天津人教版七年级下数学练习题

合集下载

【3套打包】天津市七年级数学下册第十章数据的收集、整理与描述题单元综合练习卷(含答案解析)

【3套打包】天津市七年级数学下册第十章数据的收集、整理与描述题单元综合练习卷(含答案解析)

人教版七年级数学下册:第10章单元检测题一、选择题(每小题3分,共30分)1.下列调查中,最适合用全面调查方式的是(B)A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查某市初中学生每天锻炼所用的时间情况D.调查某市初中学生利用网络媒体自主学习的情况2.下列统计图能够显示数据变化趋势的是(C)A.条形图B.扇形图C.折线图D.直方图3.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有(C)A.4个B.3个C.2个D.1个4.一组数据中的最小值是31,最大值是101,若取组距为9,则组数为(B)A.7 B.8C.9 D.7或8均可5.某学校教研组对七年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校七年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)(B)A.216 B.252C.288 D.3246.某中学开展“阳光体育一小时”活动,根据学校实际情况,决定开设“A:踢毽子;B:篮球;C:跳绳;D:乒乓球.”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如图所示的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为(D)A.240 B.120 C.80 D.407.为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如图所示的折线统计图.由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为(C)A.9 B.10 C.12 D.158.为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是(D) A.100人B.200人C.260人D.400人,第8题图),第9题图) 9.将一次知识竞赛成绩(整数)进行整理后,分成五组,绘成频数分布直方图,如图中从左到右的前四组的百分比分别是4%,12%,40%,28%,最后一组的频数是8,则:①第五组的百分比为16%;②该班有50名同学参赛;③成绩在70.5~80.5的人数最多;④80分以上(不含80分)的学生共有22名.其中正确的有(A)A.4个B.3个C.2个D.1个10.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计,如图所示是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是(C)A.由这两个统计图可知喜欢“科普常识”的学生有90人B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C.由这两个统计图不能确定喜欢“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°二、填空题(每小题3分,共24分)11.要了解一批炮弹的杀伤力,适合采用抽样调查;检查一枚即将发射的运载火箭的各零部件,适合采用全面调查.12.我市某校40名学生参加全国数学竞赛,把他们的成绩分为6组,第一组到第四组的频数分别为10,5,7,6,第五组的人数所占百分比是20%,则第六组人数所占百分比是10%.13.某校在一次期末考试中,随机抽取八年级30名学生的数学成绩进行分析,其中3名学生的数学成绩达108分以上,据此估计该校八年级630名学生中期末考试数学成绩达108分以上的学生约有63名.14.一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个大商场同类产品销量的40%.由此在广告中宣传,他们的产品占国内同类产品销售量的40%.请你根据所学的统计知识,判断该广告宣传中的数据不可靠(填“可靠”或“不可靠”),理由是调查不具有代表性.15.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,如果参加丁组的学生占所有报名人数的20%,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为40%.,第15题图),第16题图) 16.某学校“你最喜爱的球类运动”调查中,随机调查了若干名学生(每个学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为60名.17.为了了解我校七年级的数学教学情况,从中抽取了若干名学生参加测试,其得分情况如图,且四个小长方形的高之比为2∶4∶3∶1,则参加测试的学生共有100人.18.七(1)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):560户.三、解答题(共66分)19.(9分)某校为了解七年级新生入学时的数学水平,随机抽取若干名学生的数学成绩调查统计,整理后绘制成如图所示的频数分布直方图(每组含最小值,不含最大值),观察图形回答下列问题:(1)本次随机抽查的学生人数是多少?(2)若80分及以上的成绩为良好,试估计该校550名七年级新生中数学成绩良好的有多少人?解:(1)由频数分布直方图可知,随机抽查的学生人数为1+2+3+8+10+14+6=44(人) (2)550×14+644=250(人)20.(9分)某学校要了解学生上学交通情况,选取九年级全体学生进行调查.根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°.已知九年级乘公交车上学的人数为50人.(1)九年级学生中,骑自行车和乘公交车上学哪个更多?多多少人?(2)如果全校有学生2000人,学校准备的400个自行车停车位是否足够?解:(1)骑自行车的学生更多,多50人 (2)∵2000×120360≈666>400,∴学校准备的400个自行车停车位不够21.(12分)“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动人教版七年级数学下册第十章 数据的收集、整理与描述 综合提升卷 人教版七年级数学下册 第十章 数据的收集、整理与描述 单元测试题第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.动物园中有熊猫、孔雀、大象、梅花鹿四种可爱的动物,为了解本班同学喜欢哪种动物的人最多,需要进行调查,则调查的对象是( )A .本班的每一名同学B .熊猫、孔雀、大象、梅花鹿C.同学们的选票D.记录下来的数据2.下列调查中,最适合采用全面调查的是()A.调查一批汽车的使用寿命B.调查春节联欢晚会的收视率C.调查某航班的旅客是否携带违禁物品D.调查全国七年级学生的视力情况3.某地区有38所中学,其中七年级学生共6858名.为了了解该地区七年级学生每天体育锻炼的时间,请你运用所学的统计知识,将解决上述问题所要经历的以下几个主要步骤进行排序:①抽样调查;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.其中正确的是()A.①②③④⑤B.②①③④⑤C.②①④③⑤D.②①④⑤③4.有40个数据,其中最大值为35,最小值为14,若取组距为4,则组数是()A.4 B.5 C.6 D.75.某中学为了了解2018年度下学期七年级数学学科期末考试各分数段成绩的分布情况,从全校七年级1200名学生中随机抽取了200名学生的期末数学成绩进行调查,在这次调查中,样本是()A.1200名学生B.200名学生C.1200名学生的期末数学成绩D.200名学生的期末数学成绩6.下列调查中,选取的样本具有代表性的是()A.为了解某地区居民的防火意识,对该地区的初中生进行调查B.为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查C.为了解某商场的平均日营业额,选在周六进行调查D.为了解全校学生课外小组的活动情况,对该校的男生进行调查7.某校七(1)班的全体同学最喜欢的球类运动用如图10-T-1所示的统计图来表示,下列说法正确的是()A.从图中可以直接看出最喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学初中三年来最喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系图10-T-1 8.为了筹备班级毕业联欢会,班长对全班50名同学喜欢吃哪几种水果作了民意调查,小明将班长的统计结果绘制成如图10-T-2所示的统计图,并得出以下四个结论:①一个人可以喜欢吃几种水果;②喜欢吃葡萄的人最多;③喜欢吃苹果的人数是喜欢吃梨的人数的3)图10-T-2A.1个B.2个C.3个D.4个9.某班有48名学生,在一次数学测验中,统计他们的成绩,分数为正整数,绘制出如图10-T-3所示的频数分布直方图(横轴表示分数,纵轴表示频数),从左到右的小长方形的高度之比是1∶3∶6∶4∶2,则由图可知,其中分数在70.5~80.5之间的人数是()图10-T-3A.9 B.18 C.12 D.610.七年级(1)班班长统计去年1~8月份“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图10-T-4所示的折线统计图,与上月相比较,阅读数量变化率最大的月份是()图10-T-4A.2月B.5月C.6月D.7月请将选择题答案填入下表:第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.为了了解某地区3500名初中毕业生的数学成绩,从中抽出20本试卷,每本30份,其中个体是______________________.12.已知一个样本中的50个数据分别落在五个小组内,第一、三、四、五组数据的个数分别为2,8,10,20,则第二小组的频数为__________.13.有下列说法:①审查书稿有哪些科学性错误适合全面调查;②了解全国足球迷的健康状况适合抽样调查;③为了调查一个省的环境污染情况,调查了该省省会城市的环境污染情况,利用此调查结果来反映该省的环境污染情况;④某环保网站正在对“支持商店使用环保购物袋”进行在线调查,此种调查结果不具有普遍代表性.其中正确的有____________.(只填序号)14.某实验中学七年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计图如图10-T-5所示,其中评价为“A”等级所在扇形的圆心角的度数是________°.图10-T-515.某校七、八、九三个年级的同学参加了今年的植树活动,如图10-T-6描述的是这三个年级的植树情况,这三个年级今年共植树________棵.图10-T-616.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制成如图10-T-7所示的部分频数分布直方图(从左到右依次为第一、二、三、四、五、六小组,每小组含最小值,不含最大值)和扇形统计图.若“一分钟跳绳”不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校“一分钟跳绳”成绩为优秀的学生有________名.图10-T-7三、解答题(共52分)17.(5分)在数学、外语、语文及其他学科中,某校七年级开展了“同学们最喜欢哪门学科”的调查(该校七年级共有200人,每人只能选一项).(1)调查的问题是什么?调查的对象是谁?(2)在被调查的200名学生中,有40人最喜欢语文,60人最喜欢数学,80人最喜欢外语,其余的人选择其他.请把七年级的学生最喜欢某学科的人数及其占学生总数的百分比填入下表:18.(5分小华、小娜和小阳三位同学在同一所学校上学,该学校共有3个年级,每个年级有4个班,每个班的人数在20~30之间.为了了解该校学生家庭的教育消费情况,他们各自设计了如下的调查方案:小华:我准备给全校每个班都发一份问卷,由班长填写完成.小娜:我准备把问卷发送到随机抽取的某个班的家长微信群里,通过网络提交完成.小阳:我准备给每个班学号分别为1,5,10,15,20的同学各发一份问卷,填写完成.根据以上材料回答问题:小华、小娜和小阳三人中,哪一位同学的调查方案能较好地获得该校学生家庭的教育消费情况,并简要说明其他两位同学调查方案的不足之处.19.(5分)某汽车厂去年每个季度汽车的销售数量(辆)占当季汽车产量(辆)百分比的统计图如图10-T-8所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季度的汽车产量;(2)圆圆同学说:“因为第二、第三这两个季度的汽车销售数量占当季汽车产量的百分比是从75%下降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量.”你认为圆圆的说法对吗?为什么?图10-T-820.(6分)某校为提高学生身体素质,决定开展足球、篮球、排球、乒乓球四项课外体育活动,并要求学生必须且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并绘制出以下两幅不完整的统计图(如图10-T-9).请根据统计图回答下列问题.(1)这次活动一共调查了多少名学生?(2)补全条形统计图;(3)若该学校总人数是1300,请估计选择篮球项目的学生人数.图10-T-921.(7分)某农科所为了考察某种水稻穗长的分布情况,在一块试验田里随机抽取了50个谷穗作为样本,并测量出它们的长度(单位:cm).对样本数据适当分组后,列出了如下频数分布表:(1)画出频数分布直方图;(2)请你对这块试验田里的水稻穗长分布情况进行分析,并计算出这块试验田里穗长在5.5≤x<7范围内的谷穗所占的百分比.22.(7分)为了解某市七年级学生的体育测试成绩和课外体育锻炼时间的情况,现从全市七年级学生体育测试成绩中随机抽取200名学生的体育测试成绩作为样本,体育成绩分为四个等级:优秀、良好、及格、不及格.制成如图10-T -10所示的扇形统计图.(1)试求扇形统计图中体育成绩“良好”所对应扇形圆心角的度数;(2)统计样本中体育成绩为“优秀”和“良好”的学生课外体育锻炼时间如下表所示,请将表格填写完整(记学生课外体育锻炼时间为x 小时);(3)全市七年级学生中有14400人的体育测试成绩为“优秀”或“良好”,请估计这些学生中课外体育锻炼时间不少于8小时的学生人数.图10-T -10 23.(8分)某小区超市一段时间每天订购面包进行销售,每售出1个面包获利润0.5元,未售出的每个亏损0.3元.(1)若该超市每天订购面包80个,今后每天售出的面包个数用x(0<x ≤80)表示,每天销售面包的利润用y(元)表示,请用含x的式子表示y ;(2)小明连续m 天对该超市的面包销量进行统计,并制成了频数分布直方图(每组含最小值,不含最大值)和扇形统计图,如图10-T -11所示.请根据两图提供的信息计算在m 天内日销售利润少于32元的天数.图10-T -1124.(9分)为激励教师爱岗敬业,某市开展了“我最喜爱的老师”评选活动.某中学确定如下评选方案:有学生和教师代表对4名候选教师进行投票,每票选1名候选教师,每位候选教师得到的教师票数的5倍与学生票数的和作为该教师的总票数.以下是根据学生和教师代表投票结果绘制的统计表和条形统计图(不完整).学生投票结果统计表图10-T -12(1)若共有25位教师代表参加投票,则李老师得到的教师票数是多少?请补全条形统计图;(2)王老师与李老师得到的学生总票数是500票,且王老师得到的学生票数比李老师得到的学生票数的3倍多20票,求王老师与李老师得到的学生票数分别是多少;(3)在(1)(2)的条件下,若总得票数较高的2名教师推选到市参评,你认为推选到市里的是哪两位教师?典题讲评与答案详析1.A [解析] 因为要了解本班同学喜欢哪种动物的人最多,所以调查的对象是本班的每一名同学.2.C [解析] 调查某航班的旅客是否携带违禁物品调查数目较小,要求准确度高,没有破坏性,因此采用全面调查.3.D4.C [解析] 最大值与最小值的差为21,21÷4=5.25,采用进一法,所以组数为6. 5.D [解析] 总体是全校七年级1200名学生的期末数学成绩,样本是200名学生的期末数学成绩.6.B7.D [解析] 因为扇形统计图直接反映部分占总体的百分比大小,不能反映具体数量的多少和变化情况,所以A ,B ,C 都错误,D 正确.8.C [解析] 由条形统计图可知,喜欢吃四种水果的总人数为30+10+20+40=100,而实际调查了50人,所以一人可以喜欢吃几种水果;喜欢吃葡萄的人数为40,人数最多;喜欢吃苹果的人数为30,喜欢吃梨的人数为10,则喜欢吃苹果的人数是喜欢吃梨的人数的3倍;喜欢吃香蕉的人数占全班总人数的百分比为20÷50×100%=40%.9.B [解析] 分数在70.5~80.5之间的人数是48×61+3+6+4+2=18.10.D 11.每一名初中毕业生的数学成绩12.10 [解析] 这五个小组数据的个数之和为50,所以第二小组的频数为50-2- 10-8-20=10.13.①②④14.108 [解析] 其中评价为“A ”等级所在扇形的圆心角的度数是360°×(1-15%-20%-35%)=108°.15.520 [解析] 三个年级一共有26个标志,一个标志代表20棵树,所以共有520 棵树.16.480 [解析] 抽取的总人数是10÷20%=50,第四小组的人数是50-4-10-16-6-4=10,所以该校学生“一分钟跳绳”成绩为优秀的有10+6+450×1200=480(名).17.解:(1)调查的问题是在数学、外语、语文及其他学科中,你最喜欢哪门学科.调查的对象是某校七年级的全体同学.(2)18.解:小阳的调查方案能较好地获得该校学生家庭的教育消费情况. 小娜的调查方案的不足之处:抽样调查所抽取的样本的代表性不够好; 小华的调查方案的不足之处:抽样调查所抽取的学生数量太少. 19.解:(1)由题意,得2100÷70%=3000(辆). 答:该季度的汽车产量是3000辆. (2)圆圆的说法不对. 理由:因为百分比仅能够表示所要考察的数据在总量中所占的比例,并不能反映总量的大小.20.解:(1)这次活动一共调查了学生140÷35%=400(名). (2)选择篮球的学生人数为400-140-20-80=160. 补全条形统计图如下:(3)1300×160400=520(人).答:该校选择篮球项目的学生人数约为520人. 21.解:(1)如图:(2)由(1)可知谷穗长度大部分落在5~7 cm 之间,其他较少,长度在6≤x <6.5范围内的谷穗个数最多,有13个,而长度在4.5≤x <5和7≤x <7.5范围内的谷穗个数很少,总共只有7个.这块试验田里穗长在5.5≤x <7范围内的谷穗所占的百分比为(12+13+10)÷50×100%=70%.22.解:(1)扇形统计图中体育成绩“良好”所对应扇形圆心角的度数为(1-15%-14%-26%)×360°=162°.(2)因为体育成绩为“优秀”和“良好”的学生有200×(1-14%-26%)=120(名), 所以8≤x ≤10范围内的人数为120-43-15=62. 故表格中填62.(3)由题意,得62120×14400=7440(人).答:估计课外体育锻炼时间不少于8小时的学生人数为7440人. 23.解:(1)y =0.5x -0.3(80-x ), 即y =0.8x -24(0<x ≤80).(2)m =3÷(1-50%-20%-20%)=30. 销售利润少于32元,则0.8x -24<32, 解得x <70.日销售利润少于32元所占的百分比是1-50%-20%=30%,则在m 天内日销售利润少于32元的天数是30%m =30%×30=9(天). 24.解:(1)李老师得到的教师票数是25-(7+6+8)=4. 补全条形统计图如图所示:(2)设王老师与李老师得到的学生票数分别是x 票和y 票.由题意,得⎩⎪⎨⎪⎧x +y =500,x =3y +20,解得⎩⎪⎨⎪⎧x =380,y =120. 答:王老师与李老师得到的学生票数分别是380票和120票.(3)总得票数情况如下: 王老师:380+5×7=415. 赵老师:200+5×6=230. 李人教版七年级下册 十章《数据的收集 整理和描述》单元测试卷一、选择题(每小题5分,共25分)1、下列调查中,适宜采用全面调查的是( )A .了解一批圆珠笔的寿命B .了解全国九年级学生身高的现状C .考察人们保护海洋的意识D .检查一枚用于发射卫星的运载火箭的各零部件 2、以下问题,不适合用全面调查的是( )A .旅客上飞机前的安检B .学校招聘教师,对应聘人员的面试C .了解一批灯泡的使用寿命D .了解全校学生的课外读书时间3、每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,样本是( )A .500名学生B .所抽取的50名学生对“世界读书日”的知晓情况C .50名学生D .每一名学生对“世界读书日”的知晓情况4、中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是( )A .该校约有90%的家长持反对态度B .调查方式是普查C .该校只有360个家长持反对态度样D .本是360个家长 5、右图是甲、乙两户居民家庭全年支出费用的扇形统计图. 根据统计图,下面对全年食品支出费用判断正确的是( ) A .甲户比乙户多 B .乙户比甲户多 C .甲、乙两户一样多 D .无法确定哪一户多二、填空题(每小题5分,共25分)6、要了解一批炮弹的杀伤力情况,适宜采取(选填“全面调查”或“抽样调查”).7、一组数据的最大值与最小值的差为23,若确定组距为3,则分成的组数是_________.8、为了考察某市初中35 000名毕业生的数学成绩,从中抽出20本试卷,每本30份,在这个问题中,样本容量是_________.9、有40个数据,共分成6组,第1~4组的频数分别为10,5,7,6.第5组的频率是0.1,则第6组的频数是________.10、某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成如图所示的条形图,由此可估计该校2000名学生有__________名学生是骑车上学的.三、解答题(共50分)11、我校50名学生在某一天调查了75户家庭丢弃塑料袋的情况,统计结果如下:根据上表回答下列问题:(1)这天,一个家庭一天最多丢弃______个塑料袋;(2)这天,丢弃3个塑料袋的家庭户数占总户数的________;(3)该居民区共有居民0.8万户,则该区一天丢弃的塑料袋有_________个.12、我国体育健儿在最近六届奥运会上获得奖牌的情况如图所示.⑴最近六届奥运会上,我国体育健儿共获得枚奖牌;⑵用条形图表示折线图中的信息.13、为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图.已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.(1)求第二小组的频数是;(2)所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比是.14、2015年6月28日,“合福高铁”正式开通,对南平市的旅游产业带来了新的发展机遇.某旅行社抽样调查了2015年8月份该社接待来南平市若干个景点旅游的人数,并将调查(1)此次共调查__________人,并补全条形统计图;(2)由上表提供的数据可以制成扇形统计图,则“天成奇峡”所对扇形的圆心角为°;(3)该旅行社预计今年8月份将要接待来以上景点的游客约2 500人,根据以上信息,请你估计去“九曲溪”的游客大约有人.15、某校七年级实行小组合作学习,为了解学生课堂发言情况,随机抽取该年级部分学生,对他们每天在课堂中发言的次数进行调查和统计,统计表如下,并绘制了两幅不完整的统计图(如图所示).已知A、B两组发言人数直方图高度比为1∶5,请结合图中相关的数据回答下列问题:(1) A 组的人数是 ,本次调查的样本容量是 ; (2) C 组的人数是 ,并补全直方图;(3) 该校七年级共有500人,估计全年级每天在课堂中发言次数不少于15次的人数是多少?《数据的收集 整理和描述》单元测试卷参考答案一、选择题1、D2、C3、B4、A5、D 二、填空题6、抽样调查7、88、6009、4 10、1 240 三、解答题11、解:(1)5 (2)40% (3)28800.12、解:(1) 我国体育健儿共获得286枚奖牌; (2) 图略. 13、解:(1)第二小组的频数和频率是:15 . (2)60% . 14、解:(1)400 ,补全图形;(2)75.6 ;(3)72529.02500=⨯(人) 答:估计去九曲溪的游客约有725人.15、解:(1)∵B 组有10人,A 组发言人数∶B 发言人数=1∶5,∴A 组发言人数为2人.本次调查的样本容量为:2÷4%=50(人);(2) C 组的人数有:50×40%=20(人),图略. (3) ∵D 、E 、F 三组总人数为:50-2-10-20=18(人), ∴发言次数不少于15次的人数为。

天津市人教版七年级下册数学全册单元期末试卷及答案-百度文库

天津市人教版七年级下册数学全册单元期末试卷及答案-百度文库
A.5个B.4个C.3个D.2个
10.若(2x+3y)(mx-ny)=9y2-4x2,则m、n的值为( )
A.m=2,n=3B.m=-2,n=-3C.m=2,n=-3D.m=-2,n=3
二、填空题
11.分解因式:m2﹣9=_____.
12.已知等腰三角形的两边长分别为4和8,则它的周长是_______.
23.如图1是一个长为 ,宽为 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).
(1)图2中的阴影部分的面积为;
(2)观察图2请你写出 , , 之间的等量关系是;
(3)根据(2)中的结论,若 , ,则 ;
(4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式 .在图形上把每一部分的面积标写清楚.
天津市人教各图的△ABC中,正确画出AC边上的高的图形是()
A. B.
C. D.
2.如图所示图形中,把△ABC平移后能得到△DEF的是( )
A. B. C. D.
3.已知多项式 与 的乘积中不含 项,则常数 的值是( )
A. B. C. D.
故选A
【点睛】
本题主要考查图形的平移,特别要注意区分图形的旋转和平移.
3.A
解析:A
【分析】
先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.
【详解】
解: ,
∵不含 项,
∴ ,
解得 .
故选:A.
【点睛】
本题主要考查单项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键.
考点:因式分解
6.A
解析:A

天津市人教版七年级数学下册期末测试题

天津市人教版七年级数学下册期末测试题

天津人教版七年级数学下册期末测试元,那么商品进货价为 () 9.课间操时,小华、小军、小刚的位置如图 1,小华对小刚说,如果我的位置用(?0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共9个小题,每小题 3分,共27分,把答案直接填在答题卷的横线上. 11.49的平方根是 _________,算术平方根是 _______ ,-8 的立方根是 ______ . 12. 不等式5x-9 < 3(x+1)的解集是 __________ .113. 4 .对于方程 —x 3y 4,用含x 的代数式表示y2为 _______________ .3. 、选择题:(本大题共10个小题,每小题 3分,共30分) 若m >- 1,则下列各式中错误的 是(A. 已知 6m > — 6 B . — 5m K — 5 C . a > b > 0,那么下列不等式组中无解 m+1> 0 的是( D . 1 — m x )22011-2-234. x a Bx bx b一辆汽车在公路上行驶,两次拐弯后, 能为 (A) (C) A.b仍在原来的方向上平行行驶,那么两个拐弯的角度可 5 •解为()先右转50°,后右转 先右转50°,后左转 1 的方程组是(240°130° (B)(D)先右转50°,后左转 先右转50°,后左转40° 50°xA.3x B.y 6.如图,在△ 是( ) A. 1000(1)下列方程中, 5ABC 中,/ ABC=50, 7. A.8. 3xB . 110°C⑵是一元一次方程的是(x 2y 5 B. 为了搞活经济,某商场将一种商品x y 3 3x y 1ACB=80, BP 平分/ C.D.ABC , x 2y 3 3x y 5CP 平分/ ACB 则/ BPC 的大小1150120°)•.4x 2A 按标价9折岀售, 仍获利润10%若商品A 标价为33A. 31 元B. 30.2 元C . 29.7 元D . 27 元火车站,现要建一火车站,?为了使李庄人乘火车最方便 (位置已选好),说明理由: .16.女口 图,AD // BC, / D=100° ,CA 平分/ BCD,则 / DAC= _____ .17 •给岀下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正 八边形•用上述正多边形中的一种能够辅满地面的是 ____________ •(将所有答案的序号都填上 ) 18.若 |X 2-25 I + y 3 =0,则 X = ____________ ,y= ______ 19.若关于X 的方程(k 2)X M 5k 1 0是一元一次方程,则k _____ , X ______20. 关于X 的不等式3X 2a < 2的解集如图所示,贝U a 的值是 ______________ • 21. 如果 a+b=5,ab=6,那么 a 2 3ab b 2_____三、解答题:共43分,解答题应写岀文字说明、证明过程或演算步骤.X 3(X 2)4,19 .解不等式组:2X 1X 1 ,并把解集在数轴上表示岀来.5 〒.3X 4 6X 220. 已知不等式组 2X 1X 1,求此不等式组的整数解;1 -3221. 如图,AD // BC , AD 平分/ EAC,你能确定/ B 与/ C 的数量关系吗请说明理由。

天津市和平区七年级数学下册一元一次不等式测试题新人教版含答案

天津市和平区七年级数学下册一元一次不等式测试题新人教版含答案

一元一次不等式一、选择题:1.不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤12.不等式无解,则a的取值范围是()A.a<2B.a>2C.a≤2D.a≥23.不等式组的解集在数轴上表示正确的是()4.若不等式组的解集为﹣1<x<1,则(a﹣3)(b+3)的值为()A.1B.﹣1C.2D.﹣25.使不等式x-1≥2与3x-7<8同时成立的x的整数值是( )A.3,4B.4,5C.3,4,5D.不存在6.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是()A.5 B.6 C.7 D.87.若关于x的不等式3x-a≤0的正整数解是1、2、3,则a应满足的条件是( )A.a=9B.a≤9C.9<a≤12D.9≤a<128.若方程组的解x,y满足0<x+y<1,则k的取值范围是( )A.﹣4<k<0B.﹣1<k<0C.0<k<8D.k>﹣49.若不等式组有三个非负整数解,则m的取值范围是()A.3<m<4B.2<m<3C.3<m≤4D.2<m≤310.把不等式-2x<4的解集表示在数轴上,正确的是()11.如果不等式组有解且均不在﹣1<x<1内,那么m的取值范围是()A.m<﹣1 B.1≤m<5 C.m≥5 D.﹣1≤m≤512.某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A.4B.5C.6D.7二、填空题:13.若不等式(m﹣2)x>m﹣2的解集是x<1,则m的取值范围是.14.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是.15.求-1≤3x+5≤11的整数解是16.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了场.17.小明用100元钱去购买笔记本和钢笔共30件,如果每枝钢笔5元,每个笔记本2元,那么小明最多能买________枝钢笔.18.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降元出售此商品.三、计算题:19.解不等式(组):(1). (2) (3)2+(4) (5) (6)四、解答题:20.已知关于x,y的方程组的解满足不等式组求满足条件的m的整数值.21.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?22.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品比B 产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?23.某班同学组织春游活动,到超市选购A、B两种饮料,若购买6瓶A种饮料和4瓶B种饮料需花费39元,购买20瓶A种饮料和30瓶B种饮料需花费180元.(1)购买A、B两种饮料每瓶各多少元?(2)实际购买时,恰好超市进行促销活动,如果一次性购买A种饮料的数量超过20瓶,则超出部分的价格享受八折优惠,B种饮料价格保持不变,若购买B种饮料的数量是A种饮料数量的2倍还多10瓶,且总费用不超过320元,则最多可购买A种饮料多少瓶?参考答案1.A2.C3.D4.D5.A6.B7.D8.A9.D10.A11.B12.B13.答案为:m<2.14.答案为:13≤a<1515.答案为:-2,-1,0,1;16.答案为:717.答案为:13.18.答案为:6019.(1)答案为:x≥-2(2)答案为:x<3(3)答案为:x≥1(4)答案为:﹣1≤x<2.(5)答案为:2<x≤4(6)答案为:-7≤x<1.20.答案为:m=-3或-2.21.解:(1)设商场购进甲种商品x件,乙种商品y件,根据题意得:,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.22.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,答:(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,3种,分别为:23.解:(1)设购进A种饮料每瓶x元,购进B种饮料每瓶y元,根据题意可得:,解得:,答:购进A种饮料每瓶4.5元,购进B种饮料每瓶3元;(2)设购进A种饮料a瓶,购进B种饮料(2a+10)瓶,根据题意可得;20×4.5+4.5(a﹣20)×80%+3(2a+10)≤320,解得:a≤28,∵a取正整数,∴a最大为28,答:最多可购进A种饮料28瓶.。

天津市2020〖人教版〗七年级数学下册期末复习考试试卷819

天津市2020〖人教版〗七年级数学下册期末复习考试试卷819

天津市2020年〖人教版〗七年级数学下册期末复习考试试卷创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一、选择题(本大题共10小题,每小题3分,满分30分)1.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.2.如图,∠1和∠2是()A.内错角B.同旁内角C.同位角D.对顶角3.下列命题中,是真命题的是()A.如果a⊥b,b⊥c,则a⊥cB.经过直线外一点,有而且只有一条直线与这条直线平行C.在坐标平面内P(﹣2,3)到x轴上的距离等于﹣2D.无限小数都是无理数4.如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A.40°B.45°C.50°D.60°5.点P(3,4)向上平移2个单位,向左平移3个单位,得到点P'的坐标是()A.(5,1)B.(5,7)C.(0,2)D.(0,6)6.如图,数轴上点P表示的数可能是()A.﹣B.﹣C.﹣3.2D.π7.如图,小手盖住的点的坐标可能为()A.(﹣4,﹣6)B.(﹣6,3)C.(5,2)D.(3,﹣4)8.六个数中:﹣,﹣1,0,,,是无理数的有()A.1个B.2个C.3个D.4个9.根据光反射定律,射到平面镜上的光线与被反射出的光线与平面镜的夹角相同,如图,已知∠AOB的两边OA.OB均为平面反光镜,∠AOB=36°,在OB上有一个点E,从点E射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠CDE的度数是()A.36°B.72°C.108°D.144°10.对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x﹣y);且规定Pn(x,y)=P1[Pn﹣1(x,y)](n为大于1的整数).如P1(1,2)=(3,﹣1),P2(1,2)=P1[P1(1,2)]=P1(3,﹣1)=(2,4),P3(1,2)=P1[P2(1,2)]=P1(2,4)=(6,﹣2).则P(1,﹣1)为()A.(0,21009)B.(0,﹣21009)C.(0,﹣21010)D.(0,21010)二、填空题(本大题共10小题,每小题3分,满分30分)11.5的平方根是________.12.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是__________.13.的绝对值是_________.14.点P(﹣2,﹣3)和点Q(3,﹣3)的距离为_______.15.如图,添加一个条件(不再添加字母),使得AB∥CD,你添加的条件是________.16.如图,AF是∠BAC的平分线,EF∥AC交AB于点E,若∠1=25°,则∠BEF的度数为________.17.已知x的两个平方根分别是2a﹣1和a﹣5,则x=__________.18.若点P(2﹣m,3m+1)在坐标轴上,则点P的坐标为________.19.如图,在长20米,宽10米的长方形草地内修建了宽2米的道路,则道路的面积为________.20.已知点A(1,0),B(2,2),点P在y轴上,且△PAB的面积为5,则点P的坐标是_______.三、解答题(共6小题,共50分)21.(6分)(1)计算:(2)求x的值:(x﹣5)3=﹣822.(8分)如图,AB和CD相交于点O,∠C=∠1,∠D=∠2,求证:∠A=∠B.证明:∵,∠C=∠1,∠D=∠2(已知)又∵∠1=∠2()∴________ =_________(等量代换)∴AC∥BD()∴∠A=∠B()23.(8分)如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2).(1)直接写出点C1的坐标为________;(2)在图中画出△A1B1C1;(3)△AOA1的面积=______;(4)在坐标轴上找一点P,使△B1CP的面积等于△COC1的一半,直接写出点P的坐标.24.(8分)定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6.(1)(﹣4)☆3_____;(2)(6﹣)☆=_________;(3)若P(x+1,3﹣x)在第四象限,则(x+1)☆(3﹣x)=_____;(4)如果1☆(x2﹣5)=,求x的值.25.(8分)如图1,有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积是_______ ,边长是_______.(2)把10个小正方形组成的图形纸(如图2),剪开并拼成正方形.①请在4×4方格图内画出这个正方形.②以小正方形的边长为单位长度画一条数轴,并在数轴上画出表示﹣的点.(3)这种研究和解决问题的方式,主要体现了______的数学思想方法.A.数形结合 B.代入 C.换元 D.归纳26.(12分)如图,在平面直角坐标系中,点A,B的坐标分别为(a,0),(0,b),且满足(a﹣4)2+=0,现将OA平移到BC的位置,连接AC,点P为从B出发沿BC﹣CA运动的一动点,速度为每秒1个单位长度,设运动时间为t秒.(1)求出a和b的值,并写出点C的坐标;(2)当t为0到4时点P的坐标可表示为(用含t的式子来表示);当t为4到6时点P的坐标可表示为(用含t的式子来表示);(3)当t为多少时三角形ABP的面积是四边形OACB的面积的;(4)点Q以每秒3.5个单位长度的速度从点A出发,在AO间往返运动,(两个点同时出发,当点P到达点A停止时点Q也停止),在运动过程中,直接写出当PQ∥OB时,点P的坐标.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分)1.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.【分析】根据平移与旋转的性质得出.【解答】解:A.能通过其中一个四边形平移得到,错误;B.能通过其中一个四边形平移得到,错误;C.能通过其中一个四边形平移得到,错误;D.不能通过其中一个四边形平移得到,需要一个四边形旋转得到,正确.故选:D.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,导致误选.2.如图,∠1和∠2是()A.内错角B.同旁内角C.同位角D.对顶角【分析】根据对顶角的概念解答即可.【解答】解:∠1和∠2是对顶角,【点评】此题考查对顶角问题,关键是根据对顶角的概念解答.3.下列命题中,是真命题的是()A.如果a⊥b,b⊥c,则a⊥cB.经过直线外一点,有而且只有一条直线与这条直线平行C.在坐标平面内P(﹣2,3)到x轴上的距离等于﹣2D.无限小数都是无理数【分析】根据平行线的判定定理、平行公理、无理数的概念判断即可.【解答】解:如果a⊥b,b⊥c,则a∥c,A是假命题;经过直线外一点,有而且只有一条直线与这条直线平行,B是真命题;在坐标平面内P(﹣2,3)到x轴上的距离等于2,C是假命题;无限不循环小数都是无理数,D是假命题;故选:B.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A.40°B.45°C.50°D.60°【分析】由把一块直角三角板的直角顶点放在直尺的一边上,∠1=40°,可求得∠3的度数,又由AB∥CD,根据“两直线平行,同位角相等“即可求得∠2的度数.【解答】解:∵∠1+∠3=90°,∠1=40°,∴∠3=50°,∵AB∥CD,∴∠2=∠3=50°.故选:C.【点评】此题考查了平行线的性质.解题的关键是注意掌握两直线平行,同位角相等定理的应用.5.点P(3,4)向上平移2个单位,向左平移3个单位,得到点P'的坐标是()A.(5,1)B.(5,7)C.(0,2)D.(0,6)【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:点P(3,4)向上平移2个单位,向左平移3个单位,得到点P'的坐标是(3﹣3,4+2),即(0,6),【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点平移后坐标变化规律.6.如图,数轴上点P表示的数可能是()A.﹣B.﹣C.﹣3.2D.π【分析】估算确定出各数的范围,即可作出判断.【解答】解:A.∵4<6<9,∴2<<3,即﹣3<﹣<﹣2,满足题意;B.∵9<10<16,∴3<<4,即﹣4<﹣<﹣3,不满足题意;C.﹣3.2<﹣3,不满足题意;D.π>﹣2,不满足题意,故选:A.【点评】此题考查了估算无理数的大小,以及实数与数轴,弄清估算的方法是解本题的关键.7.如图,小手盖住的点的坐标可能为()A.(﹣4,﹣6)B.(﹣6,3)C.(5,2)D.(3,﹣4)【分析】根据题意,小手盖住的点在第三象限,结合第三象限点的坐标特点,分析选项可得答案.【解答】解:根据图示,小手盖住的点在第三象限,第三象限的点坐标特点是:横负纵负;分析选项可得只有A符合.故选:A.【点评】本题主要考查了点在第三象限时点的坐标特征,比较简单.注意四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.六个数中:﹣,﹣1,0,,,是无理数的有()A.1个B.2个C.3个D.4个【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:﹣,﹣1,0,是有理数,,是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.9.根据光反射定律,射到平面镜上的光线与被反射出的光线与平面镜的夹角相同,如图,已知∠AOB的两边OA.OB均为平面反光镜,∠AOB=36°,在OB上有一个点E,从点E射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠CDE的度数是()A.36°B.72°C.108°D.144°【分析】过点D作DF⊥AO交OB于点F.根据题意知,DF是∠CDE的角平分线,可得∠1=∠3;然后又由两直线CD∥OB推知内错角∠1=∠2;最后求得∠CDE的度数是108°.【解答】解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=36°,∴∠2=54°;∴∠1+∠3=54°×2=108°.故选:C.【点评】本题主要考查了平行线的性质.解答本题的关键是根据题意找到法线,然后由法线的性质来解答问题.10.对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x﹣y);且规定Pn(x,y)=P1[Pn﹣1(x,y)](n为大于1的整数).如P1(1,2)=(3,﹣1),P2(1,2)=P1[P1(1,2)]=P1(3,﹣1)=(2,4),P3(1,2)=P1[P2(1,2)]=P1(2,4)=(6,﹣2).则P(1,﹣1)为()A.(0,21009)B.(0,﹣21009)C.(0,﹣21010)D.(0,21010)【分析】根据所给的已知条件,找出题目中的变化规律,得出当n为奇数时的坐标,即可求出P(1,﹣1)时的答案.【解答】解:根据题意得:P1(1,﹣1)=(0,2),P2(1,﹣1)=(2,﹣2)P3(1,﹣1)=(0,4),P4(1,﹣1)=(4,﹣4)P5(1,﹣1)=(0,8),P6(1,﹣1)=(8,﹣8),…当n为偶数时,Pn(1,﹣1)=(2,﹣2),当n为奇数时,Pn(1,﹣1)=(0,),则P(1,﹣1)=(0,21010).故选:C.【点评】本题考查了点的坐标,解题的关键是找出数字的变化,得出当n为偶数和n为奇数时的规律,并应用此规律解题.二、填空题(本大题共10小题,每小题3分,满分30分)11.5的平方根是±.【分析】直接根据平方根的定义解答即可.【解答】解:∵(±)2=5,∴5的平方根是±.故答案为:±.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.【点评】本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.13.的绝对值是3﹣.【分析】根据绝对值都是非负数,可得一个数的绝对值.【解答】解:的绝对值是3﹣,故答案为:3﹣.【点评】本题考查了实数的性质,负数的绝对值是它的相反数.14.点P(﹣2,﹣3)和点Q(3,﹣3)的距离为 5 .【分析】直接利用两点间的距离公式计算即可.【解答】解:点P和点Q的间的距离==5.故答案为5.【点评】本题考查了两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB =.15.如图,添加一个条件(不再添加字母),使得AB∥CD,你添加的条件是∠DAB=∠D .【分析】根据平行线的判定定理进行解答即可.【解答】解:添加的条件为:∠DAB=∠D,∵∠DAB=∠D,∴AB∥CD,故答案为:∠DAB=∠D【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.16.如图,AF是∠BAC的平分线,EF∥AC交AB于点E,若∠1=25°,则∠BEF的度数为50°.【分析】根据两直线平行,同位角相等可得∠2=∠1,再根据角平分线的定义可得∠BAC=2∠2,然后根据两直线平行,同位角相等可得∠BEF=∠BAC.【解答】解:∵EF∥AC,∴∠2=∠1=25°,∵AF是∠BAC的平分线,∴∠BAC=2∠2=2×5°=50°,∵EF∥AC,∴∠BEF=∠BAC=50°.故答案为:50°.【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.17.已知x的两个平方根分别是2a﹣1和a﹣5,则x=9 .【分析】直接利用平方根的性质得出a的值,进而得出答案.【解答】解:∵x的两个平方根分别是2a﹣1和a﹣5,∴2a﹣1+a﹣5=0,解得:a=2,则2a﹣1=3,故x=9.故答案为:9.【点评】此题主要考查了平方根,正确把握平方根的性质是解题关键.18.若点P(2﹣m,3m+1)在坐标轴上,则点P的坐标为(0,7)或(,0).【分析】分点P在y轴上,横坐标为0,在x轴上,纵坐标为0分分别列式求出m,再求解即可.【解答】解:若点P在y轴上,则2﹣m=0,解得m=2,3m+1=3×2+1=7,此时,点P(0,7),若点P在x轴上,则3m+1=0,解得m=﹣,2﹣m=2﹣(﹣)=,此时,点P(,0),综上所述,点P的坐标为(0,7)或(,0).故答案为:(0,7)或(,0).【点评】本题考查了点的坐标,主要是对坐标轴上的点的坐标特征的考查,易错点在于要分情况讨论.19.如图,在长20米,宽10米的长方形草地内修建了宽2米的道路,则道路的面积为56米2 .【分析】将道路分别向左、向上平移,得到草地为一个长方形,分别求出长方形的长和宽,再用长和宽相乘即可得到草地的面积,进而得出道路的面积.【解答】解:将道路分别向左、向上平移,得到草地为一个长方形,长方形的长为20﹣2=18(米),宽为10﹣2=8(米),则草地面积为18×8=144米2.∴道路的面积为20×10﹣144=56米2故答案为:56米2.【点评】本题考查了平移在生活中的运用,将道路分别向左、向上平移,得到草地为一个长方形是解题的关键.20.已知点A(1,0),B(2,2),点P在y轴上,且△PAB的面积为5,则点P的坐标是(0,8)或(0,﹣12).【分析】分两种情况:①P在x轴上方,②P在x轴下方,根据面积差列式可得结论.【解答】解:分两种情况:①当P在x轴上方时,如图1,过B作BE⊥x轴于E,∵S△PAB=S梯形OPBE﹣S△POA﹣S△ABE=5,(2+OP)×2﹣×OP×1﹣×(2﹣1)×2=5,OP=8,∴P(0,8);②当P在x轴下方时,如图2,过B作BE⊥y轴于E,S△PAB=S△PBE﹣S△POA﹣S梯形OABE=5,×2PE﹣×1×OP﹣×2(1+2)=5,OP=12,∴P(0,﹣12),综上所述,点P的坐标为(0,8)或(0,﹣12).【点评】本题考查了三角形的面积、坐标与图形的性质,并采用了分类讨论的思想,正确画图是关键.三、解答题(共6小题,共50分)21.(6分)(1)计算:(2)求x的值:(x﹣5)3=﹣8【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)方程利用立方根定义开立方即可求出解.【解答】解:(1)原式=5﹣4+2=3;(2)开立方得:x﹣5=﹣2,解得:x=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(8分)如图,AB和CD相交于点O,∠C=∠1,∠D=∠2,求证:∠A=∠B.证明:∵,∠C=∠1,∠D=∠2(已知)又∵∠1=∠2(对顶角相等)∴∠C =∠D (等量代换)∴AC∥BD(内错角相等,两直线平行)∴∠A=∠B(两直线平行,内错角相等)【分析】根据对顶角相等可得∠1=∠2,再由∠C=∠1,∠D=∠2,等量代换可得∠C=∠D,然后根据内错角相等,两直线平行可判断出AC∥DB,最后根据两直线平行,内错角相等得出∠A=∠B.【解答】证明:∵∠C=∠1,∠D=∠2 (已知)又∵∠1=∠2 (对顶角相等)∴∠C=∠D(等量代换)∴AC∥BD (内错角相等,两直线平行)∴∠A=∠B(两直线平行,内错角相等)故答案为:对顶角相等;∠C,∠D;内错角相等,两直线平行;两直线平行,内错角相等.【点评】本题考查了平行线的判定与性质,对顶角的性质,熟练掌握平行线的判定方法和性质,并准确识图是解题的关键.23.(8分)如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2).(1)直接写出点C1的坐标为(4,﹣2);(2)在图中画出△A1B1C1;(3)△AOA1的面积= 6 ;(4)在坐标轴上找一点P,使△B1CP的面积等于△COC1的一半,直接写出点P的坐标.【分析】(1)由点P(a,b)的对应点P1(a+6,b﹣2)得出平移的方向和距离,据此可得;(2)根据所得平移方向和距离作图即可得;(3)利用割补法求解可得;(4)分点P在x轴和y轴上两种情况去确定点P即可得.【解答】解:(1)如图所示,点C1的坐标为(4,﹣2),故答案为:(4,﹣2);(2)如图所示,△A1B1C1即为所求;(3)△AOA1的面积=×(1+3)×6﹣×1×3﹣×3×3=6,故答案为:6;(4)如图所示,点P1的坐标为(0,0)或(﹣4,0).【点评】本题主要考查作图﹣平移变换,解题的关键是掌握平移变换的定义和性质及三角形的面积的求解.24.(8分)定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6.(1)(﹣4)☆3 =﹣7 ;(2)(6﹣)☆= 6 ;(3)若P(x+1,3﹣x)在第四象限,则(x+1)☆(3﹣x)= 4 ;(4)如果1☆(x2﹣5)=,求x的值.【分析】(1)利用a<b时,a☆b=a﹣b进行计算;(2)利用当a≥b时,a☆b=a+b进行计算;(3)先确定x+1>0,3﹣x<0,则可利用当a≥b时,a☆b=a+b进行计算;(4)讨论:当1≥x2﹣5,则1+x2﹣5=;当1<x2﹣5,则1﹣x2+5=,然后分别解方程即可.【解答】解:(1)原式=﹣4﹣3=﹣7;(2)原式=6﹣+=6;(3)∵P(x+1,3﹣x)在第四象限,∴x+1>0且 3﹣x<0,∴原式=x+1+3﹣x=4;故答案为﹣7,6,4;(4)当1≥x2﹣5,则1+x2﹣5=,解得x=±;当1<x2﹣5,则1﹣x2+5=,解得x=±所以x的值为±或±.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.25.(8分)如图1,有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积是 5 ,边长是.(2)把10个小正方形组成的图形纸(如图2),剪开并拼成正方形.①请在4×4方格图内画出这个正方形.②以小正方形的边长为单位长度画一条数轴,并在数轴上画出表示﹣的点.(3)这种研究和解决问题的方式,主要体现了 A 的数学思想方法.A.数形结合 B.代入 C.换元 D.归纳【分析】(1)依据正方形的面积即可得到正方形的边长;(2)依据10个小正方形组成的图形纸剪开并拼成正方形的边长为,即可得到该正方形,并在数轴上画出表示﹣的点.(3)这种研究和解决问题的方式,主要体现了数形结合的数学思想方法.【解答】解:(1)拼成的正方形的面积是5,边长是,故答案为:5,;(2)①10个小正方形组成的图形纸剪开并拼成正方形的边长为,如图所示:②表示﹣的点如图所示:(3)这种研究和解决问题的方式,主要体现了数形结合的数学思想方法.故选:A.【点评】本题考查了图形的剪拼,正方形的面积和正方形的有关画图,巧妙地根据网格的特点画出正方形是解此题的关键.正方形的面积是由组成正方形的面积的小正方形的个数决定的;边长为面积的算术平方根.26.(12分)如图,在平面直角坐标系中,点A,B的坐标分别为(a,0),(0,b),且满足(a﹣4)2+=0,现将OA平移到BC的位置,连接AC,点P为从B出发沿BC﹣CA运动的一动点,速度为每秒1个单位长度,设运动时间为t秒.(1)求出a和b的值,并写出点C的坐标;(2)当t为0到4时点P的坐标可表示为(t,2)(用含t的式子来表示);当t为4到6时点P的坐标可表示为(4,6﹣t)(用含t的式子来表示);(3)当t为多少时三角形ABP的面积是四边形OACB的面积的;(4)点Q以每秒3.5个单位长度的速度从点A出发,在AO间往返运动,(两个点同时出发,当点P到达点A停止时点Q也停止),在运动过程中,直接写出当PQ∥OB时,点P的坐标.【分析】(1)根据非负数的性质求出a和b的值,进而得到点C的坐标;(2)当t为0到4时,点P在线段BC上,易求其坐标;当t为4到6时,点P在线段CA上,易求其坐标;(3)分两种情况:①点P在线段BC上;②点P在线段CA上.根据三角形ABP的面积是四边形OACB的面积的列出方程,求解即可;(4)分两种情况:①点P在线段BC上,由于OQ∥BP,所以当OQ=BP时,四边形OBPQ是矩形,则有PQ ∥OB.此时又分三种情况:Ⅰ)点Q的运动路线是A﹣O;Ⅱ)点Q的运动路线是A﹣O﹣A;Ⅲ)点Q的运动路线是A﹣O﹣A﹣O;②点P在线段CA上时,Q只能在A点,求出此时t的值,进而得到点P的坐标.【解答】解:(1)∵(a﹣4)2+=0,∴a﹣4=0,2a﹣3b﹣2=0,∴a=4,b=2,∴点A,B的坐标分别为(4,0),(0,2),∵OACB是矩形,∴点C的坐标是(4,2);(2)∵点P为从B出发沿BC﹣CA运动的一动点,速度为每秒1个单位长度,设运动时间为t秒,∴当t为0到4时,点P在线段BC上,BP=t,所以P点坐标可表示为(t,2),当t为4到6时,点P在线段CA上,AP=6﹣t,所以P点坐标可表示为(4,6﹣t);故答案为(t,2),(4,6﹣t);(3)四边形OACB的面积=OA•OB=4×2=8.分两种情况:①点P在线段BC上时,0≤t≤4,如图1.∵BP=t,AC=2,∴三角形ABP的面积=BP•AC=t×2=t,∵三角形ABP的面积是四边形OACB的面积的,∴t=×8=3;②点P在线段CA上时,4<t<6,如图2.∵AP=6﹣t,BC=4,∴三角形ABP的面积=AP•BC=(6﹣t)×4=2(6﹣t),∵三角形ABP的面积是四边形OACB的面积的,∴2(6﹣t)=×8=3,∴t=.故当t为3或秒时三角形ABP的面积是四边形OACB的面积的;(4)分两种情况:①点P在线段BC上时,BP=t,0≤t≤4,当OQ=BP时,PQ∥OB.Ⅰ)点Q的运动路线是A﹣O,∵AQ=3.5t,∴OQ=OA﹣AQ=4﹣3.5t,∵OQ=BP,∴4﹣3.5t=t,解得:t=,∴点P的坐标为(,2);Ⅱ)点Q的运动路线是A﹣O﹣A,OQ=3.5t﹣4,∵OQ=BP,∴3.5t﹣4=t,解得:t=,∴点P的坐标为(,2);Ⅲ)点Q的运动路线是A﹣O﹣A﹣O,OQ=12﹣3.5t,∵OQ=BP,∴12﹣3.5t=t,解得:t=,∴点P的坐标为(,2);②点P在线段CA上时,4<t<6,Q只能在A点,此时t==,6﹣=,∴点P的坐标为(4,);综上所述,所求点P的坐标为(,2)或(,2)或(,2)或(4,).创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校。

天津市2020〖人教版〗七年级数学下册期末复习考试试卷729

天津市2020〖人教版〗七年级数学下册期末复习考试试卷729

天津市2020年〖人教版〗七年级数学下册期末复习考试试卷 创作人:百里公地 创作日期:202X.04.01 审核人: 北堂址重 创作单位: 博恒中英学校一、选择题:(本大题共8小题,每小题2分,共16分,在每小题给出的四个选项中,只有一项是符合题目要求的.)⒈下列各式中,正确的是 ( )A .m 4m 4=m 8B .m 5m 5=2m 25C .m 3m 3=m 9D .y 6y 6=2y 12⒉如图,下列推理中正确的有( )①因为∠1=∠2,所以b ∥c (同位角相等,两直线平行),②因为∠3=∠4,所以a ∥c (内错角相等,两直线平行),③因为∠4+∠5=180°,所以b ∥c (同旁内角互补,两直线平行).A . 0个B . 1个C . 2个D . 3个⒊下列多项式乘法中不能用平方差公式计算的是 ( )A.)y x 2)(y 2x (22+-;B.)a b )(b a (2222-+ ;C.)1y x 2)(1y x 2(22-+ ;D.)b a )(b a (3333-+ .⒋如果a =(-99)0,b =(-0.1)-1c =( )-53-2 ,那么a ,b ,c 三数的大小为 ( ) A .a >b >cB .c >a >bC .a >c >bD .c >b >a⒌如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,∠C =90°,AB=10,DH=4,平移距离为6,求阴影部分的面积为 ( )A . 40B . 24C . 36D . 48⒍下列因式分解,结果正确的是 ( )①)1x )(1x (1x 224-+=-; ②22)2x (4x 2x +=++; ③)12m 4(m m 12m 4223--=+- ;④2222222)b a ()b a (b a 4)b a (-+=-+. A. ① B. ② C. ③ D. ④⒎如图,两个正方形的边长分别为a 和b ,如果a+b =10,ab =20,则阴影部分的面积为 ( )A .20 cm 2B .25cm 2C .30 cm 2D .15cm 28.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+3的末位数字是( ) A .0 B .1C .3 D .7二、填空题:(本大题共有10小题,每空1分.共20分)⒐无锡的光伏技术不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 mm 2,这个数用科学记数法表示为mm 2.⒑若一个多边形的内角和等于1440°,则这个多边形的边数是.(第2(第5题) H F E D C B A 12题F E (第7题图)⒒△ABC 中,已知∠A :∠B :∠C =2:3:4,则△ABC 中最大的角为度.⒓若25)2(2+-+x k x 是完全平方式,则k 的值为. ⒔计算:(1)a 2·a 3=________. (2)x 6÷(-x )3=________.(3)0.25100×2200=________.(4)(-2a 2)3×(-a )2÷(-4a 4)2=_______⑸ )n m )(n 3m (-+ =.⒕(1)已知a n =3,a m =2,则a 2n+3m =_______ (2).已知2793⨯⨯m m 163=,则m =_______⒖(1)若m 2-2m =1,则2m 2-4m +的值是______;(2)若a -b =1,则12(a 2+b 2)-ab =_______.16.如图,是我们生活中经常接触的小刀,刀片的外形是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=度.17.如图,在△ABC 中,∠A = 52°,∠ABC 与∠ACB 的角平分线交于D 1, ∠ABD 1与∠ACD 1的角平分线交于点D 2,依次类推,∠ABD 4与∠ACD 4 的角平分线交于点D 5…,则∠BD 1C = °,∠BD 2C = °,∠BD n C = °,(用含n 的式子表示)18.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示.大正方形固定不动,把小正方形以1厘米∕秒的速度向右沿直线平移,设平移的时间为t 秒,两个正方形重叠部分的面积为S 平方厘米.完成下列问题:(1)平移1.5秒时,S 为平方厘米;(2)当2≤t ≤4时,小正方形的一条对角线扫过的图形的面积为平方厘米;3)当S =2时,小正方形平移的距离为厘米.三、解答题:(本大题共8小题,共64分.)⒚计算(本题共有6小题,每题3分,其中5、6两题简便运算.共18分)⑴4- (-2)-2-32÷(3.14-π)0; ⑵(p -q )4÷(q -p )3·(p -q )2;⑶(3x +2y )(3x -2y )-(3x -2y )2; ⑷(a -2b +3)(a +2b -3)(5) 2-4024×+2 (6)(1+22)(1+24)……(1+232)20.(本题共有2小题,每题4分.共8分)⑴有一道题:“化简求值:2(21)(21)(2)a a a +-+-4(1)a -+(2)a -,其中5=a ”.小明在解题时错错误地把“5=a ”抄成了“5-=a ”,但显示计算的结果是正确的,你能解释一下,这是怎么回事吗? ⑵已知2x+5y —3=0,求4x -1·32y 的值21.将下列各式分解因式(本题共有4小题,每题3分.共12分)⑴26126a a -+- ; ⑵ 33327a b ab -⑶(x 2+2)2-12(x 2+2)+36 ; ⑷222(2)(24)x x x +-+22.(本题4分)如下图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.(1)△ABC 的面积为;(2)将△ABC 经过平移后得到△A ′B ′C ′,图中标出了点B 的对应点B',补全△A ′B ′C ′.(3)若连接AA ',BB ',则这两条线段之间的关系是.(4)在图中画出△ABC 的高CD .23.(本题满分4分) B ′ .有许多代数恒等式可以用图形的面积来表示,如图(3),它表示(2m +n )(m +n )=2m 2+3mn +n 2.(1) 观察图②,请你写出三个代数式(m +n ) 2、(m -n ) 2、mn 之间的等量关系是____________________________________________________;(2) 小明用8个一样大的矩形(长acm ,宽bcm )拼图,拼出了如图甲、乙的两种图案:图案甲是一个正方形,图案乙是一个大的矩形:图案甲的中间留下了边长是2cm 的正方形小洞.则(a +2b )2-8ab 的值.24.(本题满分5分)已知:如图所示,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1+∠2=90°.(1)求证:AB ∥CD ;(2)试探究∠2与∠3的数量关系.25.(本题满分5分)如图,在△ABC 中,AD ⊥BC 于D ,AE 平分∠BAC ;试说明:∠DAE=12(∠B -∠C )26. (本题满分8分) 如图,已知AB ∥CD ,C 在D 的右侧, BE 平分∠ABC ,DE 平分∠ADC ,BE 、DE 所在直线交于点 E 。

天津市人教版七年级下册数学全册单元期末试卷及答案-百度文库

天津市人教版七年级下册数学全册单元期末试卷及答案-百度文库

天津市人教版七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.计算(﹣2a 2)•3a 的结果是( )A .﹣6a 2B .﹣6a 3C .12a 3D .6a 3 2.下列计算中,正确的是( ) A .235235x x x += B .236236x x x =C .322()2x x x ÷-=-D .236(2)2x x -=-3.小晶有两根长度为 5cm 、8cm 的木条,她想钉一个三角形的木框,现在有长度分别为 2cm 、3cm 、 8cm 、15cm 的木条供她选择,那她第三根应选择( )A .2cmB .3cmC .8cmD .15cm 4.下列计算错误的是( )A .2a 3•3a =6a 4B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0) 5.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .2566.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( ) A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩7.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106 B .3.8×106C .3.8×105D .38×104 8.已知,()()212x x x mx n +-=++,则m n +的值为( )A .3-B .1-C .1D .3 9.下列方程中,是二元一次方程的是( ) A .x 2+x =1B .2x ﹣3y =5C .xy =3D .3x ﹣y =2z 10.计算12x a a a a ⋅⋅=,则x 等于( ) A .10 B .9 C .8D .4 二、填空题11.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.12.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______.13.已知a+b=5,ab=3,求:(1)a 2b+ab 2; (2)a 2+b 2.14.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S l ,△ACE 的面积为S 2,若S △ABC =12,则S 1+S 2=______.15.()()3a 3b 13a 3b 1899+++-=,则a b += ______ .16.若等式0(2)1x -=成立,则x 的取值范围是_________. 17.计算:x (x ﹣2)=_____18.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.19.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________.20.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.三、解答题21.(1)填一填21-20=2( )22-21=2( )23-22=2( )⋯(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+⋯+22019.22.对于多项式x 3﹣5x 2+x +10,我们把x =2代入此多项式,发现x =2能使多项式x 3﹣5x 2+x +10的值为0,由此可以断定多项式x 3﹣5x 2+x +10中有因式(x ﹣2),(注:把x =a 代入多项式,能使多项式的值为0,则多项式一定含有因式(x ﹣a )),于是我们可以把多项式写成:x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),分别求出m 、n 后再代入x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),就可以把多项式x 3﹣5x 2+x +10因式分解.(1)求式子中m 、n 的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x 3+5x 2+8x +4.23.先化简,再求值:(2x+2)(2﹣2x )+5x (x+1)﹣(x ﹣1)2,其中x =﹣2.24.已知a 6=2b =84,且a <0,求|a ﹣b|的值.25.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示);②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).26.如图,在边长为1个单位长度的小正方形网格中,ΔABC 经过平移后得到ΔA B C ''',图中标出了点B 的对应点B ',点A '、C '分别是A 、C 的对应点.(1)画出平移后的ΔA B C ''';(2)连接BB '、CC ',那么线段BB '与CC '的关系是_________;(3)四边形BCC B ''的面积为_______.27.如图,AB ∥CD ,点E 、F 在直线AB 上,G 在直线CD 上,且∠EGF =90°,∠BFG =140°,求∠CGE 的度数.28.如图,ABC ∆中,B ACB ∠=∠,点,D F 分别在边,BC AC 的延长线上,连结,CE CD 平分ECF ∠.求证://AB CE .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】用单项式乘单项式的法则进行计算.【详解】解:(-2a 2)·3a=(-2×3)×(a 2·a)=-6a 3 故选:B .【点睛】本题考查单项式乘单项式,掌握运算法则正确计算是解题关键.2.C解析:C【解析】试题解析:A.不是同类项,不能合并,故错误.B.235236.x x x ⋅= 故错误.C.()3222.x x x ÷-=- 正确.D.()32628.x x -=- 故错误. 故选C.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.3.C解析:C【解析】【分析】在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.【详解】∵5+8=13,8-5=3∴根据三角形三边关系,第三条边应在3cm~13cm 之间(不包含3和13).故选C【点睛】本题考查三角形三边关系,较为简单,熟练掌握三角形三边关系即可解题.4.C解析:C【分析】A .根据同底数幂乘法运算法则进行计算,底数不变指数相加,系数相乘.即可对A 进行判断B .根据幂的乘方运算法则对B 进行判断C .根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C 进行判断D .根据同底数幂除法运算法则对D 进行判断【详解】A .2a 3•3a =6a 4,故A 正确,不符合题意B .(﹣2y 3)2=4y 6,故B 正确,不符合题意C .3a 2+a ,不能合并同类项,无法计算,故C 错误,符合题意D .a 5÷a 3=a 2(a≠0),故D 正确,不符合题意故选:C【点睛】本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.5.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键.6.B解析:B【解析】【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组.【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B .【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.7.C解析:C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:380000=3.8×105.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.A解析:A【解析】【分析】根据多项式的乘法法则即可化简求解.【详解】∵()()2212222x x x x x x x +-=-+-=-- ∴m=-1,n=-2,故m n +=-3故选A.【点睛】此题主要考查整式的乘法运算,解题的关键是熟知多项式乘多项式的运算法则.9.B解析:B【分析】根据二元一次方程的定义对各选项逐一判断即可得.【详解】解:A.x2+x=1中x2的次数为2,不是二元一次方程;B.2x﹣3y=5中含有2个未知数,且含未知数项的最高次数为一次的整式方程,是二元一次方程;C.xy=3中xy的次数为2,不是二元一次方程;D.3x﹣y=2z中含有3个未知数,不是二元一次方程;故选:B.【点睛】本题主要考查了二元一次方程的定义判断,准确理解是解题的关键.10.A解析:A【解析】【分析】利用同底数幂的乘法即可求出答案,【详解】解:由题意可知:a2+x=a12,∴2+x=12,∴x=10,故选:A.【点睛】本题考查同底数幂的乘法,要注意是指数相加,底数不变.二、填空题11.105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BD解析:105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.12.8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为解析:8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.13.(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b+ab2=a解析:(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b+ab2=ab(a+b)=3×5=15(2)a2+b2=(a+b)2-2ab=52-2×3=19【点睛】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.14.14【分析】根据等底等高的三角形的面积相等,求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE,S△A解析:14【分析】根据等底等高的三角形的面积相等,求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE,S△ABC=12∴S△ACE=12S△ABC=12×12=6,∵AD=2BD,S△ABC=12∴S△ACD=23S△ABC=23×12=8,∴S1+S2=S△ACD+S△ACE=8+6=14.故答案为:14.【点睛】本题主要考查了三角形中线的性质,正确理解三角形中线的性质并学会举一反三是解题关键,要熟练掌握“等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比”.15.【解析】【分析】原式利用平方差公式化简,整理即可求出a+b的值.【详解】已知等式整理得:9(a+b)2-1=899,即(a+b)2=100,开方得:a+b=±10,故答案为:±10【解析:10±【解析】【分析】原式利用平方差公式化简,整理即可求出a+b 的值.【详解】已知等式整理得:9(a+b )2-1=899,即(a+b )2=100,开方得:a+b=±10,故答案为:±10【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.16.【分析】根据非0数的0次幂等于1列出关于的不等式,求出的取值范围即可.【详解】解:成立,,解得.故答案为:.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义 解析:2x ≠【分析】根据非0数的0次幂等于1列出关于x 的不等式,求出x 的取值范围即可.【详解】解:0(2)1x -=成立,20x ∴-≠,解得2x ≠.故答案为:2x ≠.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义.17.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x .【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.解析:x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.18.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab=7,∴ab=1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.19.【分析】首先求得方程的解,然后将代入到方程中,即可求得.【详解】解:,移项,得,合并同类项,得,系数化为1,得,∵两方程同解,那么将代入方程,得,移项,得,系数化为1,得.故 解析:12【分析】首先求得方程23x x =-的解x ,然后将x 代入到方程4232x m x -=+中,即可求得m .【详解】解:23x x =-,移项,得23x x -=-,合并同类项,得3x -=-,系数化为1,得=3x ,∵两方程同解,那么将=3x 代入方程4232x m x -=+,得12211m -=,移项,得21m -=-,系数化为1,得12m =. 故12m =. 【点睛】 本题考查含有参数的一元一次方程同解问题,难度不大,真正理解方程的解的含义是顺利解题的关键.20.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键. 三、解答题21.(1)0,1,2(2)11222n n n ---=(3)22020-1【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得11222n n n ---=,然后利用提公因式法12n -可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式相减即可.【详解】(1)10022212-=-=,21122422-=-=,32222842-=-=,故答案为:0,1,2;(2)第n 个等式为:11222n n n ---=,∵左边=()111222212n n n n ----=-=,右边=12n -,∴左边=右边,∴11222n n n ---=;(3)20+21+22+⋅⋅⋅⋅⋅⋅+22019=21-20+22-21+⋅⋅⋅⋅⋅⋅+22020-22019=22020-1∴01220192020222221++++=-….【点睛】此题主要考察了探寻数列规律问题,认真观察,总结出规律,并能正确的应用规律是解答此题的关键.22.(1)m =﹣3,n =﹣5;(2)x 3+5x 2+8x +4=(x +1)(x +2)2.【解析】【分析】(1)根据x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n ),得出有关m ,n 的方程组求出即可; (2)由把x =﹣1代入x 3+5x 2+8x+4,得其值为0,则多项式可分解为(x+1)(x 2+ax+b )的形式,进而将多项式分解得出答案.【详解】(1)在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n),中,分别令x=0,x=1,即可求出:m=﹣3,n=﹣5(2)把x=﹣1代入x3+5x2+8x+4,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,用上述方法可求得:a=4,b=4,所以x3+5x2+8x+4=(x+1)(x2+4x+4),=(x+1)(x+2)2.【点睛】本题主要考查了因式分解的应用,根据已知获取正确的信息,是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.23.73x+;-11【分析】根据整式的运算法则即可求出答案.【详解】解:22222511x x x x x222445521x x x x x73x当2x=-时,原式14311.【点睛】本题考查整式化简求值,熟练运用运算法则是解题的关键.24.16【分析】根据幂的乘方运算法则确定a、b的值,再根据绝对值的定义计算即可.【详解】解:∵(±4)6=2b=84=212,a<0,∴a=﹣4,b=12,∴|a﹣b|=|﹣4﹣12|=16.【点睛】本题考查幂的乘方,难度不大,也是中考的常考知识点,熟练掌握幂的乘方运算法则是解题的关键.25.(1)130°;(2)①90︒-α;②不变,90︒-α;③∠NDC+∠MDB=90︒-1α2.【分析】(1)根据已知,以及三角形内角和等于180︒,即可求解;(2)①根据平行线的性质可以证得∠ABD=∠BDM=∠MBD,∠CND=∠A=α,再利用含有α的式子分别表示出∠NDC、∠MDB,进行作差,即可求解代数式;②延长BD交AC于点E,则∠NDE=∠MDB,因此∠NDC-∠MDB=∠NDC-∠NDE=∠EDC,再利用三角形内角和为180︒,即可求解;③如图可知,∠NDC+∠MDB=180︒-∠BDC,利用平角的定义,即可求解代数式.【详解】解:(1)∵∠A=80︒∴∠ABC+∠ACB=180︒-80︒=100︒又∵ BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=12⨯100︒=50︒.∴∠BDC=180︒-50︒=130︒.(2)①∵MN//AB,BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠BDM=∠MBD,∠CND=∠A=α,∴∠NDC=180︒-α-12∠ACB,∠MDB=12∠ABC,∴∠NDC-∠MDB=180︒-α-12∠ACB-12∠ABC=180︒-α-12(∠ACB+∠ABC)=180︒-α-12(180︒-α)=90︒-α.②不变;延长BD交AC于点E,如图:∴∠NDE=∠MDB,∵∠BDC=180︒-12(∠ACB+∠ABC)=180︒-12(180︒-α)=90︒+1α2,∴∠NDC-∠MDB=∠NDC-∠NDE=∠EDC=180︒-∠BDC=180︒-(90︒+1α2)=90︒-α,同①,说明MN在旋转过程中∠NDC-∠MDB的度数只与∠A有关系,而∠A始终不变,故:MN在旋转过程中∠NDC-∠MDB的度数不会发生改变.③如图可知,∠NDC+∠MDB=180︒-∠BDC,由②知∠BDC=90︒+1α2,∴∠NDC+∠MDB=180︒-(90︒+1α2)=90︒-1α2.故∠NDC与∠MDB的关系是∠NDC+∠MDB=90︒-1α2.【点睛】本题目考查平行线与三角形的综合,涉及知识点有平行线的性质,三角形内角和等于180°等,是中考的常考知识点,难度一般,熟练掌握以上知识点的综合运用是顺利解题的关键.26.(1)见解析;(2)平行且相等;(3)28【分析】(1)根据平移的性质画出点A 、C 平移后的对应点A '、C '即可画出平移后的△A B C '''; (2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】解:(1)如图,ΔA B C '''即为所求;(2)根据平移的性质可得:BB '与CC '的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B ''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.27.50︒.【分析】先根据平行线的性质得出BFG FGC ∠=∠,再根据CGE FGC EGF ∠=∠-∠结合已知角度即可求解.【详解】证明://AB CD ,∠BFG =140°,BFG FGC ∴∠=∠=140°,又∵CGE FGC EGF ∠=∠-∠,∠EGF =90°,1409050CGE ∴∠=︒-︒=︒. 【点睛】本题考查的是平行线的性质,熟知平行线及角平分线的性质是解答此题的关键.解题时注意:两直线平行,内错角相等.28.证明见详解.【分析】根据B ACB ∠=∠,DCF ACB ∠=∠,CD 平分ECF ∠,可得B DCF ∠=∠,ECD DCF ,容易得ECD B ∠=∠,即可得//AB CE .【详解】∵B ACB ∠=∠,DCF ACB ∠=∠,∴B DCF ∠=∠,又∵CD 平分ECF ∠,∴ECD DCF∴ECD B ∠=∠∴//AB CE .【点睛】本题考查了对顶角的性质,角平分线的定义和平行线的证明,熟悉相关性质是解题的关键.。

天津市自立中学人教版七年级下册数学全册单元期末试卷及答案-百度文库

天津市自立中学人教版七年级下册数学全册单元期末试卷及答案-百度文库

天津市自立中学人教版七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( )A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b2.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x 张制作盒身,y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是( )A .181016x y x y +=⎧⎨=⎩B .1821016x y x y +=⎧⎨⨯=⎩C .1810216x y x y +=⎧⎨=⨯⎩D .181610x y x y +=⎧⎨=⎩3.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( )A .B .C .D .4.如图,下列推理中正确的是( )A .∵∠1=∠4, ∴BC//ADB .∵∠2=∠3,∴AB//CDC .∵∠BCD+∠ADC=180°,∴AD//BCD .∵∠CBA+∠C=180°,∴BC//AD 5.下列计算中正确的是( ) A .2352a a a +=B .235a a a +=C .235a a a =D .236a a a =6.端午节前夕,某超市用1440元购进A 、B 两种商品共50件,其中A 种商品每件24元,B 品件36元,若设购进A 种商品x 件、B 种商品y 件,依题意可列方程组( )A .5036241440x y x y +=⎧⎨+=⎩B .5024361440x y x y +=⎧⎨+=⎩C .144036241440x y x y +=⎧⎨+=⎩D .144024361440x y x y +=⎧⎨+=⎩7.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( ) A .2a +2b -2c B .2a +2b C .2cD .0 8.下列计算不正确的是( )A .527a a a =B .623a a a ÷=C .2222a a a +=D .(a 2)4=a 89.如图,将△ABC 纸片沿DE 折叠,点A 的对应点为A’,若∠B=60°,∠C=80°,则∠1+∠2等于( )A .40°B .60°C .80°D .140°10.下列各式中,不能够用平方差公式计算的是( )A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c )二、填空题11.计算:m 2•m 5=_____.12.已知等腰三角形的两边长分别为4和8,则它的周长是_______. 13.若 a m =6 , a n =2 ,则 a m−n =________14.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .15.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________. 16.因式分解:224x x -=_________. 17.()a b -+(__________) =22a b -. 18.()22x y --=_____.19.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________. 20.计算:2m·3m=______. 三、解答题21.解不等式(组) (1)解不等式 114136x x x +-+≤-,并把解集在数轴上....表示出来. (2)解不等式835113x xx x ->⎧⎪+⎨≥-⎪⎩,并写出它的所有整数解.22.计算: (1)(y 3)3÷y 6; (2)2021()(3)2π--+-.23.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.24.观察下列式子:2×4+1=9;4×6+1=25;6×8+1=49;… (1)请你根据上面式子的规律直接写出第4个式子: ; (2)探索以上式子的规律,试写出第n 个等式,并说明等式成立的理由. 25.如图,已知ABC 中,,AD AE 分别是ABC 的高和角平分线.若44B ∠=︒,12DAE ∠=︒,求C ∠的度数.26.阅读下列材料,学习完“代入消元法”和“加减消元法“解二元一次方程组后,善于思考的小铭在解方程组2534115x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法:解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③.把方程①代入③得:2×3+y =5,∴y =﹣1①得x =4,所以,方程组的解为41x y =⎧⎨=-⎩.请你解决以下问题:(1)模仿小铭的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩.(2)已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩,求x 2+4y 2﹣xy 的值. 27.已知在△ABC 中,试说明:∠A +∠B +∠C =180°方法一: 过点A 作DE ∥BC . 则(填空) ∠B =∠ ,∠C =∠ ∵ ∠DAB +∠BAC + ∠CAE =180° ∴∠A +∠B +∠C =180°方法二: 过BC 上任意一点D 作DE ∥AC ,DF ∥AB 分别交AB 、AC 于E 、F (补全说理过程 )28.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元;(2)根据学校实际,需购进电脑和电子白板共31台,若总费用不超过30万元,则至多购买电子白板多少台?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解. 【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=, ∴它们的大小关系是:b <a <d <c 故选:C 【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.2.B解析:B 【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数2⨯=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数18=,再列出方程组即可. 【详解】解:设用x 张制作盒身,y 张制作盒底,根据题意得:1821016x y x y +=⎧⎨⨯=⎩.故选:B .此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.3.D解析:D 【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可. 【详解】解:A 、不能用平移变换来分析其形成过程,故此选项错误; B 、不能用平移变换来分析其形成过程,故此选项错误; C 、不能用平移变换来分析其形成过程,故此选项正确; D 、能用平移变换来分析其形成过程,故此选项错误; 故选:D . 【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.4.C解析:C 【分析】根据平行线的判定方法一一判断即可. 【详解】A 、错误.由∠1=∠4应该推出AB ∥CD . B 、错误.由∠2=∠3,应该推出BC//AD .C 、正确.D 、错误.由∠CBA+∠C=180°,应该推出AB ∥CD , 故选:C . 【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考基础题.5.C解析:C 【分析】根据同底数幂的加法和乘法法则进行计算判断即可. 【详解】解:A 、23a a +无法合并,故A 选项错误; B 、23a a +无法合并,故B 选项错误; C 、235a a a =,故C 选项正确; D 、235a a a =,故D 选项错误.【点睛】此题考查同底数幂的运算法则,同底数幂的加减必须是同类项才可以进行加减,同底数幂的乘除底数不变,指数相加减.6.B解析:B 【分析】本题有2个相等关系:购进A 种商品件数+购进B 种商品件数=50,购进A 种商品x 件的费用+购进B 种商品y 件的费用=1440元,据此解答即可. 【详解】解:设购进A 种商品x 件、B 种商品y 件,依题意可列方程组5024361440x y x y +=⎧⎨+=⎩.故选:B . 【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.7.D解析:D 【解析】试题解析:∵a 、b 、c 为△ABC 的三条边长, ∴a+b-c >0,c-a-b <0, ∴原式=a+b-c+(c-a-b ) =0. 故选D .考点:三角形三边关系.8.B解析:B 【分析】根据同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 逐项判定即可 . 【详解】解:∵527a a a =,∴选项A 计算正确,不符合题意; ∵624a a a ÷=,∴选项B 计算不正确,符合题意; 2222a a a ,∴选项C 计算正确,不符合题意;428()a a =,∴选项D 计算正确,不符合题意;故选:B . 【点睛】此题主要考查了同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 要熟练掌握 .9.C解析:C 【分析】根据平角定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠,再利用三角形的内角和定理进行转换,得34140B C ∠+∠=∠+∠=︒从而解题. 【详解】解:根据平角的定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠.又34180A ∠+∠+∠=︒,180A B C ∠+∠+∠=︒, 346080140B C ∴∠+∠=∠+∠=︒+︒=︒,∴123602(34)360214080∠+∠=︒-∠+∠=︒-⨯︒=︒, 故选:C . 【点睛】此题综合运用了平角的定义、折叠的性质和三角形的内角和定理.10.B解析:B 【分析】根据平方差公式:22()()a b a b a b +-=-进行判断. 【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意; 故选B . 【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键.二、填空题 11.m7 【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m2•m5=m2+5=m7.故答案为:m7.【点睛】本题考查了同底数幂的乘法,熟练掌握同解析:m7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m2•m5=m2+5=m7.故答案为:m7.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法法则是解答本题的关键.12.20【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8解析:20【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8cm时,三角形的三边是8、8、4,∴三角形的周长是8+8+4=20.故答案为:20【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.3 【解析】 .故答案为3.解析:3 【解析】623m n m n a a a -=÷=÷=.故答案为3.14.150°或30°. 【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数 【详解】解:如图所示:当CD ∥AB 时,∠BAD =∠D =30°;如图所示,当AB ∥CD 时,∠C =∠BAC =6解析:150°或30°. 【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数 【详解】解:如图所示:当CD ∥AB 时,∠BAD =∠D =30°;如图所示,当AB ∥CD 时,∠C =∠BAC =60°, ∴∠BAD =60°+90°=150°;故答案为:150°或30°. 【点睛】本题主要考查了平行线的判定,平行线的判掌握平行线的判定定理和全面思考并分类讨论是解答本题的关键.15.【分析】由是完全平方式,得到从而可得答案. 【详解】 解:方法一、 方法二、 由是完全平方式, 则有两个相等的实数根, ,故答案为: 【点睛】本题考查的是完全平方式 解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案. 【详解】 解:方法一、()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=± 18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.±【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.16.【分析】直接提取公因式即可.【详解】.故答案为:.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键. 解析:2(2)x x -【分析】直接提取公因式即可.【详解】2242(2)x x x x -=-.故答案为:2(2)x x -.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.17.【分析】根据平方差公式即可求出答案.【详解】解:,故答案为:.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.解析:a b --【分析】根据平方差公式即可求出答案.【详解】解:()2222()()a b a b a b a b -+--==---,故答案为:a b --.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 18.x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b)2=a2±2ab+b2.【详解】解:(﹣x ﹣2y )2=x2+4xy+4y2.故答案为:x2+4xy+4y2解析:x 2+4xy +4y 2【分析】根据完全平方公式进行计算即可.完全平方公式:(a ±b )2=a 2±2ab +b 2.【详解】解:(﹣x ﹣2y )2=x 2+4xy +4y 2.故答案为:x 2+4xy +4y 2.【点睛】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.该题要求熟练掌握完全平方公式,并灵活运用.19.【分析】首先求得方程的解,然后将代入到方程中,即可求得.【详解】解:,移项,得,合并同类项,得,系数化为1,得,∵两方程同解,那么将代入方程,得,移项,得,系数化为1,得.故 解析:12【分析】首先求得方程23x x =-的解x ,然后将x 代入到方程4232x m x -=+中,即可求得m .【详解】解:23x x =-,移项,得23x x -=-,合并同类项,得3x -=-,系数化为1,得=3x ,∵两方程同解,那么将=3x 代入方程4232x m x -=+,得12211m -=,移项,得21m -=-,系数化为1,得12m =. 故12m =. 【点睛】 本题考查含有参数的一元一次方程同解问题,难度不大,真正理解方程的解的含义是顺利解题的关键.20.6m2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:.故答案为:.【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.解析:6m 2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:2236m m m ⋅=.故答案为:26m .【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.三、解答题21.(1)x ≤2,图见详解;(2)22x -≤<;-2、-1、0、1.【分析】(1)由题意直接根据解不等式的步骤逐步进行计算求解,并把解集在数轴上表示出来即可.(2)根据题意分别解出两个不等式,取公共部分得出其解集从而写出它的所有整数解即可.【详解】解:(1)去分母,得 6x+2(x+1)≤6-(x-14),去括号,得 6x+2x+2≤6-x+14,移项,合并同类项,得 9x ≤18,两边都除以9,得 x ≤2.解集在数轴上表示如下:(2)835113x x x x ->⎧⎪⎨+≥-⎪⎩①② 解①得:2x <,解②得:2x ≥-,则不等式组的解集是:22x -≤<.它的所有整数解有:-2、-1、0、1.【点睛】本题考查的是一元一次不等式(组)的解法,注意掌握求不等式(组)的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.(1)y 3;(2)12.【分析】(1)先计算幂的乘方,然后计算同底数幂除法;(2)分别利用负整数指数幂、零次幂、乘方计算,然后合并.【详解】解:(1)原式=y 9÷y 6=y 3;(2)原式=4﹣1+9=12.【点睛】本题考查了整式的运算与实数的运算,熟练运用公式是解题的关键.23.149299a b ⎧=⎪⎪⎨⎪=⎪⎩【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【详解】354526x y ax by -=⎧⎨+=-⎩①③ 和2348x y ax by +=-⎧⎨-=⎩②④ 解:联立①②得:35234x y x y -=⎧⎨+=-⎩解得:12x y =⎧⎨=-⎩将12x y =⎧⎨=-⎩代入③④得:4102628a b a b -=-⎧⎨+=⎩解得:149299a b ⎧=⎪⎪⎨⎪=⎪⎩【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.24.(1)8×10+1=81;(2)2n (2n +1)+1=(2n +1)2,理由见解析.【分析】(1)根据上面式子的规律即可写出第4个式子;(2)探索以上式子的规律,结合(1)即可写出第n 个等式.【详解】解:观察下列式子:2×4+1=9=32;4×6+1=25=52:6×8+1=49=72;…(1)发现规律:第4个式子:8×10+1=81=92;故答案为:8×10+1=81;(2)第n 个等式为:2n (2n +1)+1=(2n +1)2,理由:2n (2n +1)+1=4n 2+4n +1=(2n +1)2.【点睛】本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律,总结规律.【分析】根据已知首先求得∠BAD的度数,进而可以求得∠BAE,而∠CAE=∠BAE,在△ACD中利用内角和为180°,即可求得∠C.【详解】解:∵AD是△ABC的高,∠B=44︒,∴∠ADB=∠ADC =90︒,在△ABD中,∠BAD=180︒-90︒-44︒=46︒,又∵ AE平分∠BAC,∠DAE=12︒,∴∠CAE=∠BAE=46︒-12︒=34︒,而∠CAD=∠CAE-∠DAE=34︒-12︒=22︒,在△ACD中,∠C=180︒-90︒-22︒=68︒.故答案为68︒.【点睛】本题考查三角形中角度的计算,难度一般,熟记三角形内角和为180°是解题的关键.26.(1)32xy=⎧⎨=⎩;(2)15【分析】(1)把9x﹣4y=19变形为3x+2(3x﹣2y)=19,再用整体代换的方法解题;(2)将原方程组变形为22223(4)2472(4)36x y xyx y xy⎧+-=⎨++=⎩①②这样的形式,再利用整体代换的方法解决.【详解】解:(1)解方程组325 9419 x yx y-=⎧⎨-=⎩①②把②变形为3x+2(3x﹣2y)=19,∵3x﹣2y=5,∴3x+10=19,∴x=3,把x=3代入3x﹣2y=5得y=2,即方程组的解为32 xy=⎧⎨=⎩;(2)原方程组变形为22223(4)247 2(4)36x y xyx y xy⎧+-=⎨++=⎩①②①+②×2得,7(x2+4y2)=119,∴x2+4y2=17,把x2+4y2=17代入②得xy=2∴x2+4y2﹣xy=17﹣2=15答:x2+4y2﹣xy的值是15.本题考查了二元一次方程组的解法,属延伸拓展题,正确掌握整体代换的求解方法是解题的关键.27.DAB ,CAE ;见解析【分析】方法一:根据平行线的性质:两直线平行,内错角相等解答;方法二:根据平行线的性质:两直线平行、同位角相等解答.【详解】方法一:∵DE ∥BC,∴∠B=∠DAB ,∠C=∠CAE ,故答案为:DAB ,CAE ;方法二:∵DE ∥AC ,∴∠A =∠BED ,∠C =∠BDE ,∵DF ∥AB ,∴∠EDF =∠BED ,∠B =∠CDF ,∵∠CDF +∠EDF +∠BDE =180°,∴∠A +∠B +∠C =180°.【点睛】此题考查平行线的性质,三角形内角和定理的证明过程,解题的关键是熟记平行线的性质并运用于解题.28.(1)电脑0.5万元,电子白板1.5万元;(2)14台【分析】(1)设每台电脑x 元,每台电子白板y 元,根据题意列出方程组,解方程组即可;(2)设购进电子白板m 台,则购进电脑()31m -台,根据总费用不超过30万元,列出不等式,根据m 实际意义即可求解.【详解】(1)设每台电脑x 元,每台电子白板y 元,则2 3.52 2.5x y x y +=⎧⎨+=⎩,解得0.51.5x y =⎧⎨=⎩故每台电脑0.5万元,每台电子白板1.5万元;(2)设购进电子白板m 台,则购进电脑()31m -台,由题意得1.50.5(31)30m m +-≤解得14.5m ≤,又因为m 是正整数,则14m ≤,故至多购买电子白板14台.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用,综合性较强,难度不大,根据题意列出二元一次方程组、一元一次不等式是解题关键.。

天津人教版七年级下数学练习题

天津人教版七年级下数学练习题

天津人教版七年级下数学练习题2021年07月11日一.选择题(共16小题)1.(2021•百色)如图,直线a、b被直线c所截,下列条件能使a∥b的是()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠7 2.(2021•大连)如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40° B.70° C.80° D.140°3.(2021•深圳)下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.两边及其一角相等的两个三角形全等C.16的平方根是4D.一组数据2,0,1,6,6的中位数和众数分别是2和64.(2021•定州市一模)如图,直线AB,CD相交于点O,EO⊥CD于点O,∠AOE=36°,则∠BOD=()A.36° B.44° C.50° D.54°5.(2021春•徐闻县期中)如果∠α与∠β是对顶角且互补,则他们两边所在的直线()A.互相垂直B.互相平行C.既不平行也不垂直D.不能确定6.(2021•毕节市)的算术平方根是()A.2 B.±2 C.D.7.(2021•静安区一模)的相反数是()A.B.﹣C.D.﹣8.(2021•河北模拟)下列各数中,最小的数是()A.1 B.﹣|﹣2| C.D.2×10﹣109.(2021春•赵县期中)点M(x,y)在第四象限,且|x|=2,|y|=2,则点M的坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)10.(2021春•禹城市期中)一个长方形在平面直角坐标系中,三个顶点的坐标分别是(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标是()A.(2,2)B.(3,3)C.(3,2)D.(2,3)11.(2021春•南昌期末)己知点(a,b)在笫二象限.则点(ab,a﹣b)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.(2021•黑龙江模拟)开学前,小强、小亮和小伟去文化用品商店购买笔和本,小强用17元买了1支笔和4个本,小亮用19元买了2支笔和3个本,小伟购买上述价格的笔和本共用了48元,且本的数量不少于笔的数量,则小伟的购买方案共有()A.1种B.2种C.3种D.4种13.(2021•台湾)若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b 之值为何?()A.﹣15 B.﹣16 C.﹣17 D.﹣18 14.(2021春•宁国市期中)若不等式组有解,那么n的取值范围是()A.n>8 B.n≤8 C.n<8 D.n≤8 15.(2021•攀枝花)2021年我市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.1.6万名考生B.2000名考生C.1.6万名考生的数学成绩D.2000名考生的数学成绩16.(2021•金华模拟)为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.3二.填空题(共1小题)17.(2021•成都)在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数是.三.解答题(共5小题)18.(2021•安县校级模拟)如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.∵EF∥AD,()∴∠2=.(两直线平行,同位角相等;)又∵∠1=∠2,()∴∠1=∠3.()∴AB∥DG.()∴∠BAC+=180°()又∵∠BAC=70°,()∴∠AGD=.19.(2021秋•南岗区期末)如图,直线AB,CD 相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.20.(2021•朝阳)为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元,请问表中二档电价、三档电价各是多少?阶梯电量电价一档0﹣180度0.6元/度二档181﹣400度二档电价三档401度及以上三档电价21.(2021•河北模拟)已知关于x,y的二元一次方程组的解满足x﹣y=a,求该方程组的解.22.(2021•苏州一模)解不等式组.2021年07月11日参考答案与试题解析一.选择题(共16小题)1.(2021•百色)如图,直线a、b被直线c所截,下列条件能使a∥b的是()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠7 【分析】利用平行线的判定方法判断即可.【解答】解:∵∠2=∠6(已知),∴a∥b(同位角相等,两直线平行),则能使a∥b的条件是∠2=∠6,故选B【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.2.(2021•大连)如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40° B.70° C.80° D.140°【分析】先由平行线性质得出∠ACD与∠BAC 互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数.【解答】解:∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,故选B.【点评】本题考查了平行线的性质和角平分线的定义,比较简单;做好本题要熟练掌握两直线平行①内错角相等,②同位角相等,③同旁内角互补;并会书写角平分线定义的三种表达式:若AP平分∠BAC,则①∠BAP=∠PAC,②∠BAP=∠BAC,③∠BAC=2∠BAP.3.(2021•深圳)下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.两边及其一角相等的两个三角形全等C.16的平方根是4D.一组数据2,0,1,6,6的中位数和众数分别是2和6【分析】根据平行四边形的判定定理、三角形全等的判定定理、平方根的概念、中位数和众数的概念进行判断即可.【解答】解:A.一组对边平行,另一组对边相等的四边形不一定是平行四边形,故错误;B.两边及其一角相等的两个三角形不一定全等,故错误;C.16的平方根是±4,故错误,D.一组数据2,0,1,6,6的中位数和众数分别是2和6,故正确,故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.(2021•定州市一模)如图,直线AB,CD相交于点O,EO⊥CD于点O,∠AOE=36°,则∠BOD=()A.36° B.44° C.50° D.54°【分析】根据题意可以得到∠EOD的度数,由∠AOE=36°,∠AOE+∠EOD+∠BOD=180°,从而可以得到∠BOD的度数.【解答】解:∵EO⊥CD,∴∠EOD=90°,又∵∠AOE+∠EOD+∠BOD=180°,∠AOE=36°,∴∠BOD=54°,故选D.【点评】本题考查垂线、平角,解题的关键是明确题意,找出所求问题需要的条件.5.(2021春•徐闻县期中)如果∠α与∠β是对顶角且互补,则他们两边所在的直线()A.互相垂直B.互相平行C.既不平行也不垂直D.不能确定【分析】∠α与∠β是对顶角且互补,根据对顶角的性质,判断这两个对顶角相等,且都为90°,因此它们两边所在的直线互相垂直.【解答】解:∵∠α与∠β是对顶角,∴∠α=∠β,又∵∠α与∠β互补,∴∠α+∠β=180°,可求∠α=90°.故选:A.【点评】本题考查垂线的定义和对顶角的性质,是简单的基础题.6.(2021•毕节市)的算术平方根是()A.2 B.±2 C.D.【分析】首先根据立方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:=2,2的算术平方根是.故选:C.【点评】此题主要考查了算术平方根的定义,注意关键是要首先计算=2.7.(2021•静安区一模)的相反数是()A.B.﹣C.D.﹣【分析】符号不同的两个数互为相反数,因此的相反数为﹣,分母有理化得﹣.【解答】解:根据相反数定义得:的相反数为:﹣,分子分母同乘得:﹣.故选:D.【点评】题目考查了相反数和最简二次根式的定义,学生在进行相反数转换后,不要忘记对二次根式进行化简.8.(2021•河北模拟)下列各数中,最小的数是()A.1 B.﹣|﹣2| C.D.2×10﹣10【分析】根据绝对值、算术平方根、负整数指数幂的性质判断各数的符号,根据正实数大于一切负实数解答即可.【解答】解:∵1、、2×10﹣10都是正数,﹣|﹣2|是负数,∴最小的数是﹣|﹣2|.故选:B.【点评】本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.9.(2021春•赵县期中)点M(x,y)在第四象限,且|x|=2,|y|=2,则点M的坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数,可得x、y的值,据此可以求的点M的坐标.【解答】解:∵M(x,y)在第四象限,∴|x|=x=2,|y|=﹣y=2,∴x=2,y=﹣2,∴点M的坐标是(2,﹣2).故选B.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.(2021春•禹城市期中)一个长方形在平面直角坐标系中,三个顶点的坐标分别是(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标是()A.(2,2)B.(3,3)C.(3,2)D.(2,3)【分析】因为(﹣1,﹣1)、(﹣1,2)两点横坐标相等,长方形有一边平行于y轴,(﹣1,﹣1)、(3,﹣1)两点纵坐标相等,长方形有一边平行于x轴,过(﹣1,2)、(3,﹣1)两点分别作x 轴、y轴的平行线,交点为第四个顶点.【解答】解:过(﹣1,2)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为(3,2),即为第四个顶点坐标.故选:C.【点评】本题考查了长方形的性质和点的坐标表示方法,明确平行于坐标轴的直线上的点坐标特点是解题的关键.11.(2021春•南昌期末)己知点(a,b)在笫二象限.则点(ab,a﹣b)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据点(a,b)在笫二象限,可得a<0,b>0,所以ab<0,a﹣b<0,所以点(ab,a﹣b)所在象限是第三象限,据此判断即可.【解答】解:∵点(a,b)在笫二象限,∴a<0,b>0,∴ab<0,a﹣b<0,∴a点(ab,a﹣b)所在象限是第三象限.故选:C.【点评】此题主要考查了点的坐标问题,要熟练掌握,解答此题的关键是要明确各个象限内点的坐标特征.12.(2021•黑龙江模拟)开学前,小强、小亮和小伟去文化用品商店购买笔和本,小强用17元买了1支笔和4个本,小亮用19元买了2支笔和3个本,小伟购买上述价格的笔和本共用了48元,且本的数量不少于笔的数量,则小伟的购买方案共有()A.1种B.2种C.3种D.4种【分析】设1支笔的价格为x元,一个本的价格为y元,根据小强和小亮所花费的钱数列出方程组,可求得笔和本的单价,然后设小伟购买了a 支笔,b个本,接下来根据小伟的花费列出关于a、b的方程,最后求得方程的非负整数解即可.【解答】解:设1支笔的价格为x元,一个本的价格为y元.根据题意得:.解得:.设小伟购买了a支笔,b个本.根据题意得:5a+3b=48且b≥a.当a=3时,b=11.当a=6时,b=6.故选:B.【点评】本题主要考查的是二元一次方程的应用和二元一次方程组的应用,根据题意列出方程和方程组是解题的关键.13.(2021•台湾)若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b 之值为何?()A.﹣15 B.﹣16 C.﹣17 D.﹣18【分析】根据不等式20<5﹣2(2+2x)<50可以求得x的取值范围,从而可以得到a、b的值,进而求得a+b的值.【解答】解:∵20<5﹣2(2+2x)<50,解得,,∵不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,∴a=﹣5,b=﹣12,∴a+b=(﹣5)+(﹣12)=﹣17,故选C.【点评】本题考查一元一次不等式组的整数解,解题的关键是明确解一元一次不等式组的方法.14.(2021春•宁国市期中)若不等式组有解,那么n的取值范围是()A.n>8 B.n≤8 C.n<8 D.n≤8【分析】解出不等式组的解集,根据已知解集比较,可求出n的取值范围.【解答】解:∵不等式组有解,∴n<x<8,∴n<8,m的取值范围为n<8.故选C.【点评】考查了不等式的解集,本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.15.(2021•攀枝花)2021年我市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.1.6万名考生B.2000名考生C.1.6万名考生的数学成绩D.2000名考生的数学成绩【分析】根据样本的定义:从总体中取出的一部分个体叫做这个总体的一个样本,依此即可求解.【解答】解:2021年我市有近1.6万名考生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析,在这个问题中抽取的2000名考生的数学成绩为样本.故选:D.【点评】本题考查了总体、个体、样本和样本容量:我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;一个样本包括的个体数量叫做样本容量.16.(2021•金华模拟)为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.3【分析】根据频率分布直方图可以知道书法兴趣小组的频数,然后除以总人数即可求出加绘画兴趣小组的频率.【解答】解:∵根据频率分布直方图知道书法兴趣小组的频数为8,∴参加书法兴趣小组的频率是8÷40=0.2.故选C.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.二.填空题(共1小题)17.(2021•成都)在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数是520.【分析】用所有学生数乘以课外阅读时间不少于7小时的人数所占的百分比即可.【解答】解:该校1300名学生一周的课外阅读时间不少于7小时的人数是1300×=520人,故答案为:520.【点评】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于7小时的人数所占的百分比.三.解答题(共5小题)18.(2021•安县校级模拟)如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.∵EF∥AD,(已知)∴∠2=∠3.(两直线平行,同位角相等;)又∵∠1=∠2,(已知)∴∠1=∠3.(等量代换)∴AB∥DG.(内错角相等,两直线平行;)∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补;)又∵∠BAC=70°,(已知)∴∠AGD=110°.【分析】根据题意,利用平行线的性质和判定填空即可.【解答】解:∵EF∥AD(已知),∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB∥DG.(内错角相等,两直线平行)∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)又∵∠BAC=70°,(已知)∴∠AGD=110°.【点评】本题主要考查了平行线的性质和判定定理等知识点,理解平行线的性质和判定定理是解此题的关键.19.(2021秋•南岗区期末)如图,直线AB,CD 相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.【分析】(1)根据邻补角的定义求出∠EOC,再根据角平分线的定义求出∠AOC,然后根据对顶角相等解答.(2)由已知条件和对顶角相等得出∠MFC=∠MFH=∠BOD+90°=126°,得出∠ONF=90°,求出∠OFM=54°,延长∠OFG=2∠OFM=108°,证出∠OFG+∠EOC=180°,即可得出结论.【解答】解:∵∠EOC:∠EOD=2:3,∴∠EOC=180°×=72°,∵OA平分∠EOC,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.(2)延长FM交AB于N,如图所示:∵∠MFH﹣∠BOD=90°,FM平分∠OFG,∴∠MFC=∠MFH=∠BOD+90°=126°,∴∠ONF=126°﹣36°=90°,∴∠OFM=90°﹣36°=54°,∴∠OFG=2∠OFM=108°,∴∠OFG+∠EOC=180°,∴OE∥GH.【点评】本题考查了平行线的判定、角平分线定义、角的互余关系等知识;熟练掌握平行线的判定、角平分线定义是解决问题的关键,(2)有一定难度.20.(2021•朝阳)为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元,请问表中二档电价、三档电价各是多少?阶梯电量电价一档0﹣180度0.6元/度二档181﹣400度二档电价三档401度及以上三档电价【分析】设二档电价是x元/度、三档电价是y 元/度,根据题意列出方程组求解即可.【解答】解:设二档电价是x元/度、三档电价是y元/度,根据题意得,,解得,答:二档电价是0.7元/度、三档电价是0.9元/度.【点评】本题主要考查了二元一次方程组的应用,解题的关键是正确列出方程组.21.(2021•河北模拟)已知关于x,y的二元一次方程组的解满足x﹣y=a,求该方程组的解.【分析】运用加减消元法解出关于x,y的二元一次方程组,把方程组的解代入x﹣y=a,求出a 的值,代入计算得到方程组的解.【解答】解:,②×2﹣①得,y=a﹣,把y=a﹣代入②得,x=a﹣,则a﹣﹣(a﹣)=a,解得,a=5方程组的解为:.【点评】本题考查的是二元一次方程组的解法,灵活运用加减消元法解方程组是解题的关键.22.(2021•苏州一模)解不等式组.【分析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x≤1.【点评】本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是能根据不等式的解集找出不等式组的解集,题目比较好,难度也适中.。

天津市2020〖人教版〗七年级数学下册期末复习考试试卷295

天津市2020〖人教版〗七年级数学下册期末复习考试试卷295

天津市2020年〖人教版〗七年级数学下册期末复习考试试卷创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一、选择题(每小题3分,共24分)1.如图所示,BC∥DE,∠1=108°,∠AED=75°,则∠A的大小是( )(A)60°(B)33°(C)30°(D)23°2.下列运算正确的是( )(A)3a-(2a-b)=a-b(B)(a3b2-2a2b)÷ab=a2b-2(C)(a+2b)(a-2b)=a2-2b2(D)(-12a2b)3=-18a6b33.(·武汉中考)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是( )(A)标号小于6(B)标号大于6(C)标号是奇数(D)标号是34.如图,△ABC的高AD,BE相交于点O,则∠C与∠BOD的关系是( )(A)相等(B)互余(C)互补(D)不互余、不互补也不相等5.(·绵阳中考)图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )(A)2mn (B)(m+n)2(C)(m-n)2(D)m2-n26.根据生物学研究结果,青春期男女生身高增长速度呈现如图规律,由图可以判断,下列说法错误的是( )(A)男生在13岁时身高增长速度最快(B)女生在10岁以后身高增长速度放慢(C)11岁时男女生身高增长速度基本相同(D)女生身高增长的速度总比男生慢7.如图,AB∥CD,CE∥BF,A,E,F,D在一条直线上,BC与AD交于点O且OE=OF,则图中有全等三角形的对数为( )(A)2 (B)3 (C)4 (D)58.(·大庆中考)如图所示,将一个圆盘四等分,并把四个区域分别标上Ⅰ、Ⅱ、Ⅲ、Ⅳ,只有区域Ⅰ为感应区域,中心角为60°的扇形AOB绕点O转动,在其半径OA上装有带指示灯的感应装置,当扇形AOB与区域Ⅰ有重叠(O点除外)的部分时,指示灯会发光,否则不发光,当扇形AOB任意转动时,指示灯发光的概率为( )(A)16(B)14(C)512(D)712二、填空题(每小题4分,共24分)9.如图,直线a,b被直线c所截(即直线c与直线a,b都相交),且a∥b,若∠1=118°,则∠2的度数=____度.10.(·泰州中考)若代数式x2+3x+2可以表示为(x-1)2+a(x-1)+b的形式,则a+b 的值是____.11.(·厦门中考)在分别写有整数1到10的10张卡片中,随机抽取1张卡片,则该卡片的数字恰好是奇数的概率是____.12.某市出租车价格是这样规定的:不超过2千米,付车费5元,超过的部分按每千米 1.6元收费,已知李老师乘出租车行驶了x(x>2)千米,付车费y 元,则所付车费y元与出租车行驶的路程x千米之间的函数关系为________________.13.(·嘉兴中考)在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为____.14.(·三明中考)如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDF,请你添加一个条件,使DE=DF成立.你添加的条件是__________________.(不再添加辅助线和字母)三、解答题(共52分)15.(10分)(·贵阳中考)先化简,再求值:2b2+(a+b)(a-b)-(a-b)2,其中a=-3,b=12.16.(10分)(·南宁中考)如图所示,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E是AB的中点.(1)图中有哪几对全等三角形,请写出来;(2)试判断OE和AB的位置关系,并给予证明.17.(10分)(·吉林中考)在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是____、____(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.18.(10分)(·乐山中考)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1.(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.19.(12分)甲、乙两人玩“锤子、石头、剪子、布”游戏,他们在不透明的袋子中放入形状、大小均相同的15张卡片,其中写有“锤子”“石头”“剪子”“布”的卡片张数分别为2,3,4,6.两人各随机摸出一张卡片(先摸者不放回)来比胜负,并约定:“锤子”胜“石头”和“剪子”,“石头”胜“剪子”,“剪子”胜“布”,“布”胜“锤子”和“石头”,同种卡片不分胜负.(1)若甲先摸,则他摸出“石头”的概率是多少?(2)若甲先摸出了“石头”,则乙获胜的概率是多少?(3)若甲先摸,则他先摸出哪种卡片获胜的可能性最大?答案解析1.【解析】选B.因为BC∥DE,所以∠EDB=∠1=108°.又因为∠EDB=∠A+∠AED,所以∠A=∠EDB-∠AED=108°-75°=33°.2.【解析】选 D.A,3a-(2a-b)=a+b,故选项错误;B,(a3b2-2a2b)÷ab=a2b-2a,故选项错误;C,(a+2b)·(a-2b)=a2-4b2,故选项错误;故D正确.3.【解析】选A.A是一定发生的事件,是必然事件,故选项正确;B是不可能发生的事件,故选项错误;C是不确定事件,故选项错误;D是不确定事件,故选项错误.4.【解析】选A.因为△ABC的高为AD,BE,所以∠C+∠OAE=90°,∠OAE+∠AOE=90°,所以∠C=∠AOE,因为∠AOE=∠BOD(对顶角相等),所以∠C=∠BOD.故选A.5.【解析】选 C.由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又因为原矩形的面积为4mn,所以中间空的部分的面积=(m+n)2-4mn=(m-n)2.故选C.6.【解析】选D.由图可知男生在13岁时身高增长速度最快,故A选项正确;女生在10岁以后身高增长速度放慢,故B选项正确;11岁时男女生身高增长速度基本相同,故C选项正确;女生身高增长的速度不是总比男生慢,有时快,故D选项错误.7.【解析】选B.①因为CE∥BF,所以∠OEC=∠OFB,又OE=OF,∠COE=∠BOF,所以△OCE≌△OBF,所以OC=OB,CE=BF;②因为AB ∥CD ,所以∠ABO=∠DCO ,∠COD=∠AOB ,因为OC=OB ,故△AOB ≌△DOC ,所以AB=CD ;③因为AB ∥CD ,CE ∥BF ,所以∠ABF=∠ECD ,又因为CE=BF ,AB=CD ,所以△CDE ≌△BAF.8.【解析】选D.如图,因为当扇形AOB 落在区域Ⅰ时,指示灯会发光; 当扇形AOB 落在区域Ⅱ的∠FOC(∠FOC=60°)内部时,指示灯会发光; 当扇形AOB 落在区域Ⅳ的∠DOE(∠DOE=60°)内部时,指示灯会发光. 所以指示灯发光的概率为:609060736012++=. 9.【解析】因为a ∥b ,所以∠1=∠3=118°,因为∠3与∠2互为邻补角,所以∠2=62°.答案:6210.【解析】因为x 2+3x+2=(x-1)2+a(x-1)+b=x 2+(a-2)x+(b-a+1).所以a-2=3, b-a+1=2,所以a=5,b=6,所以a+b=5+6=11.答案:1111.【解析】因为有整数1到10的10张卡片,所以随机抽取1张卡片,共有10种等可能的结果.因为该卡片的数字恰好是奇数的有5种情况,所以该卡片的数字恰好是奇数的概率是51102=. 答案:1212.【解析】由题意得,李老师乘出租车行驶了x(x >2)千米,故可得:y=5+(x-2)×1.6=1.6x+1.8.答案:y=1.6x+1.813.【解析】如图,过D 点作DE ⊥AB 于点E ,则DE即为所求,因为∠C=90°,AD平分∠BAC交BC于点D,所以CD=DE(角的平分线上的点到角的两边的距离相等),因为CD=4,所以DE=4.答案:414.【解析】答案不惟一,如AB=AC或∠B=∠C或∠BED=∠CFD或∠AED=∠AFD 等;理由是:①因为AB=AC,所以∠B=∠C,根据ASA证出△BED≌△CFD,即可得出DE=DF;②由∠B=∠C,∠BDE=∠CDF,BD=DC,根据ASA证出△BED≌△CFD,即可得出DE=DF;③由∠BED=∠CFD,∠BDE=∠CDF,BD=DC,根据AAS证出△BED≌△CFD,即可得出DE=DF;④因为∠AED=∠AFD,∠AED=∠B+∠BDE,∠AFD=∠C+∠CDF,又因为∠BDE=∠CDF,所以∠B=∠C,即由∠B=∠C,∠BDE=∠CDF,BD=DC,根据ASA证出△BED≌△CFD,即可得出DE=DF.答案:答案不惟一,如AB=AC或∠B=∠C或∠BED=∠CFD或∠AED=∠AFD等15.【解析】原式=2b2+a2-b2-(a2+b2-2ab)=2b2+a2-b2-a2-b2+2ab=2ab,当a=-3,b=12时,原式=2×(-3)×12=-3.16.【解析】(1)△ABC≌△BAD,△AOE≌△BOE,△AOC≌△BOD;(2)OE⊥AB.理由如下:因为在Rt △ABC 和Rt △BAD 中,所以△ABC ≌△BAD ,所以∠DAB=∠CBA ,所以OA=OB ,因为点E 是AB 的中点,所以OE ⊥AB.17.【解析】(1)因为情境a :小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回了家里找到了作业本,即又返回家,离家的距离是0,此时②③都符合,又去学校,即离家越来越远,此时只有③符合, 所以只有③符合情境a ;因为情境b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,所以只有①符合.答案:③①(2)图象②是小芳离开家不久,休息了一会儿,又走回了家.18.【解析】(1)如图,△A 1B 1C 1是△ABC 关于直线l 的对称图形.(2)由图得四边形BB 1C 1C 是等腰梯形,BB 1=4,CC 1=2,高是4.所以11BB C C S 四边形=12(BB 1+CC 1)×4, =12×(4+2)×4=12.19.【解析】(1)若甲先摸,共有15张卡片可供选择,其中写有“石头”的卡片共3张,故甲摸出“石头”的概率为31155 .(2)若甲先摸且摸出“石头”,则可供乙选择的卡片还有14张,其中乙只有摸出卡片“锤子”或“布”才能获胜,这样的卡片共有8张,故乙获胜的概率为84=.147(3)若甲先摸,则“锤子”“石头”“剪子”“布”四种卡片都有可能被摸出. 若甲先摸出“锤子”,则甲获胜(即乙摸出“石头”或“剪子”)的概率为71=;142若甲先摸出“石头”,则甲获胜(即乙摸出“剪子”)的概率为42=;147若甲先摸出“剪子”,则甲获胜(即乙摸出“布”)的概率为63=;147.若甲先摸出“布”,则甲获胜(即乙摸出“锤子”或“石头”)的概率为514故甲先摸出“锤子”获胜的可能性最大.创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校。

天津市2020〖人教版〗七年级数学下册期末复习考试试卷1017

天津市2020〖人教版〗七年级数学下册期末复习考试试卷1017

天津市2020年〖人教版〗七年级数学下册期末复习考试试卷创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一、选择题(本题共10小题,每小题3分,共30分)1.下列图案可以通过一个“基本图形”平移得到的是()A.B.C.D.2.9的平方根为()A.3B.﹣3 C.±3 D.3.代数式(﹣4a)2的值是()A.16a B.4a2C.﹣4a2D.16a24.下面四个图形中∠1与∠2是对顶角的是()A.B.C.D.5.如果a>b,那么下列结论一定正确的是()A.a﹣3<b﹣3 B.3﹣a<3﹣b C.a c2>bc2D.a2>b26.下列说法正确的是()A.﹣2是﹣8的立方根B.9的立方根是3C.﹣3是(﹣3)2的算术平方根D.8的算术平方根是27.如图,下列说法错误的是()A.∠A与∠B是同旁内角B.∠3与∠1是同旁内角C.∠2与∠3是内错角D.∠1与∠2是同位角8.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A.n≤m B.n≤C.n≤D.n≤9.如果不等式2x﹣m<0只有三个正整数解,那么m的取值范围是()A.m<8 B.m≥6 C.6<m≤8 D.6≤m<810.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+x n)的结果是()A.1﹣x n+1B.1+x n+1C.1﹣x n D.1+x n二、填空题(本题共8小题,每小题3分,满分24分)11.写出一个3到4之间的无理数.12.分解因式4x2﹣100=.13.计算:(14x3﹣21x2+7x)÷7x的结果是.14.如图,AC⊥BC于点C,CD⊥AB于点D,其中长度能表示点到直线(或线段)的距离的线段有条.15.若分式的值为0,则x的值等于.16.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为.17.已知关于x的方程的解是正数,则m的取值范围是.18.下列结论中:①a2•a4=a8;②1010÷105=102;③(x2)5=x7;④(3×2﹣12÷2)0=1;⑤平移只改变图形的位置,不改变图形的形状和大小;⑥垂直于同一条直线的两条直线互相平行,所有正确结论的序号有.三、解答题(本题共8小题,满分66分)19.计算:+﹣﹣2﹣3.20.解不等式组:,并将解集在数轴上表示出来.21.计算:(a+b)2+(a﹣b)(2a+b)﹣3(a+b)(a﹣b)22.先化简(﹣)÷﹣+1,再从﹣2≤x≤2的整数中任选一个你喜欢的x值代入求值.23.将如图所示的三角形ABC,先水平向右平移5格得三角形DEF,再竖直向下平移4格得到三角形GHQ,作出这两个三角形,并标上字母.24.如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数,下面给出了求∠AGD的度数的过程,将此补充完整并在括号里填写依据.【解】∵EF∥AD(已知)∴∠2=()又∵∠1=∠2(已知)∴∠1=∠3(等式性质或等量代换)∴AB∥()∴∠BAC+=180°()又∵∠BAC=70°(已知)∴∠AGD=()25.在边长为a的正方形中减掉一个边长为b的小正方形(a>b)把余下的部分再剪拼成一个长方形.(1)如图1,阴影部分的面积是:;(2)如图2,是把图1重新剪拼成的一个长方形,阴影部分的面积是;(3)比较两阴影部分面积,可以得到一个公式是;(4)运用你所得到的公式,计算:99.8×100.2.26.我县某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?七年级下学期期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.下列图案可以通过一个“基本图形”平移得到的是()A.B.C.D.考点:利用平移设计图案.分析:根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.解答:解:A、可以由一个“基本图案”旋转得到,故本选项错误;B、可以由一个“基本图案”平移得到,故把本选项正确;C、是轴对称图形,不是基本图案的组合图形,故本选项错误;D、是轴对称图形,不是基本图案的组合图形,故本选项错误.故选B.点评:本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键.2.9的平方根为()A.3B.﹣3 C.±3 D.考点:平方根.专题:计算题.分析:根据平方根的定义求解即可,注意一个正数的平方根有两个.解答:解:9的平方根有:=±3.故选C.点评:此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.3.代数式(﹣4a)2的值是()A.16a B.4a2C.﹣4a2D.16a2考点:幂的乘方与积的乘方.分析:根据积的乘方即可解答.解答:解:(﹣4a)2=16a2,故选:D.点评:本题考查了积的乘方,解决本题的关键是熟记积的乘方法则.4.下面四个图形中∠1与∠2是对顶角的是()A.B.C.D.考点:对顶角、邻补角.分析:根据对顶角的定义作出判断即可.解答:解:根据对顶角的定义可知:只有C图中的是对顶角,其它都不是.故选:C.点评:本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.5.如果a>b,那么下列结论一定正确的是()A.a﹣3<b﹣3 B.3﹣a<3﹣b C.a c2>bc2D.a2>b2考点:不等式的性质.专题:计算题.分析:根据不等式的基本性质可知:a﹣3>b﹣3;3﹣a<3﹣b;当c=0时ac2>bc2不成立;当0>a>b时,a2>b2不成立.解答:解:∵a>b,∴﹣a<﹣b,∴3﹣a<3﹣b;故本题选B.点评:主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.下列说法正确的是()A.﹣2是﹣8的立方根B.9的立方根是3C.﹣3是(﹣3)2的算术平方根D.8的算术平方根是2考点:立方根;算术平方根.专题:计算题.分析:利用立方根及算术平方根的定义判断即可.解答:解:A、﹣2是﹣8的立方根,正确;B、9的立方根为,错误;C、3是(﹣3)2的算术平方根,错误;D、8的算术平方根为2,错误,故选A点评:此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.7.如图,下列说法错误的是()A.∠A与∠B是同旁内角B.∠3与∠1是同旁内角C.∠2与∠3是内错角D.∠1与∠2是同位角考点:同位角、内错角、同旁内角.分析:根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角可得答案.解答:解:A、∠A与∠B是同旁内角,说法正确;B、∠3与∠1是同旁内角,说法正确;C、∠2与∠3是内错角,说法正确;D、∠1与∠2是邻补角,原题说法错误,故选:D.点评:此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.8.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A.n≤m B.n≤C.n≤D.n≤考点:一元一次不等式的应用.分析:根据最大的降价率即是保证售价大于等于成本价,进而得出不等式即可.解答:解:设进价为a元,由题意可得:a(1+m%)(1﹣n%)﹣a≥0,则(1+m%)(1﹣n%)﹣1≥0,去括号得:1﹣n%+m%﹣﹣1≥0,整理得:100n+mn≤100m,故n≤.故选:B.点评:此题主要考查了一元一次不等式的应用,得出正确的不等关系是解题关键.9.如果不等式2x﹣m<0只有三个正整数解,那么m的取值范围是()A.m<8 B.m≥6 C.6<m≤8 D.6≤m<8考点:一元一次不等式的整数解.分析:先求出不等式的解集,根据已知得出关于m的不等式组,求出不等式组的解集即可.解答:解:2x﹣m<0,2x<m,x<,∵不等式2x﹣m<0只有三个正整数解,∴3<≤4,∴6<m≤8,故选C.点评:本题考查了解一元一次不等式,一元一次不等式组的整数解的应用,能得出关于m的不等式组是解此题的关键.10.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+x n)的结果是()A.1﹣x n+1B.1+x n+1C.1﹣x n D.1+x n考点:平方差公式;多项式乘多项式.专题:规律型.分析:已知各项利用多项式乘以多项式法则计算,归纳总结得到一般性规律,即可得到结果.解答:解:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1+x+x2﹣x﹣x2﹣x3=1﹣x3,…,依此类推(1﹣x)(1+x+x2+…+x n)=1﹣x n+1,故选:A点评:此题考查了平方差公式,多项式乘多项式,找出规律是解本题的关键.二、填空题(本题共8小题,每小题3分,满分24分)11.写出一个3到4之间的无理数π.考点:估算无理数的大小.专题:开放型.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.解答:解:3到4之间的无理数π.答案不唯一.点评:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.12.分解因式4x2﹣100=4(x+5)(x﹣5).考点:提公因式法与公式法的综合运用.分析:首先提取公因式4,进而利用平方差公式分解因式即可.解答:解:4x2﹣100=4(x2﹣25)=4(x+5)(x﹣5).故答案为:4(x+5)(x﹣5).点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式是解题关键.13.计算:(14x3﹣21x2+7x)÷7x的结果是2x2﹣3x+1.考点:整式的除法.分析:把这个多项式的每一项分别除以单项式,再把所得的商相加减求解.解答:解:(14x3﹣21x2+7x)÷7x=14x3÷7x﹣21x2÷7x+7x÷7x,=2x2﹣3x+1.故答案为:2x2﹣3x+1.点评:本题主要考查了整式的除法,解题的关键是把这个多项式的每一项分别除以单项式,再把所得的商相加减.14.如图,AC⊥BC于点C,CD⊥AB于点D,其中长度能表示点到直线(或线段)的距离的线段有5条.考点:点到直线的距离.分析:根据点到直线距离的定义对各选项进行逐一分析即可.解答:解:表示点C到直线AB的距离的线段为CD,表示点B到直线AC的距离的线段为BC,表示点A到直线BC的距离的线段为AC,表示点A到直线DC的距离的线段为AD,表示点B到直线DC的距离的线段为BD,共五条.故答案为:5.点评:本题考查了点到直线的距离的概念,解题的关键在于熟记定义.15.若分式的值为0,则x的值等于1.考点:分式的值为零的条件.专题:计算题.分析:根据分式的值为零的条件可以求出x的值.解答:解:由分式的值为零的条件得x2﹣1=0,x+1≠0,由x2﹣1=0,得x=﹣1或x=1,由x+1≠0,得x≠﹣1,∴x=1,故答案为1.点评:若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.16.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为2.5×10﹣6.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0025=2.5×10﹣6;故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.已知关于x的方程的解是正数,则m的取值范围是m>﹣6且m≠﹣4.考点:分式方程的解.分析:首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.解答:解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.点评:本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x的方程是关键,解关于x的不等式是本题的一个难点.18.下列结论中:①a2•a4=a8;②1010÷105=102;③(x2)5=x7;④(3×2﹣12÷2)0=1;⑤平移只改变图形的位置,不改变图形的形状和大小;⑥垂直于同一条直线的两条直线互相平行,所有正确结论的序号有⑤.考点:平行线的判定;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法;零指数幂;平移的性质.分析:根据平行线的判定定理,同底数幂的乘法和除法的法则,幂的乘方与积的乘方的法则,平移的性质,零指数幂的性质逐一进行判断即可.解答:解:①a2•a4=a6;故此选项错误;②1010÷105=105;故此选项错误;③(x2)5=x10;故此选项错误;④(3×2﹣12÷2)0;此算式无意义,故此选项错误;⑤平移只改变图形的位置,不改变图形的形状和大小;故此选项正确;⑥在同一平面内,垂直于同一条直线的两条直线互相平行,故此选项错误;故答案为:⑤.点评:本题考查了平行线的判定,同底数幂的乘法和除法,幂的乘方与积的乘方,平移,零指数幂,熟记各性质和法则是解题的关键.三、解答题(本题共8小题,满分66分)19.计算:+﹣﹣2﹣3.考点:实数的运算;负整数指数幂.专题:计算题.分析:原式第一项利用立方根定义计算,第二、三项利用算术平方根定义计算,最后一项利用负整数指数幂法则计算即可得到结果.解答:解:原式=2+0﹣﹣=.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解不等式组:,并将解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:本题考查不等式组的解法,首先把两条不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,把不等式的解集用一条式子表示出来.解答:解:解不等式①,得x≥﹣1.解不等式②,得x<2.所以不等式组的解集是﹣1≤x<2.在数轴上可表示为:.点评:本题考查不等式组的解法和在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.21.计算:(a+b)2+(a﹣b)(2a+b)﹣3(a+b)(a﹣b)考点:整式的混合运算.专题:计算题.分析:原式利用完全平方公式,平方差公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果.解答:解:原式=a2+2ab+b2+2a2+ab﹣2ab﹣b2﹣3a2+3b2=ab+3b2.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.22.先化简(﹣)÷﹣+1,再从﹣2≤x≤2的整数中任选一个你喜欢的x值代入求值.考点:分式的化简求值.分析:先化简,再把x=2代入求值.解答:解:(﹣)÷﹣+1=[﹣]×﹣+1,=×﹣+1,=﹣+1,=,当x=2时,原式==.点评:本题主要考查了分式的化简求值,解题的关键是正确的化简.23.将如图所示的三角形ABC,先水平向右平移5格得三角形DEF,再竖直向下平移4格得到三角形GHQ,作出这两个三角形,并标上字母.考点:作图-平移变换.分析:直接根据图形平移的性质画出△DEF与△GHQ即可.解答:解:如图所示.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.24.如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数,下面给出了求∠AGD的度数的过程,将此补充完整并在括号里填写依据.【解】∵EF∥AD(已知)∴∠2=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠1=∠3(等式性质或等量代换)∴AB∥DG(内错角相等,两直线平行)∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补)又∵∠BAC=70°(已知)∴∠AGD=100°(等式性质)考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线的性质求出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB∥DG,根据平行线的性质得出∠BAC+∠AGD=180°,代入求出即可.解答:解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补),∵∠BAC=70°,∴∠AGD=100°(等式性质),故答案为:∠3,两直线平行,同位角相等,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补,100°,等式性质.点评:本题考查了平行线的性质和判定的应用,能正确运用平行线的性质和判定定理进行推理是解此题的关键.25.在边长为a的正方形中减掉一个边长为b的小正方形(a>b)把余下的部分再剪拼成一个长方形.(1)如图1,阴影部分的面积是:a2﹣b2;(2)如图2,是把图1重新剪拼成的一个长方形,阴影部分的面积是(a+b)(a﹣b);(3)比较两阴影部分面积,可以得到一个公式是(a+b)(a﹣b)=a2﹣b2;(4)运用你所得到的公式,计算:99.8×100.2.考点:平方差公式的几何背景.分析:(1)大正方形与小正方形的面积的差就是阴影部分的面积;(2)根据矩形的面积公式求解;(3)根据两个图形的面积相等即可得到公式;(4)利用(3)的公式即可直接求解.解答:解:(1)a2﹣b2;(2)(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2;(4)原式=(100﹣0.2)(100+0.2)=1002﹣0.22=10000﹣0.04=9999.96.点评:本题考查了平方差公式的几何解释,根据阴影部分的面积相等列出面积的表达式是解题的关键.26.我县某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?考点:分式方程的应用;一元一次不等式组的应用.分析:(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.解答:解:(1)设今年5月份A款汽车每辆售价x万元.根据题意得:=,解得:x=9,经检验知,x=9是原方程的解.所以今年5月份A款汽车每辆售价9万元.(2)设A款汽车购进y辆.则B款汽车每辆购进(15﹣y)辆.根据题意得:解得:6≤y≤10,所以有5种方案:方案一:A款汽车购进6辆;B款汽车购进9辆;方案二:A款汽车购进7辆;B款汽车购进8辆;方案三:A款汽车购进8辆;B款汽车购进7辆;方案四:A款汽车购进9辆;B款汽车购进6辆;方案五:A款汽车购进10辆;B款汽车购进5辆.(3)设利润为W则:W=(8﹣6)×(15﹣y)﹣a(15﹣y)+(9﹣7.5)y=30﹣2y﹣a(15﹣y)+1.5y=30﹣a(15﹣y)﹣0.5y方案一:W=30﹣a(15﹣6)﹣0.5×6=30﹣9a﹣3=27﹣9a方案二:W=30﹣a(15﹣7)﹣0.5×7=30﹣8a﹣3.5=26.5﹣8a方案三:W=30﹣a(15﹣8)﹣0.5×8=30﹣7a﹣4=26﹣7a方案四:W=30﹣a(15﹣9)﹣0.5×9=30﹣6a﹣4.5=25.5﹣6a方案五:W=30﹣a(15﹣10)﹣0.5×10=30﹣5a﹣5=25﹣5a由27﹣9a=26.5﹣8a 得a=0.5方案一对公司更有利.点评:本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键创作人:百里公地创作日期:202X.04.01创作人:百里公地创作日期:202X.04.01。

天津市人教版七年级下学期期末数学试题

天津市人教版七年级下学期期末数学试题

天津市人教版七年级下学期期末数学试题一、选择题1.下列运算正确的是( ) A .236a a a ⋅=B .222()ab a b =C .()325a a = D .623a a a ÷=2.已知关于x ,y 的方程组03210ax by ax by +=⎧⎨-=⎩的解为21x y =⎧⎨=-⎩,则a ,b 的值是( )A .12a b =⎧⎨=⎩B .21a b =⎧⎨=⎩C .12a b =-⎧⎨=-⎩D .21a b =⎧⎨=-⎩3.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12nπ⎛⎫ ⎪⎝⎭B .14nπ⎛⎫ ⎪⎝⎭C .2112n π+⎛⎫ ⎪⎝⎭D .2112n π-⎛⎫ ⎪⎝⎭4.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( ) A .﹣4B .2C .3D .45.下列从左到右的变形,是因式分解的是( ) A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+D .228x 8x 22(2x 1)-+-=-- 6.下列各式由左边到右边的变形,是因式分解的是( ) A .x (x +y )=x 2+xy B .2x 2+2xy =2x (x +y ) C .(x +1)(x -2)=(x -2)(x +1)D .2111x x x x x ⎛⎫++=++⎪⎝⎭7.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( ) A .ab 2 B .a +b 2 C .a 2b 3D .a 2+b 38.能把一个三角形的面积分成相等的两部分的线是这个三角形的( ) A .一条高B .一条中线C .一条角平分线D .一边上的中垂线9.下列方程组中,是二元一次方程组的为( )A .1512n mm n ⎧+=⎪⎪⎨⎪+=⎪⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .00x y =⎧⎨=⎩10.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( )A .10m -<≤B .10m -≤<C .01m ≤<D .01m <≤二、填空题11.若a m =5,a n =3,则a m +n =_____________.12.若{14x y =-=是二元一次方程3x +ay =5的一组解,则a = ______ . 13.若24x mx ++是完全平方式,则m =______. 14.计算:32(2)xy -=___________.15.已知△ABC 中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.若直线CE 垂直于△ABC 的一边,则∠BEC =____°.16.已知()223420x y x y -+--=,则x=__________,y=__________.17.多项式4a 3bc +8a 2b 2c 2各项的公因式是_________.18.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.19.()a b -+(__________) =22a b -. 20.若a m =2,a n =3,则a m +n 的值是_____.三、解答题21.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值; (3)若25,2x y xy +==,求2x y -的值.22.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.23.先化简,再求值:(3x +2)(3x -2)-5x (x +1)-(x -1)2,其中x 2-x -10=0.24.解方程组:41325x y x y +=⎧⎨-=⎩.25.化简与计算:(1)1201(3)(2)3π-⎛⎫---+- ⎪⎝⎭(2)(﹣2a 3)3+(﹣4a )2•a 7﹣2a 12÷a 326.如图,有一块长为(3)a b +米,宽为(2)a b +米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a 米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.27.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?28.如图,已知AB ∥CD , 12∠=∠,BE 与CF 平行吗?【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】A.235 a a a ⋅=,故本选项错误;B. ()222ab a b =,故本选项正确; C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。

【3套打包】天津市人教版七年级数学下册第十章数据的收集、整理与描述题单元综合练习卷(含答案)

【3套打包】天津市人教版七年级数学下册第十章数据的收集、整理与描述题单元综合练习卷(含答案)

人教版七年级下期第10章《数据的收集、整理与描述》(有答案)人教版七年级下期第10章《数据的收集、整理与描述》(有答案)一.选择题(共6小题)1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.下列调查中,适合采用普查方式的是()A.调查市场上婴幼儿奶粉的质量情况B.调查黄浦江水质情况C.调查某个班级对青奥会吉祥物的知晓率D.调查《直播南京》栏目在南京市的收视率3.下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况4.为了检查一批灯管的使用寿命,从中抽取了10只进行检测,以下说法正确的是()A.这一批灯管是总体B.10只灯管是总体的一个样本C.每只灯管是个体D.10只灯管的使用寿命是总体的一个样本5.为了了解某地区12 000名初中毕业生参加中考的数学成绩,从中抽取了500名考生的数学成绩进行统计分析,下列说法正确的是()A.个体是指每个考生B.12000名考生是个体C.500名考生的成绩是总体的一个样本D.样本是指500名考生6.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量二.填空题(共8小题)7.学校为七年级学生订做校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下,已知该校七年级学生有800名,那么中号校服应订制套.8.已知一组数据是连续的整数,其中最大值是242,最小数据是198,若把这组数据分成9个小组,则组距是.9.某镇卫生部门2014年4月份对镇所辖学校的中小学生进行体质健康测试,随机抽取了200名学生的测试成绩作为样本,数据整理如下表,其中x的值为.10.如图是某市20132016-年私人汽车拥有量和年增长率的统计图.该市私人汽车拥有量年净增量最多的是年,私人汽车拥有量年增长率最大的是年.11.图1表示某地区2003年12个月中每个月的平均气温,图2表示该地区某家庭这年12个月中每月的用电量.根据统计图,请你说出该家庭用电量与气温之间的关系(只要求写出一条信息即可):.12.我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为.(填序号)13.为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图的频数直方图(每小组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于.14.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是8,频率是0.2,那么该班级的人数是人.三.解答题(共6小题)15.2013年我国中东部地区先后遭遇多次大范围雾霾天气,其影响范围、持续时间、雾霾强度历史少见,给人们生产生活造成了严重影响.为此“雾霾天气的主要成因”就成为某校环保小组调查研究的课题,他们随机调查了部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.请根据图表中提供的信息解答下列问题;(1)填空:m=,n=,扇形统计图中表示E组的扇形圆心角等于度.(2)若该市人口约有800万人,请你估计其中持D组“观点”的市民人数;(3)治理雾霾天气需要每个人的环保行动和参与,作为一名中学生的你能为“应对雾霾天气,保护环境”做些什么?请你写出来.(只需写出一条措施或建议即可)16.某校有1000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到下列图表(频数分布表中部分划记被污染渍盖住)(1)本次调查的个体是;(2)求扇形统计图中,乘私家车部分对应的圆心角的度数;(3)请估计该校1000名学生中,选择骑车和步行上学的一共有多少人?17.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩进行统计.请你根据尚未完成的频数分布表和频数分布直方图,解答下列问题:(1)填充频数分布表的空格;(2)补全频数直方图,并绘制频数分布直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(4)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?18.网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对1235-岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中1823-岁部分的圆心角;(3)据报道,目前我国1235-岁的人数.-岁网瘾人数约为2000万,请估计其中122319.某校为开展每天一小时阳光体育活动,准备组建篮球、排球、羽毛球、乒乓球四个兴趣小组,并规定每名学生只能参加1个小组,且不能不参加.该校对九年级学生报名情况进行了抽样调查,并将所得数据绘制成了如下两幅统计图:根据图中的信息,解答下列问题:(1)本次调查共抽样了名学生;(2)补全条形统计图;(3)若该校九年级共有450名学生,试估计报名参加排球兴趣小组的人数.20.班主任张老师为了了解本班学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1).(1)该班共有名学生;(2)在张老师的鼓励下,该班学生第二天的发言次数比前一天明显增加,图2是全班第二天发言次数变化的人数的扇形统计图人教版七年级下期第10章《数据的收集、整理与描述》(有答案)人教版七年级下期第10章《数据的收集、整理与描述》(有答案)一.选择题(共6小题)1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.下列调查中,适合采用普查方式的是()A.调查市场上婴幼儿奶粉的质量情况B.调查黄浦江水质情况C.调查某个班级对青奥会吉祥物的知晓率D.调查《直播南京》栏目在南京市的收视率3.下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况4.为了检查一批灯管的使用寿命,从中抽取了10只进行检测,以下说法正确的是()A.这一批灯管是总体B.10只灯管是总体的一个样本C.每只灯管是个体D.10只灯管的使用寿命是总体的一个样本5.为了了解某地区12 000名初中毕业生参加中考的数学成绩,从中抽取了500名考生的数学成绩进行统计分析,下列说法正确的是()A.个体是指每个考生B.12000名考生是个体C.500名考生的成绩是总体的一个样本D.样本是指500名考生6.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量二.填空题(共8小题)7.学校为七年级学生订做校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下,已知该校七年级学生有800名,那么中号校服应订制套.8.已知一组数据是连续的整数,其中最大值是242,最小数据是198,若把这组数据分成9个小组,则组距是.9.某镇卫生部门2014年4月份对镇所辖学校的中小学生进行体质健康测试,随机抽取了200名学生的测试成绩作为样本,数据整理如下表,其中x的值为.10.如图是某市20132016-年私人汽车拥有量和年增长率的统计图.该市私人汽车拥有量年净增量最多的是年,私人汽车拥有量年增长率最大的是年.11.图1表示某地区2003年12个月中每个月的平均气温,图2表示该地区某家庭这年12个月中每月的用电量.根据统计图,请你说出该家庭用电量与气温之间的关系(只要求写出一条信息即可):.12.我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为.(填序号)13.为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图的频数直方图(每小组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于.14.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是8,频率是0.2,那么该班级的人数是人.三.解答题(共6小题)15.2013年我国中东部地区先后遭遇多次大范围雾霾天气,其影响范围、持续时间、雾霾强度历史少见,给人们生产生活造成了严重影响.为此“雾霾天气的主要成因”就成为某校环保小组调查研究的课题,他们随机调查了部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.请根据图表中提供的信息解答下列问题;(1)填空:m=,n=,扇形统计图中表示E组的扇形圆心角等于度.(2)若该市人口约有800万人,请你估计其中持D组“观点”的市民人数;(3)治理雾霾天气需要每个人的环保行动和参与,作为一名中学生的你能为“应对雾霾天气,保护环境”做些什么?请你写出来.(只需写出一条措施或建议即可)16.某校有1000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到下列图表(频数分布表中部分划记被污染渍盖住)(1)本次调查的个体是;(2)求扇形统计图中,乘私家车部分对应的圆心角的度数;(3)请估计该校1000名学生中,选择骑车和步行上学的一共有多少人?17.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩进行统计.请你根据尚未完成的频数分布表和频数分布直方图,解答下列问题:(1)填充频数分布表的空格;(2)补全频数直方图,并绘制频数分布直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(4)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?18.网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对1235岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中1823-岁部分的圆心角;(3)据报道,目前我国1235-岁的人数.-岁网瘾人数约为2000万,请估计其中122319.某校为开展每天一小时阳光体育活动,准备组建篮球、排球、羽毛球、乒乓球四个兴趣小组,并规定每名学生只能参加1个小组,且不能不参加.该校对九年级学生报名情况进行了抽样调查,并将所得数据绘制成了如下两幅统计图:根据图中的信息,解答下列问题:(1)本次调查共抽样了名学生;(2)补全条形统计图;(3)若该校九年级共有450名学生,试估计报名参加排球兴趣小组的人数.20.班主任张老师为了了解本班学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1).(1)该班共有名学生;(2)在张老师的鼓励下,该班学生第二天的发言次数比前一天明显增加,图2是全班第二天发言次数变化的人数的扇形统计图人教版七年级下册第十章数据的收集、整理与描述单元练习题(含答案)一、选择题1.下列调查中,①调查本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④调查运动员兴奋剂的使用情况,其中适合采用抽样调查的是()A.①B.②C.③D.④2.为了测量调查对象每分钟的心跳次数,甲同学建议测量2分钟的心跳次数再除以2,乙同学建议测量10秒的心跳次数再乘以6,你认为哪位同学的方法更具有代表性()A.甲同学B.乙同学C.两种方法都具有代表性D.两种方法都不合理3.为了了解2016年我县九年级6 023名学生学业水平考试的数学成绩,从中随机抽取了200名学生的数学成绩,下列说法正确的是()A.2016年我县九年级学生是总体B.每一名九年级学生是个体C.200名九年级学生是总体的一个样本D.样本容量是2004.我市属国家珍稀动物“大鲵”保护地,科考人员某日在其中一个保护区捕捞6只大鲵,并在它们身上都做了标记后放回,几天后,在该保护区又捕捞18只大鲵,其中2只身上有标记,据此估计该保护区约有大鲵多少只()A.54B.24C.32D.1085.在设计调查问卷时,下面的提问比较恰当的是()A.我认为猫是一种很可爱的动物B.难道你不认为科幻片比武打片更有意思C.你给我回答到底喜不喜欢猫呢D.请问你家有哪些使用电池的电器6.为了从甲、乙两名学生中选拔一人参加电脑知识竞赛,在相同条件下对他们的电脑知识进行了10次测验,成绩(单位:分)如下:若测验分数在85分(含85分)以上的为优秀,则甲、乙的优秀率分别为()A.60%,40%B.50%,50%C.50%,40%D.60%,50%7.下列调查中,最适合采用全面调查方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查8.下列调查中,适合全面调查的是()A.一批手机电池的使用寿命B.你所在学校的男、女同学的人数C.中国公民保护环境的意识D.端午节期间泰兴市场上粽子的质量二、填空题9.为了解佛山市老人的身体健康状况,在以下抽样调查中,你认为样本选择较好的是________.(填序号,答案格式如:“①②③”)①100位女性老人;②公园内100位老人;③在城市和乡镇选10个点,每个点任选10位老人.10.下列调查类型,是全面调查的有______,是抽样调查的有________.(填写序号)(1)电视机厂估计出厂电视机优等率,随机打开产品5%的电视机进行检测.(2)我国在2003年防治“非典”期间每日公布的疫情,收集有关数据.(3)某火车站要了解春运期间的客流量,从中随机的抽取了4天的客流量.11.文娱委员随机调查班级里7天内,每天收听综艺或音乐节目的人数,制成折线统计图.如图,判断收听人数比较稳定的是________节目.12.为了了解七年级同学每天的睡眠时间,在七年级的10个班中,每班抽5名学生做调查,这一调查中,总体是指____________________,样本是指____________________.13.为了保证婴幼儿的饮食安全,质检部门准备对某品牌罐装牛奶进行质量检测,这种检测适合用的调查是________________.(抽样调查或全面调查)14.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题中的样本是________________.15.某市要了解该市八年级学生的身高情况,在全市八年级学生中抽取了1 000名学生进行测量,在这个问题中,个体是______________________,样本容量是________.16.赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有________人.三、解答题17.在下列调查中,哪些适合做全面调查?哪些适合做抽样调查?(1)了解你所在班级的每个学生穿几号鞋;(2)了解节能灯的使用寿命;(3)了解我市八年级学生的视力情况;(4)了解实验田里水稻的穗长.18.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?19.由于天气逐渐转凉,同学们都订了厚厚校服冬装,学校为保证厂家生产的冬装质量冬装是否合格,在发放前对冬装进行了抽样调查.已知运来的冬装一共有10包,每包有10打,每打有12套.要求样本容量为100.(1)请你帮学校设计一个调查方案,并指出总体、个体、样本;(2)通过调查,冬装质量是合格的,但发放后未了解学生的满意程度,请你再设计一个方案,调查学生的满意程度.20.某校八年级共有8个班,241名同学,历史老师为了了解新中考模式下该校八年级学生选修历史学科的意向,请小红,小亮,小军三位同学分别进行抽样调查.三位同学调查结果反馈如下:小红、小亮和小军三人中,你认为哪位同学的调查结果较好地反映了该校八年级同学选修历史的意向,请说出理由,并由此估计全年级有意向选修历史的同学的人数.21.你对:“您觉得该不该在公共场所禁烟”作民意调查,下面是三名同学设计的调查方案:同学A:我把要调查的问题放到访问量最大的网站上,这样大部分上网的人就可以看到调查的问题,并很快就可以反馈给我.同学B:我给我们小区的居民每一位住户发一份问卷,一两天也可以得到结果了.同学C:我只要在班级上调查一下同学就可以了,马上就可以得到结果.请问:上面三个同学哪个能获得比较准确的民意吗?为什么?答案解析1.【答案】B【解析】①调查本班同学的视力,范围小,适宜全面调查;②调查一批节能灯管的使用寿命范围广且带有破坏性,适合抽样调查;③为保证“神舟9号”的成功发射,对其零部件进行检查,安全要求高,适宜全面调查;④调查运动员兴奋剂的使用情况,适宜全面调查,适合采用抽样调查的是②.2.【答案】A【解析】因为要测量调查对象每分钟的心跳次数,由于2分钟远远大于10秒钟,所以甲同学建议测量的根据代表性,误差更小些;所以选甲同学的方案.3.【答案】D【解析】A.2016年我县九年级学生的数学成绩是总体,故此选项错误,不合题意;B.每一名九年级学生的数学成绩是个体,故此选项错误,不合题意;C.200名九年级学生的数学成绩是总体的一个样本,故此选项错误,不合题意;D.样本容量是200,故此选项正确,符合题意.4.【答案】A【解析】该保护区约有大鲵6÷=54(只).5.【答案】D【解析】A.我认为猫是一种很可爱的动物,这不是一个调查;B.难道你不认为科幻片比武打片更有意思?这也不是一个调查,这句话直接肯定了科幻片比武打片更有意思;C.你给我回答倒底喜不喜欢猫呢?这也不行;D.请问你家有哪些使用电池的电器?这是一个调查,可以设计调查问卷.6.【答案】C【解析】根据题意,甲的成绩有5次在85分(含85分)以上,即5次优秀,则其优秀率的50%,乙的成绩有4次在85分(含85分)以上,即4次优秀,则其优秀率的40%.7.【答案】B【解析】A.对重庆市辖区内长江流域水质情况的调查,应采用抽样调查;B.对乘坐飞机的旅客是否携带违禁物品的调查,应采用全面调查;C.对一个社区每天丢弃塑料袋数量的调查,应采用抽样调查;D.对重庆电视台“天天630”栏目收视率的调查,应采用抽样调查.8.【答案】D【解析】A.一批手机电池的使用寿命调查具有破坏性适合抽样调查,故A不符合题意;B.你所在学校的男、女同学的人数适合全面调查,故B符合题意;C.中国公民保护环境的意识调查范围广适合抽样调查,故C不符合题意;D.端午节期间泰兴市场上粽子的质量调查具有破坏性适合抽样调查,故D不符合题意.9.【答案】③【解析】①100位女性老人没有男性代表,没有代表性;②公园内的老人一般是比较健康的,也没有代表性;③在城市和乡镇选10个点,每个点任选10位老人比较有代表性.10.【答案】(2)(1)(3)【解析】(1)此调查只是抽取了一部分,是抽样调查;(2)是全面调查;(3)只是抽取了4天的客流量,是抽样调查.11.【答案】音乐【解析】从折线统计图中可以看出收听综艺类的人数的折线起伏较大,所以收听综艺类的节目的折线图不如收听音乐类的节目的折线图稳定.12.【答案】七年级同学每天的睡眠时间所抽取的50名学生每天的睡眠时间【解析】本题考查的对象是七年级学生每天的睡眠时间,故总体是七年级同学每天的睡眠时间;样本是所抽取的50名学生每天的睡眠时间.13.【答案】抽样调查【解析】了解市场上某品牌罐装牛奶的质量安全情况,调查过程带有破坏性,只能采取抽样调查,而不能将整批某品牌罐装牛奶全部用于实验,所以选择抽样调查.14.【答案】100台电视机的寿命【解析】样本是从总体中抽取的部分个体.本题的总体是一批电视机的寿命,故样本是100台电视机的寿命.15.【答案】每位学生的身高1000【解析】16.【答案】27【解析】如图所示,89.5~109.5段的学生人数有24人,109.5~129.5段的学生人数有3人,故成绩不低于90分的共有24+3=27人.17.【答案】(1)了解你所在班级的每个学生穿几号鞋适合全面调查;(2)了解节能灯的使用寿命适合抽样调查;.(3)了解我市八年级学生的视力情况适合抽样调查;(4)了解实验田里水稻的穗长适合抽样调查.【解析】由全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.18.【答案】解:(1)a=50-4-8-16-10=12;(2)(3)本次测试的优秀率是×100%=44%.【解析】(1)利用总数50减去其他各组的频数即可求得a的值;(2)根据(1)的结果即可把频数分布直方图补充完整;(3)根据百分比的意义即可求解.19.【答案】解:(1)总体是10×10×12=1 200套冬装的质量,个体是一套冬装的质量,样本可在100以下即可,答案不唯一.(2)学生总体为1 200名学生对冬装的满意程度,样本总量可设为100,个体是每名学生对冬装的满意程度,样本随机抽取20也可.【解析】(1)根据题意,又知道样本容量为100,冬装共有10包,每包有10打,每打有12套,可求出总体,个体.(2)先确定学生的总体,然后确定样本总量以及个体即可.20.【答案】小军的数据较好地反映了该校八年级同学选修历史的意向.。

天津市2020〖人教版〗七年级数学下册期末复习考试试卷971

天津市2020〖人教版〗七年级数学下册期末复习考试试卷971

天津市2020年〖人教版〗七年级数学下册期末复习考试试卷创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一、选择1.下列运算中,正确的是()A. a2+a2=2a4 B. a2•a3=a6 C.(﹣3x)3÷(﹣3x)=9x2 D.(﹣ab2)2=﹣a2b42.下列等式由左边到右边的变形中,属于因式分解的是()A.(a+1)(a﹣1)=a2﹣1 B. a2﹣6a+9=(a﹣3)2C. x2+2x+1=x(x+2)+1 D.﹣18x4y3=﹣6x2y2•3x2y3.若2m=3,2n=5,则23m﹣2n等于()A.B.C. 2 D.4.当x=1时,代数式ax3+bx+1的值为5,当x=﹣1时,代数式ax3+bx+1的值等于()A. 0 B.﹣3 C.﹣4 D.﹣55.(x2﹣mx+1)(x﹣2)的积中x的二次项系数为零,则m的值是()A. 1 B.﹣1 C.﹣2 D. 26.若方程组的解满足x+y>0,则a的取值范围是()A. a<﹣1 B. a<1 C. a>﹣1 D. a>17.如图,AD是∠CAE的平分线,∠B=35°,∠DAC=60°,则∠ACD=()A. 25° B. 85° C. 60° D. 95°8.如图,直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为()A. 115° B. 125° C. 155° D. 165°9.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A. 4个 B. 3个 C. 2个 D. 1个10.如图,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个长方形的两边长(x>y),观察图案及以下关系式:①x﹣y=n;②xy=;③x2﹣y2=mn;④x2+y2=.其中正确的关系式的个数有()A. 1个 B. 2个 C. 3个 D. 4个二、填空11.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,用科学记数法表示是克.12.若代数式x2+(a﹣1)x+16是一个完全平方式,则a=.13.若a+b=5,ab=3,则2a2+2b2=.14.因式分解:m2﹣16=;x3﹣x2﹣12x=.15.如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,则∠A=°.16.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=度.17.如图,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△EDC≌△ABC,则∠BCE:∠BCD=.18.若m﹣n=6,且mn+a2+4a+13=0,则(2m+n)a等于.19.以下说法正确的有(1)对顶角相等的条件是有两个角是对顶角(2)直角都相等的逆命题是相等的角是直角(3)a2﹣4和a2﹣4a+4的公因式是a﹣2(4)有一个角和两边对应相等的两个三角形全等(5)(a2﹣2)2=a4﹣4.20.如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C 与点O恰好重合,则∠OEC为度.三、解答题21.计算:(1)(﹣)﹣1+(﹣2)2×50+()﹣2(2)(﹣2x)2•(x2)3÷(﹣x)2(3)(2a﹣b)2﹣(a+1﹣b)(a﹣1﹣b)22.因式分解:(1)2x4﹣2;(2)x4﹣18x2+81;(3)(y2﹣1)2+11(1﹣y2)+24.23.解方程组(1)(2).24.已知关于x、y的方程组的解是.(1)求(a+10b)2﹣(a﹣10b)2的值;(2)若△ABC中,∠A、∠B的对边长即为6a、7b的值,且这个三角形的周长大于12且小于18,求∠C对边AB的长度范围.25.如图,在△ABC中,点E在BC上,点D在AE上,∠ABD=∠ACD,∠BDE=∠CDE.试说明BE=CE.26.如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.27.为了让市民树立起“珍惜水、节约水、保护水”的用水理念,某市从今年4月起,居民生活用水按阶梯式计算水价,水价计算方式如下表所示,每吨水还需另加污水处理费0.80元.已知小张家今年4月份用水20吨,交水费49元;5月份用水25吨,交水费65.4元.(友情提示:水费=水价+污水处理费)用水量水价(元/吨)不超过20吨 m超过20吨且不超过30吨的部分 n超过30吨的部分 2m(1)求m、n的值;(2)随着夏天的到来,用水量将激增.为了节省开支,小张计划把6月份的水费控制在不超过家庭月收入的2%.若小张家的月收入为8190元,则小张家6月份最多能用水多少吨?28.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,直接写出∠ABO的度数=.29.我们知道,等腰三角形的两个底角相等,即在△ABC中,∵AB=AC,∴∠B=∠C(如图①所示).请根据上述内容探究下面问题:(1)如图②,已知在△ABC和△ADE中,AB=AC,AD=AE,∠CAB=∠DAE=90°,动点D在BC边上运动,试证明CD=BE且CD⊥BE.(2)如图③,在(1)的条件下,若动点D在CB的延长线上运动,则CD与BE垂直吗?请在横线上直接写出结论,不必给出证明,答:.(3)如图④,已知在△ABC和△ADE中,AB=AC,AD=AE,∠CAB=∠DAE=90°,动点D在△ABC内运动,试问CD⊥BE还成立吗?若成立,请给出证明过程.(4)如图④,已知在△ABC和△ADE中,AB=AC,AD=AE,∠CAB=∠DAE=x°(90<x<180),点D在△ABC内,请在横线上直接写出直线CD与直线BE相交所成的锐角(用x的代数式表示).答:直线CD与直线BE相交所成的锐角.参考答案与试题解析一、选择1.下列运算中,正确的是()A. a2+a2=2a4 B. a2•a3=a6 C.(﹣3x)3÷(﹣3x)=9x2 D.(﹣ab2)2=﹣a2b4考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项计算后利用排除法求解.解答:解:A、a2+a2=2a2,合并同类项,系数相加字母和字母的指数不变;故本选项错误;B、a2•a3=a5,同底数幂的乘法,底数不变指数相加;故本选项错误;C、(﹣3x)3÷(﹣3x)=9x2,同底数幂的除法,底数不变指数相减;故本选项正确;D、(﹣ab2)2=a2b4,积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;故本选项错误.故选C.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,积的乘方很容易混淆,一定要记准法则才能做题.2.下列等式由左边到右边的变形中,属于因式分解的是()A.(a+1)(a﹣1)=a2﹣1 B. a2﹣6a+9=(a﹣3)2C. x2+2x+1=x(x+2)+1 D.﹣18x4y3=﹣6x2y2•3x2y考点:因式分解的意义.分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,由此判断即可.解答:解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、属于因式分解,故本选项正确;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、右边不是整式积的形式,不是因式分解,故本选项错误;故选B.点评:本题考查了因式分解的知识,解答本题得关键是掌握因式分解的定义.3.若2m=3,2n=5,则23m﹣2n等于()A.B.C. 2 D.考点:同底数幂的除法;幂的乘方与积的乘方.分析:先把23m﹣2n化为(2m)3÷(2n)2,再求解解答:解:∵2m=3,2n=5,∴23m﹣2n=(2m)3÷(2n)2=27÷25=,故选:A.点评:本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把23m﹣2n化为(2m)3÷(2n)2.4.当x=1时,代数式ax3+bx+1的值为5,当x=﹣1时,代数式ax3+bx+1的值等于()A. 0 B.﹣3 C.﹣4 D.﹣5考点:代数式求值.专题:整体思想.分析:把x=1代入代数式求出a、b的关系,再把x=﹣1代入代数式进行计算即可得解.解答:解:x=1时,a+b+1=5,解得a+b=4,x=﹣1时,ax3+bx+1=﹣a﹣b+1=﹣4+1=﹣3.故选B.点评:本题考查了代数式求值,整体思想的利用是解题的关键.5.(x2﹣mx+1)(x﹣2)的积中x的二次项系数为零,则m的值是()A. 1 B.﹣1 C.﹣2 D. 2考点:多项式乘多项式.分析:先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x 的同类项,根据x的二次项系数为零,得出关于m的方程,求出m的值.解答:解:∵(x2﹣mx+1)(x﹣2)=x3﹣(m+2)x2+(2m+1)x﹣2,又∵积中x的二次项系数为零,∴m+2=0,∴m=﹣2.故选C.点评:本题考查了多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.合并同类项时要注意项中的指数及字母是否相同.6.若方程组的解满足x+y>0,则a的取值范围是()A. a<﹣1 B. a<1 C. a>﹣1 D. a>1考点:二元一次方程组的解;解一元一次不等式.分析:两方程相加求出x+y的值,即可得出关于a的不等式,求出不等式的解即可.解答:解:①+②得:4x+4y=2+2a,解得:x+y=+a,∵方程组的解满足x+y>0,∴+a>0,解得:a>﹣1,故选C.点评:本题考查了解二元一次方程组,二元一次方程组的解,解一元一次不等式的应用,能得出关于a的不等式是解此题的关键.7.如图,AD是∠CAE的平分线,∠B=35°,∠DAC=60°,则∠ACD=()A. 25° B. 85° C. 60° D. 95°考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:首先根据平角定义,得∠DAE=60°,再根据三角形的外角性质,得∠ACD=∠B+∠BAC=95°.解答:解:∵∠CAD=∠DAE=60°,∴∠BAC=60°,∴∠ACD=∠B+∠BAC=35°+60°=95°.故选:D.点评:考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.8.如图,直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为()A. 115° B. 125° C. 155° D. 165°考点:平行线的性质.专题:计算题.分析:如图,过点D作c∥a.由平行线的性质进行解题.解答:解:如图,过点D作c∥a.则∠1=∠CDB=25°.又a∥b,DE⊥b,∴b∥c,DE⊥c,∴∠2=∠CDB+90°=115°.故选:A.点评:本题考查了平行线的性质.此题利用了“两直线平行,同位角相等”来解题的.9.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A. 4个 B. 3个 C. 2个 D. 1个考点:全等三角形的判定.分析:∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.解答:解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.10.如图,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个长方形的两边长(x>y),观察图案及以下关系式:①x﹣y=n;②xy=;③x2﹣y2=mn;④x2+y2=.其中正确的关系式的个数有()A. 1个 B. 2个 C. 3个 D. 4个考点:整式的混合运算;因式分解的应用.分析:根据长方形的长和宽,结合图形进行判断,即可得出选项.解答:解:①x﹣y等于小正方形的边长,即x﹣y=n,正确;②∵xy为小长方形的面积,∴xy=,故本项正确;③x2﹣y2=(x+y)(x﹣y)=mn,故本项正确;④x2+y2=(x+y)2﹣2xy=m2﹣2×=,故本项错误.则正确的有3个.故选C.点评:本题考查了整式的混合运算以及因式分解的应用,主要考查学生的计算能力和观察图形的能力.二、填空11.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,用科学记数法表示是7.6×10﹣8克.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000000076=7.6×10﹣8.故答案为:7.6×10﹣8.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.若代数式x2+(a﹣1)x+16是一个完全平方式,则a=9或﹣7.考点:完全平方式.专题:计算题.分析:利用完全平方公式的结构特征判断即可得到a的值.解答:解:∵x2+(a﹣1)x+16是一个完全平方式,∴a﹣1=±8,解得:a=9或﹣7,故答案为:9或﹣7点评:此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.若a+b=5,ab=3,则2a2+2b2=38.考点:完全平方公式.分析: 2a2+2b2=2(a2+b2),然后根据a2+b2=(a+b)2﹣2ab进行计算即可.解答:解:原式=2(a2+b2)=2[(a+b)2﹣2ab]=2[52﹣2×3]=38.故答案为:38.点评:本题主要考查的是完全平方公式的应用,依据完全平方公式将a2+b2变形为(a+b)2﹣2ab是解题的关键.14.因式分解:m2﹣16=(m+4)(m﹣4);x3﹣x2﹣12x=x(x﹣4)(x+3).考点:因式分解-十字相乘法等;因式分解-提公因式法;因式分解-运用公式法.专题:计算题.分析:原式利用平方差公式分解即可;原式提取x,再利用十字相乘法分解即可.解答:解:原式=(m+4)(m﹣4);原式=x(x2﹣x﹣12)=x(x﹣4)(x+3),故答案为:(m+4)(m﹣4);x(x﹣4)(x+3)点评:此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.15.如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,则∠A=30°.考点:全等三角形的性质;平行线的性质.分析:根据全等三角形对应边相等可得OB=OD,全等三角形对应角相等可得∠ABO=∠D,再根据等边对等角求出∠OBD=∠D,然后求出∠ABC,再根据两直线平行,内错角相等解答即可.解答:解:∵△ABO≌△CDO,∴OB=OD,∠ABO=∠D,∴∠OBD=∠D=(180°﹣∠BOD)=×(180°﹣30)=75°,∴∠ABC=180°﹣75°×2=30°,∴∠A=∠ABC=30°,故答案为:30.点评:本题考查了全等三角形的性质,等边对等角的性质,平行线的性质,熟记性质并准确识图是解题的关键.16.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=70度.考点:三角形内角和定理;多边形内角与外角.专题:几何图形问题.分析:分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.解答:解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108°①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.点评:本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.17.如图,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△EDC≌△ABC,则∠BCE:∠BCD=1:4.考点:全等三角形的性质.分析:先求出△ABC的各角的度数,再根据全等三角形对应角相等求出∠ECD的度数,利用邻补角的定义先求出∠ECA的度数,根据∠BCE=∠ACB﹣∠ECA求出∠BCE的度数,然后求出比值.解答:解:∵∠A:∠ABC:∠ACB=3:5:10,∴∠ACB=180°×=100°,∵△EDC≌△ABC,∴∠ECD=∠ACB=100°,∴∠ECA=180°﹣∠ECD=180°﹣100°=80°,∠BCE=∠ACB﹣∠ECD=100°﹣80°=20°,∴∠BCD=80°∴∠BCE:∠BCD=20°:80°=1:4.故答案为1:4.点评:本题主要考查全等三角形对应角相等的性质和邻补角之和等于180°,根据比值和三角形内角和定理求出∠ACB的度数是解题的关键.18.若m﹣n=6,且mn+a2+4a+13=0,则(2m+n)a等于.考点:配方法的应用;非负数的性质:偶次方.分析: m=n+6代入配方即可求得未知数的值,然后求代数式的值即可.解答:解:由m﹣n=6得m=n+6,代入mn+a2+4a+13=0得到:n2+6n+9+a2+4a+4=0即:(n+3)2+(a+2)2=0,解得:n=﹣3,a=﹣2∴m=3∴(2m+n)a=(2×3﹣3)﹣2=,故答案为:.点评:本题考查了配方法的应用及非负数的性质,解题的关键是代入后进行配方.19.以下说法正确的有(1)、(2)、(3)(1)对顶角相等的条件是有两个角是对顶角(2)直角都相等的逆命题是相等的角是直角(3)a2﹣4和a2﹣4a+4的公因式是a﹣2(4)有一个角和两边对应相等的两个三角形全等(5)(a2﹣2)2=a4﹣4.考点:命题与定理.分析:根据命题的组成部分对(1)进行判断;根据互逆命题的意义对(2)进行判断;根据因式分解和公因式的定义对(3)进行判断;根据全等三角形的判定方法对(4)进行判断;根据完全平方公式对(5)进行判断.解答:解:对顶角相等的条件是有两个角是对顶角,所以(1)正确;直角都相等的逆命题是相等的角是直角,所以(2)正确;a2﹣4和a2﹣4a+4的公因式是a﹣2,所以(3)正确;有一个角和夹这个角的两边对应相等的两个三角形全等,所以(3)错误;(a2﹣2)2=a4﹣4a2+4,所以(4)错误.故答案为(1)、(2)、(3).点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.20.如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C 与点O恰好重合,则∠OEC为108度.考点:线段垂直平分线的性质;等腰三角形的性质;翻折变换(折叠问题).专题:压轴题.分析:连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后判断出点O是△ABC的外心,根据三角形外心的性质可得OB=OC,再根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.解答:解:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.故答案为:108.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.三、解答题21.计算:(1)(﹣)﹣1+(﹣2)2×50+()﹣2(2)(﹣2x)2•(x2)3÷(﹣x)2(3)(2a﹣b)2﹣(a+1﹣b)(a﹣1﹣b)考点:整式的混合运算;零指数幂;负整数指数幂.分析:(1)首先利用负整数指数幂的性质以及零指数幂的性质化简进而求出即可;(2)利用积的乘方运算法则以及同底数幂的乘除运算法则进而求出即可;(3)首先利用乘法公式去括号,进而合并求出即可.解答:解:(1)(﹣)﹣1+(﹣2)2×50+()﹣2=+4×1+=﹣4+4+9=9;(2)(﹣2x)2•(x2)3÷(﹣x)2=4x2•x6÷x2=4x6;(3)(2a﹣b)2﹣(a+1﹣b)(a﹣1﹣b)=4a2﹣4ab+b2﹣[(a﹣b)2﹣1]=4a2﹣4ab+b2﹣(a2﹣2ab﹣1+b2)=3a2﹣2ab+1.点评:此题主要考查了整式的混合运算以及负整数指数幂的性质、零指数幂的性质等知识,正确掌握相关运算法则是解题关键.22.因式分解:(1)2x4﹣2;(2)x4﹣18x2+81;(3)(y2﹣1)2+11(1﹣y2)+24.考点:提公因式法与公式法的综合运用;因式分解-十字相乘法等.专题:计算题.分析:(1)原式提取2,再利用平方差公式分解即可;(2)原式利用完全平方公式变形,再利用平方差公式分解即可;(3)原式利用十字相乘法分解即可.解答:解:(1)原式=2(x4﹣1)=2(x2+1)(x+1)(x﹣1);(2)原式=(x2﹣9)2=(x+3)2(x﹣3)2;(3)原式=(y2﹣1+3)(y2﹣1+8)=(y2+2)(y2+7).点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23.解方程组(1)(2).考点:解二元一次方程组;解三元一次方程组.专题:计算题.分析:(1)方程组整理后,利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.解答:解:(1)方程组整理得:,①+②得:6x=18,即x=3,把x=3代入①得:y=,则方程组的解为;(2),①+②得:5x+2y=16④,②+③得:3x+4y=18⑤,④×2﹣⑤得:7x=14,即x=2,把x=2代入④得:y=3,把x=2,y=3代入③得:z=1,则方程组的解为.点评:此题考查了解二元一次方程组,以及解三元一次方程组,熟练掌握运算法则是解本题的关键.24.已知关于x、y的方程组的解是.(1)求(a+10b)2﹣(a﹣10b)2的值;(2)若△ABC中,∠A、∠B的对边长即为6a、7b的值,且这个三角形的周长大于12且小于18,求∠C对边AB的长度范围.考点:一元一次不等式组的应用;二元一次方程组的解;三角形三边关系.分析:(1)首先把代入关于x、y的方程组求得a、b的数值,再进一步化简代入即可;(2)求得6a、7b的值,进一步由三角形的三边关系列不等式组求得答案即可.解答:解:(1)把代入关于x、y的方程组,解得:,则(a+10b)2﹣(a﹣10b)2=(a+10b+a﹣10b)(a+10b﹣a+10b)=40ab,所以原式=40ab=;(2)6a=5,7b=3,由题意得:,解得4<AB<8.点评:此题考查一元一次不等式组的运用,代数式求值以及二元一次方程组的运用.25.如图,在△ABC中,点E在BC上,点D在AE上,∠ABD=∠ACD,∠BDE=∠CDE.试说明BE=CE.考点:全等三角形的判定与性质.专题:证明题.分析:要证BE=CE,要先证明△ABD和△ACD全等,得到BD=CD,再证明△BDE和△CDE全等即可.解答:证明:∵∠ADB=180°﹣∠BDE,∠ADC=180°﹣∠CDE,∴∠ADB=∠ADC.在△ADB和△ADC中,,∴△ADB≌△ADC.∴BD=CD∵在△DBE和△DCE中,,∴△DBE≌△DCE.∴BE=CE.点评:本题主要考查了全等三角形的判定与性质,证明简单的线段相等,可以通过全等三角形来证明.26.如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.考点:直角三角形全等的判定;全等三角形的性质.分析:(1)证两条线段相等,通常用全等,本题中的AE和CD分别在三角形AEC和三角形CDB中,在这两个三角形中,已经有一组边相等,一组角相等了,因此只需再找一组角即可利用角角边进行解答.(2)由(1)得BD=EC=BC=AC,且AC=12,即可求出BD的长.解答:(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC=∠ECA=90°,且BC=CA,在△DBC和△ECA中,∵∴△DBC≌△ECA(AAS).∴AE=CD.(2)解:由(1)得AE=CD,AC=BC,在Rt△CDB和Rt△AEC中,∴Rt△CDB≌Rt△AEC(HL),∴BD=CE,∵AE是BC边上的中线,∴BD=EC=BC=AC,且AC=12cm.∴BD=6cm.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.27.为了让市民树立起“珍惜水、节约水、保护水”的用水理念,某市从今年4月起,居民生活用水按阶梯式计算水价,水价计算方式如下表所示,每吨水还需另加污水处理费0.80元.已知小张家今年4月份用水20吨,交水费49元;5月份用水25吨,交水费65.4元.(友情提示:水费=水价+污水处理费)用水量水价(元/吨)不超过20吨 m超过20吨且不超过30吨的部分 n超过30吨的部分 2m(1)求m、n的值;(2)随着夏天的到来,用水量将激增.为了节省开支,小张计划把6月份的水费控制在不超过家庭月收入的2%.若小张家的月收入为8190元,则小张家6月份最多能用水多少吨?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)根据题意,当用水20吨,交水费49元;用水25吨,交水费65.4元,据此列方程组求解;(2)首先计算出用水量的范围,用水量为30吨花费为81.8元,2%×8190=163.8,小张家6月份的用水量超过30吨,再设小张家6月份的用水x吨,由题意可得不等式81.8+(2×1.65+0.80)(x﹣30)≤163.8,再解不等式即可.解答:解:(1)由题意得,,解得:,即m的值为1.65,n的值为2.48;(2)由(1)得m=1.65,n=2.48,当用水量为30吨时,水费为:49+(30﹣20)×(2.48+0.80)=81.8(元),2%×8190=163.8(元),∵163.8>81.8,∴小张家6月份的用水量超过30吨.可设小张家6月份的用水x吨,由题意得81.8+(2×1.65+0.80)(x﹣30)≤163.8,解得x≤50,答:小张家6月份最多能用水50吨.点评:此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,根据水的收费标准,列方程和不等式求解.28.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,直接写出∠ABO的度数=60°或45°.考点:三角形内角和定理;三角形的外角性质.专题:探究型.分析:(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BAO和∠ABO的角平分线得出∠BAE=∠OAB,∠ABE=∠ABO,由三角形内角和定理即可得出结论;(2)延长AD、BC交于点F,根据直线MN与直线PQ垂直相交于O可得出∠AOB=90°,进而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由AD、BC分别是∠BAP和∠ABM的角平分线,可知∠BAD=∠BAP,∠ABC=∠ABM,由三角形内角和定理可知∠F=45°,再根据DE、CE分别是∠ADC和∠BCD的角平分线可知∠CDE+∠DCE=112.5°,进而得出结论;(3))由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的3倍分四种情况进行分类讨论.解答:解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠E=67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°;③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°.∴∠ABO为60°或45°.故答案为:60°或45°.点评:本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.29.我们知道,等腰三角形的两个底角相等,即在△ABC中,∵AB=AC,∴∠B=∠C(如图①所示).请根据上述内容探究下面问题:(1)如图②,已知在△ABC和△ADE中,AB=AC,AD=AE,∠CAB=∠DAE=90°,动点D在BC边上运动,试证明CD=BE且CD⊥BE.(2)如图③,在(1)的条件下,若动点D在CB的延长线上运动,则CD与BE垂直吗?请在横线上直接写出结论,不必给出证明,答:CD⊥BE.(3)如图④,已知在△ABC和△ADE中,AB=AC,AD=AE,∠CAB=∠DAE=90°,动点D在△ABC内运动,试问CD⊥BE还成立吗?若成立,请给出证明过程.(4)如图④,已知在△ABC和△ADE中,AB=AC,AD=AE,∠CAB=∠DAE=x°(90<x<180),点D在△ABC内,请在横线上直接写出直线CD与直线BE相交所成的锐角(用x的代数式表示).答:直线CD与直线BE相交所成的锐角180°﹣x°.考点:全等三角形的判定与性质;等腰三角形的性质.分析:(1)由条件易证△CAD≌△BAE,从而有CD=BE,∠ACD=∠ABE,根据三角形外角性质和内角和定理就可求出∠CBE=90°,从而得到CD⊥BE.(2)借鉴(1)的证明思路就可得到CD⊥BE仍然成立.(3)延长CD交BE于点F,交AB于O,如图④,借鉴(2)的证明思路即可解决问题.(4)延长CD交BE于点F,交AB于O,如图⑤,借鉴(3)的证明思路即可解决问题.解答:解:(1)如图②,∵∠CAB=∠DAE=90°,∴∠CAD=∠BAE.在△CAD和△BAE中,.∴△CAD≌△BAE(SAS).∴CD=BE,∠ACD=∠ABE.∴∠CBE=∠CBA+∠ABE=∠CBA+∠ACD=180°﹣∠CAB∵∠CAB=90°,∴∠CBE=180°﹣90°=90°即CD⊥BE.(2)当点D在CB的延长线上时,如图③.同理可得:∠CBE=90°即CD⊥BE.故答案为:CD⊥BE.(3)当点D在△ABC内时,CD⊥BE仍然成立.证明:如图④,延长CD交BE于点F,交AB于O.同理可得:∠ACD=∠ABE.∵∠C0B=∠ACO+∠CAO=∠ABE+∠OFB,∴∠CAO=∠OFB.∵∠CAO=90°,∴∠OFB=90°,即CD⊥BE.(4)延长CD交BE于点F,交AB于O,如图⑤.由(3)得∠CAO=∠OFB.∵∠CAB=x°,∴∠OFB=x°.∴∠CFE=180°﹣x°.∵90°<x°<180°,∴0<180°﹣x°<90°.∴直线CD与直线BE相交所成的锐角为180°﹣x°.故答案为:180°﹣x°.点评:本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形的外角性质、三角形的内角和定理等知识,还考查了运用已有解题经验解决问题的能力.若顶角相等的两个等腰三角形顶角顶点重合,则必然会出现全等三角形,且其中一个三角形可以由另一个三角形绕着顶角顶点旋转所得,我们把这种基本模型称为旋转全等型,熟悉基本模型可以提高解题速度,应重视对基本模型的积累.。

天津市2020〖人教版〗七年级数学下册期末复习考试试卷515

天津市2020〖人教版〗七年级数学下册期末复习考试试卷515

天津市2020年〖人教版〗七年级数学下册期末复习考试试卷创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一、选择题(共9小题,每小题3分,满分27分)1.下列计算正确的是()A. a3+a2=a5B. a3•a2=a6 C.(a3)2=a9 D. a6÷a2=a42.小明上网查得H7N9禽流感病毒的直径大约是0.00000008米,用科学记数法表示为() A. 0.8×10﹣7米 B. 8×10﹣7米 C. 8×10﹣8米 D. 8×10﹣9米3.下面有4个汽车标致图案,其中不是轴对称图形的是()A. B. C. D.4.下列每组数分别是三根小木棒的长度,其中能摆成三角形的是()A. 3cm;4cm;5cm B. 7cm;8cm;15cmC. 3cm;12cm;20cm D. 5cm;5cm;11cm5.若x2+mx+9是一个完全平方式,那么m的值是()A. 9 B.±18 C. 6 D.±66.小狗在如图所示的方砖上走来走去,随意停在黑色方砖上的概率为() A. B. C. D.7.如图,已知FD∥BE,则∠1+∠2﹣∠3的值为()A. 90° B. 135° C. 150° D. 180°8.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A. SAS B. ASA C. AAS D. SSS9.如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h随时间t变化的图象大致是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)10.计算:()﹣2+(﹣5)0=.11.一个袋子中有红球和白球两种,从中摸出红球的概率为.已知袋子中红球有5个,则袋子中白球的个数为.12.汽车由平顶山驶往相距约150km的郑州,若它的平均速度为100km/h.则汽车距郑州的路程s (km)关于行驶时间t(h)的函数关系式为.13.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为度.14.如图所示,△ABC中,∠A=90°,BD是角平分线,DE⊥BC,垂足是E,AC=10cm,CD=6cm,则DE的长为cm.15.等腰三角形一边长是10cm,一边长是6cm,则它的周长是cm或cm.16.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是°.三、解答题(共7小题,满分72分)17.乘法公式的探究及应用.(1)如图1,若大长方形的边长为a,小长方形的边长为b,则阴影部分的面积是.若将图1中的阴影部分裁剪下来,重新拼成如图2的一个矩形,则它的面积是.有(1)可以得到乘法公式.(3)若a=18,b=12,则请你求出阴影部分的面积.18.先化简,再求值:[(x+2y)2﹣(x+y)(x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.19.如图,超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会,摇奖机是一个圆形转盘,被分成16等分,指针分别指向红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.(1)分别计算获一、二、三等奖的概率.老李一次性购物满了300元,摇奖一次,获奖的概率是多少?请你预测一下老李摇奖结果会有哪几种情况?20.已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.21.△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D.(1)若△BCD的周长为8,求BC的长.若∠ABD=∠DBC,求∠A的度数.22.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 分才乘上缆车,缆车的平均速度为180米/分.设小亮出发x 分后行走的路程为y 米.图中的折线表示小亮在整个行走过程中y随x的变化关系.(1)小亮行走的总路程是米,他途中休息了分.分别求出小亮在休息前和休息后所走的路程段上的步行速度.(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?23.如图图1,△ABC中,AB=AC,∠BAC=90°,AE是过A点的一条直线,且B、C在DE的异侧,BD⊥AE于D,CE⊥AE于E.(1)△ABD与△CAE全等吗?BD与DE+CE相等吗?请说明理由.如图图2,若直线AE绕点A旋转到图2所示的位置(BD<CE)时,其余条件不变,则BD与DE、CE的关系如何?(只须回答结论).(3)如图图3,若直线AE绕点A旋转到图3所示的位置(BD>CE)时,其余条件不变,则BD 与DE、CE的关系如何?(只须回答结论).参考答案与试题解析一、选择题(共9小题,每小题3分,满分27分)1.下列计算正确的是()A. a3+a2=a5 B. a3•a2=a6 C.(a3)2=a9 D. a6÷a2=a4考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项、幂的乘方和同底数幂的乘除法计算判断即可.解答:解:A、a3+a2不是同类项,不能合并,错误;B、a3•a2=a5,错误;C、(a3)2=a6,错误;D、a6÷a2=a4,正确;故选D.点评:此题考查了合并同类项,幂的乘方,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.2.小明上网查得H7N9禽流感病毒的直径大约是0.00000008米,用科学记数法表示为() A. 0.8×10﹣7米 B. 8×10﹣7米 C. 8×10﹣8米 D. 8×10﹣9米考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000008米用科学记数法表示为8×10﹣8米.故选C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下面有4个汽车标致图案,其中不是轴对称图形的是()A. B. C. D.考点:轴对称图形.专题:几何图形问题.分析:根据轴对称图形的概念结合4个汽车标志图案的形状求解.解答:解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故选D.点评:本题考查了轴对称图形的知识,轴对称的关键是寻找对称轴,两边图象折叠后可重合.4.下列每组数分别是三根小木棒的长度,其中能摆成三角形的是()A. 3cm;4cm;5cm B. 7cm;8cm;15cmC. 3cm;12cm;20cm D. 5cm;5cm;11cm考点:三角形三边关系.分析:根据在三角形中任意两边之和>第三边,任意两边之差<第三边.解答:解:A、3+4>5能构成三角形,故正确;B、7+8=15,不能构成三角形,故错误;C、3+12=15<20,不能构成三角形,故错误;D、5+5=10<11,不能构成三角形,故错误.故选A.点评:本题利用了三角形中三边的关系求解.5.若x2+mx+9是一个完全平方式,那么m的值是()A. 9 B.±18 C. 6 D.±6考点:完全平方式.分析:这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.解答:解:∵x2+mx+9是一个完全平方式,∴x2+mx+9=(x±3)2,∴m=±6,故选:D.点评:此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.6.小狗在如图所示的方砖上走来走去,随意停在黑色方砖上的概率为() A. B. C. D.考点:几何概率.分析:根据几何概率的求法,小狗停在黑色方砖上的概率为黑色的方砖的面积与总面积的比值,分析题意可得,图中共9个面积相等的正方形,其中有2块黑色的方砖,计算可得答案.解答:解:根据题意,共9个面积相等的正方形,其中有2块黑色的方砖,根据几何概率的求法,小狗停在黑色方砖上的概率为黑色的方砖的面积与总面积的比值,故其概率为.故选:C.点评:此题主要考查了几何概率求法,用到的知识点为:概率=相应的面积与总面积之比.7.如图,已知FD∥BE,则∠1+∠2﹣∠3的值为()A. 90° B. 135° C. 150° D. 180°考点:平行线的性质.分析:先根据平行线的性质得出∠2+∠FGB=180°,再由对顶角相等得出∠AGC=∠FGB,故∠2+∠AGC=180°,∠AGC=180°﹣∠2,根据∠1=∠3+∠AGC,可知∠1﹣∠3=∠AGC,进而可得出结论.解答:解:∵DF∥BE,∴∠2+∠FGB=180°,∵∠AGC=∠FGB,∴∠2+∠AGC=180°,∴∠AGC=180°﹣∠2,∵∠1=∠3+∠AGC,∴∠1﹣∠3=∠AGC,∴∠1+∠2﹣∠3=∠AGC+180°﹣∠AGC=180°.故选D.点评:本题考查了三角形外角性质和平行线性质的应用,注意:两直线平行,同旁内角互补.8.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A. SAS B. ASA C. AAS D. SSS考点:全等三角形的判定与性质.专题:作图题.分析:根据作图过程,O′C′=OC,O′B′=OB,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.解答:解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.点评:本题考查基本作图“作一个角等于已知角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等.从作法中找已知,根据已知条件选择判定方法.9.如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h随时间t变化的图象大致是()A. B. C. D.考点:函数的图象.专题:压轴题.分析:从A1到A2蚂蚁是匀速前进,随着时间的增多,爬行的高度也将由0匀速上升,从A2到A3随着时间的增多,高度将不再变化,由此即可求出答案.解答:解:因为蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,从A1⇒A2的过程中,高度随时间匀速上升,从A2⇒A3的过程,高度不变,从A3⇒A4的过程,高度随时间匀速上升,从A4⇒A5的过程中,高度不变,所以蚂蚁爬行的高度h随时间t变化的图象是B.故选:B.点评:主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际情况采用排除法求解.二、填空题(共7小题,每小题3分,满分21分)10.计算:()﹣2+(﹣5)0=5.考点:负整数指数幂;零指数幂.分析:首先利用负整数指数幂的性质和零指数幂的性质进行计算,然后再按照有理数的加法法则计算即可.解答:解:原式=4+1=5.故答案为:5.点评:本题主要考查的是负整数指数幂的性质和零指数幂的性质,掌握负整数指数幂的性质和零指数幂的性质是解题的关键.11.一个袋子中有红球和白球两种,从中摸出红球的概率为.已知袋子中红球有5个,则袋子中白球的个数为20.考点:概率公式.分析:先设袋子中白球的个数为x,然后根据红球的概率公式直接解答即可.解答:解:设袋子中有白球x个,根据题意得:=,解得:x=20,故答案为:20.点评:考查了概率的公式的知识,用到的知识点为:概率=所求情况数与总情况数之比.12.汽车由平顶山驶往相距约150km的郑州,若它的平均速度为100km/h.则汽车距郑州的路程s (km)关于行驶时间t(h)的函数关系式为s=150﹣100t.考点:函数关系式.分析:利用总路程为150km,再利用s=总路程﹣行驶的距离,进而求出即可.解答:解:由题意可得:s=150﹣100t.故答案为:s=150﹣100t.点评:此题主要考查了函数关系式,利用s与行驶路程之间的关系是解题关键.13.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为55度.考点:平行线的性质.分析:根据平行线的性质可求∠B的度数,根据三角形内角和定理求∠A;或根据平角的定义先求∠ACD的度数,再运用平行线的性质求解.解答:解:∵AB∥DE,∠BCE=35°,∴∠B=∠BCE=35°.∵∠ACB=90°,∴∠A=90°﹣35°=55°.(直角三角形两锐角互余)故答案为:55.点评:此题考查平行线的性质和三角形内角和定理,属基础题.14.如图所示,△ABC中,∠A=90°,BD是角平分线,DE⊥BC,垂足是E,AC=10cm,CD=6cm,则DE的长为4cm.考点:角平分线的性质.分析:由已知进行思考,结合角的平分线的性质可得DE=AD,而AD=AC﹣CD=10﹣6=4cm,即可求解.解答:解:∵∠A=90°,BD是角平分线,DE⊥BC,∴DE=AD(角的平分线上的点到角的两边的距离相等)∵AD=AC﹣CD=10﹣6=4cm,∴DE=4cm.故填4.点评:本题主要考查平分线的性质:角的平分线上的点到角的两边的距离相等;题目比较简单,属于基础题.15.等腰三角形一边长是10cm,一边长是6cm,则它的周长是26cm或22cm.考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为10cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:(1)当腰是6cm时,周长=6+6+10=22cm;当腰长为10cm时,周长=10+10+6=26cm,所以其周长是22cm或26cm.故填22,26.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是105°.考点:翻折变换(折叠问题).分析:根据两条直线平行,内错角相等,则∠BFE=∠DEF=25°,根据平角定义,则∠EFC=155°(图a),进一步求得∠BFC=155°﹣25°=130°(图b),进而求得∠CFE=130°﹣25°=105°(图c).解答:解:∵AD∥BC,∠DEF=25°,∴∠BFE=∠DEF=25°,∴∠EFC=155°(图a),∴∠BFC=155°﹣25°=130°(图b),∴∠CFE=130°﹣25°=105°(图c).故答案为:105.点评:此题主要是根据折叠能够发现相等的角,同时运用了平行线的性质和平角定义.三、解答题(共7小题,满分72分)17.乘法公式的探究及应用.(1)如图1,若大长方形的边长为a,小长方形的边长为b,则阴影部分的面积是a2﹣b2.若将图1中的阴影部分裁剪下来,重新拼成如图2的一个矩形,则它的面积是(a+b)(a﹣b).有(1)可以得到乘法公式(a+b)(a﹣b)=a2﹣b2.(3)若a=18,b=12,则请你求出阴影部分的面积.考点:平方差公式的几何背景.分析:(1)利用正方形的面积公式,图①阴影部分的面积为大正方形的面积﹣小正方形的面积,图②长方形的长为a+b,宽为a﹣b,利用长方形的面积公式可得结论;由(1)建立等量关系即可;(3)将a=18,b=12,代入(a+b)(a﹣b)即可.解答:解:(1)图①阴影部分的面积为:a2﹣b2,图②长方形的长为a+b,宽为a﹣b,所以面积为:(a+b)(a﹣b),故答案为:a2﹣b2,(a+b)(a﹣b);由(1)可得:(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;(3)将a=18,b=12,代入得:(18+12)(18﹣12)=180,所以阴影部分的面积为:180.点评:本题主要考查了平方差公式的推导过程,利用面积建立等量关系是解答此题的关键.18.先化简,再求值:[(x+2y)2﹣(x+y)(x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.考点:整式的混合运算—化简求值.专题:计算题.分析:原式中括号中利用完全平方公式及平方差公式化简,整理后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.解答:解:原式=(x2+4xy+4y2﹣x2+y2﹣5y2)÷2x=4xy÷2x=2y,当x=﹣2,y=时,原式=1.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.如图,超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会,摇奖机是一个圆形转盘,被分成16等分,指针分别指向红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.(1)分别计算获一、二、三等奖的概率.老李一次性购物满了300元,摇奖一次,获奖的概率是多少?请你预测一下老李摇奖结果会有哪几种情况?考点:概率公式.分析:(1)找到红色区域的份数占总份数的多少即为获得一等奖的概率;找到黄色和蓝色区域的份数占总份数的多少即为获得二、三等奖的概率.用有颜色的区域数除以所有扇形的个数即可求得中奖的概率.解答:解:(1)整个圆周被分成了16份,红色为1份,∴获得一等奖的概率为:;整个圆周被分成了16份,黄色为2份,∴获得二等奖的概率为:=;整个圆周被分成了16份,蓝色为4份,∴获得三等奖的概率为=;∵共分成了16份,其中有奖的有1+2+4=7份,∴P(获奖)=;老李摇奖共有四种结果,一等奖、二等奖、三等奖、不中奖.点评:此题考查了概率公式的应用.注意用到的知识点为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中..20.已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.考点:平行线的判定与性质.专题:证明题.分析:由于AD∥BE可以得到∠A=∠3,又∠1=∠2可以得到DE∥AC,由此可以证明∠E=∠3,等量代换即可证明题目结论.解答:证明:∵AD∥BE,∴∠A=∠3,∵∠1=∠2,∴DE∥AC,∴∠E=∠3,∴∠A=∠EBC=∠E.点评:此题考查的是平行线的性质,然后根据平行线的判定和等量代换转化求证.21.△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D.(1)若△BCD的周长为8,求BC的长.若∠ABD=∠DBC,求∠A的度数.考点:线段垂直平分线的性质;等腰三角形的性质.分析:(1)根据线段的垂直平分线的性质证明DA=DB,求出AC+BC,根据AC=5,求出BC的长;设∠A=x°,根据线段的垂直平分线的性质证明DA=DB,得到∠ABD的度数,根据等腰三角形的性质用x表示出∠ACB的度数,根据三角形内角和定理列出方程,解方程得到答案.解答:解:(1)∵DE是线段AB的垂直平分线,∴DA=DB,∵△BCD的周长为8,∴AC+BC=8,又AC=5,∴BC=3;设∠A=x°,∵DA=DB,∴∠ABD=x°,∵∠AB D=∠DBC,∴∠DBC=x°,∵AB=AC,∴∠ABC=∠ACB=2x°,则x+2x+2x=180°,解得x=36°.则∠A为36°.点评:本题考查的是线段的垂直平分线的性质和等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.22.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 分才乘上缆车,缆车的平均速度为180米/分.设小亮出发x 分后行走的路程为y 米.图中的折线表示小亮在整个行走过程中y随x的变化关系.(1)小亮行走的总路程是3600米,他途中休息了20分.分别求出小亮在休息前和休息后所走的路程段上的步行速度.(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?考点:一次函数的应用.分析:根据图象获取信息:(1)小亮到达山顶用时80分钟,中途休息了20分钟,行程为3600米;休息前30分钟行走1950米,休息后30分钟行走(3600﹣1950)米.(3)求小颖到达缆车终点的时间,计算小亮行走路程,求离缆车终点的路程.解答:解:(1)根据图象知:小亮行走的总路程是 3600米,他途中休息了 20分钟.故答案为 3600,20;…小亮休息前的速度为:…小亮休息后的速度为:…(3)小颖所用时间:(分)…小亮比小颖迟到80﹣50﹣10=20(分)…∴小颖到达终点时,小亮离缆车终点的路程为:20×55=1100(米)…点评:此题考查一次函数及其图象的应用,从图象中获取相关信息是关键.此题第3问难度较大.23.如图图1,△ABC中,AB=AC,∠BAC=90°,AE是过A点的一条直线,且B、C在DE的异侧,BD⊥AE于D,CE⊥AE于E.(1)△ABD与△CAE全等吗?BD与DE+CE相等吗?请说明理由.如图图2,若直线AE绕点A旋转到图2所示的位置(BD<CE)时,其余条件不变,则BD与DE、CE的关系如何?(只须回答结论).(3)如图图3,若直线AE绕点A旋转到图3所示的位置(BD>CE)时,其余条件不变,则BD 与DE、CE的关系如何?(只须回答结论).考点:全等三角形的判定与性质.专题:探究型.分析:(1)根据已知条件易证得∠BAD=∠ACE,且根据全等三角形的判定可证明△ABD≌△CAE,根据各线段的关系即可得结论.BD=DE+CE.根据全等三角形的判定可证明△ABD≌△CAE,根据各线段的关系即可得结论.(3)同上理,BD=DE+CE仍成立.解答:解:证明如下:(1)∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵CE⊥AE,∴∠ACE+∠CAE=90°,∴∠ACE=∠BAD;又∵BD⊥AE,CE⊥AE,∴∠ADB=∠CEA=90°,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE;∵AE=DE+AD,∴BD=DE+CE;DE=BD+CE.∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵CE⊥AE,∴∠ACE+∠CAE=90°,∴∠ACE=∠BAD;又∵BD⊥AE,CE⊥AE∴∠ADB=∠CEA=90°,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE;∵DE=AE+AD,∴DE=BD+CE;(3)结论是:当B、C在AE两侧时,BD=DE+CE;当B、C在AE同侧时,BD=DE﹣CE,DE=BD+CE.点评:本题考查了全等三角形的判定和性质,涉及到直角三角形的性质、余角和补角的性质等知识点,熟练掌握全等三角形的判定方法是解题的关键.创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校。

七年级数学(下)(人教版)(天津专用)期中 检测题(含详解)

七年级数学(下)(人教版)(天津专用)期中 检测题(含详解)

第5题O BA期末测试卷(二)一、选择题(本大题共8个小题,每小题只有一个符合条件的选项,每小题3分,满分24分)1.方程组解方程组 245x y x y +=⎧⎨-=⎩的解是( )A.⎩⎨⎧-==23y xB.⎩⎨⎧=-=23y xC.⎩⎨⎧==23y xD.⎩⎨⎧-=-=23y x2.以下各组线段为边,能组成三角形的是( ) A .2cm ,4cm ,6cm B .8cm ,6cm ,4cm C .14cm ,6cm ,7cm D .2cm ,3cm ,6cm3.下列图形中,由AB CD ∥,能得到12∠=∠的是( )4.在方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(2,5),若以A 点为原点建立直角坐标系,则B 点坐标为( ) A .(-2,-5) B.(-2,5) C.(2,-5) D.(2,5)5.将一副常规的三角尺按如图方式放置,则图中∠AOB 的度数为( ) A .75° B.95° C .105° D .120°6.不等式312->+x 的解集在数轴上表示正确的是( )A CBD12 A CBD12 A .B .12 A CB DC .B DCA D .12 0 -2-1 -20 0-2A.B.C.D.AB DC E第11题7.某校测量了初三(1)班学生的身高(精确到1cm ),按10cm 为一段进行分组,得到如图频数分布直方图,则下列说法正确的是( ) A .该班人数最多的身高段的学生数为7人 B .该班身高低于160.5cm 的学生人数为15人 C .该班身高最高段的学生数为20人 D .该班身高最高段的学生数为7人8. 如图所示,∠A+∠B+∠C+∠D+∠E+∠F=( ) A.180° B.270° C.360° D.540°二、填空题(本大题共6个小题,每小题3分,满分18分)9.在平面直角坐标系中,点(1,3)位于第________象限。

天津市人教版七年级下册数学全册单元期末试卷及答案-百度文库

天津市人教版七年级下册数学全册单元期末试卷及答案-百度文库
角坐标系中,点 到 轴的距离为 ,到 轴的距离为 ,且在第二象限,则点 的坐标为()
A. B. C. D.
二、填空题
11.分解因式: __________.
12.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.
13.已知某种植物花粉的直径为0.00033cm,将数据0.00033用科学记数法表示为________________.
28.如图,在数轴上,点 、 分别表示数 、 .
(1)求 的取值范围.
(2)数轴上表示数 的点应落在()
A.点 的左边B.线段 上C.点 的右边
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.
17.如图,若AB∥CD,∠C=60°,则∠A+∠E=_____度.
18.如图, 三边的中线AD、BE、CF的公共点为G, ,则图中阴影部分的面积是________.
19.若满足方程组 的x与y互为相反数,则m的值为_____.
20.一个容量为 的样本的最大值为 ,最小值为 ,若取组距为 ,则应该分的组数是为_______.
2.D
解析:D
【分析】
利用平行线的性质求出∠3即可解决问题.
【详解】
如图,
∵a∥b,
∴∠2=∠3,
∵∠3=∠1+90°,∠1=34°,
∴∠3=124°,
∴∠2=∠3=124°,
故选:D.
【点睛】
此题考查平行线的性质,三角形的外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
3.C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年07月11日一.选择题(共16小题)1.(2016•百色)如图,直线a、b被直线c所截,下列条件能使a∥b的是()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠72.(2016•大连)如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40° B.70° C.80° D.140°3.(2016•深圳)下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.两边及其一角相等的两个三角形全等C.16的平方根是4D.一组数据2,0,1,6,6的中位数和众数分别是2和64.(2016•定州市一模)如图,直线AB,CD相交于点O,EO⊥CD于点O,∠AOE=36°,则∠BOD=()A.36° B.44° C.50° D.54°5.(2016春•徐闻县期中)如果∠α与∠β是对顶角且互补,则他们两边所在的直线()A.互相垂直B.互相平行C.既不平行也不垂直D.不能确定6.(2016•毕节市)的算术平方根是()A.2 B.±2 C.D.7.(2016•静安区一模)的相反数是()A.B.﹣C.D.﹣8.(2016•河北模拟)下列各数中,最小的数是()A.1 B.﹣|﹣2| C.D.2×10﹣109.(2016春•赵县期中)点M(x,y)在第四象限,且|x|=2,|y|=2,则点M的坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)10.(2016春•禹城市期中)一个长方形在平面直角坐标系中,三个顶点的坐标分别是(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标是()A.(2,2)B.(3,3)C.(3,2)D.(2,3)11.(2015春•南昌期末)己知点(a,b)在笫二象限.则点(ab,a﹣b)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.(2016•黑龙江模拟)开学前,小强、小亮和小伟去文化用品商店购买笔和本,小强用17元买了1支笔和4个本,小亮用19元买了2支笔和3个本,小伟购买上述价格的笔和本共用了48元,且本的数量不少于笔的数量,则小伟的购买方案共有()A.1种B.2种C.3种D.4种13.(2016•台湾)若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为何?()A.﹣15 B.﹣16 C.﹣17 D.﹣1814.(2016春•宁国市期中)若不等式组有解,那么n的取值范围是()A.n>8 B.n≤8 C.n<8 D.n≤815.(2015•攀枝花)2015年我市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.1.6万名考生B.2000名考生C.1.6万名考生的数学成绩D.2000名考生的数学成绩16.(2015•金华模拟)为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.3二.填空题(共1小题)17.(2014•成都)在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数是.三.解答题(共5小题)18.(2010•安县校级模拟)如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.∵EF∥AD,()∴∠2=.(两直线平行,同位角相等;)又∵∠1=∠2,()∴∠1=∠3.()∴AB∥DG.()∴∠BAC+=180°()又∵∠BAC=70°,()∴∠AGD=.19.(2015秋•南岗区期末)如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.20.(2015•朝阳)为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元,请问表中二档电价、三档电价各是多少?阶梯电量电价一档0﹣180度0.6元/度二档181﹣400度二档电价三档401度及以上三档电价21.(2015•河北模拟)已知关于x,y的二元一次方程组的解满足x﹣y=a,求该方程组的解.22.(2015•苏州一模)解不等式组.2016年07月11日参考答案与试题解析一.选择题(共16小题)1.(2016•百色)如图,直线a、b被直线c所截,下列条件能使a∥b的是()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠7【分析】利用平行线的判定方法判断即可.【解答】解:∵∠2=∠6(已知),∴a∥b(同位角相等,两直线平行),则能使a∥b的条件是∠2=∠6,故选B【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.2.(2016•大连)如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40° B.70° C.80° D.140°【分析】先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC 的度数,再根据角平分线性质求出∠BAE的度数.【解答】解:∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,故选B.【点评】本题考查了平行线的性质和角平分线的定义,比较简单;做好本题要熟练掌握两直线平行①内错角相等,②同位角相等,③同旁内角互补;并会书写角平分线定义的三种表达式:若AP平分∠BAC,则①∠BAP=∠PAC,②∠BAP=∠BAC,③∠BAC=2∠BAP.3.(2016•深圳)下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.两边及其一角相等的两个三角形全等C.16的平方根是4D.一组数据2,0,1,6,6的中位数和众数分别是2和6【分析】根据平行四边形的判定定理、三角形全等的判定定理、平方根的概念、中位数和众数的概念进行判断即可.【解答】解:A.一组对边平行,另一组对边相等的四边形不一定是平行四边形,故错误;B.两边及其一角相等的两个三角形不一定全等,故错误;C.16的平方根是±4,故错误,D.一组数据2,0,1,6,6的中位数和众数分别是2和6,故正确,故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.(2016•定州市一模)如图,直线AB,CD相交于点O,EO⊥CD于点O,∠AOE=36°,则∠BOD=()A.36° B.44° C.50° D.54°【分析】根据题意可以得到∠EOD的度数,由∠AOE=36°,∠AOE+∠EOD+∠BOD=180°,从而可以得到∠BOD的度数.【解答】解:∵EO⊥CD,∴∠EOD=90°,又∵∠AOE+∠EOD+∠BOD=180°,∠AOE=36°,∴∠BOD=54°,故选D.【点评】本题考查垂线、平角,解题的关键是明确题意,找出所求问题需要的条件.5.(2016春•徐闻县期中)如果∠α与∠β是对顶角且互补,则他们两边所在的直线()A.互相垂直B.互相平行C.既不平行也不垂直D.不能确定【分析】∠α与∠β是对顶角且互补,根据对顶角的性质,判断这两个对顶角相等,且都为90°,因此它们两边所在的直线互相垂直.【解答】解:∵∠α与∠β是对顶角,∴∠α=∠β,又∵∠α与∠β互补,∴∠α+∠β=180°,可求∠α=90°.故选:A.【点评】本题考查垂线的定义和对顶角的性质,是简单的基础题.6.(2016•毕节市)的算术平方根是()A.2 B.±2 C.D.【分析】首先根据立方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:=2,2的算术平方根是.故选:C.【点评】此题主要考查了算术平方根的定义,注意关键是要首先计算=2.7.(2016•静安区一模)的相反数是()A.B.﹣C.D.﹣【分析】符号不同的两个数互为相反数,因此的相反数为﹣,分母有理化得﹣.【解答】解:根据相反数定义得:的相反数为:﹣,分子分母同乘得:﹣.故选:D.【点评】题目考查了相反数和最简二次根式的定义,学生在进行相反数转换后,不要忘记对二次根式进行化简.8.(2016•河北模拟)下列各数中,最小的数是()A.1 B.﹣|﹣2| C.D.2×10﹣10【分析】根据绝对值、算术平方根、负整数指数幂的性质判断各数的符号,根据正实数大于一切负实数解答即可.【解答】解:∵1、、2×10﹣10都是正数,﹣|﹣2|是负数,∴最小的数是﹣|﹣2|.故选:B.【点评】本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.9.(2016春•赵县期中)点M(x,y)在第四象限,且|x|=2,|y|=2,则点M的坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数,可得x、y的值,据此可以求的点M的坐标.【解答】解:∵M(x,y)在第四象限,∴|x|=x=2,|y|=﹣y=2,∴x=2,y=﹣2,∴点M的坐标是(2,﹣2).故选B.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.(2016春•禹城市期中)一个长方形在平面直角坐标系中,三个顶点的坐标分别是(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标是()A.(2,2)B.(3,3)C.(3,2)D.(2,3)【分析】因为(﹣1,﹣1)、(﹣1,2)两点横坐标相等,长方形有一边平行于y轴,(﹣1,﹣1)、(3,﹣1)两点纵坐标相等,长方形有一边平行于x轴,过(﹣1,2)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为第四个顶点.【解答】解:过(﹣1,2)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为(3,2),即为第四个顶点坐标.故选:C.【点评】本题考查了长方形的性质和点的坐标表示方法,明确平行于坐标轴的直线上的点坐标特点是解题的关键.11.(2015春•南昌期末)己知点(a,b)在笫二象限.则点(ab,a﹣b)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据点(a,b)在笫二象限,可得a<0,b>0,所以ab<0,a﹣b<0,所以点(ab,a﹣b)所在象限是第三象限,据此判断即可.【解答】解:∵点(a,b)在笫二象限,∴a<0,b>0,∴ab<0,a﹣b<0,∴a点(ab,a﹣b)所在象限是第三象限.故选:C.【点评】此题主要考查了点的坐标问题,要熟练掌握,解答此题的关键是要明确各个象限内点的坐标特征.12.(2016•黑龙江模拟)开学前,小强、小亮和小伟去文化用品商店购买笔和本,小强用17元买了1支笔和4个本,小亮用19元买了2支笔和3个本,小伟购买上述价格的笔和本共用了48元,且本的数量不少于笔的数量,则小伟的购买方案共有()A.1种B.2种C.3种D.4种【分析】设1支笔的价格为x元,一个本的价格为y元,根据小强和小亮所花费的钱数列出方程组,可求得笔和本的单价,然后设小伟购买了a支笔,b个本,接下来根据小伟的花费列出关于a、b的方程,最后求得方程的非负整数解即可.【解答】解:设1支笔的价格为x元,一个本的价格为y元.根据题意得:.解得:.设小伟购买了a支笔,b个本.根据题意得:5a+3b=48且b≥a.当a=3时,b=11.当a=6时,b=6.故选:B.【点评】本题主要考查的是二元一次方程的应用和二元一次方程组的应用,根据题意列出方程和方程组是解题的关键.13.(2016•台湾)若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为何?()A.﹣15 B.﹣16 C.﹣17 D.﹣18【分析】根据不等式20<5﹣2(2+2x)<50可以求得x的取值范围,从而可以得到a、b的值,进而求得a+b的值.【解答】解:∵20<5﹣2(2+2x)<50,解得,,∵不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,∴a=﹣5,b=﹣12,∴a+b=(﹣5)+(﹣12)=﹣17,故选C.【点评】本题考查一元一次不等式组的整数解,解题的关键是明确解一元一次不等式组的方法.14.(2016春•宁国市期中)若不等式组有解,那么n的取值范围是()A.n>8 B.n≤8 C.n<8 D.n≤8【分析】解出不等式组的解集,根据已知解集比较,可求出n的取值范围.【解答】解:∵不等式组有解,∴n<x<8,∴n<8,m的取值范围为n<8.故选C.【点评】考查了不等式的解集,本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.15.(2015•攀枝花)2015年我市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.1.6万名考生B.2000名考生C.1.6万名考生的数学成绩D.2000名考生的数学成绩【分析】根据样本的定义:从总体中取出的一部分个体叫做这个总体的一个样本,依此即可求解.【解答】解:2015年我市有近1.6万名考生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析,在这个问题中抽取的2000名考生的数学成绩为样本.故选:D.【点评】本题考查了总体、个体、样本和样本容量:我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;一个样本包括的个体数量叫做样本容量.16.(2015•金华模拟)为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.3【分析】根据频率分布直方图可以知道书法兴趣小组的频数,然后除以总人数即可求出加绘画兴趣小组的频率.【解答】解:∵根据频率分布直方图知道书法兴趣小组的频数为8,∴参加书法兴趣小组的频率是8÷40=0.2.故选C.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.二.填空题(共1小题)17.(2014•成都)在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数是520.【分析】用所有学生数乘以课外阅读时间不少于7小时的人数所占的百分比即可.【解答】解:该校1300名学生一周的课外阅读时间不少于7小时的人数是1300×=520人,故答案为:520.【点评】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于7小时的人数所占的百分比.三.解答题(共5小题)18.(2010•安县校级模拟)如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.∵EF∥AD,(已知)∴∠2=∠3.(两直线平行,同位角相等;)又∵∠1=∠2,(已知)∴∠1=∠3.(等量代换)∴AB∥DG.(内错角相等,两直线平行;)∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补;)又∵∠BAC=70°,(已知)∴∠AGD=110°.【分析】根据题意,利用平行线的性质和判定填空即可.【解答】解:∵EF∥AD(已知),∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB∥DG.(内错角相等,两直线平行)∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)又∵∠BAC=70°,(已知)∴∠AGD=110°.【点评】本题主要考查了平行线的性质和判定定理等知识点,理解平行线的性质和判定定理是解此题的关键.19.(2015秋•南岗区期末)如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.【分析】(1)根据邻补角的定义求出∠EOC,再根据角平分线的定义求出∠AOC,然后根据对顶角相等解答.(2)由已知条件和对顶角相等得出∠MFC=∠MFH=∠BOD+90°=126°,得出∠ONF=90°,求出∠OFM=54°,延长∠OFG=2∠OFM=108°,证出∠OFG+∠EOC=180°,即可得出结论.【解答】解:∵∠EOC:∠EOD=2:3,∴∠EOC=180°×=72°,∵OA平分∠EOC,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.(2)延长FM交AB于N,如图所示:∵∠MFH﹣∠BOD=90°,FM平分∠OFG,∴∠MFC=∠MFH=∠BOD+90°=126°,∴∠ONF=126°﹣36°=90°,∴∠OFM=90°﹣36°=54°,∴∠OFG=2∠OFM=108°,∴∠OFG+∠EOC=180°,∴OE∥GH.【点评】本题考查了平行线的判定、角平分线定义、角的互余关系等知识;熟练掌握平行线的判定、角平分线定义是解决问题的关键,(2)有一定难度.20.(2015•朝阳)为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元,请问表中二档电价、三档电价各是多少?阶梯电量电价一档0﹣180度0.6元/度二档181﹣400度二档电价三档401度及以上三档电价【分析】设二档电价是x元/度、三档电价是y元/度,根据题意列出方程组求解即可.【解答】解:设二档电价是x元/度、三档电价是y元/度,根据题意得,,解得,答:二档电价是0.7元/度、三档电价是0.9元/度.【点评】本题主要考查了二元一次方程组的应用,解题的关键是正确列出方程组.21.(2015•河北模拟)已知关于x,y的二元一次方程组的解满足x﹣y=a,求该方程组的解.【分析】运用加减消元法解出关于x,y的二元一次方程组,把方程组的解代入x﹣y=a,求出a的值,代入计算得到方程组的解.【解答】解:,②×2﹣①得,y=a﹣,把y=a﹣代入②得,x=a﹣,则a﹣﹣(a﹣)=a,解得,a=5方程组的解为:.【点评】本题考查的是二元一次方程组的解法,灵活运用加减消元法解方程组是解题的关键.22.(2015•苏州一模)解不等式组.【分析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x≤1.【点评】本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是能根据不等式的解集找出不等式组的解集,题目比较好,难度也适中.。

相关文档
最新文档