七年级下册数学典型题易错题整理

合集下载

七年级下册数学易错题整理附答案(超好)

七年级下册数学易错题整理附答案(超好)

七年级数学下易错题练习答案第五章相交线与平行线1.如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14° B.16° C.90°﹣α D.α﹣44°【解答】解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得∠3=∠1+30°,∴∠1=44°﹣30°=14°,故选:A.2.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14° B.15° C.16° D.17°【解答】解:如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选:C.3.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70° C.80° D.110°【解答】∴∠2=180°﹣50°﹣50°=80°.故选:C.4.如图把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30° C.40° D.50°【解答】解:∵直尺对边互相平行,故选:C.∴∠3=∠1=50°,∴∠2=180°﹣50°﹣90°=40°.5.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°【解答】解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得,∠DGH=∠DGE=74°,∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°,故选:D.6.如图,AB∥CD,点E在线段BC上,∠CDE=∠CED.若∠ABC=30°,则∠D为()A.85°B.75° C.60° D.30°【解答】故选:B.7.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°【解答】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°﹣∠BDC=90°﹣62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选:D.8.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25° B.35° C.45° D.65°【解答】解:如图,过点C作CD∥a,则∠1=∠ACD.∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°.故选:A.9.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补二、填空题1.如图,把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B ′M 或B ′M 的延长线上,则∠EMF = 90°2.如图,把长方形ABCD 沿EF 对折,若∠1=500,则∠AEF= 115度.3 将长方形纸片ABCD 沿过A 点的直线折叠,折痕为线段AE ,得到图8所示的图形,已知∠CED ′=50º,则∠AED = 65 度.4、改写成如果…那么…形式1、改写:如果三个角是一个三角形的内角,那么这三个角的和是180°。

七年级下册数学试卷错题集

七年级下册数学试卷错题集

一、选择题1. 错题:下列哪个数是负数?A. -3B. 0C. 3D. 5错误答案:B正确答案:A解题过程:在数轴上,负数位于0的左侧,因此-3是负数。

2. 错题:下列哪个数是正数?A. -3B. 0C. 3D. 5错误答案:C正确答案:D解题过程:在数轴上,正数位于0的右侧,因此5是正数。

3. 错题:下列哪个数是有理数?A. √2B. πC. -1/2D. 无理数错误答案:A正确答案:C解题过程:有理数是可以表示为两个整数比的数,因此-1/2是有理数。

二、填空题1. 错题:下列哪个数是整数?A. -3.14B. 0.5C. 3D. √9错误答案:A正确答案:C解题过程:整数是没有小数部分的数,因此3是整数。

2. 错题:下列哪个数是无理数?A. √2B. πC. -1/2D. 3错误答案:B正确答案:A解题过程:无理数是不能表示为两个整数比的数,因此√2是无理数。

三、解答题1. 错题:已知a=2,b=-3,求a+b的值。

错误答案:-5正确答案:-1解题过程:a+b=2+(-3)=-12. 错题:已知x=3,求x^2-5x+2的值。

错误答案:4正确答案:-7解题过程:x^2-5x+2=3^2-53+2=9-15+2=-7总结:通过整理错题集,我们可以发现自己在学习过程中的不足,及时进行复习和巩固。

同时,了解自己的错误原因,有助于提高解题能力。

在今后的学习中,我们要认真对待每一道题目,总结经验,不断提高自己的数学水平。

人教版最新教材七年级数学下册经典易错题初一数学

人教版最新教材七年级数学下册经典易错题初一数学

七年级下册经典易错习题一、填空题1.一个数的平方等于它本身,这个数是;一个数的平方根等于它本身,这个数是;一个数的算术平方根等于它本身,这个数是;一个数的立方等于它本身,这个数是;一个数的立方根等于它本身,这个数是;一个数的倒数是它本身,这个数是;一个数的绝对值等于它本身,这个数是。

2.16的平方根为,=16,16的平方根等于 .3.;,则。

4.已知一个正数的两个平方根分别为3x-5和x-7,则这个正数为 .5.17-1的整数部分为;小数部分为;绝对值为;相反数为 .6. 如图,在数轴上,1的对应点是A、B, A是线段BC的中点,则点C所表示的数是。

7.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为。

8.如果∠1=80°,∠2的两边分别与∠1的两边平行,那么∠2= 。

9.已知点A(1+m,2m+1)在x轴上,则点A坐标为。

10.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为 .11.点P(a-2,2a+3)到两坐标轴距离相等,则a= .12.将点A(1,-3)向右平移2个单位,再向下平移2个单位后得到点B(a,b),则ab=.13.已知平面直角坐标系内点P的坐标为(-1,3),如果将平面直角坐标系向左平移3个单位,再向下平移2个单位,那么平移后点P的坐标为________.14.在平面直角坐标系中,已知A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有个。

15.点P(a+5,a)不可能在第象限。

16.平面直角坐标系内有一点P(x,y),满足x=0y,则点P在17.方程52=+yx在正整数范围内的解是_____ 。

18.已知x=1,y=﹣8是方程mx+y-1=0的解,则m的平方根是。

19.关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是。

20.如果不等式2x-m≤0的正整数解有3个,则m的取值范围是。

七年级下册数学易错题梳理

七年级下册数学易错题梳理

第三学段错题梳理(一) 姓名: 班级:一:选择题1.当n 为偶数时,()()n m a b b a -∙-与()n m a b +-的关系是( )A .相等.B . 当m 为偶数时互为相反数, 当m 为奇数时相等.C .互为相反数D . 当m 为偶数时相等, 当m 为奇数时互为相反数. 2.下列运算正确的是( )A. ()2222a b a ab b -+=--+ B. ()222244x y x xy y --=++ C. ()222242a b a ab b -=-+ D. 22211224m n m mn n⎛⎫-=-+ ⎪⎝⎭3、下列式子是完全平方式的是( )A 、22a ab b ++B 、222a a ++C 、2244x xy y --- D 、414x x -+4.为参加“爱我校园”摄影赛,小明同学将参与植树活动的照片放大为长a cm ,宽a 43cm 的形状,又精心在四周加上了宽2cm 的木框,则这幅摄影作品占的面积是( )2cmA.427432+-a a B. 167432+-a a C. 427432++a a D. 167432++a a 5、下列说法中错误的是( )A .过一点有且只有一条直线与已知直线平行B .两条直线相交,有且只有一个交点C .过一点有且只有一条直线与已知直线垂直D .若两条直线相交所成直角,则两条直线相互垂直二:填空题6.若20.3a =-,23b =-,213c ⎛⎫=- ⎪⎝⎭,013d ⎛⎫=- ⎪⎝⎭,则,,,a b c d 的大小关系是_____________7.把241x +加上一个单项式,使其成为一个完全平方式,请写出所有符合条件的单项式 8、求代数式229647x y x y ++-+的最小值 ;9、计算:()()nn 212333-⨯+-+的结果是10、算式22+22+22+22可化为___________11.若12+=m x ,my 43+=,请用含有x 的代数式表示为___________12、若322x x x k -++有一个因式是1x +,则k 的值为 . 13.若()()3312--+-x x 有意义,则x 的取值范围为_____________.14.若()()m x x nx x +-++3322的乘积中不含2x 和3x 的项,则m=______, n=______15. 已知2216(1)9x k xy y --+是一个完全平方式,则k= .16. 115,x x ⎛⎫+= ⎪⎝⎭44已知:x 则x +=____三:计算 17、(1) 2302121123⎪⎭⎫ ⎝⎛--+--;(2)()()222121a a a a ++-+18. 先化简,再求值:当1,12a b ==-时,求()()()2222216ab ab b a -+⋅⋅的值.19、先化简,再求值:()2()()()2()2x y x y x y y x y y ⎡⎤+---+-÷-⎣⎦,其中2,1x y ==-20.已知2)1(-a 与2+b 互为相反数,求)23)(32()2()2)((2a b b a b a b a b a -------+-的值。

七年级数学试卷错题集

七年级数学试卷错题集

一、选择题1. 错题:3 + 2 × 4 = 20正确答案:3 + 2 × 4 = 11错误原因:未正确运用乘法优先级原则。

2. 错题:8 ÷ 2 + 2 = 7正确答案:8 ÷ 2 + 2 = 6错误原因:未正确运用除法和加法的顺序。

3. 错题:5 × (3 + 2) = 25正确答案:5 × (3 + 2) = 25错误原因:题目本身正确,但误以为题目有误。

4. 错题:0.5 × 0.5 = 0.25正确答案:0.5 × 0.5 = 0.25错误原因:题目本身正确,但误以为题目有误。

5. 错题:(-2) × (-3) = 6正确答案:(-2) × (-3) = 6错误原因:题目本身正确,但误以为题目有误。

二、填空题1. 错题:一个数的3倍加上4等于24,这个数是()正确答案:8错误原因:未正确运用代数方法解方程。

2. 错题:如果a = 5,那么a - 2 =()正确答案:3错误原因:未正确进行变量替换。

3. 错题:一个长方形的长是6厘米,宽是3厘米,它的面积是()正确答案:18平方厘米错误原因:未正确运用长方形面积公式。

4. 错题:一个数的平方根是5,那么这个数是()正确答案:±5错误原因:未考虑平方根的正负。

5. 错题:一个数的倒数是2,那么这个数是()正确答案:1/2错误原因:未正确理解倒数的概念。

三、解答题1. 错题:解方程:2x - 5 = 11正确答案:x = 8错误原因:未正确运用等式性质解方程。

2. 错题:计算:(-3) × 4 + 2 × (-5)正确答案:-14错误原因:未正确运用有理数混合运算规则。

3. 错题:求长方体的体积,长是8厘米,宽是4厘米,高是6厘米。

正确答案:192立方厘米错误原因:未正确运用长方体体积公式。

4. 错题:计算三角形面积,底是10厘米,高是6厘米。

七年级下册数学典型题、易错题整理

七年级下册数学典型题、易错题整理

七年级下册数学典型题、易错题整理1、 在下列说法中:(1)是的平方根;(2)-9的平方根是±3;(3)(-5)2的算术平方根是-5;(4)32-是个负数;(5)已知a 是实数,则||2a a =;(6)全体实数和数轴上的点是一一对应,正确的个数是( )A 、1B 、2C 、3D 、42、若方程()()22930m x m x y ----=是关于x y 、的二元一次方程,则m 的值为 ( ) A. 3± B. 3 C. -3 D. 93、不等式组 的解集表示在数轴上为()4、 已知关于x 的不等式组 无解,则a 的取值范围是( )A 、1-≤aB 、1-<a 或2>aC 、21<<-aD 、2≥a5、平面直角坐标系内AB∥y 轴,AB=5,点A 的坐标为(-5,3),则点B 的坐标为( )A .(-5,8)B .(0,3)C .(-5,8)或(-5,-2)D .(0,3)或(-10,3)6、已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|,…,依此类推,则a 2012的值为()A .-1005 B .-1006 C .-1007 D .-20127、2006年我市有23 000名初中毕业生参加了升学考试,为了解23 000名考生的升学成绩,从中抽取了200名考生的试卷进行统计分析,以下说法正确的是( )A .23 000名考生是总体B .每名考生的成绩是个体(D)(C)(B)⎩⎨⎧<+--≤-4325x x ⎪⎩⎪⎨⎧>-><a x x x 12C .200名考生是总体的一个样本D .以上说法都不正确8、已知点P 的坐标为(2-a ,3a+6),且点P 到两坐标轴的距离相等,则a= .9、若不等式组⎩⎨⎧>-<+nm x n m x 的解集是53<<-x ,则不等式0<-n mx 的解集为 10、16的平方根为 25的立方根为 .11、以下命题中(1)对顶角相等(2)相等的角是对顶角(3)垂直于同一条直线的两直线互相平行(4)平行于同一条直线的两直线互相平行(5)同位角相等,其中真命题的序号为 . 12、若不等式组3x x a>⎧⎨>⎩,的解集为x a >,则a 的取值范围是13、不等式组8x x m<⎧⎨>⎩,有解,m 的取值范围是 .14、不等式组⎩⎨⎧->+<121m x m x 无解,m 的取值范围是15、到x 轴距离为2,到y 轴距离为3的坐标为 .16、已知x、y 都是实数,且4y =+,求x y 的平方根17、如果2小数部分为a ,3的小数部分为b ,求2++b a 的值.18、解方程4)12(2=-x19、如图,∠1+∠2=180°,∠DAE=∠BCF,DA 平分∠BDF.(1)AE 与FC 会平行吗说明理由.(2)AD 与BC 的位置关系如何为什么(3)BC 平分∠DBE 吗为什么20、在解方程组⎩⎨⎧-=-=+24155by x y ax 时,由于粗心,甲看错了方程组中的a ,而得解为⎩⎨⎧-=-=13y x ,乙看错了方程组中的b,而得解为⎩⎨⎧==45y x ,(1)甲把a 看成了什么,乙把b 看成了什么;(2)求出原方程组的正确解.21、小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱情况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:(1)求出右图中a 、b 的值,并补全条形图;(2)若此次调查中喜欢体育节目的女同学有10人,请估算该校喜欢体育节目的女同学有多少人22、为了保护环境,某企业决定购买10台污水处理设备。

七年级下册数学错题笔记

七年级下册数学错题笔记

七年级下册数学错题笔记一、有理数1.错题:计算-3 - (-5)。

-错误答案:-8。

-正确答案:2。

-错误原因:去括号时没有变号。

-总结:减去一个负数等于加上这个数的相反数。

2.错题:比较大小-2/3 和-3/4。

-错误答案:-2/3 > -3/4。

-正确答案:-2/3 < -3/4。

-错误原因:对于两个负数比较大小,绝对值大的反而小理解不深刻。

-总结:比较两个负数大小,先求绝对值,绝对值大的反而小。

二、整式的运算1.错题:(2a + 3b)(2a - 3b)。

-错误答案:4a² + 9b²。

-正确答案:4a² - 9b²。

-错误原因:对平方差公式掌握不熟练。

-总结:(a + b)(a - b)=a² - b²。

2.错题:化简3x²y - (2xy² - x²y)。

-错误答案:3x²y - 2xy² - x²y = 2x²y - 2xy²。

-正确答案:3x²y - 2xy² + x²y = 4x²y - 2xy²。

-错误原因:去括号时符号出错。

-总结:去括号时,括号前是负号,括号内各项要变号。

三、一元一次方程1.错题:解方程3x - 5 = 2x + 7。

-错误答案:x = 2。

-正确答案:x = 12。

-错误原因:移项时符号出错。

-总结:移项要变号。

2.错题:一个数的3 倍比这个数大6,求这个数。

-错误答案:设这个数为x,3x = x + 6,解得x = 3。

-正确答案:设这个数为x,3x - x = 6,解得x = 3。

-错误原因:对“一个数的3 倍比这个数大6”这句话的理解有误。

-总结:认真分析题目中的数量关系,准确列出方程。

四、几何图形初步1.错题:已知∠AOB = 60°,OC 平分∠AOB,则∠AOC 的度数是多少?-错误答案:30°。

最新七年级下册数学易错题精选

最新七年级下册数学易错题精选

初一年级下学期易错题精选(一)第五章相交线与平行线1.下列判断错误的是().A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.2.下列判断正确的是().A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.3.如图所示,图中共有内错角().A.2组;B.3组;C.4组;D.5组.4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().A.1个;B.2个;C.3个;D.4个.5.如图所示,下列推理中正确的有().①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC∥AD.A.1个;B.2个;C.3个;D.4个.6.如图所示,直线,∠1=70°,求∠2的度数.7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.正解:(1)是命题. 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等. 这个命题是一个错误的命题,即假命题.(2)是命题. 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?第六章平面直角坐标系1.点A的坐标满足,试确定点A所在的象限.2.求点A(-3,-4)到坐标轴的距离.第七章三角形1.如图所示,钝角△ABC中,∠B是钝角,试作出BC边上的高AE.2.有四条线段,长度分别为4cm,8cm,10cm,12cm,选其中三条组成三角形,试问可以组成多少个三角形?3.一个三角形的三个外角中,最多有几个角是锐角?4.如图所示,在△ABC中,下列说法正确的是().A.∠ADB>∠ADE;B.∠ADB>∠1+∠2+∠3;C.∠ADB>∠1+∠2;D.以上都对.正解:C.正解解析:∵∠ADB是△ADC的一个外角,∴∠ADB=∠1+∠2+∠3,∴∠ADB>∠1+∠2.5.一个多边形的内角和为1440°,求其边数.第八章二元一次方程组1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.2.用加减法解方程组.3.利用加减法解方程组.4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为().A.;B.;C..D..第九章不等式与不等式组1.利用不等式的性质解不等式:.2.某小店每天需水1m³,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81㎡,那么高至少为多少米时才够用?(精确到0.1m)3.解不等式组.第十章数据的收集、整理与描述1.调查一批药物的药效持续时间,用哪种调查方式?2.2011年4月11日《文汇报》报道:据不完全统计,至今上海自愿报名去西部地区工作的专业技术人员和管理人员已达3600多人,其中硕士、博士占4%,本科生占79%,大专生占13%. 根据上述数据绘制扇形统计图表示这些人员的学历分布情况.正解:如下图所示:3.某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是__________.4.26名学生的身高分别为(身高:cm ):160; 162; 160; 162; 160; 159; 159; 169; 172; 160;161; 150; 166; 165; 159; 154; 155; 158; 174; 161;170; 156; 167; 168; 163; 162.现要列出频率分布表,请你确定起点和分点数据.正解:起点为149.5,分五组:149.5~154.5,154.5~159.5,159.5~164.5,164.5~169.5,169.5~174.5.方程(组)、不等式(组)易错一、填空题1、关于x 的不等式2x-a ≥-2的解集如图所示,则a 的取值范围为_______2、已知3(2x-1)=2-3x 的解与关于x 的方程6-2k=2(x+3)的解相同,则k=_______3、某品牌商品,按标价8折出售,仍可以获得20%的利润,若该商品的标价为30元,则进价为 元。

七年级数学下册经典易错题

七年级数学下册经典易错题

七年级下册经典易错习题一、填空题1.一个数的平方等于它本身:这个数是:一个数的平方根等于它本身:这个数是:一个数的算术平方根等于它本身:这个数是:一个数的立方等于它本身:这个数是:一个数的立方根等于它本身:这个数是:一个数的倒数是它本身:这个数是:一个数的绝对值等于它本身:这个数是。

2.16的平方根为:=16:16的平方根等于.::则。

4.已知一个正数的两个平方根分别为3x-5和x-7:则这个正数为 .5.17-1的整数部分为:小数部分为:绝对值为:相反数为 .6. 如图:在数轴上:1的对应点是A、B: A是线段BC的中点:则点C所表示的数是。

7.已知:OA⊥OC:且∠AOB:∠AOC=2:3:则∠BOC的度数为。

8.如果∠1=80°:∠2的两边分别与∠1的两边平行:那么∠2= 。

9.已知点A(1+m:2m+1)在x轴上:则点A坐标为。

10.已知AB∥x轴:A点的坐标为(3:2):并且AB=5:则B的坐标为 .11.点P(a-2:2a+3)到两坐标轴距离相等:则a= .12.将点A(1:-3)向右平移2个单位:再向下平移2个单位后得到点B(a:b):则ab=.13.已知平面直角坐标系内点P的坐标为(-1:3):如果将平面直角坐标系向左平移3个单位:再向下平移2个单位:那么平移后点P的坐标为________.14.在平面直角坐标系中:已知A(2:-2):在y轴上确定一点P:使△AOP为等腰三角形:则符合条件的点P共有个。

15.点P(a+5:a)不可能在第象限。

16.平面直角坐标系内有一点P(x:y):满足x=0y:则点P在17.方程52=+yx在正整数范围内的解是_____ 。

18.已知x=1:y=﹣8是方程mx+y-1=0的解:则m的平方根是。

19.关于x的不等式(a+1)x>a+1的解集为x<1:那么a的取值范围是。

20.如果不等式2x-m≤0的正整数解有3个:则m的取值范围是。

21.一元一次不等式组x ax b⎧⎨⎩>>的解集是x>a:则a与b的关系是。

初中数学七年级下册易错题汇总大全附答案带解析之欧阳物创编

初中数学七年级下册易错题汇总大全附答案带解析之欧阳物创编

初中数学七年级下册易错题时间:2021.02.07 命题人:欧阳物相交线与平行线1.未正确理解垂线的定义1.下列判断错误的是().A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.错解:A或B或C.解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90°的特殊情况,反之,若两直线相交则不一定垂直.正解:D.2.未正确理解垂线段、点到直线的距离2.下列判断正确的是().A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.错解:A或B或C.解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义.A.这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离. 仅仅有垂线段,没有指明这条垂线段的长度是错误的.B.这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说“垂线的长度”就是错误的;C.这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度.正解:D.3.未准确辨认同位角、内错角、同旁内角3.如图所示,图中共有内错角().A.2组;B.3组;C.4组;D.5组.错解:A.解析:图中的内错角有∠AGF与∠GFD,∠BGF与∠GFC,∠HGF与∠GFC三组.其中∠HGF与∠GFC易漏掉。

正解:B.4.对平行线的概念、平行公理理解有误4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().A.1个;B.2个;C.3个;D.4个.错解:C或D.解析:平行线的定义必须强调“在同一平面内”的前提条件,所以②是错误的,平行公理中的“过一点”必须强调“过直线外一点”,所以④是错误的,①③是正确的.正解:B.5.不能准确识别截线与被截直线,从而误判直线平行5.如图所示,下列推理中正确的有().①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC∥AD.A.1个;B.2个;C.3个;D.4个.错解:D.解析:解与平行线有关的问题时,对以下基本图形要熟悉:“”“”“”,只有③推理正确.正解:A.6.混淆平行线的判定和性质、忽略平行线的性质成立的前提条件6.如图所示,直线,∠1=70°,求∠2的度数. 错解:由于,根据内错角相等,两直线平行,可得∠1=∠2,又因为∠1=70°,所以∠2=70°.解析:造成这种错误的原因主要是对平行线的判定和性质混淆. 在运用的时候要注意:(1)判定是不知道直线平行,是根据某些条件来判定两条直线是否平行;(2)性质是知道两直线平行,是根据两直线平行得到其他关系.正解:因为(已知),所以∠1=∠2(两直线平行,内错角相等),又因为∠1=70°(已知),所以∠2=70°.7.对命题这一概念的理解不透彻7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.错解:(1)(2)不是命题,(3)是命题.解析:对于命题的概念理解不透彻,往往认为只有存在因果关系的关联词才是命题,正确认识命题这一概念,关键要注意两点,其一必须是一个语句,是一句话;其二必须存在判断关系,即“是”或“不是”.正解:(1)是命题. 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等. 这个命题是一个错误的命题,即假命题.(2)是命题. 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.8.忽视平移的距离的概念8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?错解:正确.解析:平移的距离是指两个图形中对应点连线的长度,而不是线段,所以在这个平移过程中,平移的距离应该是线段AA′的长度.正解:错误.第六章平面直角坐标系1.不能确定点所在的象限1.点A的坐标满足,试确定点A所在的象限.错解:因为,所以,,所以点A在第一象限.解析:本题出错的原因在于漏掉了当,时,的情况,此时点A在第三象限.正解:因为,所以为同号,即,或,. 当,时,点A在第一象限;当,时,点A在第三象限.2.点到x轴、y轴的距离易混淆2.求点A(-3,-4)到坐标轴的距离.错解:点A(-3,-4)到轴的距离为3,到轴的距离为4.解析:错误的原因是误以为点A()到轴的距离等于,到轴的距离等于,而事实上,点A()到轴的距离等于,到轴的距离等于,不熟练时,可结合图形进行分析.正解:点A(-3,-4)到轴的距离为4,到轴的距离为3. 第八章二元一次方程组1.不能正确理解二元一次方程组的定义1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.错解:A或C.解析:方程组①④是二元一次方程组,符合定义,方程组③是二元一次方程组,符合定义,而且是最简单、最特殊的二元一次方程组.正解:D.2.将方程相加减时弄错符号2.用加减法解方程组 .错解:①-②得,所以,把代入①,得,解得.所以原方程组的解是 .错解解析:在加减消元时弄错了符号而导致错误.正解:①-②得,所以,把代入①,得,解得.所以原方程组的解是 .3.将方程变形时忽略常数项3.利用加减法解方程组 .错解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是 .错解解析:在①×2+②这一过程中只把①左边各项都分别与2相乘了,而忽略了等号右边的常数项4.正解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是 .4.不能正确找出实际问题中的等量关系4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为().A.;B.;C. .D. .错解:B或D.解析:错误的原因是等量关系错误,本题中的等量关系为:(1)第一车间实际生产台数+第二车间实际生产台数=798台;(2)第一车间计划生产台数+第二车间计划生产台数=680台.正解:C.第九章不等式与不等式组1.在运用不等式性质3时,未改变符号方向1.利用不等式的性质解不等式:.错解:根据不等式性质1得,即. 根据不等式的性质3,在两边同除以-5,得.解析:在此解答过程中,由于对性质3的内容没记牢,没有将“<”变为“>”,从而得出错误结果.正解:根据不等式的性质1,在不等式的两边同时减去5,得,根据不等式的性质3,在不等式的两边同时除以-5,得.2.利用不等式解决实际问题时,忽视问题的实际意义,取值时出现错误2.某小店每天需水1m³,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81㎡,那么高至少为多少米时才够用?(精确到0.1m)错解:设高为m时才够用,根据题意得. 由. 要精确到0.1,所以.答:高至少为1.2m时才够用.解析:最后取解时,没有考虑到问题的实际意义,水箱存水量不得小于1m³,如果水箱的高为时正好够,少一点就不够了. 故最后取近似值一定要大于,即取近似值时只能入而不能舍.正解:设高为m时才够用,根据题意得. 由于,而要精确到0.1,所以.答:水箱的高至少为1.3m时才够用.3.解不等式组时,弄不清“公共部分”的含义3.解不等式组 .错解:由①得,由②得,所以不等式组的解集为.错解解析:此题错在对“公共部分”的理解上,误认为两个数之间的部分为“公共部分”(即解集). 实质上,和没有“公共部分”,也就是说此不等式组无解. 注意:“公共部分”就是在数轴上两线重叠的部分.正解:由①得,由②得,所以不等式组无解.第十章数据的收集、整理与描述1.全面调查与抽样调查选择不当1.调查一批药物的药效持续时间,用哪种调查方式?错解:全面调查.解析:此调查若用全面调查具有破坏性,不宜采用全面调查.正解:抽样调查.2.未正确理解定义2.2006年4月11日《文汇报》报道:据不完全统计,至今上海自愿报名去西部地区工作的专业技术人员和管理人员已达3600多人,其中硕士、博士占4%,本科生占79%,大专生占13%. 根据上述数据绘制扇形统计图表示这些人员的学历分布情况.错解:如下图所示:解析:漏掉其他人员4%,扇形表示的百分比之和不等于1,正确的扇形统计图表示的百分比之和为1.正解:如下图所示:3.对频数与频率的意义的理解错误3.某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是__________.错解:捐10元的5人,.解析:该题的错误是因为将5+10+5作为总次数,实际上应是25为总次数,这其实是对频率概念错误理解的结果.正解:0.2二元一次方程组应用探索二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示:十位上的数个位上的数对应的两位数相等关系解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x ,或只设十位上的数为x ,那将很难或根本就想象不出关于x 的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y y x y -=⎧⎨-=⎩,解得200150x y =⎧⎨=⎩, 因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数. 四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.。

《易错题》初中七年级数学下册第八单元《二元一次方程组》经典习题(专题培优)

《易错题》初中七年级数学下册第八单元《二元一次方程组》经典习题(专题培优)

一、选择题1.把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,公路长为y米.根据题意,下面所列方程组中正确的是()A.6(1)5(211)y xx y=-⎧⎨+-=⎩B.6(1)5(21)y xx y=-⎧⎨+=⎩C.65(211)y xx y=⎧⎨+-=⎩D.65(21)y xx y=⎧⎨+=⎩A解析:A【分析】设原有树苗x棵,公路长为y米,由栽树问题“栽树的棵数=分得的段数+1”,建立方程组即可.【详解】设原有树苗x棵,公路长为y米,由题意,得6(1)5(211)y xx y=-⎧⎨+-=⎩,故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组.关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.2.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种B解析:B【分析】首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.【详解】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7-35 x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【点睛】本题主要考查二元一次方程的应用,关键在于根据题意列方程.3.下列四组数值中,方程组2534a b ca b ca b c++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A.11abc=⎧⎪=⎨⎪=-⎩B.121abc=-⎧⎪=⎨⎪=-⎩C.112abc=-⎧⎪=⎨⎪=-⎩D.123abc=⎧⎪=-⎨⎪=⎩B解析:B【解析】分析:首先利用②-①和②+③得出关于a和b的二元一次方程组,从而求出a和b的值,然后将a和b代入任何一个式子得出c的值,从而得出方程组的解.详解:0?25?34?a b ca b ca b c++=⎧⎪-+=-⎨⎪--=-⎩①②③,②-①可得:a-2b=-5 ④,②+③可得:5a-2b=-9⑤,④-⑤可得:-4a=4,解得:a=-1,将a=-1代入④可得:b=2,将a=-1,b=2代入①可得:c=-1,∴方程组的解为:121abc=-⎧⎪=⎨⎪=-⎩,故选B.点睛:本题主要考查的是三元一次方程组的解法,属于基础题型.消元法的使用是解决这个问题的关键.4.关于x、y的方程组53x ayx y+=⎧⎨-=⎩的解是1•xy=⎧⎨=⎩,其中y的值被盖住了,不过仍能求出a,则a的值是()A.2 B.-2 C.1 D.-1B 解析:B【分析】把1x=代入②,得到y的值,再将x和y的值代入①即可求解.【详解】解:53x ayx y+=⎧⎨-=⎩①②,把1x=代入②,得2y=-,把12xy=⎧⎨=-⎩代入①可得:125a-=,解得2a=-,故选:B.【点睛】本题考查二元一次方程组的解,把1x=代入②得到y的值是解题的关键.5.二元一次方程组22x yx y+=⎧⎨-=-⎩的解是()A.2xy=⎧⎨=-⎩B.2xy=⎧⎨=⎩C.2xy=⎧⎨=⎩D.2xy=-⎧⎨=⎩B解析:B【解析】分析:方程组利用加减消元法求出解即可.详解:22x yx y+⎧⎨--⎩=①=②,①+②得:2x=0,解得:x=0,把x=0代入①得:y=2,则方程组的解为2 xy⎧⎨⎩==,故选B.点睛:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.二元一次方程组7317x yx y+=⎧⎨+=⎩的解是()A.52xy=⎧⎨=⎩B.25xy=⎧⎨=⎩C.61xy=⎧⎨=⎩D.16xy=⎧⎨=⎩A解析:A【分析】方程组利用加减消元法求出解即可.【详解】解:7317x yx y+=⎧⎨+=⎩①②,②﹣①得:2x=10,解得:x=5,把x=5代入①得:y=2,则方程组的解为52 xy=⎧⎨=⎩.故选:A.【点睛】本题考查了二元一次方程组的解法以及二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.本题还可以利用代入法求解.7.下列方程中,是二元一次方程的是().A .324x y z -=B .690+=xC .42x y =-D .123y x+= C 解析:C 【分析】含有两个未知数,并且含有未知数的项的次数是1的整式方程是二元一次方程,根据定义解答. 【详解】A 、含有三个未知数,不符合;B 、是一元一次方程,不符合;C 、符合;D 、含有分式,不符合; 故选:C. 【点睛】此题考查二元一次方程的定义,熟记该方程的特点是解题的关键.8.与方程529x y +=-构成的方程组,其解为33x y =-⎧⎨=⎩的是( )A .21x y +=B .328x y +=-C .348x y -=-D .543x y +=- D解析:D 【分析】将解33x y =-⎧⎨=⎩代入选项中验证即可求解.【详解】解:A .33x y =-⎧⎨=⎩不是方程21x y +=的解,该项不符合题意;B .33x y =-⎧⎨=⎩不是方程328x y +=-的解,该项不符合题意;C .33x y =-⎧⎨=⎩不是方程348x y -=-的解,该项不符合题意;D .33x y =-⎧⎨=⎩是方程543x y +=-的解,该项符合题意;故选:D . 【点睛】本题考查二元一次方程组的解,理解二元一次方程组的解的定义是解题的关键. 9.下列四组值中,不是二元一次方程21x y -=的解的是( )A .11x y =-⎧⎨=-⎩B .00.5x y =⎧⎨=-⎩C .10=⎧⎨=⎩x yD .11x y =⎧⎨=⎩D解析:D将各项中x 与y 的值代入方程检验即可. 【详解】 解:x-2y=1, 解得:x=2y+1,当y=-1时,x=-1,所以11x y =-⎧⎨=-⎩是方程21x y -=的解,选项A 不合题意,当y=-0.5时,x=-1+1=0,所以00.5x y =⎧⎨=-⎩是方程21x y -=的解,选项B 不合题意;当y=0时,x=1,所以10x y =⎧⎨=⎩是方程21x y -=的解,选项C 不合题意;当y=1时,x=2+1=3,所以11x y =⎧⎨=⎩不是方程21x y -=的解,选项D 符合题意;故选:D . 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 10.下列方程中,属于二元一次方程的是( ) A .235x x -=+ B .1xy y +=C .315x y -=-D .325x y+= C 解析:C 【分析】根据二元一次方程的定义解答. 【详解】解:A 、该方程中只含有1个未知数,不是二元一次方程,故本选项不符合题意; B 、该方程中含有未知数的项最高次数是2,不是二元一次方程,故本选项不符合题意; C 、该方程符合二元一次方程的定义,故本选项符合题意; D 、该方程不是整式方程,故本选项不符合题意; 故选:C . 【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.二、填空题11.若方程x |m|-2+(m+3)y 2m-n =6是关于x 、y 的二元一次方程,则m+n=_____8【分析】根据二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程可得|m|-2=12m-n=1解出mn 的值可得答案【详解】解:由题意知|m|-2=12m-n=1且m+3≠0解得m=解析:8根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得|m|-2=1,2m-n=1,解出m、n的值可得答案.【详解】解:由题意,知|m|-2=1,2m-n=1且m+3≠0.解得m=3,n=5.所以m+n=3+5=8.故答案是:8.【点睛】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.12.已知关于x的方程a(x-3)+b(3x+1)=5(x+1)有无穷多个解,则a+b=______________.【分析】根据题意移项去括号将原方程整理成关于x的方程最后根据题干所给条件列出方程组得出结果即可【详解】解:移项得:a(x−3)+b(3x+1)−5(x+1)=0去括号得:ax−3a+3bx+b−5x解析:【分析】根据题意移项、去括号、将原方程整理成关于x的方程,最后根据题干所给条件列出方程组得出结果即可.【详解】解:移项,得:a(x−3)+b(3x+1)−5(x+1)=0,去括号,得:ax−3a+3bx+b−5x−5=0,整理关于x的方程,得:(a+3b−5)x−(3a−b+5)=0,∵方程有无穷多解,∴350 350a ba b+-⎧⎨-+⎩==,解得:12ab-⎧⎨⎩==.则a+b=1.故答案为:1.【点睛】本题主要考查了解一元一次方程及解二元一次方程组,需要把握好题干条件,根据条件列出相应方程组.13.已知12xy=⎧⎪⎨=-⎪⎩是方程组522x b yx a y-=⎧⎨+=⎩的解,则a b+的值为_______ .【分析】将代入方程组求出a和b的值即可求解【详解】将代入方程组得:解得:∴故答案为:【点睛】本题考查了二元一次方程组的解方程组的解即为能使方程组中两方程都成立的未知数的值【分析】将012x y =⎧⎪⎨=-⎪⎩代入方程组522x b y x a y -=⎧⎨+=⎩,求出a 和b 的值,即可求解. 【详解】将012x y =⎧⎪⎨=-⎪⎩代入方程组522x b y x a y -=⎧⎨+=⎩,得: 121222b a ⎧-=-⎪⎪⎨⎛⎫⎪=⨯- ⎪⎪⎝⎭⎩, 解得:1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴11022a b +=-+=. 故答案为:0. 【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.14.“百鸡问题”译文:公鸡每只值五文钱,母鸡每只值三文钱,小鸡每三只值一文钱,现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?__________________________;(至少写出2种结果)02575或41878或81181或12484【分析】设公鸡有x 只母鸡有y 只则小鸡有(100−x−y )只由题意得到5x +3y +=100求出符合题意的方程的解即可【详解】设公鸡有x 只母鸡有y 只则小鸡有解析:0,25,75或4,18,78或8,11,81,或12,4,84. 【分析】设公鸡有x 只,母鸡有y 只,则小鸡有(100−x−y )只,由题意得到5x +3y +1003x y-- =100,求出符合题意的方程的解即可. 【详解】设公鸡有x 只,母鸡有y 只,则小鸡有(100−x−y )只, 根据题意得: 5x +3y +1003x y-- =100,化简得:y=25−74 x,当x=0时,y=25,100−x−y=75;当x=4时,y=18,100−x−y=78;当x=8时,y=11,100−x−y=81;当x=12时,y=4,100−x−y=84;当x=16时,y=−3,舍去.故答案为:0,25,75或4,18,78或8,11,81,或12,4,84.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)①由购买鸡的只数找出购买小鸡的只数;②找准等量关系,正确列出二元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)结合x、y均为整数求出二元一次方程的解.15.已知方程组32223x y mx y m+=+⎧⎨+=⎩的解适合8x y+=,则m=_______.19【分析】将m看做已知数表示出x与y代入x+y=8中计算即可求出m的值【详解】解:得5x=m+6即得:-5y=4-m即代入x+y=8中得:去分母得:2m+2=40解得:m=19故答案为:19【点睛解析:19【分析】将m看做已知数表示出x与y,代入x+y=8中计算即可求出m的值.【详解】解:322 23x y mx y m++⎧⎨+⎩=①=②32⨯-⨯①②得5x=m+6,即65mx+ =23⨯-⨯①②得:-5y=4-m,即45my-=代入x+y=8中,得:648 55m m+-+=去分母得:2m+2=40,解得:m=19.故答案为:19【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.16.“九九重阳节,浓浓敬老情”,今年某花店在重阳节推出“松鹤长春”“欢乐远长”“健康长寿”三种花束.“松鹤长春”花束中有8枝百合,16 枝康乃馨;“欢乐远长”花束中有6枝百合,16枝康乃馨,2枝剑兰;“健康长寿”花束中有4枝百合,12枝康乃馨,2枝剑兰.已知百合花每枝1元,康乃馨每枝34元,剑兰每枝5元,重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,则剑兰的销售量为________枝.【分析】设松鹤长春欢乐远长健康长寿三种花束的销量分别为:(单位:束)再分别求解一束松鹤长春欢乐远长健康长寿的单价根据重阳节当天销售这三种花束共2549元其中百合花的销售额为458元列方程组再求解剑兰 解析:216.【分析】设“松鹤长春”“欢乐远长”“健康长寿”三种花束的销量分别为:,,x y z (单位:束),再分别求解一束“松鹤长春”“欢乐远长”“健康长寿”的单价,根据重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,列方程组,再求解剑兰的销量:22y z +,即可得到答案. 【详解】解:设“松鹤长春”“欢乐远长”“健康长寿”三种花束的销量分别为:,,x y z (单位:束), 由题意可得:一束“松鹤长春”的单价为:318+16=204⨯⨯(元), 一束“欢乐远长”花束的单价为:316+16+52=284⨯⨯⨯(元), 一束“健康长寿”花束的单价为:314+12+25=234⨯⨯⨯(元),8644582028232549x y z x y z ++=⎧∴⎨++=⎩①② ②2⨯-①5⨯得:40564640302050982290,x y z x y z ++---=-26262808,y z ∴+= 108,y z ∴+= 22216,y z ∴+=即剑兰的销量为:216枝. 故答案为:216. 【点睛】本题考查的是三元一次方程组的应用,利用整体法求解方程组中的量是解题的关键. 17.我们称使方程2323x y x y++=+成立的一对数x ,y 为“相伴数对”,记为(),x y . (1)若()6,y 是“相伴数对”,则y 的值为______;(2)若(),a b 是“相伴数对”,请用含a 的代数式表示b =______.【分析】(1)根据使方程成立的一对数xy 为相伴数对记为(xy )将x 换成6代入计算即可;(2)结合(1)将x 和y 换成a 和b 代入计算即可用含a 的代数式表示b 【详解】(1)∵(6y )是相伴数对∴解得:;故解析:272-94a - 【分析】(1)根据使方程2323x y x y ++=+成立的一对数x ,y 为“相伴数对”,记为(x .y ),将x 换成6代入计算即可;(2)结合(1)将x 和y 换成a 和b ,代入计算即可用含a 的代数式表示b . 【详解】(1)∵(6,y )是“相伴数对”,∴662323y y ++=+, 解得:272y =-;故答案为:272-;(2)∵(a ,b )是“相伴数对”, ∴2323a b a b ++=+, 解得:94b a =-; 故答案为:94a -. 【点睛】本题考查了一元一次方程和二元一次方程的应用,解决本题的关键是理解题目中“相伴数对”的定义,并运用. 18.已知关于,x y 的方程组231x ay bx y -=⎧⎨+=-⎩的解是13x y =⎧⎨=-⎩,则a b +=___________.【分析】把方程组的解代入可得得到a 和b 的值即可求解【详解】解:把方程组的解代入可得:解得∴故答案为:【点睛】本题考查二元一次方程组的解掌握二元一次方程组的解的定义是解题的关键解析:73【分析】 把方程组的解13x y =⎧⎨=-⎩代入可得23331a b +=⎧⎨-=-⎩,得到a 和b 的值即可求解.【详解】解:把方程组的解13x y =⎧⎨=-⎩代入可得:23331a b +=⎧⎨-=-⎩, 解得13a =,2b =, ∴a b +=73, 故答案为:73. 【点睛】 本题考查二元一次方程组的解,掌握二元一次方程组的解的定义是解题的关键. 19.某风景区有4个相同的出口、4个相同的入口,假设在任何情况下每个入口的人数均是匀速出入,每个出口的人数均是匀速出入,当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数.受疫情影响,2020年五一期间,该风景区游览人数只允许达到平时可容纳人数的60%,当风景区人数已达到平时可容纳人数的10%时,若同时开放3个入口和2个出口,则经过__________小时刚好达到平时可容纳人数的60%.【分析】设每个入口每小时可进可容纳人数的每个出口每小时可出可容纳人数的根据当风景区人数已达到可容纳人数的20时若同时开放4个入口和2个出口则16小时刚好达到可容纳人数;若同时开放2个入口和2个出口则 解析:53【分析】设每个入口每小时可进可容纳人数的%x ,每个出口每小时可出可容纳人数的%y ,根据“当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数”,即可得出关于,x y 的二元一次方程组,解之即可得出,x y 的值,再将其代入60%10%3%2%x y --即可求出结论.【详解】解:设每个入口每小时可进可容纳人数的%x ,每个出口每小时可出可容纳人数的%y , 依题意,得: 1.64 1.62100208282=10020x y x y ⨯-⨯=-⎧⎨⨯-⨯-⎩, 解得:2015x y =⎧⎨=⎩, ∴60%10%50%53%2%320%215%3x y -==-⨯-⨯.故答案为:53.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.已知2353210x yx y+=⎧⎨+=⎩,则x+y﹣2020=_____.-2017【分析】先将两式相加求出x+y然后代入求解即可【详解】解:①+②得5x+5y=15即x+y=3所以x+y﹣2020=3﹣2020=﹣2017故答案为﹣2017【点睛】本题考查了二元一次方程解析:-2017【分析】先将两式相加求出x+y,然后代入求解即可.【详解】解:235 3210x yx y+=⎧⎨+=⎩①②,①+②得,5x+5y=15,即x+y=3,所以,x+y﹣2020=3﹣2020=﹣2017.故答案为﹣2017.【点睛】本题考查了二元一次方程组的解法,发现两式相加可求出x+y是解答本题的关键.三、解答题21.数学课上李老师说:咱们一起来玩儿一个找原点的游戏吧!(1)如图1,在数轴上标有A,B两点,已知A,B两点所表示的数互为相反数.①如果点A所表示的数是5-,那么点B所表示的数是____________;②在图1中标出原点O的位置;(2)图2是小慧所画的数轴,数轴上标出的点中任意相邻两点间的距离都相等.根据小慧提供的信息,标出隐藏的原点O的位置,写出此时点C所表示的数是____________;(3)如图3,数轴上标出若干个点,其中点A,B,C,D所表示的数分别为a,b,c,d.①用a ,c 表示线段AC 的长为____________;②如果数轴上标出的若干个点中每相邻两点相距1个单位(如1BC =),且210d a -=.判断此时数轴上的原点是A ,B ,C ,D 中的哪一点,并说明理由.解析:(1)①5;②见解析;(2)见解析;4;(3)①c -a ;②B 点,理由见解析【分析】(1)①由相反数的定义,即可得到答案;②取线段AB 的中点,即可得到原点的位置; (2)由AB 的距离和数轴上的点,先求出单位长度,确定原点的位置,即可得到答案; (3)①由数轴上两点之间的距离公式,即可得到答案;②由题意1BC =,得到7AD d a =-=,结合210d a -=,即可求出答案.【详解】解:(1)①∵点A 和点B 表示的数互为相反数,∴点B 表示的数为5;故答案为:5.②如图1所示.点O 为线段AB 的中点,即为原点.(2)∵20(8)28AB =--=,∴每一个小格代表的距离为:2874÷=,∴原点O 的位置如图2所示.∴点C 所表示的数是4;(3)①AC c a =-.②如图3,∵数轴上每相邻两点相距一个单位,∴7AD d a =-=.∵210d a -=,∴3a =-.∴0b =.即数轴上的原点是B 点.【点睛】本题考查了数轴的定义,数轴上两点之间的距离,以及数轴上表示的数,解题的关键是掌握数轴的相关知识,从而进行解题.22.一个电器超市购进A 、B 两种型号的电风扇进行销售,已知购进2台A 型号和3台B 型号共用910元,购进3台A 型号比购进2台B 型号多用260元.(1)求A 、B 两种型号的电风扇每台进价分别是多少元?(2)超市根据市场需求,决定购进这两种型号的电风扇共30台进行销售,A 种型号电风扇每台售价260元,B 种型号电风扇每件售价190元,若超市购进的两种电风扇全部售出后,总获利是1400元,求该超市本次购进A 、B 两种型号的电风扇各多少台?解析:(1)A 、B 两种型号的电风扇每台进价分别是200元和170元;(2)该超市本次购进A 、B 两种型号的电风扇各是20台和10台【分析】(1)设A 、B 两种型号的电风扇每台进价分别是x 元、y 元,进而利用购进2台A 型号和3台B 型号共用910元,购进3台A 型号比购进2台B 型号多用260元,列出二元一次方程组求出答案;(2)首先设购进A 种型号的电风扇a 台,则设购进B 种型号的电风扇(30-a )台,直接利用本次购进的两种电风扇全部售出后,总获利为1400元,列方程求出答案.【详解】解:(1)设A 、B 两种型号的电风扇每台进价分别是x 元、y 元,依题意,得2391032260x y x y +=⎧⎨-=⎩,解得200170x y =⎧⎨=⎩, 答:A 、B 两种型号的电风扇每台进价分别是200元和170元.(2)设购进A 种型号的电风扇a 台,则设购进B 种型号的电风扇(30)a -台, 依题意,得:(260200)(190170)(30)1400a a -+--=,解得:20a =,则3010a -=.答:该超市本次购进A 、B 两种型号的电风扇各是20台和10台.【点睛】此题主要考查了二元一次方程的应用,正确根据题目间等量关系列方程组进行计算求解是解题关键.23.甲,乙两位同学在解方程组11ax by cx y +=⎧⎨+=-⎩时,甲正确解得方程组的解为11x y =-⎧⎨=⎩.乙因抄错了方程中的系数c ,得到的解为21x y =⎧⎨=-⎩,若乙没有再发生其他错误,试求a 、b 、c 的值.解析:2a =,3b =,2c =【分析】所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,根据题意可得111a b c -+=⎧⎨-+=-⎩和121a b a b -+=⎧⎨-=⎩,解方程组可得原方程组中a 、b 、c 的值. 【详解】解:11x y =-⎧⎨=⎩代入到原方程组中,得111a b c -+=⎧⎨-+=-⎩,解得2c =, 乙仅因抄错了c 而求得21x y =⎧⎨=-⎩,但它仍是方程1ax by +=的解, 所以把21x y =⎧⎨=-⎩代入到1ax by +=中得21a b -=, 由121a b a b -+=⎧⎨-=⎩,解得23a b =⎧⎨=⎩, 所以2a =,3b =,2c =.【点睛】此题主要考查了二元一次方程组解的定义以及解二元一次方程组的基本方法.24.解下列方程组:(1) 137x y x y +=⎧⎨-=⎩ (2)23151475x y x y +=⎧⎪++⎨=⎪⎩解析:(1)21x y =⎧⎨=-⎩;(2)61x y =⎧⎨=⎩【分析】(1)方程组运用加减消元法求解即可;(2)方程组整理后,利用加减消元法求解即可.【详解】解:(1)137x y x y +=⎧⎨-=⎩①② ①+②得4x=8,解得,x=2把x=2代入①得,2+y=1,解得,y=-1所以,方程组的解为21x y =⎧⎨=-⎩;(2)方程组整理得,2315 5723 x yx y+=⎧⎨-=⎩①②①×7+②×3得,29x=174解得,x=6把x=6代入①得,y=1,所以,原方程组的解为61 xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法和加减消元法.25.解下列方程组(1)3 325 y xx y=-⎧⎨-=⎩;(2)723 9219 x yx y-=⎧⎨+=-⎩;(3)3221 27x yx y+=⎧⎨-=⎩;(4)232 491a ba b+=⎧⎨-=-⎩.解析:(1)14xy=-⎧⎨=-⎩;(2)15xy=-⎧⎨=-⎩;(3)53xy=⎧⎨=⎩;(4)1213ab⎧=⎪⎪⎨⎪=⎪⎩.【分析】(1)利用代入法解答;(2)利用加减法解答;(3)利用代入法解答;(4)利用加减法求解.【详解】(1)3325y xx y=-⎧⎨-=⎩①②,将①代入②,得3x-2(x-3)=5解得x=-1,将x=-1代入①,得y=-1-3=-4,∴方程组的解是14 xy=-⎧⎨=-⎩;(2)7239219x y x y -=⎧⎨+=-⎩①② 由①+②,得16x=-16,解得x=-1,将x=-1代入①,得-7-2y=3,解得y=-5,∴这个方程组的解是15x y =-⎧⎨=-⎩; (3)322127x y x y +=⎧⎨-=⎩①②, 由②得:y=2x-7③,将③代入①得,3x+2(2x-7)=21,解得x=5,将x=5代入③得,y=3,∴这个方程组的解是53x y =⎧⎨=⎩; (4)232491a b a b +=⎧⎨-=-⎩①②, 由①3⨯得,6a+9b=6③,②+③得,10a=5,解得a=12, 将a=12代入①,得1+3b=2, 解得b=13, ∴这个方程组的解是1213a b ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】此题考查解二元一次方程组,掌握解二元一次方程组的解法:代入法或加减法,根据每个方程组的特点选择恰当的解法是解题的关键.26.若方程组 4x y a x y a+=⎧⎨-=⎩的解是二元一次方程35900x y --=的一个解,求a 的值. 解析:6a =【分析】求出方程组 4x y a x y a+=⎧⎨-=⎩的解,代入35900x y --=即可求出a 的值. 【详解】解:4x y a x y a +=⎧⎨-=⎩①②, ①+②得:25x a =,即25x a =.,把25x a =.代入①得:15y a =-., 把25x a =.,15y a =-.代入方程, 得:7575900a a +-=..,解得:6a =.【点睛】本题考查了二元一次方程组的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键. 27.学校为了提高绿化品位,美化环境,准备将一块周长为76m 的长方形草地,设计分成长和宽分别相等的9块小长方形,(放置位置如图所示),种上各种花卉.经市场预测,绿化每平方米造价约为108元.(1)求出每一个小长方形的长和宽.(2)请计算完成这项绿化工程预计投入资金多少元?解析:(1)每个小长方形的长和宽分别是10米、4米;(2)完成这块绿化工程预计投入资金为38880元.【分析】(1)弄清题意,找出等量关系:2[5个小长方形的宽+(一个小长方形的长+两个小长方形的宽)]=周长和5个长方形的宽等于2个长方形的长,列二元一次方程组解答. (2)直接求出每个小长方形的面积,然后求出答案即可.【详解】解:(1)设小长方形的宽为x 米,长为y 米.则2(25)7652y x x x y ++=⎧⎨=⎩, 解得:410x y =⎧⎨=⎩,答:每个小长方形的长和宽分别是10米、4米;(2)104910838880⨯⨯⨯=(元),答:完成这块绿化工程预计投入资金为38880元.【点睛】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.要弄清小长方形长、宽和大长方形周长之间的关系.28.2019年8月,第二届全国青年运动会在山西太原举行,开幕式的门票价格如下表:元;若购买5张A 等票和1张B 等票,则购票款还缺100元.若小聪购买1张A 等票6张B 等票和3张C 等票共需花费多少?解析:2750元【分析】由题意可列二元一次方程组求得A 等票和B 等票的单价,从而得到买1张A 等票6张B 等票和3张C 等票的总花费.【详解】解:设A 等票和B 等票的单价分别为x 元和y 元,则由题意得:25270020052700100x y x y +=-⎧⎨+=+⎩,解之得: 500300x y =⎧⎨=⎩, ∴500+6×300+3×150=2750(元)答:小聪购买1张A 等票6张B 等票和3张C 等票共需花费2750元.【点睛】本题考查二元一次方程组的应用,设定适当的未知数后列出方程组并正确求解是解题关键.。

七年级数学易错题总结(含答案)

七年级数学易错题总结(含答案)

七年级数学易错题总结(含答案)一、选择题(本大题共9小题,共27.0分)1.观察等式:2+22=23−2;2+22+23=24−2;2+22+23+24=25−2…已知按一定规律排列的一组数:250、251、252.…、298、299.若250=a,用含a的式子表示这组数的和是().A. a2−aB. a2−2a−2C. a2−2aD. a2+a【答案】A【解析】【分析】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+⋯+2n=2n+1−2.由等式:2+22=23−2;2+22+23=24−2;2+22+23+24=25−2,得出规律:2+22+23+⋯+2n=2n+1−2,那么250+251+252+⋯+299=(2+22+23+⋯+ 299)−(2+22+23+⋯+249),将规律代入计算即可.【解答】解:∵2+22=23−2;2+22+23=24−2;2+22+23+24=25−2;…∴2+22+23+⋯+2n=2n+1−2,∴250+251+252+⋯+299,=(2+22+23+⋯+299)−(2+22+23+⋯+249)=(2100−2)−(250−2)=2100−250,∵250=a,∴2100=(250)2=a2,∴原式=a2−a,故选A.2.三条直线两两相交于同一点时,对顶角有m对;交于不同的三点时,对顶角有n对,则m与n的关系是()A. m<nB. m=nC. m>nD. m+n=10【答案】B【解析】【分析】本题考查对顶角,掌握对顶角相关概念是解答本题的关键.直线相交形成的对顶角的对数,只与有多少对直线相交有关,三条直线两两相交,每对相交的直线就会形成2对对顶角,这三条直线每两条都相交,相交直线的对数,与是否交于同一点无关,因而m=n.【解答】解:因为三条直线两两相交形成的对顶角的个数与是否交于同一点无关,所以m=n,故选B.3.两条直线相交形成的两个角为∠α和∠β,且∠α=(x+10)∘,∠β=(2x−25)∘,则∠α的度数为()A. 45°B. 75°C. 45°或75°D. 45°或55°【答案】C【解析】解:由题意可知∠α+∠β=180°或∠α=∠β,∵∠α=(x+10)°,∠β=(2x−25)°,∴x+10+2x−25=180或x+10=2x−25,解得:x=65或x=35,∴∠α=75°或45°,故选C.根据两直线相交得到对顶角与邻补角,从而得出两角相等或互补,得出方程,求出即可.本题考查了对顶角与邻补角,x−a=3x−14,若a为正整数时,方程的解也为正整数,则4.已知关于x的方程52a的最大值是()A. 12B. 13C. 14D. 15【答案】B【解析】【分析】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.表示出方程的解,根据方程的解与a都为正整数,确定出a的最大值即可.【解答】x=a−14,解:方程移项合并得:−12去分母得:−x=2a−28,解得:x=28−2a,∵方程的解x是正整数,∴28−2a>0,∴a<14,又a也为正整数,则a的最大值为13,故选:B.x−a=3x−14,若a为正整数时,方程的解也为正整数,则5.已知关于x的方程52a的最大值是()A. 12B. 13C. 14D. 15【答案】B【解析】【试题解析】【分析】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.表示出方程的解,根据方程的解与a都为正整数,确定出a的最大值即可.【解答】x=a−14,解:方程移项合并得:−12去分母得:−x=2a−28,解得:x=28−2a,∵方程的解x是正整数,∴28−2a>0,∴a<14则a的最大值为13,故选:B.x−a=3x−14,若a为正整数时,方程的解也为正整数,则6.已知关于x的方程52a的最大值是()A. 12B. 13C. 14D. 15【答案】Bx=a−14,【解析】解:方程移项合并得:−12去分母得:−x=2a−28,解得:x=28−2a,∵方程的解x是正整数,∴28−2a>0,∴a<14则a的最大值为13,故选:B.表示出方程的解,根据方程的解与a都为正整数,确定出a的最大值即可.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.下列说法中:①过两点有且只有一条直线;②两点之间线段最短;③过一点有且仅有一条直线垂直于已知直线;④线段的中点到线段的两个端点的距离相等.其中正确的有()A. 1个B. 2C. 3个D. 4个【答案】C【解析】解:①过两点有且只有一条直线,即两点确定一条直线,说法正确;②两点的所有连线中,线段最短.简单说成:两点之间,线段最短,说法正确;③在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;④线段的中点到线段的两个端点的距离相等,说法正确.故选C.根据直线的性质判断①;根据线段的性质判断②;根据垂线的性质判断③;根据线段的中点的定义判断④.本题考查了直线的性质,线段的性质,垂线的性质,线段的中点的定义,是基础知识,需牢固掌握.8.下列角度换算错误的是()A. 10.6°=10°36″B. 900″=0.25°C. 1.5°=90′D. 54°16′12″=54.27°【答案】A【解析】【分析】本题考查了度、分、秒之间的换算关系:1°=60′,1′=60″,难度较小.根据度、分、秒之间的换算关系求解.【解答】解:A.10.6°=10°36′,错误;B.900″=0.25°,正确;C.1.5°=90′,正确;D.54°16′12″=54.27°,正确;故选:A.9.若M和N都是3次多项式,则M+N为()A. 3次多项式B. 6次多项式C. 次数不超过3的整式D. 次数不低于3的整式【答案】C【解析】【分析】本题主要考查整式加减.多项式的次数即为多项式中次数最高项的次数.由M和N都是3次多项式,得到M+N的次数为3或2或1或0,即M+N的次数不一定为3次,不可能超过3次,即可得到正确的选项.【解答】解:∵M和N都是3次多项式,∴M+N为次数不超过3的整式.故选C.二、填空题(本大题共8小题,共24.0分)10.有三个互不相等的有理数,既可表示为−1,a+b,a的形式,又可表示为0,−ba,b的形式,则b2021a2020的值为.【答案】−1【解析】略11.德国数学家莱布尼兹证明了π=4×(1−13+15−17+19−111+113−115+⋯),由此可知:13−15+17−19+111−113+115−⋯=________.【答案】1−π4【解析】【分析】本题考查了有理数运算的运用.根据所给条件,观察题目所给条件,可将π=4×(1−13+1 5−17+19−111+113−115+⋯)整理变形,使之与所求的原式一致。

《易错题》初中七年级数学下册第五章《相交线与平行线》经典题(专题培优)

《易错题》初中七年级数学下册第五章《相交线与平行线》经典题(专题培优)

一、选择题1.下列语句不是命题的是( ).A .两直线平行,同位角相等B .作直线AB 垂直于直线CDC .若a b =,则22a b =D .等角的补角相等B解析:B【分析】根据“判断一件事情的语句叫做命题”进行判断即可得到答案.【详解】解:A 、两直线平行,同位角相等,是命题,不符合题意;B 、作直线AB 垂直于直线CD 是描述了一种作图的过程,故不是命题,符合题意;C 、正确,是判断语句,不符合题意;D 、正确,是判断语句,不符合题意.故选:B .【点睛】主要考查了命题的概念.判断一件事情的语句叫做命题.2.如图,下列条件中,不能判断直线a ∥b 的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180°B解析:B【分析】 根据平行线的判定定理逐项判断即可.【详解】A 、当∠1=∠3时,a ∥b ,内错角相等,两直线平行,故正确;B 、∠2与∠3不是同位角,也不是内错角,无法判断,故错误;C 、当∠4=∠5时,a ∥b ,同位角相等,两直线平行,故正确;D 、当∠2+∠4=180°时,a ∥b ,同旁内角互补,两直线平行,故正确.故选:B .【点睛】本题考查了平行线的判定,熟记判定定理是解题的关键.3.下列所示的四个图形中,∠1和∠2是同位角的是( )A .②③B .①②③C .①②④D .①④C解析:C【分析】 根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.4.如图,1∠与2∠是同位角的共有( )个A .1个B .2个C .3个D .4个B解析:B【分析】 根据同位角的概念对每个图形一一判断,选出正确答案即可.【详解】图1:1∠与2∠是同位角;图2:1∠与2∠不是同位角;图3:1∠与2∠不是同位角;图4:1∠与2∠是同位角;只有图1、图4中1∠与2∠是同位角.故选:B .【点睛】本题主要考查同位角的概念,熟记同位角的概念是解题关键.5.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°C解析:C【分析】 如图(见解析),先根据平行线的性质、角的和差可得66EAB EC C D AE ∠+∠=∠=︒,同样的方法可得F FAB FCD ∠=∠+∠,再根据角的倍分可得,2323FAB EAB FCD ECD ∠=∠∠=∠,由此即可得出答案. 【详解】如图,过点E 作//EG AB ,则////EG AB CD ,,EAB CE C A D G G E E ∴∠=∠∠∠=,66AEG EAB ECD CE A C G E ∴∠+=∠+=∠=∠∠︒,同理可得:F FAB FCD ∠=∠+∠,11,33EAF EAB ECF ECD ∠=∠∠=∠, ,2323FAB EAB FCD ECD ∴∠=∠∠=∠, ()266443333222F FAB FCD EAB ECD EAB ECD ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,故选:C .【点睛】本题考查了平行线的性质、角的和差倍分,熟练掌握平行线的性质是解题关键. 6.如图,△ABC 经平移得到△EFB ,则下列说法正确的有 ( )①线段AC的对应线段是线段EB;②点C的对应点是点B;③AC∥EB;④平移的距离等于线段BF的长度.A.1 B.2 C.3 D.4D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.7.下列命题是真命题的有()个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A.0 B.1 C.2 D.3B解析:B【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10°B.20°C.25°D.30°C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.9.下列命题中,属于假命题的是()A.如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B.内错角不一定相等C.平行于同一直线的两条直线平行>-,则a一定小于0DD.若数a使得a a解析:D【分析】利用三角形内角和对A进行判断;根据内错角的定义对B进行判断;根据平行线的判定方法对C进行判断;根据绝对值的意义对D进行判断.【详解】解:A、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A选项为真命题;B、内错角不一定相等,所以B选项为真命题;C、平行于同一直线的两条直线平行,所以C选项为真命题;D、若数a使得|a|>-a,则a为不等于0的实数,所以D选项为假命题.故选:D.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.如图,将△ABE 向右平移50px 得到△DCF ,如果△ABE 的周长是400px(1px=0.04cm ),那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm C解析:C【分析】 根据平移的性质可得DF=AE ,然后判断出四边形ABFD 的周长=△ABE 的周长+AD+EF ,然后代入数据计算即可得解.注意:1px = 0.04cm .【详解】∵1px = 0.04cm ,∴50px=2cm ,400px=16cm ,∵△ABE 向右平移2cm 得到△DCF ,∴DF=AE ,∴四边形ABFD 的周长=AB+BE+DF+AD+EF=AB+BE+AE+AD+EF=△ABE 的周长+AD+EF .∵平移距离为2cm ,∴AD=EF=2cm ,∵△ABE 的周长是16cm ,∴四边形ABFD 的周长=16+2+2=20cm .故选:C .【点睛】本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.二、填空题11.如图,直线AB ,CD 相交于点O ,AO 平分COE ∠,且50EOD ∠=︒,则DOB ∠的度数是________.【分析】根据求出利用AO 平分求得即可得到∠DOB=【详解】∵∴∵AO 平分∴∴∠DOB=故答案为:【点睛】此题考查求一个角的补角角平分线的性质对顶角相等正确理解补角定义求出是解题的关键解析:65︒【分析】根据180COE EOD ∠+∠=︒,50EOD ∠=︒,求出130COE ∠=︒,利用AO 平分COE ∠,求得65AOC ∠=︒,即可得到∠DOB=65AOC ∠=︒.【详解】∵180COE EOD ∠+∠=︒,50EOD ∠=︒,∴130COE ∠=︒,∵AO 平分COE ∠,∴65AOC ∠=︒,∴∠DOB=65AOC ∠=︒,故答案为:65︒.【点睛】此题考查求一个角的补角,角平分线的性质,对顶角相等,正确理解补角定义求出130COE ∠=︒是解题的关键.12.如图,直线AB 与CD 相交于点O ,EO ⊥CD 于点O ,OF 平分∠AOD ,且∠BOE =50°,则∠DOF 的度数为__.【分析】利用垂直定义可得∠COE =90°进而可得∠COB 的度数再利用对顶角相等可得∠AOD 再利用角平分线定义可得答案【详解】解:∵EO ⊥CD 于点O ∴∠COE =90°∵∠BOE =50°∴∠COB =90解析:70︒【分析】利用垂直定义可得∠COE =90°,进而可得∠COB 的度数,再利用对顶角相等可得∠AOD ,再利用角平分线定义可得答案.【详解】解:∵EO ⊥CD 于点O ,∴∠COE =90°,∵∠BOE =50°,∴∠COB =90°+50°=140°,∴∠AOD =140°,∵OF 平分∠AOD ,∴∠FOD =12∠AOD =70°, 故答案为:70°.【点睛】此题主要考查了垂直定义,关键是理清图中角之间的和差关系.13.两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒.72【分析】如果两个角的两边互相平行则这两个角相等或互补根据题意这两个角只能互补然后列方程求解即可【详解】解:设其中一个角是x°则另一个角是(180-x)°根据题意得解得x=72∴180-x=108解析:72【分析】如果两个角的两边互相平行,则这两个角相等或互补.根据题意,这两个角只能互补,然后列方程求解即可.【详解】解:设其中一个角是x°,则另一个角是(180-x)°,根据题意,得11(180)23x x =-, 解得x=72,∴180-x=108°;∴较小角的度数为72°.故答案为:72.【点睛】本题考查了平行线的性质,一元一次方程的应用,运用“若两个角的两边互相平行,则两个角相等或互补”,而此题中显然没有两个角相等这一情况是解决此题的突破点. 14.阅读下面材料:在数学课上,老师提出如下问题:如图,需要在A 、B 两地和公路l 之间修地下管道.请你设计一种最节省材料的修路方案:小丽设计的方案如下:如图,(1)连接AB ;(2)过点A 画线段AC ⊥直线l 于点C ,所以线段BA 和线段AC 即为所求.老师说:“小丽的画法正确”请回答:小丽的画图依据是___.两点之间线段最短;直线外一点到这条直线上所有点连结的线段中垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解【详解】由垂线段最短可知点A 到直线l 的最短距离为AC 由两点之间线段最短可解析:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解.【详解】由垂线段最短可知,点A 到直线l 的最短距离为AC ,由两点之间线段最短可知,点B 到点A 的最短距离为AB .故答案为:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短);【点睛】本题考察线段的概念和垂线的性质,熟练掌握其概念和性质是解题的关键.15.如图,//EF AD ,//AD BC ,CE 平分BCF ∠,120DAC ∠=︒,20ACF ∠=︒,FEC ∠为______°.20【分析】根据平行线的性质可得进而可得∠ACB =60°根据角平分线的性质和角的和差可得∠BCE 根据平行线的性质可得∠FEC 【详解】∵∴∵∴∵又∵∴∵平分∴∠BCE =∠ECF =∠BCF =20°∵∴∴解析:20【分析】根据平行线的性质可得180DAC ACB ∠+∠=︒,进而可得∠ACB =60°,根据角平分线的性质和角的和差可得∠BCE ,根据平行线的性质可得∠FEC .【详解】∵//AD BC ,∴180DAC ACB ∠+∠=︒.∵120DAC ∠=︒,∴180********ACB DAC ∠=︒-∠=︒-︒=︒.∵60BCF ACF ACB ∠+∠=∠=︒.又∵20ACF ∠=︒,∴602040BCF ACB ACF ∠=∠-∠=︒-︒=︒.∵CE 平分BCF ∠,∴∠BCE =∠ECF =12∠BCF =20° ∵//EF BC ,∴20FEC BCE ∠=∠=︒,∴20FEC ∠=︒.故答案为:20.【点睛】本题主要考查平行线的性质,涉及到角的和差,角平分线的性质,解题的关键是求得∠BCE .16.直线//,a b Rt ABC ∆的直角顶C 点在直线a 上,若135∠=︒,则2∠等于_______. 【分析】先根据直角为90°即可得到∠3的度数再根据平行线的性质即可得出∠2的度数【详解】解:∵Rt △ABC 的直角顶点C 在直线a 上∠1=35°∴∠3=90°-35°=55°又∵a ∥b ∴∠2=∠3=55解析:55【分析】先根据直角为90°,即可得到∠3的度数,再根据平行线的性质,即可得出∠2的度数.【详解】解:∵Rt △ABC 的直角顶点C 在直线a 上,∠1=35°,∴∠3=90°-35°=55°,又∵a ∥b ,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,直角三角形两个锐角互余的性质,解题时注意:两直线平行同位角相等.17.如图,AC ⊥AB ,AC ⊥CD ,垂足分别是点A 、C ,如果∠CDB=130°,那么直线AB 与BD 的夹角是________度.50【分析】先根据平行线的判定可得再根据平行线的性质两直线的夹角的定义即可得【详解】∵∴∵∴∴直线AB 与BD 的夹角是50度故答案为:50【点睛】本题考查了平行线的判定与性质两直线的夹角的定义熟练掌握解析:50【分析】先根据平行线的判定可得//AB CD ,再根据平行线的性质、两直线的夹角的定义即可得.【详解】∵AC AB ⊥,AC CD ⊥,∴//AB CD ,∵130CDB ∠=︒,∴18050ABD CDB ∠=︒-∠=︒,∴直线AB 与BD 的夹角是50度,故答案为:50.【点睛】本题考查了平行线的判定与性质、两直线的夹角的定义,熟练掌握平行线的判定与性质是解题关键.18.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为______米.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB,铅直距离等于(AD-1)×2,又∵长AB=50米,宽BC=25米,∴小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.19.如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOD=120°,则∠BOD=__________°.30°【分析】先利用补角的定义求出∠EOC=60°再根据角平分线的性质计算【详解】解:∵∠EOD=120°∴∠EOC=60°(邻补角定义)∵OA平分∠EOC∴∠AOC=∠EOC=30°(角平分线定义解析:30°【分析】先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∠EOC=30°(角平分线定义),∵OA平分∠EOC,∴∠AOC=12∴∠BOD=30°(对顶角相等).故答案为:30.【点睛】本题考查由角平分线的定义,结合补角的性质,易求该角的度数.20.假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数.那么刻的数是25的钥匙所对应的原来房间应该是__________号.12【分析】根据编码的方法分析在1~30中除以5余2的数有712172227而其中除以7余5的数只有12故可求得答案【详解】解:∵1~30中除以5余2的数有712172227而其中除以7余5的数只有解析:12【分析】根据编码的方法分析,在1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,故可求得答案.【详解】解:∵1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,∴刻的数是25的钥匙所对应的原来房间应该是12,故答案为:12.【点睛】此题考查了带余数除法的知识.此题难度适中,解题的关键是理解题意,抓住1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12.三、解答题21.如图,点D 、E 分别为AB 、AC 上的点,点F 、G 为BC 上的点,连接DE ,连接DG 、EF 交于点H .已知12180∠+∠=︒,3B ∠=∠,若66C ∠=︒,求DEC ∠的度数.请你将下面解答过程填写完整.解:∵12180∠+∠=︒∴//AB ________∴3ADE ∠=∠(________________________)∵3B ∠=∠∴_______B =∠∴//DE BC (____________________________)∴180C DEC ∠+∠=︒∵66C ∠=︒∴114DEC ∠=︒解析:见解析.【分析】先根据平行线的判定可得//AB EF ,再根据平行线的性质可得3ADE ∠=∠,从而可得ADE B ∠=∠,然后根据平行线的判定与性质可得.【详解】解:∵12180∠+∠=︒,∴//AB EF ,∴3ADE ∠=∠(两直线平行,内错角相等),∵3B ∠=∠,∴ADE B ∠=∠,∴//DE BC (同位角相等,两直线平行),∴180C DEC ∠+∠=︒,∵66C ∠=︒,∴114DEC ∠=︒.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.22.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)∠AOC 的对顶角为______,∠AOC 的邻补角为______;(2)若∠EOC =70°,求∠BOD 的度数;(3)若∠EOC :∠EOD =2:3,求∠BOD 的度数.解析:(1)∠BOD ,∠BOC 或∠AOD ;(2)∠BOD =35°;(3)∠BOD =36°.【分析】(1)根据对顶角、邻补角的意义,结合图形即可得出答案;(2)根据角平分线的意义和对顶角的性质,即可得出答案;(3)根据平角、按比例分配,角平分线的意义、对顶角性质可得答案.【详解】(1)根据对顶角、邻补角的意义得:∠AOC 的对顶角为∠BOD , ∠AOC 的邻补角为∠BOC 或∠AOD ,故答案为:∠BOD ,∠BOC 或∠AOD(2)∵OA 平分∠EOC.∠EOC =70°,∴∠AOE =∠AOC 12=∠EOC =35°, ∵∠AOC =∠BOD ,∴∠BOD =35°,(3)∵∠EOC :∠EOD =2:3,∠EOC+∠EOD =180°,∴∠EOC =180°×25=72°,∠EOD =180°×35=108°, ∵OA 平分∠EOC , ∴∠AOE =∠AOC 12=∠EOC =36°, 又∵∠AOC =∠BOD ,∴∠BOD =36°.【点睛】本题考查对顶角、邻补角、角平分线、平角的意义和性质,通过图形具体理解这些角的意义是正确计算的前提.23.如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,35EOC ∠=︒,求AOD ∠的度数.解析:125°.【分析】由两直线垂直,求得∠AOE=90°;由∠AOC 与∠EOC 互余,∠EOC=35°,即可得到∠AOC 的度数;再由∠AOD 与∠AOC 互补,即可得出∠AOD 的度数.【详解】∵EO ⊥AB ,∴∠AOE=90°,又∵∠EOC=35°,∴∠AOC=∠AOE-∠EOC=90°-35°= 55°,∴∠AOD=180°-∠AOC=180°-55°=125°.【点睛】本题主要考查补角、余角和垂直的定义.解题的关键是熟练利用补角、余角关系求角的度数.24.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,72AOC ∠=︒,OF CD ⊥.∠互余的角是______;(1)与BOF∠的度数.(2)求EOF解析:(1)∠BOD、∠AOC;(2)54°【分析】(1)根据垂直的定义得到∠FOD=90°,于是得到∠BOF+∠BOD=90°,根据对顶角的性质得到∠BOD=∠AOC,等量代换得到∠BOF+∠AOC=90°,即可得到结论.(2)根据已知条件得到∠BOF=90°﹣72°=18°,再由OE平分∠BOD,得出∠BOE=1∠BOD=36°,因此∠EOF=36°+18°=54°.2【详解】解:(1)∵OF⊥CD,∴∠FOD=90°,∴∠BOF+∠BOD=90°,∵∠BOD=∠AOC,∴∠BOF+∠AOC=90°,∴图中互余的角有∠BOF与∠BOD,∠BOF与∠AOC.故答案为:∠BOD、∠AOC;(2)∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OF⊥CD,∴∠BOF=90°﹣72°=18°,∵OE平分∠BOD,∠BOD=36°,∴∠BOE=12∴∠EOF=36°+18°=54°.【点睛】本题考查了对顶角、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键.25.已知:如图,DE∥BC,BE∥FG.求证:∠1=∠2.解析:证明见解析.【分析】由//DE BC ,利用“两直线平行,内错角相等”可得出1CBE ∠=∠,由//BE FG ,利用“两直线平行,同位角相等”可得出2CBE,进而可证出12∠=∠.【详解】 证明://DE BC ,1CBE ∴∠=∠.//BE FG ,2CBE ,12∠∠∴=.【点睛】 本题考查了平行线的性质,牢记平行线的各性质定理是解题的关键.26.如图,已知BC AE ⊥,DE AE ⊥,23180∠+∠=︒.(1)请你判断1∠与ABD ∠的数量关系,并说明理由;(2)若170∠=︒,BC 平分ABD ∠,试求ACF ∠的度数.解析:(1)∠1=∠ABD ,证明见解析;(2)∠ACF=55°.【分析】(1)先根据在平面内,垂直于同一条直线的两条直线互相平行得出BC ∥DE ,再根据平行线的性质结合23180∠+∠=︒可得∠2=∠CBD ,从而可得CF ∥DB 得出∠1=∠ABD ; (2)利用平行线的性质以及角平分线的定义,即可得出∠2的度数,再根据∠ACB 为直角,即可得出∠ACF .【详解】解:(1)∠1=∠ABD ,理由:∵BC ⊥AE ,DE ⊥AE ,∴BC ∥DE ,∴∠3+∠CBD=180°,又∵∠2+∠3=180°,∴∠2=∠CBD ,∴CF ∥DB ,∴∠1=∠ABD .(2)∵∠1=70°,CF ∥DB ,∴∠ABD=70°,又∵BC 平分∠ABD , ∴1352DBC ABD ︒∠=∠=, ∴∠2=∠DBC=35°,又∵BC ⊥AG , ∴∠ACF=90°-∠2=90°-35°=55°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.27.试用举反例的方法说明下列命题是假命题.例如:如果ab <0,那么a +b <0.反例:设a =4,b =-3,ab =4⨯(-3)=-12<0,而a +b =4+(-3)=1>0,所以这个命题是假命题.(1)如果a +b >0,那么ab >0.(2)如果a 是无理数,b 也是无理数,那么a +b 也是无理数.解析:(1)见解析;(2)见解析.【分析】(1)此题是一道开放题,可举的例子多,但只举一例就可.如果a+b >0,那么ab >0;所举的反例就是,a 、b 一个为正数,一个为负数,且正数的绝对值大于负数.(2)可利用平方差公式找这样的无理数,比如【详解】解:(1)取a=2,b=-1,则a+b=1>0,但ab=-2<0.所以此命题是假命题.(2)取,,a 、b 均为无理数.但a+b=2是有理数,所以此命题是假命题.【点睛】本题主要锻炼了学生的逆向思维.在证明几何题的过程中,有时需从反例上先去判断,然后再证明.28.如图,已知直线AB 及直线AB 外一点P ,按下列要求完成画图和解答:(1)连接PA ,PB ,用量角器画出∠APB 的平分线PC ,交AB 于点C ;(2)过点P 作PD ⊥AB 于点D ;(3)用刻度尺取AB 中点E ,连接PE ;(4)根据图形回答:点P 到直线AB 的距离是线段 的长度.解析:(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)PD.【详解】试题分析:(1)、用量角器量出∠APB的度数,然后求出一半的度数得出答案;(2)、根据垂线的作法得出答案;(3)、用刻度尺量出AB的长度,然后找出中点,从而得出答案;(4)、点到直线的距离是指点到直线垂线段的长度.试题(1)、如图所示;(2)、如图所示;(3)、如图所示;(4)、PD.。

最新七年级下册数学典型题、易错题整理资料

最新七年级下册数学典型题、易错题整理资料

七年级下册数学典型题、易错题整理1、 在下列说法中:(1)0.09是0.81的平方根;(2)-9的平方根是±3;(3)(-5)2的算术平方根是-5;(4)32-是个负数;(5)已知a 是实数,则||2a a =;(6)全体实数和数轴上的点是一一对应,正确的个数是( )A 、1B 、2C 、3D 、42、若方程()()22930m x m x y ----=是关于x y 、的二元一次方程,则m 的值为( ) A. 3± B. 3 C. -3 D. 93、不等式组 的解集表示在数轴上为()4、 已知关于x 的不等式组 无解,则a 的取值范围是( ) A 、1-≤a B 、1-<a 或2>a C 、21<<-a D 、2≥a5、平面直角坐标系内AB∥y 轴,AB=5,点A 的坐标为(-5,3),则点B 的坐标为( )A .(-5,8)B .(0,3)C .(-5,8)或(-5,-2)D .(0,3)或(-10,3)6、已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|,…,依此类推,则a 2012的值为()A .-1005 B .-1006 C .-1007 D .-20127、2006年我市有23 000名初中毕业生参加了升学考试,为了解23 000名考生的升学成绩,从中抽取了200名考生的试卷进行统计分析,以下说法正确的是( )A .23 000名考生是总体B .每名考生的成绩是个体C .200名考生是总体的一个样本D .以上说法都不正确8、已知点P 的坐标为(2-a ,3a+6),且点P 到两坐标轴的距离相等,则a= .9、若不等式组⎩⎨⎧>-<+nm x n m x 的解集是53<<-x ,则不等式0<-n mx 的解集为 10、16的平方根为 25的立方根为 .11、以下命题中(1)对顶角相等(2)相等的角是对顶角(3)垂直于同一条直线的两直线互相平行(4)平行于同一条直线的两直线互相平行(5)同位角相等,其中真命题的序号为 . 12、若不等式组3x x a>⎧⎨>⎩,的解集为x a >,则a 的取值范围是 13、不等式组8x x m<⎧⎨>⎩,有解,m 的取值范围是 .14、不等式组⎩⎨⎧->+<121m x m x 无解,m 的取值范围是 15、到x 轴距离为2,到y 轴距离为3的坐标为 .16、已知x 、y 都是实数,且4y =,求xy 的平方根17、如果2小数部分为a ,3的小数部分为b ,求2++b a 的值.(D)(C)(B)⎩⎨⎧<+--≤-4325x x ⎪⎩⎪⎨⎧>-><a x x x 1218、解方程4)12(2=-x19、如图,∠1+∠2=180°,∠DAE=∠BCF,DA 平分∠BDF.(1)AE 与FC 会平行吗?说明理由.(2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 吗?为什么?20、在解方程组⎩⎨⎧-=-=+24155by x y ax 时,由于粗心,甲看错了方程组中的a ,而得解为⎩⎨⎧-=-=13y x ,乙看错了方程组中的b,而得解为⎩⎨⎧==45y x ,(1)甲把a 看成了什么,乙把b 看成了什么;(2)求出原方程组的正确解.21、小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱情况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:(1)求出右图中a 、b 的值,并补全条形图;(2)若此次调查中喜欢体育节目的女同学有10人,请估算该校喜欢体育节目的女同学有多少人?22、为了保护环境,某企业决定购买10台污水处理设备。

新人教七年级数学下册经典易错题

新人教七年级数学下册经典易错题

新人教七年级数学下册经典易错题.....一、填空题1.一个数的平方等于它本身,这个数是 ;一个数的平方根等于它本身,这个数是 ;一个数的算术平方根等于它本身,这个数是 ;一个数的立方等于它本身,这个数是 ;一个数的立方根等于它本身,这个数是 ;一个数的倒数是它本身,这个数是 ;一个数的绝对值等于它本身,这个数是 。

2.16的平方根为 ,=16 ,16的平方根等于 .3.已知;,则 。

4.已知一个正数的两个平方根分别为3x-5和x-7,则这个正数为 . 5.17-1的整数部分为 ;小数部分为 ;绝对值为 ;相反数为 .6. 如图,在数轴上,1,的对应点是A 、B , A 是线段BC 的中点,则点C 所表示的数是 。

7.已知,OA ⊥OC ,且∠AOB :∠AOC=2:3,则∠BOC 的度数为 。

8.如果∠1=80°,∠2的两边分别与∠1的两边平行,那么∠2= 。

9.已知点A (1+m ,2m+1)在x 轴上,则点A 坐标为 。

10.已知AB ∥x 轴,A 点的坐标为(3,2),并且AB =5,则B 的坐标为 .11.点P(a-2,2a+3)到两坐标轴距离相等,则a= .12.将点A (1,-3)向右平移2个单位,再向下平移2个单位后得到点B (a ,b ),则ab = .13.已知平面直角坐标系内点P 的坐标为(-1,3),如果将平面直角坐标系向左平移3个单位,再向下平移2个单位,那么平移后点P 的坐标为________.14.在平面直角坐标系中,已知A (2,-2),在y 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 共有 个。

15.点P (a+5,a )不可能在第 象限。

16.平面直角坐标系内有一点P (x ,y ),满足x =0y,则点P 在 17.方程52=+y x 在正整数范围内的解是_____ 。

18.已知x=1,y=﹣8是方程mx+y -1=0的解,则m 的平方根是 。

七年级数学下册第六章实数易错题集锦(带答案)

七年级数学下册第六章实数易错题集锦(带答案)

七年级数学下册第六章实数易错题集锦单选题1、下列说法正确的是()A.−81平方根是−9B.√81的平方根是±9C.平方根等于它本身的数是1和0D.√a2+1一定是正数答案:D分析:A、根据平方根的概念即可得到答案;B、√81的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出a2+1>0,再利用算术平方根的性质直接得到答案.A、−81是负数,负数没有平方根,不符合题意;B、√81=9,9的平方根是±3,不符合题意;C、平方根等于它本身的数是0,1的平方根是±1,不符合题意;D、a2+1>0,正数的算术平方根大于0,符合题意.故选:D.小提示:此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.2、已知a为整数,且满足√8<a<√12,则a等于()A.2B.3C.4D.5答案:B分析:估算无理数√8和√12的大小,进而确定a的值即可.解:∵2<√8<3,3<√12<4,a为整数,且满足√8<a<√12,∴a=3.故选:B.小提示:本题主要考查了估算无理数的大小,熟练掌握估算无理数大小的方法进行求解是解决本题的关键.3、实数x,y,z在数轴上的对应点的位置如图所示,若|z+y|<|x+y|,则A,B,C,D四个点中可能是原点的为()A.A点B.B点C.C点D.D点答案:D分析:分①若原点的位置为A点时,②若原点的位置为B点或C点时,③若原点的位置为D点时,结合有理数的加法法则和点在数轴上的位置分析即可得出正确选项.解:根据数轴可知x<y<z,①若原点的位置为A点时,x>0,则|z+y|=z+y,|x+y|=x+y,x+y<z+y,∴|z+y|>|x+y|,舍去;②若原点的位置为B点或C点时,x<0,y>0,z>0,|z|>|x|,|z|>|y|,则|x+y|<|y|或|x+y|<|x|,|z+y|=|z|+|y|,∴|z+y|>|x+y|,舍去;③若原点的位置为D点时,x<0,y<0,z>0,|y|>|z|则|x+y|<|y|+|x||z+y|<|y|,∴|z+y|<|x+y|,符合条件,∴最有可能是原点的是D点,故选:D.小提示:本题考查实数与数轴,有理数的加法法则,化简绝对值.熟记有理数的加法法则是解题关键.4、下列说法正确的是()A.4的平方根是2B.√16的平方根是±4C.25的平方根是±5D.﹣36的算术平方根是6答案:C分析:根据平方根和算术平方根的定义判断即可.解:A.4的平方根是±2,故错误,不符合题意;B.√16的平方根是±2,故错误,不符合题意;C .25的平方根是±5,故正确,符合题意;D .-36没有算术平方根,故错误,不符合题意;故选:C .小提示:本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.5、下列说法正确的是( )A .负数没有立方根B .8的立方根是±2C .√−83=−√83D .立方根等于本身的数只有±1答案:C分析:根据立方根的定义分别判断即可.立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根. 解:A 负数有一个立方根,故该选项错误,不符合题意;B 选项,8的立方根是2,故该选项错误,不符合题意;C 选项,√−83=−√83,故该选项正确,符合题意;D 选项,立方根等于本身的数只有±1和0,故该选项错误,不符合题意.故选:C .小提示:本题考查了立方根的应用,掌握立方根的定义是解题的关键.6、下列四种叙述中,正确的是( )A .带根号的数是无理数B .无理数都是带根号的数C .无理数是无限小数D .无限小数是无理数答案:C分析:根据无理数的概念逐个判断即可.无理数:无限不循环小数.解:A .√4=2,是有理数,故本选项不合题意;B .π是无理数,故本选项不合题意;C .无理数是无限不循环小数,原说法正确,故本选项符合题意;D .无限循环小数是有理数,故本选项不合题意.故选:C .小提示:此题考查了无理数的概念,解题的关键是熟练掌握无理数的概念.无理数:无限不循环小数.7、如图,在数轴上表示实数√15的点可能().A.点P B.点Q C.点M D.点N答案:C分析:确定√15是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.解:∵9<15<16,∴3<√15<4,∴√15对应的点是M.故选:C.小提示:本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.8、如图,数轴上点E对应的实数是()A.−2B.−1C.1D.2答案:A分析:根据数轴上点E所在位置,判断出点E所对应的值即可;解:根据数轴上点E所在位置可知,点E在-1到-3之间,符合题意的只有-2;故选:A.小提示:本题主要考查数轴上的点的位置问题,根据数轴上点所在位置对点的数值进行判断是解题的关键.9、计算下列各式,值最小的是()A.2×0+1−9B.2+0×1−9C.2+0−1×9D.2+0+1−9答案:A分析:根据实数的运算法则,遵循先乘除后加减的运算顺序即可得到答案.根据实数的运算法则可得:A.2×0+1−9=−8; B.2+0×1−9=-7;C.2+0−1×9=-7; D.2+0+1−9=-6;故选A.小提示:本题考查实数的混合运算,掌握实数的混合运算顺序和法则是解题的关键..10、把四张形状大小完全相同的小长方形卡片(如图①,卡片的长为a ,宽为b )不重叠地放在一个底面为长方形(长为√21,宽为4)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4√21B .16C .2(√21+4)D .4(√21−4)答案:B分析:分别求出较大阴影的周长和较小阴影的周长,再相加整理,即得出答案.较大阴影的周长为:(4−2b)×2+a ×2,较小阴影的周长为:(4−a)×2+2b ×2,两块阴影部分的周长和为:[(4−2b)×2+a ×2]+[(4−a)×2+2b ×2]= 16,故两块阴影部分的周长和为16.故选B .小提示:本题考查了图形周长,整式加减的应用,利用数形结合的思想求出较大阴影的周长和较小阴影的周长是解题的关键.填空题11、计算:(1)√273=______; (2)√−27643=_______; (3)−√−183=_______;(4)√1+911253=______; (5)√24×45×253=______; (6)√0.25+√−273=______;(7)√0.09−√−83=______.答案: 3 −34 12 65 30 −2.5 2.3 分析:(1)直接利用立方根的定义即可求解;(2)直接利用立方根的定义即可求解;(3)直接利用立方根的定义即可求解;(4)直接利用立方根的定义即可求解;(5)直接利用立方根的定义即可求解;(6)利用算术平方根和立方根的定义即可求解;(7)利用算术平方根和立方根的定义即可求解.解:(1)∵33=27,∴√273=3; (2)∵(−34)3=−2764,∴√−27643=−34; (3)∵(−12)3=−18,∴√−183=−12,即−√−183=12;(4)√1+911253=√2161253∵(65)3=216125,∴√2161253=65,即√1+911253=65; (5)√24×45×253=27000,∵303=27000,∴√270003=30; (6)√0.25+√−273=0.5+(−3)=−2.5;(7)√0.09−√−83=0.3−(−2)=0.3+2=2.3.所以答案是:3,−34,12,65,30,−2.5,2.3.小提示:本题考查立方根和算术平方根.熟练掌握立方根和算术平方根的定义是解题关键.12、规定一种新运算“*”:a *b =13a -14b ,则方程x *2=1*x 的解为________.答案:107 分析:根据题中的新定义化简所求方程,求出方程的解即可.根据题意得:13x -14×2=13×1-14x , 712x =56, 解得:x =107,故答案为x =107. 小提示:此题的关键是掌握新运算规则,转化成一元一次方程,再解这个一元一次方程即可.13、已知√a −b +|b −1|=0,则a +1=__.答案:2.分析:利用非负数的性质结合绝对值与二次根式的性质即可求出a ,b 的值,进而即可得出答案.∵√a −b +|b ﹣1|=0,又∵√a −b ≥0,|b −1|≥0,∴a ﹣b =0且b ﹣1=0,解得:a =b =1,∴a +1=2.故答案为2.小提示:本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a 、b 的方程是解题的关键.14、如果√a 的平方根是±3,则a =_________答案:81分析:根据平方根的定义即可求解.∵9的平方根为±3,∴√a =9,所以a=81小提示:此题主要考查平方根的性质,解题的关键是熟知平方根的定义.15、下列各数3.1415926,√9,1.212212221…,17,2﹣π,﹣2020,√43中,无理数的个数有_____个. 答案:3分析:根据无理数的三种形式:①开不尽的方根,②无限不循环小数,③含有π的绝大部分数,找出无理数的个数即可.解:在所列实数中,无理数有1.212212221…,2﹣π,√43这3个,所以答案是:3.小提示:本题考查无理数的定义,熟练掌握无理数的概念是解题的关键.解答题16、已知4a +7的立方根是3,2a +2b +2的算术平方根是4(1)求a ,b 的值.(2)求6a +3b 的平方根.答案:(1)a =5,b =2;(2)6a +3b 的平方根为±6.分析:(1)运用立方根和算术平方根的定义求解;(2)根据平方根,即可解答.(1)解:∵4a +7的立方根是3,2a +2b +2的算术平方根是4,∴4a +7=27,2a +2b +2=16,∴a =5,b =2;(2)解:由(1)知a =5,b =2,∴6a +3b =6×5+3×2=36,∴6a +3b 的平方根为±6.小提示:本题考查了平方根、立方根、算术平方根.掌握一个正数的平方根有2个是解题的关键,不要漏解.17、我们知道,√2是一个无理数,将这个数减去整数部分,差就是小数部分,即√2的整数部分是1,小数部分是√2−1,请回答以下问题:(1)√10的小数部分是________,5−√13的小数部分是________.(2)若a是√90的整数部分,b是√3的小数部分,求a+b−√3+1的平方根.(3)若7+√5=x+y,其中x是整数,且0<y<1,求x−y+√5的值.答案:(1)√10−3,4−√13;(2)±3;(3)11.分析:(1)确定√10的整数部分,即可确定它的小数部分;确定√13的整数部分,即可确定5−√13的整数部分,从而确定5−√13的小数部分;(2)确定√90的整数部分,即知a的值,同理可确定√3的整数部分,从而求得它的小数部分,即b的值,则可以求得代数式a+b−√3+1的值,从而求得其平方根;(3)由2<√5<3得即9<7+√5<10,从而得x=9,y=√5−2,将x、y的值代入原式即可求解.(1)解:∵3<√10<4,∴√10的整数部分为3,∴√10的小数部分为√10−3,∵3<√13<4,∴−3>−√13>−4,∴5−3>5−√13>5−4即1<5−√13<2,∴5−√13的整数部分为1,∴5−√13的小数部分为4−√13,所以答案是:√10−3,4−√13;(2)解:∵9<√90<10,a是√90的整数部分,∴a=9,∵1<√3<2,∴√3的整数部分为1,∵b是√3的小数部分,∴b=√3−1,∴a+b−√3+1=9+√3−1−√3+1=9∵9的平方根等于±3,∴a+b−√3+1的平方根等于±3;(3)解:∵2<√5<3,∴7+2<7+√5<7+3即9<7+√5<10,∵7+√5=x+y,其中x是整数,且0<y<1,∴x=9,y=7+√5−9=√5−2,∴x−y+√5=9−(√5−2)+√5=11.小提示:本题考查了无理数的估算、求平方根以及求代数式的值,关键是掌握二次根式的大小估算方法.18、把三个半径分别是3,4,5的铅球熔化后做一个更大的铅球,这个大铅球的半径是多少?(球的体积公式是V=43πR3,其中R是球的半径.)答案:大铅球的半径是6.分析:求出半径分别是3,4,5的铅球的体积之和,再根据立方根的定义计算出结果即可.解:设这个大铅球的半径为r,由题意可得4 3πr3=43π(33+43+53),即r3=216,所以r=√2163=6.大铅球的半径是6.小提示:本题考查了立方根的应用,熟记立方根的定义是解答本题的关键.。

七年级下册数学易错题

七年级下册数学易错题

七年级下册10大高频易错题型汇总,含答案解析易错点一:书写不规范,抄写错误刚开始接触有理数计算,有的同学往往将-1+(-5)写成-1+-5,-x写成-1x,这些基本的书写规范要注意。

甚至有同学常犯“抄错”的毛病,上行到下行、卷子到答题卡抄错,这些都属于我们熟悉的“低级”错误。

例如,下面是某同学答题过程,你们有没有中枪呢?针对这种情况,提示:做题时,要细心;眼盯住,手别慌(一定要认真)易错点二:跳步,不愿意多写步骤有些同学计算时,喜欢跳跃思维,不按“套路”解题,往往导致结果错误。

做题时,一定要按步骤去计算,不能急于求成,要循序渐进,在保证正确率的前提下、熟练之后,才可以省略一些非关键的步骤。

针对这种情况,提示:做题时,按步骤,不着急,不跳步!易错点三:顺序出错,法则不熟悉下面这位同学,没有按照运算法则的顺序进行计算,导致了失分。

运算顺序:括号优先,先乘方,再乘除,最后加减。

加减法为一级运算,乘除为二级运算,乘方、开方(以后会学到)为三级运算同级运算从左到右,不同级运算,应该先三级运算,然后二级运算,最后一级运算如果有括号,先算括号里的,先算小括号,再算中括号,最后大括号。

以上运算顺序可以简记为:“从小(括号)到大(括号),从高(级)到低(级),(同级)从左到右”。

针对这种情况,提示:牢记口诀多练习,认真计算没问题!易错点四:去括号,注意系数符号变化对于计算题,老师发现同学们去括号时,最容易犯错!同学们去括号时,一定要注意括号前面的系数和符号。

去括号时,当括号前面有“-”,括号内的符号要发生改变;当括号前面有系数时,括号内的每一项都要与其相乘。

例如,同学们在去括号时,经常会出现将5-(4-3)去括号变成5-4-3(应是5-4+3),将5(x+6)去括号变成5x+6(少乘一项)。

这类问题很常见,不知道你是否中招了呢?针对这种情况,提示:去括号要两看,一看系数,二看符号!易错点五:去分母时,漏乘无分母项解方程和不等式时,经常涉及到去分母,等号两边同时乘以分母的最小公倍数时,同学们一定要注意不要漏乘!大家经常犯的错误是忘记漏乘常数项。

北师大版七年级数学下册期末易错题复习详解

北师大版七年级数学下册期末易错题复习详解

北师大版七年级数学下册期末易错题复习详解七(下)数学期末复易错题以下是第一、三、六章的易错题:1.下列事件是必然事件的是()A。

抛掷一枚均匀的骰子,出现6点向上B。

两直线被第三条直线所截,同位角相等C。

366人中至少有2人生日相同D。

实数的绝对值是非负数2.下列事件中,必然事件有:④通常情况下,将水加热到100℃时,水会沸腾。

3.从4名女生和6名男生中选5名学生参加竞赛,规定男生选n名,当n=0时,4名女生中的XXX当选是必然事件;当n=6时,女生XXX当选是不可能的事件;当n=2时,女生XXX当选是随机事件。

4.已知1纳米=0.000 000 001米,则2.04纳米用科学记数法表示为2.04×10^-9米。

5.下列计算正确的是()B。

-a^5C。

(-a-3)(-a+3)=9-a^2D。

(a-b)(a+b)=a^2-b^26.已知x-y=4,xy=-3,则x^2+y^2=25.7.已知A=2x,B是多项式,在计算B+A时,XXX同学把XXX看成了B÷A,结果得到x^2+2x,则XXX。

8.若9a^2+mab+4b^2是一个完全平方式,则m=±12ab。

9.式子4+(a-b)的最小值是4,4-(a-b)的最大值是4,当a=b时取到。

10.代数式5-a^2+2ab-b^2的最大值是4,当a=b=1时取到,此时以a,b为边的三角形是等边三角形。

11.梯形上底长为4,下底长为x,高为2,则梯形面积y与下底x之间的关系式是y=3x-6.12.如图(1)在长方形ABCD中,动点P从B出发,沿BC、CD、DA匀速运动到A停止。

设P运动的路程为x,△ABP的面积为y,y关于x的图像如图(2),则△ABC的面积为()C。

18.13.某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资,(调进调出物资的速度均保持不变)。

该仓库库存物资W(吨)与时间t(小时)之间的关系如图所示,则这批物资从开始调进到全部调出所需的时间是()D。

初一数学下册:计算易错题汇总

初一数学下册:计算易错题汇总

初一数学下册:计算易错题汇总#初一数学错误一:含有带分数的加减法,受限于小学思维例1计算错误:原式=-3分析正解错误二:性质符号与运算符号的相通性深化理解-1,-2,-3可以看作是(-1),(-2),(-3)的和,中间的加法的“+”省略不写,也可以看作是-1减2再减3例2计算:-3-5*(-2)错解:原式=-3-10=-13分析中间5前面的“-”重复用了两遍,一会当成运算中的符号,一会当成5的性质符号正解正解1:原式=-3-(-10)=-3+10=7;中间5前面的“-”当成运算符号正解2:原式=-3+(-5)(-2)=-3+10=7;中间5前面的“-”当成性质符号错误三:去括号时,法则运用错误例3计算:(2-3)-(-4+5)(要求:先去括号,再合并)错解:原式=2-3+4+5=8分析去第二个括号时,括号前面是负号,没有改变括号中的每一项导致错误正解原式=2-3+4-5=-2这里为了形象展示错误,括号内未直接合并错误四:乘方运算的“底数”弄错例4计算:(-2)²,-2²的值。

错解:(-2)²=4(√)-2²=4(×)分析正解(-2)²=4(√)-2²=-4(√)错误五:去绝对值时,未判断绝对值里面的正负例5错解:分析去绝对值符号时,未先判断绝对值里面数据的符号,进而用绝对值法则求解。

正解类似的错误还有很多,不再一一列举,总得来说要想计算做正确,就必须做到以下几点:计算中相关的概念一定要辨析清楚计算的法则、运算率、公式要掌握计算时要依法则、不跳步计算时要能够随时检验,发现异常,比如绝对值不可能为负涉及到符号的问题,一般是先定符号,再计算求值温馨提示:计算是三年初中的基础,很多优秀的孩子到九年级还因为计算丢分就是因为七年级的计算习惯没有养成,家长一定要注重孩子的计算训练,不仅要关注结果,还要关注过程的规范性!。

初中数学七年级下册易错题汇总大全附答案带解析

初中数学七年级下册易错题汇总大全附答案带解析

初中数学七年级下册易错题相交线与平行线1.未正确理解垂线的定义1.下列判断错误的是().A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.错解:A或B或C.解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90°的特殊情况,反之,若两直线相交则不一定垂直.正解:D.2.未正确理解垂线段、点到直线的距离2.下列判断正确的是().A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.错解:A或B或C.解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义.A.这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离. 仅仅有垂线段,没有指明这条垂线段的长度是错误的.B.这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说“垂线的长度”就是错误的;C.这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度.正解:D.3.未准确辨认同位角、内错角、同旁内角3.如图所示,图中共有内错角().A.2组;B.3组;C.4组;D.5组.错解:A.解析:图中的内错角有∠AGF与∠GFD,∠BGF与∠GFC,∠HGF与∠GFC三组.其中∠HGF与∠GFC易漏掉。

正解:B.4.对平行线的概念、平行公理理解有误4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().A.1个;B.2个;C.3个;D.4个.错解:C或D.解析:平行线的定义必须强调“在同一平面内”的前提条件,所以②是错误的,平行公理中的“过一点”必须强调“过直线外一点”,所以④是错误的,①③是正确的.正解:B.5.不能准确识别截线与被截直线,从而误判直线平行5.如图所示,下列推理中正确的有().①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC ∥AD.A.1个;B.2个;C.3个;D.4个.错解:D.解析:解与平行线有关的问题时,对以下基本图形要熟悉:“”“”“”,只有③推理正确.正解:A.6.混淆平行线的判定和性质、忽略平行线的性质成立的前提条件6.如图所示,直线,∠1=70°,求∠2的度数.错解:由于,根据内错角相等,两直线平行,可得∠1=∠2,又因为∠1=70°,所以∠2=70°.解析:造成这种错误的原因主要是对平行线的判定和性质混淆. 在运用的时候要注意:(1)判定是不知道直线平行,是根据某些条件来判定两条直线是否平行;(2)性质是知道两直线平行,是根据两直线平行得到其他关系.正解:因为(已知),所以∠1=∠2(两直线平行,内错角相等),又因为∠1=70°(已知),所以∠2=70°.7.对命题这一概念的理解不透彻7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.错解:(1)(2)不是命题,(3)是命题.解析:对于命题的概念理解不透彻,往往认为只有存在因果关系的关联词才是命题,正确认识命题这一概念,关键要注意两点,其一必须是一个语句,是一句话;其二必须存在判断关系,即“是”或“不是”.正解:(1)是命题. 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等. 这个命题是一个错误的命题,即假命题.(2)是命题. 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.8.忽视平移的距离的概念8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?错解:正确.解析:平移的距离是指两个图形中对应点连线的长度,而不是线段,所以在这个平移过程中,平移的距离应该是线段AA′的长度.正解:错误.第六章平面直角坐标系1.不能确定点所在的象限1.点A的坐标满足,试确定点A所在的象限.错解:因为,所以,,所以点A在第一象限.解析:本题出错的原因在于漏掉了当,时,的情况,此时点A在第三象限.正解:因为,所以为同号,即,或,. 当,时,点A在第一象限;当,时,点A在第三象限.2.点到x轴、y轴的距离易混淆2.求点A(-3,-4)到坐标轴的距离.错解:点A(-3,-4)到轴的距离为3,到轴的距离为4.解析:错误的原因是误以为点A()到轴的距离等于,到轴的距离等于,而事实上,点A()到轴的距离等于,到轴的距离等于,不熟练时,可结合图形进行分析.正解:点A(-3,-4)到轴的距离为4,到轴的距离为3.第八章二元一次方程组1.不能正确理解二元一次方程组的定义1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.错解:A或C.解析:方程组①④是二元一次方程组,符合定义,方程组③是二元一次方程组,符合定义,而且是最简单、最特殊的二元一次方程组.正解:D.2.将方程相加减时弄错符号2.用加减法解方程组.错解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.错解解析:在加减消元时弄错了符号而导致错误.正解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.3.将方程变形时忽略常数项3.利用加减法解方程组.错解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.错解解析:在①×2+②这一过程中只把①左边各项都分别与2相乘了,而忽略了等号右边的常数项4.正解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.4.不能正确找出实际问题中的等量关系4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为().A.;B.;C..D..错解:B或D.解析:错误的原因是等量关系错误,本题中的等量关系为:(1)第一车间实际生产台数+第二车间实际生产台数=798台;(2)第一车间计划生产台数+第二车间计划生产台数=680台.正解:C.第九章不等式与不等式组1.在运用不等式性质3时,未改变符号方向1.利用不等式的性质解不等式:.错解:根据不等式性质1得,即. 根据不等式的性质3,在两边同除以-5,得.解析:在此解答过程中,由于对性质3的内容没记牢,没有将“<”变为“>”,从而得出错误结果.正解:根据不等式的性质1,在不等式的两边同时减去5,得,根据不等式的性质3,在不等式的两边同时除以-5,得.2.利用不等式解决实际问题时,忽视问题的实际意义,取值时出现错误2.某小店每天需水1m³,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81㎡,那么高至少为多少米时才够用?(精确到0.1m)错解:设高为m时才够用,根据题意得. 由. 要精确到0.1,所以.答:高至少为1.2m时才够用.解析:最后取解时,没有考虑到问题的实际意义,水箱存水量不得小于1m³,如果水箱的高为时正好够,少一点就不够了. 故最后取近似值一定要大于,即取近似值时只能入而不能舍.正解:设高为m时才够用,根据题意得. 由于,而要精确到0.1,所以.答:水箱的高至少为1.3m时才够用.3.解不等式组时,弄不清“公共部分”的含义3.解不等式组.错解:由①得,由②得,所以不等式组的解集为.错解解析:此题错在对“公共部分”的理解上,误认为两个数之间的部分为“公共部分”(即解集). 实质上,和没有“公共部分”,也就是说此不等式组无解. 注意:“公共部分”就是在数轴上两线重叠的部分.正解:由①得,由②得,所以不等式组无解.第十章数据的收集、整理与描述1.全面调查与抽样调查选择不当1.调查一批药物的药效持续时间,用哪种调查方式?错解:全面调查.解析:此调查若用全面调查具有破坏性,不宜采用全面调查.正解:抽样调查.2.未正确理解定义2.2006年4月11日《文汇报》报道:据不完全统计,至今上海自愿报名去西部地区工作的专业技术人员和管理人员已达3600多人,其中硕士、博士占4%,本科生占79%,大专生占13%. 根据上述数据绘制扇形统计图表示这些人员的学历分布情况.错解:如下图所示:解析:漏掉其他人员4%,扇形表示的百分比之和不等于1,正确的扇形统计图表示的百分比之和为1.正解:如下图所示:3.对频数与频率的意义的理解错误3.某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是__________.错解:捐10元的5人,.解析:该题的错误是因为将5+10+5作为总次数,实际上应是25为总次数,这其实是对频率概念错误理解的结果. 正解:0.2二元一次方程组应用探索二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y ,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x ,或只设十位上的数为x ,那将很难或根本就想象不出关于x 的方程.一般地,与十位上的数个位上的数对应的两位数相等关系 原两位数 x y 10x+y 10x+y=x+y+9 新两位数yx10y+x10y+x=10x+y+27数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y yx y -=⎧⎨-=⎩,解得200150x y =⎧⎨=⎩,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数;(2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数.四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例 6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册数学典型题、易错题整理
1、在下列说法中:
(1)0.09是0.81的平方根;(2)-9的平方根是±3;(3)(-5)2的算术平方
根是-5;(4)32-是个负数;(5)已知a 是实数,则||2a a =;(6)全体实
数和数轴上的点是一一对应,正确的个数是( ) A 、1 B 、2 C 、3 D 、4
2、若方程()()22930m x m x y ----=是关于x y 、的二元一次方程,则m 的值为
( ) A. 3± B. 3 C. -3 D. 9
3、不等式组 的解集表示在数轴上为()
4、已知关于x 的不等式组 无解,则a 的取值范围是( )
A 、1-≤a
B 、1-<a 或2>a
C 、21<<-a
D 、2≥a
5、平面直角坐标系内AB∥y 轴,AB=5,点A 的坐标为(-5,3),则点B 的坐标为( )
A .(-5,8)
B .(0,3)
C .(-5,8)或(-5,-2)
D .(0,3)或(-10,3)
6、已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|,…,依此类推,则a 2012的值为()
A .-1005
B .-1006
C .-1007
D .-2012
7、2006年我市有23 000名初中毕业生参加了升学考试,为了解23 000名考生的升学成绩,从中抽取了200名考生的试卷进行统计分析,以下说法正确的是( )
-1-1(D)(C)
(B)
3
3
22100⎨⎧-≤-2
5x ⎪⎩⎪
⎨⎧>-><a x x x 12
A .23 000名考生是总体
B .每名考生的成绩是个体
C .200名考生是总体的一个样本
D .以上说法都不正确
8、已知点P 的坐标为(2-a ,3a+6),且点P 到两坐标轴的距离相等,则a= .
9、若不等式组⎩⎨⎧>-<+n m x n m x 的解集是53<<-x ,则不等式0<-n mx 的解集为
10、16的平方根为 25的负的平方
的立方根为 .
11、以下命题中(1)对顶角相等(2)相等的角是对顶角(3)垂直于同一条直线的两直线互相平行(4)平行于同一条直线的两直线互相平行(5)同位角相等,其中真命题的序号为 .
12、若不等式组3x x a >⎧⎨>⎩

的解集为x a >,则a 的取值范围是( )
A.3a <
B.3a =
C.3a >
D.3a ≥
13、若不等式组8x x m
<⎧⎨>⎩,
有解,则m 的取值范围是_____.
14、若不等式组⎩
⎨⎧->+<121
m x m x 无解,则m 的取值范围是 .。

15、到x 轴距离为2,到
y 轴距离为3的坐标为
. 16、已知x 、y 都是实数,且4y =,求x y 的平方根
17、例如∵,974<<即372<<
,∴7的整数部分为2,小数部分为27-,
如果2小数部分为a ,3的小数部分为b ,求2++b a 的值.
18、解方程4)12(2=-x
19、如图,∠1+∠2=180°,∠DAE=∠BCF,DA 平分∠BDF. (1)AE 与FC 会平行吗?说明理由.
(2)AD 与BC 的位置关系如何?为什么? (3)BC 平分∠DBE 吗?为什么?
20、在解方程组⎩
⎨⎧-=-=+24155by x y ax 时,
由于粗心,甲看错了方程组中的a ,而得解为⎩⎨⎧-=-=13y x ,乙看错了方程组中的b,而得解为⎩
⎨⎧==45y x ,
(1)甲把a 看成了什么,乙把b 看成了什么;
(2)求出原方程组的正确解.
21、小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱情况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:
(1)求出右图中a 、b 的值,并补全条形图; (2)若此次调查中喜欢体育节目的女同学有10人,请估算该校喜欢体育节目的女同学有多少人?
22、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;
(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由;
(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论:①∠DCP+∠BOP/∠CPO的值不变,②∠DCP+∠CPO/∠BOP的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.
23、为了保护环境,某企业决定购买10台污水处理设备。

现有A、B两种型号
A型B型
价格(万元/
12 10
台)
处理污水量
240 200
(吨/日)
年消耗费
1 1
(万元/台)
(1)请你设计该企业有几种购买方案?
(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案?
24、如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,•
请你写出来.
(1) (2)
(3) (4)
P
D
C
B
A P D
C
B
A
P
D
C
B A P D
C
B A。

相关文档
最新文档