第三章 概率随堂练习
高二必修三数学第三章概率单元练习题(含答案北师大版)
高二必修三数学第三章概率单元练习题(含答案北师大版)数学在科学发展和现代生活生产中的应用特别宽泛,以下是查词典数学网为大家整理的高二必修三数学第三章概率单元练习题,希望能够解决您所碰到的有关问题,加油,查词典数学网向来陪同您。
一、选择题1.某人将一枚硬币连续投掷了10 次,正面向上的情况出现了6 次,则 ()A. 概率为 0.6B.频次为 0.6C.频次为 6D. 概率靠近于 0.6【分析】连续投掷了 10 次,正面向上的情况出现了 6 次,只好说明频次是 0.6,只有进行大批的试验时才可预计概率 . 【答案】 B2.以下说法错误的选项是()A.频次反应事件的屡次程度,概率反应事件发生的可能性大小B.做 n 次随机试验,事件 A 发生 m 次,则事件 A 发生的频率 mn 就是事件 A 的概率C.频次是不可以离开n 次试验的试验值,而概率是拥有确立性的不依靠于试验次数的理论值D.频次是概率的近似值,概率是频次的稳固值【分析】依据频次与概率的意义可知, A 正确 ;C、D 均正确,B 不正确,应选 B.【答案】B3.从寄存号码分别为1,2,,10 的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果以下:卡片号码取到的次数则取到号码为奇数的频次是()【分析】mn=13+5+6+18+11100=0.53.【答案】A4.(2019 沈阳检测 ) 某彩票的中奖概率为11 000 意味着 ()A. 买 1 000 张彩票就必定能中奖B.买 1 000 张彩票中一次奖C.买 1 000 张彩票一次奖也不中D.购置彩票中奖的可能性是11 000【分析】中奖概率为11 000,其实不意味着买1 000 张彩票就必定中奖,中一次奖或一次也不中,所以A、B、C 均不正确.【答案】D5.2019 年山东省高考数学试题中,共有12 道选择题,每道选择题有 4 个选项,此中只有 1 个选项是正确的,则随机选择此中一个选项正确的概率为14,某家长说:假如都不会做,每题都随机选择此中一个选项,则必定有 3 题答对这句话 () A. 正确 B.错误C.不必定D. 没法解说【分析】把解答一个选择题作为一次试验,答对的概率是14,说明做对的可能性大小是14.做 12 道选择题,即进行了12 次试验,每个结果都是随机的,那么答对 3 题的可能性较大,可是其实不必定答对3 道,也可能都选错,或仅有2,3,4题选对,甚至12 个题都选择正确.【答案】B二、填空题6.样本容量为200 的频次散布直方图如图3-1-1 所示 .依据样本的频次散布直方图预计,样本数据落在[6,10) 内的频数为________,数据落在 [6,10) 内的概率约为 ________.图 3-1-1【分析】样本数据落在[6,10)内的频次为0.084=0.32,频数为 2019.32=64.由频次与概率的关系知数据落在[6,10) 内的概率约为0.32.【答案】64 0.327.在 5 张不一样的彩票中有 2 张奖票, 5 个人挨次从中各抽取1张,各人抽到奖票的概率________( 填相等不相等 ).【分析】由于每人抽得奖票的概率均为25,与前后的次序没关 .【答案】相等8.假如袋中装有数目差异很大而大小同样的白球和黑球(只是颜色不一样 ),每次从中任取一球,记下颜色后放回并搅匀,取了 10 次有 9 次白球,预计袋中数目最多的是________.【分析】取了 10 次有 9 次白球,则拿出白球的频次是910,预计其概率约是910,那么拿出黑球的概率是110,那么取出白球的概率大于拿出黑球的概率,所以预计袋中数目最多的是白球.【答案】白球三、解答题9.(1)设某厂产品的次品率为2%,问从该厂产品中随意地抽取 100 件,此中必定有 2 件次品这一说法对不对?为何 ? (2)若某次数学测试,全班50 人的及格率为90%,若从该班中随意抽取10 人,此中有 5 人及格是可能的吗?【解】(1)这类说法不对,由于产品的次品率为2%,是指产品是次品的可能性为2%,所以从该产品中随意地抽取100件,此中有可能有 2 件次品,而不是必定有 2 件次品 .(2)这类状况是可能的.10.(2019 课标全国卷Ⅱ )经销商经销某种农产品,在一个销售季度内,每售出 1 t 该产品获收益 500 元,未售出的产品,每 1 t 损失 300 元.依据历史资料,获得销售季度内市场需求量的频次散布直方图,如图 3-1-2 所示 .经销商为下一个销售季度购进了 130 t 该农产品 .以 X( 单位: t,100150) 表示下一个销售季度内的市场需求量, T(单位:元)表示下一个销售季度内经销该农产品的收益 .图 3-1-2(1)将 T 表示为 X 的函数 ;(2)依据直方图预计收益T 许多于 57 000 元的概率 .【解】(1)当 X[100,130) 时,T=500X-300(130-X)=800X-39 000.当 X[130,150] 时,T=500130=65 000.所以 T=800X-39 000 ,100130,?65 000, 130150.(2)由 (1)知收益 T 许多于 57 000 元当且仅当120190.由直方图知需求量X[120, 150] 的频次为0.7,所以下一个销售季度内的收益T 许多于 57 000 元的概率的预计值为0.7.11.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量,单位: mm)共有 100 个数据,将数据分组以下表:分组频数[1.30,1.34)4[1.34,1.38)25[1.38,1.42)30[1.42,1.46)29[1.46,1.50)10[1.50,1.54)2总计 100(1)画出频次散布直方图;(2)预计纤度落在 [1.38,1.50)mm 中的概率及纤度小于 1.42 的概率是多少 .【解】(1)频次散布直方图,如图:(2)纤度落在 [1.38,1.50)mm 中的频数是 30+29+10=69 ,则纤度落在 [1.38,1.50)mm 中的频次是 69100=0.69 ,所以预计纤度落在 [1.38,1.50)mm 中的概率为 0.69.纤度小于 1.42 mm 的频数是 4+25+30=59 ,则纤度小于 1.42 mm 的频次是 59100=0.59,要练说,得练看。
高中数学必修3第三章概率试题训练[1]
高中数学必修3第三章概率试题训练1.下列说法正确的是( )A. 任何事件的概率总是在(0,1)之间B. 频率是客观存在的,与试验次数无关C. 随着试验次数的增加,频率一般会越来越接近概率D. 概率是随机的,在试验前不能确定 2.掷一枚骰子,则掷得奇数点的概率是( )A. 61B. 21C. `31 D. 413. 抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是( )A. 9991B. 10001C. 1000999 D. 214.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是( )A. A 与C 互斥B. B 与C 互斥C. 任何两个均互斥D. 任何两个均不互斥5.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85](g )范围内的概率是( )A. 0.62B. 0.38C. 0.02D. 0.68 6.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是( )A. 21B. 41C. 31D. 817.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是( )A. 31. B. 41 C. 21 D.无法确定8.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是A. 1B. 21C. 31D. 329.一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率是( )A. 21B. 31C. 41D. 5210.现有五个球分别记为A 、C 、J 、K 、S ,随机放进三个盒子,每个盒子只能放一个球,则K 或S 在盒中的概率是( )A.101 B. 53 C. 103 D. 10911、对某种产品的5件不同正品和4件不同次品一一进行检测,直到区分出所有次品为止. 若所有次品恰好经过五次检测被全部发现,则这样的检测方法有( )A .20种B .96种C .480种D .600种12、若连掷两次骰子,分别得到的点数是m 、n ,将m 、n 作为点P 的坐标,则点P落在区域2|2||2|≤-+-y x 内的概率是 A.3611B.61C.41D.367 13、要从10名男生和5名女生中选出6人组成啦啦队,若按性别依比例分层抽样且某男生担任队长,则不同的抽样方法数是A.2539C C B . 25310C C C. 25310A A D. 25410C C 14、在500mL 的水中有一个草履虫,现从中随机取出2mL 水样放到显微镜下观察,则发现草履虫的概率是( ) A. 0.5 B. 0.4C. 0.004D. 不能确定15、如图所示,随机在图中撒一把豆子,则它落到阴影部分的概率是( )A.12B.34C.38D.1816、两个事件互斥是两个事件对立的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要17、下列事件中,随机事件的个数是( )①如果a 、b 是实数,那么b+a=a+b ;②某地1月1日刮西北风;③当x 是实数时,x 2≥0;④一个电影院栽天的上座率超过50%。
北师大版九年级数学上册第三章概率练习题(含答案)
概率练习题1.在一个不透明的布袋中,有大小、形状完全相同,颜色不同的15个球,从中摸出红球的概率为,则袋中红球的个数为( )A.10B.15C.5D.2 2.已知粉笔盒里有4支红色粉笔和n 支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是,则n 的值是( ) A .4 B .6 C .8D .103.为估计某地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.由这些信息,我们可以估计该地区有黄羊( )A 、400只B 、600只C 、800只D 、1000只4.在配紫色游戏中,转盘被平均分成“红”、“黄”、“蓝”、“白”四部分,转动转盘两次,配成紫色的概率为( )A.13B.14C.15D.185.小颖将一枚质地均匀的硬币连续掷了三次,你认为三次都是正面朝上的概率是( )A.12B.13C.14D.186.下列说法中正确的个数是( )①不可能事件发生的概率为0;②一个对象在试验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值; ④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率. A .1 B .2 C .3 D .4257.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是( )A.34B.15C.25D.358.暑假快到了,父母打算带兄妹俩去某个景点旅游一次,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是( ) A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹赢9.某班要从甲、乙、丙、丁四位班干部(两男两女)中任意两位参加学校组织的志愿者服务活动,则恰好选中一男一女的概率是________.10.有30张牌,牌面朝下,每次抽出一张记下花色再放回,洗牌后再抽,经历多次试验后,记录抽到红桃的频率为20%,则红桃大约有张.11.为估计某地区黄羊的只数,先捕捉20只黄羊分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊只。
【随堂优化训练】高中数学 第三章 概率课后能力提升专练 新人教A版必修3
第三章概率3.1 随机事件的概率3.1.1 随机事件的概率1.下列现象是必然现象的是( )A.某路口单位时间内发生交通事故的次数B.冰水混合物的温度是1℃C.三角形的内角和为180°D.一个射击运动员每次射击都击中2.一个口袋内装有大小和形状都相同的一个白球和一个黑球,那么“从中任意摸出一个球,得到白球”这个事件( )A.是必然事件B.是随机事件C.是不可能发生事件D.不能确定是哪种事件3.事件A的概率P(A)满足( )A.P(A)=0B.P(A)=1C.0<P(A)<1D.0≤P(A)≤14.在100个小球中,白球有98个,黑球有2个.从这100个小球中一次性地取出3 个.(1)写出一个不可能事件:__________________;(2)写出一个必然事件:______________________;(3)记事件C为“至少有1个黑球”,写出事件C包含的白球个数:_____________________.5.下列说法:①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n次随机试验,事件A发生的频率就是事件A的概率;③百分率是频率,但不是概率;④频率是概率的近似值,概率是频率的稳定值;⑤频率是不能脱离具体的n次试验的试验值,而概率是不依赖于试验次数的理论值.其中正确的是____________(写序号).6.某中学部分学生参加全国数学联赛的成绩情况如图312(成绩均为整数,满分120分),如果90分以上(含90分)获奖,那么获奖的概率是________.图3127.调查患者人数n 100 200 500 1000 2000用药有效人数m 85 180 435 8841760 有效频率m n8.(1)若事件“函数y =a x(a >0,且a ≠1)在(-∞,+∞)上是增函数”是不可能事件,则a 满足的条件是____________.(2)事件“圆(x -a )2+(y -b )2=r 2内的点的坐标可使不等式(x -a )2+(y -b )2<r 2成立”是________事件.9.盒中装有4个白球,5个黑球,从中任意取出1个球.问: (1)“取出的球是黄球”是什么事件?它的概率是多少? (2)“取出的球是白球”是什么事件?它的概率是多少?(3)“取出的球是白球或是黑球”是什么事件?它的概率是多少?10.如图313,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如下:图313(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径?3.1.2 概率的意义1.某地天气预报说:“明天本地降雨的概率为80%”,这是指( ) A.明天该地区约有80%的时间会下雨,20%的时间不下雨 B.明天该地区约有80%的地方会下雨,20%的地方不下雨 C.明天该地区下雨的可能性为80%D.该地区约有80%的人认为明天会下雨,20%的人认为明天不下雨2.小张做四选一的选择题8道,由于全部都不会做,他只能随机选取一个选项,则下列说法正确的是( )A.不可能全选错B.可能全选正确C.每道题选正确的可能性不相等D.一定全选错3.下列说法中,正确的是( )A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖D.在同一年出生的367名学生中,至少有两人的生日是同一天4.某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,把得到的点数之和是几就选几班,这种选法( )A.公平,每个班被选到的概率都为112B.公平,每个班被选到的概率都为16C.不公平,6班被选到的概率最大D.不公平,7班被选到的概率最大5.甲、乙两人玩游戏,袋中装有2个红球,2个白球,现从中(不放回)任取2个球,若同色则甲胜,否则乙胜.那么甲获胜的概率________乙获胜的概率(填“相等”、“大于”、“小于”).6.下列说法中:①任何事件的概率总是在(0,1)之间;②某事件的概率值是主观存在的,与试验次数有关;③概率是随机的,在试验前不能确定.其中错误的是____________(填序号).7.在一次考试中,某班学生的及格率是80%,这里所说的80%是________(填“概率”或“频率”).8.某节能灯生产厂家说其灯泡能点1000小时以上的概率是0.86,这句话中概率的意义是____________________________________________________________________________ ____________________________________________________________________.9.________件产品.10.回答下列问题:(1)甲、乙两射手同时射击一目标,甲的命中率为0.65,乙的命中率为0.60,那么能否得出结论:目标被命中的概率等于0.65+0.60=1.25?为什么?(2)一射手命中靶的内圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出结论:目标被命中的概率等于0.25+0.50=0.75?为什么?11.(2012年湖南改编)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随(1)确定x,y的值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).3.1.3 概率的基本性质1.抛掷一枚骰子,与事件“点数是偶数”互斥但不对立的事件是( )A.“点数是奇数”B.“点数是3的倍数”C.“点数是1或3”D.“点数是小于5的偶数”2.抽查10件产品,设事件A为“至少有2件次品”,则事件A的对立事件为( )A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至少有2件正品3.甲、乙两人下棋,甲胜的概率为0.4,甲不输的概率为0.9,则甲、乙两人和棋的概率为( )A.0.6B.0.3C.0.1D.0.54.第16届亚运会于2010年11月12日在中国广州举行,运动会期间有来自A大学2名、B大学4名的大学生志愿者.现从这6名志愿者中,随机抽取2名到体操比赛场服务,则至少有1名A大学的志愿者的概率是( )A.115B.25C.35D.14155.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是( )A.A+B与C是互斥事件,也是对立事件B.B+C与D是互斥事件,也是对立事件C.A+C与B+D是互斥事件,但不是对立事件D.A与B+C+D是互斥事件,也是对立事件6.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,则该射手在一次射击中,(1)命中10环或9环的概率为________;(2)命中少于7环的概率为________.7.(1)(2)求至多2人排队的概率;(3)求至少2人排队的概率.8.甲、乙两人射击,甲射击一次,中靶概率是p 1,乙射击一次,中靶概率是p 2,已知1p 1,1p 2是方程x 2-5x +6=0的根,且p 1满足方程p 21-p 1+14=0,则甲射击一次,不中靶的概率为________;乙射击一次,不中靶的概率为________.9.抛掷一均匀的正方体玩具(各面分别标有数1,2,3,4,5,6),若事件A 为“朝上一面的数是奇数”,事件B 为“朝上一面的数不超过3”,求P (A +B ).下面的解法是否正确?为什么?若不正确,请给出正确的解法. 解:因为P (A +B )=P (A )+P (B ),而P (A )=36=12,P (B )=36=12,所以P (A +B )=12+12=1.10.袋中有12个小球,小球上标写有字母a ,b ,c ,d ,且每个小球上都写有唯一字母.从中任取1球,摸到标写字母a 的概率为13,摸到标写字母b 或c 的概率为512,摸到标写字母c 或d 的概率也是512.试求摸到标写字母b ,c ,d 的概率各是多少?3.2 古典概型3.2.1 古典概型1.在20瓶饮料中,有2瓶是过了保质期的,从中任取1瓶,恰好过保质期的概率为( )A.12B.110C.120D.1402.从1,2,3,4这四个数中一次随机地取两个数,其中一个数是另一个数的两倍的概率是( )A.14B.13C.12D.233.(2013年安徽)若某公司从五位大学毕业生甲、乙、丙、丁、戍中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.9104.用红、蓝、绿3种不同颜色给图322中的3个矩形随机(等可能)涂色,每个矩形只涂1种颜色,则3A.13B.19C.12D.165.有5条线段的长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取的3条线段能构成三角形的概率为________.6.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师的性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.7.从如图323所示的正六边形ABCDEF的6个顶点中任取3个,以这3个点为顶点的三角形是直角三角形的概率是________.图3238.设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件C n(2≤n≤5,n∈N),若事件C n的概率最大,则n的所有可能取值为( )A.3 B.4C.2和5 D.3和49.(2013年天津一模)某中学一、二、三年级分别有普法志愿者36人、72人、54人,用分层抽样的方法从这三个年级抽取一个样本,已知样本中三年级志愿者有3人.(1)分别求出样本中一、二年级志愿者的人数;(2)用A i(i=1,2,…)表示样本中一年级的志愿者,a i(i=1,2,…)表示样本中二年级的志愿者,现从样本中一、二年级的所有志愿者中随机抽取2人,①用以上志愿者的表示方法,用列举法列出上述所有可能情况,②抽取的2人在同一年级的概率.3.2.2 (整数值)随机数(random numbers)的产生1.一个三位数字的密码锁,每位上的数字可以是1,3,5,7,9中的一个,某人忘了密码中最后一位号码,则此人开锁时,随意拨动最后一位号码正好能开锁的概率是( )A.110B.18C.16D.152.掷两枚骰子,事件A为“出现点数之和等于3”,则事件A的概率为( )A.112B.111C.118D.1363.从数字1,2,3,4中任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )A.13B.14C.12D.234.通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 78842604 3346 0952 6807 9706 5774 57256576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,那么表示恰有三次击中目标,那么四次射击中恰有三次击中目标的概率约为____________.5.在5名学生(3名男生、2名女生)中安排2名学生值日,其中至少有1名女生的概率是__________________.6.有三个人,每个人都有相同的可能性被分配到四个房间中的任一间,则三个人都分配到同一房间的概率为________.7.用1,2,3,4四个数字编四位密码(不重复),则密码恰为连号(1234或4321)的概率为( )A.18B.112C.116D.1248.在箱子中装有10张卡片,分别写有1到10的10个整数.从箱子中任取1张卡片,记下它的读数x,然后放回箱子中,第二次再从箱子中任意取出1张卡片,记下它的读数y,则x+y是10的倍数的概率为( )A.12B.14C.15D.1109.盒子里共有大小相同的3个白球,1个黑球,若从中随机摸出两个球,则它们的颜色不同的概率是________.10.某种心脏手术,成功率为0.6,现准备进行三例这样的手术,试用计算机设计模拟试验,并估算:(1)恰好成功一例的概率;(2)恰好成功两例的概率.11.盒中有大小、形状相同的5个白球和2个黑球,用模拟试验方法估算下列事件的概率近似值:(1)任取1球,得到白球; (2)任取3球,恰有2个白球;(3)任取3球(分三次,每次放回后再取),恰有3个白球.3.3 几何概型1.投镖游戏中的靶子由边长为1 m 的四方板构成,并将此板分成四个边长为12m 的小方块,如图335,现随机向板中投镖,事件A 表示“投中阴影部分”,则A 发生的概率为( )图335A.14B.116C.1516D.342.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积不小于S3的概率是( )A.23B.13 C.34 D.143.(2013年陕西)如图336,在矩形区域ABCD 的A, C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常).若在该矩形区域内随机地选一地点, 则该地点无信号的概率是( )图336A .1-π4 B.π2-1C .2-π2 D.π44.在(0,1)内任取一个数m ,能使方程x 2+2mx +12=0有两个不相等的实数根的概率为( )A.12B.14C.22 D.2-225.如图337,在边长为2的正方形中,有一个由封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域的概率为23,则阴影区域的面积为( )图337A.43B.83C.23D .无法计算 6.如图338,在平面直角坐标系xOy 内,射线OT 落在120°的终边上,任作一条射线OA ,则射线OA 落在∠xOT 内的概率为________.图3387.某路公共汽车5分钟一班准时到达某车站,求任一人在该车站的等车时间少于3分钟的概率(假定车到来后每人都能上).8.已知实数x,y可以在0<x<2,0<y<2的条件下随机取数,那么取出的数对(x,y)满足(x-1)2+(y-1)2<1的概率是( )A.π4B.4πC.π2D.2π9.一海豚在水池中自由游弋,水池是长为30 m,宽为20 m的长方形,求海豚嘴尖离岸边不超过2 m的概率为______.10.一元二次方程x2+2ax+b2=0,其中a∈[0,3],b∈[0,2],求此方程有实根的概率.11.甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去.求两人能会面的概率.第三章 概率3.1 随机事件的概率 3.1.1 随机事件的概率 【课后巩固提升】 1.C 2.B 3.D4.(1)3个球均为黑球(2)3个球中至少有1个白球(3)①白球个数为2个(黑球1个);②白球个数为1个(黑球2个)5.①④⑤ 解析:频率是概率的一个近似值.对于一个具体事件而言,概率是一个常数,而频率则随着试验次数的变化而变化,试验次数越多,频率就越接近于事件的概率.6.716解析:由图可知:总人数为32,90分以上(含90分)的人数为14人,∴该校参赛学生的获奖的概率为716.7.解:从左到右依次填:0.85 0.9 0.87 0.884 0.88由表知:每次用药的有效频率虽然不同,但频率总在0.88的附近摆动,所以该药的有效概率约为0.88.8.(1)a ∈(0,1) (2)必然 9.解:(1)“取出的球是黄球”在题设的条件下根本不可能发生,因此它是不可能事件,其概率为0.(2)“取出的球是白球”是随机事件,其概率为49.(3)“取出的球是白球或是黑球”在题设的条件下必然会发生,因此它是必然事件,其概率为1.10.解:(1)40分钟不能赶到火车站的有12+12+16+4=44(人),∴用频率估计相应概率约为44100=0.44.121212择L 1和L 2时,在50分钟内赶到车站.P (A 1)=0.1+0.2+0.3=0.6,P (A 2)=0.1+0.4=0.5. ∵P (A 1)>P (A 2),∴甲应选择L 1.P (B 1)=0.1+0.2+0.3+0.2=0.8, P (B 2)=0.1+0.4+0.4=0.9. ∵P (B 1)<P (B 2), ∴乙应选择L 2.3.1.2 概率的意义 【课后巩固提升】 1.C 2.B 3.D 4.D5.小于 解析:设两红球为r 1,r 2,两白球为b 1,b 2,那么有(r 1,r 2),(r 1,b 1),(r 1b 2),(r 2,b 1),(r 2,b 2),(b 1,b 2)共6种结果.其中甲获胜的情况只有2种.6.①②③ 解析:必然事件的概率为1,故①错;概率值是客观存在的,与试验次数无关,故②错;概率是稳定的,③错.7.频率8.指该厂生产的灯泡能点1000小时以上的可能性是86%.9.1000 解析:由表格知:该厂生产的这种产品的合格率大约为95%. 10.解:(1)不能.因为甲未命中目标与乙未命中目标有可能同时发生,也就是说,“目标被命中”并不是必然事件,故目标被命中的概率小于1.(2)能.因为命中靶的内圈和命中靶的其余部分都是目标被命中,且命中靶的内圈和命中靶的其余部分是不可能同时发生.11.解:(1)由已知,得25+y +10=55,x +30=45, ∴x =15,y =20.(2)记事件A 为“一位顾客一次购物结算时间不超过2分钟”,则P (A )=15+30+25100=0.7,故一位顾客一次购物的结算时间不超过2分钟概率为0.7.3.1.3 概率的基本性质 【课后巩固提升】 1.C 2.B3.D 解析:P (“甲不输”)=P (“甲胜”)+P (“甲、乙和棋”), ∴P (“甲、乙和棋”)=0.9-0.4=0.5.4.C 设A 大学2名志愿者分别记为a ,b ,B 大学4名志愿者分别记为c ,d ,e ,f .任抽取2人,情况为ab ,ac ,ad ,ae ,af ,bc ,bd ,be ,bf ,cd ,ce ,cf ,de ,df ,ef ,共15种.记事件A :“2名大学生来自A 大学”,则P (A )=115.事件B :“两名大学生来自两所大学”,则P (B )=815.∴p =P (A )+P (B )=35.5.D 6.(1)0.44 (2)0.03 解析:(1)p =0.21+0.23=0.44.(2)p =1-(0.21+0.23+0.25+0.28)=0.03.7.解:(1)至少有一人排队的概率为p 1=1-0.10=0.90. (2)至多2人排队的概率为p 2=0.10+0.16+0.30=0.56. (3)至少2人排队的概率为p 3=1-(0.10+0.16)=0.74. 8.12 23 解析:由p 21-p 1+14=0,得p 1=12.因为1p 1,1p 2是方程x 2-5x +6=0的根,所以1p 1·1p 2=6,所以p 2=13.因此,甲射击一次,不中靶概率为1-12=12,乙射击一次,不中靶概率为1-13=23.9.解:不正确.事件A 与B 并不互斥. 因为P (A +B )=P (A )+(B )-P (AB ),而P (A )=36=12,P (B )=36=12,P (AB )=26=13,所以P (A +B )=12+12-13=23.10.解:从袋中任取1球,记事件“摸到标写字母a 的球”,“摸到标写字母b 的球”,“摸到标写字母c 的球”,“摸到标写字母d 的球”依次为A ,B ,C ,D ,且A ,B ,C ,D 两两互斥.则P (B ∪C )=P (B )+P (C )=512, P (C ∪D )=P (C )+P (D )=512,P (B ∪C ∪D )=1-P (A )=1-13=23=P (B )+P (C )+P (D ),∴P (B )=14,P (C )=16,P (D )=14.3.2 古典概型 3.2.1 古典概型 【课后巩固提升】1.B 解析:p =220=110.2.B 3.D4.B 解析:p =327=19.5.310解析:从5条线段中任取3条共有10个基本事件,其中能构成一个三角形的有:(3,5,7),(3,7,9),(5,7,9),共3个基本事件,所以p =310.6.解:(1)甲校男教师用a ,b 表示,女教师用c 表示;乙校男教师用d 表示,女教师用e ,f 表示.所有选取结果为:(a ,d ),(a ,e ),(a ,f ),(b ,d ),(b ,e ),(b ,f ),(c ,d ),(c ,e ),(c ,f ),共9种.其中性别相同有4种,∴所求事件概率为p 1=49.(2)所有选取结果为:(a ,b ),(a ,c ),…,(e ,f ),共15种,其中来自同一校有6种,所求概率p 2=615=25.7.35 解析:∵共有20个三角形,其中直角三角形有12个,∴p =1220=35. 8.D 解析:计算当n =2,3,4,5时基本事件的总数,可知n 取3和4时概率最大.故选D.9.解:(1)依题意,分层抽样的抽样比为354=118.∴在一年级抽取的人数为36×118=2(人).在二年级抽取的人数为72×118=4(人).所以一、二年级志愿者的人数分别为2人和4人.(2)①用A 1,A 2表示样本中一年级的2名志愿者,用a 1,a 2,a 3,a 4表示样本中二年级的4名志愿者.则抽取2人的情况为A 1A 2,A 1a 1,A 1a 2,A 1a 3,A 1a 4,A 2a 1,A 2a 2,A 2a 3,A 2a 4,a 1a 2,a 1a 3,a 1a 4,a 2a 3,a 2a 4,a 3a 4,共15种.②抽取的2人在同一年级的情况是A 1A 2,a 1a 2,a 1a 3,a 1a 4,a 2a 3,a 2a 4,a 3a 4,共7种. ∵每一种情况发生的可能性都是等可能的,∴抽取的2人是同一年级的概率为715.3.2.2 (整数值)随机数(random numbers)的产生 【课后巩固提升】 1.D2.C 解析:基本事件共有36种,其中(1,2),(2,1)为事件A 所含基本事件,∴P (A )=236=118. 3.C 解析:从数字1,2,3,4中任取两个不同数字构成两位数的个数为12个,大于30的有31,32,34,41,42,43,共6个,故所求的概率为612=12.4.25% 解析:本题无法用古典概型解决.表示恰有三次击中目标分别是3013,2604,5725,6576,6754,共5个数.随机总数总共20个,所以所求概率近似为520=25%.5.0.7 解析:基本事件总数为10个,设“2名都是男生”为事件A ,“至少有一名女生”为事件B ,则P (B )=1-P (A )=1-310=0.7.6.116解析:三个人分配到四个房间中的所有可能分法为64种,分配到同一间的分法有4种,所求概率为464=116.7.B 解析:基本事件总数为24,密码连号的个数为2,则p =224=112.8.D 解析:基本事件总数为100,x +y 是10的倍数的总数为10,则p =10100=110.9.12 解析:共有6种不同取法,其中颜色不同的取法有3种,∴p =36=12. 10.解:利用计算机(或计算器)产生0至9之间取整数值的随机数,用0,1,2,3表示不成功,用4,5,6,7,8,9表示成功,这样可以体现成功的概率为0.6.因为做3例手术,所以每3个随机数作为一组,例如产生253,743,780,…,346,843共100组随机数.(1)统计出0,1,2,3出现2个的数组个数为N 1,则恰好成功一例的概率的近似值为N 1100(参考答案为:0.288).(2)统计出0,1,2,3出现1个的数组个数为N 2,则恰好成功两例的概率的近似值为N 2100(参考答案为:0.432).11.解:用计算机或者是计算器产生1~7之间取整数值的随机数.用1,2,3,4,5表示白球,用6,7表示黑球.(1)统计随机数的个数n 以及小于6的个数n 1,则n 1n即为任取1球得到白球的概率的近似值.(2)三个一组(每组内数字不重复),统计总组数m 及恰有两个数小于6的组数m 1,则m 1m 为任取3球,恰有2个白球的概率的近似值.(3)三个一组(每组内数字可重复),统计总组数k 以及三个数都小于6的组数k 1,则k 1k即为恰有3个白球的概率的近似值.3.3 几何概型 【课后巩固提升】 1.A2.A 解析:如图D21,设点D 为AB 的三等分点,要使△PBC的面积不小于S3,则点P只能在AD 上选取,由几何概型的概率公式,得所求概率为|AD ||AB |=23|AB ||AB |=23.图D213.A 解析:∵扇形ADE 的半径为1,圆心角等于90°,∴扇形ADE 的面积为S 1=14×π×12=π4.同理可得,扇形CBF 的面积S 2=π4.又∵长方形ABCD 的面积S =2×1=2,∴在该矩形区域随机地选一地点,则该地点无信号的概率是p =S -S 1+S 2S =2-⎝ ⎛⎭⎪⎫π4+π42=1-π4.4.D 解析:Δ>0⇒m >22(m <-22舍去), ∴p =1-221=2-22.5.B 解析:∵S 阴S 正方形=23,S 正方形=4,∴S 阴=83.6.137.解:可以认为人在任何时刻到站是等可能的.设上一班车离站时刻为a ,则该人到站的时刻的一切可能为Ω=(a ,a +5),若在该车站等车时间少于3分钟,则到站的时刻为g = (a +2,a +5),P (A )=g 的长度Ω的长度=35.8.A 解析:p =π×122×2=π4.9.2375 解析:测度为面积,由图D22,得p =1-26×1630×20=2375.图D2210.解:如图D23,试验的全部结果所构成的区域为 {(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },故所求的概率为P (A )=3×2-12×223×2=23.图D2311.解:以x ,y 分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x -y |≤15.在如图D24所示的平面直角坐标系下,(x ,y )的所有可能结果是边长为60的正方形,而事件A “两人能够会面”的可能结果由图D24中的阴影部分表示.由几何概型概率公式,得P (A )=S A S =602-452602=3600-20253600=716.所以两人会面的概率是716.图D24。
北师大版九年级数学上册第三章《概率的进一步认识》用频率估计概率同步练习(含答案) (2)
用频率估计概率同步测试(典型题汇总)◆随堂检测1.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中只有3个红球.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12 B.9 C.4 D.32.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为()A.12B.36π C.39π D.33π3.某同学抛掷两枚硬币,分10组实验,每组20次,下面是共计200次实验中记录下的结果.根据下列表格内容填空:实验组别两个正面一个正面没有正面第1组 6 11 3第2组 2 10 8第3组 6 12 2第4组7 10 3第5组 6 10 4第6组7 12 1第7组9 10 1第8组 5 6 9第9组 1 9 10第10组 4 14 2①在他的10组实验中,抛出“两个正面”频数最少的是他的第_____组实验.②在他的第1组实验中抛出“两个正面”的频数是_____,在他的前两组(第1组和第2组)实验中抛出“两个正面”的频数是_____.③在他的10组实验中,抛出“两个正面”的频率是_____,抛出“一个正面”的频率是_____,“没有正面”的频率是_____,这三个频率之和是_____.④根据该实验结果估计抛掷两枚硬币,抛出“两个正面”的概率是____.◆典例分析小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据上述实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么? 分析:概率是描述随机现象的数学模型,它不能等同于频率.只有在一定的条件下,大量重复试验时,随机事件的频率所逐渐稳定到的常数,才可估计此事件的概率. 解:(1)“3点朝上”的频率是101606=;“5点朝上”的频率是316020=. (2)小颖的说法是错误的.因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近.小红的说法也是错误的.因为事件的发生具有随机性,所以“6点朝上”的次数不一定是100次. ◆课下作业 ●拓展提高1.在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为( ) A .161 B .41 C .16π D .4π2.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是_________.3.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有_____个.4.某篮球运动员在最近的几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 16 10 进球次数m6 897 12 7朝上的点数 1 2 3 4 56 出现的次数796820 10进球频率m n(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?5.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?●体验中考1.(湖南长沙)从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下: 种子粒数 100 400 800 1 000 2 000 5 000 发芽种子粒数 85 398 652 793 1 604 4 005 发芽频率0.8500.7450.8510.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为_________(精确到0.1). 2.(邵阳市)小芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为______.3.(江西)某市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A 、B 、C 表示)和三个化学实验(用纸签D 、E 、F 表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个. (1)用“列表法”或“树状图法”表示所有可能出现的结果; (2)小刚抽到物理实验B 和化学实验F (记作事件M )的概率是多少? 参考答案: ◆随堂检测 1.A. 2.C .3.解:①9;②6,8;③0.2,0.7,0.1,1;④约0.265. ◆课下作业 ●拓展提高 1.C. 2.21. 3.6.4.解:(1)0.75,0.8,0.75,0.78,0.75,0.7;(2)0.75. 5.根据概率的意义,可以认为其概率大约等于250/2000=0.125.该镇约有100000×0.125=12500人看中央电视台的早间新闻. ●体验中考 1.0.8. 2.12. 3.解:(1)方法一:列表格如下:D E F A (A ,D ) (A ,E ) (A ,F ) B (B ,D ) (B ,E ) (B ,F ) C(C ,D )(C ,E )(C ,F )方法二:画树状图如下:所有可能出现的结果AD 、AE 、AF 、BD 、BE 、BF 、CD 、CE 、CF.(2)从表格或树状图可以看出,所有可能出现的结果共有9种,其中事件M 出现了一次,所以P (M )=19. 用频率估计概率同步测试 (典型题汇总)知识点 1 频率与概率的关系1.关于频率与概率的关系,下列说法正确的是( ) A .频率等于概率B .当试验次数很大时,频率稳定在概率附近C .当试验次数很大时,概率稳定在频率附近D .试验得到的频率与概率不可能相等2.在一个不透明的布袋中,红球、黑球、白球共有若干个,它们除颜色不同外,其余均相同,小新从布袋中随机摸出一球,记下颜色后放回,摇匀……如此大量摸球试验后,小新发现摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( )A .①②③B .①②C .①③D .②③ 知识点 2 用频率估计概率3.2017·贵阳期末在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干个,某AD E F B D E FCDEF 化学 实验物理 实 验小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复该试验,A.0.4 B.0.5 C.0.6 D.0.74.六一期间,小洁的妈妈经营的玩具店进了一纸箱除颜色不同外其余都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下颜色,把它放回纸箱中……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数是________.5.教材随堂练习第1题变式题调查你家附近的20个人,其中至少有两人生肖相同的概率为( )A.14B.12C.13D.1图3-2-16.2017·宿迁如图3-2-1,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是________m2.7.2017·贵阳模拟一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球的球面上分别标有3,4,5,x,甲、乙两人每次同时从袋中各随机摸出一个小球,并计算摸出的这两个小球上的数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是__________(精确到0.01).(2)如果摸出的这两个小球上的数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图法说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.1.B [解析] 当试验次数很大时,频率稳定在概率附近.故选B.2.B [解析] ∵在一个不透明的布袋中,红球、黑球、白球共有若干个,其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,∴①若进行大量摸球试验,摸出白球的频率稳定于1-20%-50%=30%,故此项正确;∵摸出黑球的频率稳定于50%,大于摸出其他颜色球的频率,∴②从布袋中任意摸出一个球,该球是黑球的概率最大,故此项正确;③若再摸球100次,不一定有20次摸出的是红球,故此项错误.故正确的有①②.3.C [解析] 观察表格得:通过多次摸球试验后发现其中摸到白球的频率稳定在0.6左右,则P (摸到白球)≈0.6.故选C.4.2005.D [解析] 共有12个生肖,而有20个人,每人都有生肖,故一定有两个人的生肖是相同的,即至少有两人生肖相同的概率为1.6.1 [解析] ∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,∴小石子落在不规则区域的概率为0.25.∵正方形的边长为2 m ,∴面积为4 m 2.设不规则区域的面积为S ,则S4=0.25,解得S =1. 7.解:(1)0.33 (2)不可以取7.理由:当x =7时,列表如下:两个小球上的数字之和为9的概率是212=16≠13,故x 的值不可以取7.当x =5时,摸出的这两个小球上的数字之和为9的概率是13.(答案不唯一,x 的值也可以是4,6).。
概率论第三章习题及答案
PX x , Y y
j i
j 1, 2,
返回主目录
第三章 习题课
已知联合分布律求边缘分布律
X 以及Y 的边缘分布律也可以由 下表表示
Y X
y1 p11
p21
y2 p12
p22
… … … … …
yj
p1 j
… … …
pi
p1
p2
x1
x2
p2 j
对于任意固定的 Y, 对于任意固定的 X,
F ( , y ) 0;
F ( x,) 0;
F (,) 0;
F (,) 1.
返回主目录
第三章 习题课
3) F (x , y)=F(x+0, y), F (x, y)=F(x, y+0), 即 F (x, y)关于 x 右连续,关于 y 也右连续.
2 则称随机变量 X, Y 服从参数为 1, 2, 12, 2 ,
X, Y ~ N 1, 2, , , 2, 1 1. i i 1 , 2, i 0 i 1
2 1 2 2
的正态分布,记作
Y 的取值为 y1, y2, , y j ,
则称
设 X, Y 二维离散型随机变量,X 的取值为
pij P X xi , Y y j
i,j 1, 2,
X, Y 的(联合)分布律. 为二维离散型随机变量
第三章 习题课
二维离散型随机变量的联合分布律
X, Y 的联合分布律也可以由 下表表示
Y X
x1 x2
高二数学必修三第三章概率练习题(含答案北师大版)
高二数学必修三第三章概率练习题(含答案北师大版)数学家也研究纯数学,也就是数学自己,而不以任何实际应用为目标。
小编准备了高二数学必修三第三章概率练习题,详细请看以下内容。
一、选择题1.某人将一枚硬币连续投掷了10 次,正面向上的情况出现了6 次,则 ()A. 概率为 0.6B.频次为 0.6C.频次为 6D. 概率靠近于 0.6【分析】连续投掷了 10 次,正面向上的情况出现了 6 次,只好说明频次是 0.6,只有进行大批的试验时才可预计概率 . 【答案】 B2.以下说法错误的选项是()A.频次反应事件的屡次程度,概率反应事件发生的可能性大小B.做 n 次随机试验,事件 A 发生 m 次,则事件 A 发生的频率 mn 就是事件 A 的概率C.频次是不可以离开n 次试验的试验值,而概率是拥有确立性的不依靠于试验次数的理论值D.频次是概率的近似值,概率是频次的稳固值【分析】依据频次与概率的意义可知, A 正确 ;C、D 均正确,B 不正确,应选 B.【答案】B3.从寄存号码分别为1,2,,10 的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果以下:卡片号码取到的次数则取到号码为奇数的频次是()【分析】mn=13+5+6+18+11100=0.53.【答案】A4.(2019 沈阳检测 ) 某彩票的中奖概率为11 000 意味着 ()A. 买 1 000 张彩票就必定能中奖B.买 1 000 张彩票中一次奖C.买 1 000 张彩票一次奖也不中D.购置彩票中奖的可能性是11 000【分析】中奖概率为11 000,其实不意味着买1 000 张彩票就必定中奖,中一次奖或一次也不中,所以A、B、C 均不正确.【答案】D5.2019 年山东省高考数学试题中,共有12 道选择题,每道选择题有 4 个选项,此中只有 1 个选项是正确的,则随机选择此中一个选项正确的概率为14,某家长说:假如都不会做,每题都随机选择此中一个选项,则必定有 3 题答对这句话 () A. 正确 B.错误C.不必定D. 没法解说【分析】把解答一个选择题作为一次试验,答对的概率是14,说明做对的可能性大小是14.做 12 道选择题,即进行了12 次试验,每个结果都是随机的,那么答对 3 题的可能性较大,可是其实不必定答对3 道,也可能都选错,或仅有2,3,4题选对,甚至12 个题都选择正确.【答案】B二、填空题6.样本容量为200 的频次散布直方图如图3-1-1 所示 .依据样本的频次散布直方图预计,样本数据落在[6,10) 内的频数为________,数据落在 [6,10) 内的概率约为 ________.图 3-1-1【分析】样本数据落在[6,10)内的频次为0.084=0.32,频数为 2019.32=64.由频次与概率的关系知数据落在[6,10) 内的概率约为0.32.【答案】64 0.327.在 5 张不一样的彩票中有 2 张奖票, 5 个人挨次从中各抽取1张,各人抽到奖票的概率________( 填相等不相等 ).【分析】由于每人抽得奖票的概率均为25,与前后的次序没关 .【答案】相等8.假如袋中装有数目差异很大而大小同样的白球和黑球(只是颜色不一样 ),每次从中任取一球,记下颜色后放回并搅匀,取了 10 次有 9 次白球,预计袋中数目最多的是________.【分析】取了 10 次有 9 次白球,则拿出白球的频次是910,预计其概率约是910,那么拿出黑球的概率是110,那么取出白球的概率大于拿出黑球的概率,所以预计袋中数目最多的是白球.【答案】白球三、解答题9.(1)设某厂产品的次品率为2%,问从该厂产品中随意地抽取 100 件,此中必定有 2 件次品这一说法对不对?为何 ? (2)若某次数学测试,全班50 人的及格率为90%,若从该班中随意抽取10 人,此中有 5 人及格是可能的吗?【解】(1)这类说法不对,由于产品的次品率为2%,是指产品是次品的可能性为2%,所以从该产品中随意地抽取100件,此中有可能有 2 件次品,而不是必定有 2 件次品 .(2)这类状况是可能的.10.(2019 课标全国卷Ⅱ )经销商经销某种农产品,在一个销售季度内,每售出 1 t 该产品获收益 500 元,未售出的产品,每 1 t 损失 300 元.依据历史资料,获得销售季度内市场需求量的频次散布直方图,如图3-1-2 所示 .经销商为下一个销售季度购进了130 t 该农产品 .以 X( 单位: t,100150) 表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的收益.图 3-1-2(1)将 T 表示为 X 的函数 ;(2)依据直方图预计收益T 许多于 57 000 元的概率 .【解】(1)当 X[100,130) 时,T=500X-300(130-X)=800X-39 000.当 X[130,150] 时,T=500130=65 000.所以 T=800X-39 000 ,100130,?65 000, 130150.(2)由 (1)知收益 T 许多于 57 000 元当且仅当120190.由直方图知需求量X[120, 150] 的频次为0.7,所以下一个销售季度内的收益T 许多于 57 000 元的概率的预计值为0.7.11.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量,单位: mm)共有 100 个数据,将数据分组以下表:分组频数[1.30,1.34)4[1.34,1.38)25[1.38,1.42)30[1.42,1.46)29[1.46,1.50)10[1.50,1.54)2总计 100(1)画出频次散布直方图;(2)预计纤度落在 [1.38,1.50)mm 中的概率及纤度小于 1.42 的概率是多少 .【解】(1)频次散布直方图,如图:(2)纤度落在 [1.38,1.50)mm 中的频数是 30+29+10=69 ,则纤度落在 [1.38,1.50)mm 中的频次是 69100=0.69 ,所以预计纤度落在 [1.38,1.50)mm 中的概率为 0.69. 纤度小于1.42 mm 的频数是 4+25+30=59 ,则纤度小于 1.42 mm 的频次是59100=0.59,所以预计纤度小于 1.42 mm 的概率为0.59.课本、报刊杂志中的成语、名言警语等俯首皆是,但学生写作文运用到文章中的甚少,即便运用也很难做到恰到好处。
(完整版)北师大版九年级数学上册第三章《概率》专题练习(含答案)
北师大版九年级数学上册第三章《概率》专题练习一.知识梳理(一)事件的分类:1. 频率二频数/总数,频率随着试验的不同而不同,它是一个不确定数。
2. 事件发生的——大小叫做概率。
事件的概率是一个确定的常数。
3. 事件的分类:确定事件和随机事件。
确定事件包括必然事件和不可能事件4. 必然事件的概率为1;不可能事件的概率为0;随机事件的概率位于0--1之间。
(二)概率的计算:当事件发生的结果具有有限性和等可能性时:(1) 一步试验或几何图形,利用概率的定义直接计算(2) 两步试验,且结果较少,用树状图和列表格求概率都可以;(3) 两步试验,但每步结果较多,适合用列表法求概率;(4) 三步或三步以上,适合用画树状图求概率。
(5) 用画树状图或列表法求概率时应注意:要清楚所以结果有哪些?要清楚我们关注的是哪些结果?(三)用频率估计概率概率和频率的关系:通过试验获得事件发生的频率,而大量重复试验时的频率会稳定在概率的附近,所以可以用大量试验的频率估计概率;同时也可以利用概率预测事件发生的频率。
二.简单概率计算一步试验:1. 十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,亮绿灯的概率是________________2. 一个不透明的袋子中放入除颜色外均相同的2个白球和6个红球,从中任意抽取一个球,抽到红球的概率是________________ 3. 在一只不透明的口袋中放入红球6个,黑球2个,黄球n个,这些球除颜色不同外,其他无任何差别,搅匀后随机从中摸出一个求恰好是黄球的概率是】,则放入口袋中的黄球总数是n= _____________________3两步试验:仔细区分:(1)放回;(2)不放回4. 在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色不同,从袋子中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次都摸到白球的概率为_________5. 某校安排了3辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王和小菲都可以从这三辆车中任意选取1辆搭乘,则小王和小菲同车的概率是_______6. 某校决定从2名男生和3名女生中选出2名同学作为兰州国际马拉松赛的志愿者,则选出1男1女的概率是 ___________7. 袋子中放着型号,大小完全相同的红,白,黑三种颜色的衣服,红色2件,黑色1件,白色1件,小明随意从袋中取出2件衣服,则取出的是1红1白的概率是 ________三步试验:8. 随机安排甲乙丙3人在3天节日中值班,每人值班一天,则按“乙,甲,丙”的先后顺序值班的概率是____________三:概率与其他知识的综合9. 在x2口2xy 口y2的“口”中分别填上“ +”或“-”,在所得的代数式中,能构成完全平方式的概率是__________A.1B. 3C.丄D.丄4 2 410. 已知a,b可以取-2 , -1,1,2中的任意一个值(a z b),则直线y=ax+b的图像不经过第四象限的概率是____________11. 一个盒子里有完全相同的三个小球,球上分别标有数字-2,1,4,随机摸出一个小球(不放回),其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于X的方程x2px q 0有实数根的概率是 _ _12. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0 ,1,2,连续抛掷两次,朝下一面的数字分别为a,b,将其作为M点横,纵坐标,则点M(a,b)落在以A (-2,0 ) , B (2,0 ) , C (0,2 )为顶点的三角形内(包括边界)的概率是_______________________________________ 标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的数字之和为负数的概率是 _____________________ 14.在盒子里放有3张分别写有整式a+1,a+2,2的卡片,从中随机抽出2张卡片,把2张卡片上的整式分别作为分子和分母,贝惟组成分式的概率是—15. 有四根木棒,长度分别为2,3,4,5,从中任选3根,恰好能搭成一个三角形的概率是——16. 小明和小亮用如图所示的两个转盘做“配紫色”游戏,游戏规则是:分别转动两个转盘,若其中一个转盘转出红色,另一个转盘转出蓝色,则可以配成紫色,此时小明的1分,否则小亮的1分.用树状图或列表求出小明获胜的概率;(2)这游戏对双方公平吗?请说明理由.若不公平,如何修改规则才能使游戏对双方公平?17. 端午节前,小明爸爸去超市购买了大小,形状,重量等相同的火腿粽子和豆沙粽子若干,放入不透明的盒子中,此时从盒中随机取出火腿13. 一个不透明的袋子中有3个分别标有3,1 , -2的球,这些球除了所粽子的概率为1;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷3爷和奶奶后,这时随机取出火腿粽子的概率为2 .(1)请你用所学知5识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)四.样本估计总体18. 一个口袋中有红球24个和绿球若干个,从口袋中随机摸出一个球记下其颜色,再把它放回口袋中摇匀,重复上述过程,实验200次,其中有125次摸到绿球,由此估计口袋中共有球 __________ 个。
北师版九年级上数学第三章随堂练习100
北师版九年级上数学第三章随堂练习100一、选择题(共5小题;共25分)1. 小华、小强和小彬三位同学随机地站成一排做游戏,小华站在排头的概率是D.2. 小明的口袋里有把钥匙,分别能打开甲、乙、丙三把锁他从口袋中任意取出一把钥匙,能打开甲锁的概率是D.3. 新冠疫情发生以来,为保证防控期间的口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,从最初转产时的陌生,到正式投产后达成日均生产万个口罩的产能.不仅效率高,而且口罩送检合格率也不断提升,真正体现了“大国速度”.以下是质监局对一批口罩进行质量抽检的相关数据,统计如下:下面四个推断合理的是A. 当抽检口罩的数量是个时,口罩合格的数量是个,所以这批口罩中“口罩合格”的概率是B. 由于抽检口罩的数量分别是和个时,口罩合格率均是,所以可以估计这批口罩中“口罩合格”的概率是C. 随着抽检数量的增加,“口罩合格”的频率总在附近摆动,显示出一定的稳定性,所以可以估计这批口罩中“口罩合格”的概率是D. 当抽检口罩的数量达到个时,“口罩合格”的概率一定是4. 太原是我国生活垃圾分类的个试点城市之一,垃圾分类的强制实施也即将提上日程.根据规定,我市将垃圾分为了四类:可回收物、厨余垃圾、有害垃圾和其他垃圾(如图).现有投放这四类垃圾的垃圾桶各个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,则投放正确的概率是C. D.5. 均匀的正四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是A. C. D.二、填空题(共4小题;共20分)6. 某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有场比赛,其中场是乒乓球赛,场是羽毛球赛,从中任意选看场,则选看的场恰好都是乒乓球比赛的概率是.7. 一个暗箱里放有个白球和个红球,它们除颜色外完全相同.若每次将球搅匀后,任意摸出个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在附近,那么可以推算出的值大约是.8. 现有三张分别标有数字,,的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为,则点在直线图象上的概率为.9. 将,,,四个号码牌放入一个布袋中,搅匀后随即摸出两张,将它们的号码相乘,结果不为的概率是.三、解答题(共4小题;共52分)10. 王老师制作了四张不透明的卡片,这四张卡片除了正面文字不同外其他完全相同,正面文字分别为:绿水()、青山()、金山()、银山().然后把这四张卡片背面朝上放在桌面上洗匀,先从中拿出一张卡片,再从剩余的卡片中拿出一张.(1)求王老师第一次拿出的卡片中,有“山”字的概率是;(2)请利用列表法或画树状图的方法,求王老师在两次拿出的卡片中,有“绿水和青山”或“金山和银山”的概率.11. 在一个不透明的盒子里装有红、黑两种颜色的球共只,这些球除颜色外其余完全相同.为了估计红球和黑球的个数,七()班的数学学习小组做了摸球实验.他们将球搅匀后,从盒子里随机摸出一个球记下颜色,再把球放回盒子中,多次重复上述过程,得到下表中的一组统计数据:(1)请估计:当次数足够大时,摸到红球的频率将会接近;(精确到)(2)假如你去摸一次,则摸到红球的概率的估计值为;(3)试估算盒子里红球的数量为个,黑球的数量为个.12. 有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁,求一次打开锁的概率.13. 某人口袋中有纸币元,元和元各张,从中随机取出张.(1)求取出纸币的差额为元的概率;(2)求取出纸币的总额可购买元的商品的概率.答案第一部分1. B 【解析】如图所示:共有种等可能的结果,小华站在排头的结果有个,小华站在排头的概率为;故选:B.2. A3. C4. C 【解析】可回收物、厨余垃圾、有害垃圾和其他垃圾对应的垃圾桶分别用,,,表示,垃圾分别用,,,表示.设分类打包好的两袋不同垃圾为,,画树状图如图:共有个等可能的结果,分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的结果有个,分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率为.5. B【解析】【分析】列举出所有情况,看着地的一面数字之和为5的情况占总情况的多少即可.【解析】解:同时抛掷两个这样的正四面体,有可能的结果16种,数字之和为5的是4种,所以着地的一面数字之和为5的概率是.故选.【点评】本题考查了概率的求法.用到的知识点为:概率所求情况数与总情况数之比.第二部分7.【解析】根据题意知,解得,经检验:是原分式方程的解,所以推算出的值大约是.【解析】列表得:得到所有等可能的情况有种,其中点在直线图象上的只有这种情况,点在直线图象上的概率为【解析】将四个号码牌放入一个布袋中,搅匀后随机摸出两张,可能的情况有,,,,,,共种.其中结果不为的只有一组,故结果不为的概率是.第三部分10. (1)(2)列表如下:由表可知共有种等可能结果,王老师在两次拿出的卡片中,有“绿水和青山”或“金山和银山”的结果数为种,王老师在两次拿出的卡片中,有“绿水和青山”或“金山和银山”的概率.11. (1)(2)(3);【解析】估算盒子里红球的数量为个,黑球的个数为个.12. 设两把锁分别为,,四把钥匙分别为,,,,其中只能打开,只能打开.则可得种结果,一次打开锁有种情况,.13. (1)(2)。
【随堂优化训练】数学(人教a版)必修3课后作业:第3章 概率
第三章概率3.1随机事件的概率3.1.1随机事件的概率1.下列现象是必然现象的是()A.某路口单位时间内发生交通事故的次数B.冰水混合物的温度是1℃C.三角形的内角和为180°D.一个射击运动员每次射击都击中2.一个口袋内装有大小和形状都相同的一个白球和一个黑球,那么“从中任意摸出一个球,得到白球”这个事件()A.是必然事件B.是随机事件C.是不可能发生事件D.不能确定是哪种事件3.事件A的概率P(A)满足()A.P(A)=0B.P(A)=1C.0<P(A)<1D.0≤P(A)≤14.在100个小球中,白球有98个,黑球有2个.从这100个小球中一次性地取出3 个.(1)写出一个不可能事件:__________________;(2)写出一个必然事件:______________________;(3)记事件C为“至少有1个黑球”,写出事件C包含的白球个数:_____________________.5.下列说法:①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n次随机试验,事件A发生的频率就是事件A的概率;③百分率是频率,但不是概率;④频率是概率的近似值,概率是频率的稳定值;⑤频率是不能脱离具体的n次试验的试验值,而概率是不依赖于试验次数的理论值.其中正确的是____________(写序号).6.某中学部分学生参加全国数学联赛的成绩情况如图3-1-2(成绩均为整数,满分120分),如果90分以上(含90分)获奖,那么获奖的概率是________.图3-1-27.8.(1)若事件“函数y=a x(a>0,且a≠1)在(-∞,+∞)上是增函数”是不可能事件,则a满足的条件是____________.(2)事件“圆(x-a)2+(y-b)2=r2内的点的坐标可使不等式(x-a)2+(y-b)2<r2成立”是________事件.9.盒中装有4个白球,5个黑球,从中任意取出1个球.问:(1)“取出的球是黄球”是什么事件?它的概率是多少?(2)“取出的球是白球”是什么事件?它的概率是多少?(3)“取出的球是白球或是黑球”是什么事件?它的概率是多少?10.如图3-1-3,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:图3-1-3(1)(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径?3.1.2 概率的意义1.某地天气预报说:“明天本地降雨的概率为80%”,这是指( ) A.明天该地区约有80%的时间会下雨,20%的时间不下雨 B.明天该地区约有80%的地方会下雨,20%的地方不下雨 C.明天该地区下雨的可能性为80%D.该地区约有80%的人认为明天会下雨,20%的人认为明天不下雨2.小张做四选一的选择题8道,由于全部都不会做,他只能随机选取一个选项,则下列说法正确的是( )A.不可能全选错B.可能全选正确C.每道题选正确的可能性不相等D.一定全选错3.下列说法中,正确的是( )A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖D.在同一年出生的367名学生中,至少有两人的生日是同一天4.某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,把得到的点数之和是几就选几班,这种选法( )A.公平,每个班被选到的概率都为112B.公平,每个班被选到的概率都为16C.不公平,6班被选到的概率最大D.不公平,7班被选到的概率最大5.甲、乙两人玩游戏,袋中装有2个红球,2个白球,现从中(不放回)任取2个球,若同色则甲胜,否则乙胜.那么甲获胜的概率________乙获胜的概率(填“相等”、“大于”、“小于”).6.下列说法中:①任何事件的概率总是在(0,1)之间;②某事件的概率值是主观存在的,与试验次数有关;③概率是随机的,在试验前不能确定.其中错误的是____________(填序号).7.在一次考试中,某班学生的及格率是80%,这里所说的80%是________(填“概率”或“频率”).8.某节能灯生产厂家说其灯泡能点1000小时以上的概率是0.86,这句话中概率的意义是____________________________________________________________________________ ____________________________________________________________________.9.________件产品.10.回答下列问题:(1)甲、乙两射手同时射击一目标,甲的命中率为0.65,乙的命中率为0.60,那么能否得出结论:目标被命中的概率等于0.65+0.60=1.25?为什么?(2)一射手命中靶的内圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出结论:目标被命中的概率等于0.25+0.50=0.75?为什么?11.(2012年湖南改编)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随(1)确定x,y的值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).3.1.3 概率的基本性质1.抛掷一枚骰子,与事件“点数是偶数”互斥但不对立的事件是( ) A.“点数是奇数” B.“点数是3的倍数” C.“点数是1或3”D.“点数是小于5的偶数”2.抽查10件产品,设事件A 为“至少有2件次品”,则事件A 的对立事件为( ) A.至多有2件次品 B.至多有1件次品 C.至多有2件正品 D.至少有2件正品3.甲、乙两人下棋,甲胜的概率为0.4,甲不输的概率为0.9,则甲、乙两人和棋的概率为( )A.0.6B.0.3C.0.1D.0.54.第16届亚运会于2010年11月12日在中国广州举行,运动会期间有来自A 大学2名、B 大学4名的大学生志愿者.现从这6名志愿者中,随机抽取2名到体操比赛场服务,则至少有1名A 大学的志愿者的概率是( )A.115B.25C.35D.14155.在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是( )A.A +B 与C 是互斥事件,也是对立事件B.B +C 与D 是互斥事件,也是对立事件C.A +C 与B +D 是互斥事件,但不是对立事件D.A 与B +C +D 是互斥事件,也是对立事件 6.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,则该射手在一次射击中,(1)命中10环或9环的概率为________; (2)命中少于7环的概率为________.7.(1)(2)求至多2人排队的概率; (3)求至少2人排队的概率.8.甲、乙两人射击,甲射击一次,中靶概率是p 1,乙射击一次,中靶概率是p 2,已知1p 1,1p 2是方程x 2-5x +6=0的根,且p 1满足方程p 21-p 1+14=0,则甲射击一次,不中靶的概率为________;乙射击一次,不中靶的概率为________.9.抛掷一均匀的正方体玩具(各面分别标有数1,2,3,4,5,6),若事件A 为“朝上一面的数是奇数”,事件B 为“朝上一面的数不超过3”,求P (A +B ).下面的解法是否正确?为什么?若不正确,请给出正确的解法. 解:因为P (A +B )=P (A )+P (B ),而P (A )=36=12,P (B )=36=12,所以P (A +B )=12+12=1.10.袋中有12个小球,小球上标写有字母a ,b ,c ,d ,且每个小球上都写有唯一字母.从中任取1球,摸到标写字母a 的概率为13,摸到标写字母b 或c 的概率为512,摸到标写字母c 或d 的概率也是512.试求摸到标写字母b ,c ,d 的概率各是多少?3.2 古典概型 3.2.1 古典概型1.在20瓶饮料中,有2瓶是过了保质期的,从中任取1瓶,恰好过保质期的概率为( ) A.12 B.110 C.120 D.1402.从1,2,3,4这四个数中一次随机地取两个数,其中一个数是另一个数的两倍的概率是( )A.14B.13C.12D.233.(2013年安徽)若某公司从五位大学毕业生甲、乙、丙、丁、戍中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.9104.用红、蓝、绿3种不同颜色给图3-2-2中的3个矩形随机(等可能)涂色,每个矩形只涂1种颜色,则3A.13B.19C.12D.165.有5条线段的长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取的3条线段能构成三角形的概率为________.6.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师的性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.7.从如图3-2-3所示的正六边形ABCDEF 的6个顶点中任取3个,以这3个点为顶点的三角形是直角三角形的概率是________.图3-2-38.设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件C n(2≤n≤5,n∈N),若事件C n的概率最大,则n的所有可能取值为()A.3 B.4C.2和5 D.3和49.(2013年天津一模)某中学一、二、三年级分别有普法志愿者36人、72人、54人,用分层抽样的方法从这三个年级抽取一个样本,已知样本中三年级志愿者有3人.(1)分别求出样本中一、二年级志愿者的人数;(2)用A i(i=1,2,…)表示样本中一年级的志愿者,a i(i=1,2,…)表示样本中二年级的志愿者,现从样本中一、二年级的所有志愿者中随机抽取2人,①用以上志愿者的表示方法,用列举法列出上述所有可能情况,②抽取的2人在同一年级的概率.3.2.2 (整数值)随机数(random numbers)的产生1.一个三位数字的密码锁,每位上的数字可以是1,3,5,7,9中的一个,某人忘了密码中最后一位号码,则此人开锁时,随意拨动最后一位号码正好能开锁的概率是( )A.110B.18C.16D.152.掷两枚骰子,事件A 为“出现点数之和等于3”,则事件A 的概率为( ) A.112 B.111 C.118 D.1363.从数字1,2,3,4中任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )A.13B.14C.12D.234.通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 7884 2604 3346 0952 6807 9706 5774 5725 6576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,那么表示恰有三次击中目标,那么四次射击中恰有三次击中目标的概率约为____________.5.在5名学生(3名男生、2名女生)中安排2名学生值日,其中至少有1名女生的概率是__________________.6.有三个人,每个人都有相同的可能性被分配到四个房间中的任一间,则三个人都分配到同一房间的概率为________.7.用1,2,3,4四个数字编四位密码(不重复),则密码恰为连号(1234或4321)的概率为( )A.18B.112C.116D.1248.在箱子中装有10张卡片,分别写有1到10的10个整数.从箱子中任取1张卡片,记下它的读数x ,然后放回箱子中,第二次再从箱子中任意取出1张卡片,记下它的读数y ,则x +y 是10的倍数的概率为( )A.12B.14C.15D.1109.盒子里共有大小相同的3个白球,1个黑球,若从中随机摸出两个球,则它们的颜色不同的概率是________.10.某种心脏手术,成功率为0.6,现准备进行三例这样的手术,试用计算机设计模拟试验,并估算:(1)恰好成功一例的概率; (2)恰好成功两例的概率.11.盒中有大小、形状相同的5个白球和2个黑球,用模拟试验方法估算下列事件的概率近似值:(1)任取1球,得到白球; (2)任取3球,恰有2个白球;(3)任取3球(分三次,每次放回后再取),恰有3个白球.3.3 几何概型1.投镖游戏中的靶子由边长为1 m 的四方板构成,并将此板分成四个边长为12m 的小方块,如图3-3-5,现随机向板中投镖,事件A 表示“投中阴影部分”,则A 发生的概率为( )图3-3-5A.14B.116C.1516D.342.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积不小于S 3的概率是( )A.23B.13 C.34 D.143.(2013年陕西)如图3-3-6,在矩形区域ABCD 的A, C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常).若在该矩形区域内随机地选一地点, 则该地点无信号的概率是( )图3-3-6A .1-π4 B.π2-1C .2-π2 D.π44.在(0,1)内任取一个数m ,能使方程x 2+2mx +12=0有两个不相等的实数根的概率为( )A.12B.14C.22 D.2-22 5.如图3-3-7,在边长为2的正方形中,有一个由封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域的概率为23,则阴影区域的面积为( )图3-3-7A.43B.83C.23D .无法计算 6.如图3-3-8,在平面直角坐标系xOy 内,射线OT 落在120°的终边上,任作一条射线OA ,则射线OA 落在∠xOT 内的概率为________.图3-3-87.某路公共汽车5分钟一班准时到达某车站,求任一人在该车站的等车时间少于3分钟的概率(假定车到来后每人都能上).8.已知实数x ,y 可以在0<x <2,0<y <2的条件下随机取数,那么取出的数对(x ,y )满足(x -1)2+(y -1)2<1的概率是( )A.π4B.4πC.π2D.2π9.一海豚在水池中自由游弋,水池是长为30 m ,宽为20 m 的长方形,求海豚嘴尖离岸边不超过2 m 的概率为______.10.一元二次方程x 2+2ax +b 2=0,其中a ∈[0,3],b ∈[0,2],求此方程有实根的概率.11.甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去.求两人能会面的概率.第三章 概率3.1 随机事件的概率 3.1.1 随机事件的概率 【课后巩固提升】 1.C 2.B 3.D4.(1)3个球均为黑球(2)3个球中至少有1个白球(3)①白球个数为2个(黑球1个);②白球个数为1个(黑球2个)5.①④⑤ 解析:频率是概率的一个近似值.对于一个具体事件而言,概率是一个常数,而频率则随着试验次数的变化而变化,试验次数越多,频率就越接近于事件的概率.6.716解析:由图可知:总人数为32,90分以上(含90分)的人数为14人,∴该校参赛学生的获奖的概率为716.7.解:从左到右依次填:0.85 0.9 0.87 0.884 0.88由表知:每次用药的有效频率虽然不同,但频率总在0.88的附近摆动,所以该药的有效概率约为0.88.8.(1)a ∈(0,1) (2)必然 9.解:(1)“取出的球是黄球”在题设的条件下根本不可能发生,因此它是不可能事件,其概率为0.(2)“取出的球是白球”是随机事件,其概率为49.(3)“取出的球是白球或是黑球”在题设的条件下必然会发生,因此它是必然事件,其概率为1.10.解:(1)40分钟不能赶到火车站的有12+12+16+4=44(人),∴用频率估计相应概率约为44100=0.44.(2)(3)121212选择L 1和L 2时,在50分钟内赶到车站.P (A 1)=0.1+0.2+0.3=0.6,P (A 2)=0.1+0.4=0.5. ∵P (A 1)>P (A 2),∴甲应选择L 1. P (B 1)=0.1+0.2+0.3+0.2=0.8, P (B 2)=0.1+0.4+0.4=0.9. ∵P (B 1)<P (B 2), ∴乙应选择L 2.3.1.2 概率的意义 【课后巩固提升】 1.C 2.B 3.D 4.D5.小于 解析:设两红球为r 1,r 2,两白球为b 1,b 2,那么有(r 1,r 2),(r 1,b 1),(r 1b 2),(r 2,b 1),(r 2,b 2),(b 1,b 2)共6种结果.其中甲获胜的情况只有2种.6.①②③ 解析:必然事件的概率为1,故①错;概率值是客观存在的,与试验次数无关,故②错;概率是稳定的,③错.7.频率8.指该厂生产的灯泡能点1000小时以上的可能性是86%.9.1000 解析:由表格知:该厂生产的这种产品的合格率大约为95%.10.解:(1)不能.因为甲未命中目标与乙未命中目标有可能同时发生,也就是说,“目标被命中”并不是必然事件,故目标被命中的概率小于1.(2)能.因为命中靶的内圈和命中靶的其余部分都是目标被命中,且命中靶的内圈和命中靶的其余部分是不可能同时发生.11.解:(1)由已知,得25+y +10=55,x +30=45, ∴x =15,y =20.(2)记事件A 为“一位顾客一次购物结算时间不超过2分钟”,则P (A )=15+30+25100=0.7,故一位顾客一次购物的结算时间不超过2分钟概率为0.7.3.1.3 概率的基本性质 【课后巩固提升】 1.C 2.B3.D 解析:P (“甲不输”)=P (“甲胜”)+P (“甲、乙和棋”), ∴P (“甲、乙和棋”)=0.9-0.4=0.5.4.C 设A 大学2名志愿者分别记为a ,b ,B 大学4名志愿者分别记为c ,d ,e ,f .任抽取2人,情况为ab ,ac ,ad ,ae ,af ,bc ,bd ,be ,bf ,cd ,ce ,cf ,de ,df ,ef ,共15种.记事件A :“2名大学生来自A 大学”,则P (A )=115.事件B :“两名大学生来自两所大学”,则P (B )=815.∴p =P (A )+P (B )=35.5.D6.(1)0.44 (2)0.03 解析:(1)p =0.21+0.23=0.44.(2)p =1-(0.21+0.23+0.25+0.28)=0.03.7.解:(1)至少有一人排队的概率为p 1=1-0.10=0.90. (2)至多2人排队的概率为p 2=0.10+0.16+0.30=0.56. (3)至少2人排队的概率为p 3=1-(0.10+0.16)=0.74. 8.12 23 解析:由p 21-p 1+14=0,得p 1=12.因为1p 1,1p 2是方程x 2-5x +6=0的根,所以1p 1·1p 2=6,所以p 2=13.因此,甲射击一次,不中靶概率为1-12=12,乙射击一次,不中靶概率为1-13=23. 9.解:不正确.事件A 与B 并不互斥. 因为P (A +B )=P (A )+(B )-P (AB ),而P (A )=36=12,P (B )=36=12,P (AB )=26=13,所以P (A +B )=12+12-13=23.10.解:从袋中任取1球,记事件“摸到标写字母a 的球”,“摸到标写字母b 的球”,“摸到标写字母c 的球”,“摸到标写字母d 的球”依次为A ,B ,C ,D ,且A ,B ,C ,D 两两互斥.则P (B ∪C )=P (B )+P (C )=512,P (C ∪D )=P (C )+P (D )=512,P (B ∪C ∪D )=1-P (A )=1-13=23=P (B )+P (C )+P (D ),∴P (B )=14,P (C )=16,P (D )=14.3.2 古典概型 3.2.1 古典概型 【课后巩固提升】1.B 解析:p =220=110.2.B 3.D4.B 解析:p =327=19.5.310解析:从5条线段中任取3条共有10个基本事件,其中能构成一个三角形的有:(3,5,7),(3,7,9),(5,7,9),共3个基本事件,所以p =310.6.解:(1)甲校男教师用a ,b 表示,女教师用c 表示;乙校男教师用d 表示,女教师用e ,f 表示.所有选取结果为:(a ,d ),(a ,e ),(a ,f ),(b ,d ),(b ,e ),(b ,f ),(c ,d ),(c ,e ),(c ,f ),共9种.其中性别相同有4种,∴所求事件概率为p 1=49.(2)所有选取结果为:(a ,b ),(a ,c ),…,(e ,f ),共15种,其中来自同一校有6种,所求概率p 2=615=25.7.35 解析:∵共有20个三角形,其中直角三角形有12个,∴p =1220=35. 8.D 解析:计算当n =2,3,4,5时基本事件的总数,可知n 取3和4时概率最大.故选D.9.解:(1)依题意,分层抽样的抽样比为354=118.∴在一年级抽取的人数为36×118=2(人).在二年级抽取的人数为72×118=4(人).所以一、二年级志愿者的人数分别为2人和4人.(2)①用A 1,A 2表示样本中一年级的2名志愿者,用a 1,a 2,a 3,a 4表示样本中二年级的4名志愿者.则抽取2人的情况为A 1A 2,A 1a 1,A 1a 2,A 1a 3,A 1a 4,A 2a 1,A 2a 2,A 2a 3,A 2a 4,a 1a 2,a 1a 3,a 1a 4,a 2a 3,a 2a 4,a 3a 4,共15种.②抽取的2人在同一年级的情况是A 1A 2,a 1a 2,a 1a 3,a 1a 4,a 2a 3,a 2a 4,a 3a 4,共7种. ∵每一种情况发生的可能性都是等可能的,∴抽取的2人是同一年级的概率为715.3.2.2 (整数值)随机数(random numbers)的产生 【课后巩固提升】 1.D2.C 解析:基本事件共有36种,其中(1,2),(2,1)为事件A 所含基本事件,∴P (A )=236=118. 3.C 解析:从数字1,2,3,4中任取两个不同数字构成两位数的个数为12个,大于30的有31,32,34,41,42,43,共6个,故所求的概率为612=12.4.25% 解析:本题无法用古典概型解决.表示恰有三次击中目标分别是3013,2604,5725,6576,6754,共5个数.随机总数总共20个,所以所求概率近似为520=25%.5.0.7 解析:基本事件总数为10个,设“2名都是男生”为事件A ,“至少有一名女生”为事件B ,则P (B )=1-P (A )=1-310=0.7.6.116解析:三个人分配到四个房间中的所有可能分法为64种,分配到同一间的分法有4种,所求概率为464=116.7.B 解析:基本事件总数为24,密码连号的个数为2,则p =224=112.8.D 解析:基本事件总数为100,x +y 是10的倍数的总数为10,则p =10100=110.9.12 解析:共有6种不同取法,其中颜色不同的取法有3种,∴p =36=12. 10.解:利用计算机(或计算器)产生0至9之间取整数值的随机数,用0,1,2,3表示不成功,用4,5,6,7,8,9表示成功,这样可以体现成功的概率为0.6.因为做3例手术,所以每3个随机数作为一组,例如产生253,743,780,…,346,843共100组随机数.(1)统计出0,1,2,3出现2个的数组个数为N 1,则恰好成功一例的概率的近似值为N 1100(参考答案为:0.288).(2)统计出0,1,2,3出现1个的数组个数为N 2,则恰好成功两例的概率的近似值为N 2100(参考答案为:0.432).11.解:用计算机或者是计算器产生1~7之间取整数值的随机数.用1,2,3,4,5表示白球,用6,7表示黑球.(1)统计随机数的个数n 以及小于6的个数n 1,则n 1n即为任取1球得到白球的概率的近似值.(2)三个一组(每组内数字不重复),统计总组数m 及恰有两个数小于6的组数m 1,则m 1m为任取3球,恰有2个白球的概率的近似值.(3)三个一组(每组内数字可重复),统计总组数k 以及三个数都小于6的组数k 1,则k 1k即为恰有3个白球的概率的近似值.3.3 几何概型 【课后巩固提升】 1.A2.A 解析:如图D21,设点D 为AB 的三等分点,要使△PBC 的面积不小于S3,则点P 只能在AD 上选取,由几何概型的概率公式,得所求概率为|AD ||AB |=23|AB ||AB |=23.图D213.A 解析:∵扇形ADE 的半径为1,圆心角等于90°,∴扇形ADE 的面积为S 1=14×π×12=π4.同理可得,扇形CBF 的面积S 2=π4.又∵长方形ABCD 的面积S =2×1=2,∴在该矩形区域随机地选一地点,则该地点无信号的概率是p =S -(S 1+S 2)S =2-⎝⎛⎭⎫π4+π42=1-π4.4.D 解析:Δ>0⇒m >22(m <-22舍去),∴p =1-221=2-22.5.B 解析:∵S 阴S 正方形=23,S 正方形=4,∴S 阴=83.6.137.解:可以认为人在任何时刻到站是等可能的.设上一班车离站时刻为a ,则该人到站的时刻的一切可能为Ω=(a ,a +5),若在该车站等车时间少于3分钟,则到站的时刻为g= (a +2,a +5),P (A )=g 的长度Ω的长度=35.8.A 解析:p =π×122×2=π4.9.2375 解析:测度为面积,由图D22,得p =1-26×1630×20=2375.图D2210.解:如图D23,试验的全部结果所构成的区域为 {(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },故所求的概率为P (A )=3×2-12×223×2=23.图D2311.解:以x ,y 分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x -y |≤15.在如图D24所示的平面直角坐标系下,(x ,y )的所有可能结果是边长为60的正方形,而事件A “两人能够会面”的可能结果由图D24中的阴影部分表示.由几何概型概率公式,得P (A )=S A S =602-452602=3600-20253600=716.所以两人会面的概率是716.图D24。
人教版高中数学必修三第三章概率《概率》练习题
人教版高中数学必修三第三章概率《概率》练习题一、选择题1.下列说法正确的是()A.如果一事件发生的概率为十万分之一,说明此事件不可能发生B.如果一事件不是不可能事件,说明此事件是必然事件C.概率的大小与不确定事件有关D.如果一事件发生的概率为99.999%,说明此事件必然发生A。
5个B。
8个C。
10个D。
15个3.下列事件为确定性事件的有()1)在1个标准大气压下,20摄氏度的纯水结冰;(2)平时的百分制考试中,XXX的考试成绩为105分;(3)抛一枚硬币,落下后下面朝上;(4)连长为a,b的长方形的面积为ab.A。
1个B。
2个C。
3个D。
4个4.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而纰谬立的两个事件()A.至少有1个白球,都是白球B.至少有1个白球,至少有1个红球C.恰有1个白球,恰有2个白球D.最少有1个白球,都是红球5.从一副扑克牌(54张)中抽取一张牌,抽到牌“K”的概率是()6.同时掷两颗骰子,所得点数之和为5的概率为()7.根据多年气象资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为()A。
0.65B。
0.55C。
0.35D。
0.758.下列关于频率与概率关系中正确的是()A.频率就是概率B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,频率一般会越来越接近概率D.几率是随机的,在试验前不克不及确定9.从一批产物中取出三件产物,设A=“三件产物全不是次品”,B=“三件产物全是次品”,C=“三件产物不全是次品”,则下列结论精确的是()A)。
A与C互斥(B)B与C互斥(C)任何两个均互斥(D)任何两个均不互斥10.同时向上抛100个铜板,结果落地时100个铜板朝上的面都相同,你以为这100个铜板更可能是下面情况()A.这100个铜板两面是一样的B.这100个铜板两面是不同的C.这100个铜板中有50个两面是一位的,另外50个两面是不相同的D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的11.密码锁上的密码是一种四位数字号码,每位上的数字可在到9这10个数字中选取,某人忘记密码的最后一位数字,如果随意按下密码的最后一位数字,则正好按对密码的概率()12.某个地区从某年起几年内的新生婴儿数及其中男婴儿如下表:时间范围1年内2年内3年内4年内xxxxxxxxxxxxxxxx91新生婴儿数xxxxxxxxxxxxxxxx男婴儿数这一地区男婴儿出生的几率约是()A。
概率论课后习题第3章答案
第三章 多维随机向量及其概率分布(一)基本题答案1、设X 和Y 的可能取值分别为.2,1,0;3,2,1,0,==j i j i 则与因盒子里有3种球,在这3种球中任取4个,其中黑球和红球的个数之和必不超过4.另一方面,因白球只有2个,任取的4个球中,黑球和红球个数之和最小为2个,故有j i 与ٛ且,42≤+≤j i ./),(474223C C C C j Y i X p j i j i −−===因而 或0),(===j Y i X P 2).2,1,0;3,2,1,0,4(<+j i ==>+j i j i于是 ,0)0,0(1111======y Y x X P P ,0)0,0(2112======y Y x X P p.35/1/)0,0(472212033113=======C C C C y Y x X P p即 2、X 和. ⎥⎦⎤⎢⎣⎡04.032.064.0210~X ⎥⎦⎤⎢⎣⎡25.05.025.0210~Y 由独立性知,X 和Y 的联合分布为3、Y 的分布函数为显知有四个可能值:).0(0)(),0(1)(≤=>−=−y y F y e y F y ),(21X X }{{}{}11−=e ,2,10,0).1,1(),0,1(),1,0(),0,0(121−≤=≤≤===Y P Y Y P X X P 易知{}{}{}{}{},221−−−=e e 12<=P ,10,1,02,11,02121≤≤>====>≤===Y Y Y P X X P Y Y P X X P{}{}{},212,10,12121−=≤<=≤>===e e Y P Y Y P X X P {}−− {}{}.22,11,1221−=>=>>===e Y P Y Y P X X P于是,可将X 1和X 24、∑=====nm m n P n X P 0),()(ηζ∑=−−−−=nm mn m n e m n m p p 0)!(!)1(λλ()[]).,2,1,0(!1!)1()!(!!!==−+=−−=−−−=−∑n n e p p n e p p m n m n n e n n n mn m nm n λλλλλλ即X 是服从参数为λ的泊松分布.∑∑∞=−−∞=−−−−−=−−==mn mn m n mn m m mn m n m n p m e p em n m p p m Y P )!()1(!)!(!)1()(λλλλλ).,2,1,0(,!)(!)()1( ==⋅=−−−−m m ep e e m ep pmp mλλλλλλ即Y 是服从参数为λp 的泊松分布.5、由定义F (y x ,)=P {}∫∫∞−∞−=≤≤x y dxdy y x y Y x X .),(,ϕ因为ϕ(y x ,)是分段函数,要正确计算出F (y x ,;1>y ),必须对积分区域进行适当分块:等5个部分.10,10,1;1,1;10,100≤≤≤≤>>>≤≤<x y x y x y y x 或;0<≤≤x (1)对于 有 F (,00<<y x 或y x ,)=P{X ≤,x Y ≤y}=0; (2)对于 有 ;,10,10≤≤≤≤y x 2204),(y x vdudv u y x F x y ==∫∫(3)对于, 有 10,1≤≤>y x {};,1),(2y y Y X P y x F =≤≤= (4)对于, 有 10,1≤≤>x y {}21,),(x Y x X P y x F =≤≤=; (5)对于 有 ,1,1>>y x 1),(=y x F .故X 和Y 的联合分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤<<≤≤≤≤≤≤<<=.1,1,.1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或6、(1) ,0,0;0),(,00>>=≤≤y x y x F y x 或),(y x F =∫∫+−x y t s dsdt ze)2())(())((200202yt x s y t x se e dt e ds e−−−−−−==∫∫=)1)(1(2y x e e −−−−即⎩⎨⎧>>−−=−−.,0,0,0),1)(1(),(2其它y x e e y x F y x (2)P ()()220(),22x x y x yxy xY X f x y dxdy dx e dy e e d +∞+∞−−−−<≤===−∫∫∫∫∫x∫∫∞+−−−∞+−−=−−=03220)(2)1(2dx e e dx e e x x x x .312131(2)2131(2023=−−=−=∞+−−x x e e7、(1)时,0>x ,0)(,0;)(=≤==∫∞+−−x f x e dy e x f X Xx y X 时 即 ⎩⎨⎧≤>=−.0,0,0,)(x x e x f x X (2){}2/111210121),(1−−≤+−−−+===≤+∫∫∫∫e e dy e dxdxdy y x f Y X P y x x xy8、(1)(i )时,,;),()(计算根据公式∫∞+∞−=dy y x f x f X 0≤x 当10;0)(<<=x x f X 当时()();24.224.2)2(8.4)(202x x x y dy x y x f xx X −=−=−=∫0)(,1=≥x f x X 时当即⎩⎨⎧<<−=.,0;10),2(4.2)(2其它x x x x f X (ii ) 利用公式计算. 当∫∞+∞−=dx y x f y f Y ),()(;0)(,0=≤y f y Y 时,10时当<<y112)22(8.4)2(8.4)(y y Y x x y dx x y y f ∫−=−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=222128.42y y y );43(4.2)2223(8.422y y y y y y +−=+−=当时,1≥y .0)(=y f Y 即⎩⎨⎧<<+−=.0;10),43(4.2)(2其它y y y y y f Y 121111222211111(2)((1(,1(,)1.22222P X Y P X Y f x y dxdy dx dxdy +∞+∞⎧⎫<<=−≥≥=−=−=⎨⎬⎩⎭∫∫∫∫∪58、47809、本题先求出关于x 的边缘概率密度,再求出其在2=x 之值. 由于平面区域D 的面积为)2(X f ,2121=dx =∫x S e D 故(X,Y )的联合概率密度为⎪⎩⎪⎨⎧∈=.,0;),(,21),其它D y x y x (f易知,X 的概率密度为∫∞+∞−⎪⎩⎪⎨⎧<<==,,0,1,21),()(2其它e x xdy y x f x f X 故.41221)2(=×=X f 10、(1)有放回抽取:当第一次抽取到第个数字时,第二次可抽取到该数字仍有十种可能机会,即为 k {}).9, ,1,0(101====i k Y i X P (2)不放回抽取:(i )当第一次抽取第)90(≤≤k k 个数时,则第二次抽到此(第个)数是不可能的,故 k {}.)9,,1,0,; =k i k (0====i k Y i X P(ii )当第一次抽取第个数时,而第二次抽到其他数字(非k )的机会为,知)90(≤≤k k 9/1{}.)9,,1,0,; =k i k (9/1≠===i k Y i X P 11、(1)因∫−=−=12,)1(12)1(24)(yy y ydx x y f η.,0)(;10其它=≤≤y f y n 故在0≤y ≤1时,⎩⎨⎧≤≤−−=;1)1/()1(2)(2其它x y y x y x f ηξ因()∫−=−=x y x ydy x x f 022,)1(12124)(ξ.,0)(;10其它=≤≤x f x ξ故在0≤x ≤1时,⎩⎨⎧≤≤=.0,0/2)(2其它x y x y x y f ξη(2)因;1,121)(2/12∞≤≤==∫x x nxdy y x X f x x ξ;,0)(其它=x f ξ故在1≤x<时,∞⎪⎩⎪⎨⎧<<=.,1121)(其它x y xnxy x y f ξη因 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<=≤<==∫∫∞∞,002121102121)(22/12其它y y dx y x y dx y x y f y y η 故在10≤<y 时,⎪⎩⎪⎨⎧∞<<=;011)(2其它x y y x x y f ξη 而在,1时∞<<y ⎪⎩⎪⎨⎧∞<<=.0)(2其它x y x yx y f ξη(3)在x >0,.0,0)(;0,)(≤=>==∫∞−−x x f x e dy e x f x xy ξξ⎪⎩⎪⎨⎧>=−.0,)(其它x y e x y f y x ξη ;0,)(0>==∫−−y ye dx e y f y yy η .故在y>0时,0,0)(≤=y y f η⎪⎩⎪⎨⎧<<=.0,01)(其它y x y y x f ηξ12、1(1)(2)2(),0(1)(1)X n n n n n f x dy x x y x ∞−−−−==+++∫>,故12(1)(2)0,(/1)0.n nY X n y y f y −⎧−+>=⎨⎩其它 13、X 和Y 是否独立,可用分布函数或概率密度函数验证.方法一:X 的分布函数的分布函数分别为 Y x F X 和)()(y F Y ⎩⎨⎧<≥−=+∞=−,0001),()(5.0x x e x F x F x X ⎩⎨⎧<≥−=+∞=−.0001),()(5.0y y e y F y F yY 由于独立.Y X y F x F y x F Y X 和知),()(),(={}{}{}[][]1.005.005.0)1.0(1)1.0(11.01.01.0,1.0−−−=⋅=−⋅−=>⋅>=>>=e e e F F Y P X P Y X P Y X αY X Y X x f x f y x f Y X 和分别表示和),,()()(),,(方法二:以的概率密度,可知 ⎩⎨⎧≥≥=∂∂∂=+−.00,025.0),(),()(5.02其它y x e y x y x F y x f y x ∫∞+∞−−⎩⎨⎧<≥==,0005.0),()(5.0x x e dy y x f x f x X ∫∞+∞−−⎩⎨⎧<≥==.00,05.0),()(5.0y y e dx y x f y f yY ∫∫∞+∞+−+−==>>==1.01.01.0)(5.0.25.0}1.0,1.0{.),()(),(e dxdy e Y X P a Y X y f x f y x f y x Y X 独立和知由于)()(),(j i j i y Y P x x P y Y x X P =⋅====14、因知X 与Y 相互独立,即有 . )3,2,1,2,1(==j i 首先,根据边缘分布的定义知 .2418161),(11=−===y Y x X P 又根据独立性有),(61)()(},{2411111i x X p y Y p x X p y Y x X p ===⋅===== 解得41)(==i x X P ,从而有 1218124141),(31=−−===y Y x X P 又由 )()(),(2121y Y P x X P y Y x X P =⋅====, 可得 ),(41812y Y P == 即有21)(2==y Y P , 从而 838121),(22=−===y Y x X P .类似地,由),()(),(3131y Y P x X P y Y x X P ===== 有),(411213y Y P ==得31)(3==y Y P ,从而,.111),(31=−===y Y x X P 最后=)(2x X P =1+3+1=3. 将上述数值填入表中有1x1/24 1/8 1/12 1/4 2x1/8 3/8 1/4 3/4 {}j P y X P j ⋅==1/6 1/2 1/3115、本题的关键是由题设P{X 1X 2=0}=1,可推出P{X 1X 2≠0}=0;再利用边缘分布的定义即可列出概率分布表.(1)由P{X 1X 2=0}=1,可见易见,0}1,1{}1,1{2121=====−=X X P X X P 25.0}1{}0,1{121=−===−=X P X X P 5.0}1{}1,0{221=====X P X X P 25.0}1{}0,1{121=====X P X X P 0}0,0{21===X X P121212.16、(1) ⎩⎨⎧<<=,,0,10,1)(其他x x f X ⎪⎩⎪⎨⎧≤>=−.0,0,021)(2y y ey f yY 因为X ,Y 独立,对任何y x ,都有 ).,()()y x f y f x Y =⋅(f X ⎪⎩⎪⎨⎧><<=−.,0,0,10,21),(2其他所以有y x e y x f y(2)二次方程 有实根,△ t Y Xt t 中022=++,04)2(2≥−=Y X ,02≥−Y X 即,2X Y ≤ 故=)(有实根t P dydx e dydx y x f X Y P yx y x 2122221),(}{−≤∫∫∫∫==≤∫−−=1022)(dx ex y=dx edx edx x x x 2101010222221211)21(−−∫∫−=−=−πππ21−=[∫∫∞−∞−−−−1022222121dx edx exx ππ].1445.08555.01]5.08413.0[21)]0()1([21=−≈−−≈Φ−Φ−=ππ17、(1)因为X ,Y 独立,所以 .⎩⎨⎧>>==+−.,0,0,0,)()(),()(其他y x e y f x f y x f uy x Y X λλμ(2)根据Z 的定义,有 P{z=1}=P{Y ≥X}∫∫∫∫∞+∞−+−≥==)(),(xy x xy dydx e dydx y x f μλλμ∫∫∞+∞+−−=)(dx dy e e xy x μλμλ ),0u dx ee x x +=⋅=∫∞+−−λλλμλ{}{110=−==Z P Z P Z 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.1,1,10,,0,0)(z z z z F Z μλμ18、∵X 、Y 分别仅取0,1两个数值,∴Z 亦只取0,1两个数值. 又∵X 与Y 相互独立,∴{}{}{}{}==========00)0,0(0),max(0Y P X P Y X P Y X P Z P 1/2×1/2=1/4, 故{}{}.4/34/110111=−==−===Z P Z P 19、 X 由2×2阶行列式表示,仍是一随机变量,且X=X 1X 4--X 2X 3,根据X 1,X 2,X 3,X 4的地位是等价且相互独立的,X 1X 4与X 2X 3也是独立同分布的,因此可先求出X 1X 4和X 2X 3的分布律,再求X 的分布律. ,则X=Y 1--Y 2.随机变量Y 1和Y 2独立同分布:322411,X X Y X X Y ==记}{}{}{{}.84.016.01}0{0112121=−========Y P Y Y P Y P 16.01,132===P X X P 显见, 随机变量X=Y 1--Y 2有三个可能值--1,0,1.易见 P{X=--1}=P{Y 1=0,Y 2=1}=0.84×0.16= 0.1344, P{X=1}=P{Y 1=1,Y 2=0}=0.16×0.84=0.1344, P{X=0}=1--2×0.1344=0.7312. 于是,行列式的概率分布为 4321X X X X X =~ ⎥⎦⎤⎢⎣⎡−1344.07312.01344.010120、因为{Z=i }={X+Y=i }={X=0,Y=i }}.0,{}1,1{==−==Y i X i Y X ∪ ∪∪ 由于上述各事件互不相容,且注意到X 与Y 相与独立,则有 ∑∑==−===−====i k ik k i Y P k X P k i Y k X P i Z P 00}{}{},{}{∑=+−−−−−=−−=iik ki n ki k i nkn kk n P p pC P p c 022111()1()1∑=−−+ik k i n k n in n C Cp 02121)(,,1,0,)1(212121n n i p p C i n n i i n n+=−=−++).,(~21p n n B Y X Z ++=故注:在上述计算过程中,已约定:当r>n 时,用到了公式 并,0=rnC .12121∑=+−=ik i n n k i n k n C C C21、X 和Y 的概率分布密度为},2)(exp{21)(22σσπy x x f X −−=);(+∞<<−∞x ⎩⎨⎧≤≤−=.,0,),2/(1)(其它πππy y f Y 因X 和Y 独立,考虑到 )仅在[)(y f Y ππ,−]上才有非零值,故由卷积公式知Z 的概率密度为.221)()()(222)(dy edy y f y z f z f a y z Y X Z ∫∫−−−−∞+∞−=−=ππμσππ令σμ−−=y z t ,则上式右端等于.(2122122⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−Φ−−+Φ=∫−+−−−σμπσμππππσμπσμπz z dt e z z t 22、(1)由题设知 {}y X X P y M P y F n M ≤=≤=),,max()()(1),,(1y X y X P n ≤≤= )()()()()(121y F y F y X P y X P y X P Xn X n =≤≤≤=.∵),1(],0[~:,,1n i U X X X i n ≤≤θ独立且同分布 ∴⎪⎩⎪⎨⎧><<≤=,0,1,0,,0,0)(x x x x x F i X θθ∴⎪⎪⎩⎪⎪⎨⎧≥<<≤=.,1,0,,0,0)(θθθy y y y y F n n M 故⎪⎩⎪⎨⎧<<=−.,0,0,)(1其它θθy ny y f n n M(2){}y X X P y N P y N P y F n N >−=>−=≤=),,min(1)(1)()(1()y X P y X P y X P y X y X y X P n n >>>−=>>>−= )()(1,,,12121()[])(11)(11y F y X P i X i ni −−=>Π−==故 ⎪⎩⎪⎨⎧<<−=⎪⎩⎪⎨⎧<<−−−=−−其它其它,0,00,)(,001(1()(11y y n y y n y f n n n N θθθθθ 23、由题设容易得出随机变量(X ,Y )的概率密度,本题相当于求随机变量X 、Y 的函数S=XY 的概率密度,可用分布函数微分法求之.依题设,知二维随机变量(X ,Y )的概率密度为()()()⎩⎨⎧∉∈=G y x Gy x y x f ,,0,2/1,若若 设为S 的分布函数,则 当{s S P s F ≤=)(}0≤s 时,()0=s F ; 当时, .2≥s ()1=s F 现设0<s<2. 曲线s xy =与矩形G 的上边交于点(s,1);位于曲线s xy =上方的点满足s xy >,位于下方的点满足s xy <. 故(){}{}{}).ln 2ln 1(2211211121s sdy dx dxdy S XY P s XY P s S P s F s x s sxy −+=−=−=>−=≤=≤=∫∫∫∫>于是,⎩⎨⎧≥≤<<−=.20,0,20,2/)ln 2(ln )(s s s s s f 或若若(二)、补充题答案1.由于即{},0)(),,min(,,max =<==Y X P Y X 故知ηξηξ{}{}{}03,23,12,1=========Y X P Y X P Y X P ;又易知{}{}{}{},9/1111,11,1==⋅=======ηξηξP P P Y X P{}{},9/12,22,2======ηξP Y X P {}{},9/13,33,3======ηξP Y X P {}{}{},9/29/19/11,22,11,2=+===+=====ηξηξP P Y X P{}{}{},9/22,33,22,3===+=====ηξηξP P Y X P {}.9/29/711,3=−===Y X P 所以2.(1)x{}.,2,1,0,0,)1( =≤≤−===n n m P P C n X m Y P m n {}(2){}{}n X P n X m Y P m Y n X P ======,.,2,1,0,0,!)1( =≤≤⋅⋅−=−−n n m e P P C n m n mm n λλ3.22)1()1()1()0()0()1(p p Y P X P Y P X P z P +−===+====)1(2)0()1()1()0()0(p p Y P X P Y P X P z P −===+====而,由2)1,1()1,1(p Y X P Z X P ======),1()1()1,1(=====Z P X P Z X P 得. 2/1=p 5.:设随机变量ξ和η相互独立,都服从分 )1,0(N 布.则⎭⎬⎫⎩⎨⎧+−⋅=)(21exp 21),(22y x y x p π.显然, ,),(),(∫∫∫∫<SGdxdy y x p dxdy y x p,其中 G 和S 分别是如图所示的矩形ABCD 和圆.22/)21(),(2∫∫∫−−=a ax Gdx e dxdy y x p π,令,sin ,cos ϕγϕγ==y x 则 ∫∫∫∫=ππ20221),(a aSdxdy y x p 所以221212/a aaxe dx e −−−−<∫π.6.设这类电子管的寿命为ξ,则(1)三个管子均不要替换的概率为;(2)三个管子均要替换的概率为 .∫∞+==>1502.3/2)/(100)150(dx x P ξ21(−27/8)3/2(3=27/1)3/3=7.假设总体X 的密度函数为,分布函数为,第次的观察值为,独立同分布,其联合密度函数)(x f ,(1x f )(x F )()2x f i (n x )1(n i X i ≤≤i X )(),1n f x f x =.依题意,所求的概率为{}∫∫∫∫∫∫∞+∞−∞−∞−∞−−−−=−==>>><n n n nx i x x x x n n nn nn n i n n n n dx x f dx x f dx x f dx x f dx dx xx f X X X X X X P 112211111,...,2,1121)(...)()()(),,(.,...,,∫∫∞+∞−∞+∞−−−==)()()()(11n n n n n n n x dF x F dx x f x F.1)(1n x F nn n=∞−∞+=8.)(),()(21211211n P n k P n k P =+=+===+=ξξξξξξξξ)()()(2121n P k n P k P =+−===ξξξξ.由普哇松分布的可加性,知服从参数为的普哇松分布,所以 21ξξ+21λλ+)(21212112121!)()!(!)(λλλλλλλλξξξ+−−−−+−⋅==+=e n e k n ek n k P n k n k.1211211kn kk n −⎟⎟⎠⎞⎜⎜⎝⎛+−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=λλλλλλ9.当,0≤z (),0)(=≤=z Z P z F z ,0>z 当()z Z P z F z ≤=)(∫∫−+−=20)2(02xz y x z dy e dx∫∫−−−−−−−==202012x z z z y z x ze e dy e dxe ,所以 Y X z 2+=的分布函数为 ⎩⎨⎧>+−≤=−.0,)1(1,0,0),(z e z z y x F z10.由条件知X 和Y 的联合密度为⎪⎩⎪⎨⎧≤≤≤≤=其他若,0,31,31,41),(y x y x p以表示随机{})()(∞<<−∞≤=u u U P u F 变量U 的分布函数.显然,当0≤u 时, 0)(=u F ;当时,; 2≥u 1)(=u F 当,则20<<u []∫∫∫∫≤−uy x y x p ||,(≤−−−=−−===uy x u u dxdy dxdy u F ||2)2(411)2(44141))(2u−于是,随机变量的密度为⎪⎩⎪⎨⎧<<−=其他,0;20),2(21)(u u u p .11.记为这3个元件无故障工作的时间,则的分布函数321,,X X X ),,min(321X X X T ={}[][].)(1),,min(1(31321t X P t X X X P t F T −=>−(11)13X P t ≤−−=>)()t T P =≤=⎩⎨⎧≤>−=∴⎩⎨⎧=≤>−=−−,0,0,0,1)()3,2,1(,0,0,0,1)(~3t t e t F i t t e t F X t T t i λλ∵ 故 ⎪⎩⎪⎨⎧≤>==−.0,0,0,3)(')(3t t e t F t f t T T λλ。
高中数学必修三第三章《概率》章节练习题(含答案)
高中数学必修三第三章《概率》章节练习题(含答案)高中数学必修三第三章《概率》章节练题一、选择题(每小题3分,共18分)1.下列试验属于古典概型的有()。
A.1个B.2个C.3个D.4个2.任取两个不同的1位正整数,它们的和是8的概率是()。
A。
B。
C。
D。
补偿训练】一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为()。
A。
B。
C。
D。
3.在全运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手。
若从中任选3人,则选出的火炬手的编号相连的概率为()。
A。
B。
C。
D。
4.任意抛掷两颗骰子,得到的点数分别为a,b,则点P(a,b)落在区域|x|+|y|≤3中的概率为()。
A。
B。
C。
D。
5.在棱长为a的正方体ABCD-A1B1C1D1中随机地取一点P,则点P与正方体各表面的距离都大于的概率为()。
A。
B。
C。
D。
6.如图,两个正方形的边长均为2a,左边正方形内四个半径为的圆依次相切,右边正方形内有一个半径为a的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P1,P2,则P1,P2的大小关系是()。
A。
P1=P2 B。
P1>P2 C。
P1<P2 D。
无法比较二、填空题(每小题4分,共12分)7.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则a+b能被3整除的概率为()。
8.已知函数f(x)=log2x,x∈R。
在区间[1,8]上任取一点x,使f(x)≥-2的概率为()。
补偿训练】已知直线y=x+b,b∈[-2,3],则该直线在y轴上的截距大于1的概率是()。
A。
B。
C。
D。
9.如图,利用随机模拟的方法可以估计图中由曲线y=√(x)与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组[0,1]的均匀随机数,a=RAND,b=RAND;②做变换,令x=4a,y=√(b);③判断(x,y)是否在阴影部分中,若是则计数器加1;④重复上述步骤n次,估计S≈n×计数器/.则利用上述方法,当n=时,估计得到的阴影部分的面积S≈()。
数学高二年级上册第三章概率练习题
数学高二年级上册第三章概率练习题数学是学习和研讨现代迷信技术必不可少的基本工具。
查字典数学网为大家引荐了数学高二年级上册第三章概率练习题,请大家细心阅读,希望你喜欢。
一、选择题1.以下不是随机变量的是()A.从编号为1~10号的小球中随意取一个小球的编号B.从早晨7∶00到半夜12∶00某人下班的时间C.A、B两地相距a km,以v km/h的速度从A抵达B的时间D.某十字路口一天中经过的轿车辆数【解析】选项C中时间为确定的值,故不是随机变量. 【答案】 C2.抛掷质地平均的硬币一次,以下能称为随机变量的是()A.出现正面向上的次数B.出现正面或反面向上的次数C.掷硬币的次数D.出现正、反面向上的次数之和【解析】掷一枚硬币,能够出现的结果是正面向上或反面向上,以一个规范如正面向上次数来描画随机实验,那么正面向上的次数就是随机变量X,X的取值是0,1,应选A.而B 中规范模糊不清,C中掷硬币次数是1,都不是随机变量,D 中对应的事情是肯定事情.应选A.【答案】 A3.袋中有大小相反的红球6个,白球5个,不放回地从袋中每次恣意取出1个球,直到取出的球是白球为止,所需求的取球次数为随机变量X,那么X的能够取值为()A.1,2,3,,6B.1,2,3,,7C.0,1,2,,5D.1,2,,5【解析】由于取到白球游戏完毕,那么取球次数可以是1,2,3,,7,应选B.【答案】 B4.以下变量不是随机变量的是()A.掷一枚骰子,所得的点数B.一射手射击一次,击中的环数C.某网站一天的点击量D.规范形状下,水在100 ℃时会沸腾【解析】 D对应的是肯定事情,实验前便知是肯定出现的结果,所以不是随机变量,应选D.【答案】 D5.某人停止射击,共有5发子弹,击中目的或子弹打完就中止射击,射击次数为,那么=5表示的实验结果是()A.第5次击中目的B.第5次未击中目的C.前4次均未击中目的D.第4次击中目的【解析】 =5表示前4次均未击中目的.【答案】 C二、填空题6.抛掷两颗骰子,所得点数之和记为X,那么X=5表示的随机实验的结果是________.【解析】两颗骰子的点数之和为5,那么共有两种状况,1,4或2,3.【答案】一颗骰子是1点,另一颗是4点,或一颗骰子是2点,另一颗是3点.7.设某项实验的成功率是失败率的2倍,用随机变量x描画1次实验的成功次数,那么x的值可以是________.【解析】这里成功率是失败率的2倍是搅扰条件,对1次实验的成功次数没有影响,故x能够取值有两种,即0,1. 【答案】 0,18.在一次竞赛中,需回答三个效果,竞赛规那么规则:每题回答正确得100分,回答不正确得-100分,那么选手甲回答这三个效果的总得分的一切能够取值是________.【解析】由于答对的个数可以取0,1,2,3,所对应的得分为-300,-100,100,300,可取-300,-100,100,300.【答案】 -300,-100,100,300三、解答题9.延续向一目的射击,直到命中目的为止,所需求的射击次数为X,写出X=6所表示的实验结果.【解】 X=6表示的实验结果是射击了6次,前5次都未击中目的,第6次击中目的.10.盒中有9个正品和3个次品零件,每次从中取一个零件,假设取出的是次品,那么不再放回,直到取出正品为止,设取得正品前已取出的次品数为.(1)写出的一切能够取值;(2)写出{=1}个所表示的事情.【解】 (1)能够取的值为0,1,2,3.(2){=1}表示的事情为:第一次取得次品,第二次取得正品.11.设一汽车在开往目的地的路途上需经过5盏信号灯,表示汽车初次停下时已经过的信号灯的盏数,写出一切能够取值并说明这些值所表示的实验结果.【解】能够取值为0,1,2,3,4,5.=0表示第一盏信号灯就停下;=1表示经过了一盏信号灯,在第2盏信号灯前停下;=2表示经过了两盏信号灯,在第3盏信号灯前停下;=3表示经过了三盏信号灯,在第4盏信号灯前停下;=4表示经过了四盏信号灯,在第5盏信号灯前停下;=5表示在途中没有停下,中转目的地.小编为大家提供的数学高二年级上册第三章概率练习题,大家细心阅读了吗?最后祝同窗们学习提高。
数学高二年级上册第三章概率练习题-精选教育文档
2019—2019数学高二年级上册第三章概率练习题数学是学习和研究现代科学技术必不可少的基本工具。
查字典数学网为大家推荐了数学高二年级上册第三章概率练习题,请大家仔细阅读,希望你喜欢。
一、选择题1.下列不是随机变量的是()A.从编号为1~10号的小球中随意取一个小球的编号B.从早晨7∶00到中午12∶00某人上班的时间C.A、B两地相距a km,以v km/h的速度从A到达B的时间D.某十字路口一天中经过的轿车辆数【解析】选项C中时间为确定的值,故不是随机变量. 【答案】 C2.抛掷质地均匀的硬币一次,下列能称为随机变量的是()A.出现正面向上的次数B.出现正面或反面向上的次数C.掷硬币的次数D.出现正、反面向上的次数之和【解析】掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上次数来描述随机试验,那么正面向上的次数就是随机变量X,X的取值是0,1,故选A.而B 中标准模糊不清,C中掷硬币次数是1,都不是随机变量,D中对应的事件是必然事件.故选A.【答案】 A3.袋中有大小相同的红球6个,白球5个,不放回地从袋中每次任意取出1个球,直到取出的球是白球为止,所需要的取球次数为随机变量X,则X的可能取值为()A.1,2,3,,6B.1,2,3,,7C.0,1,2,,5D.1,2,,5【解析】由于取到白球游戏结束,那么取球次数可以是1,2,3,,7,故选B.【答案】 B4.下列变量不是随机变量的是()A.掷一枚骰子,所得的点数B.一射手射击一次,击中的环数C.某网站一天的点击量D.标准状态下,水在100 ℃时会沸腾【解析】 D对应的是必然事件,试验前便知是必然出现的结果,所以不是随机变量,故选D.【答案】 D5.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为,则=5表示的试验结果是()A.第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标【解析】 =5表示前4次均未击中目标.【答案】 C二、填空题6.抛掷两颗骰子,所得点数之和记为X,则X=5表示的随机试验的结果是________.【解析】两颗骰子的点数之和为5,则共有两种情况,1,4或2,3.【答案】一颗骰子是1点,另一颗是4点,或一颗骰子是2点,另一颗是3点.7.设某项试验的成功率是失败率的2倍,用随机变量x描述1次试验的成功次数,则x的值可以是________.【解析】这里成功率是失败率的2倍是干扰条件,对1次试验的成功次数没有影响,故x可能取值有两种,即0,1. 【答案】 0,18.在一次比赛中,需回答三个问题,比赛规则规定:每题回答正确得100分,回答不正确得-100分,则选手甲回答这三个问题的总得分的所有可能取值是________.【解析】因为答对的个数可以取0,1,2,3,所对应的得分为-300,-100,100,300,可取-300,-100,100,300.【答案】 -300,-100,100,300三、解答题9.连续向一目标射击,直到命中目标为止,所需要的射击次数为X,写出X=6所表示的试验结果.【解】 X=6表示的试验结果是射击了6次,前5次都未击中目标,第6次击中目标.10.盒中有9个正品和3个次品零件,每次从中取一个零件,如果取出的是次品,则不再放回,直到取出正品为止,设取得正品前已取出的次品数为.(1)写出的所有可能取值;(2)写出{=1}个所表示的事件.【解】 (1)可能取的值为0,1,2,3.(2){=1}表示的事件为:第一次取得次品,第二次取得正品.11.设一汽车在开往目的地的道路上需经过5盏信号灯,表示汽车首次停下时已通过的信号灯的盏数,写出所有可能取值并说明这些值所表示的试验结果.【解】可能取值为0,1,2,3,4,5.=0表示第一盏信号灯就停下;=1表示通过了一盏信号灯,在第2盏信号灯前停下;=2表示通过了两盏信号灯,在第3盏信号灯前停下;=3表示通过了三盏信号灯,在第4盏信号灯前停下;=4表示通过了四盏信号灯,在第5盏信号灯前停下;=5表示在途中没有停下,直达目的地.小编为大家提供的数学高二年级上册第三章概率练习题,大家仔细阅读了吗?最后祝同学们学习进步。
初中数学概率初步随堂练习3
初中数学概率初步随堂练习3一、选择题(共5小题;共25分)1. 下列事件可能性大小正确的是A. 从一副张的扑克牌中抽出一张红桃的可能性是B. 掷一枚骰子得到的点数是奇数的可能性是C. 从写有的数字卡片中任意抽取一张,得到的数小于的可能性是D. 从装有个红球和个白球的袋子里任意摸出一个红球的可能性是2. 某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是A. 在装有个红球和个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B. 从一副扑克牌中任意抽取一张,这张牌是“红色的”C. 掷一枚质地均匀的硬币,落地时结果是“正面朝上”D. 只一个质地均匀的正六面体骰子,落地时面朝上的点数是3. 有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是4. 一个质地均匀的正方体骰子任意掷两次,下列说法正确的是A. 得到的数字和必然是偶数B. 得到的数字和可能是奇数C. 得到的数字和不可能是D. 得到的数字和可能是5. 小明训练上楼梯赛跑,他每步可上阶或者阶(不上阶),那么小明上阶楼梯的不同方法共有(注:两种上楼梯的方法只要一步所踏楼梯的阶数不同,便认为是不同的方法)A. 种B. 种C. 种D. 种二、填空题(共4小题;共20分)6. 一书架有上、下两层,其中上层有本语文书和本数学书,下层有本语文书和本数学书,现从上、下层随机各取本,则抽到的本都是数学书的概率为.7. 掷两枚骰子,出现点数之和为的概率是.8. 下列结论中正确的是.①如果一件事发生的机会只有十万分之一,那么它就不可能发生②某公司生产的降落伞合格率达,使用该公司的降落伞不会发生危险③如果一件事不是必然发生的,那么它就不可能发生④从,,,,中任取一个数是奇数的可能性要大于是偶数的可能性9. 在一个不透明的袋子里装有个红球和若干个白球,这些球除颜色不同外无其它差别(每次从袋子里摸出一个球记录下颜色后再放回),经过大量的重复试验,发现摸到白球的频率稳定在,则袋中白球的个数是.三、解答题(共4小题;共52分)10. 在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共只.某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复上述过程,如表是活动进行中的一组统计数据:(1)请将表中的数据补充完整;(2)请估计:当很大时,摸到白球的概率约是.(精确到)11. 集市上有一个人在设摊“摸彩”只见他手拿一个黑色的袋子,内装大小、形状、质量完全相同的白球个,且每一个球上都写有号码(号),另外袋中还有个红球,而且这个球除颜色外其余完全相同.规定每次只摸一个球,摸前交元钱且在内写一个号码,摸到红球奖元,摸到号码数与你写的号码相同奖元.(1)你认为该游戏对“摸彩”者有利吗?说明你的理由.(2)若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元?12. 在试制某种洗发液品种时,需要选用两种不同的添加剂,现有芳香度分别为,,,,,的六种添加剂可供选用,根据试验设计原理,通常要先从芳香度为,,的三种添加剂中随机选取种,再从芳香度,,的三种添加剂中随机选取一种,进行搭配试验,请你利用树状图(树形图)或列表的方法,表示所选取的两种不同添加剂所有可能出现的结果,并求出芳香度之和等于的概率.13. 某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为份),并规定:顾客每购买元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得元、元、元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券元.(1)求转动一次转盘获得购物券的概率.(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算.答案第一部分1. D2. D 【解析】A、从一装有个白球和个红球的袋子中任取一球,取到白球的概率是,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是的概率,故此选项正确.3. A 【解析】根据题意,画出树形图.由图可知,任意翻开两张,共有种等可能情况,其中两张图案一样的共有种情况,故任意翻开两张,其中两张图案一样的概率为.4. B5. C【解析】根据题意可知,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,,上阶楼梯的方法数为.第二部分7.8. ④9.【解析】设袋子中白球的个数为,根据题意,得:,解得:,经检验:是分式方程的解,所以袋子中白球的个数是.第三部分10. (1)填表如下:(2)11. (1)(摸到红球)(摸到同号球),故不利.(2)每次的平均收益为,故每次平均损失元.12..13. (1)转盘被均匀分为份,转动一次转盘获得购物券的有种情况,.(2),,,(元)元元,选择转转盘对顾客更合算.。
数学第3章本章优化总结概率随堂自测和课后作业(苏教版必修3)
(时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上) 1.给出下列事件:①某人射击8次,恰有2次中靶; ②“没有水分,种子能发芽”;③一天中,从北京开往南京的5列列车,恰有3列正点到达; ④“明天上午8∶00苏州下雨”;⑤一袋中有10个红球,6个蓝球,从中任取一球,取后放回,连续取3次,均取到红球; ⑥李师傅走到十字路口遇到红灯. 随机事件的个数为________.解析:②为不可能事件,其余为随机事件. 答案:52.下列试验中是古典概型的有________. ①种下一粒大豆观察它是否发芽; ②从规格直径为(250±0.6)mm 的一批合格产品中任意抽一根,测量其直径d ; ③抛一枚硬币,观察其出现正面或反面的情况; ④某人射击中靶或不中靶.解析:古典概型的特征:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等. 答案:③ 3.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来的学生考试成绩分布:90分以上的概率为________(结果保留到小数点后三位).解析:根据公式可以计算出修李老师的高等数学课的人数考试成绩在各个段上的频率依次为(总人数为43+182+260+90+62+8=645): 43645≈0.067,182645≈0.282,260645≈0.403,90645≈0.140,62645≈0.096,8645≈0.012. 用已有的信息可以估计出王小慧下学期修李老师的高等数学课得90分以上的概率为P (A )=0.067.答案:0.0674.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出一个球,摸得黑球的概率为________.解析:摸出一个球的所有可能的结果有5种,即共有5个基本事件,其中摸出的黑球的基本事件有2个,故摸出黑球的概率为25.答案:255.在1升高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10毫升,取出的种子中含有麦锈病的种子的概率是________.解析:取出10毫升种子,其中“含有病种子”这一事件记为A ,则P (A )=取出的种子的体积所有种子的体积=101000=0.01. 答案:0.016.在长为10 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则正方形的面积介于36 cm 2与81 cm 2之间的概率是________.解析:设AM =x ,则36<x 2<81,∴6<x <9,∴P =9-610=0.3.答案:0.37.有四个游戏盘,如果撒一粒黄豆落在阴影部分,则可中奖,小明希望中奖,他应当选择的游戏盘为________.解析:根据几何概型的面积比,①游戏盘的中奖概率为38,②游戏盘的中奖概率为13,③游戏盘的中奖概率为(2r )2-πr 2(2r )2=4-π4,④游戏盘的中奖概率为r 2πr 2=1π,故①游戏盘的中奖概率最大. 答案:①8.“渐升数”是指每个数字比其左边的数字大的自然数(如2578),在两位的“渐升数”中任取一个数比37大的概率是________.解析:十位是1的“渐升数”有8个;十位是2的“渐升数”有7个;…;十位是8的“渐升数”有1个,所以两位的“渐升数”共有8+7+6+5+4+3+2+1=36(个);以3为十位比37大的“渐升数”有2个,分别以4,5,6,7,8为十位数的“渐升数”均比37大,且共有5+4+3+2+1=15(个),所以比37大的两位“渐升数”共有2+15=17(个).故在两位的“渐升数”中任取一个比37大的概率是1736.答案:17369.从一箱产品中随机地抽取一件产品,设事件A =“抽到的是一等品”,事件B =“抽到的是二等品”,事件C =“抽到的是三等品”,且已知P (A )=0.7,P (B )=0.1,P (C )=0.05,则事件D =“抽到的是一等品或二等品”的概率是________.解析:由题知A 、B 、C 彼此互斥,且D =A +B ,所以P (D )=P (A +B )=P (A )+P (B )=0.7+0.1=0.8. 答案:0.810.从一个装有3个红球、2个黄球、1个蓝球的盒子中随机取出2个球,则两球颜色相同的概率为________.解析:记3个红球为A 1、A 2、A 3,2个黄球为B 1、B 2,1个蓝球为C .从中随机取出2个球,所有可能的结果有15个,它们是:(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,C ),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,C ),(A 3,B 1),(A 3,B 2),(A 3,C ),(B 1,B 2),(B 1,C ),(B 2,C ).用D 表示:“选出的两球颜色相同”这一事件,则D 的结果有4个,它们是:(A 1,A 2),(A 1,A 3),(A 2,A 3),(B 1,B 2).故所求概率为P (D )=415.答案:41511.函数f (x )=x 2-x -2,x ∈[-5,5],那么任意x 0∈[-5,5],使f (x 0)≤0的概率为________.解析:由f (x 0)≤0,解得-1≤x 0≤2,∴P =2-(-1)5-(-5)=310=0.3.答案:0.312.甲、乙两人各抛掷一次正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),设甲、乙所抛掷骰子朝上的面的点数分别为x 、y ,则满足x >y 的概率是________. 解析:(x ,y )共有36种不同的结果: (1,1)、(1,2)、(1,3)、(1,4)、(1,5)、(1,6), (2,1)、(2,2)、(2,3)、(2,4)、(2,5)、(2,6), (3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(3,6), (4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(4,6), (5,1)、(5,2)、(5,3)、(5,4)、(5,5)、(5,6), (6,1)、(6,2)、(6,3)、(6,4)、(6,5)、(6,6), 其中满足x >y 的有15种,∴所求的概率是P =1536=512.答案:51213.已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.则甲射击一次,命中不足8环的概率为________.解析:记“甲射击一次,命中7环以下”为事件A ,“甲射击一次,命中7环”为事件B ,由于在一次射击中,A 与B 不可能同时发生,故A 与B 是互斥事件,“甲射击一次,命中不足8环”的事件为A +B ,∵P (A )=1-0.56-0.22-0.12=0.1,∴由互斥事件的概率加法公式得P (A +B )=P (A )+P (B )=0.1+0.12=0.22. ∴甲射击一次,命中不足8环的概率是0.22. 答案:0.2214.实践中常采用“捉、放、捉”的方法估计一个鱼塘中鱼的数量.如从一个鱼塘中随机捕捞出100条鱼,将这100条鱼分别作一记号后再放回鱼塘,数天后再从这个鱼塘中随机捕捞出108条鱼,其中有记号的鱼有9条,从而可以估计鱼塘中的鱼有________条.解析:设鱼塘中的鱼有n 条,则其中有记号的鱼有100条;现随机捕捞出108条鱼,其中有记号的鱼有9条;由概率计算公式得100n =9108,解得n =1200.答案:1200二、解答题(本大题共6小题,共90分,解答时应写出必要的文字说明,证明过程或演算步骤)15.(本小题满分14分)先后抛掷3枚均匀的硬币; (1)一共可能出现多少种不同结果?(2)出现“2枚正面,1枚反面”的结果有多少种? (3)出现“2枚正面,1枚反面”的概率是多少?解:(1)∵抛掷3枚均匀的硬币时,各自都会出现正面和反面2种情况,∴一共可能出现的结果有8种.即(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反).(2)出现“2枚正面,1枚反面”的结果有3种,即(正,正,反),(正,反,正),(反,正,正).(3)∵每种结果出现的可能性相等,∴事件A :出现“2枚正面,1枚反面”的概率P (A )=38.16.(本小题满分14分)如图所示,A 、B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C 、D ,问A 与C ,B 与D 之间的距离都不小于10米的概率是多少? 解:记E :“A 与C ,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30×13=10(米),∴P (E )=1030=13,即所求概率是13.17.(本小题满分14分)在不大于100的自然数中任取一个数, (1)求所取的数为偶数的概率; (2)求所取的数是3的倍数的概率;(3)求所取的数是被3除余1的数的概率.解:(1)不大于100的自然数共有n =101个,其中偶数有m 1=51,∴所取的数是偶数的概率P 1=m 1n =51101.(2)在不大于100的自然数中,3的倍数分别为0,3,6,9,…,99,共有m 2=34个,∴所取的数为3的倍数的概率P 2=m 2n =34101.(3)在不大于100的自然数中,被3除余1的数有:1,4,7,10,…,100,共有m 3=34个,∴所取的数是被3除余1的概率为P 3=m 3n =34101.18.(本小题满分16分)如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作圆弧DE ,在圆弧DE 上任取一点P ,求直线AP 与线段BC 有公共点的概率.解:如图,连接AC ,记AC 与弧DE 交于点F ,则直线AP 与线段BC 有公共点时,点P 只能在弧EF 上.∴直线AP 与线段BC 有公共点的概率为P =弧EF 的长度弧DE 的长度.∵Rt △ABC 中,AB =3,BC =1,∴AC =2,∴∠BAF =π6,∵∠BAD =π2,∴P =弧EF 的长度弧DE 的长度=π6×1π2×1=13.∴直线AP 与线段BC 有公共点的概率是13.19.(本小题满分16分)已知f (x )=x 2+2x ,x ∈[-2,1],给出事件A :f (x )≥a . (1)当A 为必然事件时,求a 的取值范围; (2)当A 为不可能事件时,求a 的取值范围. 解:f (x )=x 2+2x =(x +1)2-1,x ∈[-2,1],∴f (x )min =-1,此时x =-1,又f (-2)=0<f (1)=3, ∴f (x )max =3,∴f (x )∈[-1,3].(1)当A 为必然事件时,即f (x )≥a 恒成立,所以有a ≤f (x )min =-1,则a 的取值范围是(-∞,-1].(2)当A 为不可能事件时,即f (x )≥a 一定不成立,所以有a >f (x )max =3,则a 的取值范围是(3,+∞).20.(本小题满分16分)5张奖券中有2张是中奖的,首先由甲抽一张,然后由乙抽一张,求: (1)甲中奖的概率P (A );(2)甲、乙都中奖的概率P (B ); (3)只有乙中奖的概率P (C );(4)乙中奖的概率P (D ).解:甲、乙两人按顺序各抽一张,5张奖券分别为A 1,A 2,B 1,B 2,B 3,其中A 1,A 2为中奖券,则基本事件为(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,A 1),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,A 1),(B 1,A 2),(B 1,B 2),(B 1,B 3),(B 2,A 1),(B 2,A 2),(B 2,B 1),(B 2,B 3),(B 3,A 1),(B 3,A 2),(B 3,B 1),(B 3,B 2)共20种.(1)若“甲中奖”,则有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,A 1),(A 2,B 1),(A 2,B 2),(A 2,B 3)共8种,故P (A )=820=25.(2)甲、乙都中奖含有的基本事件有(A 1,A 2),(A 2,A 1)2种,所以P (B )=220=110.(3)“只有乙中奖”的基本事件有(B 1,A 1),(B 2,A 1),(B 3,A 1),(B 1,A 2),(B 2,A 2),(B 3,A 2)共6种,故P (C )=620=310.(4)“乙中奖”的基本事件有(A 2,A 1),(B 1,A 1),(B 2,A 1),(B 3,A 1),(A 1,A 2),(B 1,A 2),(B 2,A 2),(B 3,A 2)共8种,故P (D )=820=25.高∵考╓试%题╓库。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章概率随堂练习随机事件部分例1.判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”;(3)“某人射击一次,中靶”;(4)“如果a>b,那么a-b>0”;(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(8)“某电话机在1分钟内收到2次呼叫”;(9)“没有水分,种子能发芽”;(10)“在常温下,焊锡熔化”.例2.某射手在同一条件下进行射击,结果如下表所示:(2)这个射手射击一次,击中靶心的概率约是多少?(1)计算表中进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?例4.做掷一枚骰子的试验,观察试验结果.(1)试验可能出现的结果有几种?分别把它们写出;(2)做60次试验,每种结果出现的频数、频率各是多少?例5. 某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?例6.下列说法正确的是()A.任一事件的概率总在(0,1)内B.不可能事件的概率不一定为0C.必然事件的概率一定为1D.以上均不对例7.为了估计水库中的鱼的尾数,可以使用以下的方法,先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.例8.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵出8 513尾鱼苗,根据概率的统计定义解答下列问题:(1)求这种鱼卵的孵化概率(孵化率);(2)30 000个鱼卵大约能孵化多少尾鱼苗?(3)要孵化5 000尾鱼苗,大概得准备多少鱼卵?(精确到百位)例9.有人告诉你,放学后送你回家的概率如下:(1)50%;(2)2%;(3)90%.试将以上数据分别与下面的文字描述相配.①很可能送你回家,但不一定送.②送与不送的可能性一样多.③送你回家的可能性极小.例10.一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A:命中环数大于7环;事件B:命中环数为10环;事件C:命中环数小于6环;事件D:命中环数为6、7、8、9、10环.例11.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件. (1)恰好有1件次品恰好有2件次品;(2)至少有1件次品和全是次品;(3)至少有1件正品和至少有1件次品;(4)至少有1件次品和全是正品. 例12.如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A )的概率是41,取到方块(事件B )的概率是41,问: (1)取到红色牌(事件C )的概率是多少?(2)取到黑色牌(事件D )的概率是多少?例13.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算该射手在一次射击中:(1)射中10环或9环的概率;(2)少于7环的概率. 例14.抛掷一骰子,观察掷出的点数,设事件A 为“出现奇数点”,B 为“出现偶数点”,已知P(A)= 21,P(B)=21,求出“出现奇数点或偶数点”的概率?例15.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数,事件B 为出现2点,已知P (A )=21,P (B )=61,求出现奇数点或2点的概率之和.例16. 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为31,得到黑球或黄球的概率是125,得到黄球或绿球的概率也是125,试求得到黑球、得到黄球、得到绿球的概率各是多少? 例17.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是71,从中取出2粒都是白子的概率是3512,现从中任意取出2粒恰好是同一色的概率是多少? 例18.下列说法中正确的是( )A.事件A 、B 中至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大B.事件A 、B 同时发生的概率一定比事件A 、B 恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件不一定是互斥事件D.互斥事件不一定是对立事件,对立事件一定是互斥事件例19.从男女学生共有36名的班级中,任意选出2名委员,任何人都有同样的当选机会.如果选得同性委员的概率等于21,求男女生相差几名? 例20.黄种人群中各种血型的人所占的比如下表所示:已知同种血型的人可以输血,O 型血可以输给任一种血型的人,任何人的血都可以输给AB 型血的人,其他不同血型的人不能互相输血.小明是B 型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?例21.在一个盒子内放有10个大小相同的小球,其中有7个红球、2个绿球、1个黄球,从中任取一个球,求: (1)得到红球的概率;(2)得到绿球的概率;(3)得到红球或绿球的概率;(4)得到黄球的概率. (5)“得到红球”和“得到绿球”这两个事件A 、B 之间有什么关系,可以同时发生吗? (6)(3)中的事件D“得到红球或者绿球”与事件A 、B 有何联系?例22.在一只袋子中装有7个红玻璃球,3个绿玻璃球.从中无放回地任意抽取两次,每次只取一个.试求:(1)取得两个红球的概率;(2)取得两个绿球的概率;(3)取得两个同颜色的球的概率;(4)至少取得一个红球的概率. 例23.盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率: (1)取到的2只都是次品;(2)取到的2只中正品、次品各一只;(3)取到的2只中至少有一只正品.例24.回答下列问题:(1)甲、乙两射手同时射击一目标,甲的命中率为0.65,乙的命中率为0.60,那么能否得出结论:目标被命中的概率等于0.65+0.60=1.25,为什么?(2)一射手命中靶的内圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出结论:目标被命中的概率等于0.25+0.50=0.75,为什么?(3)两人各掷一枚硬币,“同时出现正面”的概率可以算得为221.由于“不出现正面”是上述事件的对立事件,所以它的概率等于432112=-,这样做对吗?说明道理. 例25.(1)某市派出甲、乙两支球队参加全省足球冠军赛.甲、乙两队夺取冠军的概率分别是73和41.试求该市足球队夺得全省足球赛冠军的概率.(2)在房间里有4个人.问至少有两个人的生日是同一个月的概率是多少?(3)某单位36人的血型类别是:A 型12人,B 型10人,AB 型8人,O 型6人.现从这36人中任选2人,求此2人血型不同的概率.古典概型部分例1 .两枚均匀硬币,求出现两个正面的概率.例2.一次投掷两颗骰子,求出现的点数之和为奇数的概率. 例3.同时掷两个骰子,计算: (1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种? (3)向上的点数之和是5的概率是多少?例4.假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?例5.某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?例6. 一个口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球, (1)共有多少个基本事件?(2)摸出的两个都是白球的概率是多少?例7.将一颗骰子先后抛掷两次,观察向上的点数,问: (1)共有多少种不同的结果?(2)两数的和是3的倍数的结果有多少种? (3)两数和是3的倍数的概率是多少?例8. 从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.例9.现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率; (2)如果从中一次取3件,求3件都是正品的概率.例10.一个各面都涂有色彩的正方体,被锯成1 000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:(1)有一面涂有色彩的概率;(2)有两面涂有色彩的概率;(3)有三面涂有色彩的概率. 例11.(1)在40根纤维中,有12根的长度超过30 mm,从中任取一根,取到长度超过30 mm 的纤维的概率是( ) A.4030 B.4012 C.3012D.以上都不对 (2)盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是( )A.51 B.41 C.54 D.101 (3)在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是_____________.(4)抛掷2颗质地均匀的骰子,求点数和为8的概率.几何概型部分例1.判断下列试验中事件A 发生的概率是古典概型,还是几何概型. (1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.例2.某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.例3.某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).例4.某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于20分钟的概率. 例5.在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?例6.小明家的晚报在下午5:30—6:30之间任何一个时间随机地被送到,小明一家人在下午6:00—7:00之间的任何一个时间随机地开始晚餐.则晚报在晚餐开始之前被送到的概率是多少?例7.在1升高产小麦种子中混入了一种带麦锈病的种子,从中随机取出10毫升,则取出的种子中含有麦锈病的种子的概率是多少?例8.(1)已知地铁列车每10 min 一班,在车站停1 min,求乘客到达站台立即乘上车的概率.(2)两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2 m 的概率. (3)在500 mL 的水中有一个草履虫,现从中随机取出2 mL 水样放到显微镜下观察,则发现草履虫的概率是( ) A.0.5 B.0.4 C.0.004 D.不能确定例9.平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.例10.两人相约8点到9点在某地会面,先到者等候另一人20分钟,过时就可离去,试求这两人能会面的概率.例11.有一段长为10米的木棍,现要将其截成两段,要求每一段都不小于3米,则符合要求的截法的概率是多大? 例12.郭靖、潇湘子与金轮法王等武林高手进行一种比赛,比赛规则如下:在很远的地方有一顶帐篷,可以看到里面有一张小方几,要将一枚铜板扔到这张方几上.已知铜板的直径是方几边长的43,谁能将铜板整个地落到方几上就可以进行下一轮比赛.郭靖一扔,铜板落到小方几上,且没有掉下,问他能进入下一轮比赛的概率有多大?例13.甲、乙两人相约在上午9:00至10:00之间在某地见面,可是两人都只能在那里停留5分钟.问两人能够见面的概率有多大?例14.在5升水中有一个病毒,现从中随机地取出1升水,含有病毒的概率是多大?例15.在5升水中有两个病毒,现从中随机地取出1升水,含有病毒的概率是多大?例16.在圆心角为90°的扇形中,以圆心为起点作射线OC,求使得∠AOC和∠BOC都不小于30°的概率.例17.有一个半径为5的圆,现在将一枚半径为1的硬币向圆投去,如果不考虑硬币完全落在圆外的情况,试求硬币完全落入圆内的概率.例18.如右图,∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,试求:(1)△AOC为钝角三角形的概率;(2)△AOC为锐角三角形的概率.。