七年级下册数学经典练习题

合集下载

七年级下册数学小练

七年级下册数学小练

七年级下册数学小练一、有理数的运算。

1. 计算:(-3)+5 (-2)嘿呀,这有理数的加减法就像在数字的小世界里玩游戏呢。

先看这个-3 + 5,就好比你欠了3块钱,然后又赚了5块钱,那你现在就有2块钱啦,也就是(-3)+5 = 2。

再看后面的(-2),这两个负号就像两个小磁铁,碰到一起就变成正的了,所以就相当于加2。

那最后的结果就是2 + 2 = 4。

2. 计算:(-2)×3 (-4)÷2咱先算乘法和除法。

(-2)×3呢,就像你有2个倒霉事,每个倒霉事的程度是3,那你就一共倒霉了6,也就是(-2)×3=-6。

再看(-4)÷2,你有4个东西,要平均分给2个人,每人就得到2个,但是因为是负数除以正数,所以结果是-2。

最后把这两个结果相减,-6 (-2),又遇到这两个负号变正号的情况啦,就相当于-6 + 2,那就是欠了6块钱,还了2块钱,还欠4块钱,所以结果是-4。

二、整式的加减。

1. 化简:3a + 2b 5a b这整式的加减就像是整理小盒子里的东西。

先看有3a和-5a,这就像有3个红色小球和5个蓝色小球(假设红色代表正,蓝色代表负),合起来就是-2a。

再看2b和-b,2个大糖果和1个小糖果(同样大的代表正,小的代表负),合起来就是b。

所以最后化简的结果就是-2a + b。

2. 先化简,再求值:(2x² 3xy + 4y²)-3(x² xy + (5)/(3)y²),其中x = -2,y = 1首先来化简这个式子。

把括号打开就像拆礼物盒一样。

第一个括号里的东西都不用变,第二个括号里的每一项都要乘以3,就变成了2x² 3xy + 4y²-3x²+3xy 5y²。

然后再把同类项合并,2x²和-3x²是同类项,合起来就是-x²;-3xy和3xy就像两个一样大但是方向相反的力,互相抵消了;4y²和-5y²合起来就是-y²。

七年级下册数学题100道计算题

七年级下册数学题100道计算题

由于数学题的字符是要输入的,因此无法计算题目字符数量。

我可以为您提供一些数学题,但无法保证您要求的数量。

以下是一些七年级下册的数学题:1.计算:18+4÷2=2.简化:12÷6×4=3.求解:3x+5=14,求x的值。

4.计算:32-17÷3=5.简化:24÷8×2=6.求解:4y-6=10,求y的值。

7.计算:15+8-6=8.简化:18÷9×5=9.求解:2m+9=25,求m的值。

10.计算:75-12+9=11.简化:36÷6×7=12.求解:5n-8=22,求n的值。

13.计算:18-3×2=14.简化:9÷3×5=15.求解:7p+4=25,求p的值。

16.计算:24-5+3=17.简化:45÷9×6=18.求解:8q+7=39,求q的值。

19.计算:32÷8×4=20.简化:28÷7×3=21.求解:6r+2=20,求r的值。

22.计算:28-4×3=23.简化:48÷6×2=24.求解:9s+6=33,求s的值。

25.计算:54-7+8=26.简化:63÷9×5=27.求解:7t+3=38,求t的值。

28.计算:36-4×5=29.简化:72÷9×4=30.求解:4u+14=42,求u的值。

这只是其中的一部分题目,如果您还需要更多题目,请告知我需要的数量。

七年级下册计算题50道

七年级下册计算题50道

七年级下册计算题50道1. 计算:公式解析:同号两数相加,取相同的符号,并把绝对值相加。

公式2. 计算:公式解析:减去一个数,等于加上这个数的相反数。

公式3. 计算:公式解析:两数相乘,异号得负,并把绝对值相乘。

公式4. 计算:公式解析:先通分,化为同分母分数再相加。

公式5. 计算:公式解析:负数的奇次幂是负数,底数不变,指数相乘。

公式6. 计算:公式解析:先算乘方,再算减法。

公式7. 计算:公式解析:先求绝对值,再计算减法。

公式8. 计算:公式解析:两数相除,同号得正,并把绝对值相除。

公式9. 计算:公式解析:先算乘方,再算乘法,最后算加减。

公式10. 计算:公式解析:通分计算。

公式11. 计算:公式解析:两数相乘,同号得正,并把绝对值相乘。

公式12. 计算:公式解析:先算乘方,再算除法。

公式13. 计算:公式解析:通分计算。

公式14. 计算:公式解析:任何非零数的 2020 次幂都是 1,0 加任何数都得原数。

公式15. 计算:公式解析:先求绝对值,再计算减法。

公式16. 计算:公式解析:先算乘方,再算乘法。

公式17. 计算:公式解析:两数相乘,异号得负,并把绝对值相乘。

公式18. 计算:公式解析:除以一个数等于乘以这个数的倒数。

公式19. 计算:公式解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

公式20. 计算:公式解析:先算乘方,再算减法。

公式。

江苏盐城中学七年级数学下册第七章【平面直角坐标系】经典习题(培优专题)

江苏盐城中学七年级数学下册第七章【平面直角坐标系】经典习题(培优专题)

一、选择题1.如果点A (a ,b )在第二象限,那么a 、b 的符号是( )A .0>a ,0>bB .0<a ,0>bC .0>a ,0<bD .0<a ,0<b 2.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)3.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( ) A .(-3,6) B .(-6,3) C .(3,-6) D .(8,-3) 4.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交5.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,6.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A.(5,4) B.(4,5) C.(3,4) D.(4,3)8.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB 平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5) D.(1,3)或(5,1)9.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2), ,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部四号暗堡的坐标为(2,4)的位置大约是()A.A处B.B处C.C处D.D处10.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为()A .44B .45C .46D .4711.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题12.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.13.平面直角坐标系中,已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在第二象限,则点P 的坐标是__________.14.已知点A (2a+5,a ﹣3)在第一、三象限的角平分线上,则a =_____.15.已知点()3,2P -,//MP x 轴,6MP =,则点M 的坐标为______.16.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.17.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 18.已知点A(3a ﹣6,a+4),B(﹣3,2),AB ∥y 轴,点P 为直线AB 上一点,且PA =2PB ,则点P 的坐标为_____.19.如图,在平面直角坐标系xOy 中,将四边形ABCD 先向下平移,再向右平移得到四边形A 1B 1C 1D 1,已知A (﹣3,5),B (﹣4,3),A 1(3,3),则B 1的坐标为_____.20.已知点A (﹣3,2),AB ∥坐标轴,且AB =4,若点B 在x 轴的上方,则点B 坐标为__. 21.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________三、解答题22.已知:△A 1B 1C 1三个顶点的坐标分别为A 1(﹣3,4),B 1(﹣1,3),C 1(1,6),把△A 1B 1C 1先向右平移3个单位长度,再向下平移3个单位长度后得到△ABC ,且点A 1的对应点为A ,点B 1的对应点为B ,点C 1的对应点为C .(1)在坐标系中画出△ABC ;(2)求△ABC 的面积;(3)设点P 在y 轴上,且△APB 与△ABC 的面积相等,求点P 的坐标.23.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,ABC 的顶点在格点上,且A(2,−4),B(5,−4),C(4,−1)(1)画出ABC ;(2)求出ABC 的面积;(3)若把ABC 向上平移2个单位长度,再向左平移4个单位长度得到A B C ''',在图中画出A B C ''',并写出B '的坐标24.已知点P(m +2,3),Q(−5,n−1),根据以下条件确定m 、n 的值(1)P 、Q 两点在第一、三象限的角平分线上;(2)PQ ∥x 轴,且P 点与Q 点的距离为3.25.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.一、选择题1.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 2.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1)3.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)4.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,56.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上8.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上 9.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 30303)D .(30303)10.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-11.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题12.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.13.已知点P 的坐标()41,52a a --,且点P 到两坐标轴的距离相等,则点P 的坐标是______.14.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 15.已知点A (2a+5,a ﹣3)在第一、三象限的角平分线上,则a =_____. 16.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.17.点P 先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P 坐标为__18.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.19.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限20.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____21.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是______.三、解答题22.在平面直角坐标系中,三角形ABC 的三个顶点的位置如图所示,点'A 的坐标是()2,2-,现将三角形ABC 平移,使点A 变换为点'A ,点'B 、'C 分别是B 、C 的对应点.(1)请画出平移后的三角形'''A B C (不写画法),并写出点'B 、'C 的坐标; (2)求三角形ABC 的面积.23.请在图中建立平面直角坐标系,使学校的坐标是()2,5,并写出儿童公园,医院,水果店,宠物店,汽车站的坐标.24.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B 的对应点为Q ,点C 的对应点为R .观察变换前后各对应点之间的关系,若点M 经过这种变换后的对应为N ,则点N 的坐标为(______,______)(用含m ,n 的式子表示)25.如图,已知火车站的坐标为()2,1,文化宫的坐标为()1,2-.(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育馆、市场、超市、宾馆的坐标;(3)请将原点O ,宾馆C 和文化宫B ,看作三点用线段连起来,将得OBC ,然后将此三角形向下平移3个单位长度,画出平移后的111O B C ,并求出其面积.一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,12.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)3.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 4.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置5.已知点A 的坐标为(2,1)--,点B 的坐标为(0,2)-,若将线段AB 平移至A B ''的位置,点A '的坐标为(3,2)-,则点B '的坐标为( )A .(3,2)--B .(0,1)C .(1,1)-D .(1,1)- 6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗7.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( )A .(-3,1)B .(0,-2)C .(3,1)D .(0,4)8.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上9.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 10.如图,在平面直角坐标系中,半径为1个单位长度的半圆123,,O O O ,…组成一条平滑曲线,点P 从点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2016秒时,点P 的坐标是( )A .()2016,1B .()2016,0C .()2016,1-D .()2016,0π 11.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交 B .平行、平行 C .垂直相交、平行 D .平行、垂直相交二、填空题12.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.13.平面直角坐标系中,已知点P到x轴的距离为2,到y轴的距离为3,且点P在第二象限,则点P的坐标是__________.14.在x轴上方的点P到x轴的距离为3,到y轴距离为2,则点P的坐标为________.15.如图所示的坐标系中,单位长度为1 ,点B的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上,点P 也在格点上,ADP△的面积与四边形ABCD 的面积相等,写出所有点P 的坐标_____________.(不超出格子的范围)16.填一填如图,百鸟馆在老虎馆的(__________)偏(__________)(__________).方向;大象馆在老虎馆的(__________)偏(__________)(__________).方向.17.如图,在平面直角坐标系中,三角形ABC经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P(12,﹣15)为三角形ABC内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示,则点A 400的坐标为_______.19.点3(2,)A -到x 轴的距离是__________.20.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________ 21.在平面直角坐标系中,点()3,1A -在第______象限.三、解答题22.如图,已知△ABC 的顶点分别为A (﹣2,2)、B (﹣4,5)、C (﹣5,1)和直线m (直线m 上各点的横坐标都为1).(1)作出△ABC 关于x 轴对称的图形△A 1B 1C 1,并写出点B 1的坐标;(2)作出△ABC 关于y 轴对称的图形△A 2B 2C 2,并写出点B 2的坐标;(3)若点P (a ,b )是△ABC 内部一点,则点P 关于直线m 对称的点的坐标是 . 23.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC 经过一次平移后得到A B C ''',图中标出了点B 的对应点B '.(1)在给定方格纸中画出平移后的A B C ''';(2)画出AB 边上的中线CD 和BC 边上的高线AE ;(3)求A B C ''的面积是多少?24.在平面直角坐标系中,画出点(0,0)A ,(4,0)B ,(3,3)C ,(0,5)D ,并求出BCD 的面积.25.已知点P (2x ﹣6,3x +1),求下列情形下点P 的坐标.(1)点P 在y 轴上;(2)点P 到x 轴、y 轴的距离相等,且点P 在第二象限;(3)点P 在过点A (2,﹣4)且与y 轴平行的直线上.。

初一下册数学练习题及答案

初一下册数学练习题及答案

初一下册数学练习题及答案一、选择题1. 已知a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 等边三角形B. 直角三角形C. 等腰三角形D. 不规则三角形答案:B2. 下列哪个数是无理数?A. πB. 0.33333...C. √2D. 1答案:A二、填空题1. 如果一个数的平方根是2,那么这个数是______。

答案:42. 一个数的立方根是3,那么这个数是______。

答案:27三、计算题1. 计算下列各题,并写出计算过程。

(1) (-3)^2答案:(-3)^2 = 9(2) √(16) + √(4)答案:√(16) + √(4) = 4 + 2 = 6四、解答题1. 已知一个长方体的长、宽、高分别为a、b、c,求证:长方体的体积是abc。

证明:长方体的体积V=长×宽×高,即V=a×b×c,所以长方体的体积是abc。

2. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

解:根据勾股定理,斜边c的长度为c = √(a^2 + b^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5。

五、应用题1. 某工厂生产一批零件,每个零件的成本为5元,如果工厂计划生产x个零件,那么总成本是多少元?答案:总成本为5x元。

2. 一个水池的长是15米,宽是10米,求水池的面积。

答案:水池的面积为长×宽=15×10=150平方米。

通过这些练习题,同学们可以巩固初一数学的基本概念和计算方法,提高解题能力。

希望同学们能够认真完成这些练习,并对照答案检查自己的解题过程。

七年级下册数学练习题精选

七年级下册数学练习题精选

七年级下册数学练习题七年级下册数学练习题精选一、选择题1、取质量相同的砂土、粘土和壤土,分别放入大烧杯中加水搅拌,其中颗粒沉降最快( )A、砂土B、粘土C、壤土2、在农业措施中,排灌对土壤的( )影响最大。

A、矿物质B、腐殖质C、水分D、空气3、下列土壤中肥力最大的是( )A、砂土B、粘土C、壤土4、土壤形成时具有下列哪个特征( )A、岩石风化B、最低等生物出现C、有地衣、苔藓植物出现D、森林和草原的出现5、占土壤固体物质质量约5%的是( )A、矿物质B、腐殖质C、水分D、空气6、植物最容易发生缺水现象的土壤是( )A、砂土B、粘土C、壤土7、下列关于砂土叙述正确的是( )A、通气性能好,保水性能差B、通气性能差,保水性能好C、通气性能差,保水性能差D、通气性能好,保水性能好8、长期单一使用化肥会破坏土壤,下列不属于使用单一化肥引起的是( )A、团粒结构破坏B、土壤容易板结C、腐殖质得到补充D、土壤容易积水9、关于植物对土壤的保护作用叙述错误的是( )A、植物的根能把土壤颗粒紧紧地粘在一起B、植物的树冠能减缓雨水对土壤的冲击C、茎叶能减缓土壤的腐殖质形成D、植物能减小风力对土壤的侵蚀10、下列不属于黄土高原水土治理的措施是( )A、开荒种地B、退耕还草C、打坝淤地D、修筑梯田11、下列不属于塑料地膜有害影响的是( )A、土壤渗水透气B、作物根系生长C、保持土壤温度D、机械作业12、下列防治土壤污染的措施中,正确的'是( )A、控制和消除工业“三废”的排放B、禁止化学农药的使用C、只能少量使用化学肥料D、禁止污水灌溉二、填空题1、土壤中的矿物质由形成的,腐殖质由在土壤表层中经过一系列复杂的分解,转化而成的。

2、我国耕地质量总体不高,分析下列土壤要以通过改变什么成分来提高土壤质量。

⑴发生龟裂的土壤;⑵沼泽地;⑶缓坡上的梯田。

3、人类开垦利用土壤,栽种各种作物,获得及各种工农业生产的。

4、高山、平原、洼地、沿海和内陆的不同地区生长着不同的天然植物,这说明植物与土壤有怎样的关系。

七年级数学下册 二元一次方程组经典练习题+答案解析100道 人教新课标

七年级数学下册 二元一次方程组经典练习题+答案解析100道  人教新课标

二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组) 一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( )2、方程组⎩⎨⎧=+-=5231y x x y 的解是方程3x-2y=13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a2-1)x2+(a-1)x+(2a-3)y=0是二元一次方程,则a 的值为±1( )6、若x+y=0,且|x|=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( )9、x+y=5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a+5|=5,a+b=1则32-的值为ba ………()12、在方程4x-3y=7里,如果用x 的代数式表示y ,则437yx +=( )二、选择:13、任何一个二元一次方程都有( )(A )一个解; (B )两个解; (C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( )(A )a<2; (B )34->a ; (C )342<<-a ;(D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+my x m y x 932的解是方程3x+2y=34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( ) (A )15x-3y=6 (B )4x-y=7 (C )10x+2y=4 (D )20x-4y=3 19、下列方程组中,是二元一次方程组的是( ) (A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a=-3,b=-14 (B )a=3,b=-7 (C )a=-1,b=9(D )a=-3,b=14 21、若5x-6y=0,且xy ≠0,则y x yx 3545--的值等于( )(A )32 (B )23(C )1 (D )-1 22、若x 、y 均为非负数,则方程6x=-7y 的解的情况是( )(A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y=kx+b 的解,则k 与b 的值为( ) (A )21=k ,b=-4 (B )21-=k ,b=4 (C )21=k ,b=4(D )21-=k ,b=-4 三、填空:25、在方程3x+4y=16中,当x=3时,y=________,当y=-2时,x=_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x+3y=10中,当3x-6=0时,y=_________;27、如果0.4x-0.5y=1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ;29、方程|a|+|b|=2的自然数解是_____________; 30、如果x=1,y=2满足方程141=+y ax ,那么a=____________;31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a=______,m=______;32、若方程x-2y+3z=0,且当x=1时,y=2,则z=______;33、若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________;34、若x+y=a ,x-y=1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x:z=_______;y:z=________;36、已知a-3b=2a+b-15=1,则代数式a2-4ab+b2+3的值为__________;四、解方程组□x +5y =13 ① 4x -□y =-2 ②37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x+4y=|a|成立的x 、y 的值,满足(2x+y-1)2+|3y-x|=0,又|a|+a=0,求a 的值; 49、代数式ax2+bx+c 中,当x=1时的值是0,在x=2时的值是3,在x=3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)

人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)

一、选择题1.下列各数中比( )A .2-B .1-C .12-D .0A 解析:A【分析】根据实数比较大小的方法分析得出答案即可.【详解】A .|2|2-=,|= ∴2>2∴-<B .|1|1-=,|= ∴1<,1∴->C .1122-=,|=, 1∴->2D .0>故选:A .【点睛】此题主要考查了实数的大小比较,正确掌握比较方法是解题的关键.2.在 1.4144-,,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .4D 解析:D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 1.4144-,有限小数,是有理数,不是无理数;227,分数,是有理数,不是无理数; 0.3•,无限循环小数,是有理数,不是无理数;2-, 3π,23-, 2.121112*********...是无理数,共4个, 故选:D . 【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.估算481的值( )A .在7和8之间B .在6和7之间C .在5和6之间D .在4和5之间C解析:C【分析】利用36<48<49得到6<48<7,从而可对48−1进行估算.【详解】 解:∵36<48<49,∴6<48<7,∴5<48-1<6.故选:C .【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.4.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 13解析:B【分析】首先确定A ,B 对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A 点对应的数是1,B 点对应的数是3,A.-2<3<-1,不符合题意;B.27<3,符合题意;C 、3114,不符合题意;D. 3134,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.5.85-的整数部分是( ) A .4 B .5 C .6 D .7B 解析:B【分析】直接利用估算无理数的大小的方法得出253<<,进而得出答案. 【详解】解:459<<,459∴<<,即253<<,838582∴-<-<-,5856∴<-<,85∴-的整数部分是5.故选:B .【点睛】本题主要考查了估算无理数的大小,正确得出5的取值范围是解题关键.6.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n A 解析:A【分析】根据题意可判断0在线段NQ 的中点处,再根据绝对值的意义即可进行判断.【详解】解:因为0n q +=,所以n 、q 互为相反数,0在线段NQ 的中点处,所以点P 距离原点的距离最远,即m ,n ,p ,q 四个实数中,绝对值最大的一个是p . 故选:A .【点睛】本题考查了实数与数轴以及线段的中点,正确理解题意、确定数轴上原点的位置是解题关键.7.下列实数中,属于无理数的是( )A .3.14B .227C 4D .πD解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误;C =2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5B解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x ,由题意可知316x =,解得x =,∵332163<<, ∴23<,那么它的棱长在2和3之间.故选:B .【点睛】的范围.9.在0,3π227, 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ). A .1个B .2个C .3个D .4个C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】 22 3.1428577=小数点后142857是无限循环的,则227是有理数,3=-,则因此,题中的无理数有3π 6.1010010001(相邻两个1之间0的个数在递增),故选:C .【点睛】本题考查了无理数、算术平方根,熟记无理数的定义是解题关键.10.1的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B .【点睛】二、填空题11.计算:(1321(2)(10)4---⨯-(2)225(24)-⨯--÷1)-12(2)-12【分析】(1)(2)两小题都属于实数的混合运算先计算乘方和开方再计算乘除最后再算加减即可得出结果【详解】解:(1)(2)【点睛】本题考查了实数的混合运算根据算式确定运算顺序并解析:(1)-12,(2)-12.【分析】(1)、(2)两小题都属于实数的混合运算,先计算乘方和开方,再计算乘除,最后再算加减即可得出结果.【详解】解:(1321(2)(10)4---⨯- 1100458=⨯+- 1325=-12=-,(2)225(24)-⨯--÷45(24)3=-⨯--÷208=-+12=-.【点睛】本题考查了实数的混合运算,根据算式确定运算顺序并运用相应的运算法则正确计算是解题的关键.12.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.(1);(2);(3)【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知再利用绝对值的性质化简绝对值号继而求得答案;(3)根据非负数的性质求出的值再代入进而求其平方根【详解】解:(1)∵解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-<∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +4d +∴20c d +=∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-= ∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.13.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +数.ab ;-6【分析】原式去括号合并得到最简结果利用相反数及非负数的性质求出a 与b 的值代入计算即可求出值【详解】解:原式=2a2-2ab-(2a2-3ab )=2a2-2ab-2a2+3ab=ab ∵与互为解析:ab ;-6.【分析】原式去括号合并得到最简结果,利用相反数及非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=2a 2-2ab-(2a 2-3ab )=2a 2-2ab-2a 2+3ab= ab , ∵2a +∴,∴a+2=0,30b -=,解得:a=-2,3b =,当a=-2,b=3时,原式=-6.【点睛】此题考查了整式的加减-化简求值,以及算术平方根的非负性,熟练掌握运算法则是解本题的关键.14.求出x 的值:()23227x +=x =1或x =﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x 的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x =1或x =﹣5【点睛】本题主要考查的是 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.15.计算:3011(2)(200422-+---【分析】根据运算法则和运算顺序准确计算即可【详解】解:【点睛】本题考查了实数得混合运算掌握运算法则和顺序是解题的关键解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.16.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.(1)-8;(2)1﹣;(3)x =±【分析】(1)利用算数平方根立方根及二次根式性质计算即可;(2)利用零指数幂立方根及绝对值的代数意义进行化简即可;(3)方程变形后利用开方运算即可求解【详解】解:解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可;(3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.17.已知a 的整数部分,b 的小数部分,求代数式(1b a -的平方根.【分析】根据可得即可得到的整数部分是3小数部分是即可求解【详解】解:∵∴∴的整数部分是3则的小数部分是则∴∴9的平方根为【点睛】本题考查实数的估算实数的运算平方根的定义掌握实数估算的方法是解题的关键 解析:3±.【分析】根据223104<<可得34<<的整数部分是3,小数部分是3,即可求解.【详解】解:∵223104<<, ∴34<<, ∴3,则3a =3,则3b =,∴(()1312339a b ---=-=-=, ∴9的平方根为3±.【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键. 18.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.19.已知5的整数部分为a ,5-b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-20.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)3cm 【分析】设球的半径为r 求出下降的水的体积即圆柱形小水桶中下降的水的体积最后根据球的体积公式列式求解即可【详解】解:设球的半径为r 小水桶的直径为水面下降了小水桶的半径为6cm 下降的水的体积是π×解析:3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm ,∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3), 即34363r ππ=,解得:327r =,3r =,答:铅球的半径是3cm .【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程. 三、解答题21.2-.解析:4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.22.计算:(1)⎛- ⎝;(2|1--解析:(1;(2)12-【分析】(1)先去括号,再利用二次根式加减运算法则进行计算;(2)直接利用绝对值的性质和立方根的性质、二次根式的性质分别化简后再相加减即可;【详解】(1)⎛- ⎝=;(2|1--=914++-=12-【点睛】考查了实数的运算,解题关键是掌握运算法则和运算顺序.23.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.24.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。

济南市七年级数学下册第八章【二元一次方程组】经典练习题

济南市七年级数学下册第八章【二元一次方程组】经典练习题

1.《孙子算经》是中国古代著名的数学著作.在书中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何? ”译成白话文: “现有一根木头,不知道它的长短.用整条绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木头的长度为x 尺,绳子的长度为y 尺.则可列出方程组为( )A . 4.512x y yx -=⎧⎪⎨-=⎪⎩ B . 4.512y x yy -=⎧⎪⎨-=⎪⎩ C . 4.512y x yx -=⎧⎪⎨-=⎪⎩ D . 4.512x y yy -=⎧⎪⎨-=⎪⎩2.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,根据题意列方程组正确的是( ) A . 4.512x yy xB . 4.512x y yxC .4.512xy x yD .4.512xyy x3.方程组125x y x y +=⎧⎨+=⎩的解为( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=⎩C .43x y =⎧⎨=-⎩D .23x y =-⎧⎨=⎩4.下列各方程中,是二元一次方程的是( ) A .253x y x y-=+ B .x+y=1 C .2115x y =+ D .3x+1=2xy5.下列各组值中,不是方程21x y -=的解的是( )A .0,12x y =⎧⎪⎨=-⎪⎩B .1,1x y =⎧⎨=⎩C .1,x y =⎧⎨=⎩D .1,1x y =-⎧⎨=-⎩6.若关于x y ,的二元一次方程组232320x y kx y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( )343443437.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为( )A .19分B .20分C .21分D .22分8.二元一次方程组7317x y x y +=⎧⎨+=⎩的解是( )A .52x y =⎧⎨=⎩B .25x y =⎧⎨=⎩C .61x y =⎧⎨=⎩D .16x y =⎧⎨=⎩9.下列方程中,是二元一次方程的是( ). A .324x y z -=B .690+=xC .42x y =-D .123y x+= 10.二元一次方程组425x y x y +=⎧⎨-=⎩的解为( )A .13x y =⎧⎨=⎩B .22x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .40x y =⎧⎨=⎩11.方程组320x y x y +=⎧⎨-=⎩的解是( )A .11x y =⎧⎨=⎩B .12x y =⎧⎨=⎩C .21x y =⎧⎨=⎩D .30x y =⎧⎨=⎩二、填空题12.已知方程组278ax by cx y +=⎧⎨-=⎩,甲解对了,得32x y =⎧⎨=-⎩.乙看错了c ,得22x y =-⎧⎨=⎩.则abc 的值为_______.13.某果蔬饮料由果汁、蔬菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了12.5%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与142715.一天,小明从家出发匀速步行去学校上学,几分钟后,在家休假的爸爸发现小明忘带数学作业,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路回家(爸爸追上小明时交流时间忽略不计).小明拿到书后立即提速14赶往学校,并在从家出发后23分钟到校,两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为______米.16.设 a 、b 是有理数,且满足等式2322152a b b ++=-则a+b=___________. 17.甲、乙两人共同解方程组51542+=⎧⎨-=-⎩ax y x by ,由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=⎩,乙看错了方程②中的b ,得到方程组的解为54x y =⎧⎨=⎩,则a 2020+(10b )2021=________. 18.已知方程组32223x y m x y m+=+⎧⎨+=⎩的解适合8x y +=,则m =_______.19.若方程组1122a x y c a x y c +=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,则方程组111222a x y a c a x y a c +=-⎧⎨+=-⎩的解是x =_____,y =_____.20.已知方程组5257x y mx y -=⎧⎨+=⎩中,x ,y 的值相等,则m=________.21.已知,方程12230a b x y -+-+=是关于,x y 的二元一次方程,则a b +=________.三、解答题22.数学课上李老师说:咱们一起来玩儿一个找原点的游戏吧!11 5 ②在图1中标出原点O 的位置;(2)图2是小慧所画的数轴,数轴上标出的点中任意相邻两点间的距离都相等. 根据小慧提供的信息,标出隐藏的原点O 的位置,写出此时点C 所表示的数是____________;(3)如图3,数轴上标出若干个点,其中点A ,B ,C ,D 所表示的数分别为a ,b ,c ,d . ①用a ,c 表示线段AC 的长为____________;②如果数轴上标出的若干个点中每相邻两点相距1个单位(如1BC =),且210d a -=.判断此时数轴上的原点是A ,B ,C ,D 中的哪一点,并说明理由.23.今年11月份,某商场用22200元购进长虹取暖器和格力取暖器共400台,已知长虹取暖器每台进价为50元,售价为70元,格力取暖器每台进价为60元,售价为90元. (1)求11月份两种取暖器各购进多少台?(2)在将11月份购买的两种取暖器从厂家运往商场的过程中,长虹取暖器出现13的损坏(损坏后的产品只能为废品,不能再进行销售),而格力取暖器完好无损,商场决定对这两种取暖器的售价进行调整,使这次购进的取暖器全部售完后,商场可获利35%,已知格力取暖器在原售价基础上提高5%,问长虹取暖器调整后的每台售价比原售价多多少元? (3)今年重庆的天气比往年寒冷了许多,进入12月份,格力取暖器的需求量增大,商场在筹备“双十二”促销活动时,决定去甲、乙两个生产厂家都只购进格力取暖器,甲、乙生产厂家给出了不同的优惠措施:甲生产厂家:格力取暖器出厂价为每台60元,折扣数如下表所示:一次性购买的数量不超过150台的部分超过150台的部分乙生产厂家:格力取暖器出厂价为每台50元,当出厂总金额达一定数量后还可按下表返现金.已知该商场在甲生产厂家购买格力取暖器共支付8610元,在乙生产厂家购买格力取暖器共支付9700元,若将在两个生产厂家购买格力取暖器的总量改由在乙生产厂家一次性购买,则商场可节约多少元?24.今年“五一”小长假期间,某市外来与外出旅游总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市去年外来和外出旅游的人数.25.解方程组:(1)379x yx y+=⎧⎨=-⎩;(2)5217 345x yx y-=⎧⎨+=⎩.1.若方程组a 2b 43a 2b 8+=⎧⎨+=⎩,则a+b 等于( )A .3B .4C .2D .12.如图,周长为78cm 的长方形团由10个形状大小完全相同的小长方形拼成,其汇总一个小长方形的面积为( )A .232cmB .235cmC .236cmD .240cm3.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( )A .31t -= .B .33t -=C .93t =D .91t =4.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112l B .116l C .516l D .118l 5.解方程组229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩得x 等于( )A .18B .11C .10D .9631A .224x y x y -=⎧⎨+=⎩B .253x y x y -=⎧⎨+=⎩C .32x y x y +=⎧⎨-=⎩D .2536x y x y -=⎧⎨+=⎩7.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y -=-8.由方程组223224x y m x y m -=+⎧⎨+=+⎩可得x 与y 的关系式是( )A .3x =7+3mB .5x ﹣2y =10C .﹣3x+6y =2D .3x ﹣6y =29.下列方程中,是二元一次方程的是( ). A .324x y z -=B .690+=xC .42x y =-D .123y x+= 10.已知关于x 、y 方程组734521x y x y m +=⎧⎨-=-⎩的解能使等式4x ﹣3y =7成立,则m 的值为( )A .8B .0C .4D .﹣211.小明4天里阅读的总页数比小颖5天里阅读的总页数多8页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页.若小明、小颖平均每天分别阅读x 页、y 页,则下列方程组正确的是( ) A .485210x yy x -=⎧⎨=-⎩B .485210x yy x +=⎧⎨=+⎩C .458210x y y x =-⎧⎨=-⎩D .458210x y y x =+⎧⎨=+⎩二、填空题12.已知x ,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x +y 的值为__.13.一天,小明从家出发匀速步行去学校上学,几分钟后,在家休假的爸爸发现小明忘带数学作业,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路回家(爸爸追上小明时交流时间忽略不计).小明拿到书后立即提速14赶往学校,并在从家出发后23分钟到校,两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为______米.14.若2a m b 2m +3n 与a 2n ﹣3b 8的和仍是一个单项式,则m =_____n =_____.15.对x ,y 定义一种新运算“※”,规定:x y mx ny =+※(其中m ,n 均为非零常数),若3213,218==※※.则12※的值是_______16.已知方程组2221x y x y +=⎧⎨+=⎩,那么x y +=_________.17.设()554325432031x a x a x a x a x a -=++++,则035a a a ++的值为______________ 18.单项式-x 2m-n y 3与单项式3m+n2x y 3可以合并,则多项式4m-2n+(-m-n )2-2(n-2m )2的值是______.19.某风景区有4个相同的出口、4个相同的入口,假设在任何情况下每个入口的人数均是匀速出入,每个出口的人数均是匀速出入,当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数.受疫情影响,2020年五一期间,该风景区游览人数只允许达到平时可容纳人数的60%,当风景区人数已达到平时可容纳人数的10%时,若同时开放3个入口和2个出口,则经过__________小时刚好达到平时可容纳人数的60%. 20.130+-++=x y y ,则x y -=________.21.若2|327|(521)0a b a b +++-+=,则a b +=______.三、解答题22.解方程组.(1)32923x y x y -=⎧⎨+=⎩;(2)1343(1)41x y x y ⎧-=⎪⎨⎪-=-⎩.23 (1)()3223553x y ⎨+=-⎪⎩.(2)132321x yx y ⎧-=-⎪⎨⎪-=⎩.24.甲、乙两人同时解方程组1542ax by x by +=⎧⎨=-⎩①②时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,解得54x y =⎧⎨=⎩.求原方程组的正确解.25.把y ax b =+(其中a 、b 是常数,x 、y 是未知数)这样的方程称为“雅系二元一次方程”当y x =时,“雅系二元一次方程y ax b =+”中x 的值称为“雅系二元一次方程”的“完美值”.例如:当y x =时,雅系二元一次方程”34y x =-化为34x x =-,其“完美值”为2x =. (1)求“雅系二元一次方程”56y x =-+的“完美值”;(2)3x =是“雅系二元一次方程”3y x m =+的“完美值”,求m 的值;(3)“雅系二元一次方程”1y kx =+(0k ≠,k 是常数)存在“完美值”吗?若存在,请求出其“完美值”,若不存在,请说明理由.1.下列是二元一次方程组的是()A.21342y xx z=+⎧⎨-=⎩B.56321x xyx y-=⎧⎨+=⎩C.73232x yy x⎧-=⎪⎪⎨⎪=⎪⎩D.32x yxy+=⎧⎨=⎩2.若关于x,y的二元一次方程组432x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2310x y+=的解,则x y-的值为()A.2B.10C.2-D.43.有若干只鸡和兔关在一个笼子里,从上面数,有30个头,从下面数,有84条腿﹐问笼中各有几只鸡和兔?若设笼中有x只鸡,y只兔,则列出的方程组为()A.30284x yx y+=⎧⎨+=⎩B.302484x yx y+=⎧⎨+=⎩C.304284x yx y+=⎧⎨+=⎩D.30284x yx y+=⎧⎨+=⎩4.已知关于x,y的方程组232x y ax y a-=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②2xy=⎧⎨=⎩是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③5.已知关于,x y的方程组2106x ynx my+=⎧⎨+=⎩和10312mx y nx y-=⎧⎨-=⎩有公共解,则m n-的值为()A.1B.1-C.2D.2-6.方程组2824x yx y⎧+=⎪⎨+=⎪⎩的解的个数为()A.1 B.2 C.3 D.47.某校体育器材室有篮球和足球共66个,其中篮球比足球的2倍多3个,设篮球有x个,足球有y个,根据题意可得方程组()A.x y66x2y3+=⎧⎨=-⎩B.x y66x2y3+=⎧⎨=+⎩66 3 66 38.已知 xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则 x :y :z 等于( ) A .3:2:1B .1:2:3C .4:5:3D .3:4:5 9.由方程组223224x y m x y m -=+⎧⎨+=+⎩可得x 与y 的关系式是( ) A .3x =7+3m B .5x ﹣2y =10 C .﹣3x+6y =2 D .3x ﹣6y =2 10.如图,由33⨯组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行(横)、每一列(竖)以及每一条对角线(斜)上的三个代数式的和均相等,则方格中“a ”的数是( )A .6B .7C .8D .9 11.已知21x y =-⎧⎨=⎩是方程25mx y +=的解,则m 的值是( ) A .32- B .32 C .2- D .2二、填空题 12.已知关于x ,y 的方程组35223x y m x y m +=+⎧⎨+=⎩,给出下列结论:①34x y =⎧⎨=-⎩是方程组的解;②2m =时,x ,y 的值互为相反数;③无论m 的x ,y 都满足的关系式22x y +=;④x ,y 的都为自然数的解有2对,其中正确的为__________.(填正确的序号)13.写出方程35x y -=的一组解_________.14.如图,已知∠AOE =100°,∠DOF =80°,OE 平分∠DOC ,OF 平分∠AOC ,求∠EOF 的度数.15.如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,已知()8,5B -,则点A 的坐标为__________.16.已知37m m n x y +-与653x y 是同类项,则m n -=_______.17.若1m ,2m ,…,是从0,1-,2这三个数中取值的一列数,若1232020...700m m m m ++++=,()()()22212202011...13520m m m -+-++-=,则1m ,2m ,…,2020m 中为2的个数是______.18.已知方程组 2629x y x y +=⎧⎨+=⎩,则x-y=_________. 19.若点(2,2)A m n m n ++在y 轴的负半轴上,且点A 到x 轴的距离为6,则m n +=___________.20.为了节省空间,家里的饭碗一般是竖直摆放的,如果4只饭碗(形状、大小相同)竖直摆放的高度为11,8cm 只饭碗竖直摆放的高度为17cm .如图所示,小颖家的碗橱每格的高度为3521.我们称使方程2323x y x y ++=+成立的一对数x ,y 为“相伴数对”,记为(),x y . (1)若()6,y 是“相伴数对”,则y 的值为______;(2)若(),a b 是“相伴数对”,请用含a 的代数式表示b =______.三、解答题22.若在一个两位正整数A 的个位数与十位数字之间添上数字6,组成一个新的三位数,我们称这个三位数为A 的“至善数”,如13的“至善数”为163;若将一个两位正整数B 加6后得到一个新数,我们称这个新数为B 的“明德数”,如13的“明德数”为19.(1)38的“至善数”是______,“明德数”是______(2)若一个两位正整数M 的“明德数”的各位数字之和是M 的“至善数”各位数字之和的一半,求出满足条件的所有两位正整数M 的值.23.2019年12月3日,140余件从明末清初延续至民国时期的民间晋绣在山西省太原美术馆展出,这是山西首次将这一传承百年的工艺品进行系统梳理.某校组织学生前去参观,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,其余客车恰好坐满.问这批学生的人数是多少?原计划租用45座客车多少辆? 24.放学后,小贤和小艺来到学校附近的地摊上购买一种签字笔和卡通笔记本,这种签字笔每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支签字笔、2本笔记本需花12元,小艺要买6支签字笔、1本笔记本需花费15元.(1)求笔记本的单价和单独购买一支签字笔的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,小贤还剩2元钱,小艺还剩1元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.25.某班举行数学知识竞赛,下面是班长安排小明购买奖品后的对话情景小明:买了两种不同的笔记本共40本,单价分别是5元和8元,我从你处领了300元,现在找回68元班长:你肯定搞错了13(1)根据上述信息,求两种笔记本各买了多少本?(2)请你解释,小明为什么不可能找回68元?。

银川二中七年级数学下册第八章【二元一次方程组】经典练习(含答案解析)

银川二中七年级数学下册第八章【二元一次方程组】经典练习(含答案解析)

1.如果2x3n y m+4与-3x9y2n是同类项,那么m、n的值分别为()A.m=-2,n=3 B.m=2,n=3 C.m=-3,n=2 D.m=3,n=22.已知下列各式:①12+=yx;②2x﹣3y=5;③xy=2;④x+y=z﹣1;⑤12123x x+-=,其中为二元一次方程的个数是()A.1 B.2 C.3 D.43.已知代数式x a﹣b y2与xy2a+b是同类项,则a与b的值分别是()A.a=0,b=1 B.a=2,b=1 C.a=1,b=0 D.a=0,b=24.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种5.如图,长方形ABCD被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD的周长为l,若图中3个正方形和2个长方形的周长之和为94l,则标号为①正方形的边长为()A.112l B.116l C.516l D.118l6.由方程组71x my m+⎧⎨-⎩==可得出x与y的关系式是()A.x+y=8 B.x+y=1 C.x+y=-1 D.x+y=-87.已知:关于x、y的方程组2423x y ax y a+=-+⎧⎨+=-⎩,则x-y的值为( )A.-1 B.a-1 C.0 D.18.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A .280B .140C .70D .1969.小明去商店购买A B 、两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( ) A .5种 B .4种 C .3种 D .2种10.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x y x y +⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是( )A .2114327x y x y +=⎧⎨+=⎩B .21437x y x y +=⎧⎨+=⎩C .2274311x y x y +=⎧⎨+=⎩D .2114327y x y x +=⎧⎨+=⎩ 11.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( )A .452710320x y x y +=⎧⎨-=⎩B .452710320x y x y -=⎧⎨+=⎩C .452710320x y x y +=⎧⎨+=⎩D .427510203x y x y -=⎧⎨-=⎩二、填空题12.已知关于x ,y 的方程组35223x y m x y m +=+⎧⎨+=⎩,给出下列结论:①34x y =⎧⎨=-⎩是方程组的解;②2m =时,x ,y 的值互为相反数;③无论m 的x ,y 都满足的关系式22x y +=;④x ,y 的都为自然数的解有2对,其中正确的为__________.(填正确的序号)13.已知关于x 的方程a(x-3)+b(3x+1)=5(x+1)有无穷多个解,则a+b=______________. 14.如图,用大小、形状完全相同的长方形纸片在平面直角坐标系中摆成如图所示的图案,15.由于2020年新冠疫情影响,全国经济严重滑坡,为了促进经济发展,全国多地放宽摆摊政策,小华的爸爸积极响应国家的政策,在步行街摆摊经营学生学习用品,主要销售甲,乙,丙,丁四种用品,其中甲,乙两种用品的定价一样,丁的定价是丙定价的6倍.四种用品的定价均为整数.10月1日四种用品均按各自的定价销售,甲,丙用品的销售件数相同,乙的销售件数是丁的6倍,甲,乙的总销售额比丙,丁的总销售额多816元.10月2日,由于用品丁库存较多,按定价的八折销售,其余用品售价不变,乙的销量较10月1日下降了20%,其余用品销量不变,小华的爸爸为了考考小华,没有告诉小华确切的售价和数量,只是说:甲,丙的单价之差低于17元,不少于10元,乙,丁的单价之和不超过32元,10月1日、2日两天甲的销量不少于20件,不多于40件.请你帮小华算算10月2日甲,乙,丙,丁,四种用品的销售额最多_____元.16.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_______. 17.如图,在两个形状、大小完全相同的大长方形内放入四个如图③的小长方形后得到如图①、②,已知大长方形的长为m ,则(1)若记小长方形的长为a ,宽为()b a b >,则a 和b 之间的数量关系是_________;(2)图①中阴影部分的周长与图②中阴影部分的周长的和是________(结果用含m 的代数式表示).18.甲、乙二人分别从A 、B 两地同时出发,匀速沿同一平直公路相向而行.甲骑的共享2.50.52019.商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是_______cm .20.130+-++=x y y ,则x y -=________.21.若x a y b =⎧⎨=⎩是方程x ﹣2y=0的解,则3a ﹣6b ﹣3=_____. 三、解答题22.某水果店有甲,乙两种水果,它们的单价分别为a 元/千克,b 元/千克.若购买甲种水果5千克,乙种水果2千克,共花费25元,购买甲种水果3千克,乙种水果4千克,共花费29元.(1)求a 和b 的值;(2)甲种水果涨价m 元/千克(02)m <<,乙种水果单价不变,小明花了45元购买了两种水果10千克,那么购买甲种水果多少千克?(用含m 的代数式表示).23.解方程组:(1)25342x y x y -=⎧⎨+=⎩(2)21223x y x y -=⎧⎪⎨+=⎪⎩. 24.若方程12225m n m n x y --+-+=是二元一次方程,求m ,n 的值.25.学校为了提高绿化品位,美化环境,准备将一块周长为76m 的长方形草地,设计分成长和宽分别相等的9块小长方形,(放置位置如图所示),种上各种花卉.经市场预测,绿化每平方米造价约为108元.(1)求出每一个小长方形的长和宽.(2)请计算完成这项绿化工程预计投入资金多少元?1.对于任意实数,规定新运算:x y ax by xy =+-※,其中a 、b 是常数,等式右边是通常的加减乘除运算.已知211=※,()322-=-※,则a b ※的值为( )A .3B .4C .6D .72.已知2x 2y 3a 与﹣4x 2a y 1+b 是同类项,则a b 的值为( )A .1B .﹣1C .2D .﹣23.如图,天平上放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的( )A .23倍 B .32倍 C .2倍 D .3倍 4.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有若干张正方形和若干张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则库存中正方形纸板与长方形纸板之和的值可能是( )A .2018B .2019C .2020D .20215.为了研究吸烟是否对肺癌有影响,某研究所随机地抽查了1000人.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这1000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( )A .2210002.5%0.5%x y x y -=⎧⎪⎨+=⎪⎩B .1000222.5%0.5%x y x y +=⎧⎪⎨-=⎪⎩100022100022 6.若关于x y ,的二元一次方程组232320x y k x y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( )A .34-B .34C .43D .43- 7.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为( )A .19分B .20分C .21分D .22分8.由方程组223224x y m x y m -=+⎧⎨+=+⎩可得x 与y 的关系式是( ) A .3x =7+3m B .5x ﹣2y =10 C .﹣3x+6y =2 D .3x ﹣6y =29.二元一次方程组425x y x y +=⎧⎨-=⎩的解为( ) A .13x y =⎧⎨=⎩ B .22x y =⎧⎨=⎩ C .31x y =⎧⎨=⎩ D .40x y =⎧⎨=⎩10.下列四组值中,不是二元一次方程21x y -=的解的是( )A .11x y =-⎧⎨=-⎩B .00.5x y =⎧⎨=-⎩C .10=⎧⎨=⎩x yD .11x y =⎧⎨=⎩11.下列方程是二元一次方程的是( ).A .32x y -=B .1xy =C .2+3=x xD .153x y-= 二、填空题12.金秋十月,丹桂飘香,重庆市綦江区某中学举行了创新科技大赛,该校初二年级某班共有18人报名参加航海组、航空组和无人机组三个项目组的比赛(每人限参加一项),其中航35923人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6939元,则其中购买无人机模型的费用是_______.13.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,这时甲、乙两筐苹果的质量相等,则原来乙筐的苹果质量是甲筐的__________ % .14.二元一次方程组31x y x y +=⎧⎨-=-⎩的解是__________ . 15.已知343435x y m x y m+=⎧⎨+=⎩的解满足1627+=x y ,则m=_________. 16.若1m ,2m ,…,是从0,1-,2这三个数中取值的一列数,若1232020...700m m m m ++++=,()()()22212202011...13520m m m -+-++-=,则1m ,2m ,…,2020m 中为2的个数是______.17.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_______. 18.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为46x y =⎧⎨=⎩,则方程组111222435435a x b y c a x b y c +=⎧⎨+=⎩的解为______.19.若方程组18mx ny nx my -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则m=________,n=________. 20.商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是_______cm .21.若2|327|(521)0a b a b +++-+=,则a b +=______.三、解答题22李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们八年级师生上个星期在这个客运公司租了4辆60座和2辆45座的客车到滁州市琅琊山,一天的租金共计5600元.”小明:“我们七年级师生租用2辆60座和5辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,七年级师生到该公司租车一天,共需租金多少元?(3)小芳听了小明的话后,说:“你们七年级还有更合算的租车方案.”请直接写出这个租车方案:______.23.解方程:(1)代入法:23 328 y xx y=-⎧⎨+=⎩(2)加减法:25 324 x yx y-=⎧⎨+=⎩24.甲、乙两人同时解方程组1542ax byx by+=⎧⎨=-⎩①②时,甲看错了方程①中的a,解得31xy=-⎧⎨=-⎩,乙看错了②中的b,解得54xy=⎧⎨=⎩.求原方程组的正确解.25.近几年大部分家庭流行用不锈钢钢管做防盗窗,小芳家的防盗窗按设计要求,需要长为0.8米的钢管100根,及长为2.5米的钢管32根,两种长度的钢管粗细必须相同;并要求这些用料不能是焊接而成的,经市场调查,钢材市场中符合这种规格的钢管每根长均为6米.(1)将一根长为6米的钢管进行裁剪(余料作废),有下面几种方法,请完成填空:方法①:只裁长为0.8米的钢管时,最多可裁________根.方法②:先裁下1根2.5米长的钢管,余下部分最多能裁0.8米长的钢管____根.方法③:先裁下2根2.5米长的钢管,余下部分最多能裁0.8米长的钢管________根.(2)用(1)中的三种方法里面的两种进行结合来裁剪6米长的钢管,在尽量减少用料的情况下,如何裁剪才能得到所需要的相应数量的材料?1.如图,天平上放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的( )A .23倍 B .32倍 C .2倍 D .3倍 2.甲、乙两人分别从相距40km 的两地同时出发,若同向而行,则5h 后,快者追上慢者;若相向而行,则2h 后,两人相遇,那么快者速度和慢者速度(单位:km/h)分别是( ) A .14和6 B .24和16 C .28和12 D .30和13.若a 为方程250x x +-=的解,则22015a a ++的值为( )A .2010B .2020C .2025D .20194.解为12x y =⎧⎨=⎩的方程组是( ) A .135x y x y -=⎧⎨+=⎩ B .135x y x y -=-⎧⎨+=-⎩ C .331x y x y -=⎧⎨-=⎩ D .2335x y x y -=-⎧⎨+=⎩ 5.已知关于,x y 的方程组2106x y nx my +=⎧⎨+=⎩和10312mx y n x y -=⎧⎨-=⎩有公共解,则m n -的值为( ) A .1 B .1- C .2 D .2-6.下列各方程中,是二元一次方程的是( )A .253x y x y -=+B .x+y=1C .2115x y =+D .3x+1=2xy7.古代一歌谣:栖树一群鸦,鸦树不知数:三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.请你动脑筋,鸦树各几何?若设乌鸦有x 只,树有y 棵,由题意可列方程组( ) A .3551y x y x +=⎧⎨-=⎩ B .3551y x y x -=⎧⎨=-⎩15355y x ⎪=-⎩5315x y ⎪=-⎪⎩ 8.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为( )A .19分B .20分C .21分D .22分9.下列方程中,是二元一次方程的是( ).A .324x y z -=B .690+=xC .42x y =-D .123y x+= 10.小明4天里阅读的总页数比小颖5天里阅读的总页数多8页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页.若小明、小颖平均每天分别阅读x 页、y 页,则下列方程组正确的是( )A .485210x y y x -=⎧⎨=-⎩B .485210x y y x +=⎧⎨=+⎩C .458210x y y x =-⎧⎨=-⎩D .458210x y y x =+⎧⎨=+⎩11.如图,由33⨯组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行(横)、每一列(竖)以及每一条对角线(斜)上的三个代数式的和均相等,则方格中“a ”的数是( ) y a2y 4x -92x - 11 A .6 B .7 C .8 D .9二、填空题12.渝北区某学校将开启“阅读节”活动,为了充实学校书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去7690元;语文组购买了A 、B 两种文学书籍若干本,用去8330元,已知A 、B 两种书的数量分别与甲、乙两种书的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同,若甲种书的单价比乙种书的8132kg收费;超过2kg不足3kg按照3kg收费,以此类推.某产家分别寄快递到重庆市内和北京,其中,寄往重庆市内的起步价为a元,超过部分b元/kg;寄往北京的起步价为()7a+元,超过部分()4b+元/kg.已知一个寄往重庆市内的快件,质量为2kg,收费13元;一个寄往北京的快件,质量为4.5kg,收费42元.如果一个寄往北京的快件,质量为2.8kg,应收费______元.14.如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,已知()8,5B-,则点A的坐标为__________.15.已知关于x、y的方程组2326324x y kx y k+=+⎧⎨+=+⎩的解满足2x y+=,则k的值为__.16.据人口抽样调查,2019年末太原市常住人口446.19万人,比上年末增加4.04万人.其中城镇人口比上年增加1.36%,乡村人口比上年减少1.57%.若设2018年末太原市常住人口中城镇人口有x万人,乡村人口有y万人,则根据题意列出的方程组为_____________ 17.“百鸡问题”译文:公鸡每只值五文钱,母鸡每只值三文钱,小鸡每三只值一文钱,现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?21826m n +=___________.19.我们称使方程2323x y x y ++=+成立的一对数x ,y 为“相伴数对”,记为(),x y . (1)若()6,y 是“相伴数对”,则y 的值为______;(2)若(),a b 是“相伴数对”,请用含a 的代数式表示b =______.20.商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是_______cm .21.2017年复兴号的成功研制生产,标志着我国高速动车组走在了世界先进前列.2019年全世界最长的高速动车组复兴号CR 400A ﹣B 正式运营,全长约440米,如图,将笔直轨道看成1个单位长度为1米的数轴,CR 400A ﹣B 停站时首尾对应的数分别为a ,b ,向右行驶一段距离后,首尾对应的数分别为c ,d ,若c ﹣d =2(|a |﹣|b |),则b 的值为__. 三、解答题22.解方程组:(1)421x y y x +=⎧⎨=+⎩; (2)4311213x y x y -=⎧⎨+=⎩23.解下列方程组:(1) 137x y x y +=⎧⎨-=⎩ (2)23151475x y x y +=⎧⎪++⎨=⎪⎩ 24.若x ,y 2235(2313)0x y x y -++-=,求2x y -的值.25.列二元一次方程组解应用题:某大型超市投入15000元资金购进A 、B 两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:12600。

七年级下册数学试题及答案

七年级下册数学试题及答案

火车站李庄一、选择题: 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <22.下列各式中,正确的是( ) A.16=±4 B.±16=4 C.327-=-3 D.2(4)-=-43.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx a x4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40°(C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000 B .1100 C .1150 D .1200PC B A小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2 B .12 c m 2 C .15 cm 2 D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题11.49的平方根是________,算术平方根是______,-8的立方根是_____.12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. C A 1 A B B 1 C D15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______. 17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上)18.若│x 2-25│则x=_______,y=_______. 三、解答题: 19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来. 20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩ 21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

(人教版)福州七年级数学下册第六单元《实数》经典练习(含答案解析)

(人教版)福州七年级数学下册第六单元《实数》经典练习(含答案解析)

一、选择题1.27(7)0y z ++-=,则x y z -+的平方根为( )A .±2B .4C .2D .±4D 解析:D【分析】根据绝对值,平方,二次根式的非负性求出x ,y ,z ,算出代数式的值计算即可;【详解】∵27(7)0y z ++-=,∴207070x y z -=⎧⎪+=⎨⎪-=⎩,解得277x y z =⎧⎪=-⎨⎪=⎩,∴()27716x y z -+=--+=,∴4=±;故选:D .【点睛】本题主要考查了平方根的求解,结合绝对值、二次根式的非负性计算是解题的关键. 2.下列说法中错误的有( )①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±7=±.A .0个B .1个C .2个D .3个D解析:D【分析】利用实数和数轴的关系,算术平方根,立方根及平方根定义判断即可.【详解】①实数和数轴上的点是一一对应的,正确;②负数有立方根,错误;③算术平方根和立方根均等于其本身的数有0和1,错误;④49的平方根是7±7=,错误.综上,错误的个数有3个.故选:D .本题考查了实数和数轴,平方根,算术平方根及立方根,熟练掌握各自的定义是解本题的关键.3.下列说法正确的是( )A .2-是4-的平方根B .2是()22-的算术平方根C .()22-的平方根是2D .8的平方根是4B 解析:B【分析】根据平方根、算术平方根,即可解答.【详解】A 选项:4-没有平方根,故A 错误;B 选项:()224-=,4的算术平方根为2,故B 正确;C 选项:()224-=,4的平方根为2±,故C 错误;D 选项:8的平方根为±,故D 错误故选B .【点睛】本题考查了平方根、算术平方根,解决本题的关键是熟记平方根、算术平方根的概念.4.0215中,是无理数的是( )A B .0 C D .215A 解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】,0215, 故选:A .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.在0.010010001,3.14,π,1.51,27中无理数的个数是( ). A .5个B .4个C .3D .2个D解析:D【分析】 根据无理数的概念解题,找出无理数的个数即可,无限不循环小数称为无理数;在0.010010001,3.14,π,1.51,27中无理数有π共2个, 故选D .【点睛】本题考查了无理数的概念,正确掌握无理数的概念是解题的关键;6.81的平方根是( )A .9B .-9C .9和9-D .81C 解析:C【分析】根据平方根的定义即可求出答案.【详解】解:2(9)81±=, 81的平方根是9±.故选:C【点睛】本题考查平方根的定义,解题的关键是正确理解平方根的定义,本题属于基础题型.7.下列实数31,7π-,3.14,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( )A .5个B .4个C .3个D .2个C 解析:C【分析】根据无理数的定义、算术平方根与立方根逐个判断即可得.【详解】31 4.4285717=小数点后的428571是无限循环的,属于有理数,3=-属于有理数,=则无理数为π-⋯,共有3个,故选:C .【点睛】本题考查了无理数、算术平方根与立方根,熟记各定义是解题关键.8.下列实数中,属于无理数的是( )A .3.14B .227CD .πD解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误;C =2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.和数轴上的点一一对应的数是( )A .自然数B .有理数C .无理数D .实数D解析:D【分析】根据实数与数轴上的点是一一对应关系,即可得出.【详解】解:根据实数与数轴上的点是一一对应关系.故选:D .【点睛】本题考查了实数与数轴的对应关系,任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.10 )A .8B .8-C .D .± D 解析:D【分析】8=,再根据平方根的定义,即可解答.【详解】8=,8的平方根是±故选:D .【点睛】8=. 二、填空题11.已知一个正数的平方根是3a +和215a -.(1)求这个正数.(2)求12a +的平方根和立方根.(1)441或49;(2)或【分析】(1)分情况讨论这两个平方根相等或互为相反数求出a 的值在算出这个正数;(2)由(1)的结果分情况讨论根据平方根和立方根的定义算出结果【详解】解:(1)若这两个平方解析:(1)441或49;(2)30±,330或2±,34 【分析】(1)分情况讨论,这两个平方根相等或互为相反数,求出a 的值,在算出这个正数; (2)由(1)的结果分情况讨论,根据平方根和立方根的定义算出结果.【详解】解:(1)若这两个平方根相等,则3215a a +=-,解得18a =,这个正数是:()2218321441+==;若这两个平方根互为相反数,则32150a a ++-=,解得4a =,这个正数是:()2243749+==;(2)若18a =,则1230a +=,30的平方根是30±,立方根是330;若4a =,则12164a +==,4的平方根是2±,立方根是34.【点睛】本题考查平方根和立方根,解题的关键是掌握平方根和立方根的定义以及计算方法. 12.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-的点,并比较它们的大小.(1);(2)①见解析;②见解析【分析】(1)设正方形边长为a 根据正方形面积公式结合平方根的运算求出a 值则知结果;(2)①根据面积相等利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正 解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.13.计算:(1.(2)()23540.255(4)8⨯--⨯⨯-.(1)6;(2)【分析】(1)首先计算算术平方根立方根然后进行加减计算即可;(2)首先计算乘方乘法最后进行加减计算即可【详解】解:(1)=4-(-2)=6(2)===【点睛】本题考查了实数的混合运算 解析:(1)6;(2)70.【分析】(1)首先计算算术平方根、立方根,然后进行加减计算即可;(2)首先计算乘方、乘法,最后进行加减计算即可.【详解】解:(1=4-(-2)=6.(2)()23540.255(4)8⨯--⨯⨯- =()()5160.255648⨯--⨯⨯-=1080-+=70.【点睛】 本题考查了实数的混合运算,正确理解算术平方根、立方根性质及乘方法则,确定运算顺序是关键.14.计算:(1)225--(2)1+(1)-4;(2)1【分析】(1)根据乘方开方绝对值的意义化简再计算即可;(2)先根据绝对值的意义脱去绝对值再计算即可求解【详解】解:(1)=-4+6-1-5=-4;(2)=-1+2=1【点睛】本题解析:(1)-4;(2)1.【分析】(1)根据乘方、开方、绝对值的意义化简,再计算即可;(2)先根据绝对值的意义脱去绝对值,再计算即可求解.【详解】解:(1)225--=-4+6-1-5=-4;(2)1)1=++1=+1=-+=-1+2=1.【点睛】本题考查了实数的性质与运算,熟知实数的运算法则和性质是解题关键.15.()220y -=,则xy =_________.-1【分析】由非负数的性质可知x=-y=2然后求得xy 的值即可【详解】解:∵|+(y-2)2=0∴2x+1=0y-2=0∴x=-y=2∴xy=-×2=-1故答案为:-1【点睛】本题考查了非负数的性质解析:-1【分析】由非负数的性质可知x=-12,y=2,然后求得xy 的值即可. 【详解】解:∵(y-2)2=0,∴2x+1=0,y-2=0, ∴x=-12,y=2. ∴xy=-12×2=-1. 故答案为:-1.【点睛】本题考查了非负数的性质,掌握非负数的性质是解题的关键.16.若2x =,29y =,且0xy <,则x y -等于______.5或-5【分析】先由绝对值和平方根的定义求得xy 的值然后根据xy <0分类计算即可;【详解】∵∴∵xy <0∴当x=2y=-3时x-y=2+3=5当x=-2y=3时x-y=-2-3=-5故答案为:5或- 解析:5或-5【分析】先由绝对值和平方根的定义求得x 、y 的值,然后根据xy <0分类计算即可;【详解】∵ 2x =,29y =,∴ 2x =±,3=±y ,∵ xy <0,∴ 当x=2,y=-3时,x-y=2+3=5,当x=-2,y=3时,x-y=-2-3=-5,故答案为:5或-5【点睛】本题主要考查了平方根的定义、绝对值、有理数的减法,正确掌握知识点是解题的关键; 17.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.(1)3;;(2)21;;(3)23;(4)【分析】(1)先找到可找到即可找出的整数部分与小数部分(2)根据因为即可找出的整数部分与小数部分(3)找到在哪两个整数之间再加10即可(4)先确定找到由是解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<,∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=, ∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.18.定义运算“@”的运算法则为:,则2@6 =____.4【分析】把x=2y=6代入x@y=中计算即可【详解】解:∵x@y=∴2@6==4故答案为4【点睛】本题考查了有理数的运算能力注意能由代数式转化成有理数计算的式子解析:4【分析】把x=2,y=6代入中计算即可.【详解】解:∵, ∴=,故答案为4.【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子.19.比较大小:12___________12<【分析】利用作差法比较两个数的大小【详解】解:∵1<3<4∴1<<2∴1-1<-1<2-1∴0<-1<1∴<故答案为:<【点睛】本题考查了实数的大小比较此题的难点是利用夹逼法推知的取值范围 解析:<【分析】利用作差法比较两个数的大小.【详解】解:∵1<3<4∴1<2∴1-1<2-1∴0<1∴12<12.故答案为:<.【点睛】本题考查了实数的大小比较,此题的难点是利用“夹逼法”20.已知1a-的平方根是2±,则a的值为_______.5【分析】根据平方根的定义求解即可【详解】的平方根是a-1=4a=5故答案为:5【点睛】此题考查了平方根的定义一个整数的平方根有两个它们互为相反数解析:5【分析】根据平方根的定义求解即可.【详解】1a-的平方根是2±,∴a-1=4,∴a=5.故答案为:5【点睛】此题考查了平方根的定义,一个整数的平方根有两个,它们互为相反数.三、解答题21.一个四位正整数的千位、百位、十位、个位上的数字分别为a,b,c,d,如果a b c d≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.解析:(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解;(2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解.【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.22.求下列各式中的x :(1)29(1)25x -=(2)3548x +=解析:(1)x=83或x=-23;(2)x =32-. 【分析】 (1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【详解】解:(1)∵9(x-1)2=25∴x-1=±53, 即x-1=53或x-1=-53, 解得x=83或x=-23; (2)3548x += 3548x =- 3278x =-x =32-. 【点睛】本题主要考查了求一个数的平方根与立方根,熟记定义是解答本题的关键.23.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.24.已知一个正数的平方根是3a +和215a -.(1)求这个正数.(2的平方根和立方根.解析:(1)441或49;(2)2± 【分析】(1)分情况讨论,这两个平方根相等或互为相反数,求出a 的值,在算出这个正数; (2)由(1)的结果分情况讨论,根据平方根和立方根的定义算出结果.【详解】解:(1)若这两个平方根相等,则3215a a +=-,解得18a =,这个正数是:()2218321441+==;若这两个平方根互为相反数,则32150a a ++-=,解得4a =,这个正数是:()2243749+==;(2)若18a ==若4a =4==,4的平方根是2±.【点睛】本题考查平方根和立方根,解题的关键是掌握平方根和立方根的定义以及计算方法.25.1-+.解析:1【分析】先根据开方的意义,绝对值的意义进行化简,最后计算即可求解.【详解】解:原式123122=-+++⨯1=+ 【点睛】本题考查了实数的混合运算,理解开方的意义,能正确去绝对值是解题关键. 26.已知一个正数m 的平方根为2n +1和4﹣3n .(1)求m 的值;(2)|a ﹣3|(c ﹣n )2=0,a +b +c 的立方根是多少?解析:(1)m =121;(2)a +b +c 的立方根是2【分析】(1)由正数的平方根互为相反数,可得2n +1+4﹣3n =0,可求n =5,即可求m ; (2)由已知可得a =3,b =0,c =n =5,则可求解.【详解】解:(1)正数m 的平方根互为相反数,∴2n +1+4﹣3n =0,∴n =5,∴2n +1=11,∴m =121;(2)∵|a ﹣3|(c ﹣n )2=0,∴a =3,b =0,c =n =5,∴a +b +c =3+0+5=8,∴a +b +c 的立方根是2.【点睛】本题考查平方根的性质;熟练掌握正数的平方根的特点,绝对值和偶次方根数的性质是解题的关键.27.观察下列各式:322111124==⨯⨯,33221129234+==⨯⨯,33322112336344++==⨯⨯,33332211234100454+++==⨯⨯;… 回答下面的问题:(1)猜想:33333123(1)n n ++++-+=_________;(直接写出你的结果)(2)根据(1)中的结论,直接写出13+23+33+......+93+103的值是_________; (3)计算:213+223+233+......+293+303的值.解析:(1)221(1)4n n ⨯⨯+;(2)3025;(3)172125【分析】(1)根据题中所给各式可直接进行分析求解;(2)由(1)可直接代入求值即可;(3)根据(1)可直接进行求解.【详解】解:(1)根据题意可得出:33333123(1)n n ++++-+=221(1)4n n ⨯⨯+; (2)将n =10代入221(1)4n n ⨯⨯+, 原式221×1010130254=⨯+=();(3)原式=22221130(301)20(201)44⨯⨯+-⨯⨯+=172125.【点睛】本题主要考查实数的运算,熟练掌握实数的运算是解题的关键. 28.求满足下列条件的x 的值:(1)3(3)27x +=-; (2)2(1)218x -+=.解析:(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。

北京十二中七年级数学下册第七章【平面直角坐标系】经典习题(含答案)

北京十二中七年级数学下册第七章【平面直角坐标系】经典习题(含答案)

一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,12.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)3.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b4.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1-5.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗7.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上8.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上9.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( ) A .(0,﹣2) B .(3,0) C .(0,3) D .(﹣2,0) 10.如图,在平面直角坐标系中,半径为1个单位长度的半圆123,,O O O ,…组成一条平滑曲线,点P 从点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2016秒时,点P 的坐标是( )A .()2016,1B .()2016,0C .()2016,1-D .()2016,0π 11.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ).A .第一象限B .第二象限C .第三象限D .第四象限二、填空题12.对于平面直角坐标系xOy 中的点P (a ,b ),若点P 的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___.13.如图,将边长为1的正方形OABP 沿x 轴正方向连续翻转,点P 依次落在点1P ,2P ,3P ,4P ,…的位置,那么2016P 的坐标是________.14.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.15.点P 先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P 坐标为__16.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________. 17.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣c|+8b -=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 18.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=,(1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.19.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.20.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.21.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.三、解答题22.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3(1)数轴上点A 表示的数为______.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为O A B C '''',移动后的长方形O A B C ''''与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S①设点A 的移动距离AA x '=.当4S =时,x =______.②当S 恰好等于原长方形OABC 面积的一半时,求数轴上点A '表示的数为多少. 23.如图,已知△ABC 的顶点分别为A (﹣2,2)、B (﹣4,5)、C (﹣5,1)和直线m (直线m 上各点的横坐标都为1).(1)作出△ABC 关于x 轴对称的图形△A 1B 1C 1,并写出点B 1的坐标;(2)作出△ABC 关于y 轴对称的图形△A 2B 2C 2,并写出点B 2的坐标;(3)若点P (a ,b )是△ABC 内部一点,则点P 关于直线m 对称的点的坐标是 . 24.ABC 在如图所示的平面直角坐标系中,将其平移得到A B C ''',若B 的对应点B '的坐标为(1,1).(1)在图中画出A B C ''';(2)此次平移可以看作将ABC 向________平移________个单位长度,再向________平移________个单位长度,得A B C ''';(3)求A B C '''的面积并写出做题步骤.25.如图,在平面直角坐标系中,△ABC 的顶点都在格点上,点B 的坐标是(1,2).(1)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A'B'C'.请画出△A'B'C'并写出A',B′,C'的坐标;(2)在△ABC内有一点P(a,b),请写出按(1)中平移后的对应点P″的坐标.一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .32.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°3.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5) 4.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)-5.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 6.某公交车上显示屏上显示的数据(),a b 表示该车经过某站点时先下后上的人数.若车上原有10个人,此公交车依次经过某三个站点时,显示器上的数据如下:()()()3,2,8,5,6,1,则此公交车经过第二个站点后车上的人数为( )A .9B .12C .6D .17.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上8.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 30303)D .(30303)9.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 10.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限 11.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .49二、填空题12.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.13.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.14.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______15.如图点 A 、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE . 已知点 D 在的点 B 左侧,且 DB =1,则点 C 的坐标为 ____ .16.如图,一个机器人从0点出发,向正东方向走3米到达1A 点,记为()3,0;再向正北方向走6米到达2A 点,记为()3,6:再向正西方向走9米到达3A 点,记为()6,6-;再向正南方向走12米到达4A 点,再向正东方向走15米到达5A 点,按如此规律走下去,当机器人走到99A 点时,则99A 的坐标为________.17.三角形A′B′C′是由三角形ABC 平移得到的,点A(-1,4)的对应点为A′(1,-1),若点C′的坐标为(0,0),则点C′的对应点C 的坐标为______.18.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.19.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限20.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.21.点3(2,)A -到x 轴的距离是__________.三、解答题22.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A (0,3);B (﹣2,4);C (3,﹣4);D (﹣3,﹣4).(1)点A 到原点O 的距离是 ,点B 到x 轴的距离是 ,点B 到y 轴的距离是 ;(2)连接CD ,则线段CD 与x 轴的位置关系是 .23.在平面直角坐标系中,(,0)A a ,(0,)B b ,且a ,b 满足2|6|0a b ++-=.(1)求A 、B 两点的坐标;(2)若P 从点B 出发沿着射线BO 方向运动(点P 不与原点重合),速度为每秒2个单位长度,连接AP ,设点P 的运动时间为t ,AOP 的面积为S .请你用含t 的式子表示S . (3)在(2)的条件下,点Q 与点P 同时运动,点Q 从A 点沿x 轴正方向运动,Q 点速度为每秒1个单位长度.A 、B 、P 、Q 四个点围成四边形的面积为S '.当4S =时,求:S S '的值.24.如图,已知三角形,ABC 把三角形ABC 先向上平移3个单位长度,再向右平移2个单位长度,得到三角形'''A B C .(1)在图中画出三角形'''A B C ,并写出',','A B C 的坐标;(2)连接,AO BO ,求三角形ABO 的面积;(3)在y 轴上是否存在一点P ,使得三角形BCP 与三角形ABC 面积相等?若存在请直接写出点P 的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,△ABC 的顶点为(5,1)A -,(1,0)B -,(1,5)C -. (1)作出△ABC 关于y 轴对称图形△A 1B 1C 1;(2)若点P 在x 轴上,且△ABP 与△ABC 面积相等,求点P 的坐标.一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,12.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠3.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1- 4.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3 B .()1,3-- C .()1,3- D .()1,3-5.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 6.在平面直角坐标系中,点P 在第二象限,且点P 到x 轴的距离为3个单位长度,到y 轴的距离为4个单位长度,则点P 的坐标是( )A .()3,4B .()3,4--C .()4,3-D .()3,4-7.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .(2021,0)B .(2020,1)C .(2021,1)D .(2021,2) 9.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 10.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒11.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限二、填空题12.在平面直角坐标系中,点()3,2P -到y 轴的距离为__________.13.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.14.若线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称,则线段CD 上任意一点的坐标可表示为___________.15.如图,有A ,B ,C 三点,如果A 点用()1,1表示,B 点用()2,3表示,则C 点的坐标为_______.16.如图所示的坐标系中,单位长度为1 ,点 B 的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上, 点P 也在格点上,ADP △ 的面积与四边形ABCD 的面积相等,写出所有点P 的坐标 _____________.(不超出格子的范围)17.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=,(1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.18.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.19.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.20.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.21.若点A (-2,n )在x 轴上,则点B(n-2,n+1)在第_____象限 .三、解答题22.观察图形回答问题:(1)所给坐标分别代表图中的哪个点?(﹣3,1): ;(1,2): ;(2)图形上的一些点之间具有特殊的位置关系,请按如下要求找出这样的点,并说明所找点的坐标之间有何关系:①连接点 与点 的直线平行于x 轴,这两点的坐标的共同特点是 ; ②连接点 与点 的直线是第一、三象限的角平分线,这两点的坐标的共同特点是 .23.已知三角形ABC 在平面直角坐标系中,点(3,6)A ,点()1,3B ,点(4,2)C ,则三角形ABC 的面积为多少?24.如图,在平面直角坐标系中,点A (0,12),点B (m ,12),且B 到原点O 的距离OB =20,动点P 从原点O 出发,沿路线O →A →B 运动到点B 停止,速度为每秒5个单位长度,同时,点Q 从点B 出发沿路线B →A →O 运动到原点O 停止,速度为每秒2个单位长度.设运动时间为t .(1)求出P 、Q 相遇时点P 的坐标.(2)当P 运动到AB 边上时,连接OP 、OQ ,若△OPQ 的面积为6,求t 的值. 25.在平面直角坐标系中,点P(2﹣m ,3m +6).(1)若点P 与x 轴的距离为9,求m 的值;(2)若点P 在过点A(2,﹣3)且与y 轴平行的直线上,求点P 的坐标.。

七下数学计算题60道

七下数学计算题60道

七下数学计算题60道数学是一门需要不断练习和思考的学科,通过做题可以提高我们的计算能力和逻辑思维能力。

下面是七年级数学的60道计算题,希望同学们认真思考,积极解答。

1. 12 + 34 = ?2. 56 - 23 = ?3. 45 × 2 = ?4. 72 ÷ 8 = ?5. 3² = ?6. 4³ = ?7. 5⁴ = ?8. 6⁵ = ?9. 7⁶ = ?10. 8⁷ = ?11. 9⁸ = ?12. 10⁹ = ?13. 2 + 3 × 4 = ?14. (2 + 3) × 4 = ?15. 12 ÷ 3 + 4 = ?16. 12 ÷ (3 + 4) = ?17. 3 × (4 + 5) = ?18. (3 × 4) + 5 = ?19. 6 × (7 - 2) = ?20. (6 × 7) - 2 = ?21. 8 ÷ (2 + 2) = ?22. 8 ÷ 2 + 2 = ?23. 5 × 6 ÷ 2 = ?24. 5 × (6 ÷ 2) = ?25. 3 + 4 × 5 - 2 = ?26. (3 + 4) × (5 - 2) = ?27. 12 ÷ 3 × 4 - 2 = ?28. 12 ÷ (3 × 4) - 2 = ?29. 2 + 3 × 4 ÷ 2 = ?30. (2 + 3) × (4 ÷ 2) = ?31. 5 × 6 ÷ 2 + 3 = ?32. 5 × (6 ÷ 2 + 3) = ?33. 12 ÷ 3 + 4 × 2 = ?34. 12 ÷ (3 + 4) × 2 = ?35. 2 + 3 × 4 - 2 ÷ 2 = ?36. (2 + 3) × (4 - 2) ÷ 2 = ?37. 12 ÷ 3 × 4 - 2 + 1 = ?38. 12 ÷ (3 × 4) - 2 + 1 = ?39. 2 + 3 × 4 ÷ 2 - 1 = ?40. (2 + 3) × (4 ÷ 2) - 1 = ?41. 5 × 6 ÷ 2 + 3 - 1 = ?42. 5 × (6 ÷ 2 + 3) - 1 = ?43. 12 ÷ 3 + 4 × 2 - 1 = ?44. 12 ÷ (3 + 4) × 2 - 1 = ?45. 2 + 3 × 4 - 2 ÷ 2 + 1 = ?46. (2 + 3) × (4 - 2) ÷ 2 + 1 = ?47. 12 ÷ 3 × 4 - 2 + 1 × 2 = ?48. 12 ÷ (3 × 4) - 2 + 1 × 2 = ?49. 2 + 3 × 4 ÷ 2 - 1 × 2 = ?50. (2 + 3) × (4 ÷ 2) - 1 × 2 = ?51. 5 × 6 ÷ 2 + 3 - 1 × 2 = ?52. 5 × (6 ÷ 2 + 3) - 1 × 2 = ?53. 12 ÷ 3 + 4 × 2 - 1 × 2 = ?54. 12 ÷ (3 + 4) × 2 - 1 × 2 = ?55. 2 + 3 × 4 - 2 ÷ 2 + 1 × 2 = ?56. (2 + 3) × (4 - 2) ÷ 2 + 1 × 2 = ?57. 12 ÷ 3 × 4 - 2 + 1 × 2 - 1 = ?58. 12 ÷ (3 × 4) - 2 + 1 × 2 - 1 = ?59. 2 + 3 × 4 ÷ 2 - 1 × 2 + 1 = ?60. (2 + 3) × (4 ÷ 2) - 1 × 2 + 1 = ?这些计算题涵盖了加减乘除、括号运算和指数运算等多个知识点,需要我们综合运用所学的知识进行解答。

七年级数学下册数轴上的无理数综合练习题

七年级数学下册数轴上的无理数综合练习题

七年级数学下册数轴上的无理数综合练习题一、简答题1. 请简要解释什么是无理数?2. 无理数与有理数有什么区别?3. 请列举出至少三个无理数的例子。

4. 如果将无理数表示在数轴上,你认为它们会在数轴上的哪些位置?二、计算题1. 计算:√5 × √52. 计算:√8 + √23. 计算:√27 - √124. 计算:√16 ÷ √45. 计算:√(3 + √5) × √(3 - √5)6. 计算:(√7 + √2) × (√7 - √2)7. 计算:√3 + 2√3 - √38. 下面的哪个数是无理数?请将其简化为最简形式。

a) √16b) √25c) √68d) √819. 计算:(√7 + √6)²10. 计算:(5 + √12)(5 - √12)三、应用题1. 在数轴上,标记出下列无理数的位置:a) √2b) √5c) √7d) √102. 数轴上的点A的坐标为√6,点B的坐标为√11,请判断点A与点B的位置关系,并解释你的答案。

3. 一个地下室里装有一个水槽,该水槽的长度是√13米。

现在需要在水槽的一端铺设一块长为2√3米的木板,与另一端铺设一块长为√7米的木板,是否能够正好铺满整个水槽的长度?如果不行,请解释原因。

4. 请列举出至少三种现实生活中应用无理数的例子,并解释其中的原理。

四、证明题1. 请证明:无理数的平方仍然是无理数。

2. 请证明:√3 + √7 是无理数。

以上为七年级数学下册数轴上的无理数综合练习题,希望能帮助到你。

如有任何问题,请随时向我提问。

初一数学下册试题及答案

初一数学下册试题及答案

初一数学下册试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 6D. -6答案:A3. 计算下列算式:2x - 3 = 7,x的值是:A. 5B. 2C. 10D. 3答案:A4. 一个等腰三角形的两个底角相等,如果一个底角是50°,那么顶角的度数是:A. 80°B. 50°C. 100°D. 30°答案:A5. 一个数的平方是36,这个数是:A. 6B. ±6C. 36D. ±36答案:B6. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 0答案:C7. 下列哪个选项是不等式?A. 3x + 4 = 7B. 2x - 5 > 0C. 6x = 12D. 7x - 3答案:B8. 一个数的立方是-8,那么这个数是:A. -2B. 2C. -8D. 8答案:A9. 计算下列算式:(-3)^2,结果是:A. -9B. 9C. -6D. 6答案:B10. 下列哪个选项是二次方程?A. 2x + 3 = 0B. x^2 - 4x + 4 = 0C. 3x - 7D. 5x^3 + 2x^2 - 6 = 0答案:B二、填空题(每题4分,共20分)11. 一个数的平方根是3,那么这个数是______。

答案:912. 一个数的立方根是-2,那么这个数是______。

答案:-813. 一个数的倒数是1/2,那么这个数是______。

答案:214. 一个数的绝对值是7,那么这个数可以是______或______。

答案:7,-715. 一个等腰三角形的底角是30°,那么顶角的度数是______。

答案:120°三、解答题(每题10分,共50分)16. 解方程:3x - 5 = 10。

数学试题及答案七下

数学试题及答案七下

数学试题及答案七下一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 2.5B. πC. 0.33333D. √4答案:B2. 如果一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A3. 一个数的绝对值是它本身,这个数可能是:A. 任何数B. 非负数C. 非正数D. 负数答案:B4. 以下哪个表达式等于x^2 - 2x + 1?A. (x-1)^2B. (x+1)^2C. (x-2)^2D. (x+2)^2答案:A5. 一个等腰三角形的底边长为6,腰长为5,其周长为:A. 16B. 17C. 18D. 19答案:C6. 一个数的立方根是2,这个数是:A. 6B. 8C. -8D. 0答案:B7. 一个角的补角是它的两倍,这个角是:A. 30°B. 60°C. 90°D. 120°答案:A8. 一个数除以-1/2等于它本身,这个数是:A. 0B. 2C. -2D. 1答案:A9. 一个数的平方等于16,这个数可能是:A. 4B. -4C. 4或-4D. 0答案:C10. 一个数的倒数是-1/3,这个数是:A. 3B. -3C. 1/3D. -1/3答案:B二、填空题(每题2分,共20分)11. 如果一个数的平方是25,那么这个数是______。

答案:±512. 一个数的绝对值是5,这个数可能是______。

答案:5或-513. 一个角的余角是45°,这个角是______。

答案:45°14. 一个等腰三角形的底边长为8,腰长为10,其周长为______。

答案:2815. 一个数的立方根是-2,这个数是______。

答案:-816. 一个角的补角是它的三倍,这个角是______。

答案:45°17. 一个数除以-1/3等于它本身,这个数是______。

答案:018. 一个数的平方等于9,这个数可能是______。

柳州铁路第一中学七年级数学下册第六章【实数】经典练习(课后培优)

柳州铁路第一中学七年级数学下册第六章【实数】经典练习(课后培优)

一、选择题1.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( ) A .②④⑤ B .①③⑥C .④⑤⑥D .③④⑤2.有下列四种说法:①数轴上有无数多个表示无理数的点; ②带根号的数不一定是无理数; ③平方根等于它本身的数为0和1; ④没有最大的正整数,但有最小的正整数; 其中正确的个数是( ) A .1B .2C .3D .43.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( ) A .﹣40B .﹣32C .18D .104.有下列说法:①在1和2之间的无理数有且只有2,3这两个;②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②5.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个6.64的算术平方根是( ) A .8B .±8C .22D .22±7.下列实数中,是无理数的为( ) A .3.14B .13C .5D .98.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间9.如果32.37≈1.333,323.7≈2.872,那么32370约等于( ) A .287.2B .28.72C .13.33D .133.310.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;④49的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行. A .4B .3C .2D .111.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A .21n -B .22n -C .23n -D .24n -二、填空题12.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22-13)11163532-⎛⎫-+︒ ⎪⎝⎭14.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 15.已知103x ,小数部分是y ,求x ﹣y 的相反数_____.16.以下几种说法:①正数、负数和零统称为有理数;②近似数1.70所表示的准确数a 的范围是1.695 1.705a <;164±;④立方根是它本身的数是0和1;其中正确的说法有:_____.(请填写序号)17.将1236按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(15,7)表示的数是____.18.(1)求x 的值:2490x -=; (2()2325227-19.计算:(1)﹣12327-﹣(﹣2)9(2331)+32| 20.3189124--+. 21.-64的立方根是____,9的平方根是_____,16的算术平方根是_____81_____.三、解答题22.计算:(132125(2)(10)4---⨯- (2)2325(24)27-⨯--÷23.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2. (1)求a 与b 的值;(2)求2a +4b 的平方根. 24.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +3b - 25.(1)小明解方程2x 1x a332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x ,y 是有理数,且x ,y 满足等式2x 2y 2y 1742++=-x-y 的值.一、选择题1.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( ) A .②④⑤B .①③⑥C .④⑤⑥D .③④⑤2.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上C .在线段OC 上D .在线段OB 上3.15a ,小数部分为b ,则a-b 的值为() A .615-B 156C .815D 1584.有下列说法:①在1和22,3②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②5.下列说法中,正确的是 ( ) A .64的平方根是8 B 164和-4 C .()23-没有平方根D .4的平方根是2和-26.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015B .2014C .20152014D .2015×20147.已知n 是正整数,并且n -1<326+<n ,则n 的值为( ) A .7B .8C .9D .108.81的平方根是( ) A .9B .-9C .9和9-D .819.已知下列结论:①2;②无理数是无限小数;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ) A .① ③B .②③C .③④D .②④10.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭ B .()239-=C .42=±D .()515-=-11.下列各组数中都是无理数的为( ) A .0.07,23,π; B .0.7•,π,2; C .2,6,π;D .0.1010101……101,π,3二、填空题12.对于有理数a ,b ,定义一种新运算“”,规定ab a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简a b ;②当a b a c =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.13.若|2|0x x y -++=,则12xy -=_____. 14.把下列各数填入相应的集合里:﹣3,|﹣5|,+(13-),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34,﹣|45-|,3π正数集合:{_____________…};整数集合:{_____________…}; 负分数集合:{_____________…}; 无理数集合:{_____________…}.15.3331.5115.10.1510.5325===31510的值是______________________. 16.计算:2(3)216-- 17.已知(253|530x y -++-=.(1)求x ,y 的值; (2)求xy 的算术平方根.18.比较大小:312-___________1219.比较大小,填“>”或“<”号:12_________512- 20.有个数值转换器,原理如图所示,当输入x 为27时,输出的y 值是________________.21.已知1a -的平方根是2±,则a 的值为_______.三、解答题22.已知(2m ﹣1)2=9,(n+1)3=27.求出2m+n 的算术平方根. 23.求下列各式中x 的值 (1)()328x -= (2)21(3)753x -= 24.求下列各式中x 的值: (1)()214x -=; (2)3381x =-.25.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14.(1)请根据以上式子填空:①189⨯= ,②1(1)n n ⨯+= (n 是正整数)(2)由以上几个式子及你找到的规律计算:112⨯+123⨯+134⨯+............+120152016⨯一、选择题 1.在实数:20192020,π,9,3,2π,38,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52-,49中,无理数的个数为( ) A .4B .5C .6D .72.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上C .在线段OC 上D .在线段OB 上3.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( ) A .﹣40B .﹣32C .18D .104.下列说法中错误的有( ) ①实数和数轴上的点是一一对应的; ②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0; ④49的平方根是7±,用式子表示是497=±. A .0个B .1个C .2个D .3个5.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是( ) A .2B .4C .6D .86.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 137.下列实数31,7π-,3.14,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( ) A .5个B .4个C .3个D .2个8.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .9.下列各数中是无理数的是( )A .227B .1.2012001C .2πD 10.下列等式成立的是( )A .±1B =±2C 6D 311.下列各组数中都是无理数的为( )A .0.07,23,π; B .0.7•,π;C ,π;D .0.1010101……101,π二、填空题12.已知31a +的算数平方根是4,421c b +-的立方根是3,c 22a b c +-的平方根.13.计算下列各题(1)﹣2;(2)﹣(结果保留2位有效数字).14.计算:()214322--⨯-(15.比较大小:21(填“>”、“=”或“<”).16.()220y -=,则xy =_________.17.我们知道,同底数幂的乘法法则为:•m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=⋅,请根据这种新运算填空:若()213h =,则(2)h =_____;若()()10h k k =≠,那么()(2020)h n h ⋅=______(用含n 和k 的代数式表示,其中n 位正整数)18.已知(25|50x y -++-=.(1)求x ,y 的值; (2)求xy 的算术平方根.19.计算:(1)(1)|2|3-⨯-+ (2)2111(3)2⎛⎫-+--- ⎪⎝⎭20.观察下列二次根式的规律求值:1S =2S =3S =… 则20202020S =_______. 21.一个正数的两个平方根分别是21a -与2a -+,则这个正数是______.三、解答题22.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-0,4-23.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示. 24.计算:(1)223168(2)(3)-----(2)22(2)8x -=25.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简a b ;②当a b a c =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.。

湖南衡阳八中七年级数学下册第八章【二元一次方程组】经典练习(含解析)

湖南衡阳八中七年级数学下册第八章【二元一次方程组】经典练习(含解析)

一、选择题1.对于任意实数,规定新运算:x y ax by xy =+-※,其中a 、b 是常数,等式右边是通常的加减乘除运算.已知211=※,()322-=-※,则a b ※的值为( ) A .3B .4C .6D .72.如图,周长为78cm 的长方形团由10个形状大小完全相同的小长方形拼成,其汇总一个小长方形的面积为( )A .232cmB .235cmC .236cmD .240cm3.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( ) A .3B .5C .4或5D .3或4或54.已知下列各式:①12+=y x ;②2x ﹣3y =5;③xy =2;④x+y =z ﹣1;⑤12123x x +-=,其中为二元一次方程的个数是( )A .1B .2C .3D .45.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .6种B .7种C .8种D .9种6.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知 5 个大桶加上 1 个小桶可以盛酒 3 斛,1 个大桶加上 5 个小桶可以盛酒 2 斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是( )A .5253x y x y +=⎧⎨+=⎩B .5352x y x y +=⎧⎨+=⎩C .5352x y x y +=⎧⎨=+⎩D .5=+352x y x y ⎧⎨+=⎩7.方程组125x y x y +=⎧⎨+=⎩的解为( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=⎩C .43x y =⎧⎨=-⎩D .23x y =-⎧⎨=⎩8.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a+b .例如3⊗4=2×3+4,若x ⊗(﹣y )=2018,且2y ⊗x =﹣2019,则x+y 的值是( )A .﹣1B .1C .13D .﹣139.方程组2824x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( )A .1B .2C .3D .410.已知1,2x y =⎧⎨=⎩是二元一次方程24x ay +=的一组解,则a 的值为( ) A .2B .2-C .1D .1-11.如图,由33⨯组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行(横)、每一列(竖)以及每一条对角线(斜)上的三个代数式的和均相等,则方格中“a ”的数是( ) ya2y 4x -9 2x - 11A .6B .7C .8D .9二、填空题12.写出方程35x y -=的一组解_________.13.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为_______.14.若12x y =⎧⎨=-⎩是二元一次方程23ax y -=的解,则a 的值为________.15.若方程2x 2a +b -4+4y 3a -2b -3=1是关于x ,y 的二元一次方程,则a =________,b =________. 16.已知关于,x y 的方程组343x y a x y a +=-⎧⎨-=⎩,给出以下结论:①51x y =⎧⎨=-⎩,是方程组的一个解;②当2a =-时,,x y 的值互为相反数;③当1a =时,方程组的解也是方程4x y a +=-的解;④,x y 之间的数量关系是23,x y -=其中正确的是__________ (填序号).17.已知方程组2221x y x y +=⎧⎨+=⎩,那么x y +=_________.18.“九九重阳节, 浓浓敬老情”,今年某花店在重阳节推出“松鹤长春”“欢乐远长”“健康长寿”三种花束.“松鹤长春”花束中有8枝百合,16 枝康乃馨;“欢乐远长”花束中有6枝百合,16枝康乃馨,2枝剑兰;“健康长寿”花束中有4枝百合,12枝康乃馨,2枝剑兰.已知百合花每枝1元,康乃馨每枝34元,剑兰每枝5元,重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,则剑兰的销售量为________枝.19.如果()2x 2y 1x y 50-+++-=,那么x =______,y =____ 20.已知关于,x y 的方程组231x ay bx y -=⎧⎨+=-⎩的解是13x y =⎧⎨=-⎩,则a b +=___________.21.明代的程大位创作了《算法统宗》,它是一本通俗实用的数学书,将枯燥的数学问题化成了美妙的诗歌,读来朗朗上口,是将数字入诗的代表作.例如,其中有一首饮酒数学诗:“肆中饮客乱纷纷,薄酒名釂厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生.试问高明能算士,几多酶酒几多醇?”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮下19瓶酒.试问其中好酒、薄酒分别是多少瓶?”请你根据题意,求出好酒是有_____瓶.三、解答题22.某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A 种原料和2吨B 种原料,生产每件乙产品需要3吨A 种原料和1吨B 种原料,该厂现有A 种原料120吨,B 种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)去年每件甲产品售价为3万元,每件乙产品售价为5万元,根据市场调研情况,今年每件乙产品售价比去年下降10%,问每件甲产品应涨价多少万元,才能使甲乙产品全部出售后的总销售额达到144万元? 23.解方程组(1)310518x y x y +=⎧⎨+=⎩(2)312491a b a b ⎧+=⎪⎨⎪-=-⎩24.杭州某电器超市夏季销售,B两种型号的电风扇,如表所示是近2周的销售情况:(1)求A、B两种型号的电风扇的销售单价;填空:完成下列的分析过程:设A种型号的电风扇的销售单价为x元/台,设B种型号的电风扇的销售单价为y元/台,则第一周销售A种型号销售收入为________元;第一周B种型号销售收入为________元(用含x或y的代数式表示),根据题意可列出第一个方程:________+________2200=同理得到,列出另一个方程:________+________3200=可以求出:x=________;y=________;(2)该电器超市销售A每台进价为120元、B每台进价170元.超市再采购这两种型号的电风扇共130台,并且全部销售完,该超市能否实现这两批的总利润恰好为8010元的目标?若能,请给出相应的采购方案;若不能,请说明理由.(进价、售价均保持不变,利润=销售收入-进货成本)25.甲,乙两位同学在解方程组11ax bycx y+=⎧⎨+=-⎩时,甲正确解得方程组的解为11xy=-⎧⎨=⎩.乙因抄错了方程中的系数c,得到的解为21xy=⎧⎨=-⎩,若乙没有再发生其他错误,试求a、b、c的值.一、选择题1.已知2x2y3a与﹣4x2a y1+b是同类项,则a b的值为()A.1 B.﹣1 C.2 D.﹣22.如果2x3n y m+4与-3x9y2n是同类项,那么m、n的值分别为()A.m=-2,n=3 B.m=2,n=3 C.m=-3,n=2 D.m=3,n=2 3.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,根据题意列方程组正确的是()A.4.512x yyxB .4.512x yyxC .4.512x yxyD .4.512x yyx4.为了研究吸烟是否对肺癌有影响,某研究所随机地抽查了1000人.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这1000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.2210002.5%0.5%x yx y-=⎧⎪⎨+=⎪⎩B.1000222.5%0.5%x yx y+=⎧⎪⎨-=⎪⎩C.10002.5%0.5%22x yx y-=⎧⎨+=⎩D.10002.5%0.5%22x yx y+=⎧⎨-=⎩5.已知:关于x、y的方程组2423x y ax y a+=-+⎧⎨+=-⎩,则x-y的值为( )A.-1 B.a-1 C.0 D.16.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有醇酒一斗,值钱五十;行酒一斗,值钱一十;今将钱三十,得酒二斗,问醇、行酒各得几何?”意思是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现用30钱,买得2斗酒,问分别能买到多少醇酒与行酒?设用30钱能买得的2斗酒里,买到醇酒x斗,买到行酒y 斗,根据题意可列方程组为()A.5010302x yx y+=⎧⎨+=⎩B.5010302y xx y+=⎧⎨+=⎩C.5010230x yx y+=⎧⎨+=⎩D.5010230y xx y+=⎧⎨+=⎩7.已知关于x 、y 方程组734521x y x y m +=⎧⎨-=-⎩的解能使等式4x ﹣3y =7成立,则m 的值为( )A .8B .0C .4D .﹣28.二元一次方程组425x y x y +=⎧⎨-=⎩的解为( )A .13x y =⎧⎨=⎩B .22x y =⎧⎨=⎩C .31x y =⎧⎨=⎩ D .40x y =⎧⎨=⎩9.下列四组值中,不是二元一次方程21x y -=的解的是( )A .11x y =-⎧⎨=-⎩B .00.5x y =⎧⎨=-⎩C .10=⎧⎨=⎩x yD .11x y =⎧⎨=⎩10.小亮问老师有多少岁了,老师说:“我像你这么大时,你才4岁,你到我这么大时,我就40岁了.”求小亮和老师的岁数各是多少?若设小亮和老师的岁数分别为x 岁和y 岁,则可列方程组( )A .440x y x y x y -=-⎧⎨-=-⎩B .440x y x y -=⎧⎨+=⎩C .440x yy x -=⎧⎨-=⎩D .440x x yy x y -=-⎧⎨-=-⎩11.下列方程是二元一次方程的是( ). A .32x y -=B .1xy=C .2+3=x xD .153x y-= 二、填空题12.若方程x |m|-2+(m+3)y 2m-n =6是关于x 、y 的二元一次方程,则m+n=_____ 13.若2(321)4330x y x y -++--=,则x y -=_____.14.已知关于x 、y 的方程组2326324x y k x y k +=+⎧⎨+=+⎩的解满足2x y +=,则k 的值为__.15.据人口抽样调查,2019年末太原市常住人口446.19万人,比上年末增加4.04万人.其中城镇人口比上年增加1.36%,乡村人口比上年减少1.57%.若设2018年末太原市常住人口中城镇人口有x 万人,乡村人口有y 万人,则根据题意列出的方程组为_____________ 16.某商场在“迎新年”搞促销活动,刘海的家长准备用2000元在活动中购买价格分别为160元和240元的两种商品,在钱都用尽的情况下,可供刘海的家长选择的购买方案有_______种.17.对x ,y 定义一种新运算“※”,规定:x y mx ny =+※(其中m ,n 均为非零常数),若3213,218==※※.则12※的值是_______18.若方程组18mx ny nx my -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则m=________,n=________.19.单项式-x 2m-n y 3与单项式3m+n2x y 3可以合并,则多项式4m-2n+(-m-n )2-2(n-2m )2的值是______.20.一个两位数,交换个位与十位的数字之后,新得到的两位数比原数小63,则原来的两位数是________________.21.某风景区有4个相同的出口、4个相同的入口,假设在任何情况下每个入口的人数均是匀速出入,每个出口的人数均是匀速出入,当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数.受疫情影响,2020年五一期间,该风景区游览人数只允许达到平时可容纳人数的60%,当风景区人数已达到平时可容纳人数的10%时,若同时开放3个入口和2个出口,则经过__________小时刚好达到平时可容纳人数的60%.三、解答题22.元旦期间,甲、乙两个商场开展促销活动,甲商场实行“全场52折”的优惠;乙商场实行“满200元减100元”的优惠(如:某顾客购物320元,他需付款220元,购物420元,他也只需付款220元).(1)张丽想买商场标价都是850元的同一套衣服,她应该选择哪家商场?(2)李明发现在甲、乙商场购买一样标价六百多元的某商品,最后付款额是一样的,请问此商品的标价是多少元?(3)丙商场推出“先打折”,再“满200元减100元”的活动.李明发现在丙商场购买(2)中的商品,虽然标价一样但比在乙商场要多付25元钱,问丙商场先打了多少折后再参加活动? 23.已知关于x 、y 的二元一次方程组为3331x y x y a +=⎧⎨+=+⎩(1)直接写出....二元一次方程组的解为(结果用含a 的式子表示)______________ (2)若21x y a -=-,求a 的值24.2014-2015年度中国篮球联赛()CBA 决赛的门票价格如下表:小聪带了2700元购票款前往购票,若购买2张A 等票和5张B 等票,则购票款多出了200元;若购买5张A 等票和1张B 等票,则购票款还缺100元. (1)若小聪购买1张A 等票和5张B 等票共需花费多少元?(2)若小聪要将2700元的购票款全部用于购买这三种门票,并且每种门票至少一张,则他购买的门票总数为________张(该小题直接写出答案,不必写出过程.) 25.阅读感悟:有些关于方程组的问题,需要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x ,y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值. 本题常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组23173213x y x y +=⎧⎨+=⎩,则x y -= ,x y += ;(2)“战疫情,我们在一起”,某公益组织计划为老年公寓捐赠一批防疫物资.已知购买20瓶消毒液、3支测温枪、2套防护服共需1180元;购买30瓶消毒液、2支测温枪、8套防护服共需2170元,若该公益组织实际捐赠了100瓶消毒液、10支测温枪、20套防护服,则购买这批防疫物资共需多少元?(3)对于实数x ,y ,定义新运算:x y ax by c *=-+,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,求11*的值.一、选择题1.已知二元一次方程组2513377x y x y +=⎧⎨-=-⎩①②,用加减消元法解方程组正确的( ) A .①×5-②×7B .①×2+②×3C .①×7-②×5D .①×3-②×22.对于任意实数,规定新运算:x y ax by xy =+-※,其中a 、b 是常数,等式右边是通常的加减乘除运算.已知211=※,()322-=-※,则a b ※的值为( ) A .3 B .4C .6D .73.若方程组a 2b 43a 2b 8+=⎧⎨+=⎩,则a+b 等于( )A .3B .4C .2D .14.如图,周长为78cm 的长方形团由10个形状大小完全相同的小长方形拼成,其汇总一个小长方形的面积为( )A .232cmB .235cmC .236cmD .240cm5.若关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数,则满足条件的所有a 的值的和为( )A .6B .9C .12D .166.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112l B .116l C .516l D .118l 7.下列方程组的解为31x y =⎧⎨=⎩的是( ) A .224x y x y -=⎧⎨+=⎩B .253x y x y -=⎧⎨+=⎩C .32x y x y +=⎧⎨-=⎩D .2536x y x y -=⎧⎨+=⎩8.下列四组数值中,方程组02534a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A .011a b c =⎧⎪=⎨⎪=-⎩B .121a b c =-⎧⎪=⎨⎪=-⎩C .112a b c =-⎧⎪=⎨⎪=-⎩D .123a b c =⎧⎪=-⎨⎪=⎩9.由方程组71x m y m +⎧⎨-⎩==可得出x 与y 的关系式是( )A .x+y=8B .x+y=1C .x+y=-1D .x+y=-810.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a+b .例如3⊗4=2×3+4,若x ⊗(﹣y )=2018,且2y ⊗x =﹣2019,则x+y 的值是( ) A .﹣1B .1C .13D .﹣1311.解关于,x y 的方程组()()()1328511m x n y n x my ①②⎧+-+=⎪⎨-+=⎪⎩可以用①2+⨯②,消去未知数x ,也可以用①+②5⨯消去未知数y ,则mn 、的值分别为( ) A .23,39--B .23,40--C .25,39--D .25,40--二、填空题12.现有甲、乙、丙三个圆柱形的杯子,杯深均为20cm ,各装有12cm 高的水,甲、乙、丙三个杯子的底面积如下表.分别从甲、乙两杯中取出相同体积的水倒入丙杯,过程中水没溢出,最后甲、乙两杯水的高度之和等于丙杯水的高度.则从甲杯中倒出的水的体积为__________3cm .乙杯60 丙杯 8013.已知方程组278ax by cx y +=⎧⎨-=⎩,甲解对了,得32x y =⎧⎨=-⎩.乙看错了c ,得22x y =-⎧⎨=⎩.则abc 的值为_______.14.某果蔬饮料由果汁、蔬菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了12.5%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为______.15.已知x ,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x +y 的值为__. 16.如图,已知∠AOE =100°,∠DOF =80°,OE 平分∠DOC ,OF 平分∠AOC ,求∠EOF 的度数.17.一辆货车、一辆客车、一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,货车在前,小轿车在后,客车在货车与小轿车的正中间,过了20min ,小轿车追上了客车;又过了10min ;小轿车追上了货车;再过了________min 客车追上了货车. 18.方程27x y +=在正整数范围内的解有_________________.19.某商场在“迎新年”搞促销活动,刘海的家长准备用2000元在活动中购买价格分别为160元和240元的两种商品,在钱都用尽的情况下,可供刘海的家长选择的购买方案有_______种.20.已知x a y b=⎧⎨=⎩是方程组2025x y x y -=⎧⎨+=⎩的解,则2a b -=_____. 21.已知方程组2237x ay x y +=⎧⎨+=⎩的解是二元一次方程1x y -=的一个解,则a =________________.三、解答题22.(1)解方程组:21035x yx y+=⎧⎨-=⎩;(2)解不等式组:2(1)35423xxx+-<⎧⎪-⎨-≥⎪⎩.23.若关于x,y的方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求a和b的值.24.解下列二元一次方程组(1)21 2110 y xx y=-⎧⎨+-=⎩(2)3212 223 x yx y-=⎧⎨+=⎩25.解方程组:(1)35 5223x yx y-=⎧⎨+=⎩(2)5225 3415 x yx y+=⎧⎨-=⎩(3)131 2223x yx y⎧-=-⎪⎨⎪+=⎩(4)231 342 457 5615u vu v⎧+=⎪⎪⎨⎪+=⎪⎩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

该园林的门票上,试通过计算,找出可进入该园林的次数最多的购票方式。
(2) 求一年中进入该园林至少超过多少次时,购买 A 类年票比较合算。
例 1 某班有 50 人,其中三好学生 10 人,优秀学生干部 5 人,在扇形统计
图上表示三好学生和优秀学生干部人数的圆心角分别是 (
)
A . 720 , 360
B . 1000 , 500
相邻的一个内角的 2 倍,则这个三角形各角的度数为 ( ) 。
A .450、 450、900 B .300、 600、900
C.250、 250、1300 D .360、 720、 720
例4
已知如图, 求∠A+∠B+∠C+∠D+∠E+∠F 的度
数。
B
C
D
1
A
2
E B
A F
E
C D
例5
如图,AB∥ CD,EF分别与 AB、CD交于 G、H,MN⊥AB于 G,∠CHG=124
个数是(
) 个.
(A)1
(B)2
(C)3
(D)4
例 5 在直角坐标系中,已知 A(-4 ,0) 、B(1, 0)、 C(0, -2) 三点.请按以 下要求设计两种方案:作一条与 轴不重合,与△ ABC的两边相交的直线,使
截得的三角形与△ ABC相似,并且面积是△ AOC面积的 .分别在下面的两个 坐标中系画出设计图形,并写出截得的三角形三个顶点的坐标。
七年级下册数学经典练习题
例5
已知关于 x、y 的
的解满足二元一次
例1 当x
时,代数代 2-3x 的值是正数。
例 2 一元一次不等式组的
解集是 (

A.-2 < x<3
B .-3
<x<2
C. x <
-3
D. x
<2
例 3 已知方程组
的解为负数,求 k 的取值范围。
例4
某种植物适宜生长在温度为 18℃~20℃的山区,已知山区海拔每升
例4
如图,面积为 12cm2的△ABC向 x 轴正方向平移至△ DEF的位置,相
应的坐标如图所示( a, b 为常数),
(1)、求点 D、E 的坐标
(2)、求四边形 ACED的面积。
七年级下册数学经典练习题
例5
过两点 A(3,4) ,B(-2 , 4)作直线 AB,则直线 AB( )
A、经过原点
B
C . 1200 ,
600
D .800, 400
例 2 某音乐行出售三种音乐 CD ,即古典音乐、流行音乐、民族音乐,为了
表示这三种音乐唱片的销售量的百分比,应该用 (
)
A.扇形统计图
B .折线统计图
C .条形统计图
D .以上都可
七年级下册数学经典练习题
以 例 3 在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的 频数分布表:
⑴已知最后一组( 89.5-99.5 )出现的频率为 15 %,则这一次抽样调查的容 量是________ .
⑵第三小组( 69.5~79.5 )的频数是 _______,频率是 ________. 例 4 如图,是一位护士统计一位病人的体温变化图:根据统计图回答下列 问题:
⑴病人的最高体温是达多少? ⑵什么时间体温升得最快?
、平行于 y 轴
C、平行于 x 轴
D 、以上说法都不对
例 2 如图,结合图形作出了如下判断或推理:
①如图甲, CD⊥ AB,D为垂足,那么点 C到 AB的距离等于 C、D两点间
的距离;
②如图乙,如果 AB∥CD,那么∠ B=∠D ; ③如图丙,如果∠ ACD=∠ CAB,那么 AD∥ BC;
④如图丁,如果∠ 1=∠2,∠D=120°,那么∠ BCD=60°.其中正确的
七年级下册数学经典练习题
例 1 如图,直线 AB,CD,EF相交于点 O,∠AOE=5°4 ,∠EOD=9°0 ,求∠EOB, ∠ COB的度数。
例 2 如图 AD平分∠ CAE,∠B = 350°,∠ DAE=600°,
E A
那么∠ACB等于多少?
B
C
D
例 3 三角形的一个外角等于与它相邻的内角的 4 倍,等于与它不
例 5 在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的 频数分布表:
七年级下册数学经典练习题
⑴已知最后一组( 89.5~99.5 )出现的频率为 15 %,则这一次抽样调查的容 量是________ .
七年级下册数学经典练习题
三、经典例题 例 1 用加减消元法解方程组,
例2
如果
A 、 =-3, =2
=2, =-3
C 、 =-2, =3
=3, =-2
例 3 计算:
是同类项,则 、 的值是(
) B、
D、
例 4 王大伯承包了 25 亩土地, 今年春季改种茄子和西红柿两种大棚蔬菜, 用去了 44000 元。其中种茄子每亩用了 1700 元,获纯利 2400 元;种西红柿每 亩用了 1800 元,获纯利 2600 元。问王大伯一共获纯利多少元?
A、B、C 三类: A 类年票每张 120 元,持票者进入园林时,无需再用门票; B
类年票每张 60 元,持票者进入该园林时,需再购买门票,每次 2 元;C 类年
票每张 40 元,持票者进入该园林时,需再购买门票,每次 3 元。
(1) 如果你只选择一种购买门票的方式,并且你计划在一年中用
80 元花在
高 100 米,气温下降 0。5℃,现在测出山脚下的平均气温为 22℃,问该植物
种在山的哪一部分为宜?(假设山脚海拔为 0 米)
七年级下册数学经典练习题
例5
某园林的门票每张 10 元,一次使用,考虑到人们的不同需求,也为
了吸引更多的游客, 该园林除保留原来的售票方法外, 还推出了一种 “购买个
人年票”的售票方法(个人年票从购买日起,可供持票者使用一年)。年票分
,0 则∠EGM等于多少度?
M E
A
GB
CH F
N
D
七年级下册数学经典练习题
例1
一个机器人从 O点出发,向正东方向走 3 米到达 A1点,再向正北方
向走 6 米到达 A2点,再向正西方向走 9 米到达 A3 点,再向正南方向走 12 米
到达 A4 点,再向正东方向走 15 米到达 A5? 点,如果 A1 求坐标为( 3, 0),
求点 A5? 的坐标。
例2
如图是在方格纸上画出的小旗图案,若用 (0 ,0) 表示 A 点,(0 ,4)
表示 B 点,那么 C点的位置可表示为 ( )
B
A、(0 ,3) B 、(2 ,3) C 、 (3, 2) D 、 (3, 0)
C
A
例2
例3
如图 2,根据坐标平面内点的位置,写出以下各点的坐标:
A( ) ,B( ) , C( ) 。
相关文档
最新文档