他步行25分钟后准时到校。
有一天他晚出发10分钟,为避免迟到,小欣先乘公共汽车,然后步行,结果仍然准时到校,已知公共汽车的速度是小欣步行速度的6倍,问:小欣这天上学步行了多少米?8、甲乙两人分别从AB两地同时出发,6小时后相遇在中点,如果甲延迟1小时出发,乙每小时少走4千米,两人仍在中点相遇,问:甲乙两地相距多少千米?二、基本相遇问题:1、A、B两地相距4800米,甲乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两人从出发地到相遇需要多长时间?2、在第4题中,如果甲乙两人的速度大小不变,但甲出发时改变方向,即两人同时同向出发,问:乙出发后多久可以追上甲?3、甲乙两地相距350千米,A车在早上8点从甲地出发,以每小时40千米的速度开往乙地。
小学四年级数学行程问题(相遇、追及、相离)易错题
小学四年级数学行程问题(相遇、追及、相离)易错题1、在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,要求第三个量,这类应用题,叫做行程应用题。
也叫行程问题。
2、行程应用题的解题关键是掌握速度、时间、距离之间的数量关系:距离=速度×时间速度=距离÷时间时间=距离÷速度3、按运动方向,行程问题可以分成三类:(1)相向运动问题(相遇问题)(2)同向运动问题(追及问题)(3)背向运动问题(相离问题)1、相向运动问题(1)相向运动问题(相遇问题),是指地点不同、方向相对所形成的一种行程问题。
两个运动物体由于相向运动而相遇。
(2)解答相遇问题的关键,是求出两个运动物体的速度之和。
基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间例1、两列火车同时从相距540千米的甲乙两地相向而行,经过3.6小时相遇。
已知客车每小时行80千米,货车每小时行多少千米?例2、两城市相距138千米,甲乙两人骑自行车分别从两城出发,相向而行。
甲每小时行13千米,乙每小时行12千米,乙在行进中因修车候车耽误1小时,然后继续行进,与甲相遇。
求从出发到相遇经过几小时?2、同向运动问题(追及问题)(1)两个运动物体同向而行,一快一慢,慢在前快在后,经过一定时间快的追上慢的,称为追及。
解答追及问题的关键,是求出两个运动物体的速度之差。
(2)基本公式有:追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间例1、甲乙两人在相距12千米的AB两地同时出发,同向而行。
甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍。
几小时后乙能追上甲?例2、一个通讯员骑摩托车追赶前面部队乘的汽车。
汽车每小时行48千米,摩托车每小时行60千米。
通讯员出发后2小时追上汽车。
通讯员出发的时候和部队乘的汽车相距多少千米?注意:要求距离差,需要知道速度差和追及时间。
小学行程问题汇总(含典型例题和习题)精选全文
可编辑修改精选全文完整版小学行程问题汇总(含典型例题和习题)我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。
行程问题主要包括相遇问题、相背问题和追及问题。
这一周我们来学习一些常用的、基本的行程问题。
解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
知道三个量中的两个量,就能求出第三个量。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。
结合分数、百分数知识相关的较为复杂抽象的行程问题。
要注意:出发的时间、地点和行驶方向、速度的变化等,常常需画线段图来帮助理解题意。
例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?分析与解答:这是一道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。
所以,求两人几小时相遇,就是求20千米里面有几个10千米。
因此,两人20÷(6+4)=2小时后相遇。
练习 11、甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
小学数学—行程问题大全
行程问题
1.甲、乙两艘轮船分别从两港同时出发相向而行,甲船每小时行驶19千米,乙船每小时行驶13千米,经过8小时两艘轮船在途中相遇。
两港间的水路长多少千米?
2.甲、乙两车分别从相距240千米的A、B两地同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,两车出发后多少时间相遇?
3.东、西两镇相距45千米,甲、乙两人分别从两镇同时出发相向而行,甲每小时行的路程是乙的2倍,5小时后两人相遇。
两面三刀的速度各是多少?
4.两地相距6600千米,甲、乙两列火车同时从两地出发,相向而行。
甲车每小时行驶100千米,乙车每小时行驶120千米,两车在途中相遇后继续前进。
从相遇时算起,两车开到对方的出发点各需多少小时?
5.甲每小时行9千米,乙每小时比甲少行3千米,两人于相隔20千米的两地同时相背而行,几小时后两人相隔80千米?
6.甲每小时行12千米,乙每小时行8千米,甲自南庄向南行,同时乙自北庄向北行,经过5小时后,两人相隔103千米。
南北两庄相距多少千米?
7.解放军某部从营地出发,以每小时6千米的速度向目的地前进,6小时后,部队有急事,派通讯员骑摩托车以每小时78千米的速度前去联络。
多少时间后,通讯员能赶上队伍?
8.一条环形跑道长400米,甲骑车每分行450米,乙跑步每分跑250米,两人同时同地同向出发,经过多少分两相遇?
9.育才小学有条300米长的环形跑道,扬扬和宁宁同时从起跑线起跑,扬扬每秒跑6米,宁宁每秒跑4米。
问:
(1)扬扬第一次追上宁宁时两人各跑了多少米?
(2)扬扬第二次追上宁宁时两人各跑了几圈?。
(完整)小学六年级数学行程问题
行程问题一、基本知识点1、常见题型:一般行程问题,相遇问题,追及问题,流水问题,火车过桥问题。
2、行程问题特点:已知速度、时间、和路程中的两个量,求第三个量。
3、基本数量关系:速度x时间=路程速度和x时间(相遇时间)=路程和(相遇路程)速度差x时间(追及时间)=路程差(追击路程)二、学法提示1.火车过桥:火车过桥路程=桥长+车长过桥时间=路程÷车速过桥过程可以通过动手演示来帮助理解。
2.水流问题:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度顺水速度-逆水速度=2x水流速度3.追及问题:追击路程÷速度差=追及时间追击距离÷追及时间=速度差4.相遇问题:相遇路程÷相遇时间=速度和相遇路程÷速度和=相遇时间三、解决行程问题的关键画线段图,标出已知和未知。
能够从线段图中分析出数量关系,找到解决问题的突破口。
四、练习题(一)火车过桥1.一列火车长150米,每秒行20米,全车要通过一座长450米的大桥,需要多长时间?2.一列客车通过860米的大桥要45秒,用同样的速度穿过620米的隧道要35秒,求客车行驶的速度和车身的长度。
3.一列车长140米的火车,以每秒10米的速度通过一座大桥,共用30秒,求大桥的长度。
4.一人在铁路便道上行走,一列客车从身后开来,在她身旁通过的时间为7秒,已知客车长105米。
每小时行72千米,这个人每秒行多少米?5.在有上下行的轨道上,两列火车相对开出,甲车长235米,每秒行25米,乙车长215米,每秒行20米,求两车从车头相遇到车尾离开要多长时间。
6.一人沿铁路边的便道行走,一列火车从身后开来,在身旁通过的时间为15秒,车长105米,每小时行28.8千米,求步行速度。
7.公路两旁的电线杆间隔都是30米,一位乘客坐在运行的汽车中,他从看到第一根电杆到看到第26根电线杆正好是3分钟。
这辆汽车每小时行多少米?8.一列火车长700米。
【小学 六年级数学】小学数学中遇到的典型的工程和行程应用题 共(14页)
小学中经常遇到的行程问题行程问题是小学数学中经常遇到的,解决起来往往有些困难,因为还没有学习方程,所以有些题目很不好理解,利用单位1解决问题,这里举一些例子,由浅入深,结合方程的解法,同学们自己比较一下。
我们先来了解一下,关于行程问题的公式:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程,速度×时间;路程?时间,速度;路程?速度,时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间,相遇路程相遇路程?速度和=相遇时间相遇路程?相遇时间= 速度和相遇问题:(直线):甲的路程+乙的路程=总路程相遇问题:(环形):甲的路程 +乙的路程=环形周长追及问题:追及时间,路程差?速度差速度差,路程差?追及时间追及时间×速度差,路程差追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间追及问题:(环形):快的路程-慢的路程=曲线的周长流水问题:顺水行程,(船速,水速)×顺水时间逆水行程,(船速,水速)×逆水时间顺水速度=船速,水速逆水速度,船速,水速静水速度=(顺水速度,逆水速度)?2 水速:(顺水速度,逆水速度)?2流水速度,流水速度?2 水速:流水速度,流水速度?2关键是确定物体所运动的速度,参照以上公式。
列车过桥问题:关键是确定物体所运动的路程,参照以上公式。
我们由浅入深看一些题目:一、相遇问题1、一列客车从甲地开往乙地,同时一列货车从甲地开往乙地,当货车行了180千米时,客车行了全程的七分之四;当客车到达乙地时,货车行了全程的八分之七。
甲乙两地相距多少千米,解:把全部路程看作单位1那么客车到达终点行了全程,也就是单位1当客车到达乙地时,货车行了全程的八分之七相同的时间,路程比就是速度比由此我们可以知道客车货车的速度比=1:7/8=8:7所以客车行的路程是货车的8/7倍所以当客车行了全程的4/7时货车行了全程的(4/7)/(8/7)=1/2那么甲乙两地相距180/(1/2)=360千米1/2就是180千米的对应分率分析:此题中运用了单位1,用到了比例问题,我们要熟练掌握比例,对于路程、速度和时间之间的关系,一定要清楚,在速度或时间一定时,路程都和另外一个量成正比例,当路程一定时,速度和时间成反比例,这个是基本常识。
小学六年级数学行程问题完整版
小学六年级数学行程问题HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】行程问题例1 甲乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
辆车在距中点32千米处相遇。
东西两地相距多少千米?例2 快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?例3 快车从甲站到达乙站需要8小时,慢车从乙站到达甲站需要12小时,如果快、慢两车同时从甲、乙两站相对开出,相遇是快车比慢车多行180千米,甲、乙两站相遇多少千米?例4 甲、乙两列火车同时从A、B两城相对开出,行了小时后,两列还相距全程的5/8, 两车还需要几小时才能相遇?例5 客车从甲地,货车从乙地同时相对开出。
一段时间后,客车行了全程的7/8,货车行的超过中点54千米,已知客车比货车多行了90千米,甲、乙两地相距多少千米?例6 甲、乙两车分别从A、B两地同时出发,当甲车行到全程的7/11时与乙车相遇,乙车继续以每小时40千米的速度前进,又行驶了154千米到达A地。
甲车出发到相遇用了多少小时?例7 客车从甲地到乙地要10小时,货车从乙地到甲地要15小时,两车同时从两地相对开出,相遇时客车比货车多行了90千米,甲、乙两地之间的距离是多少千米?相遇时客车和货车各行了多少千米?例8 客车和货车同时从甲、乙两地相向而行,在距离中点6千米处相遇,已知货车速度是客车速度的4/5,甲、乙两地相遇多少千米?例9 甲、乙两车同时从A、B两地相对开出,经过8小时相遇,相遇后两车继续前进,甲车又用了6小时到达B 地,乙车要用多少小时才能从B地到达A地。
例10 一辆汽车以每小时100千米的速度从甲地开往乙地,又以每小时60千米的速度从乙地开到甲地,这辆汽车的平均速度N 是多少千米?例11 小明上山每分钟行50米,16分钟到达山顶,再按每分钟80米的速度按原路下山,那么,上、下山每分钟平均行多少米?例12 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
小学五年级数学 行程问题 带详细答案
小学五年级数学行程问题(带答案)例题1、甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇,东、西两地相距多少千米?解答:从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。
两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8(千米)。
64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。
32×2÷(56-48)=8(小时)(56+48)×8=832(千米)练习一1、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。
学校到少年宫有多少米?解答:两人的路程差:120+120=240(米)时间:240÷(100-80)=12(分钟)总路程:(100+80)x12=2160(米)2、一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。
甲、乙两地相距多少千米?解答:两车的路程差:75(米)时间:750÷(65-40)=3(小时)总路程:(40+65)x3+75=390(米)3、甲、乙二人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西村。
东村到西村的路程是多少米?解答:如果甲继续行5分钟:5x120=600(米)乙的时间:600÷(120-100)=30(分钟)总路程:30x100=3000(米)例题二、快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?解答:快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。
小学数学中的行程问题
小学数学中的行程问题【基本公式】基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
小学数学知识点:行程问题
小学数学知识点:行程问题公式:1. 行程问题:行程问题可以大概分为简单问题、相遇问题、时钟问题等。
2.常用公式:1)速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2)速度和×时间=路程和;3)速度差×时间=路程差。
3.常用比例关系:1)速度相同,时间比等于路程比;2)时间相同,速度比等于路程比;3)路程相同,速度比等于时间的反比。
4.行程问题中的公式:1)顺水速度=静水速度+水流速度;2)逆水速度=静水速度-水流速度。
3)静水速度=(顺水速度+逆水速度)/24)水流速度=(顺水速度–逆水速度)/25.基本数量关系是火车速度×时间=车长+桥长1)超车问题(同向运动,追及问题)路程差=车身长的和超车时间=车身长的和÷速度差2)错车问题(反向运动,相遇问题)路程和=车身长的和错车时间=车身长的和÷速度和3)过人(人看作是车身长度是0的火车)4)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)例题:例1:已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒,求火车的速度和长度。
分析:本题关键在求得火车行驶120秒和80秒所对应的距离。
解答:设火车长为L米,则火车从开始上桥到完全下桥行驶的距离为(1000+L)米,火车完全在桥上的行驶距离为(1000-L)米,设火车行进速度为u米/秒,则:由此知200×u=2000,从而u=10,L=200,即火车长为200米,速度为10米/秒。
评注:行程问题中的路程、速度、时间一定要对应才能计算,另外,注意速度、时间、路程的单位也要对应。
例2:甲、乙各走了一段路,甲走的路程比乙少1/5,乙用的时间比甲多了1/8,问甲、乙两人的速度之比是多少?分析:速度比可以通过路程比和时间比直接求得。
解答:设甲走了S米,用时T秒,则乙走了S÷(1-1/5)=5/4 S(米),用时为:T×(1+1/8)=9/8 T(秒),甲的速度为:S/T,乙速度为:5/4 S÷ 9/8 T=10S/9T,甲乙速度比为S/T :10S/9T=9:10评注:甲、乙路程比4/5,时间比8/9,速度比可直接用:4/5 ÷ 8/9=9/10,即9:10。
小学数学小升初数学所有类型行程问题(相遇问题追及问题火车行船问题环形跑道)集齐了(图文结合)
行程问题基础篇
【练习1】 1,甲、乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每 小时行18千米。两人相遇时距全程中点3千米,求全程长多少千米。 2,甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行60千米,乙 车每小时行56千米,两车在距中点16千米处相遇。东西两城相距多少千 米?
【思路导航】 先根据顺水速度和水速,可求船速为每小时25-5=20千米;再根据船速和水 速,可求出逆水速度为每小时行20-5=15千米。又已知“逆流而上用了75小 时”,所以,上海港与武汉港相距15×75=1125千米。
行程问题基础篇
【练习4】 1,一只轮船从A港开往B港,顺流而下每小时行20千米,返回时逆流而 上用了60小时。已知这段航道的水流是每小时4千米,求A港到B港相距多 少千米?
【思路导航】 从图中可以看出,丙和乙相遇后又经过10分钟和甲相遇,10分钟内甲
丙两人共行(30+50)×10=800米。这800米就是乙、丙相遇比甲多行的 路程。乙每分钟比甲多行40-30=10米,现在乙比甲多行800米,也就是 行了80÷10=80分钟。因此,AB两地间的路程为(50+40)×80=7200米。
3,甲、乙、丙三人,甲每分钟走60米,乙每分钟走67米,丙每分钟走73米。甲、 乙从南镇,丙从北镇同时相向而行,丙遇乙后10分钟遇到甲。求两镇相距多少千 米。
行程问题基础篇
【例题3】甲、乙两港间的水路长286千米,一只船从甲港开往乙港顺
水11小时到达;从乙港返回甲港,逆水13小时到达。求船在静水中的速 度(即船速)和水流速度(即水速)。
行程问题中等篇
【例题1】 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千 米,乙车每小时行48千米。两车在距中点32千米处相遇,东、西两地相 距多少千米?
(完整版)四年级数学行程问题
行程问题一、基本简单行程及变速问题1、强强跑100米用10秒,旗鱼每小时能游120 千米,请问:谁的速度更快?2、墨墨练习慢跑,12 分钟跑了3000 千,按照这个速度慢跑25000 米需要多少分钟?如果他每天都以这个速度跑10 分钟,连续跑一个月,他一共跑了多少千米?3、A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了 1 小时,如果要按照原定的时间到达B城,汽车在后一半行程上每小时应该行驶多少千米?4、甲乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米, 4 小时后它们相距多少千米?这时甲提高速度打算用 2 小时追上乙,那么甲每小时应该飞行多少千米?5、萱萱一家开车去外地旅游,原计划每小时行驶45 千米,实际上由于高速公路堵车,汽车每小时只行驶30 千米,这样就晚到两小时,问:萱萱一家在路上实际花了几个小时?6、甲从A地出发去B地办事情,下午 1 点出发,晚上7 点准时到达,如果他想下午两点出发,晚上7点准时到达,每小时就必须多行2千米,求AB两地之间的距离。
7、小欣家离学校1000米,平时他步行25 分钟后准时到校。
有一天他晚出发10 分钟,为避免迟到,小欣先乘公共汽车,然后步行,结果仍然准时到校,已知公共汽车的速度是小欣步行速度的 6 倍,问:小欣这天上学步行了多少米?8、甲乙两人分别从AB两地同时出发, 6 小时后相遇在中点,如果甲延迟 1 小时出发,乙每小时少走 4 千米,两人仍在中点相遇,问:甲乙两地相距多少千米?二、基本相遇问题:1、A、B两地相距4800 米,甲乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60 米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两人从出发地到相遇需要多长时间?2、在第 4 题中,如果甲乙两人的速度大小不变,但甲出发时改变方向,即两人同时同向出发,问:乙出发后多久可以追上甲?3、甲乙两地相距350 千米,A车在早上8 点从甲地出发,以每小时40 千米的速度开往乙地。
小学数学——行程问题
小学数学——行程问题1、甲、乙两辆汽车从A、B两城市同时相向开出,4小时在途中相遇。
已知甲汽车每小时行40千米,乙汽车每小时行55千米,求A、B两城相距多少千米?2、甲、乙两地相距360千米,客车和货车同时从两地相向而行,4小时在途中相遇,已知客车每小时行50千米,求货车每小时行多少千米?3、从北京到沈阳的铁路长738千米,两列火车从两地同时相对开出,北京开出的火车平均每小时行59千米;沈阳开出的火车平均每小时行64千米,两车开出后几小时相遇?4、A、B两城相隔458千米,甲车以每小时46千米,乙车以每小时38千米的速度先后从两城出发,相向而行,相遇时甲车行驶了230千米。
问乙车比甲车早出发几小时?5、两港相距267千米,客船以每小时45千米的速度,货船以每小时33千米的速度先后从两港开出,相向而行,相遇时客船行了135千米,问货船比客船提前几小时开出?6、两个游泳队同时从相距2040米的A、B两地相向出发,甲队从A 地下水,每分钟游40米,乙队从B地下水,每分钟游45米,一艘汽艇负责两队的安全,同时从B地出发,每分钟行驶1200米,遇到甲队就立即返回,返回遇到乙队又向甲队开去,这样不断地往返下去,汽艇行了多少千米两队才能相遇?7、A、B两站相距400千米,甲、乙两车同时从两站相对开出,甲车每小时行35千米,乙车每小时行45千米。
一只燕子以每小时50千米的速度和甲车同时出发,向乙车飞去,遇到乙车又折向甲车飞去,遇到甲车又往回飞向乙车,这样一直飞下去,燕子飞了多少千米,两车才能相遇?8、甲、乙两队学生从相距25千米的两地同时出发,相向而行。
一位老师骑自行车,在两队之间不停往返联络。
甲队每小时行4千米,乙队每小时行6千米,两队相遇时,骑自行车的老师一共行了25千米,问骑自行车的老师的速度?9、甲、乙两地相距300千米,客车从甲地开往乙地,每小时行驶40千米,1小时后,货车从乙地开往甲地,每小时行60千米。
小学阶段数学行程问题公式总结
小学阶段数学行程问题公式总结
小学阶段数学行程问题公式总结
一般行程问题公式
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间。
反向行程问题公式
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
同向行程问题公式
同时相向而行:路程=速度和×时间
同时相向而行:相遇时间=速度和×时间
同时同向而行(速度慢的在前,快的'在后):追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学中的行程问题【基本公式】基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
【例题精讲】例1、小王骑车到城里开会,以每小时12千米的速度行驶,2小时可以到达。
车行了15分钟后,发现忘记带文件,以原速返回原地,这时他每小时行多少千米才能按时到达?解答:要求小王返回原地后到城里的速度,就必须知道从家到城里的路程和剩下的时间。
根据题意,这两个条件都可以求出。
15分钟=小时从家到城里的路程:12×2=24(千米)返回后还剩的时间:2-×2=1(小时)返回后去城里的速度:24÷1=16(千米/时)答:他每小时行16千米才能按时到达。
2.相遇问题距离=速度和×相遇时间;相遇时间=距离÷速度和;速度和=距离÷相遇时间。
例2、如图,从A到B是1千米下坡路,从B到C是3千米平路,从C到D是2.5千米上坡路.小张和小王步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时。
问:(1)小张和小王分别从A, D同时出发,相向而行,问多少时间后他们相遇?(2)相遇后,两人继续向前走,当某一个人达到终点时,另一人离终点还有多少千米?解答:(1)小张从 A到 B需要1÷6×60= 10(分钟);小王从 D到 C也是下坡,需要2.5÷6×60= 25(分钟);当小王到达 C点时,小张已在平路上走了 25-10=15(分钟),走了4×=1(千米)。
因此在 B与 C之间平路上留下 3-1= 2(千米)由小张和小王共同相向而行,直到相遇,所需时间是:2 ÷(4+ 4)×60= 15(分钟)。
从出发到相遇的时间是25+15= 40(分钟)。
(2)相遇后,小王再走30分钟平路,到达B点,从B点到 A点需要走1÷2×60=30分钟,即他再走 60分钟到达终点。
小张走15分钟平路到达D点,45分钟可走:2×=1.5(千米)小张离终点还有2.5-1.5=1(千米)答:40分钟后小张和小王相遇。
小王到达终点时,小张离终点还有1千米。
3.追及问题追及距离=速度差×追及时间;追及时间=追及距离÷速度差;速度差=追及距离÷追及时间。
例3、小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米?解答:先计算,从学校开出,到面包车到达城门用了多少时间。
此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此所用时间=9÷6=1.5(小时)小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是9÷=54(千米/小时)面包车速度是 54-6=48(千米/小时)。
城门离学校的距离是48×1.5=72(千米)。
答:学校到城门的距离是72千米。
4.火车过桥问题我们在研究一般的行程问题时,是不考虑汽车等物体的本身长度的,因为这类物体的长度很小,可以忽略不计。
可是如果研究火车行程问题,因为车身有一定的长度,一般一百多米,就不能忽略不计了。
火车行程问题中的距离,一般是要考虑火车长度的。
火车通过一个固定的点所用的时间就是火车行驶车身长度所需要的时间。
(火车长度+桥的长度)÷通过时间=火车速度例4、一条隧道长360米,某列火车从车头入洞到全车进洞用了8秒钟,从车头入洞到全车出洞共用了20秒钟。
这列火车长多少米?解答:分析画出示意图:如图,火车8秒钟行的路程是火车的全长,20秒钟行的路程是隧道长加火车长。
因此,火车行隧道长360米,所用的时间是20-8=12秒钟,即可求出火车的速度。
火车的速度是360÷(20-8)=30(米/秒)。
火车长30×8=240(米)。
答:这列火车长240米。
5.火车相遇、追及问题错车时间=(甲车身长+乙车身长)÷(甲车速度+乙车速度)超车时间=(甲车身长+乙车身长)÷(甲车速度-乙车速度)例5、客车长182米,每秒行36米。
货车长148米,每秒行30米。
两车在平行的轨道上相向而行。
从相遇到错车而过需多少时间?解答:两列火车相向而行,从车头相遇一直到车尾离开,迎面错车而过,两列火车所行的路程是两列火车车身长度之和,速度是两列火车的速度之和,时间是:(182+148)÷(36+30)=5(秒)答:从相遇到错车而过需5秒。
6.环形行程问题封闭环形上的相遇问题:环形周长÷速度和=相遇时间封闭环形上的追及问题:环形周长÷速度差=追及时间例6、小张和小王各以一定速度,在周长为500米的环形跑道上跑步。
小王的速度是180米/分。
(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?解答:(1)两人相遇,也就是合起来跑了一个周长的行程。
75秒=1.25分。
小张的速度是500÷1.25-180=220(米/分)。
(2)在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是500÷(220-180)=12.5(分)。
220×12.5÷500=5.5(圈)。
答:(1)小张的速度是220米/分;(2)小张跑5.5圈后才能追上小王。
7.流水行船问题流水行船问题比一般的行程问题多了一个水流的影响,因此它有一些特殊的数量关系:顺水速度=船速+水速,逆水速度=船速-水速;水速=顺水速度-船速,船速=顺水速度-水速;水速=船速-逆水速度,船速=逆水速度+水速;船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例7、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
解答:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米。
8.重复相遇问题例8、两列火车从A城、B城相向而行,第一次相遇在离A地500公里处,相遇后,两列车继续前进,各自到达目的地后,又折回。
第二次相遇在离B城300公里处,问A城、B城相距多远?解答:如图,两列火车从出发到第二次相遇一共行了三个全程,分别为:第一列火车从A城到B城;第二列火车从B城到A城;第二列火车从A 城出发与从B城出发的第一列火车在途中相遇。
而这三个全程还可以从另外一个角度考察,第一列火车行500公里时,两列火车共行了一个全程,相遇后,两车速度依然不变,所以第一列火车行驶第二个500公里时,两列火车同样又共行了一个全程;当第一列火车行了第三个500公里,即第一列火车行驶500×3=1500公里时,两列火车正好共行了三个全程,而这时,两列火车第二次相遇,由图观察可得,这时第一列火车又折回了300公里,即第一列火车行驶的1500公里比全程多了300公里,于是,全程即为3×500-300=1200公里。
3×500-300=1200。
答:A城、B城相距1200公里。
习题:1.小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟。
他们同时出发,几分钟后两人相遇?解答:走同样长的距离,小张花费的时间是小王花费时间的36÷12=3(倍),因此自行车的速度是步行速度的3倍,也可以说,在同一时间内,小王骑车走的距离是小张步行走的距离的3倍。
如果把甲地乙地之间的距离分成相等的4段,小王走了3段,小张走了1段,小张花费的时间是36÷(3+1)=9(分钟)。
答:两人在9分钟后相遇。
2.小张从家到公园,原打算每分种走50米。
为了提早10分钟到,他把速度加快,每分钟走75米。
问家到公园多远?解答:方法1:可以作为“追及问题”处理。
假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是50 ×10÷(75- 50)= 20(分钟)因此,小张走的距离是75× 20= 1500(米)。