2019年广东省深圳市中考数学试卷及答案解析
2019广东深圳中考数学解析
2019年广东省深圳市初中学生学业水平考试数学试题(满分100分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019广东深圳,1,3分)-15的绝对值是()A.-5 B.15C.5 D.-15【答案】B【解析】15-=-(-15)=15.故选B.【知识点】绝对值2.(2019广东深圳,2,3分)下列图形中是轴对称图形的是()【答案】A【解析】A中图形沿着过上下两边中点的直线进行折叠,直线两旁的部分能完全重合,是轴对称图形;其他图形不符合轴对称图形的定义,不是轴对称图形.故选A.【知识点】轴对称图形3.(2019广东深圳,3,3分)预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学记数法表示为()A.4.6×109B.46×107C.4.6×108D.0.46×109【答案】C【解析】460 000 000整数位数有9位,所以将460 000 000用科学记数法表示为4.6×108.故选C.【知识点】科学记数法4.(2019广东深圳,4,3分)下列哪个图形是正方体的展开图()A.B.C.D.【答案】B【解析】B中图形符合“一四一”模型,是正方体的展开图.故选B.【知识点】立体图形的展开图5.(2019广东深圳,5,3分)这组数据20,21,22,23,23的中位数和众数分别是()A.20,23 B.21,23 C.21,22 D.22,23【答案】D【解析】数据是从小到大排列的,排在最中间的数据为22,则中位数是22;出现最多的数据是23,即众数是23.故选D.【知识点】中位数;众数6.(2019广东深圳,6,3分)下列运算正确的是()A.a2+a2=a4B.a3·a4=a12C.(a3)4=a12D.(ab)2=ab2【答案】C【解析】∵a2+a2=2a2,故A错误;∵a3·a4=a7,故B错误;(a3)4=a3×4=a12,故C正确;(ab)2=a2b2,故D错误.故选C.【知识点】合并同类项;同底数幂的乘法;幂的乘方;积的乘方7.(2019广东深圳,7,3分)如图,已知l1∥AB,AC为角平分线,下列说法错误的是()A.∠1=∠4B.∠1=∠5C.∠2=∠3 D.∠1=∠3【解析】∵AC为角平分线,∴∠1=∠2.∵l1∥AB,∴∠4=∠2,∠3=∠2,∴∠1=∠4,∠1=∠3.故A、C、D正确.∵l1∥AB,∴∠5=∠1+∠2,故B错误.故选B.【知识点】平行线的性质;角平分线的定义8.(2019广东深圳,8,3分)如图,已知AB=AC,AB=5,BC=3.以AB两点为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,过M,N作直线与AC相交于点D,则△BDC的周长为()A.8 B.10 C.11 D.13【答案】A【解析】由作图方法知,MN是线段AB的垂直平分线,∴AD=BD,∴△BDC的周长=BD+DC+BC=AD+DC+BC=5+3=8.故选A.【知识点】尺规作图;线段的垂直平分线;等腰三角形9.(2019广东深圳,9,3分)已知函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b与y=cx的图象为()A.B.C.D.【思路分析】先根据二次函数y=ax 2+bx+c (a ≠0)的图象确定a ,b ,c 的正负,则判断一次函数与反比例函数的图象所在的象限.【解题过程】由二次函数的图象可知,a<0,b>0,c<0.当a<0,b>0,c<0时,一次函数y=ax+b 经过第一、二、四象限;反比例函数y=cx位于第二、四象限,选项C 符合.故选C . 【知识点】二次函数的图象与系数的关系;一次函数的图象与系数的关系;反比例函数的图象与系数的关系;符号判断10.(2019广东深圳,10,3分)下列命题正确的是( ) A .矩形对角线互相垂直 B .方程x 2=14x 的解为x=14C .六边形的内角和为540°D .斜边和一条直角边分别相等的两个直角三角形全等【答案】D【思路分析】对各个选项逐项判断.【解题过程】A 中,矩形的对角线相等,而不具备对角线互相垂直,故A 错误;B 中,方程x 2=14x 的解为x=14或x=0,故B 错误;C 中,六边形的内角和为(6-2)×180°=720°,故C 错误;选项D 正确.故选D . 【知识点】矩形的性质;一元二次方程的解法;正多边形的内角和;全等三角形 11.(2019广东深圳,11,3分)定义一种新运算:abn ò=nna b -,例如:132ò=2213-=1-9=-8,若51mm-ò=-2,则m=( ) A .-2 B .52- C .2 D .52【答案】B 【思路分析】如图【解题过程】由题意得1m --()15m -=1m -15m =-2,则m=52-,故选B .【知识点】定义新运算12.(2019广东深圳,12,3分)已知菱形ABCD 的边长为4,∠BAD=120°,E 、F 分别为AB ,AD 上的点,且BE=AF ,则下列结论正确的有( )个.①△BEC ≌△AFC ;②△ECF 为等边三角形;③∠AGE=∠AFC;④若AF=1,则GF EG =13.A .1B .2C .3D .4【答案】D【思路分析】【解题过程】在四边形ABCD是菱形,∵∠BAD=120°,∴∠B=∠BAC=60°,∴AC=BC,且BE=AF,∴△BEC≌△AFC,故①正确;∵△BEC≌△AFC,∴FC=EC,∠FCA=∠ECB,∴∠ECF=∠ACB=60°,∴△ECF为等边三角形,故②正确;∵∠AGE=180°-∠BAC-∠AEG;∠AFC=180°-∠FAC-∠ACF,∴∠AGE=∠AFC,故③正确;∵AF=1,则AE=3,易得△CFG∽△CBE,∴GF CFBE BC=,△CEG∽△CAE,∴EG CEAE AC=,∵CE=CF,AC=BC,∴GFBE =EGAE,∴13GF BEEG AE==,故④正确.故选D.【知识点】四边形多结论题;菱形的性质;全等三角形的判定;等边三角形的判定;二、填空题:本大题共4小题,每小题3分,共12分.不需写出解答过程,请把最后结果填在题中横线上.13.(2019广东深圳,13,3分)分解因式:ab2-a=____________.【答案】a(b+1)(b-1)【解析】原式=a(b2-1)=a(b+1)(b-1).【知识点】因式分解;平方差公式14.(2019广东深圳,14,3分)现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是____________.【答案】3 8【解析】从中随机抽取一张,共8种等可能的结果,其中抽到标有2的卡片的结果数为3,故抽到标有数字2的卡片的概率为3 8.【知识点】概率15.(2019广东深圳,15,3分)如图,在正方形ABCD中,BE=1,将BC沿CE翻折,点B的对应点刚好落在对角线AC 上;将AD 沿AF 翻折,点D 的对应点刚好落在对角线AC 上,连接EF ,则EF=____________.【答案】6【解析】设点B 的对应点是点G ,点D 的对应点是点H ,作FM ⊥AB 于点M ,由折叠可知,EG=EB=AG=1,∴AE=2;AM=DF=FH=1,∴AB=FM=2+1,EM=2-1,∴EF=22EM FM +=()()222121-++=6.【知识点】正方形折叠;正方形的性质;勾股定理16.(2019广东深圳,16,3分)如图,在Rt △ABC 中,∠ABC=90°,C (0,3),CD=3AD ,点A 在反比例函数y=k x的图象上,且y 轴平分∠ACB ,则k=_______.【答案】47 7【解析】如图,作AE⊥x轴于点E,易得△COD∽△AED.又∵CD=3AD,C(0,-3),∴AE=1,OD=3DE.令DE=x,则OD=3x.∵y轴平分∠ACB,∴BO=OD=3x.∵∠ABC=90°,AE⊥x轴,∴△CBO∽△BAE,∴BOAE=COBE,即31x=37x,解得x=77(已舍负值),∴A(477,1),∴k=477.【知识点】反比例函数综合;相似三角形的判定与性质三、解答题(本大题共7小题,第17题5分,第18题6分,第19题7分,第20,21各题8分,第22,23各9分,满分52分,解答应写出文字说明、证明过程或演算步骤)17.(2019广东深圳,17,5分)92cos60°+(18)-1+(π➖3.14)0.【思路分析】将特殊角的锐角三角函数值,负整数指数幂,零指数幂等分别代入,然后按照实数混合运算的顺序计算.【解题过程】解:原式=3-1+8+1=11.【知识点】正六边形的性质;勾股定理;锐角三角函数18.(2019广东深圳,18,6分)先化简:(1-32x +)÷244x x x -1++,再将x=-1代入求值.【思路分析】先把括号内的分式进行通分相减,再把除法化为乘法进行约分化简,最后代入求值.【解题过程】解:原式=2x x -1+×()22x x -1+=x+2.当x=-1时,原式=-1+2=1. 【知识点】分式化简求值19.(2019广东深圳,19,7分)某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取 学生进行调查,扇形统计图中的x = ; (2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是 度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有 名.【思路分析】(1)由条形统计图可知喜欢“古筝”的有80人,由扇形统计图可知喜欢“古筝”的占40%,80÷40%=200,即共抽取了200人;由条形统计图可知,喜欢“竹笛”有30人,x=30÷200=15%;(2)用总数减去各组人数可得喜欢“二胡”有60人,在相应的位置补全条形统计图;(3)“扬琴”占的百分比为20200=10%,360°×10%=36°;(4)用样本估计总体可得全校喜爱“二胡”的人数为3000×30%=900(人). 【解题过程】(1)200,15%; (2)统计图如图所示:(3)36;(4)900.【知识点】数据统计;概率;条形统计图和扇形统计图.20.(2019广东深圳,20,8分)如图所示,某施工队要测量隧道长度BC ,AD=600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角45°,再由D 走到E 处测量,DE ∥AC ,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).【思路分析】作EM ⊥AC 于点M ,构建直角三角形,解直角三角形解决问题. 【解题过程】如图,△ABD 是等腰直角三角形,AB=AD=600. 作EM ⊥AC 于点M ,则AM=DE=500,∴BM=100.在Rt △CEM 中,tan53°=CM EM ,即600CM =43,∴CM=800,∴BC=CM -BM=800-100=700(米), ∴隧道BC 的长度为700米. 答:隧道BC 的长度为700米.【知识点】解直角三角形21.(2019广东深圳,21,8分)有A 、B 两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电. (1)求焚烧1吨垃圾,A 和B 各发多少度电?(2)A 、B 两个发电厂共焚烧90吨垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾的两倍,求A 厂和B 厂总发电量的最大值.【思路分析】(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,列方程组求解;(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨,总发电量为y 度,列出一次函数,再利用一次函数的性质求解. 【解题过程】解:(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,则=403020=1800a b b a -,-,ìïïíïïî解得=300=260a b ,.ìïïíïïî答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度.(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨,总发电量为y 度,则 y=300x+260(90-x )=40x+23400, ∵x ≤2(90-x ), ∴x ≤60.∵y 随x 的增大而增大,∴当x=60时,y 取最大值为25800. 答:A 、B 发电厂发电总量最大是25800度. 【知识点】二元一次方程组的应用;一次函数的应用22.(2019广东深圳,22,9分)如图所示,抛物线c bx ax y ++=2过点A (-1,0),点C (0,3),且OB=OC . (1)求抛物线的解析式及其对称轴;(2)点D ,E 在直线x=1上的两个动点,且DE=1,点D 在点E 的上方,求四边形ACDE 的周长的最小值, (3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.【思路分析】(1)先求出点B 的坐标,然后把A 、B 、C 三点坐标代入解析式得出方程组,解方程组即可得出a ,b ,c 的值,得解析式,再用配方法或对称轴公式或中点公式可得对称轴方程;(2)利用轴对称原理作出点C 的对称点,求出四边形CDEA 的周长的最小值;(3)方法1:设CP 与x 轴交于点E ,先根据面积关系得出BE :AE=3:5或5:3,求出点E 的坐标,进而求出直线CE 的解析式,解直线CE 与抛物线的解析式联立所得的方程组求出点P 的坐标;方法2:设P (x ,-x 2+2x+3),用含x 的式子表示四边形CBPA 的面积,然后求出CB 的解析式,再用含x 的式子表示出△CBP 的面积,利用面积比建立方程,解方程求出x 的值,得出P 的坐标.【解题过程】解:(1)∵点C (0,3),OB=OC ,∴点B (3,0).把A (-1,0),C (0,3),B (3,0)代入c bx ax y ++=2,得 09303a b c a b c c +=⎧⎪+=⎨⎪=⎩-,+,,解得123a b c =⎧⎪=⎨⎪=⎩-,,.∴抛物线的解析式为y=-x 2+2x+3.∵y=-x 2+2x+3=-(x -1)2+4,∴抛物线的对称轴为x=1.(2)如图,作点C 关于x=1的对称点C′(2,3),则CD=C′D.取A ′(-1,1),又∵DE=1,可证A ′D=AE.在Rt△AOC 中,AC=22OA OC +=2213+=10.四边形ACDE 的周长=AC+DE+CD+AE =10+1+CD+AE .要求四边形ACDE 的周长的最小值,就是求CD+AE 的最小值.∵CD+AE=C′D+A′D,∴当A ′D,C′三点共线时,C′D+A′D 有最小值为13, ∴四边形ACDE 的周长的最小值=10+1+13.(3)方法1:由题意知点P 在x 轴下方,连接CP ,设PC 与x 轴交于点E ,∵直线CP 把四边形CBPA 的面积分为3:5两部分,又∵S △CBE :S △CAE =S △PBE :S △PAE =BE :AE ,∴BE :AE=3:5或5:3,∴点E 1(32,0),E 2(12,0).设直线CE的解析式为y=kx+b,(32,0)和(0,3)代入,得3=02=3k bb,,ìïï+ïíïïïî解得=2=3kb-,.ìïïíïïî∴直线CE的解析式为y=-2x+3.同理可得,当E2(12,0)时,直线CE的解析式为y=-6x+3.由直线CE的解析式和抛物线的解析式联立解得P1(4,-5),P2(8,-45). 方法2:由题意得S△CBP=38S四边形CBPA或S△CBP=58S四边形CBPA.令P(x,-x2+2x+3),S四边形CBPA=S△CAB+S△PAB=6+12×4·(x2-2x-3)=2x2-4x.直线CB的解析式为y=-x+3,作PH∥y轴交直线CB于点H,则H(x,-x+3),S△CBP=12OB·PH=12×3·(-x+3+x2-2x-3)=32x2-92x.当S△CBP=38S四边形CBPA时,32x2-92x=38(2x2-4x),解得x1=0(舍),x2=4,∴P1(4,-5).当S△CBP=58S四边形CBPA时,32x2-92x=58(2x2-4x),解得x3=0(舍),x4=8,∴P 2(8,-45).【知识点】一次函数、二次函数的综合;线段和最值;动点问题23.(2019广东深圳,23,9分)已知在平面直角坐标系中,点A (3,0),B (-3,0),C (-3,8),以线段BC 为直径作圆,圆心为E ,直线AC 交⊙E 于点D ,连接OD.(1)求证:直线OD 是⊙E 的切线;(2)点F 为x 轴上任意一动点,连接CF 交⊙E 于点G ,连接BG :①当tan ∠ACF=71时,求所有F 点的坐标 (直接写出); ②求CFBG 的最大值. 【思路分析】(1)连接DE ,证明∠EDO=90°,依据“经过半径的外端且垂直于半径的直线是圆的切线”得证;(2)①分两种情况:一是当F 位于AB 上时,构造相似,用含x 的式子分别表示未知线段,再根据tan ∠ACF=71列出方程求出F 1的坐标;二是当F 位于BA 的延长线上时,同样方法求出F 2的坐标;②方法1:利用相似及勾股定理得出BG CF ()2264CG CG g -,再令y=CG 2·(64-CG 2),求出y 的最大值,进而得出BG CF的最大值;方法2:作GM ⊥BC 于点M ,先证明△CBF∽△CGB ,再由相似三角形对应高的比等于相似比,得出BG CF的最大值;方法3:利用锐角三角函数,得出BG CF =cos sin BC BC αα,进而得出BG CF的最大值. 【解题过程】(1)证明:连接DE ,∵BC 为直径,∴∠BDC=90°,∴∠BDA=90°.∵OA=OB ,∴OD=OA=OB ,∴∠OBD=∠ODB.∵EB=ED ,∴∠EBD=∠EDB,∴∠EBD+∠OBD=∠EDB+∠ODB,即∠EBO=∠EDO.∵CB⊥x 轴,∴∠EBO=90°,∴∠EDO=90°, ∴直线OD 为⊙E 的切线.(2)∵A (3,0),B (-3,0),C (-3,8),∴AB=6,BC=8,∴AC=10.如图1,当F 位于AB 上时,作F 1N ⊥CA 于N ,∵△ANF 1∽△ABC ,∴AN AB =1NF BC =1AF AC, ∴设AN=3x ,则NF 1=4x ,AF 1=5x ,∴CN=CA -AN=10-3x .∴tan ∠ACF=1NF CN =4103x x -=71, 解得x=1031, ∴AF 1=5x=5031, OF 1=3-5031=4331, 即F 1(4331,0).如图2,当F 位于BA 的延长线上时,作F 2M ⊥CA 于M , ∵△AMF 2∽△ABC ,∴设AM=3x ,则MF 2=4x ,AF 2=5x , ∴CM=AC+AM=10+3x ,∴tan∠ACF=2F M CM =4103x x +=71, 解得x=25, ∴AF 2=5x=2,OF 2=3+2=5,即F 2(5,0).(3)方法1:△CBG ∽△CFB ,∴BG BF =BC CF =CG BC, BC 2=CG·CF ,CF=2BC CG, ∵CG 2+BG 2=BC 2,BG 2=BC 2-CG 2,∴22BG CF =2242BC CG BC CG -=()2226464CG CG g -, ∴BG CF ()2264CG CG g -.令y=CG 2·(64-CG 2),∴y=-CG4+64CG2=-(CG2-32)2+322,当CG2=32时,y最大值=322,此时CG=42,∴BGCF的最大值为3264=12.方法2:如图,作GP⊥BC于点P,∵BC是直径,∴∠CGB=∠CBF=90°,∴△CBF∽△CGB,∴BGCF=PGBC=8PG.∵PG≤半径=4,∴BGCF=8PG≤48=12.∴BGCF的最大值为12.方法3:∵BC是直径,∴∠CGB=∠CBF=90°,∴∠CBG=∠CFB(记为α,其中0°<α<90°)则BGCF=cossinBCBCαα=sinαcosα=12sin2α≤12,∴BGCF的最大值为12.【知识点】切线的判定;相似三角形的判定与性质;锐角三角函数;二次函数的最值问题。
2019年广东省深圳市中考数学试卷 (解析版)
2019年广东省深圳市中考数学试卷一、选择题(共12小题).1.(3分)15-的绝对值是( ) A .5- B .15 C .5 D .15- 2.(3分)下列图形中是轴对称图形的是( )A .B .C .D .3.(3分)预计到2025年,中国5G 用户将超过460000000,将460000000用科学记数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯4.(3分)下列哪个图形是正方体的展开图( )A .B .C .D .5.(3分)这组数据20,21,22,23,23的中位数和众数分别是( )A .20,23B .21,23C .21,22D .22,236.(3分)下列运算正确的是( )A .224a a a +=B .3412a a a =C .3412()a a =D .22()ab ab =7.(3分)如图,已知1//l AB ,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠=∠D .13∠=∠8.(3分)如图,已知AB AC =,5AB =,3BC =,以A ,B 两点为圆心,大于12AB 的长为半径画圆弧,两弧相交于点M ,N ,连接MN 与AC 相交于点D ,则BDC ∆的周长为( )A .8B .10C .11D .139.(3分)已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和c y x =的图象为( )A .B .C .D .10.(3分)下面命题正确的是( )A .矩形对角线互相垂直B .方程214x x =的解为14x =C .六边形内角和为540︒D .一条斜边和一条直角边分别相等的两个直角三角形全等11.(3分)定义一种新运算1a n n n b n x dx a b -=-⎰,例如222k n xdx k n =-⎰,若252mm x dx --=-⎰,则(m = )A .2-B .25-C .2D .2512.(3分)已知菱形ABCD ,E 、F 是动点,边长为4,BE AF =,120BAD ∠=︒,则下列结论正确的有几个( )①BEC AFC ∆≅∆;②ECF ∆为等边三角形;③AGE AFC ∠=∠;④若1AF =,则13GF EG =.A .1B .2C .3D .4二、填空题(每小题3分,共4小题,满分12分)13.(3分)分解因式:2ab a -= .14.(3分)现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是 .15.(3分)如图,在正方形ABCD 中,1BE =,将BC 沿CE 翻折,使B 点对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使D 点对应点刚好落在对角线AC 上,求EF = .16.(3分)如图,在Rt ABC ∆中,90ABC ∠=︒,(0,3)C -,3CD AD =,点A 在反比例函数k y x=图象上,且y 轴平分ACB ∠,求k = .三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,满分52分)17.(5分)计算:10192cos60()( 3.14)8π--︒++- 18.(6分)先化简231(1)244x x x x --÷+++,再将1x =-代入求值. 19.(7分)某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.(1)这次共抽取 名学生进行调查,扇形统计图中的x = ;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是 度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有 名.20.(8分)如图所示,某施工队要测量隧道长度BC ,600AD =米,AD BC ⊥,施工队站在点D 处看向B ,测得仰角为45︒,再由D 走到E 处测量,//DE AC ,500ED =米,测得C 处的仰角为53︒,求隧道BC 长.4(sin 535︒≈,3cos535︒≈,4tan 53)3︒≈.21.(8分)有A 、B 两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A 和B 各发电多少度?(2)A 、B 两个发电厂共焚烧90吨的垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾两倍,求A厂和B 厂总发电量的最大值.22.(9分)如图抛物线2y ax bx c =++经过点(1,0)A -,点(0,3)C ,且OB OC =.(1)求抛物线的解析式及其对称轴;(2)点D 、E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值.(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3:5两部分,求点P 的坐标.23.(9分)已知在平面直角坐标系中,点(3,0)A ,(3,0)B -,(3,8)C -,以线段BC 为直径作圆,圆心为E ,直线AC 交E 于点D ,连接OD .(1)求证:直线OD 是E 的切线;(2)点F 为x 轴上任意一动点,连接CF 交E 于点G ,连接BG ;①当1tan 7ACF ∠=时,求所有F 点的坐标 (直接写出); ②求BG CF的最大值.参考答案一、选择题(每小题3分,共12小题,满分36分)1.(3分)15-的绝对值是()A.5-B.15C.5D.15-解:根据负数的绝对值是它的相反数,得11||55-=,故选:B.2.(3分)下列图形中是轴对称图形的是()A.B.C.D.解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.3.(3分)预计到2025年,中国5G用户将超过460000000,将460000000用科学记数法表示为()A.94.610⨯B.74610⨯C.84.610⨯D.90.4610⨯解:将460000000用科学记数法表示为84.610⨯.故选:C.4.(3分)下列哪个图形是正方体的展开图()A.B.C.D.解:根据正方体展开图的特征,选项A 、C 、D 不是正方体展开图;选项B 是正方体展开图..故选:B .5.(3分)这组数据20,21,22,23,23的中位数和众数分别是( )A .20,23B .21,23C .21,22D .22,23解:这组数据排序后为20,21,22,23,23,∴中位数和众数分别是22,23,故选:D .6.(3分)下列运算正确的是( )A .224a a a +=B .3412a a a =C .3412()a a =D .22()ab ab = 解:A .2222a a a +=,故选项A 不合题意;B .347a a a =,故选项B 不合题意;C .3412()a a =,故选项C 符合题意;D .222()ab a b =,故选项D 不合题意.故选:C .7.(3分)如图,已知1//l AB ,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠=∠D .13∠=∠解:1//l AB ,24∴∠=∠,32∠=∠,512∠=∠+∠, AC 为角平分线,1243∴∠=∠=∠=∠,521∠=∠. 故选:B .8.(3分)如图,已知AB AC =,5AB =,3BC =,以A ,B 两点为圆心,大于12AB 的长为半径画圆弧,两弧相交于点M ,N ,连接MN 与AC 相交于点D ,则BDC ∆的周长为( )A .8B .10C .11D .13解:由作法得MN 垂直平分AB ,DA DB ∴=,BDC ∴∆的周长538DB DC BC DA DC BC AC BC =++=++=+=+=.故选:A .9.(3分)已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和c y x =的图象为()A .B .C .D .解:根据二次函数2(0)y ax bx c a =++≠的图象,可得0a <,0b >,0c <,y ax b ∴=+过一、二、四象限,双曲线c y x=在二、四象限, C ∴是正确的.故选:C .10.(3分)下面命题正确的是( )A .矩形对角线互相垂直B .方程214x x =的解为14x =C .六边形内角和为540︒D .一条斜边和一条直角边分别相等的两个直角三角形全等解:A .矩形对角线互相垂直,不正确;B .方程214x x =的解为14x =,不正确;C .六边形内角和为540︒,不正确;D .一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选:D .11.(3分)定义一种新运算1a n n n b n x dx a b -=-⎰,例如222k n xdx k n =-⎰,若252mm x dx --=-⎰,则(m = )A .2-B .25-C .2D .25解:由题意得:11(5)2m m ---=-,1125m m-=-, 5110m -=-,25m =-, 经检验:25m =-是方程1125m m-=-的解; 故选:B .12.(3分)已知菱形ABCD ,E 、F 是动点,边长为4,BE AF =,120BAD ∠=︒,则下列结论正确的有几个( )①BEC AFC ∆≅∆;②ECF ∆为等边三角形;③AGE AFC ∠=∠;④若1AF =,则13GF EG =.A .1B .2C .3D .4 解:①BEC AFC ∆≅∆()SAS ,正确;②BEC AFC ∆≅∆,CE CF ∴=,BCE ACF ∠=∠,60BCE ECA BCA ∠+∠=∠=︒,60ACF ECA ∴∠+∠=,CEF ∴∆是等边三角形,故②正确;③60AGE CAF AFG AFG ∠=∠+∠=︒+∠;60AFC CFG AFG AFG ∠=∠+∠=︒+∠,AGE AFC ∴∠=∠,故③正确正确;④过点E 作//EM BC 交AC 于点M ,易证AEM ∆是等边三角形,则3EM AE ==,//AF EM ,∴则13GF AF EG EM ==. 故④正确,故①②③④都正确.故选:D .二、填空题(每小题3分,共4小题,满分12分)13.(3分)分解因式:2ab a -= (1)(1)a b b +- .解:原式2(1)(1)(1)a b a b b =-=+-,故答案为:(1)(1)a b b +-14.(3分)现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是 38 . 解:现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,∴将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是:38. 故答案为:38. 15.(3分)如图,在正方形ABCD 中,1BE =,将BC 沿CE 翻折,使B 点对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使D 点对应点刚好落在对角线AC 上,求EF = 6 .解:如图,作FM AB ⊥于点M .四边形ABCD 是正方形,45BAC CAD ∴∠=∠=︒.将BC 沿CE 翻折,B 点对应点刚好落在对角线AC 上的点X ,1EX EB AX ∴===,90EXC B ∠=∠=︒,222AE AX EX ∴=+=将AD 沿AF 翻折,使D 点对应点刚好落在对角线AC 上的点Y , 1AM DF YF ∴===,∴正方形的边长21AB FM ==+,21EM =,2222(21)(21)6EF EM FM ∴=+=-++=.616.(3分)如图,在Rt ABC ∆中,90ABC ∠=︒,(0,3)C -,3CD AD =,点A 在反比例函数k y x=图象上,且y 轴平分ACB ∠,求k = 477 .解:过A 作AE x ⊥轴,垂足为E ,(0,3)C -,3OC ∴=, 90AED COD ∠=∠=︒,ADE CDO ∠=∠ADE CDO ∴∆∆∽, ∴13AE DE AD CO OD CD ===, 1AE ∴=;又y 轴平分ACB ∠,CO BD ⊥,BO OD ∴=, 90ABC ∠=︒,OCD DAE ABE ∴∠=∠=∠,~ABE DCO ∴∆∆,∴AE BE OD OC= 设DE n =,则3BO OD n ==,7BE n =,∴1733n n =, 7n ∴=4747OE n ∴==47(7A ∴,1) 4747177k ∴=⨯=. 故答案为:477.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,满分52分) 17.(510192cos60()( 3.14)8π--︒++- 解:原式132812=-⨯++ 3181=-++ 11=.18.(6分)先化简231(1)244x x x x --÷+++,再将1x =-代入求值. 解:原式21(2)21x x x x -+=⨯+- 2x =+,将1x =-代入得:原式21x =+=.19.(7分)某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.(1)这次共抽取200名学生进行调查,扇形统计图中的x=;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有名.解:(1)8040%200÷=,30100%15%200x=⨯=,故答案为:200;15%;(2)喜欢二胡的学生数为2008030201060----=,补全统计图如图所示,(3)扇形统计图中“扬琴”所对扇形的圆心角是:2036036200︒⨯=︒,故答案为:36;(4)60 3000900200⨯=,答:该校喜爱“二胡”的学生约有有900名.故答案为:900.20.(8分)如图所示,某施工队要测量隧道长度BC,600AD=米,AD BC⊥,施工队站在点D 处看向B ,测得仰角为45︒,再由D 走到E 处测量,//DE AC ,500ED =米,测得C 处的仰角为53︒,求隧道BC 长.4(sin 535︒≈,3cos535︒≈,4tan 53)3︒≈.解:在Rt ABD ∆中,600AB AD ==,作CM DE ⊥于M ,则600CM AD ==,100BM ∴=,在Rt CEM ∆中,6004tan 533CM EM EM ︒===, 450EM ∴=, 950AC EM DE ∴=+=(米),350BC AC AB =-=(米),答:隧道BC 长为350米.21.(8分)有A 、B 两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A 和B 各发电多少度?(2)A 、B 两个发电厂共焚烧90吨的垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾两倍,求A 厂和B 厂总发电量的最大值.解:(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,根据题意得: 4030201800a b b a -=⎧⎨-=⎩,解得300260a b =⎧⎨=⎩, 答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度;(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90)x -吨垃圾,总发电量为y 度,则300260(90)4023400y x x x =+-=+,2(90)x x -,60x ∴, y 随x 的增大而增大,∴当60x =时,y 有最大值为:40602340025800⨯+=(度).答:A 厂和B 厂总发电量的最大是25800度.22.(9分)如图抛物线2y ax bx c =++经过点(1,0)A -,点(0,3)C ,且OB OC =.(1)求抛物线的解析式及其对称轴;(2)点D 、E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值.(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3:5两部分,求点P 的坐标.解:(1)OB OC =,∴点(3,0)B ,则抛物线的表达式为:22(1)(3)(23)23y a x x a x x ax ax a =+-=--=--, 故33a -=,解得:1a =-,故抛物线的表达式为:223y x x =-++⋯①,函数的对称轴为:1x =;(2)ACDE 的周长AC DE CD AE =+++,其中10AC =、1DE =是常数, 故CD AE +最小时,周长最小,取点C 关于函数对称点(2,3)C ',则CD C D =',取点(1,1)A '-,则A D AE '=,故:CD AE A D DC +='+',则当A '、D 、C '三点共线时,CD AE A D DC +='+'最小,周长也最小,四边形ACDE的周长的最小值10110110113AC DE CD AE A D DC A C=+++=++'+'=++''=++;(3)如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又11:():():22PCB PCA C P C PS S EB y y AE y y BE AE∆∆=⨯-⨯-=,则:BE AE,3:5=或5:3,则52AE=或32,即:点E的坐标为3(2,0)或1(2,0),将点E、C的坐标代入一次函数表达式:3y kx=+,解得:6k=-或2-,故直线CP的表达式为:23y x=-+或63y x=-+⋯②联立①②并解得:4x=或8(不合题意值已舍去),故点P的坐标为(4,5)-或(8,45)-.23.(9分)已知在平面直角坐标系中,点(3,0)A,(3,0)B-,(3,8)C-,以线段BC为直径作圆,圆心为E,直线AC交E于点D,连接OD.(1)求证:直线OD是E的切线;(2)点F为x轴上任意一动点,连接CF交E于点G,连接BG;①当1tan7ACF∠=时,求所有F点的坐标143(,0)31F,2(5,0)F(直接写出);②求BG CF的最大值.解:(1)证明:如图1,连接DE ,BC 为圆的直径,90BDC ∴∠=︒,90BDA ∴∠=︒OA OB =OD OB OA ∴==OBD ODB ∴∠=∠ EB ED =EBD EDB ∴∠=∠EBD OBD EDB ODB ∴+∠=∠+∠ 即:EBO EDO ∠=∠CB x ⊥轴90EBO ∴∠=︒90EDO ∴∠=︒点D 在E 上 ∴直线OD 为E 的切线.(2)①如图2,当F 位于AB 上时,过F 作1F N AC ⊥于N , 1F N AC ⊥190ANF ABC ∴∠=∠=︒ANF ABC ∴∆∆∽∴11NF AF AN AB BC AC== 6AB =,8BC =,10AC ∴===,即::6:8:103:4:5AB BC AC == ∴设3AN k =,则14NF k =,15AF k = 103CN CA AN k ∴=-=- 141tan 1037F N k ACF CN k ∴∠===-,解得:1031k = ∴150531AF k == 1504333131OF =-= 即143(31F ,0) 如图3,当F 位于BA 的延长线上时,过2F 作2F M CA ⊥于M , 2AMF ABC ∆∆∽∴设3AM k =,则24MF k =,25AF k = 103CM CA AM k ∴=+=+ 241tan 1037F M k ACF CM k ∴∠===+ 解得:25k = 252AF k ∴==2325OF =+=即2(5,0)F 故答案为:143(31F ,0),2(5,0)F . ②方法1:如图4,过G 作GH BC ⊥于H , CB 为直径90CGB CBF ∴∠=∠=︒ CBG CFB ∴∆∆∽ ∴BG BC CG BF CF BC==2BC CG CF ∴= ∴212BG BG CG GH BC GH CF CF CG BC BC === ∴当H 为BC 中点,即12GH BC =时,BG CF 的最大值12=. 方法2:设BCG α∠=,则sin BG BC α=,cos BC CF α=, sin cos BG CFαα∴= 2(sin cos )0αα-,即:22sin cos 2sin cos αααα+ 22sin cos 1αα+=,1sin cos 2αα∴,即12BG CF ∴BG CF 的最大值12=.。
人教版2019年深圳中考数学试题(解析版)
{来源}2019年深圳中考数学{适用范围:3. 九年级}{标题}2019年深圳市中考数学试卷 考试时间:90分钟 满分:100分{题型:1-选择题}一、选择题:本大题共 12 小题,每小题 3 分,合计36分.{题目}1.(2019年深圳第1题)51-的绝对值是 A.-5 B.51C.5D.51- {答案}B{解析}本题考查了绝对值的性质,根据绝对值的性质,−15的绝对值是15,因此本题选B . {分值}3{章节:[1-1-2-4]绝对值 } {考点:绝对值的性质} {类别:常考题} {难度:1-最简单}{题目}2.(2019年深圳第2题)下列图形中,是轴对称图形的是{答案}A{解析}本题考查了轴对称图形,根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,判断即可得出答案.因此本题选A . {分值}3{章节:[1-13-1-1]轴对称} {考点:轴对称图形} {类别:常考题} {难度:1-最简单}{题目}3.(2019年深圳第3题)预计2025年,中国5G 用户将超过460 000 000户。
将数据460 000 000用科学计数法表示为: A .94.610⨯B .74610⨯C .84.610⨯D . 90.4610⨯ {答案}C{解析}本题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.因此本题选C . {分值}3{章节:[1-1-5-2]科学计数法}A B C D{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}4.(2019年深圳第4题)下列哪个图形是正方体的展开图A B C D{答案}B{解析}本题考查正方体的展开图。
选项B属于正方体的展开图中1-4-1型,A,C,D选项在折的过程中均有正方形重叠。
因此本题选B{分值}3{章节:[1-4-1-2]点、线、面、体}{考点:几何体的展开图}{类别:常考题}{难度:2-简单}{题目}5.(2019年深圳第5题)一组数:20,21,22,23,23,这组数的中位数和众数分别是A.20,23 B.21,23 C.21,22 D. 22,23{答案}D{解析}本题考查了中位数和众数,根据一组数据按照由小到大(或由大而小)的顺序排列,中间位置的数或者中间两个数据的平均数为这组数据的中位数;一组数据中出现次数最多的数据成为这组数据的众数,对各选项分析判断后即可得出答案.因此本题选D.{分值}3{章节:[1-20-1-2]中位数和众数}{考点:中位数}{考点:众数}{类别:常考题}{难度:2-简单}{题目}6.(2019年深圳第6题)下列运算正确的是A.224a a a= C.()4312a a a+= B.3412= D.()22a a=ab ab{答案}C{解析}本题考查整式的运算,根据合并同类项法则;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变,指数相乘;积的乘方,等于每一个因式的乘方的积,对各选项分析判断后利用排除法求解.本题选C{分值}3{章节:[1-15-2-3]整数指数幂}{考点: 合并同类项}{考点:同底数幂的乘法}{考点: 幂的乘方}{考点:积的乘方 }{类别:常考题}{难度:2-简单}{题目}7.(2019年深圳第7题)如图1,已知直线1l∥2l,直线3l交直线1l、2l于A、B两点,AC 为角平分线,则下列说法错误的是A.∠1= ∠4 B.∠1= ∠5C.∠2= ∠3 D.∠1= ∠3{答案}B{解析}本题考查了平行线的性质和角平分线的性质,根据角平分线的性质,易得∠1= ∠2,根据平行线的性质,可得∠2= ∠3,∠2= ∠4,根据等量代换,可得∠1= ∠4,选项A,C,D正确。
2019年深圳中考数学试卷(详细答案版本)
2019年深圳中考数学试卷一、选择题(共12小题;共60分)1. 的绝对值是A. B. C. D。
2. 下列图形中,是轴对称图形的是A。
B.C. D。
3. 预计到年,中国用户将超过 ,将用科学计数法表示为A。
B。
C。
D。
4. 下列哪个图形是正方体的展开图A。
B。
C. D。
5。
这组数据,,,,的中位数和众位数分别是A。
, B. , C. ,D。
,6. 下列运算正确的是A。
B。
C。
D.7. 如图,已知,为角平分线,下列说法错误的是A。
B. C. D.8. 如图,已知与相交于点,则的周长为A。
B。
C. D。
9. 已知的图象如图,则和的图象为A。
B.C。
D.10. 下列命题正确的是A. 矩形对角线互相垂直B。
方程的解为C. 六边形内角和为D. 一条斜边和一条直角边分别相等的两个直角三角形全等11。
定义一种新运算,例如,若 ,则A。
B。
C. D。
12. 已知菱形,,是动点,边长为,,,则下列结论正确的有几个① ;② 为等边三角形;③ ;④若,则.A。
B。
C。
D.二、填空题(共4小题;共20分)13。
分解因式:.14。
现有张同样的卡片,分别标有数字: , , ,,, , ,,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字的卡片的概率是15. 如图,在正方形ABCD中, ,将沿翻折,使点对应点刚好落在对角线上,将沿翻折,使点对应点刚好落在对角线上,求.16。
如图,在中, , , ,点在上,且轴平分,求.三、解答题(共7小题;共91分)17。
计算: .18. 先化简,再将代入求值.19。
某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.(1)这次共抽取名学生进行调查,扇形统计图中的;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有名学生,请你估计该校喜爱“二胡"的学生约有名.20。
2019年广东省深圳市中考试题及参考答案
2019年广东省深圳市中考数学试卷第一部分选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个选项是正确的)1.下列四个数中,最小的正数是()A.—1 B. 0 C. 1 D. 2答案:C解析:正数大于0,0大于负数,A、B都不是正数,所以选C。
2.把下列图形折成一个正方体的盒子,折好后与“中”相对的字是()A.祝 B.你 C.顺 D.利答案:C解析:若以“考”为底,则“中”是左侧面,“顺”是右侧面,所以,选C。
3.下列运算正确的是()A.8a-a=8B.(-a)4=a4C.326a a a⨯= D.2()a b-=a2-b2答案:B解析:对于A,不是同类项,不能相加减;对于C,325a a a⨯=,故错。
对于D,2()a b-=222a ab b-+,错误,只有D是正确的。
4.下列图形中,是轴对称图形的是()答案:B解析:轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,只有B符合。
5.据统计,从2005年到2015年中国累积节能1570000000吨标准煤,1570000000这个数用科学计数法表示为()A.0.157×1010 B .1.57×108 C .1.57×109 D .15.7×108 答案:C解析:科学记数的表示形式为10n a ⨯形式,其中1||10a ≤<,n 为整数,1570000000=1.57×109。
故选C 。
6.如图,已知a ∥b ,直角三角板的直角顶点在直线b 上,若∠1=60°,则下列结论错误的是( )A . ∠2=60°B . ∠3=60°C . ∠4=120°D . ∠5=40°答案:D7.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签法确定一个小组进行展示活动。
则第3小组被抽到的概率是( )A .71B . 31C . 211D . 101 答案:A8.下列命题正确是( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.两边及一角对应相等的两个三角形全等C.16的平方根是4D.一组数据2,0,1,6,6的中位数和众数分别是2和6答案:D解析:A 错误,因为有可能是等腰梯形;B 错误,因为两边及其夹角对应相等的两个三角形才全等;因为16的平方根是4±,所以,C 错误;对于D ,数据由小到大排列:0,1,2,6,6,所以,中位数和众数分别是2和6,正确。
2019年深圳中考数学试题(解析版)
{来源}2019年深圳中考数学 {适用范围:3. 九年级}{标题}2019年深圳市中考数学试卷考试时间:90分钟 满分:100分{题型:1-选择题}一、选择题:本大题共 12 小题,每小题 3 分,合计36分.{题目}1.(2019年深圳第1题)51-的绝对值是 A.-5 B. 51 C.5 D. 51-{答案}B{解析}本题考查了绝对值的性质,根据绝对值的性质,−15的绝对值是15,因此本题选B . {分值}3{章节:[1-1-2-4]绝对值 } {考点:绝对值的性质} {类别:常考题} {难度:1-最简单}{题目}2.(2019年深圳第2题)下列图形中,是轴对称图形的是{答案}A{解析}本题考查了轴对称图形,根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,判断即可得出答案.因此本题选A . {分值}3{章节:[1-13-1-1]轴对称} {考点:轴对称图形} {类别:常考题} {难度:1-最简单}{题目}3.(2019年深圳第3题)预计2025年,中国5G 用户将超过460 000 000户。
将数据460 000 000用科学计数法表示为: A .94.610⨯B .74610⨯C .84.610⨯D . 90.4610⨯{答案}C{解析}本题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.因此本题选C . {分值}3A B C D{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:1-最简单}{题目}4.(2019年深圳第4题)下列哪个图形是正方体的展开图{答案}B{解析}本题考查正方体的展开图。
选项B 属于正方体的展开图中1-4-1型,A ,C ,D 选项在折的过程中均有正方形重叠。
因此本题选B{分值}3{章节:[1-4-1-2]点、线、面、体} {考点:几何体的展开图} {类别:常考题} {难度:2-简单}{题目}5.(2019年深圳第5题)一组数:20,21,22,23,23,这组数的中位数和众数分别是 A .20,23B .21,23C .21,22D . 22,23{答案}D{解析}本题考查了中位数和众数,根据一组数据按照由小到大(或由大而小)的顺序排列,中间位置的数或者中间两个数据的平均数为这组数据的中位数;一组数据中出现次数最多的数据成为这组数据的众数,对各选项分析判断后即可得出答案.因此本题选D . {分值}3{章节:[1-20-1-2]中位数和众数} {考点:中位数}{考点:众数} {类别:常考题} {难度:2-简单}{题目}6.(2019年深圳第6题)下列运算正确的是A .224a a a += B .3412a a a = C .()4312aa = D . ()22ab ab ={答案}C{解析}本题考查整式的运算,根据合并同类项法则;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变,指数相乘;积的乘方,等于每一个因式的乘方的积,对各选项分析判断后利用排除法求解.本题选CA B C D{分值}3{章节:[1-15-2-3]整数指数幂}{考点: 合并同类项}{考点:同底数幂的乘法}{考点: 幂的乘方}{考点:积的乘方 } {类别:常考题} {难度:2-简单}{题目}7.(2019年深圳第7题)如图1,已知直线1l ∥2l ,直线3l 交直线1l 、2l 于A 、B 两点,AC 为角平分线,则下列说法错误的是 A .∠1= ∠4 B .∠1= ∠5 C .∠2= ∠3 D . ∠1= ∠3{答案}B{解析}本题考查了平行线的性质和角平分线的性质,根据角平分线的性质,易得∠1= ∠2,根据平行线的性质,可得∠2= ∠3,∠2= ∠4,根据等量代换,可得∠1= ∠4,选项A ,C ,D 正确。
19年深圳中考数学真题试卷(含答案解析)
1
大于 AB 的长为半径画弧,两弧交于点 M、N,连接 MN,与 AC 相
2
交于点 D,则 tt 的周长为
A.
B. C. D.
第 1 页 共 14 页
9. 已知二次函数
数
‷ 的图象为
t‷
的图象如图 3 所示,则一次函数
t 和反比例函
图3
A
B
10. 下列命题正确的是 A. 矩形对角线互相垂直
B. 方程
17. 计算:
cos
π
.
18. 先化简
,再将
代入求值.
19. 某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学
生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.
(1)这次共抽取
名学生进行调查,扇形统计图中的
;
(2)请补全统计图;
(3)在扇形统计图中“扬琴”所对扇形的圆心角是
作t
于点 t ,则 t t
,
tt
,
在
t 中, tan
即t
t
, ,
t,
t
t
t tt
(米),
隧道 t 的长度为
米.
答:隧道 t 的长度为
米.
21. (1) 设焚烧 吨垃圾,A 发电厂发电 度,B 发电厂发电 t 度,
则
t t
解得:
答:焚烧 吨垃圾,A 发电厂发电
t 度,B 发电厂发电 度.
(2) 设 A 发电厂焚烧 吨垃圾,则 B 发电厂焚烧
则: t t cos sin cos
sin
,
t
t 的最大值为 .
2019年广东省深圳市中考数学试题(解析版)
2019年广东省深圳市中考数学试题(解析版)2019年深圳市初中毕业升学考试数学一、选择题(每小题3分,共12小题,满分36分)1.的绝对值是()A. -5B.C. 5D.【答案】B【解析】【分析】负数的绝对值是其相反数,依此即可求解.【详解】-5的绝对值是5.故选C.【点睛】本题考查了绝对值的知识,掌握绝对值的意义是本题的关键,解题时要细心.2.下列图形是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为()A. B. C. D.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列哪个图形是正方体的展开图()A. B. C. D.【答案】B【解析】【分析】根据正方体展开图的11种特征,选项A、C、D不是正方体展开图;选项B是正方体展开图的“1-4-1”型.【详解】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.5.这组数据20,21,22,23,23的中位数和众数分别是()A. 20,23B. 21,23C. 21,22D. 22,23 【答案】D【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】先把数据按从小到大排列顺序20,21,22,23,23,则中间的那一个就是中位数. 众数是出现次数最多的那个数就是众数,即是23.故选D【点睛】本题为统计题,考查众数与中位数意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.下列运算正确的是()A. B. C. D.【答案】C【解析】【分析】分别计算出各项的结果,再进行判断即可.【详解】A.,故原选项错误;B. ,故原选项错误;C. ,计算正确;D. ,故原选项错误.故选C【点睛】本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.7.如图,已知,为角平分线,下列说法错误的是()A. B. C. D.【答案】B【解析】【分析】利用平行线的性质得到∠2=∠4,∠3=∠2,∠5=∠1+∠2,再根据角平分线的定义得到∠1=∠2=∠4=∠3,∠5=2∠1,从而可对各选项进行判断.【详解】∵l1∥AB,∴∠2=∠4,∠3=∠2,∠5=∠1+∠2,∵AC为角平分线,∴∠1=∠2=∠4=∠3,∠5=2∠1.故选B.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.8.如图,已知,以两点为圆心,大于的长为半径画圆,两弧相交于点,连接与相较于点,则的周长为()A. 8B. 10C. 11D. 13【答案】A【解析】【分析】利用基本作图得到MN垂直平分AB,利用线段垂直平分线的定义得到DA=DB,然后利用等线段代换得到△BDC的周长=AC+BC.【详解】由作法得MN垂直平分AB,∴DA=DB,∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=8.故选A.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.9.已知的图象如图,则和的图象为()A. B. C. D.【答案】C【解析】【分析】根据二次函数y=ax2+bx+c(a≠0)的图象可以得到a<0,b>0,c<0,由此可以判定y=ax+b 经过一、二、四象限,双曲线在二、四象限.【详解】根据二次函数y=ax2+bx+c(a≠0)的图象,可得a<0,b>0,c<0,∴y=ax+b过一、二、四象限,双曲线在二、四象限,∴C是正确的.故选C.【点睛】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.10.下列命题正确的是()A. 矩形对角线互相垂直B. 方程的解为C. 六边形内角和为540°D. 一条斜边和一条直角边分别相等的两个直角三角形全等【答案】D【解析】【分析】由矩形的对角线互相平分且相等得出选项A不正确;由方程x2=14x的解为x=14或x=0得出选项B不正确;由六边形内角和为(6-2)×180°=720°得出选项C不正确;由直角三角形全等的判定方法得出选项D正确;即可得出结论.【详解】A.矩形对角线互相垂直,不正确;B.方程x2=14x的解为x=14,不正确;C.六边形内角和为540°,不正确;D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选D.【点睛】本题考查了命题与定理、矩形的性质、一元二次方程的解、六边形的内角和、直角三角形全等的判定;要熟练掌握.11.定义一种新运算:,例如:,若,则()A. -2B.C. 2D.【答案】B【解析】【分析】根据新定义运算得到一个分式方程,求解即可.【详解】根据题意得,,则,经检验,是方程的解,故选B.【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.12.已知菱形,是动点,边长为4,,则下列结论正确的有几个()①;②为等边三角形③④若,则A. 1B. 2C. 3D. 4【答案】D【解析】【分析】①易证△ABC为等边三角形,得AC=BC,∠CAF=∠B,结合已知条件BE=AF可证△BEC≌△AFC;②得FC=EC,∠FCA=∠ECB,得∠FCE=∠ACB,进而可得结论;③证明∠AGE=∠BFC则可得结论;④分别证明△AEG∽△FCG和△FCG∽△ACF即可得出结论. 【详解】在四边形是菱形中,∵,∴∴∴△ABC为等边三角形,∴又,∴,故①正确;∴,∴∠FCE=∠ACB=60°,∴为等边三角形,故②正确;∵∠AGE+∠GAE+∠AEG=180°,∠BEC+∠CEF+∠AEG=180°,又∵∠CEF=∠CAB=60°∴∠BEC=∠AGE,由①得,∠AFC=∠BEC,∴∠AGE=∠AFC,故③正确;∴∠AEG=∠FCG∴△AEG∽△FCG,∴,∵∠AGE=∠FGC,∠AEG=∠FCG∴∠CFG=∠GAE=∠FAC,∴△ACF∽△FCG,∴∴∵AF=1,∴BE=1,∴AE=3,∴,故④正确.故选D.【点睛】本题主要考查了运用菱形的性质求解,主要的知识点有:全等三角形的判定与性质,等边三角形的判定与性质以及相似三角形的判定与性质,难度较大,综合性较强,是一道好二、填空题(每小题3分,共4小题,满分12分)13.分解因式:=______.【答案】a(b+1)(b﹣1).【解析】解:原式==a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1).14.现有8张同样卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字2的卡片的概率是_______. 【答案】【解析】【分析】直接利用概率公式计算进而得出答案.【详解】∵现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,∴将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是:.故答案为:.【点睛】此题主要考查了概率公式,正确掌握计算公式是解题关键.15.如图在正方形中,,将沿翻折,使点对应点刚好落在对角线上,将沿翻折,使点对应点落在对角线上,求______.【答案】【解析】【分析】作于点,构造直角三角形,运用勾股定理求解即可.【详解】作于点,由折叠可知:,,∴正方形边长∴.故答案为:.【点睛】本题考查翻折变换、正方形性质、勾股定理等知识,解题的关键是正确寻找直角三角形解决问题,学会利用参数构建方程解决问题,16.如图,在中,,,点在上,且轴平分角,求______.【答案】【解析】【分析】作轴,证明△COD∽△AED,求得AE=1,再证明△CBO∽△BAE,求得OE=,进而可求出k的值.【详解】如图所示:作轴由题意:可证又∵∴令,则∵轴平分∴∵轴∴可证则,即,解得:∴故.【点睛】本题考查解直角三角形、坐标与图形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考选择题中的压轴题.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22、23题9分,满分52分)17.计算:【答案】11.【解析】【分析】根据算术平方根、特殊角的三角函数值、负整数指数幂、零指数幂的意义进行计算,最后再进行加减运算即可得解.【详解】,.【点睛】本题考查了实数的运算、特殊角的三角函数值、负整数指数幂、零指数幂,解答本题的关键是明确它们的各自计算方法.18.先化简,再将代入求值.【答案】1.【解析】【分析】直接利用分式的混合运算法则进而化简得出答案.【详解】原式将代入得:【点睛】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.19.某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取学生进行调查,扇形统计图中的 .(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有名.【答案】(1)200,15%;(2)统计图如图所示见解析;(3)36;(4)900.【解析】【分析】(1)用喜爱古筝的人数除以所占百分比即可得到抽查的总人数,用喜爱竹笛的人数除以总人数即可得出x的值;(2)求得喜爱二胡的人数,即可将条形统计图补充完整;(3)求出扬琴部分的百分比,即可得到扬琴部分所占圆心角的度数;(4)依据喜爱二胡的学生所占的百分比,即可得到该校喜爱二胡的学生数量.【详解】(1)80÷40%=200(人),x=30÷200=15%.(2)喜爱二胡的人数为:200-80-30-20-10=60(人)补全图形如下:(3)“扬琴”所对扇形的圆心角的度数为:.(4)3000×=900(人),故,若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有900名.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.20.如图所示,某施工队要测量隧道长度,米,,施工队站在点处看向,测得仰角,再由走到处测量,米,测得仰角为,求隧道长.(,,).【答案】隧道的长度为700米.【解析】【分析】作EM⊥AC于M,解直角三角形即可得到结论.【详解】如图,是等腰直角三角形,,作点,则∴在中,,即∴∴(米)答:隧道的长度为700米。
2019年广东深圳中考数学真题--含解析
2019年广东省深圳市初中学生学业水平考试数学试题(满分100分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019广东深圳,1,3分)-15的绝对值是()A.-5 B.15C.5 D.-15【答案】B【解析】15-=-(-15)=15.故选B.【知识点】绝对值2.(2019广东深圳,2,3分)下列图形中是轴对称图形的是()【答案】A【解析】A中图形沿着过上下两边中点的直线进行折叠,直线两旁的部分能完全重合,是轴对称图形;其他图形不符合轴对称图形的定义,不是轴对称图形.故选A.【知识点】轴对称图形3.(2019广东深圳,3,3分)预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学记数法表示为()A.4.6×109B.46×107 C.4.6×108D.0.46×109【答案】C【解析】460 000 000整数位数有9位,所以将460 000 000用科学记数法表示为4.6×108.故选C.【知识点】科学记数法4.(2019广东深圳,4,3分)下列哪个图形是正方体的展开图()A.B. C.D.【答案】B【解析】B中图形符合“一四一”模型,是正方体的展开图.故选B.【知识点】立体图形的展开图5.(2019广东深圳,5,3分)这组数据20,21,22,23,23的中位数和众数分别是()A.20,23 B.21,23 C.21,22 D.22,23【答案】D【解析】数据是从小到大排列的,排在最中间的数据为22,则中位数是22;出现最多的数据是23,即众数是23.故选D.【知识点】中位数;众数6.(2019广东深圳,6,3分)下列运算正确的是()A.a2+a2=a4B.a3·a4=a12 C.(a3)4=a12 D.(ab)2=ab2【答案】C【解析】∵a2+a2=2a2,故A错误;∵a3·a4=a7,故B错误;(a3)4=a3×4=a12,故C正确;(ab)2=a2b2,故D错误.故选C.【知识点】合并同类项;同底数幂的乘法;幂的乘方;积的乘方∥AB,AC为角平分线,下列说法错误的是()7.(2019广东深圳,7,3分)如图,已知l1A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3【答案】B【解析】∵AC为角平分线,∴∠1=∠2.∵l1∥AB,∴∠4=∠2,∠3=∠2,∴∠1=∠4,∠1=∠3.故A、C、D正确.∵l1∥AB,∴∠5=∠1+∠2,故B错误.故选B.【知识点】平行线的性质;角平分线的定义8.(2019广东深圳,8,3分)如图,已知AB=AC,AB=5,BC=3.以AB两点为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,过M,N作直线与AC相交于点D,则△BDC的周长为()A.8 B.10 C.11 D.13【答案】A【解析】由作图方法知,MN是线段AB的垂直平分线,∴AD=BD,∴△BDC的周长=BD+DC+BC=AD+DC+BC=5+3=8.故选A.【知识点】尺规作图;线段的垂直平分线;等腰三角形9.(2019广东深圳,9,3分)已知函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b与y=cx的图象为()A.B. C.D.【答案】C【思路分析】先根据二次函数y=ax 2+bx+c (a ≠0)的图象确定a ,b ,c 的正负,则判断一次函数与反比例函数的图象所在的象限.【解题过程】由二次函数的图象可知,a<0,b>0,c<0.当a<0,b>0,c<0时,一次函数y=ax+b 经过第一、二、四象限;反比例函数y=cx位于第二、四象限,选项C 符合.故选C . 【知识点】二次函数的图象与系数的关系;一次函数的图象与系数的关系;反比例函数的图象与系数的关系;符号判断10.(2019广东深圳,10,3分)下列命题正确的是( ) A .矩形对角线互相垂直 B .方程x 2=14x 的解为x=14C .六边形的内角和为540°D .斜边和一条直角边分别相等的两个直角三角形全等【答案】D【思路分析】对各个选项逐项判断.【解题过程】A 中,矩形的对角线相等,而不具备对角线互相垂直,故A 错误;B 中,方程x 2=14x 的解为x=14或x=0,故B 错误;C 中,六边形的内角和为(6-2)×180°=720°,故C 错误;选项D 正确.故选D .【知识点】矩形的性质;一元二次方程的解法;正多边形的内角和;全等三角形 11.(2019广东深圳,11,3分)定义一种新运算:abn ò=nna b -,例如:132ò=2213-=1-9=-8,若51mm-ò=-2,则m=( )A .-2B .52-C .2D .52【答案】B 【思路分析】如图【解题过程】由题意得1m --()15m -=1m -15m =-2,则m=52-,故选B .【知识点】定义新运算12.(2019广东深圳,12,3分)已知菱形ABCD 的边长为4,∠BAD=120°,E 、F 分别为AB ,AD上的点,且BE=AF ,则下列结论正确的有( )个.①△BEC ≌△AFC ;②△ECF 为等边三角形;③∠AGE=∠AFC ;④若AF=1,则GF EG =13.A .1B .2C .3D .4【答案】D【思路分析】【解题过程】在四边形ABCD是菱形,∵∠BAD=120°,∴∠B=∠BAC=60°,∴AC=BC,且BE=AF,∴△BEC≌△AFC,故①正确;∵△BEC≌△AFC,∴FC=EC,∠FCA=∠ECB,∴∠ECF=∠ACB=60°,∴△ECF为等边三角形,故②正确;∵∠AGE=180°-∠BAC-∠AEG;∠AFC=180°-∠FAC-∠ACF,∴∠AGE=∠AFC,故③正确;∵AF=1,则AE=3,易得△CFG∽△CBE,∴GF CFBE BC=,△CEG∽△CAE,∴EG CEAE AC=,∵CE=CF,AC=BC,∴GFBE=EGAE,∴13GF BEEG AE==,故④正确.故选D.【知识点】四边形多结论题;菱形的性质;全等三角形的判定;等边三角形的判定;二、填空题:本大题共4小题,每小题3分,共12分.不需写出解答过程,请把最后结果填在题中横线上.13.(2019广东深圳,13,3分)分解因式:ab2-a=____________.【答案】a(b+1)(b-1)【解析】原式=a(b2-1)=a(b+1)(b-1).【知识点】因式分解;平方差公式14.(2019广东深圳,14,3分)现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是____________.【答案】3 8【解析】从中随机抽取一张,共8种等可能的结果,其中抽到标有2的卡片的结果数为3,故抽到标有数字2的卡片的概率为38.【知识点】概率15.(2019广东深圳,15,3分)如图,在正方形ABCD 中,BE=1,将BC 沿CE 翻折,点B 的对应点刚好落在对角线AC 上;将AD 沿AF 翻折,点D 的对应点刚好落在对角线AC 上,连接EF ,则EF=____________.【答案】6【解析】设点B 的对应点是点G ,点D 的对应点是点H ,作FM ⊥AB 于点M ,由折叠可知,EG=EB=AG=1,∴AE=2;AM=DF=FH=1,∴AB=FM=2+1,EM=2-1,∴EF=22EM FM +=()()222121-++=6.【知识点】正方形折叠;正方形的性质;勾股定理16.(2019广东深圳,16,3分)如图,在Rt △ABC 中,∠ABC=90°,C (0,3),CD=3AD ,点A 在反比例函数y=kx的图象上,且y 轴平分∠ACB ,则k=_______.【答案】47 7【解析】如图,作AE⊥x轴于点E,易得△COD∽△AED.又∵CD=3AD,C(0,-3),∴AE=1,OD=3DE.令DE=x,则OD=3x.∵y轴平分∠ACB,∴BO=OD=3x.∵∠ABC=90°,AE⊥x轴,∴△CBO∽△BAE,∴BO AE =COBE,即31x=37x,解得x=7(已舍负值),∴A(47,1),∴k=47.【知识点】反比例函数综合;相似三角形的判定与性质三、解答题(本大题共7小题,第17题5分,第18题6分,第19题7分,第20,21各题8分,第22,23各9分,满分52分,解答应写出文字说明、证明过程或演算步骤)17.(2019广东深圳,17,5分)92cos60°+(18)-1+(π➖3.14)0.【思路分析】将特殊角的锐角三角函数值,负整数指数幂,零指数幂等分别代入,然后按照实数混合运算的顺序计算.【解题过程】解:原式=3-1+8+1=11.【知识点】正六边形的性质;勾股定理;锐角三角函数18.(2019广东深圳,18,6分)先化简:(1-32x+)÷244xx x-1++,再将x=-1代入求值.【思路分析】先把括号内的分式进行通分相减,再把除法化为乘法进行约分化简,最后代入求值.【解题过程】解:原式=2x x -1+×()22x x -1+=x+2.当x=-1时,原式=-1+2=1. 【知识点】分式化简求值19.(2019广东深圳,19,7分)某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取 学生进行调查,扇形统计图中的x = ; (2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是 度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有 名.【思路分析】(1)由条形统计图可知喜欢“古筝”的有80人,由扇形统计图可知喜欢“古筝”的占40%,80÷40%=200,即共抽取了200人;由条形统计图可知,喜欢“竹笛”有30人,x=30÷200=15%;(2)用总数减去各组人数可得喜欢“二胡”有60人,在相应的位置补全条形统计图;(3)“扬琴”占的百分比为20200=10%,360°×10%=36°;(4)用样本估计总体可得全校喜爱“二胡”的人数为3000×30%=900(人). 【解题过程】(1)200,15%; (2)统计图如图所示:(3)36; (4)900.【知识点】数据统计;概率;条形统计图和扇形统计图.20.(2019广东深圳,20,8分)如图所示,某施工队要测量隧道长度BC ,AD=600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角45°,再由D 走到E 处测量,DE ∥AC ,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).【思路分析】作EM ⊥AC 于点M ,构建直角三角形,解直角三角形解决问题. 【解题过程】如图,△ABD 是等腰直角三角形,AB=AD=600. 作EM ⊥AC 于点M ,则AM=DE=500,∴BM=100. 在Rt △CEM 中,tan53°=CM EM ,即600CM =43, ∴CM=800,∴BC=CM -BM=800-100=700(米), ∴隧道BC 的长度为700米. 答:隧道BC 的长度为700米.【知识点】解直角三角形21.(2019广东深圳,21,8分)有A 、B 两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电. (1)求焚烧1吨垃圾,A 和B 各发多少度电?(2)A 、B 两个发电厂共焚烧90吨垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾的两倍,求A 厂和B 厂总发电量的最大值.【思路分析】(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,列方程组求解;(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨,总发电量为y 度,列出一次函数,再利用一次函数的性质求解.【解题过程】解:(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,则=403020=1800a b b a -,-,ìïïíïïî解得=300=260a b ,.ìïïíïïî 答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度.(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨,总发电量为y 度,则 y=300x+260(90-x )=40x+23400, ∵x ≤2(90-x ), ∴x ≤60.∵y 随x 的增大而增大,∴当x=60时,y 取最大值为25800.答:A 、B 发电厂发电总量最大是25800度. 【知识点】二元一次方程组的应用;一次函数的应用22.(2019广东深圳,22,9分)如图所示,抛物线c bx ax y ++=2过点A (-1,0),点C (0,3),且OB=OC .(1)求抛物线的解析式及其对称轴;(2)点D ,E 在直线x=1上的两个动点,且DE=1,点D 在点E 的上方,求四边形ACDE 的周长的最小值,(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.【思路分析】(1)先求出点B 的坐标,然后把A 、B 、C 三点坐标代入解析式得出方程组,解方程组即可得出a ,b ,c 的值,得解析式,再用配方法或对称轴公式或中点公式可得对称轴方程;(2)利用轴对称原理作出点C 的对称点,求出四边形CDEA 的周长的最小值;(3)方法1:设CP 与x 轴交于点E ,先根据面积关系得出BE :AE=3:5或5:3,求出点E 的坐标,进而求出直线CE 的解析式,解直线CE 与抛物线的解析式联立所得的方程组求出点P 的坐标;方法2:设P (x ,-x 2+2x+3),用含x 的式子表示四边形CBPA 的面积,然后求出CB 的解析式,再用含x 的式子表示出△CBP 的面积,利用面积比建立方程,解方程求出x 的值,得出P 的坐标.【解题过程】解:(1)∵点C (0,3),OB=OC ,∴点B (3,0).把A (-1,0),C (0,3),B (3,0)代入c bx ax y ++=2,得09303a b c a b c c +=⎧⎪+=⎨⎪=⎩-,+,,解得123a b c =⎧⎪=⎨⎪=⎩-,,. ∴抛物线的解析式为y=-x 2+2x+3.∵y=-x 2+2x+3=-(x -1)2+4,∴抛物线的对称轴为x=1.(2)如图,作点C 关于x=1的对称点C ′(2,3),则CD=C ′D .取A ′(-1,1),又∵DE=1,可证A ′D=AE .在Rt △AOC 中,AC=22OA OC +=2213+=10.四边形ACDE 的周长=AC+DE+CD+AE =10+1+CD+AE .要求四边形ACDE 的周长的最小值,就是求CD+AE 的最小值.∵CD+AE=C ′D+A ′D ,∴当A ′D ,C ′三点共线时,C ′D+A ′D 有最小值为13,∴四边形ACDE 的周长的最小值=10+1+13.(3)方法1:由题意知点P 在x 轴下方,连接CP ,设PC 与x 轴交于点E ,∵直线CP 把四边形CBPA 的面积分为3:5两部分,又∵S △CBE :S △CAE =S △PBE :S △PAE =BE :AE ,∴BE :AE=3:5或5:3,∴点E 1(32,0),E 2(12,0). 设直线CE 的解析式为y=kx+b ,(32,0)和(0,3)代入,得3=02=3k b b ,,ìïï+ïíïïïî解得=2=3k b -,.ìïïíïïî ∴直线CE 的解析式为y=-2x+3.同理可得,当E 2(12,0)时,直线CE 的解析式为y=-6x+3. 由直线CE 的解析式和抛物线的解析式联立解得P 1(4,-5),P 2(8,-45).方法2:由题意得S △CBP =38S 四边形CBPA 或S △CBP =58S 四边形CBPA .令P (x ,-x 2+2x+3), S 四边形CBPA =S △CAB +S △PAB =6+12×4·(x 2-2x -3)=2x 2-4x . 直线CB 的解析式为y=-x+3,作PH ∥y 轴交直线CB 于点H ,则H (x ,-x+3),S △CBP=12OB ·PH=12×3·(-x+3+x 2-2x -3)=32x 2-92x . 当S △CBP =38S 四边形CBPA 时,32x 2-92x=38(2x 2-4x ), 解得x 1=0(舍),x 2=4,∴P 1(4,-5).当S △CBP =58S 四边形CBPA 时,32x 2-92x=58(2x 2-4x ), 解得x 3=0(舍),x 4=8,∴P 2(8,-45).【知识点】一次函数、二次函数的综合;线段和最值;动点问题23.(2019广东深圳,23,9分)已知在平面直角坐标系中,点A (3,0),B (-3,0),C (-3,8),以线段BC 为直径作圆,圆心为E ,直线AC 交⊙E 于点D ,连接OD.(1)求证:直线OD 是⊙E 的切线;(2)点F 为x 轴上任意一动点,连接CF 交⊙E 于点G ,连接BG :①当tan ∠ACF=71时,求所有F 点的坐标 (直接写出); ②求CFBG 的最大值. 【思路分析】(1)连接DE ,证明∠EDO=90°,依据“经过半径的外端且垂直于半径的直线是圆的切线”得证;(2)①分两种情况:一是当F 位于AB 上时,构造相似,用含x 的式子分别表示未知线段,再根据tan ∠ACF=71列出方程求出F 1的坐标;二是当F 位于BA 的延长线上时,同样方法求出F 2的坐标;②方法1:利用相似及勾股定理得出BG CF ()2264CG CG g -,再令y=CG 2·(64-CG 2),求出y 的最大值,进而得出BG CF的最大值;方法2:作GM ⊥BC 于点M ,先证明△CBF ∽△CGB ,再由相似三角形对应高的比等于相似比,得出BG CF 的最大值;方法3:利用锐角三角函数,得出BG CF =cos sin BC BC αα,进而得出BG CF的最大值. 【解题过程】(1)证明:连接DE ,∵BC 为直径,∴∠BDC=90°,∴∠BDA=90°.∵OA=OB ,∴OD=OA=OB ,∴∠OBD=∠ODB .∵EB=ED ,∴∠EBD=∠EDB ,∴∠EBD+∠OBD=∠EDB+∠ODB ,即∠EBO=∠EDO .∵CB ⊥x 轴,∴∠EBO=90°,∴∠EDO=90°,∴直线OD 为⊙E 的切线.(2)∵A (3,0),B (-3,0),C (-3,8),∴AB=6,BC=8,∴AC=10.如图1,当F 位于AB 上时,作F 1N ⊥CA 于N ,∵△ANF 1∽△ABC , ∴AN AB =1NF BC =1AF AC, ∴设AN=3x ,则NF 1=4x ,AF 1=5x ,∴CN=CA -AN=10-3x .∴tan ∠ACF=1NF CN =4103x x -=71, 解得x=1031, ∴AF 1=5x=5031, OF 1=3-5031=4331, 即F 1(4331,0).如图2,当F 位于BA 的延长线上时,作F 2M ⊥CA 于M ,∵△AMF 2∽△ABC ,∴设AM=3x,则MF2=4x,AF2=5x,∴CM=AC+AM=10+3x,∴tan∠ACF=2FMCM =4103xx+=71,解得x=25,∴AF2=5x=2,OF2=3+2=5,即F2(5,0).(3)方法1:△CBG∽△CFB,∴BGBF=BCCF=CGBC,BC2=CG·CF,CF=2 BC CG,∵CG2+BG2=BC2,BG2=BC2-CG2,∴22BGCF=2242BC CGBCCG-=()2226464CG CGg-,∴BGCF=()2264CG CGg-.令y=CG2·(64-CG2),∴y=-CG4+64CG2=-(CG2-32)2+322,当CG2=32时,y最大值=322,此时2,∴BGCF的最大值为3264=12.方法2:如图,作GP⊥BC于点P,∵BC是直径,∴∠CGB=∠CBF=90°,∴△CBF∽△CGB,∴BGCF=PGBC=8PG.∵PG≤半径=4,∴BGCF=8PG≤48=12.∴BGCF的最大值为12.方法3:∵BC是直径,∴∠CGB=∠CBF=90°,∴∠CBG=∠CFB(记为α,其中0°<α<90°)则BGCF=cossinBCBCαα=sinαcosα=12sin2α≤12,∴BGCF的最大值为12.【知识点】切线的判定;相似三角形的判定与性质;锐角三角函数;二次函数的最值问题。
2019年广东省深圳市中考数学试卷(含解析版)
2019年广东省深圳市中考数学试卷一、选择题(每小题3分,共12小题,满分36分)1.(3分)﹣的绝对值是()A.﹣5B.C.5D.﹣2.(3分)下列图形中是轴对称图形的是()A.B.C.D.3.(3分)预计到2025年,中国5G用户将超过460000000,将460000000用科学记数法表示为()A.4.6×109B.46×107C.4.6×108D.0.46×109 4.(3分)下列哪个图形是正方体的展开图()A.B.C.D.5.(3分)这组数据20,21,22,23,23的中位数和众数分别是()A.20,23B.21,23C.21,22D.22,236.(3分)下列运算正确的是()A.a2+a2=a4B.a3•a4=a12C.(a3)4=a12D.(ab)2=ab2 7.(3分)如图,已知l1∥AB,AC为角平分线,下列说法错误的是()A.∠1=∠4B.∠1=∠5C.∠2=∠3D.∠1=∠38.(3分)如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为()A.8B.10C.11D.139.(3分)已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和y=的图象为()A.B.C.D.10.(3分)下面命题正确的是()A.矩形对角线互相垂直B.方程x2=14x的解为x=14C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等11.(3分)定义一种新运算n•x n﹣1dx=a n﹣b n,例如2xdx=k2﹣n2,若﹣x﹣2dx =﹣2,则m=()A.﹣2B.﹣C.2D.12.(3分)已知菱形ABCD,E、F是动点,边长为4,BE=AF,∠BAD=120°,则下列结论正确的有几个()①△BEC≌△AFC;②△ECF为等边三角形;③∠AGE=∠AFC;④若AF=1,则=.A.1B.2C.3D.4二、填空题(每小题3分,共4小题,满分12分)13.(3分)分解因式:ab2﹣a=.14.(3分)现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是.15.(3分)如图,在正方形ABCD中,BE=1,将BC沿CE翻折,使B点对应点刚好落在对角线AC上,将AD沿AF翻折,使D点对应点刚好落在对角线AC上,求EF=.16.(3分)如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y=图象上,且y轴平分∠ACB,求k=.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,满分52分)17.(5分)计算:﹣2cos60°+()﹣1+(π﹣3.14)018.(6分)先化简(1﹣)÷,再将x=﹣1代入求值.19.(7分)某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.(1)这次共抽取名学生进行调查,扇形统计图中的x=;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有名.20.(8分)如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角为45°,再由D走到E处测量,DE∥AC,ED=500米,测得仰角为53°,求隧道BC长.(sin53°≈,cos53°≈,tan53°≈).21.(8分)有A、B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A 焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发电多少度?(2)A、B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾两倍,求A厂和B厂总发电量的最大值.22.(9分)如图抛物线经y=ax2+bx+c过点A(﹣1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE 的周长的最小值.(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.23.(9分)已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐标(直接写出);②求的最大值.2019年广东省深圳市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共12小题,满分36分)1.(3分)﹣的绝对值是()A.﹣5B.C.5D.﹣【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|﹣|=,故选:B.【点评】本题考查了绝对值的定义,解题的关键是掌握绝对值的性质.2.(3分)下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)预计到2025年,中国5G用户将超过460000000,将460000000用科学记数法表示为()A.4.6×109B.46×107C.4.6×108D.0.46×109【分析】科学记数法的表示形式为a×10n的形式,其.中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数【解答】解:将460000000用科学记数法表示为4.6×108.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列哪个图形是正方体的展开图()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图..故选:B.【点评】此题主要考查了正方体的展开图,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.5.(3分)这组数据20,21,22,23,23的中位数和众数分别是()A.20,23B.21,23C.21,22D.22,23【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.【解答】解:这组数据排序后为20,21,22,23,23,∴中位数和众数分别是22,23,故选:D.【点评】本题主要考查了中位数以及众数,中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现.6.(3分)下列运算正确的是()A.a2+a2=a4B.a3•a4=a12C.(a3)4=a12D.(ab)2=ab2【分析】分别根据合并同类项的法则、同底数幂的乘法、幂的乘方以及积的乘方化简即可判断.【解答】解:A.a2+a2=2a2,故选项A不合题意;B.a3•a4=a7,故选项B不合题意;C.(a3)4=a12,故选项C符合题意;D.(ab)2=a2b2,故选项D不合题意.故选:C.【点评】本题主要考查了幂的运算法则,熟练掌握法则是解答本题的关键.7.(3分)如图,已知l1∥AB,AC为角平分线,下列说法错误的是()A.∠1=∠4B.∠1=∠5C.∠2=∠3D.∠1=∠3【分析】利用平行线的性质得到∠2=∠4,∠3=∠2,∠5=∠1+∠2,再根据角平分线的定义得到∠1=∠2=∠4=∠3,∠5=2∠1,从而可对各选项进行判断.【解答】解:∵l1∥AB,∴∠2=∠4,∠3=∠2,∠5=∠1+∠2,∵AC为角平分线,∴∠1=∠2=∠4=∠3,∠5=2∠1.故选:B.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.8.(3分)如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为()A.8B.10C.11D.13【分析】利用基本作图得到MN垂直平分AB,利用线段垂直平分线的定义得到DA=DB,然后利用等线段代换得到△BDC的周长=AC+BC.【解答】解:由作法得MN垂直平分AB,∴DA=DB,∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=8.故选:A.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.9.(3分)已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和y=的图象为()A.B.C.D.【分析】根据二次函数y=ax2+bx+c(a≠0)的图象可以得到a<0,b>0,c<0,由此可以判定y=ax+b经过一、二、四象限,双曲线y=在二、四象限.【解答】解:根据二次函数y=ax2+bx+c(a≠0)的图象,可得a<0,b>0,c<0,∴y=ax+b过一、二、四象限,双曲线y=在二、四象限,∴C是正确的.故选:C.【点评】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.10.(3分)下面命题正确的是()A.矩形对角线互相垂直B.方程x2=14x的解为x=14C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等【分析】由矩形的对角线互相平分且相等得出选项A不正确;由方程x2=14x的解为x=14或x=0得出选项B不正确;由六边形内角和为(6﹣2)×180°=720°得出选项C不正确;由直角三角形全等的判定方法得出选项D正确;即可得出结论.【解答】解:A.矩形对角线互相垂直,不正确;B.方程x2=14x的解为x=14,不正确;C.六边形内角和为540°,不正确;D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选:D.【点评】本题考查了命题与定理、矩形的性质、一元二次方程的解、六边形的内角和、直角三角形全等的判定;要熟练掌握.11.(3分)定义一种新运算n•x n﹣1dx=a n﹣b n,例如2xdx=k2﹣n2,若﹣x﹣2dx =﹣2,则m=()A.﹣2B.﹣C.2D.【分析】根据新运算列等式为m﹣1﹣(5m)﹣1=﹣2,解出即可.【解答】解:由题意得:m﹣1﹣(5m)﹣1=﹣2,﹣=﹣2,5﹣1=﹣10m,m=﹣,故选:B.【点评】本题考查了负整数指数幂和新定义,理解新定义,并根据新定义进行计算是本题的关键.12.(3分)已知菱形ABCD,E、F是动点,边长为4,BE=AF,∠BAD=120°,则下列结论正确的有几个()①△BEC≌△AFC;②△ECF为等边三角形;③∠AGE=∠AFC;④若AF=1,则=.A.1B.2C.3D.4【分析】①△REC≌△AFC(SAS),正确;②由△BEC≌△AFC,得CE=CF,∠BCE =∠ACF,由∠BCE+∠ECA=∠BCA=60°,得∠ACF+∠ECA=60,所以△CEF是等边三角形,正确;③因为∠AGE=∠CAF+∠AFG=60°+∠AFG,∠AFC=∠CFG+∠AFG =60°+∠AFG,所以∠AGE=∠AFC,故③正确;④过点E作EM∥BC交AC下点M 点,易证△AEM是等边三角形,则EM=AE=3,由AF∥EM,则==.故④正确,【解答】解:①△REC≌△AFC(SAS),正确;②∵△BEC≌△AFC,∴CE=CF,∠BCE=∠ACF,∵∠BCE+∠ECA=∠BCA=60°,∴∠ACF+∠ECA=60,∴△CEF是等边三角形,故②正确;③∵∠AGE=∠CAF+∠AFG=60°+∠AFG;∠AFC=∠CFG+∠AFG=60°+∠AFG,∴∠AGE=∠AFC,故③正确正确;④过点E作EM∥BC交AC下点M点,易证△AEM是等边三角形,则EM=AE=3,∵AF∥EM,∴则==.故④正确,故①②③④都正确.故选:D.【点评】本题考查了菱形的性质,熟练运用菱形的性质、等边三角形性质以及全等三角形的判定与性质是解题的关键.二、填空题(每小题3分,共4小题,满分12分)13.(3分)分解因式:ab2﹣a=a(b+1)(b﹣1).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是.【分析】直接利用概率公式计算进而得出答案.【解答】解:∵现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,∴将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是:.故答案为:.【点评】此题主要考查了概率公式,正确掌握计算公式是解题关键.15.(3分)如图,在正方形ABCD中,BE=1,将BC沿CE翻折,使B点对应点刚好落在对角线AC上,将AD沿AF翻折,使D点对应点刚好落在对角线AC上,求EF=.【分析】作FM⊥AB于点M.根据折叠的性质与等腰直角三角形的性质得出EX=EB=AX=1,∠EXC=∠B=90°,AM=DF=YF=1,由勾股定理得到AE==.那么正方形的边长AB=FM=+1,EM=﹣1,然后利用勾股定理即可求出EF.【解答】解:如图,作FM⊥AB于点M.∵四边形ABCD是正方形,∴∠BAC=∠CAD=45°.∵将BC沿CE翻折,B点对应点刚好落在对角线AC上的点X,∴EX=EB=AX=1,∠EXC=∠B=90°,∴AE==.∵将AD沿AF翻折,使D点对应点刚好落在对角线AC上的点Y,∴AM=DF=YF=1,∴正方形的边长AB=FM=+1,EM=﹣1,∴EF===.故答案为.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了正方形的性质以及勾股定理.求出EM与FM是解题的关键.16.(3分)如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y=图象上,且y轴平分∠ACB,求k=.【分析】要求k得值,通常可求A的坐标,可作x轴的垂线,构造相似三角形,利用CD =3AD和C(0,﹣3)可以求出A的纵坐标,再利用三角形相似,设未知数,由相似三角形对应边成比例,列出方程,求出待定未知数,从而确定点A的坐标,进而确定k的值.【解答】解:过A作AE⊥x轴,垂足为E,∵C(0,﹣3),∴OC=3,可证△ADE∽△CDO∴,∴AE=1;又∵y轴平分∠ACB,CO⊥BD∴BO=OD∵∠ABC=90°∴△ABE~COD∴设DE=n,则BO=OD=3n,BE=7n,∴,∴n=∴OE=4n=∴A(,1)∴k=.故答案为:.【点评】本题考查反比例函数图象上点的坐标特征,综合利用相似三角形的性质,全等三角形的性质求A的坐标,依据A在反比例函数的图象上的点,根据坐标求出k的值.综合性较强,注意转化思想方法的应用.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,满分52分)17.(5分)计算:﹣2cos60°+()﹣1+(π﹣3.14)0【分析】直接利用二次根式的性质以及零指数幂的性质、负指数幂的性质分别化简得出答案.【解答】解:原式=3﹣2×+8+1=3﹣1+8+1=11.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简(1﹣)÷,再将x=﹣1代入求值.【分析】直接利用分式的混合运算法则进而化简得出答案.【解答】解:原式=×=x+2,将x=﹣1代入得:原式=x+2=1.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.19.(7分)某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.(1)这次共抽取200名学生进行调查,扇形统计图中的x=15%;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是36度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有900名.【分析】(1)依据喜爱古筝的人数数据,即可得到调查的学生人数,根据喜欢竹笛的学生数占总人数的百分比即可得到结论;(2)求二胡的学生数,即可将条形统计图补充完整;(3)依据“扬琴”的百分比,即可得到“扬琴”所占圆心角的度数;(4)依据喜爱“二胡”的学生所占的百分比,即可得到该校最喜爱“二胡”的学生数量.【解答】解:(1)80÷40%=200,x=×100%=15%,故答案为:200;15%;(2)喜欢二胡的学生数为200﹣80﹣30﹣20﹣10=60,补全统计图如图所示,(3)扇形统计图中“扬琴”所对扇形的圆心角是:360°×=36°,故答案为:36;(4)3000×=900,答:该校喜爱“二胡”的学生约有有900名.故答案为:900.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.20.(8分)如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角为45°,再由D走到E处测量,DE∥AC,ED=500米,测得仰角为53°,求隧道BC长.(sin53°≈,cos53°≈,tan53°≈).【分析】作EM⊥AC于M,解直角三角形即可得到结论.【解答】解:在Rt△ABD中,AB=AD=600,作EM⊥AC于M,则AM﹣DE=500,∴BM=100,在Rt△CEM中,tan53°===,∴CM=800,∴BC=CM﹣BM=800﹣100=700(米)答:隧道BC长为700米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟知锐角三角函数的定义是解答此题的关键.21.(8分)有A、B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A 焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发电多少度?(2)A、B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾两倍,求A厂和B厂总发电量的最大值.【分析】(1)设焚烧1吨垃圾,A发电厂发电x度,B发电厂发电y度,根据“每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电”列方程组解答即可;(2)设A发电厂焚烧x吨垃圾,则B发电厂焚烧(90﹣x)吨垃圾,总发电量为y度,得出y与x之间的函数关系式以及x的取值范围,再根据一次函数的性质解答即可.【解答】解:(1)设焚烧1吨垃圾,A发电厂发电a度,B发电厂发电b度,根据题意得:,解得,答:焚烧1吨垃圾,A发电厂发电300度,B发电厂发电260度;(2)设A发电厂焚烧x吨垃圾,则B发电厂焚烧(90﹣x)吨垃圾,总发电量为y度,则y=300x+260(90﹣x)=40x+23400,∵x≤2(90﹣x),∴x≤60,∵y随x的增大而增大,∴当x=60时,y有最大值为:40×60+23400=25800(元).答:A厂和B厂总发电量的最大是25800度.【点评】本题主要考查了二元一次方程组的应用以及一次函数的应用,理清数量关系列出方程组是解答本题的关键.22.(9分)如图抛物线经y=ax2+bx+c过点A(﹣1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE 的周长的最小值.(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.【分析】(1)OB=OC,则点B(3,0),则抛物线的表达式为:y=a(x+1)(x﹣3)=a (x2﹣2x﹣3)=ax2﹣2ax﹣3a,即可求解;(2)CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,即可求解;(3)S△PCB:S△PCA=EB×(y C﹣y P):AE×(y C﹣y P)=BE:AE,即可求解.【解答】解:(1)∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3)=ax2﹣2ax﹣3a,故﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①;(2)ACDE的周长=AC+DE+CD+AE,其中AC=、DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点C(2,3),则CD=C′D,取点A′(﹣1,1),则A′D=AE,故:CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=+A′D+DC′=+A′C′=+;(3)如图,设直线CP交x轴于点E,直线CP把四边形CBP A的面积分为3:5两部分,又∵S△PCB:S△PCA=EB×(y C﹣y P):AE×(y C﹣y P)=BE:AE,则BE:AE,=3:5或5:3,则AE=或,即:点E的坐标为(,0)或(,0),将点E、C的坐标代入一次函数表达式:y=kx+3,解得:k=﹣6或﹣2,故直线CP的表达式为:y=﹣2x+3或y=﹣6x+3…②联立①②并解得:x=4或8(不合题意值已舍去),故点P的坐标为(4,﹣5)或(8,﹣45).【点评】本题考查的是二次函数综合运用,涉及到一次函数、图象面积计算、点的对称性等,其中(1),通过确定点A′点来求最小值,是本题的难点.23.(9分)已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐标,F2(5,0)(直接写出);②求的最大值.【分析】(1)连接ED,证明∠EDO=90°即可,可通过半径相等得到∠EDB=∠EBD,根据直角三角形斜边上中线等于斜边一半得DO=BO=AO,∠ODB=∠OBD,得证;(2)①分两种情况:a)F位于线段AB上,b)F位于BA的延长线上;过F作AC的垂线,构造相似三角形,应用相似三角形性质可求得点F坐标;②应用相似三角形性质和三角函数值表示出=,令y=CG2(64﹣CG2)=﹣(CG2﹣32)2+322,应用二次函数最值可得到结论.【解答】解:(1)证明:如图1,连接DE,∵BC为圆的直径,∴∠BDC=90°,∴∠BDA=90°∵OA=OB∴OD=OB=OA∴∠OBD=∠ODB∵EB=ED∴∠EBD=∠EDB∴EBD+∠OBD=∠EDB+∠ODB即:∠EBO=∠EDO∵CB⊥x轴∴∠EBO=90°∴∠EDO=90°∵点D在⊙E上∴直线OD为⊙E的切线.(2)①如图2,当F位于AB上时,过F作F1N⊥AC于N,∵F1N⊥AC∴∠ANF1=∠ABC=90°∴△ANF∽△ABC∴∵AB=6,BC=8,∴AC===10,即AB:BC:AC=6:8:10=3:4:5∴设AN=3k,则NF1=4k,AF1=5k∴CN=CA﹣AN=10﹣3k∴tan∠ACF===,解得:k=∴即F1(,0)如图3,当F位于BA的延长线上时,过F2作F2M⊥CA于M,∵△AMF2∽△ABC∴设AM=3k,则MF2=4k,AF2=5k∴CM=CA+AM=10+3k∴tan∠ACF=解得:∴AF2=5k=2OF2=3+2=5即F2(5,0)故答案为:F1(,0),F2(5,0).②方法1:如图4,∵CB为直径∴∠CGB=∠CBF=90°∴△CBG∽△CFB∴∴BC2=CG•CFCF=∵CG2+BG2=BC2,∴BG2=BC2﹣CG2∴==∴=令y=CG2(64﹣CG2)=﹣CG4+64CG2=﹣[(CG2﹣32)2﹣322]=﹣(CG2﹣32)2+322∴当CG2=32时,此时CG=4==.方法2:设∠BCG=α,则sinα=,cosα=,∴sinαcosα=∵(sinα﹣cosα)2≥0,即:sin2α+cos2α≥2sinαcosα∵sin2α+cos2α=1,∴sinαcosα≤,即≤∴的最大值=.【点评】本题是一道难度较大,综合性很强的有关圆的代数几何综合题,主要考查了圆的性质,切线的性质和判定定理,直角三角形性质,相似三角形性质和判定,动点问题,二次函数最值问题等,构造相似三角形和应用求二次函数最值方法是解题关键.。
2019年深圳中考数学试题(解析版)
{来源}2019年深圳中考数学{适用范围:3.九年级}{标题}2019年深圳市中考数学试卷考试时间:90分钟满分:100分:题型:1-选择题}一、选择题:本大题共12小题,每小题3分,合计36分.{题目}1.(2019年深圳第1题)-?的绝对值是A.-5B.—C.5D.---55{答案}B{解析}本题考查了绝对值的性质,根据绝对值的性质,一§的绝对值是W因此本题选B.{分值}3{章节:[1-1-2-4]绝对值}{考点:绝对值的性质}{类别:常考题}{鹿度:1-最简单}{题目}2.(2019年深圳第2题)下列图形中,是轴对称图形的是{答案}A{解析}本题考查了轴对称图形,根据轴对称图形的定义沿一条直线对折后,直线两旁部分完金重合的图形是轴对称图形,判断即可得出答案.因此本题选A.{分值}3{章节:[1-13-1-1]轴对称}{考点:轴对称图形}{类别:常考题}{难度:1-最简单}{题目}3.(2019年深圳第3题)预计2025年,中国5G用户将超过460000000户。
将数据460 000 000用科学计数法表示为:A. 4.6xlO9b.46x10,c> 4.6x10s D>0.46xlO9{答案}C{解析}本题考查科学记数法的表示方法.科学记数法的表示形式为aX10n的形式,其中lW|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.因此本题选C.{分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}4.(2019年深圳第4题)下列哪个图形是正方体的展开图{答案}B{解析}本题考查正方体的展开图。
选项B属于正方体的展开图中1-4-1型,A,C,D选项在折的过程中均有正方形重叠。
因此本题选B{分值}3{章节:[1-4-1-2]点、线、而、体}{考点:几何体的展开图}{类别:常考题}{难度:2-简单}{题目}5.(2019年深圳第5题)一组数:20.21,22,23,23,这组数的中位数和众数分别是A.20.23B.21,23C.21,22D.22,23{答案}D{解析}本题考查了中位数和众数,根据一组数据按照由小到大(或由大而小)的顺序排列,中间位 置的数或者中间两个数据的平均数为这组数据的中位数:一组数据中出现次数最多的数据成为这组数据的众数,对各选项分析判断后即可得出答案.因此本题选D.{分值}3{章节:[1-20-1-2]中位数和众数}{考点:中位数}{考点:众数}{类别:常考题}{难度:2-简单}{题目}6.(2019年深圳第6题)卜列运算正确的是A.a2+a2=a4B.a3*a4=a x2C.(a3J=a nD.(aZ>)2=ab2{答案}C{解析}本题考查整式的运算,根据合并同类项法则:同底数繇相乘,底数不变指数相加:幕的乘方,底数不变,指数相乘:积的乘方,等于每一个因式的乘方的积,对各选项分析判断后利用排除法求解.本题选C{分值}3{章节:[1-15-2-3]整数指数环}{考点:合并同类项}{考点:同底数拜的乘法}{考点:彩的乘方}{考点:积的乘方}{类别:常考题}{难度:2-简单}{题目}7.(2019年深圳第7题)如图1,已知直线1、〃0直线匕交直线七、4于刀、3两点,M 为角平分线,则下列说法错误的是A.Zl=Z4B.Zl=Z5C.Z2=Z3D.Zl=Z3{答案}B{解析}本题考查了平行线的性质和角平分线的性质,根据角平分线的性质,易得Z1=Z2,根据平行线的性质,可得Z2=Z3,Z2=Z4,根据等量代换.可得Z1=Z4,选项A,C,D正确。
2019年深圳中考数学试卷含详细答案
2019年深圳中考数学试卷一、选择题(共12小题;共60分)1. −15的绝对值是( )A. −5B. 15C. 5 D. −152. 下列图形中,是轴对称图形的是( )A. B.C. D.3. 预计到2025年,中国5G用户将超过460000000,将460000000用科学计数法表示为( )A. 4.6×109B. 4.6×107C. 4.6×108D. 0.46×1094. 下列哪个图形是正方体的展开图( )A. B.C. D.5. 这组数据20,21,22,23,23的中位数和众位数分别是( )A. 20,23B. 21,23C. 21,22D. 22,236. 下列运算正确的是( )A. a2+a2=a4B. a3a4=a12C. (a3)4=a12D. (ab)2=ab27. 如图,已知l1∥AB,AC为角平分线,下列说法错误的是( )A. ∠1=∠4B. ∠1=∠5C. ∠2=∠3D. ∠1=∠38. 如图,已知 MN 与 AC 相交于点 D ,则 △BDC 的周长为 ( )A. 8B. 10C. 11D. 139. 已知 y =ax 2+bx +c (a ≠0) 的图象如图,则 y =ax +b 和 y =cx 的图象为 ( )A. B.C. D.10. 下列命题正确的是 ( )A. 矩形对角线互相垂直B. 方程 x 2=14x 的解为 x =14C. 六边形内角和为 540∘D. 一条斜边和一条直角边分别相等的两个直角三角形全等11. 定义一种新运算 ∫n ab ⋅x n−1dx =a n −b n ,例如 ∫2kℎxdx =k 2−ℎ2 ,若 ∫−m5m x −2dx =−2 ,则 m = ( ) A. −2B. −25C. 2D. 2512. 已知菱形 ABCD , E , F 是动点,边长为 4 , BE =AF , ∠BAD =120∘ ,则下列结论正确的有几个 ( ) ① △BEC ≌△AFC ; ② △ECF 为等边三角形; ③ ∠AGE =∠AFC ; ④若 AF =1 ,则 GFEG =13 .A. 1B. 2C. 3D. 4二、填空题(共4小题;共20分) 13. 分解因式:ab 2−a = .14. 现有 8 张同样的卡片,分别标有数字: 1 , 1 , 2 , 2 , 2 , 3 , 4 , 5 ,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字 2 的卡片的概率是 15. 如图,在正方形ABCD 中, BE =1 ,将 BC 沿 CE 翻折,使 B 点对应点刚好落在对角线 AC上,将 AD 沿 AF 翻折,使 D 点对应点刚好落在对角线 AC 上,求 EF = .16. 如图,在 Rt △ABC 中, ∠ABC =90∘ , C (0,3) , CD =3AD ,点 A 在 y =kx 上,且 y 轴平分 ∠ACB ,求 k = .三、解答题(共7小题;共91分) 17. 计算: √9−2cos60∘+(18)−1+(π−3.14)0 .18. 先化简 (1−3x+2)÷x−1x 2+4x+4 ,再将 x =−1 代入求值.19. 某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图. (1)这次共抽取 名学生进行调查,扇形统计图中的 x = ;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是 度; (4)若该校有 3000 名学生,请你估计该校喜爱“二胡”的学生约有 名.20. 如图所示,施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角为45∘,再由D走到E处测量,DE∥AC,ED=500米,测得仰角为53∘,求隧道BC长.(sin53∘≈45,cos53∘≈35,tan53∘≈43).21. 有A,B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发电多少度?(2)A,B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾两倍,求A厂和B厂总发电量最大时A厂,B厂的发电量.22. 如图抛物线经y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.23. 已知在平面直角坐标系中,点A(3,0),B(−3,0),C(−3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;时,求所有F点的坐标(直接写出);①当tan∠ACF=17②求BG的最大值.CF参考答案第一部分1. B2. A3. C 【解析】用科学计数法:a×10n,其中1≤∣a∣<10,n是整数.4. B5. D6. C7. A8. A9. C10. D11. B12. D 【解析】①△BEC≌△AFC(SAS),正确;②∵△BEC≌△AFC,∴CE=CF,∠BCE=∠ACF,∵BCE+∠ECA−∠BCA=60∘,∴∠ACF+∠ECA=60∘=∠ECF,∴△CEF是等边三角形,正确;③∵∠AGE=∠CAF+∠AFG=60∘+∠AFG;∠AFC=∠CFG+∠AFG=60∘+∠CFG,∴∠AGE=∠AFC,正确;④选项:方法(1):在△EAF中,由角平分线定理得:GFEG =AFAE=13,故④正确;方法(2):作EM∥BC交AC于M点,则GFEG =AFEM,易证:△AEM是等边三角形,则EM=3,∴GFEG =AFEM=13,①②③④都正确.13. a(b+1)(b−1)14. 3815. √6【解析】作FM⊥AB于点M,由折叠可知:EX=EB=AX=1,AE=√2,AM=DF=YF=1,∴正方形边长AB=FM=√2+1,EM=√2−1,∴EF=√EM2+FM2=√(√2−1)2+(√2+1)2=√6.16. 4√77【解析】如图所示,作AE⊥x轴,由题意:可证△COD∽△AED,又∵CD=3AD,C(0,−3),∴AE=1,OD=3DE,令DE=x,则OD=3x,∵y轴平分∠ACB∴BO=OD=3x,∵∠ABC=90∘,AE⊥x轴,∴可证:△CBO∽△BAE,则:BOAE =COBE,即3x1=37x解得x=√77.∴A(4√77,1),故k=4√77.17. 原式 =3−1+8+1=11 . 18. 原式=x−1x+2⋅(x+2)2x−1=x +2.将 x =−1 代入得: x +2=1 19. (1) 200 ; 15% (2) 统计图如图所示:(3) 36 (4) 90020. 如图, △ABD 是等腰直角三角形, AB =AD =600 , 作 EM ⊥AC 于点 M ,则 AM =DE =500 ,∴BM =100 ,在 △CEM 中, tan53∘=CMEM , 即 CM600=43 , ∴CM =800 ,∴BC =CM −BM =800−100=700 (米), ∴ 隧道 BC 的长度为 700 米. 答:隧道 BC 的长度为 700 米.21. (1) 设焚烧 1 吨垃圾,A 发电厂发电 a 度,B 发电厂发电 b 度, 则{a −b =40,30b −20a =1800,解得:{a =300,b =260.答:焚烧1吨垃圾,A发电厂发电300度,B发电厂发电260度.(2)设A发电厂焚烧x吨垃圾,则B发电厂焚烧(90−x)吨,总发电量为y度,则y=300x+260(90−x)=40x+23400.∵x≤2(90−x),∴x≤60,∵y随x的增大而增大,A厂发电:300×60=18000度,B厂发电:260×30=7800度,∴当x=60时,y取最大值为25800,此时A厂发电18000度,B厂发电7800度.答:A,B发电厂发电总量最大时A厂发电18000度,B厂发电7800度.22. (1)抛物线的解析式:y=−x2+2x+3,对称轴为:直线x=1.(2)如图:作C关于对称轴的对称点Cʹ(2,3),则CD=CD.取Aʹ(−1,1),又DE=1,则可证AʹD=AE,C四边形ACDE=AC+DE+CD+AE=√10+1+CD+AE,要求四边形ACDE的周长最小值,只要求CD+AE的最小值即可.∵CD+AE=CʹD+AʹD,∴当Aʹ,D,Cʹ三点共线时,CD+AʹD有最小值为√13,∴四边形ABCD的周长最小值为√10+√13+1.(3)方法①:令PC与x轴交于E点,∵直线CP把四边形CBPA的面积分为3:5两部分,又∵S△CBP:S△CAP=S△CBE:S△CEA=BE:AE,∴BE:AE=3:5或5:3,∴E1(32,0),E2(12,0),∴直线CE的解析式:y=−2x+3或y=−6x+3,由CE解析式和抛物线解析式联立解得:P1(4,5),P2(8,−45).方法②:由题意得:S△CBP=38S四边形CBPA或S△CBP=58S四边形CBPA,令P(x,−x2+2x+3),S四边形CBPA =S△CAB+S△ABP=6+12×4⋅(x2−2x−3)=2x2−4x,直线AB的解析式:y=−x+3,作PH∥y轴交直线CB于H点,则H(x,−x+3),S△CBP=12⋅OB⋅PH=12×3⋅(−x+3+x2−2x−3)=32x2−92x,当S△CBP=38S四边形CBPA时,则:32x2−92x=38(2x2−4x),解得:x1=0(舍),x2=4,∴P1(4,−5).当S△CBP=58S四边形CBPA时,则:32x2−92x=58(2x2−4x),解得x3=0(舍),x4=8.∴P2(8,−45).23. (1)连接DE,则:∵BC为直径,∴∠BDC=90∘,∴∠BDA=90∘,∵OA=OB,∴OD=OB=OA,∴∠OBD=∠ODB,∵EB=ED,∴∠EBD=∠EBD,∴∠EBD+∠OBD=∠EDB+∠ODB,即:∠EBO=∠EDO,∵B(−3,0),C(−3,8),∴CB⊥x轴,∴∠EBO=90∘,∴∠EDO=90∘,∵D点在OE上,∴直线OD为⊙E的切线.(2)①F1(4331,0);F2(5,0).②方法1:△CBG∽△CFB,∴BGBF =BCCF=CGBC,BC2=CG⋅CF,CF=BC2CG,CG2+BG2=BC2,BG2=BC2−CG2,BG2 CF2=BC2−CG2BC2CG2=(64−CG2)⋅CG2642,BG GF =√CG2(64−CG2)64,令y=CG2(64−CG2),y=−CG4+64CG2,y=−(CG4−64CG2),y=−[(CG2−32)2−322],y=−(CG2−32)2+322,当CG2=32时,y max=322,此时CG=4√2,(BG CF )max=3264=12.【解析】①如图1,当F位于AB上时:∵△ANF1∽△ABC,∴ANAB =NF1BC=AF1AC∴设AN=3x,则NF1=4x,AF1=5x,∴CN=CA−AN=10−3x,∴tan∠ACF=F1NCN =4x10−3x=17,解得:x=1031,∴AF1=5x=5031,OF1=3−5051=4331,即F1(4331,0).如图2,当F位于BA的延长线上时:∵△AMF2∽△ABC,∴设AM=3x,则MF2=4x,AF2=5x,∴CM=CA+AM=10+3x,∴tan∠ACF=F2MCM =4x10+3x=17,解得:x=25,∴AF2=5x=2,OF2=3+2=5,即F2(5,0).②方法2:如图,作GM⊥BC于点M,∵BC是直径,∴∠CGB=∠CBF=90∘,∴△CBF∽△CGB,∴BGCF =MGBC=MG8,(相似三角形对应边上的高的比等于相似比).∵MG≤半径=4,∴BGCF =MG8≤48=12,∴BGCF 的最大值为12.方法3:∵BC是直径.∴∠CGB=∠CBF=90∘,∴∠CBG=∠CFB(记为α,其中0∘<α<90∘),则:BGCF =BCcosαBC=sinαcosα=12sin2α≤12,∴BGCF 的最大值为12.方法4:算数平均数≤几何平均数,即a+b2≥√ab,取CF中点M,连接BM,则BG≤BM,点M和点G重合,即△CBF为等腰Rt△时,取等号,则BGCF =BG2BM=12BGBM≤12BMBM=12,∴BGCF 的最大值为12.方法5:a+b2≥√ab,如图,在Rt△CBF中有摄影定理得:BG2=CG⋅FG,则BGCF =√aba+b≤a+b2a+b=12,等腰Rt△时,取等号,∴BGCF 的最大值为12.。
2019深圳中考真题数学试卷(含详细解析和答案)
2019年深圳市初中毕业升学考试数学一、选择题(每小题3分,共12小题,满分36分)1.51-的绝对值是( )A. -5B.51C. 5D.51-【答案】B【解析】考点绝对值.2.下列图形是轴对称图形的是( )【答案】A【考点】轴对称图形与中心对称图形3.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( ) A.4.6×109 B.46×107 C.4.6×108 D.0.46×109 【答案】C【考点】科学计数法4.下列哪个图形是正方体的展开图( )【答案】B【考点】立体图形的展开.5.这组数据20,21,22,23,23的中位数和众数分别是( ) A.20,23 B.21,23 C.21,22 D.22,23 【答案】D【解析】中位数:先把数据按从小到大排列顺序20,21,22,23,23,则中间的那一个就是中位数. 众数是出现次数最多的那个数就是众数,即是23.故选D6.下列运算正确的是( )A.422a a a =+B.1243a a a =⋅ C.1243)(a a = D.22)(ab ab =【答案】C【解析】整式运算,A.2222a a a =+; B 743a a a =⋅ ;D 222)(b a ab =.故选C7.如图,已知AB l =1,AC 为角平分线,下列说法错误的是( ) A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3【答案】B【解析】两直线平行,同位角相等,即∠2=∠3.故选B.8.如图,已知AB=AC ,AB=5,BC=3,以AB 两点为圆心,大于21AB 的长为半径画圆,两弧相交于点M,N ,连接MN 与AC 相较于点D ,则△BDC 的周长为( ) A.8 B.10 C.11 D.13【答案】A【解析】尺规作图,因为MN 是线段AB 的垂直平分线,则AD=BD ,又因为AB=AC=5,BC=3,所以△BDC的周长为8.9.已知)0(2≠++=a c bx ax y 的图象如图,则b ax y +=和xcy =的图象为( )【答案】C【解析】根据)0(2≠++=a c bx ax y 的图象可知抛物线开口向下,则0<a ,抛物线与y 轴交点在负半轴,故c <0,对称轴在y 轴的右边,则b >0.10.下列命题正确的是( ) A.矩形对角线互相垂直 B.方程x x 142=的解为14=x C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等 【答案】D【解析】矩形的对角线互相平分且相等,故A 错;方程x x 142=的解为14=x 或0=x ,故B 错;六边形内角和为720°,故C 错.故选D11.定义一种新运算:⎰-=⋅-abnn n b a dx x n 1,例如:⎰-=⋅khh k xdx 222,若⎰-=--m522mdx x ,则m=( )A. -2B. 52-C. 2D.52 【答案】B 【解析】⎰-=-=-=----m51122511)5(mm m m m dx x ,则m=52-,故选B. 12.已知菱形ABCD ,E,F 是动点,边长为4,BE=AF ,∠BAD=120°,则下列结论正确的有几个( ) ①△BEC ≌△AFC ; ②△ECF 为等边三角形 ③∠AGE=∠AFC ④若AF=1,则31=GE GF A. 1 B. 2 C. 3 D. 4【答案】D【解析】在四边形ABCD 是菱形,因为∠BAD=120°,则∠B=∠DAC=60°,则AC=BC ,且BE=AF ,故可得△BEC ≌△AFC ;因为△BEC ≌△AFC ,所以FC=EC ,∠FCA=∠ECB ,所以△ECF 为等边三角形;因为∠AGE=180°-∠BAC-∠AEG ;∠AFC=180°-∠FAC-∠ACF ,则根据等式性质可得∠AGE=∠AFC ;因为AF=1,则AE=3,所以根据相似可得31=GE GF . 二、填空题(每小题3分,共4小题,满分12分)13.分解因式:=-a ab 2. 【答案】)1)(1(-+b b a【解析】)1)(1()1(22-+=-=-b b a b a a ab14.现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字2的卡片的概率是 .【答案】83 【解析】全部共有8张卡片,标有数字2的卡片有3张,随机抽取一张,故抽到2概率为83. 15.如图在正方形ABCD 中,BE=1,将BC 沿CE 翻折,使点B 对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使点D 对应点落在对角线AC 上,求EF= .【答案】6 【解析】16.如图,在Rt △ABC 中,∠ABC=90°,C (0,-3),CD=3AD,点A 在xky =上,且y 轴平分脚ACB ,求k= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试卷 第1页(共12页) 数学试卷 第2页(共12页)绝密★启用前广东省深圳市2019年中考试卷数 学一、选择题(每小题3分,共12小题,共36分) 1.15-的绝对值是( )A .5-B .15C .D .15- 2.下列图形中是轴对称图形的是( )A B C D 3.预计2025年,中国5G 用户将超过460 000 000户,将460 000 000用科学计数法表示为:( ) A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯ 4.下列哪个图形是正方体的展开图( )AB CD 5.一组数:20,21,22,23,23这组数的中位数和众数分别是( ) A .20,23B .21,23C .21,22D .22,236.下列运算正确的是( )A .224a a a +=B .3412a a a =gC .()4312aa =D .()22ab ab =7.如图,已知直线1l AB ∥,AC 是为角平分线,则下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠=∠D .13∠=∠8.如图,已知ABC △中.,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画弧,两弧交于点M N 、,连接MN 与AC 相交于点D ,则BDC △的周长为( )A .8B .10C .11D .139.已知二次函数2(0)y ax bx c a =++≠的图像如图,则一次函数y ax b =+和反比例函数cy x=的图像为 ( )AB C D 10.下列命题正确的是( )A .矩形的对角线互相垂直B .方程214x x =的解为14x =C .六边形的内角各为540oD .一条斜边和一条直角边分别相等的两个直角三角形全等11.定义一种新运算:1an n n bnx dx a b -=-⎰,例如:222khxdx k h =-⎰;若252mmx dx --=-⎰.则m =( ) A .2-B .25-C .2D .2512.已知菱形ABCD ,E F 、是动点,边长为4,BE AF =,120BAD ∠=o ,则下列结论: ①BEC AFC △≌△; ②ECF △为等边三角形 ③AGE AFC ∠=∠④若1AF =,则13GF EG =5毕业学校_____________姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共12页) 数学试卷 第4页(共12页)正确的有几个?( )A .1B .2C .3D .4二、填空题(每小题3分,共4小题,共12分) 13.分解因式:2ab a -= ;14.现在8张同样的卡片,分别标有数字:1,1,2,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是 . 15.如图,在正方形ABCD 中, 1BE =,将BC 沿CE 翻折,使B 点对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使D 点的对应点刚好落在对角线AC 上,求=EF ;16.如图,在平面直角坐标系中,(0,3)A -,90ABC =︒∠,y 轴平分BAC ∠,3AD CD =,若点C 在反比例函数ky x=上,则k = .三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分)17.()10112cos60 3.148π-⎛⎫++- ⎪⎝⎭o .18.先化简再求值:2311244x x x x -⎛⎫-÷ ⎪+++⎝⎭,再将1x =-代入求值.19.某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.(1)这次共抽取 名学生进行调查,扇形统计图中的x = ; (2)请补全条形统计图;(3)在扇形统计图中“杨琴”所对扇形的圆心角是 度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有 名.20.如图所示,某施工队要测量隧道BC 的长度,已知:600AD =米,AD BC ⊥,施工队站在点D 处看向B ,测得仰角为45°,再由D 走到E 处测量,DE AC ∥,500DE =米,测得仰角为53°,求隧道BC 的长.(4sin535≈o ,3cos535≈o ,4tan533≈o )数学试卷 第5页(共12页) 数学试卷 第6页(共12页)21.在A B 、两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 发电厂焚烧20吨垃圾比B 发电厂焚烧30吨垃圾少发1800度电. (1)求焚烧1吨垃圾,A 和B 各发电多少?(2)A B ,两个发电厂共焚烧90吨垃圾,A 焚烧的垃圾不多于B 焚烧垃圾的两倍,求A 厂B 总发电量最大为多少度?22.如图抛物线2y ax bx c =++过点(1,0)A -,点(0,3)C ,且OB OC =. (1)求抛物线的解析式及其对称轴;(2)点D E 、是对称轴上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,当直线CP 把四边形CBPA 的面积分为3:5两部分,求点P 的坐标.23.已知在平面直角坐标系中,点(3,0)A ,(3,0)B -,(3,8)C -,以线段BC 为直径作圆,圆心为点E ,线段AC 交E e 于点D ,连接OD . (1)求证:直线OD 是E e 的切线;(2)点F 为x 轴上的一个动点.连接CF 交E e 于点G .连接BG . ①当1tan 7ACF ∠=,求所有F 点的坐标 (直接写出); ②求BGCF的最大值.毕业学校_____________姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共12页) 数学试卷 第8页(共12页)广东省深圳市2019年中考试卷数学答案解析一、选择题 1.【答案】B 【考点】绝对值 2.【答案】A【考点】轴对称图形与中心对称图形 3.【答案】C【解析】科学记数法,其中,n 是正整数. 【考点】科学记数法 4.【答案】B【考点】立体图形的展开 5.【答案】D【考点】中位数、众数 6.【答案】C 【考点】整式运算 7.【答案】B【考点】平行线的性质 8.【答案】A【考点】尺规作图,线段的垂直平分线,等腰三角形 9.【答案】C 【考点】符号判断 10.【答案】D【考点】命题,矩形的性质,一元二次方程,多边形内外角和,全等三角形 11.【答案】B 【考点】定义新运算 12.【答案】D【解析】】①②③④都正确. 【考点】四边形多结论题 二、填空题13.【答案】(1)(1)a b b +-【考点】因式分解14.【答案】38【考点】概率 15.【解析】作FM AB ⊥于点M ,由折叠可知:===1,===1EX EB AX AE AM DF YF∴正方形边长1,1AB FM EM =EF ∴=【考点】正方形折叠 16.【解析】如图所示,作AE x ⊥轴 出题意:可证COD AED △∽△ 又:3,(0,3)CD AD C =-Q ,1,3AE OD DE ∴==令DE x =,则3OD x =y Q 轴平分ACB ∠3BO OD x ∴==90,ABC AE x ︒∠=⊥轴∴可证:CBO BAE △∽△则:BO CO AE BE =,即3317x x =,解得:x =A ⎫∴⎪⎪⎝⎭故:k 【考点】反比例函数综合 三、解答题17.【答案】11【解析】原式=31+8+1=11- 【考点】实数运算18.【答案】21x +,【解析】原式21(2)221x x x x x -+=⋅=++-数学试卷 第9页(共12页) 数学试卷 第10页(共12页)将1x =-代入得:21x +=. 【考点】分式化简求值 19.【答案】(l )200 15%(2)统计图如图所示:(3)36 (4)900 【考点】数据统计20.【答案】隧道BC 的长度为700米.【解析】如图,ABD △是等腰直角三角形,==600AB AD , 作EM AC ⊥于点M ,则==500AM DE=100BM ∴在CEM △中,tan53CM EM ︒=,即46003CM = =800CM ∴==800100=700BC CM BM ∴--(米) ∴隧道BC 的长度为700米.答:隧道BC 的长度为700米. 【考点】三角函数的应用21.【答案】(1)焚烧l 吨垃圾,A 发电厂发电300度,B 发电厂发电260度. (2)A B ,发电厂发电总量最是25800度.【解析】(1)设焚烧l 吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,则 4030201800a b b a -=⎧⎨-=⎩,解的:300260a b =⎧⎨=⎩ 答:焚烧l 吨垃圾,A 发电厂发电300度,B 发电厂发电260度.(2)设A 发电厂炭烧x 吨垃圾,则B 发电厂炭烧(90)x -吨,总发电量为y 度,则300260(90)4023400y x x x =+-=+2(90)x x -Q ≤ 60x ∴≤y 随x 的增大而增大∴当60x =时,y 取最大值为25800.答:A B ,发电厂发电总量最是25800度. 【考点】二元一次方程、一次函数应用题22.【答案】(1)抛物线的解析式:223y x x =-++,对称辅为:直线1x =(2)如图:作C 关于对称轴的对称点'(2,3)C ,则'CD C D = 取1'(1,)A -,又1DE =,则可证'A D AE =.1ACDE C AC DE CD AE CD AE =+++=++四边形要求四边形ACDE 的周长最小值,只要求CD AE +的最小值即可'CD AE CD A D +=+Q∴当''A D C 、、三点共线时,''C D A D +∴四边形ACDE1(3)令PC 与x 轴交于E 点,Q 直线CP 把四边形CBPA 的面积分为35:两部分又:::CBP CAP CBE CEA S S S S BE AE ==△△△△:3:5BE AE ∴=或5:31231,0,,022E E ⎛⎫⎛⎫∴ ⎪ ⎪⎝⎭⎝⎭∴直线CE 的解析式:2 3 y x =-+或63y x =-+由CE 解析式和抛物线解析式联立解得:12(4,5),(8,45)P P -- 【考点】一次函数,二次函数综合,线段和最值,点面积比例问题 23.【答案】(1)见解析(2)①143,031F ⎛⎫⎪⎝⎭,2(5,0)F .②BGCF的最大值为12.【解析】(1)连接DE ,则:BC Q 为直径90BDC ︒∴∠= 90BDA ︒∴∠=数学试卷 第11页(共12页)数学试卷 第12页(共12页)OA OB =Q OD OB OA ∴== OBD ODB ∴∠=∠EB ED =QEBD EDB ∴∠=∠EBD OBD EDB ODB ∴∠+∠=∠+∠即EBO EDO ∠=∠CB x ⊥Q 轴90EBO ︒∴∠= 90FDO ︒∴∠= D Q 点在OE 上∴直线OD 为E e 的切线(2)如图l ,当F 位于AB 上时:1ANF ABC Q △∽△11NF AF AN AB BC AC∴==∴设3AN x =,则114,5NF x AF x ==103CN CA AN x ∴=-=-1141tan 1037F N x ACF CN x ∴∠===-,解得;1031x = 150531AF x ∴==1504333131OF =-=即143,031F ⎛⎫ ⎪⎝⎭如图2,当F 位于BA 的延长线上时: 2AMF ABC Q △∽△∴设3AM x =,则224,5MF x AF x == 103CM CA AM x ∴=+=+241tan 1037F M x ACF CM x ∴∠===+解的:25x =252AF x ∴== 2325OF =+=即2(5,0)F(3)BC Q 是直径90CGB CBF ︒∴∠=∠=CBG CFB ∴∠=∠(记为α,其中090α︒︒<<)则:cos 11sin cos sin 222sin BG BC BC CF ααααα===≤BG CF ∴的最大值为12【考点】圆,切线证明,相似三角形,三角函数,二次函数最值问题。