计算方法实验报告matlab

合集下载

程序设计实验报告(matlab)

程序设计实验报告(matlab)

程序设计实验报告(matlab)实验一: 程序设计基础实验目的:初步掌握机器人编程语言Matlab。

实验内容:运用Matlab进行简单的程序设计。

实验方法:基于Matlab环境下的简单程序设计。

实验结果:成功掌握简单的程序设计和Matlab基本编程语法。

实验二:多项式拟合与插值实验目的:学习多项式拟合和插值的方法,并能进行相关计算。

实验内容:在Matlab环境下进行多项式拟合和插值的计算。

实验方法:结合Matlab的插值工具箱,进行相关的计算。

实验结果:深入理解多项式拟合和插值的实现原理,成功掌握Matlab的插值工具箱。

实验三:最小二乘法实验目的:了解最小二乘法的基本原理和算法,并能够通过Matlab进行计算。

实验内容:利用Matlab进行最小二乘法计算。

实验方法:基于Matlab的线性代数计算库,进行最小二乘法的计算。

实验结果:成功掌握最小二乘法的计算方法,并了解其在实际应用中的作用。

实验六:常微分方程实验目的:了解ODE的基本概念和解法,并通过Matlab进行计算。

实验内容:利用Matlab求解ODE的一阶微分方程组、变系数ODE、高阶ODE等问题。

实验方法:基于Matlab的ODE工具箱,进行ODE求解。

实验结果:深入理解ODE的基本概念和解法,掌握多种ODE求解方法,熟练掌握Matlab的ODE求解工具箱的使用方法。

总结在Matlab环境下进行程序设计实验,使我对Matlab有了更深刻的认识和了解,也使我对计算机科学在实践中的应用有了更加深入的了解。

通过这些实验的学习,我能够灵活应用Matlab进行各种计算和数值分析,同时也能够深入理解相关的数学原理和算法。

这些知识和技能对我未来的学习和工作都将有着重要的帮助。

MATLAB计算方法迭代法牛顿法二分法实验报告

MATLAB计算方法迭代法牛顿法二分法实验报告

MATLAB计算方法迭代法牛顿法二分法实验报告实验报告一、引言计算方法是数学的一门重要应用学科,它研究如何用计算机来解决数学问题。

其中,迭代法、牛顿法和二分法是计算方法中常用的数值计算方法。

本实验通过使用MATLAB软件,对这三种方法进行实验研究,比较它们的收敛速度、计算精度等指标,以及它们在不同类型的问题中的适用性。

二、实验方法1.迭代法迭代法是通过不断逼近解的过程来求得方程的根。

在本实验中,我们选择一个一元方程f(x)=0来测试迭代法的效果。

首先,我们对给定的初始近似解x0进行计算,得到新的近似解x1,然后再以x1为初始近似解进行计算,得到新的近似解x2,以此类推。

直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。

本实验将通过对复杂方程的迭代计算来评估迭代法的性能。

2.牛顿法牛顿法通过使用函数的一阶导数来逼近方程的根。

具体而言,对于给定的初始近似解x0,通过将f(x)在x0处展开成泰勒级数,并保留其中一阶导数的项,得到一个近似线性方程。

然后,通过求解这个近似线性方程的解x1,再以x1为初始近似解进行计算,得到新的近似解x2,以此类推,直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。

本实验将通过对不同类型的方程进行牛顿法的求解,评估它的性能。

3.二分法二分法是通过将给定区间不断二分并判断根是否在区间内来求方程的根。

具体而言,对于给定的初始区间[a,b],首先计算区间[a,b]的中点c,并判断f(c)与0的大小关系。

如果f(c)大于0,说明解在区间[a,c]内,将新的区间定义为[a,c],再进行下一轮的计算。

如果f(c)小于0,说明解在区间[c,b]内,将新的区间定义为[c,b],再进行下一轮的计算。

直到新的区间的长度小于规定的误差阈值为止。

本实验将通过对复杂方程的二分计算来评估二分法的性能。

三、实验结果通过对一系列测试函数的计算,我们得到了迭代法、牛顿法和二分法的计算结果,并进行了比较。

matlab数值计算实验报告

matlab数值计算实验报告

matlab数值计算实验报告Matlab数值计算实验报告引言:Matlab是一种广泛应用于科学与工程领域的高级计算机语言和环境,它提供了丰富的函数库和工具箱,方便用户进行数值计算、数据分析和可视化等任务。

本实验报告将介绍我在使用Matlab进行数值计算实验中的一些经验和心得体会。

一、数值计算方法数值计算方法是一种利用数值近似来解决实际问题的方法,它在科学和工程领域具有广泛的应用。

在Matlab中,我们可以利用内置的函数和工具箱来实现各种数值计算方法,例如插值、数值积分、数值微分等。

二、插值方法插值是一种通过已知数据点来推测未知数据点的方法。

在Matlab中,我们可以使用interp1函数来进行插值计算。

例如,我们可以通过已知的一些离散数据点,利用interp1函数来估计其他位置的数值。

这在信号处理、图像处理等领域具有重要的应用。

三、数值积分数值积分是一种通过分割曲线或曲面来近似计算其面积或体积的方法。

在Matlab中,我们可以使用quad函数来进行数值积分计算。

例如,我们可以通过quad函数来计算某个函数在给定区间上的积分值。

这在概率统计、物理学等领域具有广泛的应用。

四、数值微分数值微分是一种通过数值逼近来计算函数导数的方法。

在Matlab中,我们可以使用diff函数来进行数值微分计算。

例如,我们可以通过diff函数来计算某个函数在给定点上的导数值。

这在优化算法、控制系统等领域具有重要的应用。

五、数值求解数值求解是一种通过数值近似来计算方程或方程组的根的方法。

在Matlab中,我们可以使用fsolve函数来进行数值求解计算。

例如,我们可以通过fsolve函数来求解某个非线性方程的根。

这在工程计算、金融分析等领域具有广泛的应用。

六、实验应用在本次实验中,我使用Matlab进行了一些数值计算的应用实验。

例如,我利用插值方法来估计某个信号在给定位置的数值,利用数值积分方法来计算某个曲线下的面积,利用数值微分方法来计算某个函数在给定点的导数值,以及利用数值求解方法来求解某个方程的根。

实验五+MATLAB数值计算(含实验报告)

实验五+MATLAB数值计算(含实验报告)

实验五 MATLAB 数值计算一、实验目的1.掌握求数值导数和数值积分的方法。

2.掌握代数方程数值求解的方法。

3.掌握常微分方程数值求解的方法。

二、实验的设备及条件计算机一台(带有MATLAB7.0以上的软件环境)。

设计提示1.参考本节主要内容,学习并理解相关函数的含义及调用方法。

三、实验内容1.线性系统方程:分别使用左除(\)和求逆(inv )求解下面系统方程的解:⎪⎩⎪⎨⎧=+=+=++377251463c b b a c b a2. 数值积分:使用quad 和trapz 求解⎰-503/dx xe x 的数值积分,并与其解析解9243/5+--e 相比较;3. 请完成教材P154页中实验指导环节的实验内容第2题4. 请完成教材P155页中思考练习的第3题(1),并绘制解在该求解区间(即[0,5])上的图像;。

5、请完成教材P164页实验指导环节的实验内容第5题。

(提示:该函数的符号导数,可以通过函数diff 求得。

首先定义符号变表达式,如求sin(x)的一阶符号导数,可以先定义f=’sin(x)’;df=diff(f);可求得df=cos(x)。

其中df 即为函数f 的一阶符号导数)。

四、实验报告要求(包含预习报告要求和最终报告要求)1.实验名称2.实验目的3.实验设备及条件4.实验内容及要求5.实验程序设计指程序代码。

6.实验结果及结果分析实验结果要求必须客观,现象。

结果分析是对实验结果的理论评判。

7.实验中出现的问题及解决方法8. 思考题的回答五、实验报告的提交方式Word文档,命名方式:实验号_你的学号_姓名例如本次实验:实验一_000000001_张三.doc(信息101提交报告邮箱):E_mail: *******************(网络工程101提交作业邮箱):E_mail: *******************(注意网络班的M是大写的)下一次课前提交,过期不收!六、参考文献参考教材和Matlab帮助文件。

matlab实验报告总结

matlab实验报告总结

matlab实验报告总结1.求一份matlab的试验报告计算方法试验报告3【实验目的】检查各种数值计算方法的长期行为【内容】给定方程组x'(t)=ay(t),y'(t)=bx(t), x(0)=0, y(0)=b的解是x-y 平面上的一个椭圆,利用你已经知道的算法,取足够小的步长,计算上述方程的轨道,看看那种算法能够保持椭圆轨道不变。

(计算的时间步长要足够多)【实验设计】用一下四种方法来计算:1. Euler法2. 梯形法3. 4阶RK法4. 多步法Adams公式【实验过程】1. Euler法具体的代码如下:clear;a=2;b=1;A=[0 a; -b0];U=[];u(:,1)=[0;b];n=1000000;h=6*pi/n;fori=1:n delta(i)=((u(1,i)/a)^2+(u(2,i)/b)^2)^0.5; u(:,i+1)=u(:,i)+h*A*u(:,i);endt=1:n+1;subplot(1, 2,1);plot(1:n,delta);gridon;subplot(1,2,2);plot(u(1,:),u(2,:));gridon;max(abs(delta-ones(1,length(delta))));结果如下:2. 梯形法具体的代码如下:clear;a=2;b=1;A=[0 a; -b 0];U=[];u(:,1)=[0;b];n=300;h=6*pi/n;for i=1:n delta(i)=((u(1,i)/a)^2+(u(2,i)/b)^2)^0.5;v1=u(:,i)+h*A*u(:,i);v2=u(:,i)+h*A*(u(:,i)+v1)/2;1u(:,i+1)=u(:,i)+h*A*(u(:,i)+v2)/2;endt=1:n+1;sub plot(1,2,1);plot(1:n,delta);gridon;subplot(1,2,2);结果如下 3. 4阶RK法clear;a=2;b=1;A=[0 a; -b 0];U=[];u(:,1)=[0;b];n=70;h=6*pi/n;for i=1:n delta(i)=((u(1,i)/a)^2+(u(2,i)/b)^2)^0.5;k1=A*u(:,i); k2=A*(u(:,i)+h/2*k2); k3=A*(u(:,i)+h*k3); k4=A*(u(:,i)+h*k3); u(:,i+1)=u(:,i)+h/6*(k1+2*k2+2*k3+k4);endt=1:n+1 ;subplot(1,2,1);plot(1:n,delta);gridon;subplot(1,2,2);结果如下:4. 多步法Adams公式clear;a=2;b=1;A=[0 a; -b 0];U=[];u(:,1)=[0;b];n=200;h=6*pi/n;u(:;2)=u(u,1)+h*A*u(:,1);u(:;3)=u(u,2)+h/2*A*(3*u(:,2)-u(:,1));u(:;4)=u(u,3)+h/12*A*(23*u(:,3)-16*u(:,2)+5*u(:, 1)); delta(1)=((u(1,1)/a)^2+(u(2,1)/b^2)^0.5 delta(2)=((u(1,2)/a)^2+(u(2,2)/b^2)^0.5delta(3)=((u(1,3)/a)^2+(u(2,3)/b^2)^0.5for i=4:n delta(i)=((u(1,i)/a)^2+(u(2,i)/b)^2)^0.5;u(:,i+1)=u(:,i)+h/24*A*(55*u(:,i)-59*u(:,i-1)+37 *u(:,i-1)+37*u(:,i-2)-9*u(:,i-3));endt=1:n+1;sub plot(1,2,1);plot(1:n,delta);gridon;subplot(1,2,2);结果如下:【实验分析】通过这几种方法对比,发现最为稳定的是多步法Adams公式和4阶RK法,其次是梯形法,而欧拉法最为不稳定。

MATLAB实验报告

MATLAB实验报告

MATLAB实验报告实验⼀ MATLAB 环境的熟悉与基本运算⼀、实验⽬的及要求1.熟悉MATLAB 的开发环境;2.掌握MATLAB 的⼀些常⽤命令;3.掌握矩阵、变量、表达式的输⼊⽅法及各种基本运算。

⼆、实验内容1、熟悉MATLAB 的开发环境: ① MATLAB 的各种窗⼝:命令窗⼝、命令历史窗⼝、⼯作空间窗⼝、当前路径窗⼝。

②路径的设置:建⽴⾃⼰的⽂件夹,加⼊到MATLAB 路径中,并保存。

? 设置当前路径,以⽅便⽂件管理。

2、学习使⽤clc 、clear,了解其功能与作⽤。

3、矩阵运算:已知:A=[1 2;3 4]; B=[5 5;7 8]; 求:A*B 、A 、*B,并⽐较结果。

4、使⽤冒号选出指定元素:已知:A=[1 2 3;4 5 6;7 8 9]; 求:A 中第3列前2个元素;A 中所有列第2,3⾏的元素; 5、在MATLAB 的命令窗⼝计算: 1))2sin(π2) 5.4)4.05589(÷?+ 6、关系及逻辑运算1)已知:a=[5:1:15]; b=[1 2 8 8 7 10 12 11 13 14 15],求: y=a==b ,并分析结果 2)已知:X=[0 1;1 0]; Y=[0 0;1 0],求: x&y+x>y ,并分析结果 7、⽂件操作1)将0到1000的所有整数,写⼊到D 盘下的data 、txt ⽂件 2)读⼊D 盘下的data 、txt ⽂件,并赋给变量num 8、符号运算1)对表达式f=x 3-1 进⾏因式分解2)对表达式f=(2x 2*(x+3)-10)*t ,分别将⾃变量x 与t 的同类项合并 3)求3(1)xdz z +?三、实验报告要求完成实验内容的3、4、5、6、7、8,写出相应的程序、结果实验⼆ MATLAB 语⾔的程序设计⼀、实验⽬的1、熟悉 MATLAB 程序编辑与设计环境2、掌握各种编程语句语法规则及程序设计⽅法3、函数⽂件的编写与设计4、了解与熟悉变量传递与赋值⼆、实验内容1.编写程序,计算1+3+5+7+…+(2n+1)的值(⽤input 语句输⼊n 值)。

(完整word版)Matlab数学实验报告

(完整word版)Matlab数学实验报告

Matlab 数学实验报告一、实验目的通过以下四组实验,熟悉MATLAB的编程技巧,学会运用MATLAB的一些主要功能、命令,通过建立数学模型解决理论或实际问题。

了解诸如分岔、混沌等概念、学会建立Malthu模型和Logistic 模型、懂得最小二乘法、线性规划等基本思想。

二、实验内容2.1实验题目一2.1.1实验问题Feigenbaum曾对超越函数y=λsin(πx)(λ为非负实数)进行了分岔与混沌的研究,试进行迭代格式x k+1=λsin(πx k),做出相应的Feigenbaum图2.1.2程序设计clear;clf;axis([0,4,0,4]);hold onfor r=0:0.3:3.9x=[0.1];for i=2:150x(i)=r*sin(3.14*x(i-1));endpause(0.5)for i=101:150plot(r,x(i),'k.');endtext(r-0.1,max(x(101:150))+0.05,['\it{r}=',num2str(r)]) end加密迭代后clear;clf;axis([0,4,0,4]);hold onfor r=0:0.005:3.9x=[0.1];for i=2:150x(i)=r*sin(3.14*x(i-1));endpause(0.1)for i=101:150plot(r,x(i),'k.');endend运行后得到Feigenbaum图2.2实验题目二2.2.1实验问题某农夫有一个半径10米的圆形牛栏,长满了草。

他要将一头牛拴在牛栏边界的桩栏上,但只让牛吃到一半草,问拴牛鼻子的绳子应为多长?2.2.2问题分析如图所示,E为圆ABD的圆心,AB为拴牛的绳子,圆ABD为草场,区域ABCD为牛能到达的区域。

问题要求区域ABCD等于圆ABC的一半,可以设BC等于x,只要求出∠a和∠b就能求出所求面积。

实验一 MATLAB基本操作及运算(含实验报告)

实验一  MATLAB基本操作及运算(含实验报告)

实验一 MATLAB 基本操作及运算一、 实验目的1、 理解Matlab 数据对象的特点;2、 掌握基本Matlab 运算规则;3、 掌握Matlab 帮助的使用方法;二、 实验的设备及条件计算机一台(带有MATLAB7.0以上的软件环境)。

三、 实验内容要求建立一个名为experiment01.m 的,把与实验内容1-7相关的实验命令都放入该文件中,题与题之间用相应注释分割。

注意对实验中出现的相关函数或变量,请使用help 或doc 查询相关帮助文档,学习函数的用法。

1、 建立以下标量:1) a=102) b=2.5×10233) c=2+3i ,(i 为虚数单位)4) d=3/2πj e ,(j 为虚数单位,这里要用到exp ,pi )2、 建立以下向量:1) aVec=[3.14 15 9 26]2) bVec=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡18228871.2 3) cVec=[5 4.8 … -4.8 -5 ] (向量中的数值从5到-5,步长为-0.2)4) dVec=[100 100.01 … 100.99 101] (产生1到10之间的等对数间隔向量,参考logspace ,注意向量的长度)3、 建立以下矩阵:1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2222 aMat aMat 一个9×9的矩阵,其元素全为2;(参考ones 或zeros )2)⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1000005000001 bMat bMat 是一个9×9的矩阵,除主对角上的元素为[1 2 3 4 5 4 3 2 1]外,其余元素均为0。

(参考diag )。

3)10020109212291111=cMatcMat 为一个10×10的矩阵,可有1:100的向量来产生(参考reshape )4)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=NaN NaN NaN NaN NaN NaN NaN NaNNaN NaN NaN NaNdMatdMat 为3×4的NaN 矩阵,(参考nan )5)⎥⎦⎤⎢⎣⎡---=8710225113eMat 6)产生一个5×3随机整数矩阵fMat ,其值的范围在-3到3之间。

计算方法matlab实验报告

计算方法matlab实验报告

计算方法matlab实验报告计算方法MATLAB实验报告引言:计算方法是一门研究如何用计算机来解决数学问题的学科。

在计算方法的学习过程中,MATLAB作为一种强大的数值计算软件,被广泛应用于科学计算、工程计算、数据分析等领域。

本实验报告将介绍在计算方法课程中使用MATLAB 进行的实验内容和实验结果。

一、二分法求方程根在数值计算中,求解非线性方程是一个常见的问题。

二分法是一种简单而有效的求解非线性方程根的方法。

在MATLAB中,可以通过编写函数和使用循环结构来实现二分法求解方程根。

实验步骤:1. 编写函数f(x),表示待求解的非线性方程。

2. 设定初始区间[a, b],满足f(a) * f(b) < 0。

3. 利用二分法迭代求解方程根,直到满足精度要求或迭代次数达到预设值。

实验结果:通过在MATLAB中编写相应的函数和脚本,我们成功求解了多个非线性方程的根。

例如,对于方程f(x) = x^3 - 2x - 5,我们通过二分法迭代了5次,得到了方程的一个根x ≈ 2.0946。

二、高斯消元法解线性方程组线性方程组的求解是计算方法中的重要内容之一。

高斯消元法是一种常用的求解线性方程组的方法,它通过矩阵变换将线性方程组化为上三角矩阵,从而简化求解过程。

在MATLAB中,可以利用矩阵运算和循环结构来实现高斯消元法。

实验步骤:1. 构建线性方程组的系数矩阵A和常数向量b。

2. 利用高斯消元法将系数矩阵A化为上三角矩阵U,并相应地对常数向量b进行变换。

3. 利用回代法求解上三角矩阵U,得到线性方程组的解向量x。

实验结果:通过在MATLAB中编写相应的函数和脚本,我们成功求解了多个线性方程组。

例如,对于线性方程组:2x + 3y - z = 13x - 2y + 2z = -3-x + y + 3z = 7经过高斯消元法的计算,我们得到了方程组的解x = 1,y = -2,z = 3。

三、数值积分方法数值积分是计算方法中的重要内容之一,它用于计算函数在给定区间上的定积分。

matlab数值计算 实验报告

matlab数值计算 实验报告

matlab数值计算实验报告Matlab数值计算实验报告引言:Matlab是一种强大的数值计算软件,广泛应用于科学和工程领域。

本实验旨在通过实际案例,展示Matlab在数值计算中的应用能力。

本报告将从三个方面进行讨论:数值积分、线性方程组求解和最优化问题。

一、数值积分:数值积分是数学中常见的问题,Matlab提供了多种函数和方法来解决这类问题。

我们以求解定积分为例进行讨论。

假设我们要求解函数f(x) = x^2在区间[0, 1]上的定积分。

我们可以使用Matlab中的quad函数来进行计算,代码如下:```matlabf = @(x) x.^2;integral = quad(f, 0, 1);disp(integral);```运行以上代码,我们可以得到定积分的近似值为0.3333。

通过调整积分方法和精度参数,我们可以得到更精确的结果。

二、线性方程组求解:线性方程组求解是数值计算中的重要问题,Matlab提供了多种函数和方法来解决线性方程组。

我们以一个简单的线性方程组为例进行讨论。

假设我们要求解以下线性方程组:```2x + y = 5x - y = 1```我们可以使用Matlab中的linsolve函数来求解,代码如下:```matlabA = [2 1; 1 -1];B = [5; 1];X = linsolve(A, B);disp(X);```运行以上代码,我们可以得到方程组的解为x = 2,y = 3。

通过调整方程组的系数矩阵和右侧向量,我们可以求解更复杂的线性方程组。

三、最优化问题:最优化问题在科学和工程领域中广泛存在,Matlab提供了多种函数和方法来解决这类问题。

我们以求解无约束最优化问题为例进行讨论。

假设我们要求解函数f(x) = x^2的最小值。

我们可以使用Matlab中的fminunc函数来进行计算,代码如下:```matlabf = @(x) x.^2;x0 = 1; % 初始点options = optimoptions('fminunc', 'Display', 'iter');[x, fval] = fminunc(f, x0, options);disp(x);disp(fval);```运行以上代码,我们可以得到最小值的近似解为x = 0,f(x) = 0。

matlab 实验报告

matlab 实验报告

matlab 实验报告Matlab实验报告引言:Matlab是一种强大的数值计算和可视化软件,广泛应用于科学、工程和经济等领域。

本实验报告将介绍我在使用Matlab进行实验过程中的一些经验和结果。

实验一:矩阵运算在这个实验中,我使用Matlab进行了矩阵运算。

首先,我创建了一个3x3的矩阵A和一个3x1的矩阵B,并进行了矩阵相乘运算。

通过Matlab的矩阵乘法运算符*,我得到了一个3x1的结果矩阵C。

接着,我对矩阵C进行了转置操作,得到了一个1x3的矩阵D。

最后,我计算了矩阵C和矩阵D的点积,并将结果输出。

实验二:数据可视化在这个实验中,我使用Matlab进行了数据可视化。

我选择了一组实验数据,包括时间和温度两个变量。

首先,我将数据存储在一个矩阵中,并使用Matlab的plot函数将时间和温度之间的关系绘制成曲线图。

接着,我使用Matlab的xlabel、ylabel和title函数添加了横轴、纵轴和标题。

最后,我使用Matlab的legend函数添加了图例,以便更好地理解图表。

实验三:数值积分在这个实验中,我使用Matlab进行了数值积分。

我选择了一个函数f(x)进行积分计算。

首先,我使用Matlab的syms函数定义了符号变量x,并定义了函数f(x)。

接着,我使用Matlab的int函数对函数f(x)进行积分计算,并将结果输出。

为了验证结果的准确性,我还使用了Matlab的diff函数对积分结果进行了求导操作,并与原函数f(x)进行了比较。

实验四:信号处理在这个实验中,我使用Matlab进行了信号处理。

我选择了一个音频文件,并使用Matlab的audioread函数读取了该文件。

接着,我使用Matlab的fft函数对音频信号进行了傅里叶变换,并将结果绘制成频谱图。

为了进一步分析信号的特征,我还使用了Matlab的spectrogram函数绘制了信号的时频图。

通过对信号的频谱和时频图的观察,我可以更好地理解信号的频率和时域特性。

MATLAB实验一:运算基础实验报告

MATLAB实验一:运算基础实验报告

MATLAB实验报告
心得
本次实验是我们MA TLAB程序设计课程的第一次实验,虽然对MATLAB软件的运用还不是很熟练,但通过老师的讲解和对课本例题的分析,实验还是一步步地完成了,实验中遇到了一些难题,如:1(3)的求各点的函数值时,应该用点乘运算,开始时没有用点乘而得不出结果,老师提示错误,浪费了一些时间;另外,4中的find和length函数也不熟悉应用,也花了一点时间了解。

这些问题经过老师的讲解与和同学的交流一个个的解决了,也得出了实验结果。

本次实验基本达到了实验要求,同时通过此次实验,掌握了MA TLAB的基本使用,颇有收获。

另附MATLAB工作空间使用情况截图:。

matlab实验一实验报告

matlab实验一实验报告

matlab实验一实验报告实验一:Matlab实验报告引言:Matlab是一种强大的数学软件工具,广泛应用于科学计算、数据分析和工程设计等领域。

本实验旨在通过使用Matlab解决实际问题,探索其功能和应用。

一、实验目的本次实验的主要目的是熟悉Matlab的基本操作和常用函数,了解其在科学计算中的应用。

二、实验内容1. 数值计算在Matlab中,我们可以进行各种数值计算,包括基本的加减乘除运算,以及更复杂的矩阵运算和方程求解。

通过编写相应的代码,我们可以实现这些功能。

例如,我们可以使用Matlab计算两个矩阵的乘积,并输出结果。

代码如下:```matlabA = [1 2; 3 4];B = [5 6; 7 8];C = A * B;disp(C);```2. 数据可视化Matlab还提供了强大的数据可视化功能,可以将数据以图表的形式展示出来,更直观地观察数据的规律和趋势。

例如,我们可以使用Matlab绘制一个简单的折线图,来展示某个物体在不同时间下的位置变化。

代码如下:```matlabt = 0:0.1:10;x = sin(t);plot(t, x);xlabel('Time');ylabel('Position');title('Position vs. Time');```3. 图像处理Matlab还可以进行图像处理,包括图像的读取、处理和保存等操作。

我们可以通过Matlab对图像进行增强、滤波、分割等处理,以及进行图像的压缩和重建。

例如,我们可以使用Matlab读取一张图片,并对其进行灰度化处理。

代码如下:```matlabimg = imread('image.jpg');gray_img = rgb2gray(img);imshow(gray_img);```三、实验结果与分析在本次实验中,我们成功完成了数值计算、数据可视化和图像处理等任务。

Matlab数学实验报告

Matlab数学实验报告

实验一 Matlab基本操作1.实验课程名称数学实验2.实验项目名称Matlab基本操作3.实验目的和要求了解Matlab的基本知识,熟悉其上机环境,掌握利用Matlab进行基本运算的方法。

4.实验内容和原理内容:三角形的面积的海伦公式为:area=)s-sa--)()(s(csb其中: s=(a+b+c)/2原理:将一般数学问题转化成对应的计算机模型并进行处理的能力。

了解Matlab的基本功能,会进行简单的操作。

5.主要仪器设备计算机与Windows 2000/XP系统;Matlab等软件。

6.操作方法与实验步骤步骤:(1)在M文件编辑窗口输入以下程序,并以文件名”area_helen.m”保存:a= input(‘a=‘) ; b= input(‘b=‘) ; c= input(‘c=‘) ;s= (a+b+c)/2;area=sqrt (s* (s-a) * (s-b) * (s-c))(2)在命令窗口输入文件名“area_helen”,按回车键,即可运行上面的程序,输入三边长,立即可得三角形面积(3)第二题在命令窗口输入b=6;a=3;c=a*b,d=c-2*b(4) 按回车键,即可运行上面的程序7.实验结果与分析<1> a=3; b=4; c=5;时,aera=6 当a为3,b为4,c为5时,s=6,aera=6<2> c= 18,d=6,a为3,b为6时,c=18,d=6实验二 Matlab的数值计算1.实验课程名称数学实验2.实验项目名称Matlab的数值计算3.实验目的和要求了解一些简单的矩阵、向量、数组和多项式的构造和运算方法实例,懂得编写简单的数值计算的Matlab程序。

熟悉一些Matlab的简单程序,会用Matlab的工具箱,懂得Matlab的安装和简单的使用。

4.实验内容和原理内容:从函数表:)1(),5.0(),2( ,0x 1x 021x 1x f(x) 32-⎪⎩⎪⎨⎧≤≤<>+=f f f x x求设)1(),2( ,1211)(2-⎩⎨⎧≤>+=f f x xx x x f 求设 原理:利用矩阵、向量、数组、和多项式的构造和运算方法,用常用的几种函数进行一般的数值问题求解。

matlab数值计算实验报告

matlab数值计算实验报告

matlab数值计算实验报告Matlab数值计算实验报告一、实验目的本次实验的目的是通过使用Matlab软件进行数值计算,掌握Matlab的基本操作和数值计算方法,了解数值计算的基本原理和方法,提高数学建模和计算能力。

二、实验内容本次实验主要包括以下内容:1. Matlab基本操作:包括Matlab软件的安装、启动、界面介绍、基本命令和语法等。

2. 数值计算方法:包括数值积分、数值微分、线性方程组的求解、非线性方程的求解、插值和拟合等。

3. 数学建模:通过实际问题的建模,运用Matlab进行数值计算,得到问题的解答。

三、实验步骤1. Matlab基本操作(1)安装Matlab软件:根据官方网站提供的下载链接,下载并安装Matlab软件。

(2)启动Matlab软件:双击Matlab图标,启动Matlab软件。

(3)界面介绍:Matlab软件界面分为命令窗口、编辑器窗口、工作区窗口、命令历史窗口、变量编辑器窗口等。

(4)基本命令和语法:Matlab软件的基本命令和语法包括数学运算、矩阵运算、逻辑运算、控制语句等。

2. 数值计算方法(1)数值积分:使用Matlab中的quad函数进行数值积分,求解定积分。

(2)数值微分:使用Matlab中的diff函数进行数值微分,求解函数的导数。

(3)线性方程组的求解:使用Matlab中的inv函数和\运算符进行线性方程组的求解。

(4)非线性方程的求解:使用Matlab中的fsolve函数进行非线性方程的求解。

(5)插值和拟合:使用Matlab中的interp1函数进行插值和拟合。

3. 数学建模(1)实际问题的建模:选择一个实际问题,将其转化为数学模型。

(2)运用Matlab进行数值计算:使用Matlab进行数值计算,得到问题的解答。

四、实验结果通过本次实验,我掌握了Matlab的基本操作和数值计算方法,了解了数值计算的基本原理和方法,提高了数学建模和计算能力。

在实际问题的建模和运用Matlab进行数值计算的过程中,我深刻体会到了数学建模和计算的重要性,也发现了Matlab在数学建模和计算中的重要作用。

MATLAB计算方法迭代法牛顿法二分法实验报告

MATLAB计算方法迭代法牛顿法二分法实验报告

MATLAB计算方法迭代法牛顿法二分法实验报告实验目的:本实验旨在通过MATLAB编程实现迭代法、牛顿法和二分法,并通过实例验证其准确性和收敛速度。

实验原理:迭代法是一种通过不断迭代逼近根的方法,其基本原理是选择一个初始值,然后通过迭代公式不断逼近根的值,直到满足给定的精度要求。

牛顿法是一种通过不断迭代求函数的零点的方法,其基本原理是通过当前点的切线与x轴的交点来逼近根的值,直到满足给定的精度要求。

二分法是一种通过不断将区间一分为二来逼近根的方法,其基本原理是通过判断根是否落在区间的两个端点之间,然后将区间一分为二,直到满足给定的精度要求。

实验步骤:1.编写迭代法的MATLAB代码,实现对给定函数的根的逼近。

2.编写牛顿法的MATLAB代码,实现对给定函数的根的逼近。

3.编写二分法的MATLAB代码,实现对给定函数的根的逼近。

4.针对不同的函数,分别使用迭代法、牛顿法和二分法进行根的逼近,并记录每种方法的迭代次数和逼近结果。

5.对比三种方法的迭代次数和逼近结果,分析其准确性和收敛速度。

实验结果:以求解方程x^3-2x-5=0为例,使用迭代法、牛顿法和二分法进行根的逼近。

迭代法:迭代公式:x(n+1)=(2x(n)+5)^(1/3)初始值:x(0)=2迭代次数:6逼近结果:2.0946牛顿法:初始值:x(0)=2迭代次数:4逼近结果:2.0946二分法:初始区间:[1,3]迭代次数:11逼近结果:2.0946实验结论:通过对比三种方法的迭代次数和逼近结果可以发现,迭代法和牛顿法的收敛速度都要快于二分法,并且迭代法和牛顿法的逼近结果也更为接近真实根。

这是因为迭代法和牛顿法都是通过不断逼近根的值来求解,而二分法则是通过将区间一分为二来逼近根的值,所以迭代法和牛顿法的收敛速度更快。

总结:本实验通过MATLAB编程实现了迭代法、牛顿法和二分法,并通过实例验证了它们的准确性和收敛速度。

实验结果表明,迭代法和牛顿法在求解根的过程中具有更快的收敛速度和更接近真实根的逼近结果,而二分法的收敛速度较慢。

MATLAB计算方法迭代法牛顿法二分法实验报告

MATLAB计算方法迭代法牛顿法二分法实验报告

完美WORD格式姓名实验报告成绩评语:指导教师(签名)年月日说明:指导教师评分后,实验报告交院(系)办公室保存。

实验一 方程求根一、 实验目的用各种方法求任意实函数方程0)(=x f 在自变量区间[a ,b]上,或某一点附近的实根。

并比较方法的优劣。

二、 实验原理 (1)、二分法对方程0)(=x f 在[a ,b]内求根。

将所给区间二分,在分点2a b x -=判断是否0)(=x f ;若是,则有根2a b x -=。

否则,继续判断是否0)()(<∙x f a f ,若是,则令x b =,否则令x a =。

否则令x a =。

重复此过程直至求出方程0)(=x f 在[a,b]中的近似根为止。

(2)、迭代法将方程0)(=x f 等价变换为x =ψ(x )形式,并建立相应的迭代公式=+1k x ψ(x )。

(3)、牛顿法若已知方程 的一个近似根0x ,则函数在点0x 附近可用一阶泰勒多项式))((')()(0001x x x f x f x p -+=来近似,因此方程0)(=x f 可近似表示为+)(0x f 0))(('0=-x x x f 设0)('0≠x f ,则=x -0x )(')(00x f x f 。

取x 作为原方程新的近似根1x ,然后将1x 作为0x 代入上式。

迭代公式为:=+1k x -0x )(')(k k x f x f 。

三、 实验设备:MATLAB 7.0软件四、 结果预测(1)11x =0.09033 (2)5x =0.09052 (3)2x =0,09052 五、 实验内容(1)、在区间[0,1]上用二分法求方程0210=-+x e x 的近似根,要求误差不超过3105.0-⨯。

(2)、取初值00=x ,用迭代公式=+1k x -0x )(')(k k x f x f ,求方程0210=-+x e x的近似根。

要求误差不超过3105.0-⨯。

matlab数值计算实验报告

matlab数值计算实验报告

matlab数值计算实验报告数值计算实验报告实验目的本实验的目的是通过MATLAB编程,实现数值计算的多种方法,体会数值计算的方法,并且对数值计算的应用有更加深入的了解,对数值计算有更加系统的认识。

实验内容1. 实验中以MATLAB编程求解等折线上的单点,给出相应的曲线图,并用相应的代码计算出可变参数系数n,写出实验步骤和实验结果。

步骤:(1)设计MATLAB程序,即根据题中给出的函数,确定参数n、x、y的取值范围;(2)在MATLAB中求解单点,并绘制出曲线图;(3)得出可变参数系数n的值。

实验结果:可变参数系数n的值为:n=2.3125。

2. 通过MATLAB编程,实现有Bezier曲线的绘制,给出相应的曲线图,并用相应的代码计算出可变参数系数n,写出实验步骤和实验结果。

步骤:(1)设计MATLAB程序,即根据题中给出的函数,确定参数n、x、y的取值范围;(2)在MATLAB中求解单点,并绘制出Bezier 曲线图;(3)得出可变参数系数n的值。

实验结果:可变参数系数n的值为:n=3.5。

3. 利用MATLAB编程,实现有牛顿迭代法求解非线性方程组,给出相应的收敛图,并用相应的代码计算出可变参数系数A、B和X,写出实验步骤和实验结果。

步骤:(1)根据实验题目给出的非线性方程组,确定A、B、X 的取值范围;(2)用MATLAB编程实现牛顿迭代法求解,在迭代收敛的过程中对收敛的每个步骤的X值画出收敛图;(3)得出可变参数系数A、B和X的值。

实验结果:可变参数系数A的值为:A=3.7;可变参数系数B的值为:B=5.5;可变参数系数X的值为:X=2.0。

实验结论通过本次实验,我们学习了利用MATLAB编程实现数值计算的多种方法,包括等折线上求解单点,Bezier曲线绘制,牛顿迭代法求解非线性方程组等等。

并且我们对数值计算的应用有了更加深入的了解,对数值计算有了更加系统的认识。

matlab实验报告

matlab实验报告

matlab实验报告引言:Matlab(矩阵实验室)是一款功能强大的数值计算和科学计算软件,广泛应用于工程、科学和经济等领域。

本实验报告将探讨我在使用Matlab进行实验过程中的心得体会和实验结果。

实验一:图像处理在这个实验中,我使用Matlab对一张图像进行了处理,并应用了各种图像处理算法。

这包括图像增强、边缘检测和图像分割等技术。

通过Matlab的图像处理工具箱,我能够轻松调用各种算法函数,并对图像进行快速处理。

实验结果表明,Matlab图像处理工具箱提供了丰富的函数和算法,极大地方便了我们的图像处理工作。

实验二:模拟信号处理模拟信号处理是Matlab中的一个重要应用领域。

在这个实验中,我模拟了一个带噪声的正弦信号,并使用Matlab进行了噪声滤波和频谱分析。

通过使用Matlab的滤波函数,我能够有效地去除信号中的噪声,并还原出原始信号。

同时,Matlab提供了功能强大的频谱分析工具,我可以轻松地对信号的频率特性进行分析和可视化。

实验三:数据分析与统计数据分析与统计是Matlab的另一个重要应用领域。

在这个实验中,我使用Matlab对一组实验数据进行了分析和统计。

通过使用Matlab的统计函数和工具,我能够计算出数据的均值、方差、标准差等统计指标,并绘制出数据的直方图和散点图。

这些统计分析结果对我的实验研究提供了有力的支持,并帮助我更好地理解实验数据。

实验四:数值计算与优化数值计算与优化是Matlab的核心功能之一。

在这个实验中,我使用Matlab进行了一组数值计算和优化实验。

通过使用Matlab的数值计算函数和优化工具箱,我能够快速计算出复杂的数学问题,并找到最优解。

同时,在进行优化实验时,我可以设置各种约束条件和目标函数,从而得到最优解的参数值。

这些数值计算和优化工具极大地提高了我的研究效率和准确度。

结论:通过这些实验,我深刻认识到Matlab的强大功能和广泛应用领域。

无论是图像处理、信号处理、数据分析还是数值计算与优化,Matlab都提供了丰富的函数和工具,让我们能够快速高效地完成实验和研究工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算方法实验报告matlab
《使用MATLAB进行计算方法实验报告》
摘要:
本文利用MATLAB软件进行了一系列计算方法实验,包括数值积分、微分方程求解、线性代数计算等。

通过实验结果分析,我们验证了各种计算方法的准确性和稳定性,为进一步研究和应用这些方法提供了可靠的数值支持。

引言:
计算方法是现代科学和工程中不可或缺的一部分,它们通过数值计算的方式解决了许多复杂的数学问题。

MATLAB作为一种强大的数值计算工具,被广泛应用于各种计算方法的实验和研究中。

本文将利用MATLAB进行一系列计算方法实验,验证其在数值计算中的有效性和实用性。

实验一:数值积分
在本实验中,我们将使用MATLAB对一些常见的积分问题进行数值求解,比较不同数值积分方法的精度和收敛速度。

通过实验结果的分析,我们将评估各种数值积分方法的适用范围和优缺点。

实验二:微分方程求解
微分方程是自然界和工程领域中常见的数学模型,其数值求解方法对于模拟和预测系统行为至关重要。

在本实验中,我们将使用MATLAB对一些典型的微分方程进行数值求解,并比较不同数值方法的稳定性和精度。

实验三:线性代数计算
线性代数是现代科学和工程中的基础学科,其在数据处理、信号处理、优化等领域中有着广泛的应用。

在本实验中,我们将利用MATLAB进行一些常见的线
性代数计算,比如矩阵求逆、特征值分解等,验证其数值计算的准确性和效率。

结论:
通过以上一系列的实验,我们验证了MATLAB在计算方法实验中的有效性和实
用性。

我们发现,MATLAB提供了丰富的数值计算工具和函数库,能够满足各
种计算方法实验的需求。

同时,我们也发现不同的计算方法在不同的问题上有
着各自的优势和局限性,需要根据具体问题选择合适的方法。

希望本文的实验
结果能够为相关领域的研究和应用提供一定的参考和借鉴。

相关文档
最新文档