七年级数学下册知识点及典型试题

合集下载

2021年北师大版七年级数学下册全册知识点与典型例题配套练习

2021年北师大版七年级数学下册全册知识点与典型例题配套练习

4. 若 2x1 16 ,则 x=________.
5. 若 am a3a4 ,则 m=________;若 x4 xa x16 ,则 a=__________; 若 xx2 x3x4x5 x y ,则 y=______;若 ax (a)2 a5 ,则 x=_______.
6. 若 am 2, an 5 ,则 amn =________.
第一章 整式
一、整式关于概念
1、单项式:数与字母乘积,这样代数式叫单项式。单独一种数或字母也是单项式。
2、单项式系数:单项式中数字因数。
3、单项式次数:单项式中所有字母指数和。
4、多项式: 几种单项式和叫多项式。
5、多项式项及次数:构成多项式中单项式叫多项式项,多项式中次数最高项次数
叫多项式次数。
6、整式:单项式与多项式统称整式。(分母具有字母代数式不是整式)
(1)(2a) (x 2 y 3c),
(2)(x 2)( y 3) (x 1)( y 2)
(3)(x y)(2x 1 y) 2
(2)计算下图中阴影某些面积
8、平方差公式 法则:两数各乘以这两数差,等于这两数平方差。 数学符号表达:
(a b)(a b) a2 b2 其中a, b既可以是数, 也可以是代数式.
(4)( 2 a2bc3 ) ( 3 c5 ) (1 ab2c)
3
43
6、单项式乘以多项式
法则:单项式乘以多项式,就是依照分派律用单项式去乘多项式每一项,再把所得积相
加。
7、多项式乘以多项式
法则:多项式乘以多项式,先用一种多项式每一项去乘另一种多项式每一项,再把所得积
相加。
练习七:(1)计算下列各式。
3)1.5104 _____________

北师大版七年级下册数学第二章知识点归纳附第二章测试卷及参考答案

北师大版七年级下册数学第二章知识点归纳附第二章测试卷及参考答案
3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。
4、对顶角既有数量关系,又有位置关系。
七、平行线的判定方法
1、同位角相等,两直线平行。
2、内错角相等,两直线平行。
3、同旁内角互补,两直线平行。
4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。
5、在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行。
3、尺规作图中直尺的功能是:
(1)在两点间连接一条线段;
(2)将线段向两方延长。
4、尺规作图中圆规的功能是:
(1)以任意一点为圆心,任意长为半径作一个圆;
(2)以任意一点为圆心,任意长为半径画一段弧;
5、熟练掌握以下作图语言:
(1)作射线××;
(2)在射线上截取××=××;
(3)在射线××上依次截取××=××=××;
(1)过点P作PQ∥CD,交AB于点Q
(2)过点P作PR⊥CD,垂足为R
四、用心做一做,马到成功!
18、填空完成推理过程:(每空1分,共20分)
[1].如图,∵AB∥EF( 已知 )
∴∠A +=1800( )
∵DE∥BC( 已知 )
∴∠DEF=( )
∠ADE=()
[2].如图,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的关系,并说明你的理由.
解:BE∥CF.
理由:∵AB⊥BC,BC⊥CD (已知)
∴_______ = _________= ( )
∵ ( )
∴∠ABC-∠1=∠BCD-∠2 ,( )
即∠EBC=∠BCF
∴_______∥________ ( )
[3].如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D。试说明:AC∥DF。

2019新人教版七年级数学下册知识点及典型试题汇总

2019新人教版七年级数学下册知识点及典型试题汇总

最新版人教版七年级数学下册知识点汇总第五章 相交线与平行线一、知识网络结构二、知识要点 1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 ,垂直是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫平行线 。

如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是 邻补角。

邻补角的性质: 邻补角互补 。

如图1所示, 与 互为邻补角,与 互为邻补角。

+ = 180°; + = 180°; + = 180°; + = 180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。

对顶角的性质:对顶角相等。

如图1所示, 与 互为对顶角。

= ; = 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直, 其中一条叫做另一条的垂线。

如图2所示,当 = 90°时, ⊥垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样 的两个角叫 同位角 。

图3中,共有 对同位角: 与 是同位角;⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线 4321 4321____________________________:图3 a 57 8 61 3 42 b c与 是同位角; 与 是同位角; 与 是同位角。

(必考题)初中七年级数学下册第七单元《平面直角坐标系》知识点(答案解析)

(必考题)初中七年级数学下册第七单元《平面直角坐标系》知识点(答案解析)

一、选择题1.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 2.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 3.在平面直角坐标系中,点(2,1)A -关于y 轴对称的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 4.下列各点中,在第二象限的是( ) A .()1,0 B .()1,1 C .()1,1- D .()1,1- 5.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或3 6.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(-1,-2),“象”位于点(4,-1),则“炮”位于点( )A .(2,-1)B .(-1,2)C .(-2,1)D .(-2,2) 7.点A(-π,4)在第( )象限 A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限9.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 11.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .125012.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1) 13.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒ 14.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限 15.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题16.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.17.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.18.对于平面直角坐标系xOy中的点P(a,b),若点P的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P (1+2×4,2×1+4),即P′(9,6).若点P在x轴的正半轴上,点P的“k属派生点”为点P′,且线段PP′的长度为线段OP长度的5倍,则k的值为___.19.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.20.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),…,则坐标为(﹣505,﹣505)的点是______.21.如图,在平面直角坐标系中,已如点A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A →→→→的规律紧绕在四边形ABCD的边上,则细线的另一端所处,并按A B C D A在位置的点的坐标是__________.22.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 23.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣c|+8b -=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 24.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.25.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按 A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.26.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.三、解答题27.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).28.如图是我国南沙群岛中某个小岛的平面示意图,小明建立了平面直角坐标系后,营房的坐标为(2,5)-,哨所2的坐标为(2,2)-.(1)请将小明所做的坐标系在图上画出,并写出雷达,码头,停机坪,哨所1的坐标. (2)如果平移直角坐标系,使营房为坐标原点,值班士兵从营房出发,沿着(3,3),(1,6),(4,8),(4,7),(5,2),(1,10)---的路线巡逻,请依次写出他所经过的地方.29.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B 的对应点为Q ,点C 的对应点为R .观察变换前后各对应点之间的关系,若点M 经过这种变换后的对应为N,则点N的坐标为(______,______)(用含m,n的式子表示)30.如图,已知五边形 ABCDE 各顶点坐标分别为A(-1,-1),B(3,-1),C(3,1),D(1,3),E(-1,3)(1)求五边形 ABCDE 的面积;(2)在线段 DC 上确定一点 F,使线段 AF 平分五边形 ABCDE 的面积,求 F 点的坐标.。

浙教版七年级下册数学知识点总结及例题

浙教版七年级下册数学知识点总结及例题

浙教版七年级下册数学知识点总结及例题第1章平行线1.在同一平面内,两条直线的位置关系只有两种:相交与平行.2.平行线的定义:在同一平面内......,不相交的两条直线叫做平行线.“平行”用符号“∥”表示.思考:定义中为什么要有“在同一平面内”这个条件?3.平行线的基本事实:经过直线外...一点,有且只有一条直线与这条直线平行.思考:为什么要经过“直线外”一点?4.用三角尺与直尺画平行线的方法:一贴,二靠,三推,四画.(注意:作图题要写结论)5.★★★★★同位角、内错角、同旁内角判断过程:①画出给定的两个角的边(共三条边),公共边就就是截线,剩下两条边就就是被截线;②根据同位角、内错角、同旁内角的概念判断.同位角:在截线的同旁,被截线的同一侧.内错角:在截线的异侧,被截线之间.同旁内角:在截线的同旁,被截线之间.练习:如图,∠1与∠2就是一对___________;∠2与∠3就是一对___________;∠1与∠5就是一对___________;∠1与∠3就是一对___________;∠1与∠4就是一对___________;∠4与∠5就是一对___________;6.★★★★★平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)平行线的定义:在同一平面内......,不相交的两条直线平行;(5)平行于同一条直线的两条直线平行;(不必在同一平面内)(6)在同一平面内......,垂直于同一条直线的两条直线互相平行.练习:如图,要得到AB∥CD,那么可添加条件______________________________.(写出全部) 7.★★★★★平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.练习:如图,已知∠1=58°,∠3=42°,∠4=138°,则∠2=________°、8.★★★★★图形的平移(1)概念:一个图形沿某个方向移动,在移动的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移.(2)性质:平移不改变图形的形状、大小与方向;一个图形与它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等.(3)描述一个图形的平移时,必须指出平移的方向..!..与距离练习:如图,已知△ABC与其平移后的△DEF.①点A的对应点就是________,点B的对应点就是________;②线段AC的对应线段就是________;线段AB的对应线段就是________;③平移的方向就是__________,平移的距离就是______________________.④若AC=AB=5,BC=4,平移的距离就是3,则CF=________,DB=________,AE=________,四边形AEFC的周长就是_________.9.★★★折叠问题方法:(1)找到折叠后与折叠前的图形,若折叠前的图形没有画出,自己必须补画上去;(2)找到折叠前后能重合的角,它们的度数相等;(3)利用平行线的性质、对顶角的性质、三角形的内角与、邻补角的性质、平角等计算出角度.练习:(1)如图,将一张纸条ABCD沿EF折叠,若折叠角∠FEC=64°,则∠1=________.(2)如图,有一条直的宽纸带,按图折叠,则∠α=_______.(3)如图,将一条两边沿互相平行的纸带折叠,①写出图中所有与∠6相等的角;②若∠6=x°,请用含x的代数式表示∠4的度数.第2章二元一次方程组1.★★★二元一次方程的概念三个条件:(1)含有两个未知数;(2)未知数的项的次数就是一次;(3)都就是整式.练习:方程①x -1 y+2=0,②xy =-2,③x 2-5x =5,④2x =1-3y 中,为二元一次方程的就是____________.2.★★★★把二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式(1)用含x 的代数式表示y ,则应变形为“y =…”的形式;(2)用含y 的代数式表示x ,则应变形为“x =…”的形式.练习:(1)已知方程2x -3y =7,用关于x 的代数式表示y 得_______________、(2)已知方程3x +2y =6,用关于y 的代数式表示x 得_______________、3.★二元一次方程的整数解方程3x +2y =21的正整数解就是_________________________.4.二元一次方程组的概念三个条件:(1)两个一次方程;(2)两个方程共有两个未知数;(3)都就是整式.5.★★★★★解二元一次方程组基本思路:消元消元方法:(1)代入消元;(2)加减消元.(注意:一定要把解代入原方程组检验,保证正确)练习:(1)⎩⎪⎨⎪⎧x -2y =23x +2y =10 (2)⎩⎪⎨⎪⎧y =3x 3x +y =126.★★★★常考题型练习:(1)已知代数式kx +b ,当x =2时值为-1,当x =3时值为-3,则a +b =_________.(2)若方程组⎩⎪⎨⎪⎧ax -2y =12x +by =5的解就是⎩⎪⎨⎪⎧x =1y =a ,则b =________.(3)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +3y =k x +2y =-1的解互为相反数,则k 的值就是_______.(4)请您写出一个以⎩⎪⎨⎪⎧x =3y =-1为解的二元一次方程组:_______________、 (5)已知方程组⎩⎪⎨⎪⎧2x +y =5x +3y =5,则x +y 的值为___________.7.某公司有甲、乙两个工程队.(1)两队共同完成一项工程,乙队先单独做1天后,再由两队合做2天完成了全部工程.已知甲队单独完成此项工程所需的天数就是乙队单独完成所需的天数的三分之二,则甲、乙两队单独完成各需多少天?(2)甲工程队工作5天与乙工程队工作1天的费用与为34000元;甲工程队工作3天与乙工程队工作2天的费用与为26000元,则两队每天工作的费用各多少元?(3)该公司现承接一项(1)中2倍的工程由两队去做,且甲、乙两队不在同一天内合做,又必须各自做整数天,试问甲、乙两队各需做多少天?若按(2)中的付费,您认为哪种方式付费最少?8.某企业承接了一批礼盒的制作业务,该企业进行了前期的试生产,如图 1 所示的长方形与正方形纸板(长方形的宽与正方形的边长相等)加工成如图 2 所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该企业原计划用若干天加工纸箱 300 个,后来由于提升工作效率,实际加工时每天加工速度为原计划的 1、5 倍,这样提前 3 天超额完成了任务,且总共比原计划多加工 15 个,问原计划每天加工礼盒多少个;(2)若该企业购进正方形纸板 550 张,长方形纸板 1200 张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完;(3)该企业某一天使用的材料清单上显示,这天一共使用正方形纸板 100 张,长方形纸板a张,全部加工成上述两种纸盒,且 150<a<168,试求在这一天加工两种纸盒时 a 的所有可能值.(请直接写出结果)第3章整式的乘除1.★★★★★公式与法则(1)同底数幂的乘法:底数不变,指数相加.a m·a n=a m+n(m,n都就是正整数)(2)幂的乘方:底数不变,指数相乘.(a m) n=a mn(m,n都就是正整数)(3)积的乘方:等于把积的每一个因式分别乘方,再把所得的幂相乘.(ab)n=a n b n(n都就是正整数)(4)乘法公式:①平方差公式:(a+b)(a-b)=a2-b2②完全平方公式:(a+b)2=a2+b2+2ab(a-b)2=a2+b2-2ab(5)同底数幂的除法:底数不变,指数相减.a m÷a n=a m-n(a≠0)(6)a0=1(a≠0)(7)a-p= 1ap(a≠0),当a就是整数时,先指数变正,再倒数.当a就是分数时,先把底数变倒数,再指数变正.(8)单项式乘单项式:系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式.(9)单项式乘多项式:用单项式去乘多项式的每一项,再把所得的积相加.m(a+b)=ma+mb(10)多项式乘多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加. (a+n)(b+m)=ab+am+nb+nm(11)单项式除以单项式:把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(12)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.(a+b+c)÷m=a÷m+b÷m+c÷m(m≠0)练习:(1)(2a2)3=___________;3y·(-2x2y3)=___________;(9x3-3x)÷(3x)=___________;(-2)0=___________;(-3)-3=___________;(- 23)-2=___________;(2a-1)2=_______________;(a3)2•a-2a3• a4=______________;(1-2a)2-(2-a)(1+a)=_______________;(x-2)(x+2)-(1-2x)2=_________________.2.★★★★★用科学记数法表示较小的数:a×10-n(1≤|a|<10)方法:第一个不为零的数前面有几个零就就是负几次方.练习:(1)科学记数法表示0、0000103=_________________.(2)1纳米=0、000000001米,则0、33纳米=________米.(用科学计数法表示)(3)把用科学记数法表示的数7、2×10-4写成小数形式为___________________.3.★★★★常考题型(1)已知a+b=3,ab=-1,则a2+b2=___________.(2)若多项式x2-(x-a)(x+2b)+4的值与x的取值大小无关,那么a,b一定满足_____________.(3)关于x的代数式(3-ax)(x2+2x-1)的展开式中不含x2项,则a=___________.(4)若代数式x2+3x+2可以表示为(x-1)2+a(x-1)+b的形式,则a+b的值就是.(5)若(x-m)(2x+3)=2x2-nx+3,则m-n=__________.(6)若(2x-5y)2=(2x+5y)2+M,则代数式M应就是__________________.(7)如图,一块砖的外侧面积为a,那么图中残留部分的墙面的面积为_______________.(8)如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条“之”字路,余下部分绿化,道路的宽为a米,则绿化的面积为________________m2.(9)定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为 n2k(其中k就是使n2k为奇数的正整数),并且运算重复进行.例如,取n=26,则:若n=449,则第449次“F运算”的结果就是_________.第4章因式分解1.★★★★因式分解的概念:把一个多项式...化成几个整式的积....的形式,叫做因式分解,也叫分解因式.因式分解与整式乘法就是互逆关系.练习:下列从左到右边的变形,就是因式分解的就是( )A.(3-x)(3+x)=9-x2B.(y+1)(y-3)=-(3-y)(y+1)C.4yz-2y2z+z=2y(2z-yz)+zD.-8x2+8x-2=-2(2x-1)22.★★★★★因式分解的方法(1)提公因式法:先确定应提取的公因式,然后用公因式去除这个多项式,所得的商作为另一个因式,最后把多项式写成这两个因式的积的形式.ma+mb+mc=m(a+b+c)确定公因式的方法:系数的最大公因数与相同字母的最低次幂.即:(□)2-(△)2=(□+△)(□-△)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2即:(□)2±2(□)(△)+(△)2=(□±△)2练习:(1)下列多项式能用完全平方公式分解因式的就是( )A.x2-4B.x2+2x+4C.4x2+4x+1D.x2+y2(2)下列多项式能用平方差公式分解因式的就是( )A.x2+4B.x2+2x+1C.x2-4xD.-x2+9(3)因式分解:①a3-9a=_____________________、②x-xy2=_____________________.③x2-8x+16=_________________、④3ax2-6axy+3ay2=________________.⑤a3-4a(a-1)=_________________、⑥(x-2y)2-x+2y=________________.3.★★★★完全平方式:我们把多项式a2+2ab+b2与a2-2ab+b2叫做完全平方式.即:(□)2±2(□)(△)+(△)2练习:(1)若x2+(2p-3)x+9就是完全平方式,则p的值等于=____________.(2)多项式9x2-x+1加上一个单项式后成为一个整式的平方,请写出3个满足条件的单项式:_____________________________.4.十字相乘法:十字分解法的方法简单来讲就就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。

七年级数学下册《立方根》知识点归纳及典型例题讲解

七年级数学下册《立方根》知识点归纳及典型例题讲解
举一反三:
【变式】将棱长分别为 和 的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________ .(不计损耗)
【答案】 .
【思路点拨】铁块排出的64 水的体积,是铁块的体积,也是高为 烧杯的体积.
【答案与解析】
解:铁块排出的64 的水的体积,是铁块的体积.
设铁块的棱长为 ,可列方程 解得
设烧杯内部的底面半径为 ,可列方程 ,解得 6.
答:烧杯内部的底面半径为6 ,铁块的棱长 4 .
【总结升华】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合.
类型三、利用立方根解方程
3、(2015春•北京校级期中)(x﹣2)3=﹣125.
【思路点拨】利用立方根的定义开立方解答即可.
【答案与解析】
解:(x﹣2)3=﹣125,
可得:x﹣2=﹣5,
解得:x=﹣3.
【总结升华】此题考查立方根问题,关键是先将x﹣2看成一个整体.
举一反三:
【变式】求出下列各式中的 :
立 了解立方根的含义;
2. 会表示、计算一个数的立方根,会用计算器求立方根.
【要点梳理】
【 立方根、实数,知识要点】
要点一、立方根的定义
如果一个数的立方等于 ,那么这个数叫做 的立方根或三次方根.这就是说,如果 ,那么 叫做 的立方根.求一个数的立方根的运算,叫做开立方.
要点三、立方根的性质
要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题.
要点四、立方根小数点位数移动规律
被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.例如, , , , .

北师大版七年级下册数学第三章知识点详细归纳附第三章测试卷及参考答案

北师大版七年级下册数学第三章知识点详细归纳附第三章测试卷及参考答案

北师大版七年级下册数学第三章知识点详细归纳附第三章测试卷及参考答案第三章变量之间的关系@考点归纳1.自变量一、变量的概念2.因变量变量之间的关系 1. 表格法2. 关系式法二、变量的表达方法(1).速度时间图象3. 图象法(2).路程时间图象一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。

2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。

3、自变量与因变量的确定:(1)自变量是先发生变化的量;因变量是后发生变化的量。

(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。

(3)利用具体情境来体会两者的依存关系。

二、表格1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。

(1)首先要明确表格中所列的是哪两个量;(2)分清哪一个量为自变量,哪一个量为因变量;(3)结合实际情境理解它们之间的关系。

2、绘制表格表示两个变量之间关系(1)列表时首先要确定各行、各列的栏目;(2)一般有两行,一行表示自变量,第二行表示因变量;(3)写出栏目名称,有时还根据问题内容写上单位;(4)在一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值。

(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。

三、关系式1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。

2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。

3、求两个变量之间关系式的途径:(1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并写成关系式的形式。

(2)根据表格中所列的数据写出变量之间的关系式;(3)根据实际问题中的基本数量关系写出变量之间的关系式;(4)根据图象写出与之对应的变量之间的关系式。

4、关系式的应用:(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;(3)根据关系式求值的实质就是解一元一次方程(求自变量的值)或求代数式的值(求因变量的值)。

人教版七年级下数学三角形知识点归纳、典型例题及考点分析

人教版七年级下数学三角形知识点归纳、典型例题及考点分析

BC三角形知识点归纳、典型练习题及考点分析一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A 、B 、C 表示三角形的三个顶点时,此三角形可记作△ABC ,其中线段AB 、BC 、AC 是三角形的三条边,∠A 、∠B 、∠C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.练习题:1、图中共有( A :5 B :6 C :7 D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF 3、三角形一边上的高( )。

A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能 4、能将三角形的面积分成相等的两部分的是( )。

【精品】2019新人教版七年级数学下册知识点及典型试题汇总

【精品】2019新人教版七年级数学下册知识点及典型试题汇总

最新版人教版七年级数学下册知识点汇总第五章 相交线与平行线一、知识网络结构二、知识要点1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 ,垂直是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。

如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是 邻补角。

邻补角的性质: 邻补角互补 。

如图1所示, 与 互为邻补角,与 互为邻补角。

+ = 180°; + = 180°; + = 180°; + = 180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。

对顶角的性质:对顶角相等。

如图1所示, 与 互为对顶角。

= ; = 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直, 其中一条叫做另一条的垂线。

如图2所示,当 = 90°时, ⊥垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样 的两个角叫 同位角 。

图3中,共有 对同位角: 与 是同位角; 与 是同位角; 与 是同位角; 与 是同位角。

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线 4321 4321____________________________:图3a 57 8 61 3 4 2b c②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。

北师大版七年级下册数学变量间的关系知识点梳理及典型例题

北师大版七年级下册数学变量间的关系知识点梳理及典型例题

第三章变量之间的关系知识点梳理及典型例题知识回顾——复习路程、速度、时间之间的关系:_______________ 2____________ 2______________ _知识点一常量与变量在一个变化过程中,我们称数值发生变化的量为.数值始终不变的量为;在某一变化过程中,如果有两个变量X和y,当其中一个变量x在一定范围内取一个数值时,另一个变量y也有唯一一个数值与其对应,那么,通常把前一个变量x叫做,后一个变量y叫做自变量的;注意:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如:s=60t,速度60千米/时是—,时间t和里程s为变量上是, S O知识点二用表格表示变量之间的关系表示两个变量之间的关系的表格,一般第一行表示自变量,第二行表示因变量;借助表格,可以表示因变量随自变量的变化而变化的情况。

注意:用表格可以表示两个变量之间的关系时,能准确地指出几组自变量和因变量的值,但不能全面地反映两个变量之间的关系,只能反映其中的一部分,从数据中获取两个变量关系的信息,找出变化规律是解题的关键.知识点三用关系式表示两个变量之间的关系例如,正方形的边长为X,面积为y,贝Ijy = x2这个关系式就是表示两个变量之间的对应关系,其中x是__________________ , y是______ ;一般地,含有两个未知数(变量)的等式就是表示这两个变量的关系式;【温馨提示】(1)写关系式的关键是写出一个含有自变量和因变量的等式,将表示因变量的字母单独写在等号的左边,右边是用自变量表示因变量的代数式.(2)自变量的取值必须使式子有意义,实际问题还要有实际意义.(3)实际问题中,有的变量关系不一定能用关系式表示出来.【方法技巧】列关系式的关键是记住一些常见图形的相关公式和弄清两个变量间的量的关系.根据关系式求值实质上是求代数式的值或解方程.知识点四用图象表示两个变量间的关系图象法就是用图象来表示两个变量之间的关系的方法;在用图象法表示变量之间的关系时,通常用水平方向的数轴(横轴)上的点表示 ___________________ ,用竖直方向的数轴(纵轴)上的点表示_________ ,用坐标来表示每对自变量和因变量的对应值所在位置;【温馨提示】图象法能直观、形象地描述两个变量之间的关系,但只是反映两个变量之间的关系的一部分,而不是整体,且由图象确定的数值往往是近似的【方法技巧】(1)借助图象,过某点分别向横轴、纵轴作垂线可以知道自变量取某个值时,因变量取什么值.(2)借助图象可判断因变量的变化趋势:图象自左向右是上升的,则说明因变量随着自变量的增大而增大,图象自左向右是上升下降的,则说明因变量随着自变量的增大而增大减小,图象自左向右是与横轴平行的,则说明因变量在自变量的增大的过程中保持不变.知识点五变量之间的关系的表示方法比较表示变量之间的关系,可以用、和;其中表格法一目了然,使用方便,但列出的数值有限,不容易看出因变量与自变量的变化规律;关系式法简单明了,能准确反映出整个变化过程中因变量与自变量之间的相互关系,但是求对应值时,要经过比较复杂的计算,而且在实际问题中,有的变量之间的关系不一定能用关系式表示出来;图象法的特点是形象、直观,可以形象地反映出变量之间的变化趋势和某些性质,是研究变量性质的好工具,其不足是由图象法往往难以得到准确的对应值;专题一能从表格中获取两个变量之间关系的信息1.有一个水箱,它的容积是500 L,现要将水箱注满,下面是注水的情况表(1)在这个注水过程中,反映的是两个变量 ____________ 与之间的关系,其中变量______ 是自变量,变量 ______ 是因变量;(2)这个水箱原有水__________ L;(3)min时水箱注满水;(4)由表中的数据可以看出,水箱的注水过程是均匀的,那么平均每分钟注水L.2. 一根合金棒在不同的温度下,其长度也不同,合金棒的长度和温度之间有如下关系:(1)上表反映了温度与长度两个变量之间的关系,其中___________ 自变量,是因变量.(2)当温度是10°C时,合金棒的长度是__________ cm.(3)如果合金棒的长度大于10.05 cm小于10.15 cm,根据表中的数据推测,此时的温度应在_______________ ℃〜℃的范围内.(4)当温度为-20 ℃和100 °C,合金棒的长度分别为______________ cm和cm.专题二根据表格确定自变量、因变量及变化规律3.七年级(1)班第一小组的同学星期天去郊外爬山,得到如下数据:(1)当爬到100 m时,所花的时间是多少?(2)当爬到每增加10 m时,所花的时间相同吗?(3)从表中数据的变化中,你能得到什么变化趋势?(1)上表反映了哪两个变量之间的关系?哪个变量是自变量?哪个变量是因变量?(2)如果用t表示时间,1/表示速度,那么随着t的变化,1/的变化趋势是什么?(3)当t每增加1s时,1/的变化情况相同吗?在哪一秒钟山的增加量最大?(4)若在高速公路上小汽车行驶速度的上限为120 km/h,试估计还需几秒这辆小汽车的速度就达到这个上限?专题三用关系式表示两个变量之间的关系5.若小强购买香蕉x千克(x大于40千克)付了y元,则y关于x的关系式为.6. (1)某礼堂共有25排座位,第一排有20个座位,后面每一排都比前一排多1 个座位,写出每排的座位数m与这排的排数〃的关系式,并写出自变量〃的取值范围.(2)在其他条件不变的情况下,请探究下列问题:①当后面每一排都比前一排多2个座位时,则每排的座位数m与这排的排数n 的关系式是(l<n<25,且〃是正整数);②当后面每一排都比前一排多3个座位、4个座位时,则每排的座位数m与这排的排数〃的关系式分别是___________________ , (l<n<25,且〃是正整数);③某礼堂共有p排座位,第一排有。

北师大数学七年级下册第一章知识点及习题

北师大数学七年级下册第一章知识点及习题

第一章:整式的运算一, 概念1, 整式:单项式和多项式统称为整式.2, 单项式: 由数字与字母或字母与字母的相乘组成的代数式叫做单项式。

单项式不含加减运算,分母中不含字母。

(单独的字母;单独的数字;数字与字母的乘积) 3, 多项式:几个单项式的和叫做多项式。

多项式含加减运算。

代数式:用运算符导(指加, 减, 乘, 除, 乘方, 开方)把数或表示数的字母连接而成的式子叫做代数式。

数的一切运算规律也适用于代数式。

单独的一个数或者一个字母也是代数式乘方:求n 个相同因数乘积的运算叫做乘方幂:假如把a^n 看作乘方的结果,则读作a 的n 次幂二, 公式, 法则:(1)同底数幂的乘法:a m ﹒a n =a m+n (同底,幂乘,指加)逆用: a m+n =a m ﹒a n (指加,幂乘,同底)(2)同底数幂的除法:a m ÷a n =a m-n (a ≠0)。

(同底,幂除,指减)逆用:a m-n = a m ÷a n (a ≠0)(指减,幂除,同底)(3)幂的乘方:(a m )n =a mn (底数不变,指数相乘)逆用:a mn =(a m )n(4)积的乘方:(ab )n =a n b n 推广:逆用, a n b n =(ab )n (当ab=1或-1时常逆用)(5)零指数幂:a 0=1(留意考底数范围a ≠0)。

(6)负指数幂:11()(0)p p p a a a a-==≠(底倒,指反) (7)单项式与多项式相乘:m(a+b+c)=ma+mb+mc 。

(8)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb 。

(9)平方差公式:(a+b )(a-b)=a 2-b 2(10)完全平方公式: 222222()2,()2,a b a ab b a b a ab b +=++-=-+逆用:2222222(),2().a ab b a b a ab b a b ++=+-+=-完全平方公式变形(知二求一):例如:229x +mxy+4y 是一个完全平方和公式,则m =;是一个完全平方差公式,则m =;是一个完全平方公式,则m =;(11)多项式除以单项式的法则:().a b c m a m b m c m ++÷=÷+÷+÷(12)常用变形:221((n n x y x y +--2n 2n+1)=(y-x), )=-(y-x)第一单元习题一, 填空1, 代数式4xy 3是__项式,次数是__2, 代数式x x a x a 5154323+-是__项式,次数是__ 3, (2x 2y+3xy 2)-(6x 2y -3xy 2)=________________4, 43)()(b a b a -⋅-=__________________5, (3x+7y)·(3x -7y)=________________6, (x+2)2-(x+1)(x -1)=______________7, ⑴, 251010-⨯=; ⑵, =⋅32a a ; ⑶, ()=535;二, 选择题(2×4=8)1, 下列计算正确的是 () A, 2a-a=2 B, x 3+x 3=x 6 C, 3m 2+2n=5m 2n D, 2t 2+t 2=3t 22, 下列语句中错误的是 ( ) A, 数字 0 也是单项式 B, 单项式 a 的系数与次数都是 1 C, 21x 2 y 2是二次单项式 C, -32ab 的系数是 -32 3, 下列计算正确的是 ()A, (-a 5)5=-a 25 B, (4x 2)3=4x 6 C, y 2·y 3-y 6=0 D, (ab 2c)3=ab 2c 3 4, (x+5)(x-3)等于 ( )A, x 2 -15 B, x 2 + 15 C, x 2 + 2x -15 D, x 2 - 2x - 15 5, 下列计算正确的是( )A, 422a a a =+ B, 632a a a =⋅ C, ()532a a = D, ()()123223a a a =⋅ 6, 下列计算正确的是( )A, ()623mn mn =;B, ()24222n m m n =;C, ()422293n m mn =-;D, ()51052n m n m =- 7, 8m 可以写成( )A, 42m m ⋅ B, 44m m + C, ()42m D, ()44m8, 计算()()1 52+--x x x 的结果,正确的是( ) A, 54+x B, 542+-x x C, 54--x D, 542+-x x 三, 计算 2, xy y xy y x 322122⋅⎪⎭⎫ ⎝⎛+- 3, (3a+2b )2-b 2 4, 用完全平方公式计算20012 5, 用平方差公式计算2004×19966, (3x+9)(6x+8) 7, (a-b+2)(a-b-2) 8, ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+5353b a b a 9, (3mn+1)(3mn-1)-8m 2n 2 10, (2x 2)3-6x 3(x 3+2x 2+x)11, 已知8b a =+,5ab -=,求下列各式的值。

人教版七年级下册数学各章知识点及练习题

人教版七年级下册数学各章知识点及练习题

人教版七年级下册数学各章知识点及练习题1.两条相交的直线所形成的四个角中,有一条公共边,而它们的另一条边则互为反向延长线。

如果两个角具有这种关系,那么它们互为相邻角。

2.两条相交的直线所形成的四个角中,有一个公共顶点,而一个角的两条边则分别是另一个角两条边的反向延长线。

如果两个角具有这种关系,那么它们互为对顶角,且具有相等的角度。

3.如果两条相交的直线中有一条直线与另一条直角,则这两条直线互为垂直线。

垂线的性质:⑴经过一点且垂直于已知直线的直线是唯一的。

⑵连接直线外一点与直线上各点的线段中,与已知直线垂直的线段长度最短。

4.直线外一点到这条直线的垂线段的长度称为该点到直线的距离。

5.如果两条直线被第三条直线所截,构成八个角,在没有公共顶点的角中,⑴如果两个角分别在两条直线的同侧,并且都在第三条直线的同侧,那么它们互为内错角;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,那么它们互为同旁内角;⑶如果两个角都在两直线之间,但它们在第三条直线的同一侧,那么它们互为对顶角。

6.不相交的两条直线在同一平面内互为平行线。

同一平面内的两条直线的位置关系只有平行和相交两种。

7.平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么它们互相平行。

8.平行线的判定:⑴如果两条直线与第三条直线的对应角互为相等角,则这两条直线平行。

⑵如果一条直线与第三条直线平行,另一条直线与这条直线对应的内角为直角,则这两条直线平行。

⑶如果两条直线与第三条直线平行,则这两条直线互相平行。

9.平行线的性质:⑴平行线之间的距离相等。

⑵平行线与第三条直线所构成的内错角互为相等角。

⑶平行线与第三条直线所构成的同旁内角互为补角。

10.把一个图形整体沿某一方向移动,会得到一个新图形,这种移动称为平移。

平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状和大小完全相同。

新图形中的每个点都是原图形中某个点移动后得到的,这两个点是对应点。

七年级数学下册 专题 第6讲 平行线重点、考点知识总结及练习

七年级数学下册 专题 第6讲 平行线重点、考点知识总结及练习

专题第6讲平行线知识点1 平行公理及推论1. 在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.直线a与直线b不相交时,直线a与b互相平行,记作a∥b.2. 平行公理:经过直线外一点,有且只有一条直线与已知直线平行.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 【典例】1.如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与(1)中所作的直线平行吗?【解析】解:(1)由平行公理可知,过直线a外的一点B画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与(1)中所作的直线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【方法总结】本题考查了平行公理及其推论.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.在公理中,要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行公理的推论是判定两直线平行的一种常用方法,要牢固掌握.【随堂练习】1.下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)在同一平面内,两条直线的位置关系只有相交,平行两种;(4)不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个【解答】解:(1)在同一平面内,过直线外一点一点有且只有一条直线与已知直线平行,原来的说法错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直,原来的说法错误;(3)在同一平面内,两条直线的位置关系只有相交,平行两种是正确的;(4)在同一平面内,不相交的两条直线叫做平行线,原来的说法错误.故说法中错误的个数是3个.故选:C.2.请你动手试试,过一条直线外的一点作这条直线的平行线,能作几条?由此能得出一个什么数学结论.____________________________.【解答】解:过一条直线外的一点作这条直线的平行线,能做1条,理由是:过直线外一点有且只有一条直线与这条直线平行.故答案为:能做一条,过直线外一点有且只有一条直线与这条直线平行.知识点2 平行线的判定1. 平行线的判定方法:判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.如图1,∵∠4=∠2,∴a∥b.判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.如图2,∵∠4=∠5,∴a∥b.判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.如图3,∵∠4+∠1=180°,∴a∥b.2. 重要结论:在同一平面内,垂直于同一条直线的两条直线互相平行.注意:条件“同一平面”不能缺少,否则结论不成立.【典例】1.如图,BE平分∠ABD,DE平分∠BDC,且∠E为直角,AB与CD平行吗?试说明理由.【解析】解:AB∥CD.理由:∵BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义),∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换).∵∠E为直角,即∠E=90°(已知),∴∠α+∠β=90°(直角三角形的两个锐角互余),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补,两直线平行).【方法总结】首先根据角平分线的定义可得∠ABD=2∠α,∠BDC=2∠β,根据等量代换可得∠ABD+∠BDC=2(∠α+∠β).由∠E为直角可得∠α+∠β=90°,进而得到∠ABD+∠BDC=180°,然后根据“同旁内角互补,两直线平行”可得答案.此题主要考查了平行线的判定,关键是掌握角平分线的定义和平行线的判定方法.【随堂练习】1.完成下面的证明,括号内填根据.如图,直线a、b、c被直线l所截,量得∠1=65°,∠2=115°,∠3=65°.求证:a∥b证明:∠1=65°,∠3=65°∴_______∴___________________∵∠2=115°,∠3=65°∴____________∴___________________∴a∥b【解答】证明:∵∠1=65°,∠3=65°∴∠1=∠3,∴a∥c(同位角相等,两直线平行),∵∠2=115°,∠3=65°∴∠2+∠3=180°,∴b∥c(同旁内角相等,两直线平行)∴a∥b(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)故答案为:∠1=∠3;a∥c(同位角相等,两直线平行);∠2+∠3=180°;b ∥c(同旁内角相等,两直线平行).2.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.【解答】解:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义),∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°,∴AB∥CD(同旁内角互补,两直线平行).3.如图,已知∠1=30°,∠B=60°,AB⊥AC,将证明AD∥BC的过程填写完整.证明:∵AB⊥AC∴∠_____=____°(______)∵∠1=30°∴∠BAD=∠_____+∠___=_____°又∵∠B=60°∴∠BAD+∠B=_____°∴AD∥BC(______________)【解答】证明:∵AB⊥AC∴∠BAC=90°(垂直定义)∵∠1=30°∴∠BAD=∠BAC+∠1=120°又∵∠B=60°∴∠BAD+∠B=180°∴AD∥BC(同旁内角互补,两直线平行)故答案为:BAC,90,垂直定义,BAC,1,120,180,同旁内角互补,两直线平行.知识点3 平行线的性质平行线的性质:性质1 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.如图1,∵a∥b,∴∠4=∠2.性质2 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.如图2,∵a∥b,∴∠4=∠5.性质3 两条平行线被第三条直线所截,同旁内角互补.简单说成:同旁内角互补,两直线平行.如图3,∵a∥b,∴∠4+∠1=180°.【典例】1.如图1,对于直线MN同侧的两个点A,B,若直线MN上的点P满足∠APM=∠BPN,则称点P为A,B在直线MN上的反射点.已知如图2,MN∥HG,AP∥BQ,点P为A,B在直线MN上的反射点,判断点B是否为P,Q在直线HG上的反射点,并说明理由.【解析】解:点B是P,Q在直线HG上的反射点,理由:∵点P为A,B在直线MN上的反射点,∴∠APM=∠BPQ,又∵HG∥MN,∴∠APM=∠BAP,∠BPQ=∠PBA,∴∠PAB=∠PBA,又∵AP∥BQ,∴∠PAB=∠QBG,∴∠PBA=∠QBG,∴点B是P,Q在直线HG上的反射点.【方法总结】依据点P为A,B在直线MN上的反射点,即可得到∠APM=∠BPQ,再根据平行线的性质,即可得到∠PAB=∠PBA,经过等量代换可得∠PBA=∠QBG,所以点B是P,Q在直线HG 上的反射点.本题是新定义题,正确理解“反射点”的概念和特征,并熟练应用平行线的性质是解题的关键.【随堂练习】1.如图,已知AB∥CD,点E在AC的右侧,∠BAE,∠DCE的平分线相交于点F.探索∠AEC与∠AFC之间的等量关系,并证明你的结论.【解答】解:∠AEC=2∠AFC.理由:如图,分别过E,F作EG∥AB,FH∥AB,则EG∥CD,FH∥CD,∴∠AEG=∠BAE,∠CEG=∠DCE,∴∠AEC=∠AEG+∠CEG=∠BAE+∠DCE,同理可得∠AFC=∠BAF+∠DCF,∵∠BAE,∠DCE的平分线相交于点F,∴∠BAE=2∠BAF,∠DCE=2∠DCF,∴∠AEC=2(∠BAF+∠DCF)=2∠AFC.2.课上教师呈现一个问题:已知:如图1,AB∥CD,EF⊥AB于点O,FG交CD于点P,当∠1=30°时,求∠EFG的度数.甲、乙、丙三位同学用不同的方法添加辅助线解决问题,如图:甲同学辅助线的做法和分析思路如下:辅助线:过点F作MN∥CD.分析思路:①欲求∠EFG的度数,由图可知只需转化为求∠2和∠3的度数之和;②由辅助线作图可知,∠2=∠1,从而由已知∠1的度数可得∠2的度数;③由AB∥CD,MN∥CD推出AB∥MN,由此可推出∠3=∠4;④由已知EF⊥AB,可得∠4=90°,所以可得∠3的度数;⑤从而可求∠EFG的度数.(1)请你根据乙同学所画的图形,描述辅助线的做法,并写出相应的分析思路.辅助线:_________________分析思路:(2)请你根据丙同学所画的图形,求∠EFG的度数.【解答】解:(1)辅助线:过点P作PN∥EF交AB于点N.分析思路:①欲求∠EFG的度数,由辅助线作图可知,∠EFG=∠NPG,因此,只需转化为求∠NPG的度数;②欲求∠NPG的度数,由图可知只需转化为求∠1和∠2的度数和;③又已知∠1的度数,所以只需求出∠2的度数;④由已知EF⊥AB,可得∠4=90°;⑤由PN∥EF,可推出∠3=∠4;AB∥CD可推出∠2=∠3,由此可推∠2=∠4,所以可得∠2的度数;⑥从而可以求出∠EFG的度数.(2)如图,过点O作ON∥FG,∵ON∥FG,∴∠EFG=∠EON∠1=∠ONC=30°,∵AB∥CD,∴∠ONC=∠BON=30°,∵EF⊥AB,∴∠EOB=90°,∴∠EFG=∠EON=∠EOB+∠BON=90°+30°=120°.3.问题情境:(1)如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC度数.小颖同学的解题思路是:如图2,过点P作PE∥AB,请你接着完成解答问题迁移:(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?(提示:过点P作PE∥AD),请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你猜想∠CPD、∠α、∠β之间的数量关系.【解答】解:(1)过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°﹣∠A=50°,∠CPE=180°﹣∠C=60°,∴∠APC=50°+60°=110°;(2)∠CPD=∠α+∠β,理由如下:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,∠CPD=∠β﹣∠α;理由:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;当P在BO之间时,∠CPD=∠α﹣∠β.理由:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.知识点4 平行线的判定与性质的综合运用两直线平行⇔同位角相等.两直线平行⇔内错角相等.同旁内角互补⇔两直线平行.“⇔”叫做“等价于”,即由左边能推出右边,由右边也能推出左边.【典例】1.如图,已知∠1=∠2,∠3=∠4,∠5=∠A,试说明:BE∥CF.【解析】解:如图,∵∠3=∠4(已知),∴AE∥BC(内错角相等,两直线平行),∴∠EDC=∠5(两直线平行,内错角相等).∵∠5=∠A(已知),∴∠EDC=∠A(等量代换),∴DC∥AB(同位角相等,两直线平行),∴∠5+∠ABC=180°(两直线平行,同旁内角互补),即∠5+∠2+∠3=180°.∵∠1=∠2(已知),∴∠5+∠1+∠3=180°(等量代换),即∠BCF+∠3=180°,∴BE∥CF(同旁内角互补,两直线平行).2.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=____________________.(2)如图2,若AC∥BD,点P在AC、BD外部,∠A,∠B,∠APB的数量关系是否发生变化?(3)已知:如图3,三角形ABC,试说明:∠A+∠B+∠C=180°.【解析】解:(1)如图1,过P作PE∥l1,∵l1∥l2,∴PE∥l1∥l2,∴∠APE=∠A,∠BPE=∠B,∴∠APB=∠APE+∠BPE=∠A+∠B,故答案为:∠A+∠B.(2)如图2,过点P作PE∥AC,则∠A=∠1.∵AC∥BD,∴PE∥BD,∴∠B=∠EPB.∵∠APB=∠BPE﹣∠1,∴∠APB=∠B﹣∠A;(3)如图3,过点A作MN∥BC,则∠B=∠1,∠C=∠2.∵∠BAC+∠1+∠2=180°,∴∠BAC+∠B+∠C=180°.【方法总结】平行线的判定是由角的关系得到两直线平行,平形线的性质是由两直线平行得到角之间的关系,他们都可以作为说理的依据.其他常见的说理依据有:已知、等量代换、对顶角相等、等角的余角相等、等角的补角相等、平行于同一条直线的两条直线互相平行、三角形的内角和等于180°等.【随堂练习】1.如图,DE⊥AB,∠1=∠A,∠2+∠3=180°,试判断CF与AB的位置关系,并说明理由.【解答】解:CF⊥AB,理由如下:∵∠1=∠A(已知)∴AC∥FG(同位角相等,两直线平行)∴∠2=∠ACF(两直线平行,内错角相等)∴∠2+∠3=180°(已知)∴∠ACF+∠3=180°∴DE∥CF(同旁内角互补,两直线平行)∴∠DEF=∠1+∠2∵DE⊥AB∴∠1+∠2=90°∴CF⊥AB2.如图1,直线AG与直线BH和DI分别相交于点A和点G,点C为DI上一点,且CE⊥AG,垂足为点E,∠DCE﹣∠HAE=90°.(1)求证:BH∥DI.(2)如图2:直线AF交DC于,AM平分∠EAF,AN平分∠BAE,证明:∠AFG =2∠MAN.【解答】证明:(1)因为∠DCE+∠ECG=180°,∠CEG+∠CGA+∠ECG=180°,所以∠DCE=∠CEG+∠CGA因为CD⊥AG所以∠DCE﹣∠CGA=∠CEG=90°又因为∠DCE﹣∠HAE=90°所以∠CGA=∠HAE所以BH∥DI(2)因为AM平分∠EAF AN平分∠BAE所以∠EAM=∠F AM∠EAN=∠BAN又因为∠MAN=∠EAN﹣∠EAM所以∠MAN=∠BAN﹣∠F AM又因为∠BAN=∠BAF+∠F AN∠F AM=∠MAN+∠F AN所以∠MAN=∠BAF﹣∠MAN所以∠BAF=2∠MAN又所以BH∥DI所以∠AFG=∠BAF所以∠AFG=2∠MAN.知识点5 命题、定理、证明1. 命题:判断一件事情的语句叫做命题.数学中的命题常可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.2. 真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:题设成立时,不能保证结论一定成立,这样的命题叫做假命题.3. 定理:经过推理证实的真命题叫做定理.判断一个命题正确性的推理过程叫做证明.4. 判断一个命题是真命题,需要进行证明;判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.【典例】1.判断下列命题是真命题还是假命题.如果是真命题,请证明,如果是假命题,请举出反例.(1)两个锐角的和是钝角;(2)在同一平面内,垂直于同一条直线的两条直线互相平行.【解析】解:(1)“两个锐角的和是钝角位”是假命题,如30°和40°的和为70°;(2)“在同一平面内,垂直于同一条直线的两条直线互相平行”为真命题.已知:如图,在同一平面内,直线b⊥a,直线c⊥a.证明:如图,∵b⊥a,c⊥a,∴∠1=90°,∠2=90°,∴∠1=∠2,∴b∥c.【方法总结】要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.(1)任意找两个锐角,使它们的和为锐角或直角即可;(2)写出已知、求证,作出图形,利用平行线的判定即可证明命题为真命题.【随堂练习】1.已知:三条不同的直线a、b、c在同一平面内:①a∥b;②a⊥c;③b⊥c;④a⊥b.请你用①②③④所给出的其中两个事项作为条件,其中一个事项作为结论(用如果…那么…的形式,写出命题,例如:如果a⊥c、b⊥c、那么a∥b).(1)写出一个真命题,并证明它的正确性;(2)写出一个假命题,并举出反例.【解答】解:(1)如果a⊥c、b⊥c、那么a∥b;理由:如图,∵a⊥c、b⊥c,∴∠1=90°,∠2=90°,∴∠1=∠2,∴a∥b.(2)如果a⊥c、b⊥c、那么a⊥b;反例:见上图,如果a⊥c、b⊥c、那么a∥b.2.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.【解答】已知:∠1=∠2,∠B=∠C求证:∠A=∠D证明:∵∠1=∠3又∵∠1=∠2∴∠3=∠2∴EC∥BF∴∠AEC=∠B又∵∠B=∠C∴∠AEC=∠C∴AB∥CD∴∠A=∠D综合运用1.“垂直于同一直线的两直线平行”的题设:_______________________________________,结论:___________________________.【答案】两条直线都垂直于同一条直线这两条直线互相平行【解析】解:把命题可以写成“如果…那么…”,则如果后面为题设,那么后面为结论.“垂直于同一直线的两直线平行”改写成为“如果…那么…”的形式为:如果两条直线都垂直于同一条直线,那么这两条直线互相平行.题设:两条直线都垂直于同一条直线;结论为:这两条直线互相平行.故答案为:两条直线都垂直于同一条直线这两条直线互相平行2.如图,已知长方形ABCD,将△BCD沿对角线BD折叠,记点C的对应点为C',若∠ADC'=24°,则∠BDC的度数为______________.【答案】57°【解析】解:如图,设AD与BC′交于点E.∵四边形ABCD是矩形,∴∠C=90°,AD∥BC,∠ADC=90°,∴∠3=∠4,∠1=∠2+∠4.∵△BDC′是由△BDC翻折得到,∴∠2=∠4,∠C=∠C′=90°,∠BDC=∠BDC′∴∠2=∠3,∵∠ADC′=24°,∴∠1=90°﹣∠EDC′=66°,∵∠1=∠2+∠4=2∠2,×66°=33°,∴∠2=∠3=12∴∠BDC=∠D-∠3=90°-33°=57°.故答案为57°.3.在同一平面内三条直线交点有多少个?甲:同一平面三直线相交交点的个数为0个,因为a∥b∥c,如图(1)所示.乙:同一平面内三条直线交点个数只有1个,因为a,b,c交于同一点O,如图(2)所示.以上说法谁对谁错?为什么?【解析】解:甲、乙说法都不对,都少了三种情况.a∥b,c与a,b相交如图(1);a,b,c两两相交如图(2),所以三条直线互不重合,交点有0个或1个或2个或3个,共四种情况.4.如图,如果CD∥AB,CE∥AB,那么C,D,E三点是否共线?你能说明理由吗?【解析】解:C,D,E三点共线.理由:因为过直线AB外一点C有且只有一条直线与AB平行,直线CD、DE都经过点C 且与AB平行,所以直线CD、DE重合,所以点C、D、E三点共线.5.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?【解析】解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以AC∥BD(同位角相等,两直线平行).又因为AC⊥AE(已知),所以∠EAC=90°(垂直的定义).所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=125°.所以∠EAB=∠FBG(等量代换).所以AE∥BF(同位角相等,两直线平行).6.判断下列命题是真命题还是假命题;如果是假命题,请举一个反例.(1)两个锐角的和是锐角;(2)若a>b,则a2>b2;【解析】解:(1)假命题.反例为:两个锐角分别为40°,60°,它们的和为100°,为钝角;(2)假命题.反例为:a=1,b=﹣3,但是a2=1<b2=9.7.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE 平分∠FGD,若∠EFG=90°,∠E=35°,求∠EFB的度数.【解析】解:∵∠EFG=90°,∠E=35°,∴∠FGH=180°-∠EFG-∠E=180°-90°-35°=55°.∵GE平分∠FGD,∴∠FHG=∠HGD=55°.∵AB∥CD,∴∠FHG=∠HGD =55°.∴∠FHE=180°-∠FHG=180°-55°=125°.在△EFH中,∠EFB=180°-∠FHE-∠E=180°-125°-35°20°.8.如图,已知:AB∥CD,∠1=∠2,∠3=∠4,求证:(1)∠4=∠DAC;(2)AD∥BE.【解析】证明:(1):∵AB∥CD,∴∠4=∠BAF(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质),即∠BAF=∠DAC,∴∠4=∠DAC,(2)∵∠4=∠DAC,∠3=∠4,∴∠3=∠DAC,∴AD∥BE(内错角相等,两直线平行).。

湘教版数学七年级下册期末知识点复习+各章节培优题

湘教版数学七年级下册期末知识点复习+各章节培优题

七年级下册总复习第一章二元一次方程【知识点归纳】1.含有个未知数,并且项的次数都是的方程叫做二元一次方程。

2.把个含有未知数的二元一次方程(或者一个二元一次方程,一个一元一次方程)联立起来组成的方程组,叫做二元一次方程组。

3.在一个二元一次方程组中,使每一个方程两边的值都的一组未知数的值,叫做这个二元一次方程组的解。

4.由二元一次方程组中的一个方程的某一个未知数用含有的代数式表示,再代入另一方程,便得到一个一元一次方程。

这种解方程组的方法叫做消元法,简称代入法。

5.两个二元一次方程中同一未知数的系数或时,把这两个方程相减或相加,就能消去这个未知数,从而得到一个一元一次方程。

这种解方程组的方法叫做消元法,简称加减法。

6.列二元一次方程组解决实际问题的关键是寻找。

【典型例题】1.已知方程组,甲同学正确解得,而乙同学粗心,把c给看错了,解得,求abc的值.2.已知关于x,y的方程组的解是,求关于x,y的方程组的解.3.先阅读,然后解方程组.解方程组时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得这种方法被称为“整体代入法”.请用这样的方法解方程组.4.阅读下列解方程组的方法,然后回答问题. 解方程组解:由①﹣②得2x +2y=2即x +y=1③ ③×16得16x +16y=16④ ②﹣④得x=﹣1,从而可得y=2 ∴方程组的解是.(1) 请你仿上面的解法解方程组.(2)猜测关于x 、y 的方程组的解是什么,并利用方程组的解加以验证.5.南山植物园以其优美独特的自然植物景观,现已成为重庆市民春游踏青、赏四季花卉、观山城夜景的重要旅游景区.若该植物园中现有A 、B 两个园区,已知A 园区为矩形,长为(x +y )米,宽为(x ﹣y )米;B 园区为正方形,边长为(x +3y )米.(1)请用代数式表示A 、B 两园区的面积之和并化简;(2)现根据实际需要对A 园区进行整改,长增加(11x ﹣y )米,宽减少(x ﹣2y )米,整改后A 区的长比宽多350米,C D 投入(元/平方米) 13 16 收益(元/平方米)1826且整改后两园区的周长之和为980米.若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如下表:求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)6.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?7.小明从家到学校的路程为3.3千米,其中有一段上坡路,平路,和下坡路.如果保持上坡路每小时行3千米.平路每小时行4千米,下坡路每小时行5千米.那么小明从家到学校用一个小时,从学校到家要44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?第二章整式的乘法【知识点归纳】1.同底数幂相乘,不变,相加。

七年级数学下册知识点及典型试题

七年级数学下册知识点及典型试题

七年级数学下册知识点汇总 第五章 相交线与平行线一、知识网络结构二、知识要点1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 ,垂直是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。

如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 ,另一条边互为反向延长线的两个角是邻补角。

邻补角的性质: 邻补角互补 。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线 4321 4321____________________________:的两个角叫 同位角 。

②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。

北师大版七年级下册数学【一到三章】知识点归纳附一到三章测试卷及参考答案

北师大版七年级下册数学【一到三章】知识点归纳附一到三章测试卷及参考答案

北师大版七年级下册数学【一到三章】知识点归纳附一到三章测试卷及参考答案一章整式的运算@考点归纳1. 单项式一、整式2. 多项式1. 同底数幂的乘法2. 幂的乘方3. 积的乘方二、幂运算 4. 同底数幂的除法5. 零指数幂6. 负指数幂1. 整式的加减(1).单项式与单项式相乘(2).单项式与多项式相乘2. 整式的乘法(3).多项式与多项式相乘三、整式运算(4).平方差公式(5).完全平方公式(1).单项式除以单项式3.整式的除法(2).多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或-1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册知识点汇总 第五章 相交线与平行线一、知识网络结构二、知识要点 1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 ,垂直是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。

如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 ,另一条边互为反向延长线的两个角是邻补角。

邻补角的性质: 邻补角互补 。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线 4321 4321____________________________:的两个角叫同位角。

②在两条直线(被截线) 之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。

③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。

7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

性质4:平行于同一条直线的两条直线互相平行。

如果a∥b,a∥c,则∥。

8、平行线的判定:判定1:同位角相等,两直线平行。

如图5所示,如果 =或=或= 或 = ,则图5判定2:内错角相等,两直线平行。

如图5所示,如果=或 = ,则a∥b。

判定3:同旁内角互补,两直线平行。

如图5所示,如果+=180°;+ =180°,则a∥b。

判定4:平行于同一条直线的两条直线互相平行。

如果a∥b,a∥c,则∥。

9、判断一件事情的语句叫命题。

命题由题设和结论两部分组成,有真命题和假命题之分。

如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。

真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

平移后,新图形与原图形的形状和大小完全相同。

平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等③对应角相等B EDA CF87654321DCBA二、练习:1、如图1,直线a,b相交于点O ,若∠1等于40°,则∠2等于( )A.50°ﻩ B.60° ﻩC.140° ﻩD .160° 2、如图2,已知AB ∥CD ,∠A =70°,则∠1的度数是( )A.70°B.100°C.110°D.130°3、已知:如图3,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠ 与2∠的关系一定成立的是( ) A .相等ﻩﻩ B .互余 C.互补 ﻩ D.互为对顶角图1 图2 图3 4、如图4,AB DE ∥,65E ∠=,则B C ∠+∠=( )A.135ﻩ B.115ﻩ C .36ﻩ D .65图4 图5 图65、如图5,小明从A处出发沿北偏东60°方向行走至B 处,又沿北偏西20方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( ) A .右转80° B.左转80° C .右转100° D .左转100° 6、如图6,如果AB ∥CD ,那么下面说法错误的是( )A.∠3=∠7; B .∠2=∠6 C 、∠3+∠4+∠5+∠6=1800 D 、∠4=∠8 7、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是( )DBAC1a b1 2OABCD EF 2 1 OabM P N123 A B Ca b 1 2 3 E A . 42138 、;B. 都是10 ;C. 42138 、或4210 、;D . 以上都不对 8、下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中( )A.①、②是正确的命题;B.②、③是正确命题;C.①、③是正确命题 ;D.以上结论皆错9、下列语句错误的是( )A.连接两点的线段的长度叫做两点间的距离;B.两条直线平行,同旁内角互补C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D.平移变换中,各组对应点连成两线段平行且相等 10、如图7,a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( )A.180 B .270 C.360 D .54011、如图8,直线a b ∥,直线c 与a b , 相交.若170∠=,则2_____∠=.图8 图9 图10 12、如图9,已知170,270,360,∠=︒∠=︒∠=︒则4∠=______︒.13、如图10,已知AB ∥CD ,BE 平分∠A BC ,∠CDE =150°,则∠C =______14、如图11,2∠ 图11 2 图131 2 bacbac d 123 4ABCDE15、如图12所示,请写出能判定CE ∥A B的一个条件 . 16、如图13,已知AB CD //,∠α=____________ 17、推理填空:(每空1分,共12分)如图: ① 若∠1=∠2,则 ∥ ( ) 若∠DAB +∠AB C=1800,则 ∥ ()②当 ∥ 时,∠ C+∠ABC=1800 ( ) 当 ∥ 时,∠3=∠C ()18、如图,∠1=30°,AB ⊥C D,垂足为O ,EF 经过点O.求∠2、∠3的度数.19、已知:如图AB ∥CD ,EF 交AB 于G,交C D于F ,F H平分∠EF D,交AB 于H ,∠AG E=500,求:∠BHF 的度数.20、观察如图所示中的各图,寻找对顶角(不含平角):(1)对对顶角; (3)如图c,图中共有___对对顶角.(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?第六章 实数321DCBAABCDO123EF【知识点一】实数的分类ﻫ1、按定义分类: 2.按性质符号分类:注:0既不是正数也不是负数.ﻫ【知识点二】实数的相关概念1.相反数ﻫ(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.ﻫ(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.2ﻫ.绝对值|a|≥0.3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.ﻫ▲▲平方根【知识要点】1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“错误!”。

2. 如果x2=a,则x叫做a的平方根,记作“±错误!”(a称为被开方数)。

3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

4.平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

5. 如果x3=a,则x叫做a的立方根,记作“错误!”(a称为被开方数)。

6.正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。

8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0. 9.一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如25==.,525005010.平方表:(自行完成)题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3,a ≥0。

2=a (a ≥0)=a 取任何数)。

5、区分2=a (a ≥0),与2a =a6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

【知识点三】实数与数轴数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.ﻫ【知识点四】实数大小的比较ﻫ 1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.无理数的比较大小: 【典型例题】1.下列语句中,正确的是( )A.一个实数的平方根有两个,它们互为相反数B.负数没有立方根C.一个实数的立方根不是正数就是负数D.立方根是这个数本身的数共有三个 2. 下列说法正确的是( )A.-2是(-2)2的算术平方根B .3是-9的算术平方根C 16的平方根是±4 D 27的立方根是±33. 已知实数x ,y 满足2=0,则x-y 等于4.求下列各式的值 (1)81±;(2)16-;(3)259;(4)2)4(-5. 已知实数x,y 满足(y+1)2=0,则x-y 等于6. 计算(1)64的立方根是(2)下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±。

相关文档
最新文档