2011年北京高考文科数学试题 及答案
2011年高考北京卷数学(文)试题(真题)
绝密★使用完毕前 2011年普通高等学校招生全国统一考试 数学(文)(北京卷) 本试卷共5页,150分。
考试时间长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知全集U=R,集合P={x ︱x 2≤1},那么(A )(-∞, -1] (B )[1, +∞) (C )[-1,1] (D )(-∞,-1] ∪[1,+∞)(2)复数212i i-=+ (A )i (B )-i (C )4355i -- (D )4355i -+ (3)如果,0log log 2121<<y x 那么(A )y< x<1 (B )x< y<1(C )1< x<y (D )1<y<x(4)若p 是真命题,q 是假命题,则(A )p ∧q 是真命题 (B )p ∨q 是假命题(C )﹁p 是真命题 (D )﹁q 是真命题(5)某四棱锥的三视图如图所示,该四棱锥的表面积是(A )32(B )16+162(C )48(D )16+322(6)执行如图所示的程序框图,若输入A 的值为2,则输入的P 值为(A)2(B)3(7)某车间分批生产某种产品,每批的生产准备费用为800元。
若每批生产x件,则平均仓储时间为8x 天,且没见产品每天的仓储费用为1元。
为使平均没见产品的生产准备费用与仓储费用之和最小,每批应生产产品(A )60件 (B )80件 (C )100件 (D )120件(8)已知点A(0,2),B(2,0). 若点C 在函数y = x 的图像上,则使得ΔABC 的面积为2的点C 的个数为(A )4 (B )3 (C )2 (D )1第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2011年普通高等学校招生全国统一考试 文数(北京卷)
2011年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出四个选项中,选出符合题目要求的一项。
(1)已知全集U=R ,集合{}21P x x =∣≤,那么U P =ð(A)(,1-∞-)(B)(1,+∞)(C)(-1,1)(D)()()11-∞,-,+∞ (2)复数212i i -=+(A)i (B )i -(C)4355i --(D)4355i -+(3)如果1122log log 0x y <<,那么(A )1y x <<(B)1x y <<(C)1x y <<(D)1y x<<(4)若p 是真命题,q 是假命题,则(A )p q ∧是真命题(B)p q ∨是假命题(C)p ⌝是真命题(D)q ⌝是真命题(5)某四棱锥的三视图如图所示,该四棱锥的表面积是(A)32(B)16+162(C)48(D)16322+(6)执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为(A)2(B)3(C)4(D)5(7)某车间分批生产某种产品,每批的生产准备费用为800元。
若每批生产x 件,则平均仓储时间为8x 天,且每件产品每天的仓储费用为1元。
为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品(A )60件(B)80件(C )100件(D )120件(8)已知点()()0,2,2,0A B 。
若点C 在函数2y x =的图象上,则使得ABC 的面积为2的点C 的个数为(A )4(B)3(C)2(D)1第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
(9)在ABC 中,若15,,sin 43b B A π=∠==,则a =.(10)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b =.(11)已知向量(01),(a b c k ==-=。
2011北京全国统一高考文数卷(真题)
2011北京全国统一高考文数卷(真题)
2013年全国性的高考马上就要开始了,现在临阵磨枪,也为时不晚。
出国留学网作为大家准备了大量丰富的高考试题及高考资料为筒靴们磨枪,不快也光:
2011年普通高等学校招生全国统一考试(北京卷)
数学(文)
本试卷共5页,150分.考试时间长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.
第一部分(选择题共40分)
一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,
选出符合题目要求的一项.。
2011年普通高等学校招生全国统一考试数学试题(北京卷) 文 (精校版含答案)
2011年普通高等学校招生全国统一考试数学(文)(北京卷) 本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、 选择题共8小题,每小题5分,共40分。
在每小题列出四个选项中,选出符合题目要求的一项。
(1) 已知全集U=R ,集合{}21P x x =∣≤,那么U P =ð(A)(,1-∞-) (B)(1,+∞) (C)(-1,1) (D)()()11-∞,-,+∞(2)复数212i i-=+ (A)i (B )i - (C)4355i -- (D)4355i -+ (3)如果1122log log 0x y <<,那么(A )1y x << (B)1x y << (C)1x y << (D)1y x <<(4)若p 是真命题,q 是假命题,则(A )p q ∧是真命题 (B)p q ∨是假命题题 (C)p ⌝是真命题 (D)q ⌝是真命(5)某四棱锥的三视图如图所示,该四棱锥的表面积是 (A)32(B)16+(C)48(D)16+(6)执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为(A)2(B)3(C)4(D)5(7)某车间分批生产某种产品,每批的生产准备费用为800元。
若每批生产x 件,则平均仓储时间为8x 天,且每件产品每天的仓储费用为1元。
为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品(A )60件 (B)80件 (C )100件 (D )120件(8)已知点()()0,2,2,0A B 。
若点C 在函数2y x =的图象上,则使得ABC 的面积为2的点C 的个数为(A )4 (B)3 (C)2 (D)1第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
(9)在ABC 中,若15,,sin 43b B A π=∠==,则a = . (10)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b = .(11)已知向量),(01),(a b c k ==-=2a b -与c ,共线,则k = .(12)在等比数列{}n a 中,若141,4,2a a ==则公比q = ; 12n a a a ++⋯+= .数 若关于x 的方程()f x k = 有两个不同的实(13)已知函根,则实数k 的取值范围是 . (14)设(0,0),(4,0),(4,3),(,3)(A B C t D t t +∈R )。
2011年北京卷(文科数学)
2011年普通高等学校招生全国统一考试文科数学(北京卷)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U R =,集合2{1}P xx =∣≤,那么U C P = A .(,1)-∞- B .(1,)+∞C .(1,)+∞D .(1)(1)-∞,-,+∞U2.复数212i i -=+ A.i B.i - C.4355i -- D.4355i -+ 3.如果1122log log 0x y <<,那么A .1y x <<B .1x y <<C .1x y <<D .1y x <<4.若p 是真命题,q 是假命题,则A .p q ∧是真命题B .p q ∨是假命题C .p ⌝是真命题D .q ⌝是真命题5.某四棱锥的三视图如图所示,该四棱锥的表面积是A .32B .16162+C .48D .16322+6.执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为A .2B .3C .4D .57.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为8x 天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品A .60件B .80件C .100件D .120件8.已知点(0,2)A ,(2,0)B .若点C 在函数2y x =的图象上,则使得ABC ∆的面积为2的点C 的个数为A .4B .3C .2D .1二、填空题:共6小题,每小题5分,共30分.9.在ABC ∆中,若若5b =,4B π∠=,tan 2A =,则a = . 10.已知双曲线2221y x b-=(0b >)的一条渐近线的方程为2y x =,则b = . 11.已知向量a =r ,(0,1)b =-r,(c k =r .若2a b -r r 与c r 共线,则k = .12.在等比数列{}n a 中,112a =,44a =-,则公比q = ;12n a a a ++⋯+=_ . 13.已知函数322()(1)2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是 .14.设(0,0)A ,(4,0)B ,(4,4)C t +,(,3)D t (t R ∈).记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则(0)N = , ()N t 的所有可能的取值为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分) 已知函数()4cos sin()16f x x x π=+-. (Ⅰ)求()f x 的最小正周期:(Ⅱ)求()f x 在区间[,]64ππ-上的最大值和最小值. 17.(本小题满分13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(Ⅰ)如果8X =,求乙组同学植树棵数的平均数和方差;(Ⅱ)如果9X =,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树为19的概率.18.(本小题满分14分)如图,在四面体PABC 中,PC AB ⊥,PA BC ⊥,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(Ⅰ)求证:DE //平面BCP ;(Ⅱ)求证:四边形DEFG 为矩形;(Ⅲ)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由.19.(本小题满分13分)已知函数()()x f x x k e =-. 甲组 乙组 0 1 1 9 9 1 0 8 9 X P A BC E F G H(Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值.19.(本小题满分14分)已知椭圆C :22221x y a b+=(0a b >>.斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为(3,2)P -. (Ⅰ)求椭圆C 的方程;(Ⅱ)求PAB ∆的面积.20.(本小题满分13分)若数列n A :1a ,2a ,L ,n a (2n ≥),满足111n a a +-=,(1,2,,1k n =-L ),则称数列n A 为E 数列,记12()n n S A a a a =+++L .(Ⅰ)写出一个满足10s a a ==,且5()0S A >的E 数列n A ; (Ⅱ)若112a =,2000n =,证明:E 数列n A 是递增数列的充要条件是2011n a =; (Ⅲ)在14a =的E 数列n A 中,求使得()0n S A =成立的n 的最小值.。
2011年北京市高考数学试卷
2011年北京市高考数学试卷(文科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)已知全集U=R,集合P={x|x2≤1},那么∁U P=()A.(﹣∞,﹣1]B.[1,+∞)C.[﹣1,1]D.(﹣∞,﹣1)∪(1,+∞)2.(5分)复数()A.i B.﹣i C.D.3.(5分)如果x y<0,那么()A.y<x<1B.x<y<1C.1<x<y D.1<y<x 4.(5分)若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.¬p是真命题D.¬q是真命题5.(5分)某四棱锥的三视图如图所示,该四棱锥的表面积是()A.16B.16+16C.32D.16+32 6.(5分)执行如图所示的程序框图,若输入A的值为2,则输入的P值为()A.2B.3C.4D.57.(5分)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4B.3C.2D.1二、填空题(共6小题,每小题5分,满分30分)9.(5分)在△ABC中.若b=5,,sin A,则a=.10.(5分)已知双曲线x21(b>0)的一条渐近线的方程为y=2x,则b=.11.(5分)已知向量(,1),(0,﹣1),(k,).若与共线,则k=.12.(5分)在等比数列{a n}中,a1,a4=﹣4,则公比q=;a1+a2+…+a n=.13.(5分)已知函数若关于x的方程f(x)=k有两个不同的实根,则数k的取值范围是.14.(5分)设A(0,0),B(4,0),C(t+4,3),D(t,3)(t∈R).记N(t)为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N(0)=,N(t)的所有可能取值为.三、解答题(共6小题,满分80分)15.(13分)已知f(x)=4cos x sin(x)﹣1.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[,]上的最大值和最小值.16.(13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(注:方差,其中的平均数)(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.17.(14分)如图,在四面体P ABC中,PC⊥AB,P A⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(Ⅰ)求证:DE∥平面BCP;(Ⅱ)求证:四边形DEFG为矩形;(Ⅲ)是否存在点Q,到四面体P ABC六条棱的中点的距离相等?说明理由.18.(13分)已知函数f(x)=(x﹣k)e x.(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在区间[0,1]上的最小值.19.(14分)已知椭圆G:1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).(Ⅰ)求椭圆G的方程;(Ⅱ)求△P AB的面积.20.(13分)若数列A n:a1,a2,…,a n(n≥2)满足|a k+1﹣a k|=1(k=1,2,…,n﹣1),则称A n为E数列,记S(A n)=a1+a2+…+a n.(Ⅰ)写出一个E数列A5满足a1=a3=0;(Ⅱ)若a1=12,n=2000,证明:E数列A n是递增数列的充要条件是a n=2011;(Ⅲ)在a1=4的E数列A n中,求使得S(A n)=0成立得n的最小值.。
2011年高考真题详解——北京卷(文科数学)
2011年普通高等学校招生全国统一考试【北京卷】(文科数学)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页.全卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题:(每小题5分,共60分)【2011⋅北京文,1】1.已知全集U=R ,集合{}21P x x =∣≤,那么U P =ð ( ).A .(,1)-∞-B .(1,)+∞C .(1,1)-D .()()11-∞,-,+∞ 【答案】D .【解析】 2111x x ≤⇒-≤≤,U C P =()()11-∞,-,+∞ ,故选择D .【2011⋅北京文,2】2.复数212i i-=+ ( ). A .i B .i - C .4355i -- D .4355i -+【答案】A .【解析】22i 2(i 2)(12i)2242(1)2412i (12i)(12i)1414(1)i i i i ii i ---------+====++----,故选择A . 【2011⋅北京文,3】3.如果1122log log 0x y <<,那么( ).A .1y x <<B .1x y <<C .1x y <<D .1y x << 【答案】D .【解析】 1122log log x y x y <⇒>,12log 01y y <⇒>,即1y x <<故选D .【2011⋅北京文,4】4.若p 是真命题,q 是假命题,则( ).A .p q ∧是真命题B .p q ∨是假命题C .p ⌝是真命题D .q ⌝是真命题 【答案】D .【解析】 或(∨)一真必真,且(∧)一假必假,非(⌝)真假相反,故选D . 【2011⋅北京文,5】5.某四棱锥的三视图如图所示,该四棱锥的表面积是( ).A .32B .16+C .48D .16+【答案】B .【解析】由三视图可知几何体为底面边长为4,高为2的正四棱锥,则四棱锥的斜高为214442⨯⨯+16=+B .【2011⋅北京文,6】6.执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为( ).A .2B .3C .4D .5 【答案】C .【解析】 执行三次循环,12S A =≤=成立,112p =+=,1131122S P =+=+=,322S A =≤=成立,213p =+=,3131112236S P =+=+=,1126S A =≤=成立,314p =+=,1111112566412S p =+=+=,25212S A =≤=不成立,输出4p =,故选C . 【2011⋅北京文,7】7.某车间分批生产某种产品,每批的生产准备费用为800元。
2011年高考北京市数学试卷-文科(含详细答案)
2011年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出四个选项中,选出符合题目要求的一项。
(1) 已知全集U=R ,集合{}21P x x =½£,那么U P =ð(A)(,1-¥-) (B)(1,+¥) (C)(-1,1) (D)()()11-¥,-,+¥【解析】:2111x x £Þ-££,U P =ð()()11-¥,-,+¥ ,故选D (2)复数212ii-=+(A)i (B )i - (C)4355i -- (D)4355i -+ 【解析】:22i 2(i 2)(12i)2242(1)2412i (12i)(12i)1414(1)i i i i i i i ---------+====++----,选A 。
(3)如果1122log log 0x y <<,那么,那么(A )1y x << (B)1x y << (C)1x y << (D)1y x << 【解析】:1122log log x y x y <Þ>,12log 01y y <Þ>,即1y x <<故选D(4)若p 是真命题,q 是假命题,则是假命题,则(A )p q Ù是真命题是真命题 (B)p q Ú是假命题是假命题 (C)p Ø是真命题是真命题 (D)q Ø是真命题是真命题 【解析】:或(Ú)一真必真,且(Ù)一假必假,非(Ø)真假相反,故选D(5)某四棱锥的三视图如图所示,该四棱锥的表面积是(A)32 (B)16+162 (C)48 (D)16322+【解析】:由三视图可知几何体为底面边长为4,高为2的正四棱锥,则四棱锥的斜高为22,表面积2142244161622´´´+=+故选B 。
2011年北京高考数学文科试卷带详解
2011年普通高等学校招生全国统一考试数学(文)(北京卷)一.选择题共8小题,每小题5分,共40分.在每小题列出四个选项中,选出符合题目要求的一项.1. 已知全集,集合,那么().A. ()B. ()C.(-1,1)D.【测量目标】集合的含义、基本运算.【考查方式】解不等式,求解补集.【参考答案】D【试题解析】,,故选D.2. 复数().A. B.C. D.【测量目标】复数代数形式的四则运算.【考查方式】复数的除法运算,直接计算出结果.【参考答案】A【试题解析】,选A.3. 如果,那么().A. B.C. D.【测量目标】对数函数的性质、函数值比较.【考查方式】由对数函数增减性,求解定义域.【参考答案】D【试题解析】,,即故选D.4. 若是真命题,是假命题,则().A.是真命题B.是假命题C.是真命题D.是真命题【测量目标】命题的概念.【考查方式】命题的真假判断.【参考答案】D【试题解析】:或()一真必真,且()一假必假,非()真假相反,故选D.5. 某四棱锥的三视图如图所示,该四棱锥的表面积是().A.32B.16+C.48D.【测量目标】由三视图求几何体的表面积.【考查方式】由三视图想象出四棱锥结构,进而计算其表面积.【参考答案】B【试题解析】由三视图可知几何体为底面边长为4,高为2的正四棱锥,则四棱锥的斜高为,表面积故选B.如图所示的程序框图,若输入的值为2,则输出的值为().A.2B.3C.4D.5【测量目标】循环结构的程序框图.【考查方式】由循环语句、条件语句执行程序,直至结束.【参考答案】C【试题解析】执行三次循环,成立,(步骤1),,成立,(步骤2),,成立,(步骤3),,不成立,(步骤4)输出,故选C.(步骤5)7. 某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产件,则平均仓储间为天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储用之和最小,每批应生产产品().A.60件B.80件C.100件D.120件【测量目标】一元二次函数的实际应用.【考查方式】一元二次函数的实际应用,解方程.【参考答案】B【试题解析】仓储费用,每件产品的生产费用与仓储费用之和:,当且仅当即时,上式取等号.每批应生产产品80件,故选B.8.已知点.若点在函数的图象上,则使得的面积为2的点的个数为().A.4B.3C.2D.1【测量目标】二次函数德尔图像和性质.【考查方式】由二次函数的性质和点到直线的距离公式求解.【参考答案】A【试题解析】设的直线方程为即,由得即,(步骤1)由点到直线的距离公式得,即解得,,或,或故选A.(步骤2)第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9. 在中,若,则 .【测量目标】解三角形、正弦定理.【考查方式】由正弦定理,直接求出答案.【参考答案】【试题解析】由正弦定理得,又..10. 已知双曲线的一条渐近线的方程为,则 .【测量目标】双曲线的标准方程和简单的几何性质.【考查方式】双曲线的渐近线与题中渐近线比较法得出结果.【参考答案】2【试题解析】由得渐近线的方程为即,由一条渐近线的方程为得2.11. 已知向量.若与共线,则= .【测量目标】向量的坐标运算.【考查方式】共线向量中,由对应坐标成比例求解.【参考答案】1【试题解析】由与共线得12. 在等比数列中,若则公比;.【测量目标】等比数列的基本性质和前n项和.【考查方式】由通项公式求解公比和求和公式.【参考答案】2;【试题解析】由是等比数列得,又所以,.13. 已知函数若关于的方程有两个不同的实根,则实数的取值范围是 . 【测量目标】分段函数.【考查方式】画出分段函数,找到单调区间,比较法.【参考答案】(0,1)【试题解析】单调递减且值域为(0,1],单调递增且值域为,有两个不同的实根,则实数k的取值范围是(0,1).14. 设).记为平行四边形内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则;的所有可能取值为 .【测量目标】平行四边形的性质定理.【考查方式】由点坐标得出范围,一一求解.【参考答案】6 ;6,7,8.【试题解析】在, , 时分别对应点为6,8,7.在平面直角坐标系中画出平行四边形,其中位于原点,位于正半轴;(步骤1)设与边的交点为,与边的交点为,四边形内部(不包括边界)的整点都在线段上,(步骤2)线段上的整点有3个或4个,,不难求得点,(步骤3)①当为型整数时,都是整点,,(步骤4)②当为型整数时,,都不是整点,,(步骤5)③当为型整数时,,都不是整点,(以上表述中为整数)(步骤6)上面3种情形涵盖了的所有整数取值,所以的值域为{6,7,8 }.(步骤7)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知函数(Ⅰ)求的最小正周期;(Ⅱ)求在区间上的最大值和最小值.【测量目标】三角函数最值问题.【考查方式】同名三角函数化简,进而求解周期、最值.【试题解析】(Ⅰ).(步骤1)的最小正周期为.(步骤2)(Ⅱ)(步骤3)当即时,取得最大值2;(步骤4)当,即,取得最小值.(步骤5)16.(本小题共13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中经X表示.(Ⅰ)如果,求乙组同学植树棵数的平均数和方差;(Ⅱ)如果,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差其中为,,的平均数)【测量目标】茎叶图.【考查方式】由样本容量求解平均数、方差和概率.【试题解析】(Ⅰ)当时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为(步骤1)方差为(步骤2)(Ⅱ)记甲组四名同学为A1,A2,A3,A4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B1,B2,B3,B4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(A3,B1),(A3,B2),(A3,B3),(A3,B4),(A4,B1),(A4,B2),(A4,B3),(A4,B4),用C 表示:“选出的两名同学的植树总棵数为19”这一事件,则C中的结果有4个,它们是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),故所求概率为(步骤3)17.(本小题共14分)如图,在四面体中,点分别是棱的中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:四边形为矩形;(Ⅲ)是否存在点,到四面体六条棱的中点的距离相等?说明理由.【测量目标】空间立体中线面平行的判定,立体几何中的探索性问题.【考查方式】线面平行定理的应用,反证法求解.【试题解析】证明:(Ⅰ)分别为的中点,//,平面,(步骤1)//平面.(步骤2)(Ⅱ)分别为的中点,// //, // //,(步骤3)四边形为平行四边形,(步骤4)又,所以,所以四边形为矩形.(步骤5)(Ⅲ)存在点满足条件,理由如下:连接设为的中点,由(Ⅱ)知,且(步骤6)分别取、的中点,连接.与(Ⅱ)同理,可证四边形为矩形,其对角线点为的中点且,所以为满足条件的点.(步骤7)18.(本小题共13分)已知函数.(Ⅰ)求的单调区间;(Ⅱ)求在区间上的最小值.【测量目标】利用导数求函数的单调区间和最值.【考查方式】函数求导,由函数值变化判断单调区间,进而求解最值.【试题解析】(Ⅰ)令,得.(步骤1)与的情况如下:()(—0+↗↗骤2)的单调递减区间是();单调递增区间是.(步骤3)(Ⅱ)当,即时,函数在[0,1]上单调递增,在区间[0,1]上的最小值为(步骤4)当时,由(Ⅰ)知在上单调递减,在上单调递增,在区间[0,1]上的最小值为;(步骤5)当时,函数在[0,1]上单调递减,在区间[0,1]上的最小值为(步骤6)19.(本小题共14分)已知椭圆的离心率为,右焦点为.斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.(Ⅰ)求椭圆的方程;(Ⅱ)求的面积.【测量目标】椭圆的标准方程及简单的几何性质.【考查方式】利用离心率、焦点坐标计算出椭圆方程进而设出直线,与椭圆方程联立,求解.【试题解析】(Ⅰ)由已知得(步骤1)解得又(步骤2)椭圆G的方程为(步骤3)(Ⅱ)设直线的方程为由得(步骤4)设的坐标分别为中点为,则.(步骤5)是等腰的底边,所以,的斜率解得.此时方程①为解得(步骤6).此时,点到直线:的距离所以的面积(步骤7)20.(本小题共13分)若数列满足,则称为数列.记.(Ⅰ)写出一个数列满足;(Ⅱ)若,证明:数列是递增数列的充要条件是;(Ⅲ)在的数列中,求使得成立的的最小值. 【测量目标】数列通项公式的整理变形;充分必要条件的概念.【考查方式】使用列举法、观察法求得答案(Ⅰ);充分和必要分开进行论证解决答案(Ⅱ);由首相为4可求得后面的每一项,使用列举法列出,再根据题设要求,求解.【试题解析】(Ⅰ)是一组满足条件的数列.(答案不唯一;都是满足条件的数列).(步骤1)(Ⅱ)必要性:因为数列是递增数列,所以所以此数列为首项为12,公差为1的等差数列. 所以.(步骤2)充分性:因为所以即.(步骤3)又因为,所以.故,即时递增数列.综上,结论得证.(步骤4)(Ⅲ)对首项为4的数列,由于,(步骤5)所以对任意首项为4的数列,若,则必有.(步骤6)又的数列:满足.所以的最小值是9.(步骤7)。
2011年北京市高考数学试卷(文科)(含解析版)
绝密★本科目考试启用前2011年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题(共8小题,每小题5分,满分40分)1.(5分)已知全集U=R,集合P={x|x2≤1},那么∁U P=()A.(﹣∞,﹣1]B.[1,+∞)C.[﹣1,1]D.(﹣∞,﹣1)∪(1,+∞)2.(5分)复数=()A.i B.﹣i C.D.3.(5分)如果log x<log y<0,那么()A.y<x<1B.x<y<1C.1<x<y D.1<y<x 4.(5分)若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.﹁p是真命题D.﹁q是真命题5.(5分)某四棱锥的三视图如图所示,该四棱锥的表面积是()A.16B.16+16C.32D.16+32 6.(5分)执行如图所示的程序框图,若输入A的值为2,则输入的P值为()A.2B.3C.4D.57.(5分)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4B.3C.2D.1二、填空题(共6小题,每小题5分,满分30分)9.(5分)在△ABC中.若b=5,,sinA=,则a=.10.(5分)已知双曲线x2﹣=1(b>0)的一条渐近线的方程为y=2x,则b=.11.(5分)已知向量=(,1),=(0,﹣1),=(k,).若与共线,则k=.12.(5分)在等比数列{a n}中,a1=,a4=﹣4,则公比q=;a1+a2+…+a n=.13.(5分)已知函数若关于x的方程f(x)=k有两个不同的实根,则数k的取值范围是.14.(5分)设A(0,0),B(4,0),C(t+4,3),D(t,3)(t∈R).记N(t)为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N(0)=,N(t)的所有可能取值为.三、解答题(共6小题,满分80分)15.(13分)已知f(x)=4cosxsin(x+)﹣1.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣,]上的最大值和最小值.16.(13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(注:方差,其中的平均数)(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.17.(14分)如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(Ⅰ)求证:DE∥平面BCP;(Ⅱ)求证:四边形DEFG为矩形;(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.18.(13分)已知函数f(x)=(x﹣k)e x.(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在区间[0,1]上的最小值.19.(14分)已知椭圆G:=1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).(Ⅰ)求椭圆G的方程;(Ⅱ)求△PAB的面积.20.(13分)若数列A n:a1,a2,…,a n(n≥2)满足|a k+1﹣a k|=1(k=1,2,…,n﹣1),则称A n为E数列,记S(A n)=a1+a2+…+a n.(Ⅰ)写出一个E数列A5满足a1=a3=0;(Ⅱ)若a1=12,n=2000,证明:E数列A n是递增数列的充要条件是a n=2011;(Ⅲ)在a1=4的E数列A n中,求使得S(A n)=0成立得n的最小值.2011年北京市高考数学试卷(文科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)已知全集U=R,集合P={x|x2≤1},那么∁U P=()A.(﹣∞,﹣1]B.[1,+∞)C.[﹣1,1]D.(﹣∞,﹣1)∪(1,+∞)【考点】1F:补集及其运算.【专题】5J:集合.【分析】先求出集合P中的不等式的解集,然后由全集U=R,根据补集的定义可知,在全集R中不属于集合P的元素构成的集合为集合A的补集,求出集合P的补集即可.【解答】解:由集合P中的不等式x2≤1,解得﹣1≤x≤1,所以集合P=[﹣1,1],由全集U=R,得到C U P=(﹣∞,1)∪(1,+∞).故选:D.【点评】此题属于以不等式的解集为平台,考查了补集的运算,是一道基础题.2.(5分)复数=()A.i B.﹣i C.D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】将分子、分母同乘以1﹣2i,再按多项式的乘法法则展开,将i2用﹣1代替即可.【解答】解:==i故选:A.【点评】本题考查复数的除法运算法则:分子、分母同乘以分母的共轭复数;再按多项式的乘法法则展开即可.3.(5分)如果log x<log y<0,那么()A.y<x<1B.x<y<1C.1<x<y D.1<y<x【考点】4O:对数函数的单调性与特殊点.【专题】51:函数的性质及应用.【分析】本题所给的不等式是一个对数不等式,我们要先将不等式的三项均化为同底根据对数函数的单调性,即可得到答案.【解答】解:不等式可化为:又∵函数的底数0<<1故函数为减函数∴x>y>1故选:D.【点评】本题考查的知识点是对数函数的单调性与特殊点,其中根据对数函数的性质将对数不等式转化为一个整式不等式是解答本题的关键.4.(5分)若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.﹁p是真命题D.﹁q是真命题【考点】2E:复合命题及其真假.【专题】5L:简易逻辑.【分析】根据题意,由复合命题真假表,依次分析选项即可作出判断.【解答】解:∵p是真命题,q是假命题,∴p∧q是假命题,选项A错误;p∨q是真命题,选项B错误;¬p是假命题,选项C错误;¬q是真命题,选项D正确.故选:D.【点评】本题考查复合命题的真假情况.5.(5分)某四棱锥的三视图如图所示,该四棱锥的表面积是()A.16B.16+16C.32D.16+32【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由已知中的三视力可得该几何体是一个四棱锥,求出各个面的面积,相加可得答案.【解答】解:由已知中的三视力可得该几何体是一个四棱锥,棱锥的底面边长为4,故底面面积为16,棱锥的高为2,故侧面的高为:2,则每个侧面的面积为:=4,故棱锥的表面积为:16+16,故选:B.【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.6.(5分)执行如图所示的程序框图,若输入A的值为2,则输入的P值为()A.2B.3C.4D.5【考点】E7:循环结构.【专题】5K:算法和程序框图.【分析】根据输入A的值,然后根据S进行判定是否满足条件S≤2,若满足条件执行循环体,依此类推,一旦不满足条件S≤2,退出循环体,求出此时的P值即可.【解答】解:S=1,满足条件S≤2,则P=2,S=1+=满足条件S≤2,则P=3,S=1++=满足条件S≤2,则P=4,S=1+++=不满足条件S≤2,退出循环体,此时P=4故选:C.【点评】本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断.7.(5分)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件【考点】5C:根据实际问题选择函数类型.【专题】51:函数的性质及应用.【分析】若每批生产x件,则平均仓储时间为天,可得仓储总费用为,再加上生产准备费用为800元,可得生产x件产品的生产准备费用与仓储费用之和是=元,由此求出平均每件的生产准备费用与仓储费用之和,再用基本不等式求出最小值对应的x值【解答】解:根据题意,该生产x件产品的生产准备费用与仓储费用之和是=这样平均每件的生产准备费用与仓储费用之和为(x 为正整数)由基本不等式,得当且仅当时,f(x)取得最小值、可得x=80时,每件产品的生产准备费用与仓储费用之和最小故选:B.【点评】本题结合了函数与基本不等式两个知识点,属于中档题,运用基本不等式时应该注意取等号的条件,才能准确给出答案.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4B.3C.2D.1【考点】K8:抛物线的性质.【专题】51:函数的性质及应用.【分析】本题可以设出点C的坐标(a,a2),求出C到直线AB的距离,得出三角形面积表达式,进而得到关于参数a的方程,转化为求解方程根的个数(不必解出这个根),从而得到点C的个数.【解答】解:设C(a,a2),由已知得直线AB的方程为,即:x+y﹣2=0点C到直线AB的距离为:d=,有三角形ABC的面积为2可得:=|a+a2﹣2|=2得:a2+a=0或a2+a﹣4=0,显然方程共有四个根,可知函数y=x2的图象上存在四个点(如上面图中四个点C1,C2,C3,C4)使得△ABC的面积为2(即图中的三角形△ABC1,△ABC2,△ABC3,△ABC4).故选:A.【点评】本题考查了截距式直线方程,点到直线的距离公式,三角形的面积的求法,就参数的值或范围,考查了数形结合的思想二、填空题(共6小题,每小题5分,满分30分)9.(5分)在△ABC中.若b=5,,sinA=,则a=.【考点】HP:正弦定理.【专题】58:解三角形.【分析】直接利用正弦定理,求出a的值即可.【解答】解:在△ABC中.若b=5,,sinA=,所以,a===.故答案为:.【点评】本题是基础题,考查正弦定理解三角形,考查计算能力,常考题型.10.(5分)已知双曲线x2﹣=1(b>0)的一条渐近线的方程为y=2x,则b= 2.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用双曲线的标准方程写出其渐近线方程是解决本题的关键,根据已知给出的一条渐近线方程对比求出b的值.【解答】解:该双曲线的渐近线方程为,即y=±bx,由题意该双曲线的一条渐近线的方程为y=2x,又b>0,可以得出b=2.故答案为:2.【点评】本题考查根据双曲线方程求解其渐近线方程的方法,考查学生对双曲线标准方程和渐近线方程的认识和互相转化,考查学生的比较思想,属于基本题型.11.(5分)已知向量=(,1),=(0,﹣1),=(k,).若与共线,则k=1.【考点】9K:平面向量共线(平行)的坐标表示.【专题】5A:平面向量及应用.【分析】利用向量的坐标运算求出的坐标;利用向量共线的坐标形式的充要条件列出方程,求出k的值.【解答】解:∵与共线,∴解得k=1.故答案为1.【点评】本题考查向量的坐标运算、考查向量共线的坐标形式的充要条件:坐标交叉相乘相等.12.(5分)在等比数列{a n}中,a1=,a4=﹣4,则公比q=﹣2;a1+a2+…+a n=.【考点】87:等比数列的性质.【专题】54:等差数列与等比数列.【分析】根据等比数列的性质可知,第4项比第1项得到公比q的立方等于﹣8,开立方即可得到q的值,然后根据首项和公比,根据等比数列的前n项和的公式写出此等比数列的前n项和S n的通项公式,化简后即可得到a1+a2+…+a n 的值.【解答】解:q3==﹣8∴q=﹣2;由a1=,q=﹣2,得到:等比数列的前n项和S n=a1+a2+…+a n==.故答案为:﹣2;【点评】此题考查学生掌握等比数列的性质,灵活运用等比数列的前n项和公式化简求值,是一道基础题.13.(5分)已知函数若关于x的方程f(x)=k有两个不同的实根,则数k的取值范围是(0,1).【考点】53:函数的零点与方程根的关系.【专题】51:函数的性质及应用.【分析】要求程f(x)=k有两个不同的实根是数k的取值范围,根据方程的根与对应函数零点的关系,我们可以转化为求函数y=f(x)与函数y=k交点的个数,我们画出函数的图象,数形结合即可求出答案.【解答】解:函数的图象如下图所示:由函数图象可得当k∈(0,1)时方程f(x)=k有两个不同的实根,故答案为:(0,1)【点评】本题考查的知识点是根的存在性及根的个数判断,其中根据方程的根与对应函数零点的关系,将方程问题转化为函数问题是解答的关键.14.(5分)设A(0,0),B(4,0),C(t+4,3),D(t,3)(t∈R).记N(t)为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N(0)=6,N(t)的所有可能取值为6、7、8.【考点】7B:二元一次不等式(组)与平面区域.【专题】59:不等式的解法及应用.【分析】作出平行四边形,结合图象得到平行四边形中的整数点的个数.【解答】解:当t=0时,平行四边形ABCD内部的整点有(1,1);(1,2);(2,1);(2,2);(3,1);(3,2)共6个点,所以N(0)=6作出平行四边形ABCD将边OD,BC变动起来,结合图象得到N(t)的所有可能取值为6,7,8故答案为:6;6,7,8【点评】本题考查画可行域、考查数形结合的数学思想方法.三、解答题(共6小题,满分80分)15.(13分)已知f(x)=4cosxsin(x+)﹣1.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣,]上的最大值和最小值.【考点】GP:两角和与差的三角函数;H1:三角函数的周期性;HW:三角函数的最值.【专题】57:三角函数的图像与性质.【分析】(Ⅰ)利用两角和公式和二倍角公式对函数的解析式进行化简整理后,利用正弦函数的性质求得函数的最小正周期.(Ⅱ)利用x的范围确定2x+的范围,进而利用正弦函数的单调性求得函数的最大和最小值.【解答】解:(Ⅰ)∵,=4cosx()﹣1=sin2x+2cos2x﹣1=sin2x+cos2x=2sin(2x+),所以函数的最小正周期为π;(Ⅱ)∵﹣≤x≤,∴﹣≤2x+≤,∴当2x+=,即x=时,f(x)取最大值2,当2x+=﹣时,即x=﹣时,f(x)取得最小值﹣1.【点评】本题主要考查了三角函数的周期性及其求法,三角函数的最值.解题的关键是对函数解析式的化简整理.16.(13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(注:方差,其中的平均数)(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.【考点】BA:茎叶图;BB:众数、中位数、平均数;BC:极差、方差与标准差.【专题】5I:概率与统计.【分析】(1)根据所给的这组数据,利用求平均数的公式,把所有的数据都相加,再除以4,得到平均数,代入求方差的公式,做出方差.(2)本题是一个等可能事件的概率.分别从甲、乙两组中随机选取一名同学,共有16种结果,满足条件的事件是这两名同学的植树总棵数为19,可以列举出共有4种结果,根据等可能事件的概率公式得到结果.【解答】解:(1)当X=8时,由茎叶图可知乙组同学的植树棵树是8,8,9,10,∴平均数是,方差是+=.(2)由题意知本题是一个等可能事件的概率.若X=9,分别从甲、乙两组中随机选取一名同学,共有16种结果,满足条件的事件是这两名同学的植树总棵数为19,包括:(9,10),(11,8),(11,8),(9,10)共有4种结果,∴根据等可能事件的概率公式得到P=.【点评】本题考查一组数据的平均数和方差,考查等可能事件的概率,考查利用列举法来列举出符合条件的事件数和满足条件的事件数,本题是一个文科的考试题目.17.(14分)如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(Ⅰ)求证:DE∥平面BCP;(Ⅱ)求证:四边形DEFG为矩形;(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.【考点】LO:空间中直线与直线之间的位置关系;LS:直线与平面平行.【专题】5F:空间位置关系与距离;5Q:立体几何.【分析】(Ⅰ)根据两个点是两条边的中点,得到这条线是两条边的中位线,得到这条线平行于PC,根据线面平行的判定定理,得到线面平行.(Ⅱ)根据四个点是四条边的中点,得到中位线,根据中位线定理得到四边形是一个平行四边形,根据两条对角线垂直,得到平行四边形是一个矩形.(Ⅲ)做出辅助线,证明存在点Q到四面体PABC六条棱的中点的距离相等,根据第二问证出的四边形是矩形,根据矩形的两条对角线互相平分,又可以证出另一个矩形,得到结论.【解答】证明:(Ⅰ)∵D,E分别为AP,AC的中点,∴DE∥PC,∵DE⊄平面BCP,∴DE∥平面BCP.(Ⅱ)∵D,E,F,G分别为AP,AC,BC,PB的中点,∴DE∥PC∥FG,DG∥AB∥EF∴四边形DEFG为平行四边形,∵PC⊥AB,∴DE⊥DG,∴四边形DEFG为矩形.(Ⅲ)存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点,由(Ⅱ)知DF∩EG=Q,且QD=QE=QF=QG=EG,分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN,与(Ⅱ)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN=EG,∴Q为满足条件的点.【点评】本题考查直线与平面平行的判定,考查三角形中位线定理,考查平行四边形和矩形的判定及性质,本题是一个基础题.18.(13分)已知函数f(x)=(x﹣k)e x.(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在区间[0,1]上的最小值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】53:导数的综合应用.【分析】(I)求导,令导数等于零,解方程,跟据f′(x)f(x)随x的变化情况即可求出函数的单调区间;(Ⅱ)根据(I),对k﹣1是否在区间[0,1]内进行讨论,从而求得f(x)在区间[0,1]上的最小值.【解答】解:(Ⅰ)f′(x)=(x﹣k+1)e x,令f′(x)=0,得x=k﹣1,f′(x)f(x)随x的变化情况如下:x(﹣∞,k﹣1)k﹣1(k﹣1,+∞)f′(x)﹣0+f(x)↓﹣e k﹣1↑∴f(x)的单调递减区间是(﹣∞,k﹣1),f(x)的单调递增区间(k﹣1,+∞);(Ⅱ)当k﹣1≤0,即k≤1时,函数f(x)在区间[0,1]上单调递增,∴f(x)在区间[0,1]上的最小值为f(0)=﹣k;当0<k﹣1<1,即1<k<2时,由(I)知,f(x)在区间[0,k﹣1]上单调递减,f(x)在区间(k﹣1,1]上单调递增,∴f(x)在区间[0,1]上的最小值为f(k﹣1)=﹣e k﹣1;当k﹣1≥1,即k≥2时,函数f(x)在区间[0,1]上单调递减,∴f(x)在区间[0,1]上的最小值为f(1)=(1﹣k)e;综上所述f(x)min=.【点评】此题是个中档题.考查利用导数研究函数的单调性和在闭区间上的最值问题,对方程f'(x)=0根是否在区间[0,1]内进行讨论,体现了分类讨论的思想方法,增加了题目的难度.19.(14分)已知椭圆G:=1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).(Ⅰ)求椭圆G的方程;(Ⅱ)求△PAB的面积.【考点】K3:椭圆的标准方程;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)根据椭圆离心率为,右焦点为(,0),可知c=,可求出a的值,再根据b2=a2﹣c2求出b的值,即可求出椭圆G的方程;(Ⅱ)设出直线l的方程和点A,B的坐标,联立方程,消去y,根据等腰△PAB,求出直线l方程和点A,B的坐标,从而求出|AB|和点到直线的距离,求出三角形的高,进一步可求出△PAB的面积.【解答】解:(Ⅰ)由已知得,c=,,解得a=,又b2=a2﹣c2=4,所以椭圆G的方程为.(Ⅱ)设直线l的方程为y=x+m,由得4x2+6mx+3m2﹣12=0.①设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x0,y0),则x0==﹣,y0=x0+m=,因为AB是等腰△PAB的底边,所以PE⊥AB,所以PE的斜率k=,解得m=2.此时方程①为4x2+12x=0.解得x1=﹣3,x2=0,所以y1=﹣1,y2=2,所以|AB|=3,此时,点P(﹣3,2).到直线AB:y=x+2距离d=,所以△PAB的面积s=|AB|d=.【点评】此题是个中档题.考查待定系数法求椭圆的方程和椭圆简单的几何性质,以及直线与椭圆的位置关系,同时也考查了学生观察、推理以及创造性地分析问题、解决问题的能力.20.(13分)若数列A n:a1,a2,…,a n(n≥2)满足|a k+1﹣a k|=1(k=1,2,…,n﹣1),则称A n为E数列,记S(A n)=a1+a2+…+a n.(Ⅰ)写出一个E数列A5满足a1=a3=0;(Ⅱ)若a1=12,n=2000,证明:E数列A n是递增数列的充要条件是a n=2011;(Ⅲ)在a1=4的E数列A n中,求使得S(A n)=0成立得n的最小值.【考点】8B:数列的应用.【专题】55:点列、递归数列与数学归纳法.【分析】(Ⅰ)根据题意,a2=±1,a4=±1,再根据|a k+1﹣a k|=1给出a5的值,可以得出符合题的E数列A5;(Ⅱ)从必要性入手,由单调性可以去掉绝对值符号,可得是A n公差为1的等差数列,再证充分性,由递增数列的性质得出不等式,再利用同向不等式的累﹣a k=1>0,A n是递增数列;加,可得a k+1﹣a k|=1,可得a k+1≥a k﹣1,再结合已知条件a1=4,可得n的最小值.(Ⅲ)由|a k+1【解答】解:(Ⅰ)0,1,0,1,0是一个满足条件的E数列A5(答案不唯一,0,﹣1,0,﹣1,0或0,±1,0,1,2或0,±1,0,﹣1,﹣2或0,±1,0,﹣1,0都满足条件的E数列A5)(Ⅱ)必要性:因为E数列A n是递增数列﹣a k=1(k=1,2, (1999)所以a k+1所以A n是首项为12,公差为1的等差数列.所以a2000=12+(2000﹣1)×1=2011充分性:由于a2000﹣a1999≤1a1999﹣a1998≤1…a2﹣a1≤1,所以a2000﹣a1≤1999,即a2000≤a1+1999又因为a1=12,a2000=2011所以a2000≤a1+1999﹣a k=1>0(k=1,2,…,1999),即A n是递增数列.故a k+1综上所述,结论成立.(Ⅲ)对首项为4的E数列A n,由于a2≥a1﹣1=3a3≥a2﹣1≥2…a8≥a7﹣1≥﹣3…所以a1+a2+…+a k>0(k=2,3,…,8),所以对任意的首项为4的E数列A n,若S(A n)=0,则必有n≥9,又a1=4的E数列A9:4,3,2,1,0,﹣1,﹣2,﹣3,﹣4满足S(A9)=0,所以n的最小值是9.【点评】本题以数列为载体,考查了不等式的运用技巧,属于难题,将题中含有绝对值的等式转化为不等式是解决此题的关键.。
2011高考真题文数北京卷
2011年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
第一部分(选择题 共40分)一、选择题:(共8小题,每小题5分,共40分。
) (1)已知全集U=R ,集合{}21P x x =≤,那么U C P =A. (),1-∞-B. ()1,+∞C. ()1,1-D. ()(),11,-∞-+∞(2)复数22i i -=+ A. iB.i -C. 4355i --D. 4355i -+ (3)如果1122log log 0x y <<,那么A. 1y x <<B. 1x y <<C. 1x y <<D. 1y x << (4)若p 是真命题,q 是假命题,则A. p q ∧是真命题B. p q ∨是假命题C. p ⌝是真命题D. q ⌝是真命题 (5)某四棱锥的三视图如图所示,该四棱锥的表面积是A. 32B. 16+C. 48D.16+(6)执行如图所示的程序框图,若输入A 的值为2,则输出P 的值为A. 2B. 3C. 4D. 5(7)某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x 件,则平均仓储时间为8x天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品A. 60件B. 80件C. 100件D. 120件(8)已知点()0,2A ,()2,0B ,若点C 在函数2y x =的图象上,则使得ABC ∆的面积为2的点C 的个数为 A. 4B. 3C. 2D. 1第二部分(非选择题共110分)二、填空题:(共6小题,每小题5分,共30分) (9)在ABC ∆中,若5b =,4B π∠=,1sin 3A =,则a = . (10)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b = 。
(11)已知向量(3,1)a =,(0,1)b =-,(,3)c k =。
2011年北京高考数学文科试卷带详解
2011年普通高等学校招生全国统一考试数学(文)(北京卷)一.选择题共8小题,每小题5分,共40分.在每小题列出四个选项中,选出符合题目要求的一项.1. 已知全集U =R ,集合{}21P x x =∣…,那么U P =ð ( ). A. (,1-∞-) B. (1,+∞) C.(-1,1) D. ()()11-∞,-,+∞ 【测量目标】集合的含义、基本运算. 【考查方式】解不等式,求解补集. 【参考答案】D【试题解析】2111x x ⇒-剟?,U P =ð()()11-∞,-,+∞ ,故选D. 2. 复数i 212i-=+ ( ). A. i B. i - C.43i 55-- D.43i 55-+ 【测量目标】复数代数形式的四则运算. 【考查方式】复数的除法运算,直接计算出结果. 【参考答案】A【试题解析】22i 2(i 2)(12i)i 2i 24i i 2(1)24i i 12i (12i)(12i)14i 14(1)---------+====++----,选A. 3. 如果1122log log 0x y <<,那么 ( ).A.1y x <<B.1x y <<C.1x y <<D.1y x << 【测量目标】对数函数的性质、函数值比较. 【考查方式】由对数函数增减性,求解定义域. 【参考答案】D【试题解析】1122log log x y x y <⇒>,12log 01y y <⇒>,即1y x <<故选D.4. 若p 是真命题,q 是假命题,则 ( ). A.p q ∧是真命题 B.p q ∨是假命题 C.p ⌝是真命题 D.q ⌝是真命题 【测量目标】命题的概念. 【考查方式】命题的真假判断. 【参考答案】D【试题解析】:或(∨)一真必真,且(∧)一假必假,非(⌝)真假相反,故选D. 5. 某四棱锥的三视图如图所示,该四棱锥的表面积是 ( ).A.32B.16+C.48D.16+【测量目标】由三视图求几何体的表面积. 【考查方式】由三视图想象出四棱锥结构,进而计算其表面积. 【参考答案】B【试题解析】由三视图可知几何体为底面边长为4,高为2的正四棱锥,则四棱锥的斜高为21444162⨯⨯+=+ B. 6. 执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为 ( ).A.2B.3C.4D.5【测量目标】循环结构的程序框图.【考查方式】由循环语句、条件语句执行程序,直至结束. 【参考答案】C【试题解析】执行三次循环,12S A ==…成立,(步骤1)112p =+=,1131122S P =+=+=,322S A ==…成立,(步骤2) 213p =+=,3131112236S P =+=+=,1126S A ==…成立,(步骤3)314p =+=,1111112566412S p =+=+=,25212S A ==…不成立,(步骤4) 输出4p =,故选C.(步骤5)7. 某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储 间为8x天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储 用之和最小,每批应生产产品 ( ). A.60件 B.80件 C.100件 D.120件 【测量目标】一元二次函数的实际应用. 【考查方式】一元二次函数的实际应用,解方程. 【参考答案】B【试题解析】仓储费用2188x x x ⨯⨯=,每件产品的生产费用与仓储费用之和:280080088x x y x x+==+20=…, 当且仅当8008x x=即80x =时,上式取等号. ∴每批应生产产品80件,故选B.8.已知点()()0,2,2,0A B .若点C 在函数2y x =的图象上,则使得ABC △的面积为2的点C 的个数为 ( ). A.4 B.3 C.2 D.1【测量目标】二次函数德尔图像和性质.【考查方式】由二次函数的性质和点到直线的距离公式求解. 【参考答案】A【试题解析】 设()()()2,,0,2,2,0C x x A BAB ∴的直线方程为122x y+=即20x y +-=AB =由2ABC S =△得11222AB h ⨯=⨯==即h =(步骤1)=即222x x +-=± 解得,1x =-,或0x =,或x =故选A.(步骤2)第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9. 在ABC △中,若π15,,sin 43b B A =∠==,则a = . 【测量目标】解三角形、正弦定理. 【考查方式】由正弦定理,直接求出答案. 【参考答案】325 【试题解析】由正弦定理得sin sin a bA B=, 又 π15,,sin 43b B A =∠==.∴5,1πsin 34a a ==10. 已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b = .【测量目标】双曲线的标准方程和简单的几何性质. 【考查方式】双曲线的渐近线与题中渐近线比较法得出结果. 【参考答案】2【试题解析】由2221y x b-=得渐近线的方程为2220,y x y bx b-==±即y bx =±,由一条渐近线的方程为2y x =得b =2.11.已知向量((0,1),k ==-=a b c .若2-a b 与c 共线,则k = . 【测量目标】向量的坐标运算.【考查方式】共线向量中,由对应坐标成比例求解. 【参考答案】1【试题解析】2-=a b 由2-a b 与c31k k =⇒= 12. 在等比数列{}n a 中,若141,4,2a a ==则公比q = ; 12n a a a ++⋯+= . 【测量目标】等比数列的基本性质和前n 项和. 【考查方式】由通项公式求解公比和求和公式. 【参考答案】2;2121--n 【试题解析】由{}n a 是等比数列得341a a q =, 又141,4,2a a == 所以31422q q =⇒=, 112(1)1nn a q a a a q -++⋯+=-11(12)122122nn --==--.13. 已知函数若关于x 的方程()f x k = 有两个不同的实根,则实数k 的取值范围是 .()32,2,()1,<2.x x f x x x ⎧⎪=⎨⎪-⎩… 【测量目标】分段函数.【考查方式】画出分段函数,找到单调区间,比较法. 【参考答案】(0,1) 【试题解析】2()(2)f x x x=…单调递减且值域为(0,1],3()(1)(2)f x x x =-<单调递增且值域为(,1)-∞,()f x k =有两个不同的实根,则实数k 的取值范围是(0,1).14. 设(0,0),(4,0),(4,3),(,3)(A B C t D t t +∈R ).记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则(0)N = ; ()N t 的所有可能取值为 . 【测量目标】平行四边形的性质定理. 【考查方式】由点坐标得出范围,一一求解. 【参考答案】6 ;6,7,8. 【试题解析】在0t =, 302t <<, 32t =时分别对应点为6,8,7. 在平面直角坐标系中画出平行四边形ABCD ,其中A 位于原点,B 位于x 正半轴;(步骤1) 设(1,2)y k k ==与AD 边的交点为k A ,与BC 边的交点为k B , 四边形内部ABCD (不包括边界)的整点都在线段k k A B 上,(步骤2)||||4k k A B AB ==∴线段k k A B 上的整点有3个或4个,∴32()428N t ⨯⨯=剟,不难求得点1(,1)3t A ,22(,2)3tA (步骤3)①当t 为3n 型整数时,都是整点,()6N t =,(步骤4)②当t 为31n +型整数时,1A ,2A 都不是整点,()8N t =,(步骤5)③当t 为32n +型整数时,1A ,2A 都不是整点,()8N t =(以上表述中n 为整数)(步骤6) 上面3种情形涵盖了t 的所有整数取值,所以()N t 的值域为{6,7,8 }.(步骤7)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数π()4cos sin() 1.6f x x x =+- (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间ππ,64⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 【测量目标】三角函数最值问题.【考查方式】同名三角函数化简,进而求解周期、最值.【试题解析】(Ⅰ) π()4cos sin()16f x x x =+-1)cos 21sin 23(cos 4-+=x x x 1cos 22sin 32-+=x x x x 2cos 2sin 3+= π2sin(2)6x =+.(步骤1)∴)(x f 的最小正周期为π.(步骤2)(Ⅱ) ππππ2π,2.64663x x -∴-+剟剟(步骤3) 当ππ2,62x +=即π6x =时,)(x f 取得最大值2;(步骤4)当ππ266x +=-,即π6x =-,()f x 取得最小值1-.(步骤5)16.(本小题共13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中经X 表示.(Ⅰ)如果8X =,求乙组同学植树棵数的平均数和方差;(Ⅱ)如果9X =,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. (注:方差2222121[()()()],n s x x x x x x n=-+-+⋯+-其中x 为1x ,2x ,⋯n x 的平均数) 【测量目标】茎叶图.【考查方式】由样本容量求解平均数、方差和概率.【试题解析】(Ⅰ)当8X =时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为8891035;44x +++==(步骤1)方差为.1611])43510()4359()4358[(412222=-+-+-=s (步骤2) (Ⅱ)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4),(A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4),(A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4),用C 表示:“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2),故所求概率为.41164)(==C P (步骤3)17.(本小题共14分)如图,在四面体PABC 中,,,PC AB PA BC ⊥⊥点,,,D E F G 分别是棱,,,AP AC BC PB 的中点. (Ⅰ)求证:DE ∥平面BCP ; (Ⅱ)求证:四边形DEFG 为矩形;(Ⅲ)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由. 【测量目标】空间立体中线面平行的判定,立体几何中的探索性问题. 【考查方式】线面平行定理的应用,反证法求解.【试题解析】证明:(Ⅰ) D E 、分别为AP AC 、的中点,∴DE //PC ,DE ⊄平面BCP ,(步骤1) ∴DE //平面BCP .(步骤2)(Ⅱ) D E F G 、、、分别为AP AC BC PB 、、、的中点,∴DE //PC //FG ,DG //AB //EF ,(步骤3) ∴四边形DEFG 为平行四边形,(步骤4) 又 PC AB ⊥,所以DE DG ⊥, 所以四边形DEFG 为矩形.(步骤5)(Ⅲ)存在点Q 满足条件,理由如下:连接,DF EG设Q 为EG 的中点,由(Ⅱ)知,,DF EG Q = 且12QD QE QF QG EG ====(步骤6) 分别取PC 、AB 的中点M N 、,连接ME EN NG MG MN 、、、、.与(Ⅱ)同理,可证四边形MENG 为矩形,其对角线点为EG 的中点,Q 且12QM QN EG ==,所以Q 为满足条件的点.(步骤7)18.(本小题共13分)已知函数()()e x f x x k =-. (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值.【测量目标】利用导数求函数的单调区间和最值.【考查方式】函数求导,由函数值变化判断单调区间,进而求解最值.【试题解析】(Ⅰ)()(1)e .x f x x k '=-+令()0='x f ,得1-=k x .(步骤1))(x f 与)(x f '的情况如下:(步骤2)∴)(x f 的单调递减区间是(1,-∞-k );单调递增区间是),1(+∞-k .(步骤3) (Ⅱ)当10k -…,即1k …时,函数)(x f 在[0,1]上单调递增,∴()f x 在区间[0,1]上的最小值为(0);f k =-(步骤4)当21,110<<<-<k k 即时,由(Ⅰ)知()f x 在[0,1]k -上单调递减,在(1,1]k -上单调递增, ∴()f x 在区间[0,1]上的最小值为1(1)e k f k --=-;(步骤5) 当1,2即k t k -=…时,函数()f x 在[0,1]上单调递减,∴ ()f x 在区间[0,1]上的最小值为(1)(1)e.f k =-(步骤6)19.(本小题共14分)已知椭圆2222:1(0)x y G a b a b +=>>的离心率为3,右焦点为().斜率为1的直线l 与椭圆G 交于,A B 两点,以AB 为底边作等腰三角形,顶点为(3,2)P -.(Ⅰ)求椭圆G 的方程; (Ⅱ)求PAB △的面积.【测量目标】椭圆的标准方程及简单的几何性质.【考查方式】利用离心率、焦点坐标计算出椭圆方程进而设出直线,与椭圆方程联立,求解. 【试题解析】(Ⅰ)由已知得c c a ==(步骤1)解得a =又222 4.b a c =-=(步骤2)∴椭圆G 的方程为221.124x y +=(步骤3) (Ⅱ)设直线l 的方程为.m x y +=由221124y x m x y =+⎧⎪⎨+=⎪⎩得.01236422=-++m mx x (步骤4)设A B 、的坐标分别为),)(,(),,(212211x x y x y x <AB 中点为E ),(00y x ,则,432210mx x x -=+=400m m x y =+=.(步骤5)AB 是等腰PAB △的底边,所以PE AB ⊥,∴PE 的斜率.143342-=+--=m mk 解得2m =.此时方程①为.01242=+x x 解得.0,321=-=x x ∴.2,121=-=y y (步骤6)∴AB =此时,点()3,2P -到直线AB :02=+-y x 的距离,2232|223|=+--=d 所以PAB △的面积19||.22S AB d =⋅=(步骤7)20.(本小题共13分)若数列12,:,(2)n A a a a n ⋯…满足1k k a a +|-|=1 (1,2,,1)k n =⋯-,则称n A 为E 数列.记12()n n S A a a a =++⋯+.(Ⅰ)写出一个E 数列5A 满足130a a ==;(Ⅱ)若112,2000a n ==,证明:E 数列n A 是递增数列的充要条件是2011n a =; (Ⅲ)在14a =的E 数列n A 中,求使得()0n S A =成立的n 的最小值.【测量目标】数列通项公式的整理变形;充分必要条件的概念.【考查方式】使用列举法、观察法求得答案(Ⅰ);充分和必要分开进行论证解决答案(Ⅱ);由首相为4可求得后面的每一项,使用列举法列出,再根据题设要求,求解.【试题解析】(Ⅰ)0,1,0,10,是一组满足条件的E 数列5A .(答案不唯一0,1,0,1,0-;0,10,1,20101201012±±--±--,;,,,,;,,,,;0±,1,0,-1,0都是满足条件的E 数列5A ).(步骤1)(Ⅱ)必要性:因为E 数列5A 是递增数列,所以()111,21999.k k a a k +-==⋅⋅⋅所以此数列为首项为12,公差为1的等差数列. 所以()2000122000112011a =+-⨯=.(步骤2)充分性:因为200010001,a a -…所以200011999,a a -…即200011999a a +….(步骤3) 又因为1200012,2011a a ==,所以200011999a a =+.故()11>01,21999n n a a k +-==⋅⋅⋅, 即n A 时递增数列.综上,结论得证.(步骤4)(Ⅲ)对首项为4的E 数列n A ,由于213213,12a a a a -=-⋅⋅⋅厖?5713a a --⋅⋅⋅厖 ()12>02,38k a a a k ++⋅⋅⋅+=⋅⋅⋅,(步骤5) 所以对任意首项为4的E 数列n A ,若()0n S A =,则必有9n ….(步骤6)又14a =的E 数列1A :43,2,1,01234----,,,,,满足1()0S A =. 所以n 的最小值是9.(步骤7)。
高考真题详解北京卷(文科数学) (2)
2011年普通高等学校招生全国统一考试【北京卷】(文科数学)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页.全卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题:(每小题5分,共60分)【2011⋅北京文,1】1.已知全集U=R ,集合{}21P xx =∣≤,那么U P =ð ( ). A .(,1)-∞- B .(1,)+∞ C .(1,1)- D .()()11-∞,-,+∞U 【答案】D .【解析】 2111x x ≤⇒-≤≤,U C P =()()11-∞,-,+∞U ,故选择D .【2011⋅北京文,2】2.复数212i i-=+ ( ). A .i B .i - C .4355i -- D .4355i -+【答案】A .【解析】22i 2(i 2)(12i)2242(1)2412i (12i)(12i)1414(1)i i i i ii i ---------+====++----,故选择A . 【2011⋅北京文,3】3.如果1122log log 0x y <<,那么( ).A .1y x <<B .1x y <<C .1x y <<D .1y x << 【答案】D .【解析】 1122log log x y x y <⇒>,12log 01y y <⇒>,即1y x <<故选D .【2011⋅北京文,4】4.若p 是真命题,q 是假命题,则( ).A .p q ∧是真命题B .p q ∨是假命题C .p ⌝是真命题D .q ⌝是真命题 【答案】D .【解析】 或(∨)一真必真,且(∧)一假必假,非(⌝)真假相反,故选D . 【2011⋅北京文,5】5.某四棱锥的三视图如图所示,该四棱锥的表面积是( ).A .32B .16+162C .48D .16322+ 【答案】B .【解析】由三视图可知几何体为底面边长为4,高为2的正四 棱锥,则四棱锥的斜高为22,表面积21422442⨯⨯⨯+ 16162=+故选B .【2011⋅北京文,6】6.执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为( ).A .2B .3C .4D .5 【答案】C .【解析】 执行三次循环,12S A =≤=成立,112p =+=,1131122S P =+=+=,322S A =≤=成立,213p =+=,3131112236S P =+=+=,1126S A =≤=成立,314p =+=,1111112566412S p =+=+=,25212S A =≤=不成立,输出4p =,故选C . 【2011⋅北京文,7】7.某车间分批生产某种产品,每批的生产准备费用为800元。
全国高考文科数学试题及答案北京
2011年普通高等学校招生全国统一考试(北京卷)数学(文)本试卷共5页,150分.考试时间长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集,集合{x ︱x 2≤1},那么A .(-∞, -1]B .[1, +∞)C .[-1,1]D .(-∞,-1] ∪[1,+∞)2.复数212i i -=+ A .i B . C .4355i -- D .4355i -+ 3.如果,0log log 2121<<y x 那么A .y< x<1B .x< y<1C .1< x<yD .1<y<x4.若p 是真命题,q 是假命题,则A .p ∧q 是真命题B .p ∨q 是假命题C .﹁p 是真命题D .﹁q 是真命题5.某四棱锥的三视图如图所示,该四棱锥的表面积是A .32B .16+162C .48D .16+3226.执行如图所示的程序框图,若输入A 的值为2,则输入的P 值为A .2B .3C .4D .57.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为8x 天,且每件产品每天的仓储费用为1元.为使平均没见产品的生产准备费用与仓储费用之和最小,每批应生产产品 A .60件B .80件 C .100件D .120件8.已知点A (0,2),B (2,0).若点C 在函数y = x 的图像上,则使得Δ的面积为2的点C 的个数为A .4B .3C .2D .1第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.在ABC ∆中.若5,4B π∠=,13,则. 10.已知双曲线2221y x b-=(b >0)的一条渐近线的方程为2y x =,则b = . 1131),(0,-1),(k 3.若2b 与c 共线,则.12.在等比数列{}中,a 1=12,a 4=4,则公比;a 12+… . 13.已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程f (x )有两个不同的实根,则实数k 的取值范围是14.设A (0,0)(4,0)(4,3),D (t,3)(∈).记N (t )为平行四边形内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N (0)= N (t )的所有可能取值为三、解答题6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知函数()4cos sin()16f x x x π=+-. (Ⅰ)求()f x 的最小正周期:(Ⅱ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.16.(本小题共13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果8,求乙组同学植树棵树的平均数和方差;(2)如果9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. (注:方差],)()()[(1222212x x x ns n -+-+-=其中为n x x x ,,,21 的平均数)17.(本小题共14分)如图,在四面体中,⊥,⊥,点分别是棱的中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:四边形为矩形; (Ⅲ)是否存在点Q ,到四面体六条棱的中点的距离相等?说明理由.18.(本小题共13分)已知函数()()xf x x k e =-.(Ⅰ)求()f x 的单调区间; (Ⅱ)求()f x 在区间[0,1]上的最小值.19.(本小题共14分)已知椭圆2222:1(0)x y G a b a b+=>>622,0),斜率为I 的直线l 与椭圆G 交与A 、B 两点,以为底边作等腰三角形,顶点为P (-3,2).(I )求椭圆G 的方程;()求PAB ∆的面积.20.(本小题共13分)若数列12:,,,(2)n n A a a a n ⋅⋅⋅≥满足11(1,2,,1)k k a a k n +-==⋅⋅⋅-,则称n A 为E 数列,记12()n n S A a a a =++⋅⋅⋅+.(Ⅰ)写出一个E 数列A 5满足130a a ==; (Ⅱ)若112a =,2000,证明:E 数列n A 是递增数列的充要条件是n a =2011;(Ⅲ)在14a =的E 数列n A 中,求使得()n S A =0成立得n 的最小值.参考答案一、选择题(共8小题,每小题5分,共40分)(1)D (2)A (3)D (4)D (5)B (6)C (7)B(8)A 二、填空题(共6小题,每小题5分,共30分)(9)325 (10)2 (11)1 (12)2 2121--n (13)(0,1)(14)66,7,8, 三、解答题(共6小题,共80分)(15)(共13分)解:(Ⅰ)因为1)6sin(cos 4)(-+=πx x x f 1)cos 21sin 23(cos 4-+=x x x 1cos 22sin 32-+=x x x x 2cos 2sin 3+= )62sin(2π+=x所以)(x f 的最小正周期为π(Ⅱ)因为.32626,46πππππ≤+≤-≤≤-x x 所以于是,当6,262πππ==+x x 即时,)(x f 取得最大值2;当)(,6,662x f x x 时即πππ-=-=+取得最小值—1.(16)(共13分)解(1)当8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为 ;435410988=+++=x 方差为.1611])43510()4359()4358[(412222=-+-+-=s (Ⅱ)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4),(A 3,B 1),(A 2,B 2),(A 3,B 3),(A 1,B 4),(A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4), 用C 表示:“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2),故所求概率为.41164)(==C P (17)(共14分)证明:(Ⅰ)因为D ,E 分别为,的中点,所以。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.在中.若b=5,,sinA=,则a=___________________.
10.已知双曲线(>0)的一条渐近线的方程为,则=
.
11.已知向量a=(,1),b=(0,-1),c=(k,).若a-2b与c共线,则
k=________________.
12.在等比数列{an}中,a1=,a4=4,则公比q=______________;a1+a2+…
果有4个,它们是:(A1,B4),(A2,B4),(A3,B2),(A4, B2),故所求概率为
(17)(共14分) 证明:(Ⅰ)因为D,E分别为AP,AC的中点, 所以DE//PC。 又因为DE平面BCP,
所以DE//平面BCP。 (Ⅱ)因为D,E,F,G分别为 AP,AC,BC,PB的中点, 所以DE//PC//FG,DG//AB//EF。 所以四边形DEFG为平行四边形, 又因为PC⊥AB, 所以DE⊥DG, 所以四边形DEFG为矩形。 (Ⅲ)存在点Q满足条件,理由如下: 连接DF,EG,设Q为EG的中点 由(Ⅱ)知,DF∩EG=Q,且QD=QE=QF=QG=EG. 分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN。 与(Ⅱ)同理,可证四边形MENG为矩形,其对角线点为EG的中点 Q, 且QM=QN=EG, 所以Q为满足条件的点. (18)(共13分) 解:(Ⅰ)
+an= _________________.
13.已知函数若关于x 的方程f(x)=k有两个不同的实根,则实数k的取
值范围是_______
14.设A(0,0),B(4,0),C(t+4,3),D(t,3)(tR).记N(t)为平行四
边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐
标都是整数的点,则N(0)=
…… …… 所以 所以对任意的首项为4的E数列Am,若 则必有. 又的E数列 所以n是最小值是9.
(Ⅰ)写出一个E数列A5满足; (Ⅱ)若,n=2000,证明:E数列是递增数列的充要条件是=2011; (Ⅲ)在的E数列中,求使得=0成立得n的最小值.
参考答案
一、选择题(共8小题,每小题5分,共40分)
(1)D (2)A (3)D (4)D (5)B (6)C (7)B (8)A 二、填空题(共6小题,每小题5分,共30分) (9) (10)2 (11)1 (12)2 (13)(0,1) (14)6 6,7,8, 三、解答题(共6小题,共80分) (15)(共13分)
2011年普通高等学校招生全国统一考试(北京卷) 数学(文)
本试卷共5页,150分.考试时间长120分钟.考生务必将答案答在答题 卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.
第一部分(选择题 共40分)
一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中, 选出符合题目要求的一项.
所以A5是首项为12,公差为1的等差数列. 所以a2000=12+(2000—1)×1=2011.
充分性,由于a2000—a1000≤1, a2000—a1000≤1 …… a2—a1≤1 所以a2000—at≤19999,即a2000≤a1+1999. 又因为a1=12,a2000=2011, 所以a2000=a1+1999. 故是递增数列. 综上,结论得证. (Ⅲ)对首项为4的E数列Ak,由于
(1)如果X=8,求乙组同学植树棵树的平均数和方差; (2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名 同学的植树总棵数为19的概率.
(注:方差其中为的平均数)
17.(本小题共14分) 如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱 AP,AC,BC,PB的中点. (Ⅰ)求证:DE∥平面BCP; (Ⅱ)求证:四边形DEFG为矩形; (Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理 由.
(A1,B1),(A1,B2),(A1,B3),(A1,B4), (A2,B1),(A2,B2),(A2,B3),(A2,B4), (A3,B1),(A2,B2),(A3,B3),(A1,B4), (A4,B1),(A4,B2),(A4,B3),(A4,B4), 用C表示:“选出的两名同学的植树总棵数为19”这一事件,则C中的结
解:(Ⅰ)因为
所以的最小正周期为 (Ⅱ)因为 于是,当时,取得最大值2; 当取得最小值—1. (16)(共13分)
解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是: 8,8,9,10, 所以平均数为 方差为 (Ⅱ)记甲组四名同学为A1,A2,A3,A4,他们植树的棵数依 次为9,9,11,11;乙组四名同学为B1,B2,B3,B4,他们植树 的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名 同学,所有可能的结果有16个,它们是:
解得
又
所以椭圆G的方程为 (Ⅱ)设直线l的方程为 由得
设A、B的坐标分别为AB中点为E, 则
因为AB是等腰△PAB的底边, 所以PE⊥AB. 所以PE的斜率 解得m=2。 此时方程①为 解得
所以
所以|AB|=. 此时,点P(—3,2)到直线AB:的距离 所以△PAB的面积S= (20)(共13分) 解:(Ⅰ)0,1,0,1,0是一具满足条件的E数列A5. (答案不唯一,0,—1,0,1,0;0,±1,0,1,2;0,±1,0,—1, —2;0,±1,0,—1, —2,0,±1,0,—1,0都是满足条件的E的数列A5) (Ⅱ)必要性:因为E数列A5是递增数列, 所以.
令,得.
与的情况如下:
x
()
(
——
0
+
↗
↗
所以,的单调递减区间是();单调递增区间是
(Ⅱ)当,即时,函数在[0,1]上单调递增, 所以(x)在区间[0,1]上的最小值为 当时,
由(Ⅰ)知上单调递减,在上单调递增,所以在区间[0,1]上的最小值 为;
当时,函数在[0,1]上单调递减, 所以在区间[0,1没见产品的生产准备费用与仓储费用之和最小,每批应生产产品
A.60件 B.80件 C.100件 D.120件
8.已知点A(0,2),B(2,0).若点C在函数y = x的图像上,则使得ΔABC
的面积为2的点C的个数为
A.4
B.3
C.2
D.1
第二部分 (非选择题 共110分)
二、填空题共6小题,每小题5分,共30分.
1.已知全集U=R,集合P={x︱x2≤1},那么
A.(-∞, -1] C.[-1,1] 2.复数 A.i
B.[1, +∞) D.(-∞,-1] ∪[1,+∞)
B.-i
C.
D.
3.如果那么 A.y< x<1 B.x< y<1 C.1< x<y D.1<y<x 4.若p是真命题,q是假命题,则
A.p∧q是真命题 B.p∨q是假命题 C.﹁p是真命题
18.(本小题共13分) 已知函数. (Ⅰ)求的单调区间; (Ⅱ)求在区间[0,1]上的最小值.
19.(本小题共14分) 已知椭圆的离心率为,右焦点为(,0),斜率为I的直线与椭圆G交与
A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2). (I)求椭圆G的方程; (II)求的面积.
20.(本小题共13分) 若数列满足,则称为数列,记.
N(t)的所有可能取值为
三、解答题6小题,共80分,解答应写出文字说明,演算步骤或证明过程.
15.(本小题共13分)
已知函数.
(Ⅰ)求的最小正周期:
(Ⅱ)求在区间上的最大值和最小值.
16.(本小题共13分) 以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有
一个数据模糊,无法确认,在图中以X表示.
D.﹁q是真命题 5.某四棱锥的三视图如图所示,该四棱锥的表面积是
A.32 B.16+16 C.48 D.16+32
6.执行如图所示的程序框图,若输入A的值为2,则输入的P值为
A.2 B.3
C.4 D.5
7.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x
件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平