江南十校2019届新高三模底联考 数学理

合集下载

安徽省江南十校2019届高三3月份综合素质检数学(理)试卷

安徽省江南十校2019届高三3月份综合素质检数学(理)试卷

2019年03月26日xx 学校高中数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.设集合{}{}22,1,0,1,2,|1,,U A x x x U =--=>∈则( )A.{}2,2-B. {}1,1-C. {}2,0,2-D. {}1,0,1- 2.复数i 1iz =- (i 为虚数单位),则z = ( )A.B.C. 12D. 2 3.抛物线22y x =的焦点坐标是( ) A. 1,02⎛⎫ ⎪⎝⎭B. 10,2⎛⎫ ⎪⎝⎭C. 1,08⎛⎫ ⎪⎝⎭D. 10,8⎛⎫ ⎪⎝⎭4.在△ABC 中,角A 、B 、 C 的对边分别为a 、 b 、c ,若b =3,2c B C ==,则cos 2C 的值为( )A.B. 59C. 49D. 4 5.已知边长为1的菱形ABCD 中, 60?BAD ∠=,点E 满足2BE EC =,则AE BD ⋅的值是( )A. 13-B. 12- C. 14- D. 16- 6.我国南北朝时期的科学家祖暅,提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:如果两个等高的几何体,在等高处的截面积恒等,则这两个几何体的体积相等.利用此原理求以下几何体的体积:曲线()20y x y L =≤≤绕y 轴旋转一周得几何体Z ,将Z 放在与y 轴垂直的水平面α上,用平行于平面α,且与Z 的顶点 O 距离为l 的平面截几何体Z ,得截面圆的面积为2l π=π.由此构造右边的几何体1Z :其中AC ⊥平面α,AC L =,1AA α⊂,1πAA =,它与Z 在等高处的截面面积都相等,图中EFPQ 为矩形,且π,PQ FP l ==,则几何体Z 的体积为( )A. 2πLB. 21πL 2C. 21πL 2D. 31πL 2 7.已知函数2()cos()3f x x ωπ=+(0)ω> (ω的最小正周期为4π,则下面结论正确的是 A. 函数f ()x 在区间()0,π上单调递增B.函数f ()x 在区间()0,π上单调递减C.函数f ()x 的图象关于直线23x π=对称 D.函数() f x 的图象关于点2,03π⎛⎫ ⎪⎝⎭对称。

精品解析:【校级联考】安徽省江南十校2019届高三3月综合素质检测理科综合物理试题(解析版)

精品解析:【校级联考】安徽省江南十校2019届高三3月综合素质检测理科综合物理试题(解析版)

安徽省“江南十校”2019年综合素质检测理科综合能力测试物理试卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上。

2.第Ⅰ卷每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上。

3.考试结束,监考人只将答题卡收回。

一、选择题1.下列说法中正确的是A. 光电效应揭示了光的粒子性B. 用光子能量为11.0eV的光照射时,可使处于基态的氢原子跃迁到激发态C. 氡原子核的半衰期为3.8天,4个氡原子核经过7.6天一定只剩下1个未发生衰变D. 研究原子的结构是从发现放射性现象开始的【答案】A【解析】【详解】A:光电效应揭示了光的粒子性,故A项正确。

B:在基态时氢原子能量,在n=2激发态时氢原子能量,在n=3激发态时氢原子能量;n=2激发态氢原子与基态氢原子间的能量差,n=3激发态氢原子与基态氢原子间的能量差;氢原子跃迁时吸收(或放出)光子能量需等于两个能级的能量差,,用光子能量为11.0eV的光照射时,处于基态的氢原子不会跃迁。

故B项错误。

C:半衰期描述的是统计规律,少量原子核发生衰变时不一定遵守。

故C项错误。

D:研究原子核的结构是从发现放射性现象开始的,故D项错误。

2.将固定在水平地面上的斜面分为四等份,如图所示,AB=BC=CD=DE,在斜面的底端A点有一个小滑块以初速度v0沿斜面向上运动,刚好能到达斜面顶端E点。

则小滑块向上运动经过D点时速度大小是A. B. C. D.【答案】D【解析】【分析】根据题中“在斜面的底端A点有一个小滑块以初速度v0沿斜面向上运动,刚好能到达斜面顶端E点”可知,本题考察匀减速直线运动。

根据匀减速直线运动的规律,应用逆向思维法、速度位移公式等知识分析求解。

【详解】将末速度为零的匀减速直线运动看作初速度为零的匀加速直线运动,则、,又,解得:。

故D项正确,ABC三项错误。

3.如图所示,游乐场中有一半球形的碗状装置固定在水平地面上,装置的内半径为R,在其内表面有一个小孩(可视为质点)从底部向上爬行,小孩与内表面之间的动摩擦因数为0.75,设小孩所受的最大静摩擦力等于滑动摩擦力,则小孩沿该装置缓慢向上爬行的最大高度是A. 0.2RB. 0.25RC. 0.75RD. 0.8R【答案】A【解析】【分析】根据题中“沿该装置缓慢向上爬行”可知,本题考察平衡问题。

2019届高三数学下学期三模试题理(含解析)

2019届高三数学下学期三模试题理(含解析)

2019届高三数学下学期三模试题理(含解析)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,那么( )A. B.C. D.【答案】B【解析】【分析】先求出集合A,B,由此能求出A∩B.【详解】解:∵集合A={x|x=2k,k∈Z},B={x|x2≤5}={x|},∴A∩B={﹣2,0,2}.故选B.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.若复数满足,则等于()A. B. C. D.【答案】C【解析】试题分析:.故应选C.考点:1、复数的概念;2、复数的运算.3.执行如图所示的程序框图,若输入的m=1,则输出数据的总个数为()A. 5B. 6C. 7D. 8【答案】B【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得:m=1满足条件m∈(0,100),执行循环体,n=3,输出n的值为3,m=3满足条件m∈(0,100),执行循环体,n=7,输出n的值为7,m=7满足条件m∈(0,100),执行循环体,n=15,输出n的值为15,m=15满足条件m∈(0,100),执行循环体,n=31,输出n的值为31,m=31满足条件m∈(0,100),执行循环体,n=63,输出n的值为63,m=63满足条件m∈(0,100),执行循环体,n=127,输出n的值为127,m=127此时,不满足条件m∈(0,100),退出循环,结束.可得输出数据的总个数为6.故选B.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.设满足约束条件则下列不等式恒成立的是A. B.C. D.【答案】C【解析】作出约束条件所表示的平面区域,如图所示,由,解得,同理可得,设目标函数,则,当直线过点时取得最小值,最小值,所以恒成立,故选C.5.为非零向量,“”为“共线”的()A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 即不充分也不必要条件【答案】B【解析】【分析】共线,方向相同或相反,共线的单位向量不一定相等,结合充分必要条件的判断,即可得出结论.【详解】分别表示与同方向的单位向量,,则有共线,而共线,则是相等向量或相反向量,“”为“共线”的充分不必要条件.故选:B.【点睛】本题考查命题充分不必要条件的判定,考查共线向量和单位向量的间的关系,属于基础题.6. 一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有()A. 12种B. 15种C. 17种D. 19种【答案】D【解析】试题分析:分三类:第一类,有一次取到3号球,共有取法;第二类,有两次取到3号球,共有取法;第三类,三次都取到3号球,共有1种取法;共有19种取法.考点:排列组合,分类分步记数原理.7.已知函数,若函数在区间内没有零点,则最大值是( )A. B. C. D.【答案】C【解析】【分析】利用三角恒等变换化简,结合正弦函数图象,即可求解.【详解】,令,函数在区间内没有零点,解得,,的最大值是.故选:C.【点睛】本题考查三角函数恒等变换化简,以及三角函数的性质,意在考查直观想象、逻辑推理能力,属于中档题.8.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】【分析】首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.【详解】根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.双曲线的渐近线为,则该双曲线的离心率为________.【答案】【解析】【分析】由双曲线方程和渐近线方程,求出值,进而求出,即可求解.【详解】设双曲线的焦距为,双曲线得,渐近线方程的斜率为,.故答案为:.【点睛】本题考查双曲线标准方程、双曲线的简单几何性质,注意焦点的位置,属于基础题.10.在平面直角坐标系xOy中,直线l的参数方程是,(t为参数),以O为极点,x轴正方向为极轴的极坐标系中,圆C的极坐标方程是.则圆心到直线的距离是________.【答案】【解析】【分析】将直线参数方程化为普通方程,圆极坐标方程化为直角坐标方程,应用点到直线距离公式即可求解.【详解】消去参数化为,化为,即,圆心,圆心到直线的距离为.故答案为:.【点睛】本题考查参数方程与普通方程互化、极坐标方程和直角坐标方程互化、点到直线的距离等知识,属于基础题11.已知某四棱锥的三视图如图所示,则该几何体的体积为________.【答案】【解析】【分析】根据三视图还原为底面为菱形高为四棱锥,即可求出结论.【详解】由三视图可知四棱锥的底面为边长为,有一对角为的菱形,高为,所以体积为.故答案为:.【点睛】本题考查三视图求直观图的体积,解题的关键要还原出几何体直观图,属于基础题.12.在各项均为正数的等比数列中,,且.(1)数列通项公式是________.(2)设数列的前n项和为,则的最小值是________.【答案】 (1). (2). .【解析】【分析】由求出,即可求出通项公式,根据等比数列与等差数列的关系,可得为等差数列,求出所有的负数或0项,即可求出结论.【详解】设等比数列的公比为,,,或(舍去),,,当,数列的前n项和的最小值是.故答案为:;-6.【点睛】本题考查等比数列的基本量计算、等比数列与等差数列的关系、等差数列前项和最小值等知识,属于中档题.13.写出一组使“”为假命题的一组x,y________.【答案】1,1(答案不唯一)【解析】【分析】即求命题的否定“”为真命题的一组值,可以应用基本不等式求出满足不等式的充分条件,从中取出一组即可.【详解】“”为假命题,其命题否定“”为真命题,,命题的否定为真的充分条件为,取.故答案为:1,1(答案不唯一)【点睛】本题考查全称命题的真假求参数,属于基础题.14.血药浓度(Serum Drug Concentration)是指药物吸收后在血浆内的总浓度(单位:mg/ml),通常用血药浓度来研究药物的作用强度.下图为服用同等剂量的三种新药后血药浓度的变化情况,其中点的横坐标表示服用第种药后血药浓度达到峰值时所用的时间,其它点的横坐标分别表示服用三种新药后血药浓度第二次达到峰值一半时所用的时间(单位:h),点的纵坐标表示第种药的血药浓度的峰值.()①记为服用第种药后达到血药浓度峰值时,血药浓度提高的平均速度,则中最大的是_______;②记为服用第种药后血药浓度从峰值降到峰值的一半所用的时间,则中最大的是_______【答案】 (1). (2).【解析】【分析】①根据平均的含义进行判断,②根据两次横坐标距离大小确定选择.【详解】①设,则,由于,,所以,,即最大;②根据峰值的一半对应关系得三个点从左到右依次对应A1,A2,A3在第二次达到峰值一半时对应点,由图可知A3经历的时间最长,所以中最大的是【点睛】本题考查数学实际应用以及图像识别,考查基本分析判断能力,属基础题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.在中,内角A,B,C所对的边分别为a,b,c.已知.(1)求角B的大小;(2)设a=2,c=3,求b和的值.【答案】(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.结合二倍角公式和两角差的正弦公式可得详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.16.2019年北京市百项疏堵工程基本完成.有关部门为了解疏堵工程完成前后早高峰时段公交车运行情况,调取某路公交车早高峰时段全程所用时间(单位:分钟)数据,从疏堵工程完成前的数据中随机抽取5个数据,记为A组,从疏堵工程完成后的数据中随机抽取5个数据,记为B组.A组:128,100,151,125,120B组:100,102,96,101,己知B组数据的中位数为100,且从中随机抽取一个数不小于100的概率是.(1)求a的值;(2)该路公交车全程所用时间不超过100分钟,称为“正点运行”从A,B两组数据中各随机抽取一个数据,记两次运行中正点运行的次数为X,求X的分布列及期望;(3)试比较A,B两组数据方差的大小(不要求计算),并说明其实际意义.【答案】(1);(2)分布列详见解答,期望为;(3)详见解答.【解析】【分析】(1)由已知中位数100,确定的范围,再求出不小于100的数的个数,即可求出;(2)随机变量X可能值为,根据每组车“正点运行”概率求出X可能值为的概率,即可求出随机变量的分布列,进而求出期望;(3)利用方差表示数据集中的程度,说明疏堵工程完成后公交车的稳定程度.【详解】(1)B组数据的中位数为100,根据B组的数据,从B组中随机抽取一个数不小于100的概率是,B组中不小于100的有4个数,所以;(2)从A,B两组数据中各随机抽取一个数据,“正点运行”概率分别为,从A,B两组数据中各随机抽取一个数据,记两次运行中正点运行的次数为X,X可能值为,,,,X的分布列为:,X期望为;(3)对比两组数据,组数据方差更小,说明疏堵工程完成后公交车运行时间更为稳定.【点睛】本题考查中位数和概率求参数,考查随机变量的分布列和期望,属于基础题.17.如图,在四棱锥P-ABCD中,是等腰三角形,且.四边形ABCD是直角梯形,,,,,.(1)求证:平面PDC.(2)请在图中所给五个点P,A,B,C,D中找出两个点,使得这两点所在直线与直线BC垂直,并给出证明.(3)当平面平面ABCD时,求直线PC与平面PAB所成角的正弦值.【答案】(1)详见解答;(2),证明见解答;(3).【解析】【分析】(1)由已知,即可证明结论;(2)根据已知条件排除,只有可能与垂直,根据已知可证;(3)利用垂直关系,建立空间直角坐标系,求出坐标和平面PAB的法向量,即可求解.【详解】(1)平面平面,平面;(2),证明如下:取中点,连,,,,平面平面,平面,;(3)平面平面ABCD,平面平面ABCD,平面平面,.四边形ABCD是直角梯形,,,,,,以为坐标原点,以,过点与平行的直线分别为轴,建立空间直角坐标系,则,,设平面的法向量为,则,即,,令,则,平面一个法向量为,设直线PC与平面PAB所成角为,,直线直线PC与平面PAB所成角的正弦值为.【点睛】本题考查线面平行、线线垂直的证明,要注意空间垂直间的转化,考查用空间向量法求线面角,考查计算求解能力,属于中档题.18.已知椭圆C:的离心率为,左、右顶点分别为A,B,点M是椭圆C上异于A,B的一点,直线AM与y 轴交于点P.(Ⅰ)若点P在椭圆C的内部,求直线AM的斜率的取值范围;(Ⅱ)设椭圆C的右焦点为F,点Q在y轴上,且∠PFQ=90°,求证:AQ∥BM.【答案】(Ⅰ)(-,0)(0,)(Ⅱ)详见解析【解析】【分析】(Ⅰ)根据题意可得得c2=a2﹣2,由e,解得即可出椭圆的方程,再根据点在其内部,即可线AM的斜率的取值范围,(Ⅱ)题意F(,0),设Q(0,y1),M(x0,y0),其中x0≠±2,则1,可得直线AM的方程y(x+2),求出点Q的坐标,根据向量的数量积和斜率公式,即可求出kBM﹣kAQ=0,问题得以证明【详解】解:(Ⅰ)由题意可得c2=a2-2,∵e==,∴a=2,c=,∴椭圆的方程为+=1,设P(0,m),由点P在椭圆C的内部,得-<m<,又∵A(-2,0),∴直线AM的斜率kAM==∈(-,),又M为椭圆C上异于A,B的一点,∴kAM∈(-,0),(0,),(Ⅱ)由题意F(,0),设Q(0,y1),M(x0,y0),其中x0≠±2,则+=1,直线AM的方程为y=(x+2),令x=0,得点P的坐标为(0,),由∠PFQ=90°,可得•=0,∴(-,)•(-,y1)=0,即2+•y1=0,解得y1=-,∴Q(0,-),∵kBM=,kAQ=-,∴kBM-kAQ=+=0,故kBM=kAQ,即AQ∥BM【点睛】本题考查直线与椭圆的位置关系的应用,考查转化思想以及计算能力,属于中档题19.已知函数.(1)已知函数在点处的切线与x轴平行,求切点的纵坐标.(2)求函数在区间上的最小值;(3)证明:,,使得.【答案】(1);(2);(3)详见解析.【解析】【分析】(1)求的导函数,令,即可求解;(2)求出在单调区间,极值点,即可求解;(3)转化为函数,与直线恒有交点,即可证明结论.【详解】(1),在点处的切线与x轴平行,,;(2)由(1)得,当时,,,递减区间是,的增区间是,当时,取得极小值,也是最小值为,函数在区间上的最小值;(3)由(2)得递减区间是,,令,当时,函数图像与直线有唯一的交点,且交点的横坐标,,,使得.【点睛】本题考查导数的几何意义以及导数的综合应用,涉及到函数的单调性、极值最值、零点等知识,意在考查直观想象、逻辑推理能力,属于中档题.20.数列:满足:,或1().对任意,都存在,使得.,其中且两两不相等.(I)若.写出下列三个数列中所有符合题目条件的数列的序号;①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2(Ⅱ)记.若,证明:;(Ⅲ)若,求的最小值.【答案】(Ⅰ)②③(Ⅱ)见解析(Ⅲ)的最小值为【解析】试题分析:(Ⅰ)依据定义检验给出的数列是否满足要求条件.(Ⅱ)当时,都在数列中出现,可以证明至少出现4次,2至少出现2次,这样.(Ⅲ)设出现频数依次为.同(Ⅱ)的证明,可得:,,,┄,,,,则,我们再构造数列:,证明该数列满足题设条件,从而的最小值为.解析:(Ⅰ)对于①,,对于,或,不满足要求;对于②,若,则,且彼此相异,若,则,且彼此相异,若,则,且彼此相异,故②符合题目条件;同理③也符合题目条件,故符合题目条件的数列的序号为②③.注:只得到②或只得到③给[ 1分],有错解不给分.(Ⅱ)当时,设数列中出现频数依次为,由题意.①假设,则有(对任意),与已知矛盾,所以.同理可证:.②假设,则存在唯一的,使得.那么,对,有(两两不相等),与已知矛盾,所以.综上:,,,所以.(Ⅲ)设出现频数依次为.同(Ⅱ)的证明,可得:,,,┄,,,,则.取得到的数列为:下面证明满足题目要求.对,不妨令,①如果或,由于,所以符合条件;②如果或,由于,所以也成立;③如果,则可选取;同样的,如果,则可选取,使得,且两两不相等;④如果,则可选取,注意到这种情况每个数最多被选取了一次,因此也成立.综上,对任意,总存在,使得,其中且两两不相等.因此满足题目要求,所以的最小值为.点睛:此类问题为组合最值问题,通常的做法是先找出变量的一个范围,再构造一个数列,使得前述范围的等号成立,这样就求出了最值.2019届高三数学下学期三模试题理(含解析)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,那么( )A. B.C. D.【答案】B【解析】【分析】先求出集合A,B,由此能求出A∩B.【详解】解:∵集合A={x|x=2k,k∈Z},B={x|x2≤5}={x|},∴A∩B={﹣2,0,2}.故选B.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.若复数满足,则等于()A. B. C. D.【答案】C【解析】试题分析:.故应选C.考点:1、复数的概念;2、复数的运算.3.执行如图所示的程序框图,若输入的m=1,则输出数据的总个数为()A. 5B. 6C. 7D. 8【答案】B【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得:m=1满足条件m∈(0,100),执行循环体,n=3,输出n的值为3,m=3满足条件m∈(0,100),执行循环体,n=7,输出n的值为7,m=7满足条件m∈(0,100),执行循环体,n=15,输出n的值为15,m=15满足条件m∈(0,100),执行循环体,n=31,输出n的值为31,m=31满足条件m∈(0,100),执行循环体,n=63,输出n的值为63,m=63满足条件m∈(0,100),执行循环体,n=127,输出n的值为127,m=127此时,不满足条件m∈(0,100),退出循环,结束.可得输出数据的总个数为6.故选B.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.设满足约束条件则下列不等式恒成立的是A. B.C. D.【答案】C【解析】作出约束条件所表示的平面区域,如图所示,由,解得,同理可得,设目标函数,则,当直线过点时取得最小值,最小值,所以恒成立,故选C.5.为非零向量,“”为“共线”的()A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 即不充分也不必要条件【答案】B【解析】【分析】共线,方向相同或相反,共线的单位向量不一定相等,结合充分必要条件的判断,即可得出结论.【详解】分别表示与同方向的单位向量,,则有共线,而共线,则是相等向量或相反向量,“”为“共线”的充分不必要条件.故选:B.【点睛】本题考查命题充分不必要条件的判定,考查共线向量和单位向量的间的关系,属于基础题.6. 一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有()A. 12种B. 15种C. 17种D. 19种【答案】D【解析】试题分析:分三类:第一类,有一次取到3号球,共有取法;第二类,有两次取到3号球,共有取法;第三类,三次都取到3号球,共有1种取法;共有19种取法.考点:排列组合,分类分步记数原理.7.已知函数,若函数在区间内没有零点,则最大值是( )A. B. C. D.【答案】C【解析】【分析】利用三角恒等变换化简,结合正弦函数图象,即可求解.【详解】,令,函数在区间内没有零点,解得,,的最大值是.故选:C.【点睛】本题考查三角函数恒等变换化简,以及三角函数的性质,意在考查直观想象、逻辑推理能力,属于中档题.8.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】【分析】首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.【详解】根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.双曲线的渐近线为,则该双曲线的离心率为________.【答案】【解析】【分析】由双曲线方程和渐近线方程,求出值,进而求出,即可求解.【详解】设双曲线的焦距为,双曲线得,渐近线方程的斜率为,.故答案为:.【点睛】本题考查双曲线标准方程、双曲线的简单几何性质,注意焦点的位置,属于基础题.10.在平面直角坐标系xOy中,直线l的参数方程是,(t为参数),以O为极点,x轴正方向为极轴的极坐标系中,圆C的极坐标方程是.则圆心到直线的距离是________.【答案】【解析】【分析】将直线参数方程化为普通方程,圆极坐标方程化为直角坐标方程,应用点到直线距离公式即可求解.【详解】消去参数化为,化为,即,圆心,圆心到直线的距离为.故答案为:.【点睛】本题考查参数方程与普通方程互化、极坐标方程和直角坐标方程互化、点到直线的距离等知识,属于基础题11.已知某四棱锥的三视图如图所示,则该几何体的体积为________.【答案】【解析】【分析】根据三视图还原为底面为菱形高为四棱锥,即可求出结论.【详解】由三视图可知四棱锥的底面为边长为,有一对角为的菱形,高为,所以体积为.故答案为:.【点睛】本题考查三视图求直观图的体积,解题的关键要还原出几何体直观图,属于基础题.12.在各项均为正数的等比数列中,,且.(1)数列通项公式是________.(2)设数列的前n项和为,则的最小值是________.【答案】 (1). (2). .【解析】【分析】由求出,即可求出通项公式,根据等比数列与等差数列的关系,可得为等差数列,求出所有的负数或0项,即可求出结论.【详解】设等比数列的公比为,,,或(舍去),,,当,数列的前n项和的最小值是.故答案为:;-6.【点睛】本题考查等比数列的基本量计算、等比数列与等差数列的关系、等差数列前项和最小值等知识,属于中档题.13.写出一组使“”为假命题的一组x,y________.【答案】1,1(答案不唯一)【解析】【分析】即求命题的否定“”为真命题的一组值,可以应用基本不等式求出满足不等式的充分条件,从中取出一组即可.【详解】“”为假命题,其命题否定“”为真命题,,命题的否定为真的充分条件为,取.故答案为:1,1(答案不唯一)【点睛】本题考查全称命题的真假求参数,属于基础题.14.血药浓度(Serum Drug Concentration)是指药物吸收后在血浆内的总浓度(单位:mg/ml),通常用血药浓度来研究药物的作用强度.下图为服用同等剂量的三种新药后血药浓度的变化情况,其中点的横坐标表示服用第种药后血药浓度达到峰值时所用的时间,其它点的横坐标分别表示服用三种新药后血药浓度第二次达到峰值一半时所用的时间(单位:h),点的纵坐标表示第种药的血药浓度的峰值.()①记为服用第种药后达到血药浓度峰值时,血药浓度提高的平均速度,则中最大的是_______;②记为服用第种药后血药浓度从峰值降到峰值的一半所用的时间,则中最大的是_______【答案】 (1). (2).【解析】【分析】①根据平均的含义进行判断,②根据两次横坐标距离大小确定选择.【详解】①设,则,由于,,所以,,即最大;②根据峰值的一半对应关系得三个点从左到右依次对应A1,A2,A3在第二次达到峰值一半时对应点,由图可知A3经历的时间最长,所以中最大的是【点睛】本题考查数学实际应用以及图像识别,考查基本分析判断能力,属基础题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.在中,内角A,B,C所对的边分别为a,b,c.已知.(1)求角B的大小;(2)设a=2,c=3,求b和的值.【答案】(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.结合二倍角公式和两角差的正弦公式可得详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.16.2019年北京市百项疏堵工程基本完成.有关部门为了解疏堵工程完成前后早高峰时段公交车运行情况,调取某路公交车早高峰时段全程所用时间(单位:分钟)数据,从疏堵工程完成前的数据中随机抽取5个数据,记为A组,从疏堵工程完成后的数据中随机抽取5个数据,记为B组.A组:128,100,151,125,120B组:100,102,96,101,己知B组数据的中位数为100,且从中随机抽取一个数不小于100的概率是.(1)求a的值;(2)该路公交车全程所用时间不超过100分钟,称为“正点运行”从A,B两组数据中各随机抽取一个数据,记两次运行中正点运行的次数为X,求X的分布列及期望;(3)试比较A,B两组数据方差的大小(不要求计算),并说明其实际意义.【答案】(1);(2)分布列详见解答,期望为;(3)详见解答.。

江南十校2019届高三第一次联考(理科)

江南十校2019届高三第一次联考(理科)

2019年安徽省“江南十校”综合素质检测数学(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合}{2,1,0,1,2--=U ,{}U x x x A ∈>=,12,则=A C U{}2,2.-A {}1,1.-B {}2,0,2.-C {}1,0,1.-D2、复数iiz -=1(i 为虚数单位),则=-z22.A 2.B 21.C 2.D 3、抛物线22x y =的焦点坐标是⎪⎭⎫ ⎝⎛21,0.A ⎪⎭⎫ ⎝⎛0,21.B ⎪⎭⎫ ⎝⎛81,0.C ⎪⎭⎫ ⎝⎛0,81.D 4、在ABC ∆中,角C B A ,,的对边分别为c b a ,,,若C B c b 2,3,72===,则C 2cos 的值为37.A 95.B 94.C 47.D 5、已知边长为1的菱形ABCD 中,︒=∠60BAD ,点E 满足→→=EC BE 2,则→→•BD AE 的值是31.-A 21.-B 41.-C 61.-D5、我国南北朝时期的科学家祖暅,提出了计算体积的祖暅原理:“幂势既同,则积不容异.” 意思是:如果两个等高的几何体,在等高处的截面积恒等,则这两个几何体的体积相等.利用此原理求以下几何体的体积:曲线)0(2L y x y ≤≤=绕y 轴旋转一周得几何体Z ,将Z 放在与y 轴垂直的水平面α上,用平行于平面α,且与Z 的顶点O 距离为l 的平面截几何体Z ,的截面圆的面积为l l ππ=2)(.由此构造右边的几何体1Z :其中⊥AC 平面α,πα=⊂=11,,AA AA L AC ,它与Z 在等高处的截面面积都相等,图中EFPQ 为矩形,且l FP PQ ==,π,则几何体Z 的体积为2.L A π3.L B π 221.L C π 321.L D π7、已知函数)0)(32cos()(>+=ωπωx x f 的最小正周期为π4,则下面结论正确的是.A 函数)(x f 在区间()π,0上单调递增 .B 函数)(x f 在区间()π,0上单调递减 .C 函数)(x f 的图像关于直线32π=x 对称 .D 函数)(x f 的图像关于点⎪⎭⎫⎝⎛032,π对称 8、设函数1313)(2+-•=x x x x f ,则不等式0)log 1()log 3(22<-+x f x f 的解集是⎪⎪⎭⎫⎝⎛22,0.A ⎪⎪⎭⎫ ⎝⎛+∞,22.B ()2,0.C ()+∞,2.D9、已知双曲线14222=-by x 的左、右焦点分别为21,F F ,P 为右支上一点且直线2PF 与x 轴垂直,若21PF F ∠的角平分线恰好过点()0,1,则21F PF ∆的面积为12.A 24.B 36.C 48.D10. 已知函数()()xeInx x x g x k x x f -=+-=4,11(e 是自然对数的底数),若对()[]3,1,1,021∈∃∈∀x x ,使得)()(21x g x f ≥成立,则正数k 的最小值为21.A 1.B 324.-C 324.+D11. 如图,网格线上的小正方形的边长为1,粗线(实线、虚线)画出的某几何体的三视图, 其中的曲线都是半径为1的圆周的四分之一,则该几何体的表面积为20.A 420.π+B 4320.π+C 4520.π+D12. 计算机内部运算通常使用的是二进制,用1和0两个数字与电脑的通和断两种状态相对应。

2019届全国高考高三模拟考试卷数学(理)试题(三)(解析版)

2019届全国高考高三模拟考试卷数学(理)试题(三)(解析版)

5 6
A.1 个
(2)190 是数列 an 中的项
(4)当 n 7 时, an 21 取最小值 n
B.2 个
C.3 个
D.4 个
第Ⅱ卷
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
2x y 0
13.[2019·深圳期末]已知不等式组

x

2
y

0
所表示的平面区域为
该多面体的表面积为( )
A. 28 4 5
B. 28 8 2
C.16 4 2 8 5
D.16 8 2 4 5
10.[2019·汕尾质检]已知 A ,B ,C ,D 是球 O 的球面上四个不同的点,若 AB AC DB DC BC 2 ,
且平面 DBC 平面 ABC ,则球 O 的表面积为( )
图1
图2
(1)证明: AF 平面 MEF ;
(2)求二面角 M AE F 的大小.
20.(12 分)[2019·临沂质检]已知抛物线 C : y2 2 px p 0 的焦点为 F , P 为抛物线上一点,
O 为坐标原点, △OFP 的外接圆与抛物线的准线相切,且外接圆的周长为 3π . (1)求抛物线 C 的方程; (2)设直线 l 交 C 于 A , B 两点, M 是 AB 的中点,若 AB 12 ,求点 M 到 y 轴的距离的最小值,并求 此时 l 的方程.
B. 2 3
C. 9 4
D. 4 9
12.[2019·江西九校联考]设 x 为不超过 x 的最大整数, an 为 xx x 0,n 可能取到所有值的
个数,
Sn
是数列

安徽省江南十校2019届高三3月联考理科数学试题

安徽省江南十校2019届高三3月联考理科数学试题

2019安徽省“江南十校”综合素质测试数学(理科)解析及评分标准一、选择题1. 答案 D 【解析】{2,2}A =−,故选D.2. 答案A 【解析】|i ||||||1i |2z z ====−,故选A.3. 答案C 【解析】标准方程为212x y =,故选C. 4. 答案B 【解析】由正弦定理知,sin sin 22cos sin sin 3B C C C C ===,cos 3C ∴= 25cos 22cos 1,9C C ∴=−=故选B. 5. 答案D 【解析】12AB AD ⋅=,2+3AE AB AD =,BD AB AD =−+ 212211(+)()1323326AE BD AB AD AB AD ⋅=⋅−+=−+−⨯=−,故选D. 6. 答案C 【解析】11121=2ABC A B C V L π−⋅三棱柱,故选C 7 .答案C 【解析】由已知得,24ππω=,112,()cos().223f x x πω∴==+故选C. 8 .答案A 【解析】由已知得()(),()f x f x y f x R −=−=且在上单调递增,22(3log )(log 1)f x f x ∴<−由可得223log log 1x x <−21log 2x ∴<−,解得:0x <<故选A. 9 .答案B 【解析】记(1,0)A ,则2224||2b c PF a −==,2214||22b c PF a a +=+=,1||1F A c =+, 2||1F A c =−,由角平分线性质得21122||||404||||PF F A c c c PF F A =⇒−=⇒=, 或作1AD PF ⊥于D ,由角平分线的对称性质知1112||||||||||24DF PF PD PF PF a =−=−==,2||||1AD AF c ==−,在1Rt ADF ∆中,222112||1,||||||AF c AF AF AD =+=+,解得4c =故12212214||||24.22PF F c S F F PF c ∆−=⨯=⋅=故选B. 10 .答案C 【解析】由已知,min min ()()f x g x ≥,由已知可得2min ()1),f x =+min ()3g x =,21)3,4k ∴+≥∴≥−故选C.11 .答案B 【解析】由已知得原几何体是由一个棱长为2的正方体挖去一个四分之一圆柱及一个八分之一球体得到的组合体,216245420,484S ππππ∴=⨯−−⨯+⨯+=+表故选B. 12 .答案C 【解析】前44组共含有数字:44(441)1980⨯+=个,198044(20191980)2019441975,S ∴=−+−=−=故选C.二、填空题13. 答案2 【解析】0,2x y ==时,min 3022z =⨯+=14. 答案1− 【解析】22sin cos 1sin 4cos 4αααα⋅=+,2tan 14tan 4αα=+,tan 2α=, []123tan =tan ()11123βαβα−+−==−+⨯. 15. 答案240 【解析】[]66()=()x y z x y z ++++,含2z 的项为24226T C()x y z =+⋅,所以形如2a b x y z 的项的系数之和为246C 2=240⋅.16.【解析】由已知动点P 落在以AB 为轴、该侧面与三棱锥侧面ACD 的交线为椭圆的一部分,设其与AC 的交点为P ,此时PB 最大,由P 到AB P 为AC 的中点,且2cos ,5BAC ∠=在BAP ∆中,由余弦定理可得 PB ==. 三、解答题17【解析】(1)由1232n n a a a a b ++++=①2n ≥时,123112n n a a a a b −−++++=②①−②可得:12()n n n a b b −=−(2)n ≥,∴3322()8a b b =−=∵12,0n a a =>,设{}n a 公比为q ,∴218a q =,∴2q =…………………………3分 ∴1222n n n a −=⨯=∴12312(12)222222212n nn n b +−=++++==−−,∴21n n b =−.…………6分 (2)证明:由已知:111211(21)(21)2121n n n n n n n n n a c b b +++===−⋅−−−−. ………………9分 ∴12312231111111212121212121n n n c c c c +++++=−+−++−−−−−−− 111121n +=−<−………………………………………………………………………………12分18 【解析】(1)∵2AB =,1A B ,160A AB ∠=,由余弦定理:22211112cos A B AA AB AA AB A AB =+−⋅∠,即21112303AA AA AA −−=⇒=或1−,故13AA =.………2分取BC 中点O ,连接1,OA OA ,∵ABC ∆是边长为2的正三角形, ∴AO BC ⊥,且AO =1BO =,由11A AB A AC ∆≅∆得到11A B AC ==1A O BC ⊥, 且1AO =, ∵22211AO A O AA +=,∴1AO A O ⊥,…………………4分又BC AO O =,故1A O ⊥平面ABC ,∵1A O ⊂平面1A BC , ∴平面1A BC ⊥平面ABC . ………………………………………6分(2)解法一:以O 为原点,OB 所在的直线为x 轴,取11B C 中点K ,以OK 所在的直线为y 轴,过O 作1OG AA ⊥,以OG所在的直线为z 轴建立空间直角坐标系.则111(1,0,0),(1,3,0),(1,3,0),B B C A −111(2,3,0),(0,3,0),(BC BB BA ∴=−==−……………………………………………8分设平面11ABB A 的一个法向量为(,,1)m x y =,则1130(2,0,1)020m BB y x m y m BA x y ⎧⋅==⎧=⎪⎪⇒⇒=⎨⎨=⎪⋅=−+=⎪⎩⎩设所求角为θ,则11||2sin39||||13BC m BC m θ⋅===…………………………………………………12分1解法二:以O 为原点,OB 所在的直线为x 轴,以1OA 所在的直线为y 轴,以OA 所在的直线为z 轴建立空间直角坐标系.则1(1,0,0),(1,0,0)B A A C ,设1(,,)C x y z ,由11=C A CA可得1(C −,11(2,6,3),(1,0,3),(1,BC AB BA ∴=−−=−=−……………………8分设平面11ABB A 的一个法向量为(,,)m x yz =,则110,(6,1,0y m AB x x m z m BA x ⎧=⎧⋅=−=⎪⎪==⎨⎨=⎪⋅=−=⎪⎩⎩取 设所求角为θ,则11||2sin 39||||13BC m BC m θ⋅===…………………………………………………12分 解法三:由(1)111111332C ABA AOA V BCS BC AO A O −==⨯⨯⨯⨯=设C 到平面11ABB A 的距离为h ,则由111//CC ABB A 面知1C 到平面11ABB A 的距离也为h ,则 111111sin 60332CABA ABA V hS h AB A A h −===⨯⨯⨯⨯︒==………………………………9分 设所求角为θ,则1sin h BC θ===………………………………………………………12分 19【解析】(1)由数据可知,2012,2013,2016,2017,2018五个年份考核优秀,故ξ的所有可能取值为0123,,,. 0353381(0)56C C P C ξ===,12533815(1),56C C P C ξ=== 2130535333883010(2),(3)5656C C C C P P C C ξξ======………………………………………………………………4分 故ξ的分布列为:所求0123.565628288E ξ=⨯+⨯+⨯+⨯=………………………………………………………………6分(2)解法一:8882222111()72()8360i ii i i i x x x x x x ===−=⇒=−+⨯=∑∑∑ 888111()()34.5()()8226.5i i i i i i i i i xx y y x y x x y y x y ===−−=⇒=−−+⨯⨯=∑∑∑ 故去掉2015年的数据之后686483296,777x y ⨯−⨯−==== 2222255()736067672i i i i x x x x ≠≠−=−=−−⨯=∑∑ 5529()()7226.5637634.57i i i i i i x x y y x y x y ≠≠−−=−=−⨯−⨯⨯=∑∑…………………………9分 所以^34.50.4872b =≈,^^2934.56 1.27772a y b x =−⋅=−⨯≈ 从而回归方程为:^0.48+1.27.y x =…………………………………………………………………………12分 解法二: 因为66x x ==,所以去掉2015年的数据后不影响^b 的值, 所以^34.50.4872b =≈, …………………………………………………………………………9分 而去掉2015年的数据之后686483296,777x y ⨯−⨯−====, ^^2934.56 1.27772a yb x =−⋅=−⨯≈ 从而回归方程为:^0.48+1.27.y x =…………………………………………………………………………12分注: 若有学生在计算^a 时用^0.48b ≈计算得^^290.486 1.267a yb x =−⋅=−⨯≈也算对。

安徽“江南十校”2019年高三3月联考(数学理)word版

安徽“江南十校”2019年高三3月联考(数学理)word版

安徽“江南十校”2019年高三3月联考(数学理)word版数学〔理科〕第I卷〔选择题共50分〕一.选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项符合题目要求的.(1) 己知为虚数单位,假设(1-2i)(a +i)为纯虚数,那么a的值等于〔〕(A) -6 (B) -2(C) 2 (D) 6(2) 集合,那么等于〔〕(A)(B)(C)(D)(3) 假设双曲线的一个焦点为(2,0),那么它的离心率为〔〕(A) (B)(C) (D) 2(4) 现有甲、乙、丙、丁四名义工到三个不同的社区参加公益活动.假设每个社区至少一名义工,那么甲、乙两人被分到不同社区的概率为〔〕(A) (B) (C) (D)(5) 设函数在及上有定义对雅定的正数M,定义函数那么称函数为的“孪生函数”.假设给定函数,那么的值为〔〕(A) 2 (B) 1 (C) (D)(A) 对于命题,使得,那么,均有(B) “x=1”是“”的充分不必要条件(C) 命题“假设,那么x=l”的逆否命题为:“假设,那么”(D) 假设为假命题,那么p,g均为假命题(7)沿一个正方体三个面的对角线截得的几何体如下图,那么该几何体的左视图为〔〕(8)定义在上的函数,其导函数双图象如下图,那么以下表达正确的选项是〔〕(A)(B)(C)(D)(9)巳知函数.有两个不同的零点且方程,有两个不同的实根.假设把这四个数按从小到大排列构成等差数列,那么实数m的值为〔〕(A)(B)(C)(D)(10)假设不等式组表示的平面区三角形,那么实数K的取值范围是(A)(B)(C)(D)第II卷(非选择题共100分〕二填空题:本大题共5小题,每题5分.共W分.把答案填在题中的横线上.(11)在极坐标系中,直线被圆所截得的弦长为___________,(12)根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20〜80mg/100mL(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100mL(含80)以上时,属醉酒驾车.据有关报道,在某个时期某地区查处酒后驾车和醉酒驾车共500人,如图是对这500人血液中酒精含量进行检测所得结果的频率分布直方图,那么属于醉酒驾车的人数约为_________.(13)某程序框图如下图,该程序运行后输出的n的值是_________(14)如衝放置的正方形ABCD,AB=1.A,D分别在X轴、y轴的正半轴(含原点)上滑动,那么的最大值是_________.(15)如图是一副直角三角板.现将两三角板拼成直二面角,得到四面体ABCD,那么以下表达正确的选项是._________①;②平面BCD的法向量与平面ACD的法向量垂直;③异面直线BC与AD所成的角为60%④四面体有外接球;⑤直线DC与平面ABC所成的角为300三.解答题:本大题共6小題,共75分.解答应写出文字说明证明过程或演算步骤.(16) (本小题总分值12分〕设函数,,(w为常数,且m>0),函数f(x)的最大值为2.(I)求函数的单调递减区间;(II)a,b,c是的三边,且.假设,,求B的值.(17) (本小题总分值12分〕在等比数列中,,且,又的等比中项为16. (I)求数列的通项公式:(II)设,数列的前项和为,是否存在正整数k,使得对任意恒成立.假设存在,求出正整数k的最小值;不存在,请说明理由.(18) (本小题总分值12分〕“低碳经济”是促进社会可持续发展的推进器.某企业现有100万元资金可用于投资,如果投资“传统型”经济项目,一年后可能获利20%,可能损失10%,也可能不赔不赚,这三种情况发生的概率分别为;如果投资“低碳型”经济项目,一年后可能获利30%,也可能损失20%,这两种情况发生的概率分别为a和n(其中a+b=1)如果把100万元投资“传统型”经济项目,用表示投资收益〔投资收益=回收资金一投资资金),求的概率分布及均值〔数学期望〕;(II)如果把100万元投资“低碳型”经济项目,预测其投资收益均值会不低于投资“传统型”经济项目的投资收益均值,求a的取值范围.(19)(本小题总分值12分〕如图,在多面体ABCDEFG中,四边形ABCD是边长为2的正方形,平面ABG、平面ADF、平面CDE都与平面ABCD垂直,且ΔABG,ΔADF,ΔCDE都是正三角形.(I)求证:AC//EF;(II)求多面体ABCDEFG 的体积. (20)(本小题总分值14分〕 设M 是由满足以下条件的函数构成的集合:①方程,有实数根②函数的导数满足.(I)假设函数为集合M 中的任意一个元素,证明:方程只有一个实数根;(II)判断函数是否是集合M 中的元素,并说明理由;(III)设函数为集合M 中的任意一个元素,对于定义域中任意,当,且时,证明:.(21)(本小题总分值13分〕如图,椭圆的中心在坐标原点,长轴端点为A ,B,右焦点为F,且.(I)求椭圆的标准方程; (II)过椭圆的右焦点F 作直线,直线l 1与椭圆分别交于点M,N ,直线l 2与椭圆分别交于点P,Q,且,求四边形MPNQ 的面积S 的最小值.2018年安徽省“江南十校”高三联考数学(理科)参考答案及评分标准一.选择题(1)B 【解析】i a a i a i )21()2())(21(-++=+-,由复数的定义有:⎩⎨⎧≠-=+02102a a ,∴2-=a .(2)A 【解析】由集合M 得,2122<-<-x 所以有2321<<-x ,由集合N 得1>x 故N M =⎭⎬⎫⎩⎨⎧<<231x x .(3)C 【解析】由412=+a ,那么3=a ,∴33232===a c e .(4)B 【解析】23232343516C A C A ⋅-=⋅.(5)B【解析】由题设,,12)(2≤-=x x f 那么当1-≤x 或1≥x 时,22)(xx f M-=;当11<<-x 时,1)(=x f M .∴1)0(=Mf .(6)D 【解析】假设q p ∧为假命题,那么q p ,中至少有一个为假命题,故D 选项错误. (7)B 【解析】由三视图可知.(8)C 【解析】考查函数)(x f 的特征图象可得:)()()(a f b f c f >>正确.(9)D 【解析】设两个根依次为)(,βαβα<.而函数)(x f y =的零点为23,2ππ,那么由图象可得:2322,232πππβαπβαπ+==+<<<.∴可求2365cos ,65-==∴=ππαm .(10)C 【解析】符合题意的直线在如图中的阴影区域内, 可求得320≤<k 或2-<k 、 二、填空题(11)34【解析】将直线与圆化成普通方程为:16,02222=+=-+y x y x ,进而可求得.(12)75【解析】由频率分布直方图得:75500)10005.01001.0(=⨯⨯+⨯.(13)4【解析】当1=n 时,S T S T ≤==,9,1;当2=n 时,S T S T ≤==,10,3;当3=n 时,S T S T ≤==,13,9;当4=n 时,,22,27==S T 不满足S T ≤,∴输出4=n . (14)2【解析】法一:取AD 的中点M ,连接OM .那么.212121121)(110)()(=⨯⨯+=+≤∙+=+∙+=∙+∙++=∙+∙+∙+∙=+∙+=∙法二:设θ=∠BAx ,那么)20(),cos sin ,(cos ),sin ,cos (sin πθθθθθθθ≤≤++C B,22sin 1cos sin sin cos cos sin )sin ,cos (sin )cos sin ,(cos 22≤+=+++=+∙+=∙∴θθθθθθθθθθθθθOB OC (15)①④⑤ 三、解答题(16)解:(Ⅰ)由题意)sin(2)(2ϕ++=x m x f又函数)(x f 的最大值为2,且0>m ,那么2,222=∴=+m m ……………………………………………………….2分∴)4sin(2cos 2sin 2)(π+=+=x x x x f由Zk k x k ∈+≤+≤+,232422πππππ………………………………………….4分 ∴Zk k x k ∈+≤≤+,45242ππππ 故函数)(x f 的单调递减区间是Z k k k ∈⎥⎦⎤⎢⎣⎡++,452,42ππππ…………………6分(Ⅱ)212222cos 22222=-≥-+=-+=ac ac ac ac ac c a ac b c a B ,当且仅当c a =时取等号、30,21cos 1π≤<∴≥>∴B B ……………………………….……………9分12,3)4sin(2)(ππ=∴=+=B B B f ……………………..………...……12分(17)解:(Ⅰ)由题163=a ,又823=-a a ,那么2,82=∴=q a∴12+=n n a …………………………………………………………….….....4分(Ⅱ)1411(3)log 2, (624)n n n n n n n b S b b +++==∴=+⋅⋅⋅+=分 )311(34)3(41+-=+=n n n n S n922)31211131211(34311...613151214111(341...111321<+-+-+-++=+-++-+-+-=++++∴n n n n n S S S S n …………………………………………………………………………………….10分 所以正整数k 可取最小值3…………………………………………..…….………...12分 (18)解:(Ⅰ)依题意,ξ的可能取值为20,0,—10,…………………………1分ξ的分布列为……………………………………………………………………………..………4分 1051)10(5105320=⨯-+⨯+⨯=ξE 〔万元〕…………………………….…6分 (Ⅱ)设η表示100万元投资投资“低碳型”经济项目的收益,那么η的分布列为20502030-=-=a b a E η……………………………………………….……10分依题意要求102050≥-a ,∴153≤≤a ……………………………………….…12分注:只写出53≥a ,扣1分. (19)解:(Ⅰ)证明:方法一,如图,分别取AD 、CD 的中点P 、Q ,连接FP ,EQ.∵△ADF 和△CDE 是为2的正三角形, ∴FP ⊥AD,EQ ⊥CD,且FP=EQ=3.又∵平面ADF 、平面CDE 都与平面ABCD 垂直, ∴FP ⊥平面ABCD ,EQ ⊥平面ABCD ,∴FP ∥QE 且FP=EQ ,∴四边形EQPF 是平行四边形,∴EF ∥PQ.……………………….……..4分 ∵PQ 是ACD ∆的中位线,∴PQ ∥AC,∴EF ∥AC ………………………………………………………………..……..6分方法二,以A 点作为坐标原点,以AB 所在直线为x 轴,以AD 所在直线为y 轴,过点A垂直于xOy 平面的直线为z 轴,建立空间直角坐标系,如下图、 根据题意可得,A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),E(1,2,3),F(0,1,3),G(1,0,3).…………………………………………..………………..4分 ∴AC =〔2,2,0〕,=(1,1,0),那么AC =2,∴AC ∥,即有AC ∥FE ……………………………………………..……..6分 (Ⅱ)33833232=+=+=--ADEGF CDE ABG ABCDEFG V V V 四棱锥三棱柱多面体 (12)分(20)解:(Ⅰ)令x x f x h -=)()(,那么01)()(''<-=x f x h ,故)(x h 是单调递减函数,所以,方程0)(=x h ,即0)(=-x x f 至多有一解, 又由题设①知方程0)(=-x x f 有实数根,所以,方程0)(=-x x f 有且只有一个实数根…………………………………..4分 (Ⅱ)易知,)1,0()21,0(2121)('⊆∈-=x x g ,满足条件②; 令)1(32ln 2)()(>+--=-=x xx x x g x F , 那么12)(,0252)(22<+-=>+-=e e F e e F ,…………………………………..7分 又)(x F 在区间[]2,e e 上连续,所以)(x F 在[]2,e e 上存在零点0x ,即方程0)(=-x x g 有实数根[]20,e e x ∈,故)(x g 满足条件①,综上可知,M x g ∈)(……….……………………………...……….….…………9分 (Ⅲ)不妨设βα<,∵0)('>x f ,∴)(x f 单调递增, ∴)()(βαf f <,即0)()(>-αβf f ,令x x f x h -=)()(,那么01)()(''<-=x f x h ,故)(x h 是单调递减函数, ∴ααββ-<-)()(f f ,即αβαβ-<-)()(f f , ∴αβαβ-<-<)()(0f f , 那么有220122012)()(<-+-≤-<-βαβαβαf f (14)分(21)解:〔Ⅰ〕设椭圆的方程为)0(12222>>=+b a b y a x ,那么由题意知1=c , 又∵,1=∙即.2,1))((222=∴-==-+a c a c a c a ∴1222=-=c a b ,故椭圆的方程为:1222=+y x ……………………………………….…………….2分(Ⅱ)设),(),,(),,(),,(Q Q P P N N M M y x Q y x P y x N y x M .那么由题意+=+,即22222222)()()()()()()()(Q M Q M P N P N Q N Q N P M P M y y x x y y x x y y x x y y x x -+-+-+-=-+-+-+-整理得,0=--++--+Q N P M Q M P N Q N P M Q M P N y y y y y y y y x x x x x x x x即0))(())((=--+--Q P M N Q P M N y y y y x x x x所以21l l ⊥…………………………………………………………………..….…..6分(注:证明21l l ⊥,用几何法同样得分)①假设直线21,l l 中有一条斜率不存在,不妨设2l 的斜率不存在,那么可得x l ⊥2轴, ∴2,22==PQ MN ,故四边形MPNQ 的面积22222121=⨯⨯==MN PQ S …….…….…….7分 ②假设直线21,l l 的斜率存在,设直线1l 的方程:)0)(1(≠-=k x k y ,那么由⎪⎩⎪⎨⎧-==+)1(1222x k y y x 得,0224)12(2222=-+-+k x k x k设),(),,(2211y x N y x M ,那么1222,12422212221+-=+=+k k x x k k x x12)1(2212)22(4)124(14)(1122222222212212212++=+--++=-++=-+=k k k k k k kx x x x k x x k MN…………………………………………………………………………………….9分 同理可求得,222)1(22k k PQ ++=………………………….………….……….10分 故四边形MPNQ 的面积:1916211242)1(2212)1(222121222222±=⇔≥+++=++⨯++⨯==k kk k k k k MN PQ S 取“=”,综上,四边形MPNQ 的面积S 的最小值为916…………….………………….……13分。

安徽省江南十校2019届高三3月综合素质检测数学(理)试题 PDF版含答案

安徽省江南十校2019届高三3月综合素质检测数学(理)试题 PDF版含答案

sin cos 1 tan 1 = , = , tan = 2 , 2 2 2 sin + 4cos 4 4 + tan 4
1 −2 tan = tan ( + ) − = 3 = −1 . 1 1+ 2 3
15. 答案 240
2 ( x + y ) 4 z 2 ,所以形如 【解析】 ( x + y + z )6 = ( x + y) + z ,含 z 2 的项为 T2 = C6
( k + 1)2 3, k 4 − 2 3, 故选 C.
第1页 共 8 页
11 .答案 B
【解析】由已知得原几何体是由一个棱长为 2 的正方体挖去一个四分之一圆柱
及一个八分之一球体得到的组合体, S表 = 6 22 − 4 − 5 12 .答案 C

1 + 4 + = 20 + , 故选 B. 4 8 4
【解析】前 44 组共含有数字: 44 (44 + 1) = 1980 个,
S = 1980 − 44 + (2019 − 1980) = 2019 − 44 = 1975, 故选 C.
二、填空题 题号 答案 13. 答案2 14. 答案 −1 13
2
14Βιβλιοθήκη −11516240
57
【解析】 x = 0, y = 2 时, zmin = 3 0 + 2 = 2 【解析】
PB = 82 + 52 − 2 8 5 2 = 57 . 5
三、解答题 17【解析】 (1)由 a1 + a2 + a3 +

2019年安徽省“江南十校”综合素质检测理科数学试题及参考答案

2019年安徽省“江南十校”综合素质检测理科数学试题及参考答案

【解析】 记 A(1,0) , 则 | PF2 |=
或作 AD ⊥ PF1 于 D , 由角平分线 的对称性质知 | DF1 |=| PF1 | − | PD |= |PF |1 −|PF2 | = 2a = 4 ,
|AD| = |AF2 | = c − 1 ,在 Rt ADF1 中, |AF1| = c + 1,|AF1|2 =| AF2 |2 + | AD |2 ,解得 c = 4
+ 1 1 − n +1 2 −1 2 −1
n
+ cn =
1 1 1 1 − 2 + 2 − 3 + 2 −1 2 −1 2 −1 2 −1
1
=1−
1 1 ………………………………………………………………………………12 分 2n +1 − 1
18 【解析】 (1)∵ AB = 2 , A1 B = 7 , A1 AB = 60 ,由余弦定理:
7 .答案 C 8 .答案 A 【解析】由已知得,
2
1 1 2 = 4 , = , f ( x) = cos( x + ). 故选 C. 2 2 3
【解析】由已知得 f (− x) = − f ( x), 且y = f ( x)在R上单调递增 ,
1 2 由f (3log 2 x) f (log 2 x − 1)可得 3log 2 x log 2 x − 1 log 2 x − ,解得:0 x . 故选 A. 2 2
C1
∴ AO ⊥ BC ,且 AO = 3 , BO = 1 , 由 A1 AB A1 AC 得到 A1 B = A1C = 7 ,故 A1O ⊥ BC , 且 A1O = 6 , ∵ AO 2 + A1O 2 = AA12 ,∴ AO ⊥ A1O ,…………………4 分 又 BC

安徽省江南十校2019届高三3月份综合素质检数学(理)试题(解析版)

安徽省江南十校2019届高三3月份综合素质检数学(理)试题(解析版)
二进制数,其第一个数字为 1,第二个数字为 0,且在第 k 个 0 和第 k+1 个 0 之间有 2k+1 个 1(k∈N*),即
101110111110⋯

2019个 ,则该数的所有数字之和为
1
A. 1973
B. 1974
二、填空题(本大题共 1 小题,共 5.0 分)
C. 1975
D. 1976
2
C.
(0,1)
8
D.
(1,0)
8
4. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若������ = 2 7,c=3,B=2C,则 cos2C 的值为( )
7
5
4
7
A. 3
B. 9
C. 9
D. 4
⃗ =2⃗
⃗⋅⃗
5. 已知边长为 1 的菱形 ABCD 中,∠BAD=60°,点 E 满足������������ ������������,则������������ ������������的值是( )
=
18
8∑������ =
1������������
=
6

������
=
18
8∑������ =
1������������
=
4

8
∑������ =
1(������������

������)2
=
72

8
∑������ =
1(������������

������)2
=
18.045

8
∑������ =
年份
2011 2012 2013 2014 2015 2016 2017 2018

安徽省江南十校2019届高三3月综合素质检测数学(理)答案

安徽省江南十校2019届高三3月综合素质检测数学(理)答案

2019安徽省“江南十校”综合素质测试数学(理科)解析及评分标准一、选择题1. 答案D 【解析】{2,2}A =−,故选 D.2. 答案A 【解析】|i ||||||1i |2z z ====−,故选A. 3. 答案C 【解析】标准方程为212x y =,故选C. 4. 答案B 【解析】由正弦定理知,sin sin 22cos sin sin 3B C C C C ===,cos 3C ∴= 25cos 22cos 1,9C C ∴=−=故选B.5. 答案D 【解析】12AB AD ⋅=,2+3AE AB AD =,BD AB AD =−+ 212211(+)()1323326AE BDAB AD AB AD ⋅=⋅−+=−+−⨯=−,故选D.6. 答案C 【解析】11121=2ABC A B C V L π−⋅三棱柱,故选C7 .答案C 【解析】由已知得,24ππω=,112,()cos().223f x x πω∴==+故选C. 8 .答案A 【解析】由已知得()(),()f x f x y f x R −=−=且在上单调递增,22(3log )(log 1)f x f x ∴<−由可得223log log 1x x <−21log 2x ∴<−,解得:0x <<故选A.9 .答案B 【解析】记(1,0)A ,则2224||2b c PF a −==,2214||22b c PF a a +=+=,1||1F A c =+, 2||1F A c =−,由角平分线性质得21122||||404||||PF F A c c c PF F A =⇒−=⇒=,或作1AD PF ⊥于D ,由角平分线的对称性质知1112||||||||||24DF PF PD PF PF a =−=−==,2||||1AD AF c ==−,在1Rt ADF ∆中,222112||1,||||||AF c AF AF AD =+=+,解得4c = 故12212214||||24.22PF F c S F F PF c ∆−=⨯=⋅=故选B. 10 .答案C 【解析】由已知,min min ()()f x g x ≥,由已知可得2min ()1),f x =+min ()3g x =,21)3,4k ∴+≥∴≥−故选C.11 .答案B 【解析】由已知得原几何体是由一个棱长为2的正方体挖去一个四分之一圆柱及一个八分之一球体得到的组合体,216245420,484S ππππ∴=⨯−−⨯+⨯+=+表故选B. 12 .答案C 【解析】前44组共含有数字:44(441)1980⨯+=个,198044(20191980)2019441975,S ∴=−+−=−=故选C. 二、填空题13. 答案2 【解析】0,2x y ==时,min 3022z =⨯+= 14. 答案1− 【解析】22sin cos 1sin 4cos 4αααα⋅=+,2tan 14tan 4αα=+,tan 2α=,[]123tan =tan ()11123βαβα−+−==−+⨯. 15. 答案240 【解析】[]66()=()x y z x y z ++++,含2z 的项为24226T C()x y z =+⋅,所以形如2a b x y z 的项的系数之和为246C 2=240⋅.16.【解析】由已知动点P 落在以AB 为轴、该侧面与三棱锥侧面ACD 的交线为椭圆的一部分,设其与AC 的交点为P ,此时PB 最大,由P 到AB P 为AC 的中点,且2cos ,5BAC ∠=在BAP ∆中,由余弦定理可得 PB ==. 三、解答题17【解析】(1)由1232n n a a a a b ++++=①2n ≥时,123112n n a a a a b −−++++=②①−②可得:12()n n n a b b −=−(2)n ≥,∴3322()8a b b =−=∵12,0n a a =>,设{}n a 公比为q ,∴218a q =,∴2q =…………………………3分 ∴1222n n n a −=⨯=∴12312(12)222222212n nn n b +−=++++==−−,∴21n n b =−.…………6分(2)证明:由已知:111211(21)(21)2121n n n n n n n n n a c b b +++===−⋅−−−−. ………………9分 ∴12312231111111212121212121n n n c c c c +++++=−+−++−−−−−−− 111121n +=−<−………………………………………………………………………………12分18 【解析】(1)∵2AB =,1A B ,160A AB ∠=,由余弦定理:22211112cos A B AA AB AA AB A AB =+−⋅∠,即21112303AA AA AA −−=⇒=或1−,故13AA =.………2分取BC 中点O ,连接1,OA OA ,∵ABC ∆是边长为2的正三角形,∴AO BC ⊥,且AO =1BO =,由11A AB A AC ∆≅∆得到11A B AC ==1A O BC ⊥, 且1AO =, ∵22211AO A O AA +=,∴1AO A O ⊥,…………………4分 又BCAO O =,故1A O ⊥平面ABC ,∵1A O ⊂平面1A BC ,∴平面1A BC ⊥平面ABC . ………………………………………6分 (2)解法一:以O为原点,OB 所在的直线为x 轴,取11B C 中点K ,以OK 所在的直线为y 轴,过O 作1OG AA ⊥,以OG所在的直线为z 轴建立空间直角坐标系.则111(1,0,0),(1,3,0),(1,3,0),B B C A −111(2,3,0),(0,3,0),(1,2,2)BC BB BA ∴=−==−……………………………………………8分设平面11ABB A 的一个法向量为(,,1)m x y =,则 11302(2,0,1)0220m BB y x m y m BA x y ⎧⋅==⎧=⎪⎪⇒⇒=⎨⎨=⎪⋅=−++=⎪⎩⎩设所求角为θ,则11||22278sin .39||||133BC m BC m θ⋅===…………………………………………………12分1解法二:以O 为原点,OB 所在的直线为x 轴,以1OA 所在的直线为y 轴,以OA 所在的直线为z 轴建立空间直角坐标系.则1(1,0,0),(1,0,0)B A A C ,设1(,,)C x y z ,由11=C A CA可得1(C −,11(2,6,3),(1,0,3),(1,6,0)BC AB BA ∴=−−=−=−……………………8分设平面11ABB A 的一个法向量为(,,)m x y z =,则1130,6(6,1,2)260y m AB x z x m z m BA x y ⎧=⎧⋅=−=⎪⎪=⇒⇒=⎨⎨=⎪⋅=−+=⎪⎩⎩取 设所求角为θ,则11||26278sin .39||||133BC m BC m θ⋅===⋅…………………………………………………12分 解法三:由(1)111111332C ABA AOA V BCSBCAO A O −==⨯⨯⨯⨯= 设C 到平面11ABB A 的距离为h ,则由111//CC ABB A 面知1C 到平面11ABB A 的距离也为h ,则111111sin60332C ABA ABA V hSh AB A A h −===⨯⨯⨯⨯︒==………………………………9分 设所求角为θ,则1sin h BC θ===………………………………………………………12分 19【解析】(1)由数据可知,2012,2013,2016,2017,2018五个年份考核优秀,故ξ的所有可能取值为0123,,,. 0353381(0)56C C P C ξ===,12533815(1),56C C P C ξ===2130535333883010(2),(3)5656C C C C P P C C ξξ======………………………………………………………………4分 故ξ的分布列为:所求0123.565628288E ξ=⨯+⨯+⨯+⨯=………………………………………………………………6分(2)解法一:8882222111()72()8360i ii i i i x x x x x x ===−=⇒=−+⨯=∑∑∑888111()()34.5()()8226.5ii i i i i i i i xx y y x y x x y y x y ===−−=⇒=−−+⨯⨯=∑∑∑故去掉2015年的数据之后686483296,777x y ⨯−⨯−==== 2222255()736067672i i i i x x x x ≠≠−=−=−−⨯=∑∑5529()()7226.5637634.57i i i i i i x x y y x y x y ≠≠−−=−=−⨯−⨯⨯=∑∑…………………………9分 所以^34.50.4872b =≈,^^2934.56 1.27772a yb x =−⋅=−⨯≈ 从而回归方程为:^0.48+1.27.y x =…………………………………………………………………………12分 解法二: 因为66x x ==,所以去掉2015年的数据后不影响^b 的值, 所以^34.50.4872b =≈, …………………………………………………………………………9分 而去掉2015年的数据之后686483296,777x y ⨯−⨯−====, ^^2934.56 1.27772a yb x =−⋅=−⨯≈ 从而回归方程为:^0.48+1.27.y x =…………………………………………………………………………12分 注: 若有学生在计算^a 时用^0.48b ≈计算得^^290.486 1.267a yb x =−⋅=−⨯≈也算对。

安徽“江南十校”2019年高三3月联考(数学理)扫描版含解析

安徽“江南十校”2019年高三3月联考(数学理)扫描版含解析

安徽“江南十校”2019年高三3月联考(数学理)扫描版含解析2018年安徽省“江南十校”高三联考数学(理科)参考答案及评分标准一. 选择题(1) B 【解析】i a a i a i )21()2())(21(-++=+-,由复数的定义有:⎩⎨⎧≠-=+02102a a ,∴2-=a .(2)A 【解析】由集合M 得,2122<-<-x 所以有2321<<-x ,由集合N 得1>x 故N M =⎭⎬⎫⎩⎨⎧<<231x x . (3) C 【解析】由412=+a ,那么3=a ,∴33232===a c e .(4) B 【解析】23232343516C A C A ⋅-=⋅.(5)B【解析】由题设, ,12)(2≤-=x x f 那么当1-≤x 或1≥x 时,22)(x x f M-=;当11<<-x 时, 1)(=x f M .∴1)0(=Mf .(7)B 【解析】由三视图可知.(8)C 【解析】考查函数)(x f 的特征图象可得:)()()(a f b f c f >>正确.(9)D 【解析】设两个根依次为)(,βαβα<.而函数)(x f y =的零点为23,2ππ,那么由图象可得:2322,232πππβαπβαπ+==+<<<.∴可求2365cos ,65-==∴=ππαm .(10)C 【解析】符合题意的直线在如图中的阴影区域内, 可求得320≤<k 或2-<k 、 二、填空题(11)34【解析】将直线与圆化成普通方程为:16,02222=+=-+y x y x ,进而可求得.(12)75【解析】由频率分布直方图得:75500)10005.01001.0(=⨯⨯+⨯.(13)4【解析】当1=n 时,S T S T ≤==,9,1;当2=n 时,S T S T ≤==,10,3;当3=n 时,S T S T ≤==,13,9;当4=n 时,,22,27==S T 不满足S T ≤,∴输出4=n . (14)2【解析】法一:取AD 的中点M ,连接OM .那么.212121121)(110)()(=⨯⨯+=+≤∙+=+∙+=∙+∙++=∙+∙+∙+∙=+∙+=∙OMAB OD OA AB AB OD AB OA AB OD DC OA DC AB OD OA AB OA DC OD OB OC法二:设θ=∠BAx ,那么)20(),cos sin ,(cos ),sin ,cos (sin πθθθθθθθ≤≤++C B ,22sin 1cos sin sin cos cos sin )sin ,cos (sin )cos sin ,(cos 22≤+=+++=+∙+=∙∴θθθθθθθθθθθθθOB OC (15)①④⑤ 三、解答题(16)解:(Ⅰ)由题意)sin(2)(2ϕ++=x m x f又函数)(x f 的最大值为2,且0>m ,那么2,222=∴=+m m ……………………………………………………….2分∴)4sin(2cos 2sin 2)(π+=+=x x x x f由Zk k x k ∈+≤+≤+,232422πππππ………………………………………….4分 ∴Zk k x k ∈+≤≤+,45242ππππ 故函数)(x f 的单调递减区间是Z k k k ∈⎥⎦⎤⎢⎣⎡++,452,42ππππ…………………6分(Ⅱ)212222cos 22222=-≥-+=-+=ac ac ac ac ac c a ac b c a B ,当且仅当c a =时取等号、30,21cos 1π≤<∴≥>∴B B ……………………………….……………9分12,3)4sin(2)(ππ=∴=+=B B B f ……………………..………...……12分(17)解:(Ⅰ)由题163=a ,又823=-a a ,那么2,82=∴=q a∴12+=n n a …………………………………………………………….….....4分(Ⅱ)1411(3)log 2, (624)n n n n n n n b S b b +++==∴=+⋅⋅⋅+=分 )311(34)3(41+-=+=n n n n S n922)31211131211(34311...613151214111(341...111321<+-+-+-++=+-++-+-+-=++++∴n n n n n S S S S n …………………………………………………………………………………….10分 所以正整数k 可取最小值3…………………………………………..…….………...12分 (18)解:(Ⅰ)依题意,ξ的可能取值为20,0,—10,…………………………1分ξ的分布列为……………………………………………………………………………..………4分 1051)10(5105320=⨯-+⨯+⨯=ξE 〔万元〕…………………………….…6分 (Ⅱ)设η表示100万元投资投资“低碳型”经济项目的收益,那么η的分布列为20502030-=-=a b a E η……………………………………………….……10分依题意要求102050≥-a ,∴153≤≤a ……………………………………….…12分注:只写出53≥a ,扣1分. (19)解:(Ⅰ)证明:方法一,如图,分别取AD 、CD 的中点P 、Q ,连接FP ,EQ.∵△ADF 和△CDE 是为2的正三角形, ∴FP ⊥AD,EQ ⊥CD,且FP=EQ=3.又∵平面ADF 、平面CDE 都与平面ABCD 垂直, ∴FP ⊥平面ABCD ,EQ ⊥平面ABCD ,∴FP ∥QE 且FP=EQ ,∴四边形EQPF 是平行四边形,∴EF ∥PQ.……………………….……..4分 ∵PQ 是ACD ∆的中位线,∴PQ ∥AC,∴EF ∥AC ………………………………………………………………..……..6分方法二,以A 点作为坐标原点,以AB 所在直线为x 轴,以AD 所在直线为y 轴,过点A垂直于xOy 平面的直线为z 轴,建立空间直角坐标系,如下图、 根据题意可得,A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),E(1,2,3),F(0,1,3),G(1,0,3).…………………………………………..………………..4分 ∴AC =〔2,2,0〕,=(1,1,0),那么AC =2,∴AC ∥,即有AC ∥FE ……………………………………………..……..6分 (Ⅱ)33833232=+=+=--ADEGF CDE ABG ABCDEFG V V V 四棱锥三棱柱多面体 (12)分(20)解:(Ⅰ)令x x f x h -=)()(,那么01)()(''<-=x f x h ,故)(x h 是单调递减函数,所以,方程0)(=x h ,即0)(=-x x f 至多有一解, 又由题设①知方程0)(=-x x f 有实数根,所以,方程0)(=-x x f 有且只有一个实数根…………………………………..4分 (Ⅱ)易知,)1,0()21,0(2121)('⊆∈-=x x g ,满足条件②; 令)1(32ln 2)()(>+--=-=x xx x x g x F , 那么12)(,0252)(22<+-=>+-=e e F e e F ,…………………………………..7分 又)(x F 在区间[]2,e e 上连续,所以)(x F 在[]2,e e 上存在零点0x ,即方程0)(=-x x g 有实数根[]20,e e x ∈,故)(x g 满足条件①,综上可知,M x g ∈)(……….……………………………...……….….…………9分 (Ⅲ)不妨设βα<,∵0)('>x f ,∴)(x f 单调递增, ∴)()(βαf f <,即0)()(>-αβf f ,令x x f x h -=)()(,那么01)()(''<-=x f x h ,故)(x h 是单调递减函数, ∴ααββ-<-)()(f f ,即αβαβ-<-)()(f f , ∴αβαβ-<-<)()(0f f , 那么有220122012)()(<-+-≤-<-βαβαβαf f (14)分(21)解:〔Ⅰ〕设椭圆的方程为)0(12222>>=+b a b y a x ,那么由题意知1=c , 又∵,1=∙即.2,1))((222=∴-==-+a c a c a c a ∴1222=-=c a b ,故椭圆的方程为:1222=+y x ……………………………………….…………….2分(Ⅱ)设),(),,(),,(),,(Q Q P P N N M M y x Q y x P y x N y x M .那么由题意+=+,即22222222)()()()()()()()(Q M Q M P N P N Q N Q N P M P M y y x x y y x x y y x x y y x x -+-+-+-=-+-+-+-整理得,0=--++--+Q N P M Q M P N Q N P M Q M P N y y y y y y y y x x x x x x x x即0))(())((=--+--Q P M N Q P M N y y y y x x x x所以21l l ⊥…………………………………………………………………..….…..6分(注:证明21l l ⊥,用几何法同样得分)①假设直线21,l l 中有一条斜率不存在,不妨设2l 的斜率不存在,那么可得x l ⊥2轴, ∴2,22==PQ MN ,故四边形MPNQ 的面积22222121=⨯⨯==MN PQ S …….…….…….7分 ②假设直线21,l l 的斜率存在,设直线1l 的方程:)0)(1(≠-=k x k y ,那么由⎪⎩⎪⎨⎧-==+)1(1222x k y y x 得,0224)12(2222=-+-+k x k x k设),(),,(2211y x N y x M ,那么1222,12422212221+-=+=+k k x x k k x x12)1(2212)22(4)124(14)(1122222222212212212++=+--++=-++=-+=k k k k k k kx x x x k x x k MN…………………………………………………………………………………….9分 同理可求得,222)1(22k k PQ ++=………………………….………….……….10分 故四边形MPNQ 的面积:1916211242)1(2212)1(222121222222±=⇔≥+++=++⨯++⨯==k kk k k k k MN PQ S 取“=”,综上,四边形MPNQ 的面积S 的最小值为916…………….………………….……13分。

2019届安徽省江淮十校高三第三次联考数学(理)试题(解析版)

2019届安徽省江淮十校高三第三次联考数学(理)试题(解析版)
(2)先分别写出直线PA,PB方程,利用都过点P写出直线 ,代入抛物线方程利用弦长公式求出 ,及点 到直线 的距离,写出 表达式及最值。
【详解】
(1)设 , , ,则 ,抛物线方程写成 , ,则以点 为切点的抛物线的切线 的方程为: ,又 ,即 , , , ,故 ,∴ , ,从而 .
(2)由(1)知 ,即: ,同理 ,由直线 , 都过点 ,即 ,则点 , 的坐标都满足方程 ,
【答案】(1)40;(2)见解析.
【解析】(Ⅰ)设图中从左到右的前3个小组的频率分别为 , , ,利用频率之和为1求出 ,由此能求出该校报考飞行员的总人数。
(2)确定这40人中体重在区间 的学生人数,体重超过70 的人数,利用超几何分布求出分布列和数学期望。
【详解】
(1)设该校报考飞行员的人数为 ,前三个小组的频率分别为 , , ,
【答案】
【解析】先根据直线方程与椭圆方程解得A横坐标,再根据椭圆定义化简求值.
【详解】
因为离心率为 ,所以 ,
设直线 的方程 代入椭圆方程:
得: ,又∵点 在第一象限,故 ,
所以
【点睛】
本题考查直线与椭圆交点以及椭圆定义,考查基本分析转化求解能力,属中档题.
16.已知 ,数列 满足:对任意 , ,且 , ,则使得 成立的最小正整数 为________.
【详解】
(1)证明:取 的中点 ,连 、 ,因为 为 中点,所以 .
平面 , 平面 , 平面 .
又由已知 平面 ,
且 ,所以平面 平面 .
又 平面 ,所 平面 .
而 平面 ,且平面 平面 ,所以 ,而 为 的中点,所以 为 的中点.
(2)由题设知: 、 、 两两垂直,以 为 轴, 为 轴, 为 轴,建立空间直角坐标系 .

安徽省江南十校2019届高三3月份综合素质检数学(理)试题(解析版)

安徽省江南十校2019届高三3月份综合素质检数学(理)试题(解析版)

安徽省江南十校2019届高三3月份综合素质检测理科数学一、选择题(本大题共12小题,共60.0分)1.设集合U={-2,-1,0,1,2},A={x|x2>1,x∈U},则()A. B. C. 0, D. 0,2.复数(i为虚数单位),则()A. B. C. D. 23.抛物线y=2x2的焦点坐标是()A. B. C. D.4.在△ABC中,角A、B、C的对边分别为a、b、c,若,c=3,B=2C,则cos2C的值为()A. B. C. D.5.已知边长为1的菱形ABCD中,∠BAD=60°,点E满足,则的值是()A. B. C. D.6.我国南北朝时期的科学家祖暅,提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:如果两个等高的几何体,在等高处的截面积恒等,则这两个几何体的体积相等.利用此原理求以下几何体的体积:曲线y=x2(0≤y≤L)绕y轴旋转一周得几何体Z,将Z放在与y轴垂直的水平面α上,用平行于平面α,且与Z的顶点O 距离为l的平面截几何体Z,得截面圆的面积为.由此构造右边的几何体Z1:其中AC⊥平面α,AC=L,,AA1=π,它与Z在等高处的截面面积都相等,图中EFPQ为矩形,且PQ=π,FP=l,则几何体Z的体积为A. B. C. D.7.已知函数(ω>0)的最小正周期为4π,则下面结论正确的是()A. 函数在区间上单调递增B. 函数在区间上单调递减C. 函数的图象关于直线对称D. 函数的图象关于点对称8.设函数,则不等式f(3log2x)+f(1-log2x)<0的解集是A. B. C. D.9.已知双曲线(b>0)的左、右焦点分别为F1,F2,P为右支上一点且直线PF2与x轴垂直,若∠F1PF2的角平分线恰好过点(1,0),则△PF1F2的面积为A. 12B. 24C. 36D. 4810.已知函数,(e 是自然对数的底数),若对,,使得f(x1)≥g(x2)成立,则正数k的最小值为()A. B. 1 C. D.11.如图,网格纸上的小正方形的边长为1,粗线(实线、虚线)画出的是某几何体的三视图,其中的曲线都是半径为1的圆周的四分之一,则该几何体的表面积为A. 20B.C.D.12.计算机内部运算通常使用的是二进制,用1和0两个数字与电路的通和断两种状态相对应.现有一个2019位的二进制数,其第一个数字为1,第二个数字为0,且在第k个0和第k+1个0之间有2k+1个1(k∈N*),即个,则该数的所有数字之和为A. 1973B. 1974C. 1975D. 1976二、填空题(本大题共1小题,共5.0分)13.(1)设x,y满足约束条件,则z=3x+y的最小值为________.(2)已知,且,则tanβ的值为________.(3)在(x+y+z)6的展开式中,所有形如x a y b z2(a,b∈N)的项的系数之和是________(用数字作答).(4)如图,三棱锥A-BCD中,AC=AD=BC=BD=10,AB=8,CD=12,点P在侧面ACD上,且到直线AB 的距离为,则PB的最大值是________.三、解答题(本大题共7小题,共84.0分)14.已知数列{a n}与{b n}满足:a1+a2+a3+…+a n=2b n(n∈N*),且{a n}为正项等比数列,a1=2,b3=b2+4.(Ⅰ)求数列{a n}与{b n}的通项公式;(Ⅱ)若数列{c n}满足(n∈N*),T n为数列{c n}的前n项和,证明:T n<1.15.斜三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,,∠A1AB=∠A1AC=60°.(Ⅰ)证明:平面A1BC⊥平面ABC;(Ⅱ)求直线BC1与平面ABB1A1所成角的正弦值.16.某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司2011-2018年的相关数据如下表所示:注:年返修率年返修台数年生产台数(Ⅰ)从该公司2011-2018年的相关数据中任意选取3年的数据,以ξ表示3年中生产部门获得考核优秀的次数,求ξ的分布列和数学期望;(Ⅱ)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润y(百万元)关于年生产台数x(万台)的线性回归方程(精确到0.01).附:线性回归方程中,,.17.设O是坐标原点,圆O:x2+y2=r2(r≥3),椭圆C的焦点在x轴上,左、右顶点分别为A,B,离心率为,短轴长为4.平行x轴的直线l与椭圆C和圆O在y轴右侧的交点分别为E,F,直线AE与y轴交于点M,直线BE 与y轴交于点N.(Ⅰ)求椭圆C的标准方程;(Ⅱ)当时,求r的取值范围.18.已知定义在区间(0,2)上的函数,m∈R.(Ⅰ)证明:当m=1时,f(x)≥1;(Ⅱ)若曲线y=f(x)过点A(1,0)的切线有两条,求实数m的取值范围.19.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ=5.(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;(Ⅱ)点P(m,n)为曲线C2上一点,若曲线C1上存在两点A,B,使得∠APB=90°,求n的取值范围.20.设函数f(x)=lg(|2x-1|+2|x+1|-a).(Ⅰ)当a=4时,求函数f(x)的定义域;(Ⅱ)若函数f(x)的定义域为R,求a的取值范围.答案和解析1.【答案】D【解析】【分析】本题主要考查了集合的补集,属于基础题.【解答】解:∵集合U={-2,-1,0,1,2},A={x|x2>1,x∈U}={-2,2},则,故选D.2.【答案】A【解析】【分析】本题主要考查了复数的四则运算和复数的模和共轭复数,属于基础题.【解答】解:复数,则;故选A.3.【答案】C【解析】解:抛物线y=2x2的标准方程为:x2=y,故抛物线y=2x2的焦点坐标是(0,),故选:C.将抛物线化为标准方程,结合抛物线的性质,可得答案.本题考查的知识点是抛物线的性质,化为标准方程是解答圆锥曲线类问题的关键.4.【答案】B【解析】【分析】本题考查正弦定理以及二倍角公式,属于基础题.由正弦定理求得cosC的值,再运用二倍角公式即可求得答案. 【解答】解:由正弦定理得,即,所以,则cosC=,所以cos2C=.故选B.5.【答案】D【解析】【分析】本题主要考查向量的数量积,属于一般题.【解析】解:,故故选D.6.【答案】C【解析】【分析】本题主要考查空间几何体的体积计算,属于一般题.【解析】解:由题可知Z与Z1的体积相等,故Z1的体积为,故Z的体积为,故选C.7.【答案】C【解析】【分析】本题主要考查与三角函数性质有关的命题的真假判断,涉及三角函数的周期、单调性和对称性的判断,根据相应的定义是解决本题的关键.通过函数的周期求出ω,然后利用函数的对称中心与对称轴、函数的单调性判断四个选项的正误.【解答】解:因为函数的最小正周期为4π,所以ω==,即令,即,当k=1时,是函数的对称轴,令,即,∴的对称中心为;故C正确,D不正确;∵,,;故f(x)在(0,π)不单调;故选C.8.【答案】A【解析】【分析】本题考查利用函数的单调性及奇偶性比较大小解不等式,属于中档题. 先判断函数的奇偶性、单调性即可解答.【解答】解:设,则,所以,f(x)为奇函数,因为,则f(x )在上单调递增,又f(0)=0,∴f(x)在R上单调递增,∴不等式f(3log2x)+f(1-log2x)<0得不等式f(3log2x)<f(log2x-1),∴3log2x<log2x-1,∴,解得,∴原不等式的解集为,故选A.9.【答案】B【解析】【分析】此题重点考查双曲线的第一定义,双曲线中过焦点垂直于x轴的弦长,以及有关三角形问题;由题意准确画出图象,利用数形结合,注意到三角形的特殊性.先根据双曲线方程求出焦点坐标,再利用双曲线的第一定义求得|PF2|,则△PF1F2的面积可得.【解答】解:在双曲线中,a=2,b2=c2-4.∵直线PF2与x轴垂直,∴设P(c,y0),则,解得,又PA平分∠F1PF2,∴=,,,∴解得c=4,所以,故选B.10.【答案】C【解析】【分析】本题主要考查了导数的综合应用.解题关键是由对,,使得f(x1)≥g(x2)成立等价于对,使得f(x1)≥g(x2)min=g(e)=3;等价于,恒成立;然后结合不等式求最值即可.【解答】解:∵,∴; 当x∈[0,e],g'(x)<0,当x∈[e,3],g'(x)>0,g(x)min=g(e)=3;∵对,,使得f(x1)≥g(x2)成立等价于对,使得f(x1)≥3;即对,;等价于,恒成立;令;∵x∈(0,1),∴1-x∈(0,1)∴,当且仅当即时等号成立;∴;k≥;故选C. 11.【答案】B【解析】【分析】本题考查空间几何体的三视图及几何体的体积求法,属于中档题.【解答】解:由三视图可知,该几何体可看作棱长为2的正方体切掉四分之一圆柱和八分之一的球体得到的组合体,所以面积为,面积为,故选B.12.【答案】C【解析】【分析】本题考查等差数列的应用,属于较难题.将实际问题转化为数学模型是解决本题的关键.【解答】解:由题意可知,在第n+1个0和第n个0之间有2n+1个1,其中第一个0之前有1个1.所以共有个1.所以该数的所有数字之和为1975.故答案为C.13.【答案】(1) 2: (2)-1; (3)240: (4)【解析】(1)【分析】本题主要考查利用线性规划求最值.【解答】解:不等式组的平面区域,如下图:目标函数z=3x+y,化为直线y=-3x+z,当直线y=-3x+z经过点A(0,2)时,直线在y轴上的截距最小,即z最小,所以z min=2,故答案为2.(2)【分析】本题主要考查同角三角函数的关系式,以及两角和与差的正切公式.【解答】解:因为,解得tanα=2,所以,解得tanβ=-1,故答案为-1.(3)【分析】本题主要考查二项式特定项的系数.【解答】解:因为在(x+y+z)6的展开式中,所有形如x a y b z2(a,b∈N)的项为,所以中有:,所以形如x a y b z2(a,b∈N)的项的系数之和是,故答案为240.(4)【分析】本题主要考查空间中的距离.【解答】解:如图,取CD中点E,BE中点O,连接BE,AE,AO,过O作CD的平行线.由题意知,AB=AE=BE=8,故,由得,又,故,又,,故,建立如图所示的空间直角坐标系,可得,故取为平面ACD的基底,由共面向量基本定理设.易知点P到直线AB的距离为,化简得:.故,又,,又,即,由二次函数图象与性质易知当时取得.故答案为.14.【答案】解:(1)由a1+a2+a3+…+a n=2b n①,n≥2时,a1+a2+a3+…+a n-1=2b n-1②,①-②可得:a n=2(b n-b n-1)(n≥2),∴a3=2(b3-b2)=8,∵a1=2,a n>0,设{a n}公比为q,∴a1q2=8,∴q=2,∴a n=2×2n-1=2n,∴ ,∴ .(2)证明:由已知:.∴.【解析】本题考查了等比数列通项公式与求和公式、裂项相消法求数列前n项和,属中档题.(1)先用n-1替换n ,作差可得,再根据条件得出,继而根据等比数列通项公式可求出公比及a n,最后根据等比数列前n项和公式求出b n;(2)根据通项公式可裂项,继而求和可前后相消,从而易证的.15.【答案】(1)∵AB=2,,∠ ,由余弦定理得:,即,解得.取BC中点O,连接OA,. ∵△ABC是边长为2的正三角形,∴AO⊥BC,且,BO=1,由△ △易知,故⊥,且,∵ ,∴ ⊥,又BC∩AO=O,平面ABC,AO平面ABC,故 ⊥平面ABC,∵ 平面,∴平面 ⊥平面ABC.(2)解法一:在平面中作⊥于,取中点,连结.易知,故⊥.由⊥,⊥,,,,∴ ⊥平面,又平面,∴ ⊥.且易求得,.以O为原点,OB所在的直线为x轴,OK所在的直线为y轴,OG所在的直线为z轴建立空间直角坐标系如图所示:易知B(1,0,0),(1,3,0),(-1,3,0),(0,2,).∴,,.设平面的一个法向量为,则设所求角为θ,则.解法二:易知,设C到平面的距离为h,由平面知到平面的距离也为h,由.设所求角为θ,则.【解析】(1)先通过余弦定理计算出,再取BC中点O,由勾股定理易证,从而可证得平面,继而证得平面⊥平面ABC.(2)向量法可先建系写坐标,再求出平面的法向量,继而利用向量的数量积解出BC1与平面所成角的正弦值.直接法可先设到平面的距离为,并通过线面平行转化为到平面的距离为,再在三棱锥中通过等体积法解出,最后由线面角的定义即可得解.本题通过面面垂直的判定及线面角的求法,考查了逻辑推理能力、空间想象能力以及运算化简能力,属中档题.16.【答案】解:(1)由数据可知,2012,2013,2016,2017,2018五个年份考核优秀,故ξ的所有可能取值为0,1,2,3.,,,,故ξ的分布列为:所求.(2)由表易知:,故去掉2015年的数据后不影响的值,即,去掉2015年的数据之后,,,故线性回归方程为:.【解析】本题主要考查了离散型随机变量的分布列与数学期望及线性回归方程,属于基础题.(1)先确定ξ的取值,解出每种情况的概率,再列出分布列,最后计算出数学期望.(2)易知去掉2015数据后不影响的值,再计算去掉2015年的数据后的,,最后代入公式计算出,即得线性回归方程.17.【答案】解:(1)设椭圆C的标准方程为(a>b>0),由题意得,解得,∴椭圆C的标准方程为.(2)解:设:且t≠0,,,,.设,如图所示,由A、E、M三点共线易知k AM=k AE,即,即,故,同理可得.;∵,∴ ,∴.【解析】本题综合考查了圆与椭圆的概念及标准方程、椭圆的几何性质、直线的斜率与方程、平面向量数量积的坐标表示,属于难题.(1)由椭圆的概念与几何性质,易求得椭圆的标准方程;(2)由题可设直线的方程及的坐标,由三点共线可得点M,N的坐标,再由平面向量数量积的坐标表示与已知条件,运算化简即可解得的取值范围.18.【答案】解:(1)证:时,,.从而易知:在(0,1]上单调递减,在[1,2)上单调递增,∴ ,∴ .(2)解:当时,过点,显然不满足题意;当m≠0时,设切点为,由题意易知x0≠1,切线斜率,即,整理得:(*)由题意易知方程(*)在区间(0,2)上有两个不同的实数解.令,.①当即时,在上单调递增,在上单调递减或先单调递减再单调递增,由,,,,∴ 在区间上有唯一零点,在区间上无零点,不满足题意.②当即时,在上单调递增,在上单调递减,在上单调递增,由,,∴ 在区间上有唯一零点,不满足题意.③当时,在上单调递减,在上单调递增,由,,.当即时,在区间上有唯一零点,不满足题意.当即时,在区间和上各有一个零点,不妨设为,又显然在区间上单调递减,故,满足题意.综上所述,的取值范围为.【解析】本题主要考查利用导数研究函数的单调性与极值、最值,属于难题.(1)求导,易求得在的极小值,也是最小值,即可推出结论.(2)利用导数的几何意义及直线斜率公式,转化为函数与方程的零点分布问题,利用导数,逐级分类讨论,即可解得的取值范围.19.【答案】解:(1)消去参数可得:;由极坐标和直角坐标方程的关系可得:.(2)易知,过作曲线的两条切线,切点分别记为,由题意易知:∠ ,∠ ,即,即,即,解得.【解析】本题考查参数方程和普通方程的互化、极坐标和直角坐标的互化、直线与圆,属中档题.(1)消去参数可得方程,由极坐标和直角坐标方程的关系可得的直角坐标方程;(2)由题意可得相切时,即,进而可解得的取值范围.20.【答案】解:(Ⅰ)由题意易知:.当时,,解得;当时,,无解;当时,,解得.综上所述,的定义域为.(Ⅱ) 由题意易知:对于∈恒成立,即,∵,∴.【解析】【解析】本题考查了绝对值不等式的解法及绝对值不等式的性质,属中档题.(1)根据对数函数概念有|2x-1|+2|x+1|>4,解绝对值不等式即可解出函数的定义域;(2)问题转化为|2x-1|+2|x+1|>a对于恒成立,根据绝对值不等式的性质,即可解出a的取值范围.。

安徽省江南十校2019届高三3月综合素质检测理科综合试题 PDF版含答案

安徽省江南十校2019届高三3月综合素质检测理科综合试题 PDF版含答案

2019年安徽省“江南十校”综合素质检测理科综合(化学)解析及评分标准7.C【解析】水晶的主要成分是SiO2,红宝石的主要成分为Al2O3。

燃煤加入石灰石可减少SO2的污染。

甘油属醇类,汽油的成分都属烃类。

ClO2的强氧化性用于消毒杀菌。

8.C【解析】O2-核外有10个电子。

NH4Cl为离子化合物,不存在H-Cl键。

CrO5中有一个O呈-2价,四个O呈-1价,因此有两个过氧键。

无论Na2O2和Na2O的比例为多少,其混合物中的阴阳离子数目之比均为1:2。

9.D【解析】A中HCO3-和SiO32-不能共存。

B中生成的FeS可溶于酸,离子方程式错误。

C中HClO和Fe3+均可氧化SO32-。

10.A【解析】X、Y、和W分别为H、N和Cl,Z可能为O、F和Na中的任一种。

若C为NaH,则含有离子键。

N3-的半径比O2-、F-和Na+的半径都大。

N元素的非金属性很强,但由于N≡N 的存在,其单质并不活泼。

HClO4的酸性比HNO3强。

11.B【解析】瓷坩埚中含SiO2,高温下可与Na2CO3发生反应。

SO2可与S2-反应生成H2S,SO2可氧化H2S。

收集氨气的试管口要放适量的棉花。

Br2可与橡胶发生加成反应。

12.D【解析】苯不能与溴水发生反应。

C5H10的烯有5种(不包括顺反异构体)。

C中-CH3上的一个H也可能落在整个分子的平面内,共17个原子,漏掉苯环上的5个氢原子易错成12个。

将一个N原子换成C原子后,分子中要多出一个H原子。

13.B【解析】由SO42-的移动方向可知右边Cu电极为负极,发生氧化反应。

当电路中通过1mol 电子,左边电极增加32g,右边电极减少32g,两极的质量差变为64g。

电解质再生池是利用太阳能将CuSO4稀溶液蒸发,分离为CuSO4浓溶液和水后,再返回浓差电池。

26.(14分,每空2分)(1)A 后(2)①增大铁粉与水蒸气的接触面积,以便充分反应(文字表述不同,所表达的原理相同也给分);②防止冷却时,装置内的压强下降过快将空气吸入装置,影响H2体积的测定。

【校级联考】安徽省江南十校2019届高三3月综合素质检测数学(理)试题-490329328b3745d3b943781280a7a6b7

【校级联考】安徽省江南十校2019届高三3月综合素质检测数学(理)试题-490329328b3745d3b943781280a7a6b7

绝密★启用前【校级联考】安徽省江南十校2019届高三3月综合素质检测数学(理)试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.设集合 , ,则 ( ) A . B . C . D . 2.复数( 为虚数单位),则 ( )A .B .C .D .2 3.抛物线 的焦点坐标是( ) A .B .C .D .4.在 中,角 、 、 的对边分别为 、 、 ,若 , , ,则 的值为( )A .B .C .D .5.已知边长为1的菱形 中, ,点 满足 ,则 的值是( ) A .B .C .D .6.我国南北朝时期的科学家祖暅,提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:如果两个等高的几何体,在等高处的截面积恒等,则这两个几何体的体积相等.利用此原理求以下几何体的体积:曲线 绕 轴旋转一周得几何体 ,将 放在与 轴垂直的水平面 上,用平行于平面 ,且与 的顶点 距离为 的平面截几何体 ,得截面圆的面积为 .由此构造右边的几何体 :其中 平面 ,…………外…………线……………………内…………线………… , , ,它与 在等高处的截面面积都相等,图中 为矩形,且 , ,则几何体 的体积为( )A .B .C .D .7.已知函数的最小正周期为 ,则下面结论正确的是( )A .函数 在区间 上单调递增B .函数 在区间 上单调递减C .函数 的图象关于直线对称 D .函数 的图象关于点对称 8.设函数,则不等式 的解集是( )A .B .C .D .9.已知双曲线的左、右焦点分别为 , , 为右支上一点且直线 与 轴垂直,若 的角平分线恰好过点 ,则 的面积为( ) A .12 B .24 C .36 D .48 10.已知函数,( 是自然对数的底数),若对 ,,使得 成立,则正数 的最小值为( ) A .B .1C .D .11.如图,网格纸上的小正方形的边长为1,粗线(实线、虚线)画出的是某几何体的三视图,其中的曲线都是半径为1的圆周的四分之一,则该几何体的表面积为( )A .20B .C .D .12.计算机内部运算通常使用的是二进制,用1和0两个数字与电路的通和断两种状态相对应.现有一个2019位的二进制数,其第一个数字为1,第二个数字为0,且在第个0和第个0之间有个1(),即个,则该数的所有数字之...和.为()A.1973B.1974C.1975D.1976………外………○…………订…※※订※※线※※内※※答………内………○…………订…第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题13.设 , 满足约束条件,则 的最小值为_______.14.已知,且,则 的值为______.15.在 的展开式中,所有形如 的项的系数之和是_____(用数字作答).16.如图,三棱锥 中, , , ,点 在侧面 上,且到直线 的距离为 ,则 的最大值是_______.三、解答题17.已知数列 与 满足: ,且 为正项等比数列, , .(Ⅰ)求数列 与 的通项公式; (Ⅱ)若数列 满足, 为数列 的前 项和,证明: .18.斜三棱柱 中,底面是边长为2的正三角形, , .(Ⅰ)证明:平面 平面 ;(Ⅱ)求直线 与平面 所成角的正弦值.秀,现获得该公司2011-2018年的相关数据如下表所示:Array注:年返修率年返修台数年生产台数(Ⅰ)从该公司2011-2018年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;(Ⅱ)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方程(精确到0.01).附:线性回归方程中,,. 20.设是坐标原点,圆:,椭圆的焦点在轴上,左、右顶点分别为,,离心率为,短轴长为4.平行轴的直线与椭圆和圆在轴右侧的交点分别为,,直线与轴交于点,直线与轴交于点.(Ⅰ)求椭圆的标准方程;(Ⅱ)当时,求的取值范围.21.已知定义在区间上的函数,.(Ⅰ)证明:当时,;(Ⅱ)若曲线过点的切线有两条,求实数的取值范围.22.[选修4-4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数),以坐标原点极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅱ)点为曲线上一点,若曲线上存在两点,,使得,求的取值范围.23.[选修4-5:不等式选讲]设函数.(Ⅰ)当时,求函数的定义域;(Ⅱ)若函数的定义域为,求的取值范围.参考答案1.D【解析】【分析】求解出集合的范围,根据补集定义求解.【详解】或又,则本题正确选项:【点睛】本题考查集合基本运算中的补集,属于基础题. 2.A【解析】【分析】将整理成的形式,与模长相同,求即可.【详解】本题正确选项:【点睛】本题考查复数的基本运算,属于基础题.3.C【解析】【分析】将方程化为标准形式,然后可得焦点坐标.【详解】抛物线标准方程为,焦点在轴上焦点坐标为本题正确选项:【点睛】本题考查利用抛物线方程求焦点,易错点是忽略了原方程是否为标准方程,而直接去求解. 4.B【解析】【分析】由正弦定理可推导出的取值,再利用二倍角公式求得结果.【详解】由正弦定理可得:即本题正确选项:【点睛】本题考查正弦定理和二倍角公式的应用,属于基础题.5.D【解析】【分析】将通过线性运算进行拆解,转变成与向量和相关的数量积和模长求解即可.【详解】由题意可得大致图像如下:;又,本题正确选项:【点睛】本题考查向量的数量积的求解,处理此类问题的关键是将所求向量进行线性拆解,拆解为已知模长和夹角的两个向量的问题.6.C【解析】【分析】通过截面面积相等可求得的长度,再利用三棱柱体积公式即可求解.【详解】由题意可知:在高为处,截面面积为,且截面面积相等本题正确选项:【点睛】本题考查空间几何体中柱体体积的求解,属于基础题.7.C【解析】【分析】最小正周期为,可求得函数解析式;再依次将四个选项代入,与进行对比,得到正确结果.【详解】由题意知:选项和选项:当时,,当时,单调递减;时,单调递增.因此,和都错误;选项:时,;是的对称轴,则是的对称轴.因此,正确;选项:由可知,是对称轴的位置,则必不是对称中心.错误.本题正确选项:【点睛】本题考查的图像与性质,处理此类问题的关键是采用整体代入的方式,将范围代入函数,得到整体所处的范围,进而与图像相对应,确定最终结果.8.A【解析】【分析】判断出的奇偶性与单调性,然后将不等式转化为,通过单调性变成自变量的比较,从而得到关于的不等式,求得最终结果.【详解】为上的奇函数又可知与在上都单调递增,即与在上都单调递增当时,,;假设则即:在上单调递增又为奇函数,则在上单调递增,即在上单调递增由可得:即本题正确选项:【点睛】本题考查利用函数单调性与奇偶性求解函数不等式的问题,解题关键在于将不等式转化为符合单调性定义的形式,利用单调性转变为自变量的比较.9.B【解析】【分析】根据双曲线几何性质及定义,可用表示出与,再利用角平分线定理,求得,即可用表示出所求面积.【详解】记,则,由题意可知,为双曲线通径长的一半,即由双曲线定义可知:由角平分线性质定理可得:本题正确选项:【点睛】本题主要考查双曲线的几何性质,关键在于能够熟练应用双曲线的定义表示长度,同时涉及角平分线问题时,角平分线定理是常用的比例关系.10.C【解析】【分析】,,使得成立,说明,分别求出与的最小值,建立不等关系求解.【详解】“,,使得成立”等价于当时,令,解得:,在上单调递减,上单调递增当时,令,解得:在上单调递减,上单调递增当时,此时在上单调递增,上单调递增减,,无最小值,不合题意综上所述:,令,解得:在上单调递减,在上单调递增本题正确选项:【点睛】本题考查导数中的恒成立和能成立的综合问题,关键在于通过成立条件,将问题转化为最值之间的比较;难点在于求解时,需要对的范围进行讨论,才能最终确定取值. 11.B【解析】【分析】通过三视图还原几何体后,用正方体表面积减掉去除的面积,再加上因割正方体而增加的面的面积即可得到结果.【详解】由三视图可得几何体如图所示:由已知得原几何体是由一个棱长为2的正方体挖去一个四分之一圆柱及一个八分之一球体得到的组合体本题正确选项:【点睛】本题考查组合体的表面积问题,关键在于能够通过三视图准确还原组合体.12.C【解析】【分析】通过分组将问题变为等差数列求和的问题,先利用数位求解出分组的组数,再根据每组数字之和为首项为,公差为的等差数列,求解出最终结果.【详解】将数字从左只有以为分界进行分组第一组为,数字和为;第二组为,数字之和为;第三组为,数字之和为;以此类推数字共位,则,前组共有位则前位数字之和为:剩余数位为:则所有数字之和为:本题正确选项:【点睛】本题考查数列求和的问题,关键在于能够将数据进行合理分组,构建出等差数列的模型,从而解决问题.13.2【解析】【分析】通过约束条件,画出可行域,将问题转化为直线在轴截距最小的问题,通过图像解决.由题意可得可行域如下图所示:令,则即为在轴截距的最小值由图可知:当过时,在轴截距最小本题正确结果:【点睛】本题考查线性规划中的型最值的求解问题,关键在于将所求最值转化为在轴截距的问题.14.-1【解析】【分析】通过,的齐次式,求得的值;再利用两角和差的正切公式求解.【详解】又解得:本题正确结果:本题考查同角三角函数关系以及两角和差公式的应用,属于基础题.15.240【解析】【分析】将变为,将所求问题转变为的所有系数之和,通过赋值法可求得结果.【详解】则展开式通项为:含的项的为:则形如项的系数之和即为展开式的系数之和令,,则:本题正确结果:【点睛】本题考查二项式定理的相关知识,求解系数之和问题的关键方法是赋值法,通过赋值,消除变量的影响,得到系数之和.16.【解析】【分析】通过点到直线距离为定值,确定点在圆柱侧面上,同时确定点轨迹;根据椭圆性质可知,当落在上时,最大;根据距离可确定为中点,然后利用余弦定理解出结果.【详解】动点到直线的距离为定值动点落在以为轴、底面半径为的圆柱的侧面上可知侧面与三棱锥侧面的交线为椭圆的一部分设其与的交点为,此时最大由题意可得,点到的距离为:则到的距离为可知:为的中点又在中,由余弦定理可得本题正确结果:【点睛】本题考查立体几何中的直线与平面的位置关系,难点在于确定点在侧面上的轨迹类型,锁定最值取得的点,对学生的空间想象能力要求较高.17.(1);(2)见证明【解析】【分析】(1)通过作差的方式得到,从而求解出公比,进而得到;可利用等比数列求和推导得到;(2)通过裂项相消的方式,得到,通过放缩得到所证结果.【详解】(1)由……①时,……②①-②可得:,,设公比为(2)证明:由已知:当时,即:【点睛】本题考查等比数列以及裂项相消法求和,解题关键在于能够通过通项公式的形式确定可以进行裂项,从而可以前后相消,得到最终关系式.18.(1)见证明;(2)【解析】【分析】(1)利用等腰三角形三线合一和勾股定理分别证明和,得到平面,进而得到面面垂直;(2)利用空间向量法,得到所求正弦值等于的值;也可以利用体积桥的方式,求出到平面的距离,从而求得正弦值.【详解】(1),,由余弦定理:即或故取中点,连接,,如图所示:是边长为的正三角形,可得:,由得到又为中点,且又,平面平面平面平面(2)解法一:以为原点,所在的直线为轴,取中点,以所在的直线为轴,过作,以所在的直线为轴建立空间直角坐标系则,,,,,设平面的一个法向量为则设所求角为,则解法二:以为原点,所在的直线为轴,以所在的直线为轴,以所在的直线为轴建立空间直角坐标系则,,,设,由可得,,设平面的一个法向量为则,取,则设所求角为,则解法三:由(1)设到平面的距离为,则由面知到平面的距离也为,则设所求角为,则【点睛】本题考查立体几何中面面垂直的证明和直线与平面所成角问题.立体几何求解角度问题常常采用空间向量法来求解,线面角的正弦值即为直线与平面法向量所成角的余弦值;也可以求解出直线上的点到平面的距离,再利用直角三角形求解.19.(1)见解析;(2)【解析】【分析】(1)根据数据,确定考核优秀的年份数量,利用超几何分布来求解分布列和数学期望;(2)确定去掉年数据后,公式各个构成部分的数值,代入公式求解回归直线.【详解】(1)由数据可知,,,,,五个年份考核优秀的所有可能取值为,,,,,,故的分布列为:则数学期望(2)解法一:故去掉年的数据之后:,所以,从而回归方程为:解法二:因为,所以去掉年的数据后不影响的值所以而去掉年的数据之后,从而回归方程为:【点睛】本题考查概率统计部分的超几何分布和线性回归问题,关键在于根据题意确定好概率模型,选择合适的模型来进行计算.20.(1)(2)【解析】【分析】(1)根据椭圆的几何性质,得到关于的方程,求得结果;(2)解法一:假设方程和坐标,利用得到和的坐标,从而将转化为关于的式子,求得范围;解法二:假设方程和坐标,与椭圆方程联立解出点坐标,进一步推导出坐标,将转化为关于的式子,求得范围.【详解】(1)设椭圆的标准方程为由题意得,解得椭圆的标准方程为(2)解法一:设且,,,,设,共线,得,同理得解法二:设,,联立得:,,令得又由,令得又轴【点睛】本题考查直线与椭圆中的求解参数范围类问题,求解范围类问题的关键是能够根据已知关系,构造出关于参数的不等式;常见的已知关系有向量关系、位置关系、长度关系等. 21.(1)见证明;(2)【解析】【分析】(1)利用导数求得函数单调性,可证得;(2)利用假设切点的方式写出切线方程,原问题转化为方程在上有两个解;此时可采用零点存在定理依次判断零点个数,得到范围,也可以先利用分离变量的方式,构造新的函数,然后讨论函数图像,得到范围.【详解】(1)证明:时,在上递减,在上递增(2)当时,,,明显不满足要求;当时,设切点为(显然),则有,整理得由题意,要求方程在区间上有两个不同的实数解令①当即时,在上单调递增,在上单调递减或先单调递减再递增而,,,在区间上有唯一零点,在区间上无零点,所以此时不满足题要求.②当即时,在上单调递增,在上单调递减,在上单调递增.,在区间上有唯一零点,所以此时不满足题要求.③当时,在上单调递减,在上单调递增,,,当即时,在区间上有唯一零点,此时不满足题要求.当即时,在区间和上各有一个零点设零点为,又这时显然在区间上单调递减,此时满足题目要求.综上所述,的取值范围是(2)解法二:设切点为由解法一的关于的方程在区间内有两解显然不是方程的解故原问题等价于在区间内有两解设,且则,且令,,则又,;,,故,;,从而,递增,,递减令,由于时,时故,;,,而时,,时,故在区间内有两解解得:【点睛】本题主要考查导数的几何意义、导数在研究函数中的应用.难点在于将原问题转化为方程根的个数的问题,此时根无法确切的得到求解,解决此类问题的方式是灵活利用零点存在定理,在区间内逐步确定根的个数.22.(1) :,:.(2)【解析】【分析】(1)根据和直接化简求得结果;(2)过作圆切线,此时两切线夹角为临界状态,需大于等于才能出现的情况,利用角的正弦的范围求出的范围.【详解】(1)由题意得:(2)由(1),过作曲线的两条切线,切点分别记为曲线上存在两点,使得即,即【点睛】本题考查极坐标与参数方程部分的知识,关键在于通过临界值将问题转移到直角三角形内的角的范围问题,构造不等式求解出最终结果.23.(1) (2)【解析】【分析】(1)利用零点分段法讨论各个区间的解析式,得到取值范围;(2)利用恒成立思想,根据绝对值不等式的性质求得最值,得到的范围.【详解】(1)当时,定义域基本要求为:当时,当时,,无解当时,综上:的定义域为(2)由题意得:恒成立【点睛】本题考查含绝对值不等式的解法和绝对值不等式的性质,关键在于本题定义域为等价于恒成立,利用恒成立中的分离变量法求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江南十校2019届新高三模底联考
数学(理)试题
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。

考试时间120分钟。

第Ⅰ卷(选择题 共50分)
一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是
最符合题目要求的。


1.设i 是虚数单位,复数
12i
i
-+等于 A .135i - B .133i - C .335
i
- D .1-i
2.若全集为实数集R ,集合A=12
{|log (21)0},R x x C A ->则=
A .1(,)2
+∞
B .(1,)+∞
C .1[0,][1,)2+∞
D .1(,][1,)2
-∞+∞
3.已知双曲线22
2:11x y C a
-=上一点P 到两焦点的距离之差为2,则该双曲线的离心率是
A .2
B C D .
3
2
4.等差数列17{},1,9,{}n n a a a a ==中则数列的前10项和等于
A .35
B .70
C .95
D .140
5.三棱椎A —BCD 的三视图为如图所示的三个直角三角形,则三棱锥A —BCD 的表面积为
A .
B .
C .
43
+ D .
6.直线l 过抛物线28y x =的焦点, 且与抛物线交于A (1122,,)(,)x y B x y )两点,则
A .1264y y ⋅=-
B .128y y ⋅=-
C .124x x ⋅=
D .1216x x ⋅=
7.下列说法不正确的是 A .“2
000,10x R x x ∃∈--<”的否定是“2,10x R x x ∀∈--≥”
B .命题“若x>0且y>0,则x +y>0”的否命题是假命题
C .212,0,a R x x a x x ∃∈++=使方程2的两根满足x 1<1<x 2”和“函数2()log (1)f x ax =-在[1,2]上单调递增”同时为真
D .△ABC 中,A 是最大角,则22sin sin B C +<sin 2A 是△ABC 为钝角三角形的弃要条件
8.实数对(x,y )满足不等式组20,
250,20,x y x y y --≤⎛
+-≥ -≤⎝
若目标函数3,1z kx y x y =-==在时取最大值,
则k 的取值范围是 A .1(,)[1,)2
-∞-+∞ B .1[,1]2
-
C .1[,)2
-+∞
D .(,1]-∞-
9.函数()sin()(0,0)11f x A x A x x ωϕω=+>>==-在和处分别取得最大值和最小值,且对于任
意12121212
()()
,[1,1],,0,f x f x x x x x x x -∈-≠>-都有则
A .函数(1)y f x =+一定是周期为4的偶函数
B .函数(1)y f x =+一定是周期为2的奇函数
C .函数(1)y f x =+一定是周期为4的奇函数
D .函数(1)y f x =+一定是周期为2的偶函数
10.向量(2,0),(,),a b x y ==若b 与b —a 的夹角等于
6
π
,则||b 的最大值为 A .4
B .
C .2
D
第Ⅱ卷(非选择题,共100分)
二、填空题(本大题共5小题,每小题5分,共25分。

把答案填在答题卷的相应位置) 11.一支运动队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽取一个样本,
已知某男运动员被抽中的概率为
2
7
,则抽取的女运动员的人数为 。

12.若曲线1()sin 2f x x x =
-的切线的倾斜 角为α,则α的取值范围是 。

13.执行右边的程序框图,则输出的T 的值是 。

1410-=仅有一解,则实数a 的取值
范围上 。

15.若函数2()(*)f x x n N =∈图像在点(1,1)处的切线为12,l l 在x 轴,y 轴上的截距分别为,n n a b ,
则数列{25}n n a b +的最大项为 。

三、解答题(本大题共6小题,共75分,解答应写出必要的文字说明,证明过程或演算步骤) 16.(本小题满分12分)
已知向量cos ,1),(cos ,()),.m x x n x f x m n =+=-⊥
(1)求()f x 的单调区间;
(2)已知A 为△ABC 的内角,若1()1,22A
f a b =
+==求△ABC 的面积。

17.(本小题满分13分) 实数a,b 是分别从集合A={1,2,3,4}中随机抽取的元素(a 与b 可以相同),集合
B=2
{|0}.x x ax b -+= (1)写出使B φ≠的所有实数对(,);a b
(2)求椭机抽取的a 与b 的值使B φ≠且B A ⊆的概率.
18.(本小题满分12分)
已知斜三棱柱ABC —A 1B 1C 1的各棱长均为2,点B 1在平面ABC 上的射影O 为AB 的中点。

(1)求证:B 1C ⊥平面ABC 1; (2)求二面角C —AB 1—B 的余弦值.
19.(本小题满分13分)
椭圆E 2222:1(0)x y a b a b
+=>>的离心率为1
,212(,0),(,0)F c F c -分别是左、
右焦点,过F 1的直线与圆22()(2)1x c y +++=相切,且与椭圆E 交于A ,B 两点,且16
||.5
AB = (1)求椭圆E 的方程;
(2)设M 为椭圆E 上一动点,点N (0,,求||MN
的最大值。

20.(本小题满分12分)
已知函数2
()ln(1)1,[0,)f x e x x =-+-∈+∞.
(1)判断函数()f x 的单调性并求出函数()f x 的最小值;
(2)若[3,),x ∈+∞时不等式3
ln(1)ln x e
x m ->+-恒成立,求m 的取值范围.
21.(本小题满分13分)
已知
{}
n a 是等比数列,公比q>1,前n 项和为
342127,,4,{}:2,1,2,....
2
n
b n n n S S a b a n
a +===
=且
数列满足 (1)求数列{},{}n n a b 的通项公式; (2)设数数1{}n n b b +的前n 项和为T n ,求证
11
(*).32
n T n N ≤<∈。

相关文档
最新文档