电力系统潮流计算的计算机算法概述PPT(共 48张)
合集下载
第11章 电力系统的潮流计算WJYPPT课件
Step5:利用Step4计算得到的节点电压Vb,Vc ,Vd ,重复Step3、Step4,直到精7 度满足要求为止。
电力系统的潮流计算—开式网络的电压和功率分布计算
复杂开式网络潮流的计算机算法 Step2:支路顺序编号(消去叶节点法,分层
方法,等) Step3:回代计算:按照支路编号顺序,计算 A
度满足要求为止。
6
电力系统的潮流计算—开式网络的电压和功率分布计算
开式网络的电压和功率分布计算步骤 Step1:制定一相等值电路; Step2:计算运算负荷Sb,Sc ,Sd ; Step3:回代计算:设定各节点电压初值(VN),从末端d节点开始,计算各支
路功率损耗和首末端功率,直到A点; Step4:前推计算:从A节点开始,计算各各支路电压降落和节点电压;
CH11 电力系统的潮流计算
开式网络的电压和功率分布计算
配电网潮流算法:前推回代法
简单闭式网络的功率分布计算
环网功率分布:循环电势的概念
环网潮流控制
复杂电力系统潮流计算
潮流计算的数学模型
-拉夫逊法潮流计算
P-Q分解法潮流计算
1
电力系统的潮流计算—开式网络的电压和功率分布计算
Review:网络元件的电压降落与功率损耗计算
回代
S
P22 Q22 V22
R
jX
P1 jQ1 P2 jQ2 S
Step3:已知V1, S1
P1
jQ1
,
计算V1
,
V1
,V2(k
1)
,
(k 2
1)
前推
step4:如果
V (k 1) 2
V2(k )
,或k kmax ,计算结束,否则
潮流的计算机算法ppt课件
复杂电力系统潮流的计算机算法
2020/3/31
1
带有最优 乘子的牛 顿潮流算
法
牛拉 法
保留非线 性直角坐
标法
保留非线 性直角坐 标快速潮
流法
简
简化
化
满足初 始条件 时为等 效算法
PQ分 解法
定雅克 比牛顿
法
2020/3/31
基本潮流
最优潮流牛顿算法
最优潮流简化梯度 算法
优化潮流
2
算法名称
算法特性
最优乘子法
能够有效地解决病态系统的潮流计算,且 永远不换发散
2020/3/31
3
内容提要
功率方程 牛拉法 P-Q分解法 保留非线性潮流算法 最小化潮流算法 最优潮流 潮流计算中稀疏技术的运用
2020/3/31
4
➢功率方程
电力系统中已知的往往是功率,需要用已知的功率来代替未
知的电流:
S%i
Pi
代入H、L的表达式
i j时
H ij
Pi
j
UiU j (Gij sin ij
Bij cosij )
cosij 1,Gij sinij 0 U iU j Bij
Lij
Pi U j
Uj
UiU j (Gij
sin ij
Bij
cosij )
cosij 1,Gij sinij 0 U iU j Bij
2020/3/31
15
i j时
H ii
Pi
i
Qi
U
2 i
Bii
U
B2
i ii
Lii
Qi
U
2 i
Bii
U
2 i
2020/3/31
1
带有最优 乘子的牛 顿潮流算
法
牛拉 法
保留非线 性直角坐
标法
保留非线 性直角坐 标快速潮
流法
简
简化
化
满足初 始条件 时为等 效算法
PQ分 解法
定雅克 比牛顿
法
2020/3/31
基本潮流
最优潮流牛顿算法
最优潮流简化梯度 算法
优化潮流
2
算法名称
算法特性
最优乘子法
能够有效地解决病态系统的潮流计算,且 永远不换发散
2020/3/31
3
内容提要
功率方程 牛拉法 P-Q分解法 保留非线性潮流算法 最小化潮流算法 最优潮流 潮流计算中稀疏技术的运用
2020/3/31
4
➢功率方程
电力系统中已知的往往是功率,需要用已知的功率来代替未
知的电流:
S%i
Pi
代入H、L的表达式
i j时
H ij
Pi
j
UiU j (Gij sin ij
Bij cosij )
cosij 1,Gij sinij 0 U iU j Bij
Lij
Pi U j
Uj
UiU j (Gij
sin ij
Bij
cosij )
cosij 1,Gij sinij 0 U iU j Bij
2020/3/31
15
i j时
H ii
Pi
i
Qi
U
2 i
Bii
U
B2
i ii
Lii
Qi
U
2 i
Bii
U
2 i
电力系统潮计算PPT课件
⑴在 B '中尽量去掉那些对有功功率及电压相角影响较小的因素,如
略去变压器非标准电压比和输电线路充电电容的影响;在 B 中'' 尽
量去掉那些对无功功率及电压幅值影响较小的因素,如略去输电 线路电阻的影响。
⑵为了减少在迭代过程中无功功率及节点电压幅值对有功迭代的影 响,将(2-44)右端U各元素均置为标幺值1.0.
• 潮流计算公式作如下修改:
P i a 1 b 1 u u ii0 c 1 u u ii0 2 P i0 (s) u ij iu jG ijc o ij B s ijs iijn
Q i a 1 b 1 u u ii0 c 1 u u ii0 2 Q i (0 s) u ij iu jG ijs iijn B ijc o ij s
(4)和节点导纳矩阵具有相同稀疏结构的分块雅可比矩阵 在位置上对称,但由于数值上不等,说以,雅可比矩阵式 一个不对称矩阵。
2024/6/4
11
四、牛顿潮流算法的性能分析
• 优点:
⑴收敛速度快。
如果初值选择较好,算法将具有平方收敛性,一般迭代4~5次便 可以收敛到一个非常精确地解,而且其迭代次数与计算的网络规模 基本无关。
方程组的解。而牛顿法出于线性近似,略去了高阶项,因此用每次迭
代所求得的修正量对上一次的估计值加以改进后,仅是向真值接近了
一步而已。
2024/6/4
24
为了推导算法的方便,下面将上述潮流方程写成更普遍的齐次二次方 程的形式。
首先作以下定义:
一个具有n个变量的齐次代数方程式的普遍形式为:
(2-65)
2024/6/4
2024/6/4
3
第三节 牛顿潮流算法
一、牛顿法的基本原理
《电力系统潮流计算》PPT课件
< •
•
Ma |Uxi(K1)UiK|
其中K为迭代次数.
整理ppt
17
三.说明
(1)平衡节点不参加迭代.
(2)PV节点的处理:在迭代中需增加一个判断
如碰到PV节点,每一次迭代出来的电压始终保持幅值为常
量,相位为变量 •
• n *•
UiU i s i(K1),Q iIm Ui( yiU j j)
整理ppt
ቤተ መጻሕፍቲ ባይዱ
19
(1)节点间相位差很大的重负荷系统 (2)包含有负电抗支路(如某些三绕组变压器或线路串联电容
等)的系统. (3)具有较长的辐射性线路的系统. (4)长线路与短线路接在同一节点上,而且长短线路的比值又
很大的系统. 此外,平衡节点的不同选择也会影响到收敛性能.一般取
•
Ui 10o
整理ppt
f
x1
f 1(Χ )
f Χ
f x2
f
(梯 度 ), F (Χ)
f
2
(
Χ
)
f
fn( Χ )
xn
整理ppt
12
f 1 f 1
f
T 1
x1
x2
F
f
T 2
f 2 x1
f 2 x2
fnT
fn
fn
x1 x2
f 1
xn
f 2 xn
fi xj
j1
高斯-赛德尓迭代的算法的计算性能和特点
优点:原理简单,程序设计容易占用内存少.每次计算量也很 少,一般电力系统每个节点平均和2~4个节点相连,相应导 纳矩阵具有对称性和高度稀疏性.
整理ppt
18
缺点:收敛速度很慢.根据迭代公式,各节点在数学上是 松散耦合的,每次迭代,每个节电电压值只能影响与之 相关的几个节点,所以收敛速度很慢.且,算法所需迭代 次数和节点数目有密切关系,将随其数目的增加而急剧 增加.此算法另外一个重要限制是对于如下的病态条件 的系统,往往会收敛困难.
《电力系统潮流计算》课件
2 未来发展方向
随着电力系统的发展和智能化技术的应用,潮流计算将面临更多挑战和机遇,需要不断 创新和改进。
节点导纳矩阵
描述各个节点之间的电导和电 纳关系
母线导纳矩阵
描述各个母线之间的电导和电 纳关系
支路导纳矩阵
描述各个支路之间的电导和电 纳关系
案例分析
1
单母线系统
对单母线系统进行潮流计算,以分析电压和功率的变化
2
多母线系统
对多母线系统进行潮流计算,以分析各个母线之间的电压和功率流向
潮流计算的实现
MATLAB实现
使用MATLAB进行潮流计算,利用 其强大的数值计算和优化工具
Python实现
使用Python进行潮流计算,利用 其灵活的语法和丰富的科学计算 库
PowerFactory实现
使用PowerFactory进行潮流计算, 利用其专业的电力系统仿真和分 析功能
结束语
1 潮流计算在电力系统中的重要性
潮流计算是电力系统规划和运行的基础,可以帮助我们优化系统配置和确保统的可靠 运行。
电力系统潮流计算
欢迎来到《电力系统潮流计算》课件!本课程将介绍电力系统潮流计算的基 本概念、方法和应用。通过本课程,您将深入了解电力系统潮流计算的重要 性和实现方式。
什么是电力系统潮流计算
电力系统潮流计算是一种用于分析电力系统的电压、功率和电流分布的方法。 它的目的是确定电力系统中各个节点和支路的电压和功率流向,以保证系统 的稳定运行。
潮流计算的应用广泛,包括电力系统规划、运行调度、故障分析和市场交易 等领域。
潮流计算的方法
双端点潮流计算法
通过同时计算送端和接端功率和电压的方法,适用于小型系统。
直接法
通过求解电压相角和幅值的非线性方程组的方法,适用于中小型系统。
随着电力系统的发展和智能化技术的应用,潮流计算将面临更多挑战和机遇,需要不断 创新和改进。
节点导纳矩阵
描述各个节点之间的电导和电 纳关系
母线导纳矩阵
描述各个母线之间的电导和电 纳关系
支路导纳矩阵
描述各个支路之间的电导和电 纳关系
案例分析
1
单母线系统
对单母线系统进行潮流计算,以分析电压和功率的变化
2
多母线系统
对多母线系统进行潮流计算,以分析各个母线之间的电压和功率流向
潮流计算的实现
MATLAB实现
使用MATLAB进行潮流计算,利用 其强大的数值计算和优化工具
Python实现
使用Python进行潮流计算,利用 其灵活的语法和丰富的科学计算 库
PowerFactory实现
使用PowerFactory进行潮流计算, 利用其专业的电力系统仿真和分 析功能
结束语
1 潮流计算在电力系统中的重要性
潮流计算是电力系统规划和运行的基础,可以帮助我们优化系统配置和确保统的可靠 运行。
电力系统潮流计算
欢迎来到《电力系统潮流计算》课件!本课程将介绍电力系统潮流计算的基 本概念、方法和应用。通过本课程,您将深入了解电力系统潮流计算的重要 性和实现方式。
什么是电力系统潮流计算
电力系统潮流计算是一种用于分析电力系统的电压、功率和电流分布的方法。 它的目的是确定电力系统中各个节点和支路的电压和功率流向,以保证系统 的稳定运行。
潮流计算的应用广泛,包括电力系统规划、运行调度、故障分析和市场交易 等领域。
潮流计算的方法
双端点潮流计算法
通过同时计算送端和接端功率和电压的方法,适用于小型系统。
直接法
通过求解电压相角和幅值的非线性方程组的方法,适用于中小型系统。
《电力系统潮流计算》PPT课件
电压的基准值=参数和变量归算的额定电压
4.1.2 标幺值
2、各参数或变量标幺值的计算
(1)功率基准值SB
SP SB jQS P BjS Q BP jQ
(2)电压基准值UB(一般取线电压)
(3)电流基准值UB(一般取线电流)
(4)阻抗基准值ZB
Z R jX R X Z Z BZ B Z BjZ BR jX
S~Y
U*2
*
Y
S~Z
P2 Q2 U2
Z
S~Z
P*2 Q*2 U*2
Z*
4.1.2 标幺值
二、基准值改变时标么值的换算
电力系统元件一般以标么值或百分数的形式给出,其
基准值为对应元件本身的额容量SN和额定电压UN。阻
抗阻取基抗容准有量值名和为值电压的Z Z基N准R 值 US为jNNX 2S B和ZUN*BZ 。NZN*U SN N2
U2
P2RU2Q2Xj
P2XU2Q2R
Δ U P 2 R Q 2 X δU P 2 XQ 2 R
U 2
U 2
δ
U1
dU
δU
U2 U
4.2.1 电力线路上的电压降落和功率损耗
U1
线路两端电压幅值差主要由
dU
δU
纵分量决定,而电压相角差 主要由横分量决定
S 2 Z
3U
P2 Q2 U2 Z
S~Z P2U2Q2 Z
4.1.2 标幺值
三相对称系统中用有名值和用标幺值表示公式对 照表
名称
有名值
标幺值
功率表达式 阻抗压降 接地导纳中的功率 阻抗中的功率损耗
S~
3U
I
S~*
U*
I
第三章 电力系统稳态分析(潮流计算)PPT课件
S P2 Q2
4
§3.1 电力网功率损耗与电压计算
二、电力线路的功率损耗和电压计算
1. 电力线路功率的计算 已知条件为:首端电压 U 1,首端功率S1=P1+jQ1,以 及线路参数。求解的是线路中的功率损耗和末端电
压和功率。
求解过程:从首端向末端推导。
1)首端导纳支路的功率 S~Y1
S~1 S~1 1
U2
U2
U1
U2 U '
2
U '
2 ,
tg 1
U '
U2
U
' 2
9
§3.1 电力网功率损耗与电压计算
※电压降落公式讨论:
1) 求电压降落的纵分量和横分量公式是一样的
2) U U ' U U ' (因为不同参考电压)
U U 1
U dU
U 2 U
U
10
§3.1 电力网功率损耗与电压计算
电压调整% U20 U2 100 U 20
12
§3.1 电力网功率损耗与电压计算
6. 电能经济指标
1) 输电效率:指线路末端输出有功功率与线路始端输 入有功功率的比值,以百分数表示:
输电效率% P2 100% P1
2) 线损率或网损率:线路上损耗的电能与线路始端输 入的电能的比值
线损率% Wz 100% Wz 100%
3) 阻抗支路中损耗的功率
S~z 3
S~1' 3U 1
S~1' 3U 1
Z
S1' U1
2
Z
P1'2 Q1'2
U
2 1
R jX
P1'2 Q1'2
电力系统分析 第四章计算机潮流计算 ppt
17
国内外电力系统全数字仿真系统概述
HYPERSIM:加拿大魁北克TEQSIM公司开发,用于机
电暂态实时仿真和电磁暂态实时仿真,但还不能进行电磁 暂态和机电暂态混合仿真。HYPERSIM有两种支撑硬件: 基于PC Cluster,可进行中小规模电力系统的电磁暂态仿 真(HVDC系统实时仿真步长 65微秒)和较大规模电力系统 的机电暂态仿真。具有对继电保护、FACTS控制器、自动 重合设备及PSS等进行闭环测试的能力。 基于多CPU超级并行处理计算机,如SGI2000和SGI3000。 最高配置512个微处理器。其仿真规模可以相当大,也可用 于装置试验。造价高昂,中国电科院引进该系统投入3000 多万元。在扩展方面受到计算机型号的制约。
13
实时仿真系统国内外软件介绍
加拿大Manitoba直流研究中心RTDS公司率先推出第一 台电力系统全数字实时仿真系统(RTDS),核心软件 是EMTDC。 加拿大魁北克水电研究所的TEQSIM公司也开发了电 力系统实时仿真系统(HYPERSIM),主要用于电力 系统电磁暂态仿真,其核心软件是EMTP程序。 法国电力公司(EDF)开发的ANENE实时仿真系统, 其核心软件是EMTP。
一、电力系统离线数字仿真是在计算机技术发展的基础上,建立电 力系统物理过程的数学模型,用求解数学方程的方法来进行仿真研 究。 电力系统 离线数字仿真
电磁暂态 过程仿真
机电暂态 过程仿真
中长期动态 过程仿真
3
电磁暂态数字仿真主要研究电力系统受到大扰动后的暂 态稳定和受到小扰动后的静态稳定性能。其中暂态稳定分 析是研究电力系统受到诸如短路故障,切除线路、发电机、 负荷,发电机失去励磁或者冲击性负荷等大扰动作用下, 电力系统的动态行为和保持同步稳定运行的能力 国内外常用的磁暂态程序(简称为EMTP) 中国电力科学研究院在EMTP基础上 开发了 EMTPE 加拿大Manitoba直流研究中心的EMTDC
国内外电力系统全数字仿真系统概述
HYPERSIM:加拿大魁北克TEQSIM公司开发,用于机
电暂态实时仿真和电磁暂态实时仿真,但还不能进行电磁 暂态和机电暂态混合仿真。HYPERSIM有两种支撑硬件: 基于PC Cluster,可进行中小规模电力系统的电磁暂态仿 真(HVDC系统实时仿真步长 65微秒)和较大规模电力系统 的机电暂态仿真。具有对继电保护、FACTS控制器、自动 重合设备及PSS等进行闭环测试的能力。 基于多CPU超级并行处理计算机,如SGI2000和SGI3000。 最高配置512个微处理器。其仿真规模可以相当大,也可用 于装置试验。造价高昂,中国电科院引进该系统投入3000 多万元。在扩展方面受到计算机型号的制约。
13
实时仿真系统国内外软件介绍
加拿大Manitoba直流研究中心RTDS公司率先推出第一 台电力系统全数字实时仿真系统(RTDS),核心软件 是EMTDC。 加拿大魁北克水电研究所的TEQSIM公司也开发了电 力系统实时仿真系统(HYPERSIM),主要用于电力 系统电磁暂态仿真,其核心软件是EMTP程序。 法国电力公司(EDF)开发的ANENE实时仿真系统, 其核心软件是EMTP。
一、电力系统离线数字仿真是在计算机技术发展的基础上,建立电 力系统物理过程的数学模型,用求解数学方程的方法来进行仿真研 究。 电力系统 离线数字仿真
电磁暂态 过程仿真
机电暂态 过程仿真
中长期动态 过程仿真
3
电磁暂态数字仿真主要研究电力系统受到大扰动后的暂 态稳定和受到小扰动后的静态稳定性能。其中暂态稳定分 析是研究电力系统受到诸如短路故障,切除线路、发电机、 负荷,发电机失去励磁或者冲击性负荷等大扰动作用下, 电力系统的动态行为和保持同步稳定运行的能力 国内外常用的磁暂态程序(简称为EMTP) 中国电力科学研究院在EMTP基础上 开发了 EMTPE 加拿大Manitoba直流研究中心的EMTDC
电力系统潮流的计算机算法夏道止PPT课件
QGi min QGi QGi max
量 取决于一系列的技术经济因素
无电源的节点:PGi 0、QGi 0
12
第12页/共37页
2、节点的分类
有些节点PGi、QGi
Ui、 i
而是PGi、U i
QGi、 i
即电源可调节QGi,以保证U
为定值
i
(1) PQ节点:PLi、QLi;PGi、QGi,即
在节点 k 单独注入电流, 所有其它节点的注入电流 都等于 0 时,在节点 k 产
Z = Y -1 节点阻抗矩阵 Zii 节点i的自阻抗或输入阻抗 Zij 节点i、j间的互阻抗或转移阻抗
if k i
Z kk
U k Ik
I j 0, jk
生的电压同注入电流之比
从节点 k 向整个网络看进 去的对地总阻抗
I1 I2
Yn2
Ynn
U
n
In
节点导纳矩阵
YU I
第6页/共37页
Yii 节点i的自导纳
Yij 节点i、j间的互导纳
6
2、节点导纳矩阵元素的物理意义
Uk 0, U j 0 (j 1, 2,
YikUk Ii (i 1, 2, , n)
Yik
Ii Uk
U j 0, jk
为平衡节点,则: PLs、QLs ;Us 、 θ s
给定, Us =1.0, θ s =0。待求PGs、
QGs。
13
第13页/共37页
互阻抗 Ui Zi1I1 Zi2 I2 Zij I j Zin In if k i
在节点 k 单独注入电流, 所有其它节点的注入电流
n
Zij I j (i 1, 2, , n) j 1
2、节点阻抗矩阵的特点及其
量 取决于一系列的技术经济因素
无电源的节点:PGi 0、QGi 0
12
第12页/共37页
2、节点的分类
有些节点PGi、QGi
Ui、 i
而是PGi、U i
QGi、 i
即电源可调节QGi,以保证U
为定值
i
(1) PQ节点:PLi、QLi;PGi、QGi,即
在节点 k 单独注入电流, 所有其它节点的注入电流 都等于 0 时,在节点 k 产
Z = Y -1 节点阻抗矩阵 Zii 节点i的自阻抗或输入阻抗 Zij 节点i、j间的互阻抗或转移阻抗
if k i
Z kk
U k Ik
I j 0, jk
生的电压同注入电流之比
从节点 k 向整个网络看进 去的对地总阻抗
I1 I2
Yn2
Ynn
U
n
In
节点导纳矩阵
YU I
第6页/共37页
Yii 节点i的自导纳
Yij 节点i、j间的互导纳
6
2、节点导纳矩阵元素的物理意义
Uk 0, U j 0 (j 1, 2,
YikUk Ii (i 1, 2, , n)
Yik
Ii Uk
U j 0, jk
为平衡节点,则: PLs、QLs ;Us 、 θ s
给定, Us =1.0, θ s =0。待求PGs、
QGs。
13
第13页/共37页
互阻抗 Ui Zi1I1 Zi2 I2 Zij I j Zin In if k i
在节点 k 单独注入电流, 所有其它节点的注入电流
n
Zij I j (i 1, 2, , n) j 1
2、节点阻抗矩阵的特点及其
电力系统潮流计算的计算机算法概述
j 1 n
Qi fi j1 Gij e j Bij f j
ei Gij f j Bij e j
j 1
电力系统分析
(19.14)
19.3.2牛顿-拉夫逊法潮流计算
PQ节点的有功功率和无功功率是给定的,第i个节点的给定功率设 为Pis和Qis。假定系统中的第1,2,……,m号节点为PQ节点, 对其中每一个节点可列方程
为PQ机(或PQ给定型发电机)。在潮流计算中,系统大部分 节点属于PQ节点。
电力系统分析
2.PU节点 给出的参数是节点的有功功率P及电压幅值U,待求量为该节 点的无功功率Q及电压向量的相角θ。通常选择有一定无功功率 贮备的发电机母线或者有无功补偿设备的变电所母线作PU节点。 PU节点上的发电机称之为PU机(或PU给定型发电机)。 3.平衡节点
电力系统分析
3.2牛顿-拉夫逊法潮流计算
1.采用直角坐标 结点电压和导纳可表示为:
Yij G ij jBij
Ui
e i
jf i
将上述表示式代入
Pi
jQi
Ui
n
Y ij U
j
的右端,
j 1
展开并分出实部和虚部,便得:
Pi
ei
n
j 1 n
Gij e j
Bij
fj
n
fi Gij f j Bij e j
电力系统潮流计算的计算机算法
重点提示 1概 述 2 潮流计算的基本方程 3 牛顿-拉夫逊法潮流计算 4 PQ分解法潮流计算 小结
电力系统分析
本章提示
节点分类的概念; 潮流计算的基本方程式; 牛顿—拉夫逊法潮流计算的计算机算法; P—Q分解法潮流计算的计算机算法。
电力系统分析
Qi fi j1 Gij e j Bij f j
ei Gij f j Bij e j
j 1
电力系统分析
(19.14)
19.3.2牛顿-拉夫逊法潮流计算
PQ节点的有功功率和无功功率是给定的,第i个节点的给定功率设 为Pis和Qis。假定系统中的第1,2,……,m号节点为PQ节点, 对其中每一个节点可列方程
为PQ机(或PQ给定型发电机)。在潮流计算中,系统大部分 节点属于PQ节点。
电力系统分析
2.PU节点 给出的参数是节点的有功功率P及电压幅值U,待求量为该节 点的无功功率Q及电压向量的相角θ。通常选择有一定无功功率 贮备的发电机母线或者有无功补偿设备的变电所母线作PU节点。 PU节点上的发电机称之为PU机(或PU给定型发电机)。 3.平衡节点
电力系统分析
3.2牛顿-拉夫逊法潮流计算
1.采用直角坐标 结点电压和导纳可表示为:
Yij G ij jBij
Ui
e i
jf i
将上述表示式代入
Pi
jQi
Ui
n
Y ij U
j
的右端,
j 1
展开并分出实部和虚部,便得:
Pi
ei
n
j 1 n
Gij e j
Bij
fj
n
fi Gij f j Bij e j
电力系统潮流计算的计算机算法
重点提示 1概 述 2 潮流计算的基本方程 3 牛顿-拉夫逊法潮流计算 4 PQ分解法潮流计算 小结
电力系统分析
本章提示
节点分类的概念; 潮流计算的基本方程式; 牛顿—拉夫逊法潮流计算的计算机算法; P—Q分解法潮流计算的计算机算法。
电力系统分析
《电力系统潮流计算》课件
01
电力系统潮流计算 的计算机实现
计算机实现的方法与步骤
建立数学模型
首先需要建立电力系统 的数学模型,包括节点 导纳矩阵、系统负荷和
发电量等。
初始化
为电力系统中的各个节 点和支路设置初值。
迭代计算
采用迭代算法,如牛顿拉夫逊法或快速解耦法 ,求解电力系统的潮流
分布。
收敛判定
判断计算结果是否收敛 ,若收敛则输出结果, 否则返回步骤3重新计算
使用实际数据,展示正常运行状态下潮流计算的过 程和结果。
不同运行状态下的潮流计算案例
介绍检修状态下电力系统 的主要变化和特征。
案例二:检修状态下的潮 流计算
分析计算结果对系统运行 状态的影响。
01
03 02
不同运行状态下的潮流计算案例
使用实际数据,展示检修状态下潮流 计算的过程和结果。
分析计算结果对系统运行状态的影响 。
介绍南方电网的地理分布、主 要发电厂和输电线路。
实际电力系统的潮流计算案例
分析该电网的电压等级、负荷分布和 电源结构。
展示实际数据下的潮流计算结果,包 括节点电压、支路功率和功率损耗等 。
不同运行状态下的潮流计算案例
01
案例一:正常运行状态下的潮流计算
02
介绍正常运行状态下电力系统的一般特征。
03
模型建立
针对分布式电源的特点,需要建 立相应的数学模型,以便进行准 确的潮流计算。
优化调度
结合分布式电源的特点和运行需 求,对电力系统进行优化调度, 以实现系统运行的经济性和稳定 性。
感谢观看
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
《电力系统潮流计算 》PPT课件
电力系统的潮流计算PPT课件
ΔQ∝V2,与负荷无直接关系。
2021/4/17
电力系统分析 第十一章 电力系统的潮流计算
12
二、变压器(T型等值电路)
V1 S1 I1 S’I RT jxT S2 I V2
ΔS0
-jBT
GT
励磁损耗 (接地励磁支路消耗有功,铁耗) S0 (G jBT )V12
阻抗损耗(与线路类似)
SS=
电力系统分析 第十一章 电力系统的潮流计算
10
相角也可以化简:
1
arctg
PX V2
/ V2 V2
2
arctg
PX /V1 V1-V1
V ≈QX V
QX V1 V2 V2
V ≈ PX
V
V2
V1
Q' X V1
1. 高压输电系统中,电压降落的纵分量ΔV主要取决于元件所 输送的无功功率Q;横分量δV主要取决于元件所输送的有 功功率P。
ΔQB1
ΔQB2
S 2 SLD
负荷端
S1 S' jQB1 S''SL jQB1 P1 jQ1 S2 jQB2 SL jQB1
S2
1 2
BV22
P2 Q2 V22
(R
jX
)
1 2
BV12
V1
V2
P'' R Q'' X V2
j
P'' X Q'' R V2
2021/4/17
电力系统分析 第十一章 电力系统的潮流计算
d
j B1 2
j B1 2
j B2 2
j B2 2
j B3 2
j B3 2
电厂潮流计算课件
详细描述
无功优化主要通过优化算法和模型, 对无功补偿设备进行合理配置和调节 ,以实现无功功率的平衡和电压稳定 ,降低电网损耗和提高电力系统的稳 定性。
电厂有功优化
总结词
有功优化是电厂优化运行的关键环节,通过对机组有功出力的合理分配,降低运行成本 并提高系统稳定性。
详细描述
有功优化主要通过优化算法和模型,对机组的出力进行合理分配和控制,以实现系统有 功功率的平衡和稳定。同时,有功优化还需要考虑机组的开停机、备用容量等因素,以
03
02
PANDA的主要特点
04
提供丰富的模型库,支持多种类型的设备 和元件。
具备图形化界面,方便用户进行建模和参 数设置。
05
06
支持多种计算方法,如稳态仿真、瞬态仿 真等。
THANKS
感谢观看
电流之间的关系。
输电线路模型
基于线路的电阻、电抗和电纳 等参数,建立电压和电流的传
递关系。
负荷模型
根据负荷的特性,建立相应的 数学模型,模拟负荷的电压和
电流响应。
电厂元件的参数获取
01
02
03
查阅相关资料
通过查阅设备的技术规格 书、说明书等资料,获取 元件的参数值。
实际测量
对于某些难以获取参数的 元件,可以通过实际测量 来获取其参数值。
异常运行状态分析内容
分析异常运行状态下的电力系统的功率分布、电压水平和电流情况,以及各发电机的出力 和稳定性。
异常运行状态的意义
通过对异常运行状态的分析,可以及时发现设备故障和潜在的安全隐患,采取相应措施进 行维修和保护,保证电厂的安全稳定运行。
事故运行状态分析
事故运行状态
指电厂在发生事故情况下的运行 状态,如设备严重故障、全厂停 电等。
无功优化主要通过优化算法和模型, 对无功补偿设备进行合理配置和调节 ,以实现无功功率的平衡和电压稳定 ,降低电网损耗和提高电力系统的稳 定性。
电厂有功优化
总结词
有功优化是电厂优化运行的关键环节,通过对机组有功出力的合理分配,降低运行成本 并提高系统稳定性。
详细描述
有功优化主要通过优化算法和模型,对机组的出力进行合理分配和控制,以实现系统有 功功率的平衡和稳定。同时,有功优化还需要考虑机组的开停机、备用容量等因素,以
03
02
PANDA的主要特点
04
提供丰富的模型库,支持多种类型的设备 和元件。
具备图形化界面,方便用户进行建模和参 数设置。
05
06
支持多种计算方法,如稳态仿真、瞬态仿 真等。
THANKS
感谢观看
电流之间的关系。
输电线路模型
基于线路的电阻、电抗和电纳 等参数,建立电压和电流的传
递关系。
负荷模型
根据负荷的特性,建立相应的 数学模型,模拟负荷的电压和
电流响应。
电厂元件的参数获取
01
02
03
查阅相关资料
通过查阅设备的技术规格 书、说明书等资料,获取 元件的参数值。
实际测量
对于某些难以获取参数的 元件,可以通过实际测量 来获取其参数值。
异常运行状态分析内容
分析异常运行状态下的电力系统的功率分布、电压水平和电流情况,以及各发电机的出力 和稳定性。
异常运行状态的意义
通过对异常运行状态的分析,可以及时发现设备故障和潜在的安全隐患,采取相应措施进 行维修和保护,保证电厂的安全稳定运行。
事故运行状态分析
事故运行状态
指电厂在发生事故情况下的运行 状态,如设备严重故障、全厂停 电等。
复杂电力系统潮流的计算机算法幻灯片PPT
带宽频率 截止频率
相角裕度
bn1 222 42 44
c n 1 4 4 2 2
arctg 14422
超调量
% e/1210 % 0
调节时间
ts3.5/ n cts7/tg
高阶系统频域指标与时域指标的关系
谐振峰值 超调量 调节时间
Mr 1/sin
0 .1 0 6 .4 (M r 1 )
U1
C R2 U 2
Gc(s)R2(R R12//C 1)SR1R 2R2
(R1C s1) R1R2 C s1 R1R2
1aT1s T R1R2 C, aR1R21
aT s1
R1R2
R2
进一步可研究 对数频率特性
aTs1 a G c(s) Ts1
1/T 1/ aT
L c () 2l0 o ac g ( G j) 2l0 o (a g) T 2 1 2l0 o ( T g )2 1 (a 1 ) T
R(s) 串联 校正
前置放大、 被控 C(s)
功率放大
对象
反馈 校正
R(s) 前馈
ห้องสมุดไป่ตู้
前馈校正
校正
前置放大、 被控 C(s)
功率放大
对象
反馈 校正
Gn(s) N(s)
R(s)
C(s)
G1(s)
G2(s)
复合校正
R(s)
Gr(s) G1(s)
C(s)
G2(s)
根本控制规律
〔1〕比例〔P〕控制
m (t)Kpe(t)
r(t) e(t) Kp
m(t)
c(t)
〔2〕比例-微分〔PD〕控制
m (t)Kpe(t)Kpdd(te )t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PQ节点可以表示为
Ii
Si
Pi
- jQi
Ui
Ui
把这个关系式代入式(19.1)中,得
(19.4)
Pi jQ i nYiU jji1,2 , n ,
Ui
j1
(19.5)
式(19.5)是一组共有n个非线性方程组成的复数方程式,如果
把实部和虚部分开便得到2n个实数方程,因此由该方程组可解出
X n 1 X n ff' X X n n n 1, 2 ,
(19.7)
反复进行计算,当X(n)满足适当的收敛判定条件时就是 (19.6)式的根。这样的方法就是所谓的牛顿-拉夫逊法。
电力系统分析
几何意义:
电力系统分析
图19.2 函数曲线及切线示意图
Pi ei
f1
f1 f2
X1' X1'
fn
X1'
,X2' ,Xn' ,X2' ,Xn'
,X2' ,Xn'
xf21
x1
fn
f1 x2 f2 x2
fn
f1 xn
f2
用同样的方法考虑,给出对n个变量X1,X2, ,Xn的n个方程式
f1X1 ,X 2 ,, X n 0
f
2
X
1
,X 2 ,, X
n
0
fn X1 ,X 2 ,, X n 0
(19.12)
对其近似解 X1' ,X2 ' , X , n ' 的修正量ΔX1Δ ,X2, Δ ,Xn 可以解下面的方程式来确定
类型:
导纳法 阻抗法 牛顿-拉夫逊法(N—R法) 快速分解法( PQ分解法)
电力系统分析
2 潮流计算的基本方程 2.1节点的分类 2.2基本方程式
电力系统分析
2.1节点的分类
根据电力系统中各节点性质的不同,可把节点分成三种类型。
1.PQ节点
事先给定的是节点功率(P、Q),待求的是节点电压向量 (U、θ)。通常变电所母线都是PQ节点,当某些发电机的出 力P、Q给定时,也可作为PQ节点。PQ节点上的发电机称之
xn
fn
ΔX1
ΔX 2
ΔXn
(19.13)
x1 x2
xn
式(19.13)等号右边矩阵的
f x
i j
等都是对于X1' ,X2 ' , X , n '
的值,这一矩阵称为雅可比(Jacobi)矩阵。
电力系统分析
按上述得到修正量ΔX1 Δ ,X2, Δ ,Xn后,得到如下关系:
时为止。
ε为预先规定的小正数,此处
X
i
n是 第n次迭代Xi的近似值。
电力系统分析
3.2牛顿-拉夫逊法潮流计算
1.采用直角坐标
结点电压和导纳可表示为:
Yij GijjBij
Ui
e i
jfi
将上述表示式j
的右端,
j1
展开并分出实部和虚部,便得:
为PQ机(或PQ给定型发电机)。在潮流计算中,系统大部分 节点属于PQ节点。
电力系统分析
2.PU节点 给出的参数是节点的有功功率P及电压幅值U,待求量为该节 点的无功功率Q及电压向量的相角θ。通常选择有一定无功功率 贮备的发电机母线或者有无功补偿设备的变电所母线作PU节点。 PU节点上的发电机称之为PU机(或PU给定型发电机)。 3.平衡节点
X 1 ' ' X 1 ' Δ X 1 ,X 2 ' ' X 2 ' Δ X 2 , X n ' ' , X n ' Δ X n
这比 X1' ,X2 ' , X , n ' 进一步接近于真值。这一步骤在收敛到希 望的值以前重复进行。一般要反复计算到满足
m X 1 n 1 X a 1 n X 2 n , 1 x X 2 n , X n n 1 X n n ε
j1
若 UZI
可展开如下形式:U i n ZijIji1,2 , n, j1
式中n为网络节点数
(19.1) (19.2)
电力系统分析
节点功率与节点电流之间的关系为:
S~i Pi jQ i U i Ii
(19.3)
式中
Pi PGiPLDi Qi QGiQLDi
2n个运行参数。
电力系统分析
3 牛顿-拉夫逊法潮流计算
19.3.1牛顿-拉夫逊法概要 19.3.2牛顿-拉夫逊法潮流计算 19.3.3牛顿法的框图及求解过程 19.3.4实例
电力系统分析
3.1牛顿-拉夫逊法概要
已知一个变量X的函数为:
fX0
(19.6)
解此方程式时,由适当的近似值X(0)出发,根据
给定的运行参数是U和θ,,而待求量是该节点的P、Q,因
此又称为Uθ节点。 在潮流计算中,这类节点一般只设一个。
关于平衡节点的选择,一般选择系统中担任调频调压的某一 发电厂(或发电机),有时也可能按其它原则选择。
电力系统分析
2.2基本方程式
任何复杂的电力系统都可以归结为以下元件(参数)组成: (1)发电机(注入电流或功率); (2)负荷(负的注入电流或功率); (3)输电线支路(电阻、电抗); (4)变压器支路(电阻、电抗、变比); (5)母线上的对地支路(阻抗和导纳); (6)线路上的对地支路(一般为线路充电电容导纳)。
电力系统分析
集中了以上各种类型元件的简单网络如图
电力系统分析
节点注入电流和节点电压构成以下线性方程组
I YU
其中
I
I 1 I 2
I n
可展开为如下形式:
U
U U
1 2
U n
Ii
n
YiU jji1,2 , n,
电力系统潮流计算的计算机算法
重点提示 1概 述 2 潮流计算的基本方程 3 牛顿-拉夫逊法潮流计算 4 PQ分解法潮流计算 小结
电力系统分析
本章提示
节点分类的概念; 潮流计算的基本方程式; 牛顿—拉夫逊法潮流计算的计算机算法; P—Q分解法潮流计算的计算机算法。
电力系统分析
1概 述