八上全等三角形难题题型归类及解析

合集下载

全等三角形难题(含规范标准答案解析)

全等三角形难题(含规范标准答案解析)

全等三角形难题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。

连接AP,BP ∵DP=DC,DA=DB∴ACBP 为平行四边形 又∠ACB=90∴平行四边形ACBP 为矩形ADBC∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。

∴ ∠BAF=∠EAF (∠1=∠2)。

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC∠FDE =∠GDC (对顶角)BA CDF2 1 E∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又 EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

专题03 全等三角形的六种模型全梳理(解析版)-2024年常考压轴题攻略(8年级上册人教版)

专题03 全等三角形的六种模型全梳理(解析版)-2024年常考压轴题攻略(8年级上册人教版)

专题03全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。

类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。

将分散的条件集中到一个三角形中。

如图1,ABC 中,若86AB AC ==,,求BC 边上的中线小明在组内经过合作交流,得到了如下的解决方法:如图连接BE .请根据小明的方法思考:(1)如图2,由已知和作图能得到ADC EDB ≌△△A .SSS B .SAS C .AAS D .ASA(2)如图2,AD 长的取值范围是.(2)根据全等三角形的性质得到6AC BE ==,由三角形三边关系得到AB BE AE AB BE -<<+,即可求出17AD <<;(3)延长AD 到点M ,使AD DM =,连接BM ,证明ADC MDB △△≌,得到BM AC CAD M =∠=∠,,由AE EF =得到CAD AFE ∠=∠,进而推出BF BM =,即可证明AC BF =.【详解】解:(1)如图2,延长AD 到点E ,使DE AD =,连接BE .∵AD 为BC 的中线,∴BD CD =,又∵AD DE ADC BDE =∠=∠,,∴()SAS ADC EDB ≌△△,故答案为:B ;(2)解:∵ADC EDB ≌△△,∴6AC BE ==,在ABE 中,AB BE AE AB BE -<<+,∴86286AD -<<+,∴17AD <<,故答案为:C ;(3)证明:延长AD 到点M ,使AD DM =,连接BM ,∵AD 是ABC 中线,∴CD BD =,∵在ADC △和MDB △中,DC DB ADC MDB AD HD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ADC MDB ≌△△,∴BM AC CAD M =∠=∠,,∵AE EF =,(1)如图1,求证:12BF AD =;(2)将DCE △绕C 点旋转到如图2所示的位置,连接,AE BD ,过C 点作CM ⊥①探究AE 和BD 的关系,并说明理由;②连接FC ,求证:F ,C ,M 三点共线.【答案】(1)见解析(2)①,AE BD AE BD =⊥,理由见解析②见解析【分析】(1)证明≌ACD BCE V V ,得到AD BE =,再根据点F 为BE 中点,即可得证;则:AGB CBD BHG ∠=∠+∠=∠∵CBD EAC ∠=∠,∴90BHG ACB ∠=∠=︒,∴AE BD ⊥,综上:,AE BD AE BD =⊥;②延长CF 至点P ,使PF CF =∵F 为BE 中点,∴BF FE =,∴()SAS BFP EFC ≌,∴,BP CE BPF ECF =∠=∠,∴CE BP ,∴180CBP BCE ∠+∠=︒,∵360180BCE ACD ACB DCE ∠+∠=︒-∠-∠=︒,∴CBP ACD ∠=∠,又,CE CD BP AC BC ===,∴()SAS PBC DCA ≌,∴BCP CAD ∠=∠,延长FC 交AD 于点N ,则:18090BCP ACN ACB ∠+∠=︒-∠=︒,∴90CAD ACN ∠+∠=︒,∴90ANC ∠=︒,∴CN AD ⊥,∵CM AD ⊥,∴点,M N 重合,即:F ,C ,M 三点共线.【点睛】本题考查全等三角形的判定和性质,等腰三角形判定和性质.熟练掌握手拉手全等模型,倍长中线法构造全等三角形,是解题的关键.【变式训练1】如图,ABC 中,BD DC AC ==,E 是DC 的中点,求证:2AB AE =.【答案】见解析【分析】利用中线加倍证DEF CEA △≌△(SAS ),可得DF AC BD ==,FDE C ∠=∠,由DC AC =,可得ADC CAD ∠=∠进而可证ADF ADB ∠=∠.,再证ADB ADF △≌△(SAS )即可.【详解】证明:延长AE 到F ,使EF AE =,连结DF ,∵E 是DC 中点,∴DE CE =,∴在DEF 和CEA 中,DE CE DEF CEA EF EA =⎧⎪∠=∠⎨⎪=⎩,∴DEF CEA △≌△(SAS ),∴DF AC BD ==,FDE C ∠=∠,∵DC AC =,∴ADC CAD ∠=∠,又∵ADB C CAD ∠=∠+∠,ADF FDE ADC ∠=∠+∠,∴ADF ADB ∠=∠,在ADB 和ADF △中,AD AD ADB ADF DB DF =⎧⎪∠=∠⎨⎪=⎩,∴ADB ADF △≌△(SAS ),∴2AB AF AE ==.【点睛】本题考查中线加倍构图,三角形全等判定与性质,等腰三角形性质,掌握中线加倍构图,三角形全等判定与性质,等腰三角形性质是解题关键.【变式训练2】(1)如图1,已知ABC 中,AD 是中线,求证:2AB AC AD +>;(2)如图2,在ABC 中,D ,E 是BC 的三等分点,求证:AB AC AD AE +>+;(3)如图3,在ABC 中,D ,E 在边BC 上,且BD CE =.求证:AB AC AD AE +>+.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)利用“倍长中线”法,延长AD ,然后通过全等以及三角形的三边关系证明即可;(2)取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,通过“倍长中线”思想全等证明,进而得到AB =CQ ,AD =EQ ,然后结合三角形的三边关系建立不等式证明即可得出结论;(3)同(2)处理方式一样,取DE 中点M ,连接AM 并延长至N 点,使得AM =NM ,连接NE ,CE ,结合“倍长中线”思想证明全等后,结合三角形的三边关系建立不等式证明即可得出结论.【详解】证:(1)如图所示,延长AD 至P 点,使得AD =PD ,连接CP ,∵AD 是△ABC 的中线,∴D 为BC 的中点,BD =CD ,在△ABD 与△PCD 中,BD CD ADB PDC AD PD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△PCD (SAS ),∴AB =CP ,在△APC 中,由三边关系可得AC +PC >AP ,∴2AB AC AD +>;(2)如图所示,取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,∵H 为DE 中点,D 、E 为BC 三等分点,∴DH =EH ,BD =DE =CE ,∴DH =CH ,在△ABH 和△QCH 中,BH CH BHA CHQ AH QH =⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≌△QCH (SAS ),同理可得:△ADH ≌△QEH ,∴AB =CQ ,AD =EQ ,此时,延长AE ,交CQ 于K 点,∵AC +CQ =AC +CK +QK ,AC +CK >AK ,∴AC +CQ >AK +QK ,又∵AK +QK =AE +EK +QK ,EK +QK >QE ,∴AK +QK >AE +QE ,∴AC +CQ >AK +QK >AE +QE ,∵AB =CQ ,AD =EQ ,∴AB AC AD AE +>+;(3)如图所示,取DE 中点M ,连接AM 并延长至N 点,使得AM =NM ,连接NE ,CE ,∵M 为DE 中点,∴DM =EM ,∵BD =CE ,∴BM =CM ,在△ABM 和△NCM 中,BM CM BMA CMN AM NM =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△NCM (SAS ),同理可证△ADM ≌△NEM ,∴AB =NC ,AD =NE ,此时,延长AE ,交CN 于T 点,∵AC +CN =AC +CT +NT ,AC +CT >AT ,∴AC +CN >AT +NT ,又∵AT +NT =AE +ET +NT ,ET +NT >NE ,∴AT +NT >AE +NE ,∴AC +CN >AT +NT >AE +NE ,∵AB =NC ,AD =NE ,∴AB AC AD AE +>+.【点睛】本题考查全等三角形证明问题中辅助线的添加,掌握“倍长中线”的基本思想,以及熟练运用三角形的三边关系是解题关键.【答案】(1)1.5 6.5AE <<;(2)见解析;(3)BE DF EF +=,理由见解析【分析】(1)如图①:将ACD △绕着点D 逆时针旋转180 得到EBD △可得BDE ≅ 得出5BE AC ==,然后根据三角形的三边关系求出AE 的取值范围,进而求得AD 范围;(2)如图②:FDC △绕着点D 旋转180︒得到NDB 可得BND CFD ≅ ,得出BN∴1.5 6.5AD <<;故答案为1.5 6.5AD <<;(2)证明:如图②:FDC △绕着点D 旋转180︒得到NDB∴BND CFD ≅ (SAS ),∴BN CF =,DN DF=∵DE DF⊥∴EN EF =,在BNE 中,由三角形的三边关系得:BE BN EN +>,∴BE CF EF +>;(3)BE DF EF +=,理由如下:如图③,将DCF 绕着点C 按逆时针方向旋转100︒∴△DCF ≌△BCH ,∴100CH CF DCB FCH ∠∠=︒=,=∴HBC D DF BH∠∠==,∵180ABC D ∠+∠︒=∴180HBC ABC ∠+∠︒=,∴点A 、B 、H 三点共线∵100FCH ∠=︒,50FCE ∠=︒,∴50ECH ∠=︒∴FCE ECH ∠∠=,在HCE 和FCE △中,===CF CH ECF ECH CE CE ∠∠⎧⎪⎨⎪⎩,∴HCE FCE ≌ (SAS )∴EH EF =,∵BE BH EH DF BH+==,∴BE DF EF +=.【点睛】本题属于三角形综合题,主要考查对全等三角形的性质和判定、三角形的三边关系定理、旋转的性质等知识点,通过旋转得到构造全等三角形是解答本题的关键.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)(1)求证:CD BC DE=+;(2)若75B∠=︒,求E∠的度数.【答案】(1)见解析(2)105︒【分析】(1)在CD上截取CF∵CA平分BCD∠,∴BCA FCA∠=∠.在BCAV和FCA△中,⎧⎪∠⎨⎪⎩,∠=︒BAC60【答案】(1)5.8;(2)4.3【分析】(1)由已知条件和辅助线的作法,证得△ACD≌△ECD,得到由于∠A=2∠B,推出∠DEC=2∠B,等量代换得到∠B=∠EDB形,得出AC =CE =3.6,DE =BE =2.2,相加可得BC 的长;(2)在BA 边上取点E ,使BE =BC =2,连接DE ,得到△DEB ≌△DBC (SAS ),在DA 边上取点F ,使DF =DB ,连接FE ,得到△BDE ≌△FDE ,即可推出结论.【详解】解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△ECD (SAS ),∴AD =DE ,∠A =∠DEC ,∵∠A =2∠B ,∴∠DEC =2∠B ,∴∠B =∠EDB ,∴△BDE 是等腰三角形;∴BE =DE =AD =2.2,AC =EC =3.6,∴BC 的长为5.8;(2)∵△ABC 中,AB =AC ,∠A =20°,∴∠ABC =∠C =80°,∵BD 平分∠B ,∴∠1=∠2=40°,∠BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△DEB ≌△DBC (SAS ),∴∠BED =∠C =80°,∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF =DB ,连接FE ,同理可得△BDE ≌△FDE ,∴∠5=∠1=40°,BE =EF =2,∵∠A =20°,∴∠6=20°,∴AF =EF =2,∵BD =DF =2.3,∴AD =BD +BC =4.3.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质,熟悉这些定理是解决本题的关键.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。

全等三角形的重难点模型(八大题型)(解析版)—八年级数学上册(浙教版)

全等三角形的重难点模型(八大题型)(解析版)—八年级数学上册(浙教版)

全等三角形的重难点模型(八大题型)【题型01:平移型】【题型02:翻折型】【题型03:旋转型】【题型04:一线三等角型(三类型)】【题型05:手拉手模型(四大类型)】【题型06:半角模型】【题型07:对角互补模型】【题型08:平行+线段中点构造全等模型】【题型1 平移型】【方法技巧】【典例1】如图,点E,C在线段BF上,AB=DE,BE=CF,AC=DF.(1)求证:△ABC≌△DEF;(2)若∠B=45°,∠F=85°,求∠A的度数.【答案】(1)见解析(2)50°【分析】本题考查全等三角形的判定与性质,三角形内角和定理,解题的关键是熟练运用全等三角形的判定.(1)首先根据BE=CF可得BC=EF,即可判定△ABC≌△DEF;(2)首先根据(1)中两三角形全等,可得∠ACB=∠F=85°,在△ABC中根据三角形内角和定理即可求出∠A.【详解】(1)证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,∴在△ABC和△DEF中,AB=DE AC=DF BC=EF,∴△ABC≌△DEF(SSS).(2)解:∵△ABC≌△DEF,∠B=45°,∠F=85°,∴∠ACB=∠F=85°,∴∠A=180°―∠ACB―∠B=50°.【变式1-1】如图、点B、E、C、F在一条直线上AB=DE,AC=DF,BE=CF.(1)求证:∠A=∠D;(2)求证:AC∥DF.【答案】(1)证明见解析(2)证明见解析【分析】本题考查三角形综合,涉及三角形全等的判定与性质、平行线的判定等知识,熟记相关几何判定与性质是解决问题的关键.(1)由题中条件,利用两个三角形全等的判定定理SSS得到△ABC≌△DEF,再由三角形全等的性质即可得证;(2)由(1)中△ABC≌△DEF得到∠ACB=∠F,再由同位角相等两直线平行即可得证.【详解】(1)证明:∵BE=CF,∴BC=FE,在△ABC 和△DEF 中,AB =DE AC =DF BE =CF∴△ABC≌△DEF (SSS),∴∠A =∠D ;(2)证明:由(1)知△ABC≌△DEF ,∴ ∠ACB =∠F ,∴ AC∥DF .【变式1-2】如图,在△ABC 和 △DEF 中,边AC ,DE 交于点H ,AB∥DE ,AB =DE ,BC =EF .(1)若∠B =55°,∠ACB =100°,求∠CHE 的度数;(2)求证:△ABC≌△DEF .【答案】(1)∠CHE =25°;(2)证明见解析.【分析】本题考查了三角形的内角和定理,平行线的性质,全等三角形的判定,熟练掌握知识点的应用是解题的关键.(1)根据三角形内角和定理求出∠A ,再根据平行线的性质得出∠CHE =∠A 即可;(2)根据平行线的性质得出∠B =∠DEF ,求出BC =EF ,再根据全等三角形的判定定理推出即可;【详解】(1)解:∵∠B =55°,∠ACB =100°,∴∠A =180°―∠B ―∠ACB =25°,∵AB∥DE ,∴∠CHE =∠A =25°;(2)证明:∵AB∥DE ,∴∠B =∠DEF ,在△ABC 和△DEF 中,AB =DE ∠B =∠DEF BC =EF∴△ABC≌△DEF (SAS).【变式1-3】如图,点B 、E 、C 、F 在同一直线上,∠A =∠D =90°,BE =CF ,AC =DF .求证:∠B =∠DEF .【答案】答案见解析【分析】本题考查了三角形全等的判定与性质,掌握三角形全等的判定定理是解题的关键即可得到答案.根据BE =CF 得到BE +EC =EC +CF 即BC =FE ,之后利用HL 证明Rt △ABC≌Rt △DFE 即可得到答案.【详解】证明:∵BE =CF ,∴BE +EC =EC +CF ,即BC =FE .∵∠A =∠D =90°,则在Rt △ABC 和Rt △DFE 中,BC =FE AC =DE ,∴Rt △ABC≌Rt △DFE(HL).∴∠B =∠DEF .【题型2 翻折型】【方法技巧】【典例2】如图,AB=AD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.【变式2-1】如图,已知∠1=∠2,∠C=∠D,求证:AC=BD【答案】证明见解析【分析】本题考查全等三角形的判定与性质,由两个三角形全等的判定定理AAS 得到△ABC≌△BAD (AAS),再由三角形全等性质即可得证,熟练掌握两个三角形全等判的定定理AAS 及性质是解决问题的关键.【详解】证明:在△ABC 与△BAD 中,∠1=∠2∠C =∠D AB =AB,∴△ABC≌△BAD (AAS),∴AC =BD .【变式2-2】如图,已知AD 平分∠BAC ,AB =AC .求证:△ABD≌△ACD .【答案】见解析【分析】本题主要考查了全等三角形的判定.根据AD 平分∠BAC ,可得∠BAD =∠CAD ,再根据边角边可证明△ABD≌△ACD .【详解】证明:∵AD 平分∠BAC,∴∠BAD =∠CAD ,在△ABD 和△ACD 中,∵AB =AC ,∠BAD =∠CAD ,AD =AD ,∴△ABD≌△ACD (SAS).【变式2-3】如图,AB =AC ,BO =CO ,求证:∠ADC =∠AEB .【答案】见解析【分析】本题考查了全等三角形的判定与性质、三角形外角的定义及性质,连接OA ,证明△AOB≌△AOC (SSS)得出∠B =∠C ,再由三角形外角的定义及性质即可得出答案,熟练掌握以上知识点并灵活运用是解此题的关键.【详解】证明:如图,连接OA ,在△AOB 和△AOC 中,AB =AC OB =OC OA =OA,∴△AOB≌△AOC (SSS),∴∠B =∠C ,∵∠DOB =∠EOC ,∴∠B +∠DOB =∠C +∠EOC ,∴∠ADC =∠AEB .【题型3旋转型】【方法技巧】【典例3】如图,在△ABC 和△AEF 中,点E 在BC 边上,∠C =∠F ,AC =AF ,∠CAF =∠BAE ,EF 与AC 交于点G .(1)试说明:△ABC ≌△AEF ;(2)若∠B =55°,∠C =20°,求∠EAC 的度数.【答案】(1)见解答;(2)35°.【解答】(1)证明:∵∠CAF=∠BAE,∴∠CAF+∠EAC=∠BAE+∠EAC,即∠BAC=∠EAF,在△ABC和△AEF中,,∴△ABC≌△AEF(ASA);(2)解:∵∠B=55°,∠C=20°,∴∠BAC=180°﹣55°﹣20°=105°,∵△ABC≌△AEF,∴AB=AE,∴∠B=∠AEB=55°,∴∠BAE=180°﹣∠B﹣∠AEB=70°,∴∠EAC=∠BAC﹣∠BAE=105°﹣70°=35°.【变式3-1】如图,点E在△ABC外部,点D在BC边上,若∠1=∠2,∠E=∠C,AE=AC,求证:AB=AD.【答案】证明见解答.【解答】证明:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴AB=AD.【变式3-2】如图,点E在△ABC边AC上,AE=BC,BC∥AD,∠BAC=∠ADE.(1)求证:△ABC≌△DEA;(2)若∠CAD=30°,求∠BCD的度数.【答案】(1)见解析;(2)∠BCD=105°.【解答】(1)证明:∵BC∥AD,∴∠ACB=∠DAE.在△ABC和△DEA中,∵,∴△ABC≌△DEA(AAS).(2)解:由(1)知△ABC≌△DEA(AAS),∴AC=AD,∠ACB=∠CAD=30°,∴,∴∠BCD=∠ACD+∠ACB=30°+75°=105°.∴∠BCD=105°.【变式3-3】如图,在△ABC中,点D是BC的中点,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.【答案】证明见解答过程.【解答】证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵点D是BC的中点,∴BD=CD,在△BDE与△CDF中,,∴△BDE≌△CDF(AAS).【变式3-4】如图,∠ABC=∠ADE,∠BAD=∠CAE,AC=AE,求证:△ABC≌△ADE.【答案】见解答.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠CAD=∠CAE+∠CAD,即∠BAC=∠DAE.在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).【题型4 一线三等角型】【方法技巧】模型一一线三垂直如图一,∠D=∠BCA=∠E=90°,BC=AC。

八年级数学上册 全等三角形(篇)(Word版 含解析)

八年级数学上册 全等三角形(篇)(Word版 含解析)

八年级数学上册全等三角形(篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有_____个.【答案】4【解析】【分析】以O为圆心,OA为半径画弧交x轴于点P1、P3,以A为圆心,AO为半径画弧交x轴于点P4,作OA的垂直平分线交x轴于P2.【详解】解:如图,使△AOP是等腰三角形的点P有4个.故答案为4.【点睛】本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.2.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记a1,第2个等边三角形的边长记为a2,以此类推,若OA1=3,则a2=_______,a2019=_______.【答案】6; 3×22018.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1=6,得出a3=4a1,a4=8a1,a5=16a1…进而得出答案.【详解】解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=3,∴A2B1=3,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1=6,a3=4a1,a4=8a1,a 5=16a 1,以此类推:a 2019=22018a 1=3×22018故答案是:6;3×22018.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a 2=2a 1=6,a 3=4a 1,a 4=8a 1,a 5=16a 1…进而发现规律是解题关键.3.如图,在直角坐标系中,点()8,8B -,点()2,0C -,若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1/cm s ,设点P 运动时间为t 秒,当BCP ∆是以BC 为腰的等腰三角形时,直接写出t 的所有值__________________.【答案】2秒或46秒或14秒【解析】【分析】分两种情况:PC 为腰或BP 为腰.分别作出符合条件的图形,计算出OP 的长度,即可求出t 的值.【详解】解:如图所示,过点B 作BD ⊥x 轴于点D ,作BE ⊥y 轴于点E ,分别以点B 和点C 为圆心,以BC 长为半径画弧交y 轴正半轴于点F ,点H 和点G∵点B (-8,8),点C (-2,0),∴DC=6cm ,BD=8cm ,由勾股定理得:BC=10cm∴在直角三角形COG 中,OC=2cm ,CG=BC=10cm ,∴2210246(cm)-=,当点P运动到点F或点H时,BE=8cm,BH=BF=10cm,∴EF=EH=6cm∴OP=OF=8-6=2(cm)或OP=OH=8+6=14(cm),故答案为:2秒,46秒或14秒.【点睛】本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.4.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F =30°,DE=1,则EF的长是_____.【答案】2【解析】【分析】连接BE,根据垂直平分线的性质、直角三角形的性质,说明∠CBE=∠F,进一步说明BE =EF,,然后再根据直角三角形中,30°所对的直角边等于斜边的一半即可.【详解】解:如图:连接BE∵AB的垂直平分线DE交BC的延长线于F,∴AE=BE,∠A+∠AED=90°,∵在Rt△ABC中,∠ACB=90°,∴∠F+∠CEF=90°,∵∠AED=∠FEC,∴∠A=∠F=30°,∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,∴∠CBE=∠ABC﹣∠ABE=30°,∴∠CBE=∠F,∴BE=EF,在Rt△BED中,BE=2DE=2×1=2,∴EF=2.故答案为:2.【点睛】本题考查了垂直平分线的性质、直角三角形的性质,其中灵活利用垂直平分线的性质和直角三角形30°角所对的边等于斜边的一半是解答本题的关键.5.在△ABC 中,∠ACB=90º,D、E 分别在 AC、AB 边上,把△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,若△CFD 与△BFE 都是等腰三角形,则∠BAC 的度数为_________.【答案】45°或60°【解析】【分析】根据题意画出图形,设∠BAC的度数为x,则∠B=90°-x,∠EFB =135°-x,∠BEF=2x-45°,当△BFE 都是等腰三角形,分三种情况讨论,即可求解.【详解】∵∠ACB=90º,△CFD是等腰三角形,∴∠CDF=∠CFD=45°,设∠BAC的度数为x,∴∠B=90°-x,∵△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,∴∠DFE=∠BAC=x,∴∠EFB=180°-45°-x=135°-x,∵∠ADE=∠FDE,∴∠ADE=(180°-45°)÷2=67.5°,∴∠AED=180°-∠ADE-∠BAC=180°-67.5° -x=112.5°-x,∴∠DEF=∠AED=112.5°-x,∴∠BEF=180°-∠AED-∠DEF=180°-(112.5°-x)-(112.5°-x)=2x-45°,∵△BFE 都是等腰三角形,分三种情况讨论:①当FE=FB时,如图1,则∠BEF=∠B,∴90-x=2x-45,解得:x=45;②当BF=BE时,则∠EFB=∠BEF,∴135-x=2x-45,解得:x=60,③当EB=EF时,如图2,则∠B=∠EFB,∴135-x=90-x,无解,∴这种情况不存在.综上所述:∠BAC 的度数为:45°或60°.故答案是:45°或60°.图1 图2【点睛】本题主要考查等腰三角形的性质定理,用代数式表示角度,并进行分类讨论,是解题的关键.6.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为______.【答案】7或34【解析】【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【详解】如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM=22-=43;AB BM如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM=22-=43,MO OB∴Rt△ABM中,AM=22+=47.AB BM综上所述,当△ABM为直角三角形时,AM的长为43或47或4.故答案为43或47或4.7.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1),若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个【答案】5【解析】【分析】分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可【详解】解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个故答案为:5【点睛】本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键8.如图,在四边形ABCD中,∠A+∠C=180°,E、F分别在BC、CD上,且AB=BE,AD =DF,M为EF的中点,DM=3,BM=4,则五边形ABEFD的面积是_____.【答案】12【解析】【分析】延长BM至G,使MG=BM,连接FG、DG,证明△BME≌△GMF(SAS),得出FG=BE,∠MBE=∠MGF,证出AB=FG,证明△DAB≌△DFG(SAS),得出DB=DG,由等腰三角形的性质即可得DM⊥BM,由五边形ABEFD的面积=△DBG的面积,可求解.【详解】延长BM至G,使MG=BM=4,连接FG、DG,如图所示:∵M 为EF 中点,∴ME =MF ,在△BME 和△GMF 中,BM MG BME GMFME MF =⎧⎪∠=∠⎨⎪=⎩, ∴△BME ≌△GMF (SAS ),∴FG =BE ,∠MBE =∠MGF ,S △BEM =S △GFM ,∴FG ∥BE ,∴∠C =∠GFC ,∵∠A +∠C =180°,∠DFG +∠GFC =180°,∴∠A =∠DFG ,∵AB =BE ,∴AB =FG ,在△DAB 和△DFG 中,AB FG A DFGAD DF =⎧⎪∠=∠⎨⎪=⎩, ∴△DAB ≌△DFG (SAS ),∴DB =DG ,S △DAB =S △DFG ,∵MG =BM ,∴DM ⊥BM ,∴五边形ABEFD 的面积=△DBG 的面积=12×BG ×DM =12×8×3=12, 故答案为:12.【点睛】本题考查了全等三角形的判定与性质、平行线的性质、等腰三角形的判定与性质等知识;熟练掌握等腰三角形的判定由性质,证明三角形全等是解题的关键.9.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.【答案】1 2【解析】过点Q作AD的延长线的垂线于点F.因为△ABC是等边三角形,所以∠A=∠ACB=60°.因为∠ACB=∠QCF,所以∠QCF=60°.因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE,所以DE=12AC=12.故答案为1 2 .10.如图,在△ABC 中,AD 是高,DE 是 AC 的垂直平分线,AE=4cm,△ABD 的周长为15cm,则△ABC 的周长为______【答案】23cm.【解析】【分析】根据线段垂直平分线的性质得到AC=2AE=8,DA=DC,根据三角形的周长公式计算即可.【详解】解:∵DE是AC的垂直平分线,∴AC=2AE=8,DA=DC,∵△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=15,∴△ABC的周长=AB+BC+AC=15+8=23cm,故答案是:23cm.【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于()A.7.5°B.10°C.15°D.18°【答案】C【解析】根据等腰三角形性质求出∠C=∠B,根据三角形的外角性质求出∠B=∠C=∠AED+α﹣30°,根据AE=AD,可得∠AED=∠ADE=∠C+α,得出等式∠AED=∠AED+α﹣30°+α,求出α=15°,即得到∠DEC=α=15°,故选C.点睛:本题考查了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点的应用,主要考查学生运用定理进行推理的能力,本题有一点难度,但题型不错.12.如图所示,等边三角形的边长依次为2,4,6,8,……,其中1(0,1)A,(21,13A-,(31,13A,4(0,2)A,(52,223A--,……,按此规律排下去,则2019A的坐标为()A .()673,6736733-B .()673,6736733--C .(0,1009)D .()674,6746743- 【答案】A【解析】【分析】 根据等边三角形的边长依次为2,4,6,8,……,及点的坐标特征,每三个点一个循环,2019÷3=673,A 2019的坐标在第四象限即可得到结论.【详解】∵2019÷3=673,∴顶点A 2019是第673个等边三角形的第三个顶点,且在第四象限.第673个等边三角形边长为2×673=1346,∴点A 2019的横坐标为 12⨯1346=673.点A 2019的纵坐标为673-13463⨯=673﹣6733.故点A 2019的坐标为:()673,6736733-.故选:A .【点睛】本题考查了点的坐标、等边三角形的性质,是点的变化规律,主要利用了等边三角形的性质,确定出点A 2019所在三角形是解答本题的关键.13.如图,在平面直角坐标系中,A (a ,0),B (0,a ),等腰直角三角形ODC 的斜边经过点B ,OE ⊥AC ,交AC 于E ,若OE =2,则△BOD 与△AOE 的面积之差为( )A .2B .3C .4D .5【答案】A【解析】【分析】首先证明△DOB≌△COA(SAS),推出S△DOB﹣S△AOE=S△EOC,再证明△OEC是等腰直角三角形即可解决问题.【详解】∵A(a,0),B(0,a),∴OA=OB.∵△ODC是等腰直角三角形,∴OD=OC,∠D=∠DCO=45°.∵∠DOC=∠BOA=90°,∴∠DOB=∠COA.在△DOB和△COA中,∵OD=OC,∠DOB=∠COA,OB=OA,∴△DOB≌△COA(SAS),∴∠D=∠OCA=45°,S△DOB﹣S△AOE=S△EOC.∵OE⊥AC,∴∠OEC=90°,∴△CEO是等腰直角三角形,∴OE=EC=2,∴S△DOB﹣S△AOE=S△EOC12=⨯2×2=2.故选A.【点睛】本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是证明△OEC是等腰直角三角形.14.如图,在△ABC中,BC的垂直平分线分别交AC,BC于点D,E,若△ABC的周长为24,CE=4,则△ABD的周长为()A.16 B.18 C.20 D.24【答案】A【解析】【分析】根据线段的垂直平分线的性质和三角形的周长公式进行解答即可.【详解】解:∵DE是BC的垂直平分线,∴DB=DC,BC=2CE=8又∵AABC的周长为24,∴AB+BC+AC=24∴AB+AC=24-BC=24-8=16∴△ABD的周长=AD+BD+AB=AD+CD+AB=AB+AC=16,故答案为A【点睛】本题考查的是线段的垂直平分线的性质,理解并应用线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图钢架中,∠A=a ,焊上等长的钢条P 1P 2, P 2P 3, P 3P 4, P 4P 5……来加固钢架.著P 1A= P 1P 2,且恰好用了4根钢条,则α的取值范圈是( )A .15°≤ a <18°B .15°< a ≤18°C .18°≤ a <22.5°D .18° < a ≤ 22.5°【答案】C【解析】【分析】由每根钢管长度相等,可知图中都是等腰三角形,利用等腰三角形底角一定是锐角,可推出取值范围.【详解】∵AB=BC=CD=DE=EF∴∠P 1P 2A=∠A=a由三角形外角性质,可得∠P 2P 1P 3=2∠A=2a同理可得,∠P 1P 3P 2=∠P 2P 1P 3=2a ,∠P 3P 2P 4=∠P 3P 4P 2=∠A+∠P 1P 3P 2=3a ,∠P 4P 3P 5=∠P 4P 5P 3=∠A+∠P 3P 4P 2=4a ,在△P 4P 3P 5中,∠P 3P 4P 5=180°-2∠P 4P 3P 5=180°-8a当∠P 5P 4B ≥90°即∠P 5P 4A ≤90°时,不能再放钢管,∴3180890+-≤a a ,解得a ≥18°又∵等腰三角形底角只能是锐角,∴4a <90°,解得a <22.5∴1822.5οο≤<a故选C.【点睛】本题考查等腰三角形的性质,掌握等腰三角形的底角只能是锐角是关键.16.如图,四边形ABCD 中,∠C=,∠B=∠D=,E ,F 分别是BC ,DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为( ).A .B .C .D .【答案】D【解析】【分析】【详解】作点A 关于直线BC 和直线CD 的对称点G 和H ,连接GH ,交BC 、CD 于点E 、F ,连接AE 、AF ,则此时△AEF 的周长最小,由四边形的内角和为360°可知,∠BAD=360°-90°-90°-50°=130°,即∠1+∠2+∠3=130°①,由作图可知,∠1=∠G ,∠3=∠H ,△AGH 的内角和为180°,则2(∠1+∠3)+ ∠2=180°②,又①②联立方程组,解得∠2=80°.故选D .考点:轴对称的应用;路径最短问题.17.如图,已知:∠MON =30°,点A 1、A 2、A 3 ···在射线ON 上,点1B 、2B 、3B ···在射线OM 上,△112A B A 、△223A B A 、△334A B A …均为等边三角形,若112OA ,则△667A B A 的边长为( )A .6B .12C .16D .32【答案】C【解析】【分析】 根据等腰三角形与等边三角形性质以及直角三角形中30°角所对应的直角边等于斜边的一半111OA A B =,112122321122A B A B A B A B ===…以此类推得出答案即可 【详解】∵△112A B A 是等边三角形,∴∠112A B A =∠112B A A =60°又∵∠MON =30°∴∠11OB A =30° ∴∠12OB A =∠212A B B =90°,1112112A B OA A B ===又∵△223A B A 是等边三角形∴22A B ∥11A B∴∠22OB A =∠11OB A =30°∴在Rt△212A B B 中,22A B =212A B =1以此类推,得出△667A B A 的边长=1222222⋅⋅⋅⋅⋅=16 所以答案为C 选项【点睛】 本题主要考查了等腰三角形与等边三角形性质以及30°角的直角三角形的性质,熟练掌握相关概念通过题目发现规律是解题关键18.如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A .(-2012,2)B .(-2012,-2)C .(-2013,-2)D .(-2013,2)【答案】A【解析】 试题分析:首先由正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M 的对应点的坐标,即可得规律:第n 次变换后的点M 的对应点的为:当n 为奇数时为(2-n ,-2),当n 为偶数时为(2-n ,2),继而求得把正方形ABCD 连续经过2014次这样的变换得到正方形ABCD 的对角线交点M 的坐标.试题解析:∵正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选A.考点:1.翻折变换(折叠问题);2.正方形的性质;3.坐标与图形变化-平移.19.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.【详解】∵∠BCA=∠DCE=60°,∴∠BCA+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,又∵AC=BC,CE=CD,∴△BCD≌△ACE,∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,∴∠BAE=120°,∴∠EAD=60°,②正确,∵∠BCD=90°,∠BCA=60°,∴∠ACD=∠ADC=30°,∴AC=AD,∵CE=DE,∴CE2+AD2=AC2+DE2,④正确,当D点在BA延长线上时,∠BDE-∠BDC=60°,∵∠AEC=∠BDC,∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,∴∠BDE-∠BDC=∠BDC+∠AED∴∠BDE-∠AED=2∠BDC,如图,当点D在AB上时,∵△BCD≌△∠ACE,∴∠CAE=∠CBD=60°,∴∠DAE=∠BAC+∠CAE=120°,∴∠BDE-∠AED=∠DAE=120°,③错误故正确的结论有①②④,故选C.【点睛】此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握20.如图,已知,点A(0,0)、B(43,0)、C(0,4),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2017个等边三角形的边长等于()A .20152B .20162C .201727D .20192【答案】A【解析】【分析】【详解】根据锐角三函数的性质,由OB=OC=1,可得∠OCB=90°,然后根据等边三角形的性质,可知∠A 1AB=60°,进而可得∠CAA 1=30°,∠CA 1O=90°,因此可推导出∠A 2A 1B=30°,同理得到∠CA 2B 1=∠CA 3B 2=∠CA 4B 3=90°,∠A 2A 1B=∠A 3A 2B 2=∠A 4A 3B 3=30°,故可得后一个等边三角形的边长等于前一个等边三角形的边长的一半,即OA 1=OCcos ∠CAA 1=B 1A 2=12⨯2017个等边三角形的边长为:20171()2⨯=. 故选A.【点睛】此题主要考查了等边三角形的性质,属于规律型题目,解题关键是仔细审图,得出:后一个等边三角形的边长等于前一个等边三角形的边长的一半.。

全等三角形题型归类及解析汇报

全等三角形题型归类及解析汇报

全等三角形难题题型归类及解析一、角平分线型角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。

另外掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。

1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。

2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系.3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。

(1) 求证:∠ABE=∠C ;(2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。

.AB C DE PD A CBM N5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B )21PFMDBA CE6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .(1) 若BD 平分∠ABC ,求证CE=12BD ;(2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。

8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD .二、中点型由中点应产生以下联想:ED C BA1、想到中线,倍长中线2、利用中心对称图形构造8字型全等三角形3、在直角三角形中联想直角三角形斜边上的中线4、三角形的中位线2、已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且B E A C ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =; (2)求证:12CE BF =D AE FCHGB3、如图,△ABC 中,D 是BC 的中点,DE ⊥DF ,试判断BE+CF 与EF 的大小关 系,并证明你的结论。

八年级上册数学 全等三角形(篇)(Word版 含解析)

八年级上册数学 全等三角形(篇)(Word版 含解析)

八年级上册数学 全等三角形(篇)(Word 版 含解析) 一、八年级数学轴对称三角形填空题(难)1.在直角坐标系中,O 为坐标原点,已知点 A (1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点 P 的坐标为_____________.【答案】5(0,5),(0,4),0,4⎛⎫ ⎪⎝⎭【解析】【分析】有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,求出OA 即可;②以A 为圆心,以OA 为半径画弧交y 轴于P ,求出OP 即可;③作OA 的垂直平分线交y 轴于C ,则AC =OC ,根据勾股定理求出OC 即可.【详解】有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,则OA =OD =22125+=;∴D (0,5);②以A 为圆心,以OA 为半径画弧交y 轴于P ,OP =2×y A =4,∴P (0,4);③作OA 的垂直平分线交y 轴于C ,则AC =OC ,由勾股定理得:OC =AC =()2212OC +-,∴OC =54, ∴C (0,54); 故答案为:5(0,5),(0,4),0,4⎛⎫ ⎪⎝⎭.【点睛】本题主要考查对线段的垂直平分线,等腰三角形的性质和判定,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.2.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形(1)如图,在ABC∆中,25,105A ABC∠=︒∠=︒,过B作一直线交AC于D,若BD 把ABC∆分割成两个等腰三角形,则BDA∠的度数是______.(2)已知在ABC∆中,AB AC=,过顶点和顶点对边上一点的直线,把ABC∆分割成两个等腰三角形,则A∠的最小度数为________.【答案】130︒1807︒⎛⎫⎪⎝⎭【解析】【分析】(1)由题意得:DA=DB,结合25A∠=︒,即可得到答案;(2)根据题意,分4种情况讨论,①当BD=AD,CD=AD,②当AD=BD,AC=CD,③AB=AC,当AD=BD=BC,④当AD=BD,CD=BC,分别求出A∠的度数,即可得到答案.【详解】(1)由题意得:当DA=BA,BD=BA时,不符合题意,当DA=DB时,则∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为:130°;(2)①如图1,∵AB=AC,当BD=AD,CD=AD,∴∠B=∠C=∠BAD=∠CAD,∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠BAC=90°.②如图2,∵AB=AC,当AD=BD,AC=CD,∴∠B=∠C=∠BAD,∠CAD=∠CDA,∵∠CDA=∠B+∠BAD=2∠B,∴∠BAC=3∠B,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°.③如图3,∵AB=AC,当AD=BD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠BDC=∠C,∵∠BDC=∠A+∠ABD=2∠BAC,∴∠ABC=∠C=2∠BAC,∵∠BAC+∠ABC+∠C=180°,∴5∠BAC=180°,∴∠BAC=36°.④如图4,∵AB=AC,当AD=BD,CD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠CDB=∠CBD,∵∠BDC=∠BAC+∠ABD=2∠BAC,∴∠ABC=∠C=3∠BAC,∵∠BAC+∠ABC+∠C=180°,∴7∠BAC=180°,∴∠BAC=180 ()7︒.综上所述,∠A的最小度数为:180 ()7︒.故答案是:180 ()7︒.【点睛】本题主要考查等腰三角形的性质定理以及三角形内角和定理与外角的性质,根据等腰三角形的性质,分类讨论,是解题的关键.3.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).4.如图,已知△ABC 和△ADE 都是正三角形,连接CE 、BD 、AF ,BF=4,CF=7,求AF 的长_________ .【答案】3【解析】【分析】过点A 作AF ⊥CE 交于I ,AG ⊥BD 交于J,证明CAE ≅BAD ,再证明CAI ≅BAJ ,求出°7830∠=∠=,然后求出12IF FJ AF ==,,通过设FJ x =求出x ,即可求出AF 的长.【详解】解:过点A 作AF ⊥CE 交于I ,AG ⊥BD 交于J在CAE 和BAD 中AC AB CAE BADAE AD =⎧⎪∠=∠⎨⎪=⎩∴CAE ≅BAD∴ICA ABJ ∠=∠ ∴BFE CAB ∠=∠(8字形)∴°120CFD ∠= 在CAI 和BAJ 中°90ICA ABJ CAI BJA CA BA ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴CAI ≅BAJ,AI AJ CI BJ ==∴°60CFA AFJ ∠=∠=∴°30FAI FAE ∠=∠= 在RtAIF 和RtAJF 中°30FAI FAE ∠=∠=∴12IF FJ AF ==设FJ x = 7,4CF BF ==则47x x +=-32x ∴=2AF FJ =AF ∴=3【点睛】此题主要考查了通过做辅助线证明三角形全等,得出相关的边相等,学会合理添加辅助线求解是解决本题的重点.5.等腰三角形一边长等于4,一边长等于9,它的周长是__.【答案】22【解析】【分析】等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;【详解】解:因为4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22.故答案为22.【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.6.如图,在第一个△A 1BC 中,∠B =30°,A 1B =CB ,在边A 1B 上任取一D ,延长CA 2到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ,在边A 2B 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第三个△A 2A 3E ,…按此做法继续下去,第n 个等腰三角形的底角的度数是_____度.【答案】1752n -【解析】【分析】先根据∠B =30°,AB =A 1B 求出∠BA 1C 的度数,在由A 1A 2=A 1D 根据内角和外角的关系求出∠DA 2A 1的度数,同理求出∠EA 3A 2=754,∠FA 4A 3=758,即可得到第n 个等腰三角形的底角的度数=1752n . 【详解】∵在△ABA 1中,∠B =30°,AB =A 1B ,∴∠BA 1C =1802B ︒-∠=75°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角, ∴∠DA 2A 1=12∠BA 1C =12×75°=37.5°; 同理可得,∠EA 3A 2=754,∠FA 4A 3=758, ∴第n 个等腰三角形的底角的度数=1752n . 故答案为1752n -. 【点睛】 此题考查等腰三角形的性质,利用等边对等角求出等腰三角形底角的度数.7.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1), 若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个【答案】5【解析】【分析】分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可【详解】解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个故答案为:5【点睛】本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键8.如图,Rt△ABC 中,AB=AC,∠BAC=90°,AD 是 BC 边上的高,E 是 AD 上的一点。

八年级数学上册全等三角形章末重难点题型(举一反三)(含解析版)

八年级数学上册全等三角形章末重难点题型(举一反三)(含解析版)

专题01 全等三角形章末重难点题型汇编【举一反三】【考点1 利用全等三角形的性质求角】【方法点拨】全等三角形的性质:(1)全等三角形的对应边相等、对应角相等;(2)全等三角形的周长相等、面积相等;(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

【例1】(2019春•临安区期中)如图,△ACB≌△A′CB′,∠ACB=70°,∠ACB′=100°,则∠BCA′的度数为()A.30°B.35°C.40°D.50°【变式1-1】(2018秋•绍兴期末)如图,△ABC≌△EDC,BC⊥CD,点A,D,E在同一条直线上,∠ACB =20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【变式1-2】(2018秋•厦门期末)如图,点F,C在BE上,△ABC≌△DEF,AB和DE,AC和DF是对应边,AC,DF交于点M,则∠AMF等于()A.2∠B B.2∠ACB C.∠A+∠D D.∠B+∠ACB【变式1-3】(2018秋•桐梓县校级期中)如图,△ABC≌△A′B′C,∠ACB=90°,∠B=50°,点B′在线段AB上,AC,A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°【考点2 全等三角形的判定条件】【方法点拨】寻找并证明全等三角形还缺少的条件,其基本思路是:(1)有两边对应相等,找夹角对应相等,或第三边对应相等.前者利用SAS判定,后者利用SSS判定. (2)有两角对应相等,找夹边对应相等,或任一等角的对边对应相等.前者利用ASA判定,后者利用AAS 判定.(3)有一边和该边的对角对应相等,找另一角对应相等.利用AAS判定.(4)有一边和该边的邻角对应相等,找夹等角的另一边对应相等,或另一角对应相等.前者利用SAS判定,后者利用AAS判定.【例2】(2019春•沙坪坝区校级期中)如图,在△ABC和△AED中,已知∠1=∠2,AC=AD,添加一个条件后,仍然不能证明△ABC≌△AED,这个条件是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E【变式2-1】(2019秋•潘集区期中)在△ABC与△DEF中,给出下列四组条件:(1)AB=DE,AC=DF,BC=EF(2)AB=DE,∠B=∠E,BC=EF(3)∠B=∠E,BC=EF,∠C=∠F(4)AB=DE,∠B=∠E,AC=DF,其中能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【变式2-2】(2018春•渝中区校级期中)如图,点B、F、C、E在一条直线上,∠A=∠D,∠B=∠E,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.BC=EF C.∠ACB=∠DFE D.AC=DF【变式2-3】(2018秋•鄂尔多斯期中)如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是()A.BD=CE B.∠ABD=∠ACE C.∠BAD=∠CAE D.∠BAC=∠DAE【考点3 全等三角形判定的应用】【方法点拨】解决此类题型的关键是理解题意,利用全等三角形的判定.【例3】(2019春•郓城县期末)如图所示,要测量河两岸相对的两点A、B的距离,因无法直接量出A、B 两点的距离,请你设计一种方案,求出A、B的距离,并说明理由.【变式3-1】(2019春•峄城区期末)如图,点C、E分别在直线AB、DF上,小华想知道∠ACE和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF.小华的想法对吗?为什么?【变式3-2】(2019春•槐荫区期末)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.【变式3-3】如图,两根长12m的绳子,一端系在旗杆上的同一位置,另一端分别固定在地面上的两个木桩上(绳结处的误差忽略不计),现在只有一把卷尺,如何来检验旗杆是否垂直于地面?请说明理由.【考点4 利用AAS证明三角形全等】【方法点拨】两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)【例4】(2018秋•仙游县期中)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC ≌△BEC(不添加其他字母及辅助线),你添加的条件是.并证明结论.【变式4-1】(2018春•揭西县期末)如图,∠ABC=∠ACB,∠ADE=∠AED,BE=CD,试说明:△ABD ≌△ACE.【变式4-2】(2018秋•杭州期中)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE.求证:△ACD≌△CBE.【变式4-3】(2018•雁塔区校级二模)如图,在四边形ABCD中,点E在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC≌△DEC.【考点5 利用SAS证明三角形全等】【方法点拨】两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)【例5】(2018春•金山区期末)如图,已知CA=CD,CB=CE,∠ACB=∠DCE,试说明△ACE≌△DCB 的理由.【变式5-1】(2018春•黄岛区期末)如图,点E在AB上,AC=AD,∠CAB=∠DAB,那么△BCE和△BDE 全等吗?请说明理由.【变式5-2】(2018秋•仪征市校级月考)如图,已知点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE,说明△ABC与△DEF全等的理由.【变式5-3】(2019秋•东莞市校级月考)如图:△ABC和△EAD中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE.求证:△ABD≌△AEC.【考点6 利用ASA证明三角形全等】【方法点拨】两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)【例6】(2019秋•利辛县期末)如图,已知AB=AC,∠ABE=∠ACD,BE与CD相交于O,求证:△ABE ≌△ACD.【变式6-1】(2018•双柏县二模)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;【变式6-2】(2019•陕西模拟)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC≌△DEC.【变式6-3】(2019秋•乐清市校级期中)如图,△ABC的两条高AD、BE相交于点H,且AD=BD,求证:△BDH≌△ADC.【考点7 利用SSS证明三角形全等】【方法点拨】三边对应相等的两个三角形全等(可简写成“SSS”)【例7】(2019春•渝中区校级月考)如图,AB=CD,AE=CF,E、F是BD上两点,且BF=DE.求证:△ABE≌△CDF.【变式7-1】(2019秋•扶余县校级月考)如图,在△ABC中,AD=AE,BE=CD,AB=AC.(1)求证:△ABD≌△ACE;(2)求证:∠BAE=∠CAD.【变式7-2】(2019秋•保亭县校级月考)如图,AB=AD,DC=BC,∠B与∠D相等吗?为什么?【变式7-3】(2019秋•蓬江区校级期末)如图,在△ABC中,∠C=90°,D、E分别为AC、AB上的点,且AD=BD,AE=BC,DE=DC,求证:DE⊥AB.【考点8 利用HL证明三角形全等】【方法点拨】对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)【例8】(2018秋•思明区校级月考)如图,在四边形ABCD中,AD⊥BD,AC⊥CB,BD=AC.求证:△ABD≌△BAC;【变式8-1】(2019秋•睢宁县校级月考)如图,Rt△ABC中,∠C=90°,BC=2,一条直线MN=AB,M、N分别在AC和过点A且垂直于AC的射线AP上运动.问点M运动到什么位置,才能使△ABC和△AMN 全等?并证明你的结论.【变式8-2】(2019秋•合浦县期末)如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.【变式8-3】(2019春•醴陵市期末)如图,在四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于点E,AF⊥CD交CD的延长线于点F.求证:△ABE≌△ADF.【考点9 全等三角形的判定与性质综合】【例9】(2019•南岸区)如图,在△ABC和△ABD中,∠BAC=∠ABD=90°,点E为AD边上的一点,且AC=AE,连接CE交AB于点G,过点A作AF⊥AD交CE于点F.(1)求证:△AGE≌△AFC;(2)若AB=AC,求证:AD=AF+BD.【变式9-1】(2019•福州模拟)(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.【变式9-2】(2018秋•天台县期末)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,若AD=a,DE=b,(1)如图1,求BE的长,写出求解过程;(用含a,b的式子表示)(2)如图2,点D在△ABC内部时,直接写出BE的长.(用含a,b的式子表示)【变式9-3】(2019春•道外区期末)如图,四边形ABCD中,∠ABC=∠BCD=90°,点E在BC边上,∠AED=90°(1)求证:∠BAE=∠CED;(2)若AB+CD=DE,求证:AE+BE=CE;(3)在(2)的条件下,若△CDE与△ABE的面积的差为18,CD=6,求BE的长.【考点10 动点问题中的全等三角形应用】【例10】(2019春•平川区期末)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?【变式10-1】(2019春•永新县期末)△ABC中,AB=AC,∠A=40°,D、E分别是AB,AC上的不动点.且BD+CE=BC,点P是BC上的一动点.(1)当PC=CE时(如图1),求∠DPE的度数;(2)若PC=BD时(如图2),求∠DPE的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.【变式10-2】(2019春•宝安区期中)如图,在四边形ABCD中,AD=BC=10,AB=CD,BD=14,点E 从D点出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒5个单位的速度沿C→B→C,作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.【变式10-3】(2018秋•十堰期末)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=25°,则∠DCE=.(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.专题01 全等三角形章末重难点题型汇编【举一反三】【考点1 利用全等三角形的性质求角】【方法点拨】全等三角形的性质:(1)全等三角形的对应边相等、对应角相等;(2)全等三角形的周长相等、面积相等;(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

完整版)全等三角形难题题型归类及解析

完整版)全等三角形难题题型归类及解析

完整版)全等三角形难题题型归类及解析1.在三角形ABC中,AD是角BAC的平分线,AE=AC,DE=2cm,BD=3cm,求BC的长度。

为了解决这个问题,我们可以利用角平分线的轴对称性,构造全等三角形ADE和ABC。

因为AE=AC,所以三角形ADE和三角形ABC的两边分别相等,因此它们是全等的。

根据全等三角形的性质,∠DAE=∠CAB,∠AED=∠ACB。

又因为AD是角BAC的平分线,所以∠DAE=∠EAC,因此∠CAB=2∠EAC。

设BC=x,则根据正弦定理可得:3/x=sin(2EAC)/sin(EAC),化简后得到x=6.2.在三角形ABC中,BD是角ABC的平分线,AB=BC,P在BD上,PM⊥AD于M,PN⊥CD于N,求解PM与PN 的关系。

首先,我们可以利用角平分线的性质,构造等腰三角形ABD和CBD。

因为AB=BC,所以三角形ABD和三角形CBD的两边分别相等,因此它们是全等的。

根据全等三角形的性质,∠BDA=∠BDC,∠ADB=∠CDB。

又因为BD是角ABC的平分线,所以∠ADB=∠BDC,因此∠BDA=∠CDB。

因此,三角形APM和三角形CPN是全等的。

因为全等三角形的对应边相等,所以PM=PN。

3.在三角形OAB中,P是角OAB的平分线上的一点,PC⊥OA于C,∠OAP+∠OBP=180°,OC=4cm,求解AO+BO的值。

我们可以利用角平分线的轴对称性,构造全等三角形OAC和OBC。

因为∠OAP+∠OBP=180°,所以∠AOP=∠BOP=90°。

因此,三角形OAP和三角形OBP是直角三角形。

设AO=x,BO=y,则根据勾股定理可得:x^2+PC^2=OP^2,y^2+PC^2=OP^2.又因为OC=4cm,所以PC=2cm。

将PC代入上面的两个式子中,得到x^2+y^2=OP^2-4.又因为三角形OAC和三角形OBC是全等的,所以x=y,因此2x^2=OP^2-4,即OP^2=2x^2+4.因此,AO+BO=2x=2√((OP^2-4)/2)=2√(2x^2)=2√(2y^2)=2√(2x^2+4)/2=2√(OP^2)/2=OP√2=2√6.4.在三角形ABC中,E在边AC上,且∠XXX∠ABC。

初二全等三角形难题全等三角形难题及答案

初二全等三角形难题全等三角形难题及答案

初二全等三角形难题全等三角形难题及答案1、如图,在ABC 中,AB BC, ABC 90 。

F 为AB延长线上一点,点E在BC上,BE BF ,连接AE,EF 和CF。

求证:AE CFo 2、如图,D是ABC的边BC 上的点,且CD AB, ADB BAD,AE是ABD 的中线。

求证:AC…旋转已知,如图,三角形ABC是等腰直角三角形,/ ACB=90 , F是AB的中点,直线I经过点C,分别过点A、B作I的垂线,即AD丄CE , BE丄CE , (1)如图1,当CE 位于点F的右侧时,求证:AADC CEB ; (2)如图2,当CE位于点F的左侧时…全等三角形难题题型归类及解析一、角平分线型角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。

另外掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂…1、如图,在ABC中,AB BC, ABC 90 。

F为AB 延长线上一点,点E在BC上,BE BF,连接AE,EF和CF。

求证:AE CFo 2、如图,D是ABC的边BC上的点,且CD AB,ADB BAD, AE是ABD 的中线。

求证:AC 2AE。

AB AC PB PC。

3、如图,在ABC 中,AB AC,求证:1 2,P 为AD上任意一点。

4、如图,BD、CE分别是ABC的边AC、AB上的高,F、G分别是线段DE、BC的中点求证:FG DE5、如图所示,MBC是等腰直角三角形,/ ACB = 90° AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:/ ADC =Z BDE6、如图,在锐角ABC中,已知ABC 2 C,ABC的平分线BE与AD垂直,垂足为D,若BD 4cm, 求AC的长参考答案1、思路分析:可以利用全等三角形来证明这两条线段相等,关键是要找到这两个三角形。

八年级数学上册 全等三角形(篇)(Word版 含解析)

八年级数学上册 全等三角形(篇)(Word版 含解析)

八年级数学上册 全等三角形(篇)(Word 版 含解析)一、八年级数学轴对称三角形填空题(难)1.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.【答案】15CP ≤≤【解析】【分析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E 与点B 重合时,CP 的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F 与点C 重合时,CP 的值最大,此时CP=AC ,Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E 、F 分别在线段AB 、AC 上,点P 在直线BC 上确定出点E 、F 位于什么位置时PC 有最大(小)值是解题的关键.2.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABC S =_________________.【答案】10【解析】【分析】由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果.【详解】解:∵BC CD =,∴∠CBD =∠CDB ,∵BD 平分ADC ∠,∴∠ADB =∠CDB ,∴∠CBD =∠ADB ,∴AD ∥BC ,∴∠CAD =∠ACB ,∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD =∠CDB ,∴ACB ADC ∠=∠,∴CAD ADC ∠=∠,∴CA=CD ,∴CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152DE BD ==,12BCF ACB ∠=∠, ∵12BDC ADC ∠=∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠, 在△BCF 和△CDE 中,∵BCF CDE ∠=∠,∠BFC =∠CED =90°,CB=CD ,∴△BCF ≌△CDE (AAS ),∴CF=DE =5,∴11451022ABC S AB CF =⋅=⨯⨯=. 故答案为:10.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.3.如图所示,ABC 为等边三角形,P 是ABC 内任一点,PD AB ,PE BC ∥,PF AC ∥,若ABC 的周长为12cm ,则PD PE PF ++=____cm .【答案】4【解析】【分析】先说明四边形HBDP 是平行四边形,△AHE 和△AHE 是等边三角形,然后得到一系列长度相等的线段,最后求替换求和即可.【详解】解:∵PD AB ,PE BC ∥∴四边形HBDP 是平行四边形∴PD=HB ∵ABC 为等边三角形,周长为12cm∴∠B=∠A=60°,AB=4∵PE BC ∥∴∠AHE=∠B=60°∴∠AHE=∠A=60°∴△AHE 是等边三角形∴HE=AH∵∠HFP=∠A=60°∴∠HFP=∠AHE=60°∴△AHE 是等边三角形,∴FP=PH∴PD+PE+PF=BH+(HP+PE)=BH+HE=BH+AH=AB=4cm故答案为4cm.【点睛】本题考查了平行四边形的判定和性质以及等边三角形的性质,掌握等边三角形的性质是解答本题的关键.4.如图,已知等边ABC∆的边长为8,E是中线AD上一点,以CE为一边在CE下方作等边CEF∆,连接BF并延长至点,N M为BN上一点,且5CM CN==,则MN的长为_________.【答案】6【解析】【分析】作CG⊥MN于G,证△ACE≌△BCF,求出∠CBF=∠CAE=30°,则可以得出124CG BC==,在Rt△CMG中,由勾股定理求出MG,即可得到MN的长.【详解】解:如图示:作CG⊥MN于G,∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB-∠BCE=∠ECF-∠BCE,即∠ACE=∠BCF,在△ACE与△BCF中AC BCACE BCFCE CF=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△BCF(SAS),又∵AD是三角形△ABC的中线∴∠CBF=∠CAE=30°,∴124CG BC ==, 在Rt △CMG 中,2222543MG CM CG =-=-=,∴MN=2MG=6,故答案为:6.【点睛】本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF ≌△BCF .5.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).6.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D 下列结论:①EF BE CF =+;②点O 到ABC ∆各边的距离相等;③1902BOC A ∠=+∠;④设OD m =,AE AF n +=,则AEF S mn ∆=;⑤1()2AD AB AC BC =+-.其中正确的结论是.__________.【答案】①②③⑤【解析】【分析】由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得③∠BOC=90°+12∠A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF故①正确;由角平分线的性质得出点O到△ABC各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD=m,AE+AF=n,则S△AEF=12mn,故④错误,根据HL证明△AMO≌△ADO得到AM=AD,同理可证BM=BN,CD=CN,变形即可得到⑤正确.【详解】∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣12∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+12∠A;故③正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF.∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA.∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=12AE•OM+12AF•OD=12OD•(AE+AF)=12mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故②正确;∵AO=AO,MO=DO,∴△AMO≌△ADO(HL),∴AM=AD;同理可证:BM=BN,CD=CN.∵AM+BM=AB,AD+CD=AC,BN+CN=BC,∴AD=12(AB+AC﹣BC)故⑤正确.故答案为:①②③⑤.【点睛】本题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.7.如图,在四边形ABCD 中,AB AD =,BC DC =,60A ∠=︒,点E 为AD 边上一点,连接BD .CE ,CE 与BD 交于点F ,且CE AB ∥,若8AB =,6CE =,则BC 的长为_______________.【答案】27【解析】【分析】由AB AD =,BC DC =知点A,C 都在BD 的垂直平分线上,因此,可连接AC 交BD 于点O ,易证ABD △是等边三角形,EDF 是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC 的长度,应用勾股定理可求解.【详解】解:如图,连接AC 交BD 于点O∵AB AD =,BC DC =,60A ∠=︒,∴AC 垂直平分BD ,ABD △是等边三角形∴30BAO DAO ∠=∠=︒,8AB AD BD ===,4BO OD ==∵CE AB ∥∴30BAO ACE ∠=∠=︒,60CED BAD ∠=∠=︒∴30DAO ACE ∠=∠=︒∴6AE CE ==∴2DE AD AE =-=∵60CED ADB ∠=∠=︒∴EDF 是等边三角形∴2DE EF DF ===∴4CF CE EF =-=,2OF OD DF =-=∴2223OC CF OF =-=∴2227BC BO OC =+=【点睛】本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.8.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG ,利用△BDF ≌△GDE ,转换BF=GE ,然后即可求得其最小值.【详解】以BD 为边作等边三角形BDG ,连接GE ,如图所示:∵等边三角形BDG,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD,即∠BDF=∠GDE∴△BDF≌△GDE(SAS)∴BF=GE当GE⊥AC时,GE有最小值,如图所示GE′,作DH⊥GE′∴BF=GE=CD+12DG=2+1=3故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.9.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1),若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个【答案】5【解析】【分析】分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可【详解】解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个故答案为:5【点睛】本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为_________【答案】8 5【解析】【分析】首先根据折叠可得CD=AC=6,B′C=BC=8,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=4.8,由勾股定理求出AE,得出BF 的长,即B′F的长.【详解】解:根据折叠的性质可知:DE=AE,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,B′F=BF,∴B′D=8-6=2,∠DCE+∠B′CF=∠ACE+∠BCF ,∵∠ACB=90°,∴∠ECF=45°,∴△ECF 是等腰直角三角形,∴EF=CE ,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FE=90°,∵S △ABC =12AC•BC=12AB•CE , ∴AC•BC=AB•CE , ∵根据勾股定理得:22226810ABAC BC ∴ 4.8AC BC CE AB⋅== ∴EF=4.8,22 3.6AE AC EC =-=∴B′F=BF=AB -AE-EF=10-3.6-4.8=1.6=85,故答案是:85.【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CE 、AE 是解决问题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,在等边△ABC 中,AD 是BC 边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD ≌△ACD ;②2DE=2DF=AD ;③△ADE ≌△ADF ;④4BE=4CF=AB .正确的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】由等边三角形的性质可得BD=DC ,AB=AC ,∠B=∠C=60°,利用SAS 可证明△ABD ≌△ACD ,从而可判断①正确;利用ASA 可证明△ADE ≌△ADF ,从而可判断③正确;在Rt △ADE 与Rt △ADF 中,∠EAD=∠FAD=30°,根据30度角所对的直角边等于斜边的一半可得2DE=2DF=AD ,从而可判断②正确;同理可得2BE=2CF=BD ,继而可得4BE=4CF=AB ,从而可判断④正确,由此即可得答案.【详解】∵等边△ABC 中,AD 是BC 边上的高,∴BD=DC ,AB=AC ,∠B=∠C=60°,在△ABD 与△ACD 中90AD AD ADB ADC DB DC =⎧⎪∠=∠=︒⎨⎪=⎩, ∴△ABD ≌△ACD ,故①正确;在△ADE 与△ADF 中60EAD FAD AD ADEDA FDA ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ADE ≌△ADF ,故③正确;∵在Rt △ADE 与Rt △ADF 中,∠EAD=∠FAD=30°,∴2DE=2DF=AD ,故②正确;同理2BE=2CF=BD ,∵AB=2BD ,∴4BE=4CF=AB ,故④正确,故选D .【点睛】本题考查了等边三角形的性质、含30度的直角三角形的性质、全等三角形的判定等,熟练掌握相关性质与定理是解题的关键.12.如图所示,在ABC 中,AC BC =,90ACB ︒∠=,AD 平分BAC ∠,BE AD ⊥交AC 的延长线F ,E 为垂足.则有:①AD BF =;②CF CD =;③AC CD AB +=;④BE CF =;⑤2BF BE =,其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 利用全等三角形的判定定理及其性质以及等腰三角形的三线合一的性质逐项分析即可得出答案.【详解】解:∵AC BC =,90ACB ︒∠=∴45CAB ABC ︒∠=∠=∵AD 平分BAC ∠∴22.5BAE EAF ︒∠=∠=∵90EAF F FBC F ︒∠+∠=∠+∠=∴EAF FBC ∠=∠∴ADC BFC ≅∴AD=BF ,CF=CD ,故①②正确;∵CD=CF,∴AC+CD=AC+CF=AF∵67.5F ︒∠=∵18018067.54567.5ABF F CAB ︒︒︒︒︒∠=-∠-∠=--=∴AF=AB ,即AC+CD=AB ,故③正确;由③可知,三角形ABF 是等腰三角形,∵BE AD ⊥∴12BE BF = 若BE CF =,则30CBF ∠=︒与②中结论相矛盾,故④错误;∵三角形ABF 是等腰三角形,∵BE AD ⊥∴12BE BF = ∴BF=2BE ,故⑤正确;综上所述,正确的选项有4个.故选:D .【点睛】本题考查的知识点是全等三角形的判定定理及其性质,等腰三角形的判定与性质,等腰直角三角形的性质,掌握以上知识点是解此题的关键.13.如图,等腰ABC ∆中,AB AC =,120BAC ∠=,AD BC ⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =.下列结论:①30APO DCO ∠+∠=;②APO DCO ∠=∠;③OPC ∆是等边三角形;④AB AO AP =+.其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 ①②连接OB ,根据垂直平分线性质即可求得OB=OC=OP ,即可解题;③根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;④AB 上找到Q 点使得AQ=OA ,易证△BQO≌△PAO,可得PA=BQ ,即可解题.【详解】连接OB ,∵AB AC =,AD ⊥BC ,∴AD 是BC 垂直平分线,∴OB OC OP ==,∴APO ABO ∠=∠,DBO DCO ∠=∠,∵AB=AC ,∠BAC =120∘∴30ABC ACB ∠=∠=︒∴30ABO DBO ∠+∠=︒,∴30APO DCO ∠+∠=.故①②正确;∵OBP ∆中,180BOP OPB OBP ∠=︒-∠-∠,BOC ∆中,180BOC OBC OCB ∠=︒-∠-∠,∴360POC BOP BOC OPB OBP OBC OCB∠=︒-∠-∠=∠+∠+∠+∠,∵OPB OBP∠=∠,OBC OCB∠=∠,∴260POC ABD∠=∠=︒,∵PO OC,∴OPC∆是等边三角形,故③正确;在AB上找到Q点使得AQ=OA,则AOQ∆为等边三角形,则120BQO PAO∠=∠=︒,在BQO∆和PAO∆中,BQO PAOQBO APOOB OP∠∠⎧⎪∠∠⎨⎪⎩===∴BQO PAO AAS∆∆≌(),∴PA BQ=,∵AB BQ AQ=+,∴AB AO AP=+,故④正确.故选:D.【点睛】本题主要考查全等三角形的判定与性质、线段垂直平分线的性质,本题中求证BQO PAO∆∆≌是解题的关键.14.如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且速度都为1cm/s,连接AQ、CP交于点M,下面四个结论:①BP=CM;②△ABQ≌△CAP;③∠CMQ的度数不变,始终等于60°;④当第43秒或第83秒时,△PBQ为直角三角形,正确的有几个 ( )A.1 B.2 C.3 D.4【答案】C【解析】【分析】①等边三角形ABC中,AB=BC,而AP=BQ,所以BP=CQ.②根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;③由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠CMQ=60°;④设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,因为∠B=60°,所以PB=2BQ,即4-t=2t故可得出t的值,当∠BPQ=90°时,同理可得BQ=2BP,即t=2(4-t),由此两种情况即可得出结论.【详解】①在等边△ABC中,AB=BC.∵点P、Q的速度都为1cm/s,∴AP=BQ,∴BP=CQ.只有当CM=CQ时,BP=CM.故①错误;②∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∵AB CAABQ CAP AP BQ⎧⎪∠∠⎨⎪⎩===,∴△ABQ≌△CAP(SAS).故②正确;③点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠CMQ=∠BAQ+∠MAC=∠BAC=60°.故③正确;④设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ ,即4-t=2t ,t=43, 当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP ,得t=2(4-t ),t=83, ∴当第43秒或第83秒时,△PBQ 为直角三角形. 故④正确.正确的是②③④,故选C . 【点睛】 此题是一个综合性题目,主要考查等边三角形的性质、全等三角形的判定与性质等知识.熟知等边三角形的三个内角都是60°是解答此题的关键.15.已知:如图,ABC ∆、CDE ∆都是等腰三角形,且CA CB =,CD CE =,ACB DCE α∠=∠=,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点.以下4个结论:①AD BE =;②180DOB α∠=-;③CMN ∆是等边三角形;④连OC ,则OC 平分AOE ∠.正确的是( )A .①②③B .①②④C .①③④D .①②③④【答案】B【解析】【分析】 ①根据∠ACB=∠DCE 求出∠ACD=∠BCE,证出ACD BCE ≅△△即可得出结论,故可判断; ②根据全等求出∠CAD=∠CBE,根据三角形外角定理得∠DOB=∠OBA+∠BAO,通过等角代换能够得到∠DOB=∠CBA+∠BAC,根据三角形内角和定理即可求出∠CBA+∠BAC,即可求出∠DOB ,故可判断;③根据已知条件可求出AM=BN,根据SAS 可求出CAM CBN ≅,推出CM=CN ,∠ACM=∠BCN,然后可求出∠MCN=∠ACB=α,故可判断CMN ∆的形状;④在AD 上取一点P 使得DP=EO,连接CP ,根据ACD BCE ≅△△,可求出∠CEO=∠CDP ,根据SAS 可求出 CEO CDP ≅,可得∠COE=∠CPD,CP=CO,进而得到 ∠COP=∠COE ,故可判断.【详解】①正确,理由如下:∵ACB DCE α∠=∠=,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,又∵CA=CB,CD=CE,∴ACD BCE ≅△△(SAS),∴AD=BE,故①正确;②正确,理由如下:由①知,ACD BCE ≅△△,∴∠CAD=∠CBE,∵∠DOB 为ABO 的外角,∴∠DOB=∠OBA+∠BAO=∠EBC+∠CBA+∠BAO=∠DAC+∠BAO+∠CBA=∠CBA+∠BAC, ∵∠CBA+∠BAC+∠ACB=180°,∠ACB=α,∴∠CBA+∠BAC=180°-α,即∠DOB=180°-α,故②正确;③错误,理由如下:∵点M 、N 分别是线段AD 、BE 的中点,∴AM=12AD,BN= 12BE, 又∵由①知,AD=BE,∴AM=BN,又∵∠CAD=∠CBE,CA=CB,∴CAM CBN ≅(SAS), ∴CM=CN ,∠ACM=∠BCN,∴∠MCN=∠MCB+∠CBN=∠MCB+∠ACM=∠ACB=α,∴MCN △为等腰三角形且∠MCN=α,∴MCN △不是等边三角形,故③错误;④正确,理由如下:如图所示,在AD 上取一点P 使得DP=EO,连接CP ,由①知,ACD BCE ≅△△,∴∠CEO=∠CDP ,又∵CE=CD,EO=DP ,∴CEO CDP ≅(SAS),∴∠COE=∠CPD,CP=CO,∴∠CPO=∠COP ,∴∠COP=∠COE,即OC 平分∠AOE,故④正确;故答案为:B.【点睛】本题考查了三角形全等的判定和性质,三角形内角和定理和外角定理,等边三角形的判定,根据已知条件作出正确的辅助线,找出全等三角形是解题的关键.16.如图,ABC △,AB AC =,56BAC ︒∠=,BAC ∠的平分线与AB 的垂直平分线交于O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与O 点恰好重合,则∠OEC 的度数为( )A .132︒B .130︒C .112︒D .110︒【答案】C【解析】【分析】 连接OB 、OC ,根据角平分线的定义求出∠BAO ,根据等腰三角形两底角相等求出∠ABC ,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB ,根据等边对等角可得∠ABO=∠BAO ,再求出∠OBC ,然后判断出点O 是△ABC 的外心,根据三角形外心的性质可得OB=OC ,再根据等边对等角求出∠OCB=∠OBC ,根据翻折的性质可得OE=CE ,然后根据等边对等角求出∠COE ,再利用三角形内角和定理列式计算即可得出答案.【详解】如图,连接OB 、OC ,∵56BAC ︒∠=,AO 为BAC ∠的平分线∴11562822BAO BAC ︒︒∠=∠=⨯= 又∵AB AC =,∴()()11180180566222ABC BAC ︒︒︒︒∠=-∠=-= ∵DO 是AB 的垂直平分线, ∴OA OB =.∴28ABO BAO ︒∠=∠=,∴622834OBC ABC ABO ︒︒︒∠=∠-∠=-=∵DO 是AB 的垂直平分线,AO 为BAC ∠的平分线∴点О是ABC △的外心,∴OB OC =,∴34OCB OBC ︒∠=∠=,∵将C ∠沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合∴OE CE =,∴34COE OCB ︒∠=∠=,在OCE △中,1801803434112OEC COE OCB ︒︒︒︒︒∠=-∠-∠=--=【点睛】本题主要考查了线段垂直平分线上的点到线段两端点距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,做辅助线构造出等腰三角形是解决本题的关键.17.如图,平面直角坐标系中,已知A(2,2)、B(4,0),若在x 轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】由点A、B的坐标可得到AB=22,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【详解】∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=22,如图,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即(0,0)、(4,0),∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与x轴有2个交点,即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与x轴有1个交点,即满足△ABC是等腰三角形的C点有1个;综上所述:点C在x轴上,△ABC是等腰三角形,符合条件的点C共有4个.故选D.【点睛】本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.18.如图,在△ABC中,AB=AC=8,BC=5,AB的垂直平分线交AC于D,则△BCD的周长为()A.13B.15C.18D.21【答案】A【解析】根据线段垂直平分线的性质,可由AB=AC=8,BC=5,AB的垂直平分线交AC于D,得到AD=BD,进而得出△BCD的周长为:CD+BD+BC=AC+BC=8+5=13.故选A.点睛:此题主要考查了线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等.19.如图所示,在四边ABCD中,∠BAD=120°,∠B=∠D=90°,若在BC和CD上分别找一点M,使得△AMN的周长最小,则此时∠AMN+∠ANM的度数为()A.110°B.120°C.140°D.150°【答案】B【解析】【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【详解】作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=120°,∴∠A A′M+∠A″=180°-120°=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN ,∠NAD+∠A″=∠ANM ,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°, 故选B .【点睛】此题主要考查了平面内最短路线问题求法,以及三角形的外角的性质和垂直平分线的性质等知识的综合应用,根据轴对称的性质,得出M ,N 的位置是解题的关键.20.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).A .①②B .①③C .②③D .①②③【答案】D【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠, ∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒, 又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠,∵在BDF 和CDG △中,90BFD CGD DF DGBDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴BDF ≌()CDG ASA ,∴DB CD =,∴1(180120)302DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE 平分ABC ∠,AE 平分BAC ∠,∴ABE CBE ∠=∠,1302BAE BAC ∠=∠=︒,根据三角形的外角性质,30DEB ABE BAE ABE ∠=∠+∠=∠+︒,∴DEB DBE ∠=∠,∴DB DE =,故②正确.∵DB DE DC ==,∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,∴2BDE BCE ∠=∠,故③正确,综上所述,正确结论有①②③,故选:D .点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.。

八年级数学上册第十二章全等三角形重难点归纳(带答案)

八年级数学上册第十二章全等三角形重难点归纳(带答案)

八年级数学上册第十二章全等三角形重难点归纳单选题1、如图,若△ABC≌△ADE则下列结论中不成立...的是()A.∠BAD=∠CAEB.∠BAD=∠CDEC.DA平分∠BDED.AC=DE答案:D分析:根据全等三角形的性质得出∠B=∠ADE,∠BAC=∠DAE,AB=AD,∠E=∠C,再逐个判断即可.解:A.∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC−∠DAC=∠DAE−∠DAC,∴∠BAD=∠CAE,故本选项不符合题意;B.如图,∵△ABC≌△ADE,∴∠C=∠E,∵∠AOE=∠DOC,∠E+∠CAE+∠AOE=180°,∠C+∠COD+∠CDE=180°,∴∠CAE=∠CDE,∵∠BAD=∠CAE,∴∠BAD=∠CDE,故本选项不符合题意;C.∵△ABC≌△ADE,∴∠B=∠ADE,AB=AD,∴∠B=∠BDA,∴∠BDA=∠ADE,∴AD平分∠BDE,故本选项不符合题意;D.∵△ABC≌△ADE,∴BC=DE,故本选项符合题意;故选:D.小提示:本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等,对应边相等.2、下列说法不正确的是()A.有两条边和它们的夹角对应相等的两个三角形全等B.有三个角对应相等的两个三角形全等C.有两个角及其中一角的对边对应相等的两个三角形全等D.有三条边对应相等的两个三角形全等答案:B分析:根据全等三角形的判定定理逐一判断即可得答案.A.符合判定SAS,故该选项说法正确,不符合题意,B.全等三角形的判定必须有边的参与,AAA不能判定两个三角形全等,故该选项说法不正确,符合题意,C.正确,符合判定AAS,故该选项说法正确,不符合题意,D.正确,符合判定SSS,故该选项说法正确,不符合题意,故选:B.小提示:本题考查全等三角形的判定,全等三角形常用的判定方法有:SSS、SAS、AAS、ASA、HL,注意:AAS、AAA不能判定两个三角形全等,当利用SAS判定两个三角形全等时,角必须是两边的夹角;熟练掌握全等三角形的判定定理是解题关键.3、小明同学只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.在角的内部,到角的两边距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形的三条高交于一点D.三角形三边的垂直平分线交于一点答案:A分析:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,因为是两把完全相同的长方形直尺,可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB如图所示:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.小提示:本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.4、如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE//AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9答案:A分析:根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明△BDF≌△DEC,求出BF=CD=3,故A错误.解:在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DF⊥AB,∴CD=DF=3,故B正确;∵DE=5,∴CE=4,∵DE//AB,∴∠ADE=∠DAF,∵∠CAD=∠BAD,∴∠CAD=∠ADE,∴AE=DE=5,故C正确;∴AC=AE+CE=9,故D正确;∵∠B=∠CDE,∠BFD=∠C=90°,CD=DF,∴△BDF≌△DEC,∴BF=CD=3,故A错误;故选:A.小提示:此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键.5、如图,锐角△ABC的两条高BD、CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°答案:B分析:由BD、CE是高,可得∠BDC=∠CEB=90°,可求∠BCD=70°,可证Rt△BEC≌Rt△CDB(HL),得出∠BCD =∠CBE=70°即可.解:∵BD、CE是高,∠CBD=20°,∴∠BDC=∠CEB=90°,∴∠BCD=180°﹣90°﹣20°=70°,在Rt△BEC和Rt△CDB中,,{CE=BDBC=CB∴Rt△BEC≌Rt△CDB(HL),∴∠BCD=∠CBE=70°,∴∠A=180°﹣70°﹣70°=40°.故选:B.小提示:本题考查三角形高的定义,三角形全等判定与性质,三角形内角和公式,掌握三角形高的定义,三角形全等判定与性质,三角形内角和公式是解题关键.6、如图,为测量桃李湖两端AB的距离,南开中学某地理课外实践小组在桃李湖旁的开阔地上选了一点C,测得∠ACB的度数,在AC的另一侧测得∠ACD=∠ACB,CD=CB,再测得AD的长,就是AB的长.那么判定△ABC≌△ADC的理由是()A.SASB.SSSC.ASAD.AAS答案:A分析:已知条件是∠ACD=∠ACB,CD=CB,AC=AC,据此作出选择.解:在△ADC与△ABC中,{CD=CB∠ACD=∠ACBAC=AC.∴△ADC≌△ABC(SAS).故选:A.小提示:此题考查了全等三角形的应用,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF,下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个答案:C分析:①证明△BAD≌△CAE,再利用全等三角形的性质即可判断;②由△BAD≌△CAE可得∠ABF=∠ACF,再由∠ABF+∠BGA=90°、∠BGA=∠CGF证得∠BFC=90°即可判定;③分别过A作AM⊥BD、AN⊥CE,根据全等三角形面积相等和BD=CE,证得AM=AN,即AF平分∠BFE,即可判定;④由AF平分∠BFE结合BF⊥CF即可判定.解:∵∠BAC=∠EAD∴∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE在△BAD和△CAE中AB=AC, ∠BAD=∠CAE,AD=AE∴△BAD≌△CAE∴BD=CE故①正确;∵△BAD≌△CAE∴∠ABF=∠ACF∵∠ABF+∠BGA=90°、∠BGA=∠CGF∴∠ACF+∠BGA=90°,∴∠BFC=90°故②正确;分别过A作AM⊥BD、AN⊥CE垂足分别为M、N ∵△BAD≌△CAE∴S△BAD=S△CAE,∴12BD⋅AM=12CE⋅AN∵BD=CE∴AM=AN∴AF平分∠BFE,无法证明AF平分∠CAD.故③错误;∵AF平分∠BFE,BF⊥CF∴∠AFE=45°故④正确.故答案为C.小提示:本题考查了全等三角形的判定与性质、角平分线的判定与性质以及角的和差等知识,其中正确应用角平分线定理是解答本题的关键.8、如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED答案:B分析:根据全等三角形的性质即可得到结论.解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.故A,C,D选项错误,B选项正确,故选:B.小提示:本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.9、如图,在△ABC中,∠C=90°,以点B为圆心,任意长为半径画弧,分别交AB、BC于点M、N.分别以点M、MN的长度为半径画弧,两弧相交于点P,过点P作线段BD,交AC于点D,过点D作N为圆心,以大于12∠ABC;③BC=BE;④AE=BE中,一定正确的是()DE⊥AB于点E,则下列结论①CD=ED;②∠ABD=12A.①②③B.①②③④C.②④D.②③④答案:A分析:由作法可知BD是∠ABC的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL可得Rt△BDC≌Rt△BDE,故BC=BE,③正确,解:由作法可知BD是∠ABC的角平分线,故②正确,∵∠C=90°,∴DC⊥BC,又DE⊥AB,BD是∠ABC的角平分线,∴CD=ED,故①正确,在Rt△BCD和Rt△BED中,,{DE=DCBD=BD∴△BCD≌△BED,∴BC=BE,故③正确.故选A.小提示:本题考查了角平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键.10、判断两个直角三角形全等的方法不正确...的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等答案:D分析:根据直角三角形全等的判定条件逐一判断即可.解:A、两条直角边对应相等,可以利用SAS证明两个直角三角形全等,说法正确,不符合题意;B、斜边和一锐角对应相等,可以利用AAS证明两个直角三角形全等,说法正确,不符合题意;C、斜边和一条直角边对应相等,可以利用HL证明两个直角三角形全等,说法正确,不符合题意;D、两个锐角对应相等,不可以利用AAA证明两个直角三角形全等,说法错误,符合题意;故选D.小提示:本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.填空题11、如图,AC平分∠BAD,∠B+∠D=180°,CE⊥AD于点E,AD=18cm,AB=11cm,那么DE的长度为_____________________cm.答案:3.5分析:过C点作CF⊥AB于F,如图,根据角平分线的性质得到CF=CE,再证明Rt△ACE≌Rt△ACF得到AF=AE,证明△CBF≌△CDE得到BF=DE,然后利用等线段代换,利用AF=AE得到11+DE=18-DE,从而可求出DE的长.解:过C点作CF⊥AB于F,如图,∵AC平分∠BAD,CE⊥AD,CF⊥AB,∴CF=CE,在Rt△ACE和Rt△ACF中,,{AC=ACCF=CE∴Rt△ACE≌Rt△ACF(HL),∴AF=AE,∵∠ABC+∠D=180°,∠ABC+∠CBF=180°,∴∠CBF=∠D,在△CBF和△CDE中,{∠CBF=∠D∠CFB=∠CEDCF=CE,∴△CBF≌△CDE(AAS),∴BF=DE,∵AF=AE,∴AB+BF=AD-DE,即11+DE=18-DE,∴DE=3.5cm.所以答案是:3.5.小提示:本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了全等三角形的判定与性质.12、如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件____,使△ABC≌△ADC.答案:∠D=∠B(答案不唯一)分析:本题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.解:添加的条件为∠D=∠B,理由是:在△ABC和△ADC中,{∠BAC =∠DAC∠D =∠B AC =AC,∴△ABC ≌△ADC (AAS ),所以答案是:∠D =∠B .小提示:本题主要考查全等三角形的判定定理,能熟记全等三角形的判定定理是解决本题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .13、如图,OP 平分∠MON,PE ⊥OM 于点E ,PF ⊥ON 于点F ,PE =PF,OA =OB ,则图中有__________对全等三角形.答案:3分析:根据角平分线的性质得到PE =PF ,根据全等三角形的判定定理判断即可.解:如图,OP 平分∠MON,PE ⊥OM 于点E ,PF ⊥ON 于点F ,PE =PF ,∴∠1=∠2,在△AOP 和△BOP 中,{OA =OB ,∠1=∠2,OP =OP ,∴△AOP ≌△BOP (SAS ),∴AP =BP ,在Rt △EOP 和Rt △FOP 中,{PE =PF ,OP =OP,∴Rt △EOP ≌Rt △FOP (HL ),在Rt △AEP 和Rt △BFP 中,{PA =PB,PE =PF,∴Rt △AEP ≌Rt △BFP (HL ),∴图中有3对全等三角形.所以答案是:3.小提示:本题考查的是角平分线的性质、全等三角形的判定,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14、如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是________.答案:5分析:过D 作DE ⊥AB 于E ,由△DAE ≌△DAC 得到DE 的长,进而解答;解:如图,过D 作DE ⊥AB 于E ,△DAE 和△DAC 中,AD 平分∠BAC ,则∠DAE =∠DAC ,∠DEA =∠DCA =90°,DA =DA ,∴△DAE ≌△DAC (AAS ),∴DE =DC =2,∴△ABD 的面积=12×AB ×DE =12×5×2=5,所以答案是:5;小提示:本题考查了角平分线的概念,全等三角形的判定(AAS )和性质;熟练掌握全等三角形的判定和性质是解题的关键.15、如图,在等腰Rt △ABC 中,AC =BC ,D 为△ABC 内一点,且∠BCD =∠CAD ,若CD =4,则△BCD 的面积为________.答案:8分析:由线段CD 的长求ΔBCD 的面积,故过B 作CD 的垂线,则由三角形面积公式可知:S ΔBCD =12×CD ×BE ,再由题中的∠BCD =∠CAD 和等腰直角三角形ABC ,即可求证ΔACD ≌ΔCBE ,最后由CD =BE =4即可求解. 解:过点B 作CD 的垂线,交CD 的延长线于点E∵∠ACB =90°∴∠BCD +∠ACD =90°∵∠BCD =∠CAD∴∠ACD +∠CAD =90°∴∠ADC =90°∵BE ⊥CD∴∠E =90°∴∠BCD +∠CBE =90°∴∠ACD =∠CBE∵AC =CB∴ΔACD ≌ΔCBE∴CD =BE =4∴SΔBCD=12×CD×BE=12×4×4=8故答案是:8.小提示:本题主要考察全等三角形的证明、辅助线的画法、等腰三角形的性质和三角形面积公式,属于中档难度的几何证明题.解题的关键是由三角形面积公式画出合适的辅助线.解答题16、已知:等腰Rt△ABC和等腰Rt△ADE中,AB=AC,AE=AD,∠BAC=∠EAD=90°.(1)如图1,延长DE交BC于点F,若∠BAE=68°,则∠DFC的度数为;(2)如图2,连接EC、BD,延长EA交BD于点M,若∠AEC=90°,求证:点M为BD中点;(3)如图3,连接EC、BD,点G是CE的中点,连接AG,交BD于点H,AG=9,HG=5,直接写出△AEC的面积.答案:(1)68°;(2)见解析;(3)36分析:(1)由已知条件可得∠D=∠C=45°,对顶角∠AQD=∠CQF,则∠DAC=∠DFC,根据∠DAE=∠CAB即可的∠DFC=∠BAE;(2)过点B作ME的垂线交EM的延长线于N,证明△AEC≌△BNA,得AE=BN,进而可得AD=NB,再证明△DAM≌△BNM即可得证点M为BD中点;(3)延长AG至K,使得GK=AG=9,连接CK,设AE交BC于点P,先证明△ABE≌△ACD,进而证明△AEG≌△KCG,根据角度的计算以及三角形内角和定理求得∠BAD=∠KCA,进而证明△ABD≌△CAK,再根据∠CAG=∠ABD,∠BAC=90°,证明AH⊥BD,根据已知条件求得S△ABD最后证明S△AEC=S△ABD即可.(1)设DF交AC于Q,如图1,∵△ABC是等腰Rt△ABC和△ADE是等腰Rt△ADE∴∠D=∠C=45°∵∠AQD=∠CQF∵∠DAQ=180−∠D−∠AQD,∠QFC=180−∠C−∠CQF∴∠DAQ=∠QFC∵∠BAC=∠EAD=90°即∠BAE+∠EAQ=∠EAQ+∠QAD∴∠BAE=∠QAD∴∠DFC=∠BAE∵∠BAE=68°∴∠DFC=68°故答案为68°(2)如图2,过点B作ME的垂线交EM的延长线于N,∴∠N=90°∵∠AEC=90°∴∠N=∠AEC∵∠BAC=90°∴∠EAC+∠NAB=90°∵∠NAC+∠ACE=90°∴∠NAB=∠ECA∵△ABC是等腰Rt△ABC和△ADE是等腰Rt△ADE∴AB=AC,AD=AE 又∵AC=AB∴△AEC≌△BNA∴NB=AE∵AE=AD∴AD=NB∵∠DAE=90°∴∠DAM=90°∴∠DAM=∠N又∵∠DMA=∠BMN∴△DAM≌△BNM∴DM=BM即M是BD的中点(3)延长AG至K,使得GK=AG=9,连接CK,设AE交BC于点P,如图∵∠BAC=∠EAD=90°即∠BAE+∠EAC=∠EAC+∠CAD∴∠BAE=∠CAD∵△ABC是等腰Rt△ABC和△ADE是等腰Rt△ADE∴AB=AC,AE=AD在△ABE与△ACD中,{AE=AD∠BAE=∠CAD AB=AC∴△ABE≌△ACD(SAS)∴S△ABE=S△ABD,BE=CD∵G点是EC的中点∴EG=GC∵∠AGE=∠KGC,AG=GK∴△AGE≌△KGC(SAS)∴AE=CK,∠AEG=∠KCG∴AE=KC=AD,∠ACK=∠ACB+∠BCE+∠KCG=45°+∠AEC+∠BCE=45°+∠ABC+∠BAP=90°+∠BAE=∠BAD∴△AKC≌△ABD(SAS)∴BD=AK=18,∠CAK=∠ABD∵∠BAG+∠CAG=90°∴∠ABD+∠BAG=90°即∠AHB=90°∵AG=9,HG=5∴AH=AG−HG=9−5=4∴S△ABD=12BD⋅AH=12×18×4=36∵S△AEC=S△AEG+S△AGC=S△GCK+S△AGC=S△ACK=S△ABD=36∴S△AEC=36小提示:本题考查了三角形全等的性质与判定,等腰直角三角形的性质,三角形内角和定理,三角形外角性质,构造辅助线是解题的关键.17、如图,在四边形ABCD中,点E为对角线BD上一点,∠A=∠BEC,∠ABD=∠BCE,且AD=BE.(1)证明:①△ABD≅△ECB;②AD≌BC;(2)若BC=15,AD=6,请求出DE的长度.答案:(1)①证明见解析;②证明见解析(2)9分析:(1)①由ASA证明全等即可,②由①可证明;(2)由△ABD≌△ECB可证DE=BD-BE=15-6=9.(1)解:证明:①在△ABD和△ECB中,{∠A=∠BEC∠ABD=∠BCEAD=BE,∴△ABD≌△ECB(ASA),②由①得:△ABD≌△ECB∴∠ADB=∠EBC,∴AD∥BC;(2)∵△ABD≌△ECB,BC=15,AD=6,∴BD=BC=15,BE=AD=6,∴DE=BD-BE=15-6=9.小提示:本题考查了全等三角形的判定与性质、平行线的判定等知识,证明△ABD≌△ECB是解题的关键.18、如图1,已知ΔABC中,∠ACB=90°,AC=BC,BE、AD分别与过点C的直线垂直,且垂足分别为E,D.(1)猜想线段AD、DE、BE三者之间的数量关系,并给予证明.(2)如图2,当过点C的直线绕点C旋转到ΔABC的内部,其他条件不变,如图2所示,①线段AD、DE、BE三者之间的数量关系是否发生改变?若改变,请直接写出三者之间的数量关系,若不改变,请说明理由;②若AD=2.8,DE=1.5时,求BE的长.答案:(1)DE=AD+BE,证明见解析(2)①发生改变,DE=AD−BE;②1.3分析:(1)证明ΔACD≅ΔCBE,可得AD=CE,CD=BE,即可求解;(2)①证明ΔACD ≅ΔCBE ,可得AD =CE ,CD =BE , 即可求解;②由①可得DE =AD −BE ,从而得到BE =AD −DE ,即可求解.(1)解:DE =AD +BE , 理由如下:∵BE 、AD 分别与过点C 的直线垂直,∴∠BEC =∠ADC =90°,∴∠ACD +∠CAD =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠CAD =∠BCE ,在ΔACD 和ΔCBE 中,{∠ADC =∠BEC∠CAD =∠BCE AC =BC,∴ΔACD ≅ΔCBE (AAS ),∴AD =CE ,CD =BE ,∵ DE =EC +CD ,∴DE =AD +BE ;(2)解:①发生改变.∵BE 、AD 分别与过点C 的直线垂直,∴∠BEC =∠ADC =90°,∴∠ACD +∠CAD =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠CAD =∠BCE ,在ΔACD 和ΔCBE 中,{∠ADC =∠BEC∠CAD =∠BCE AC =BC,∴ΔACD≅ΔCBE(AAS),∴AD=CE,CD=BE,∵DE=CE-CD,∴DE=AD−BE;②由①知:DE=AD−BE,∴BE=AD−DE=2.8−1.5=1.3,∴BE的长为1.3.小提示:本题主要考查了全等三角形的判定和性质、等角的余角相等,熟练掌握全等三角形的判定和性质是解题的关键.。

八年级全等三角形专题练习(解析版)

八年级全等三角形专题练习(解析版)

八年级全等三角形专题练习(解析版)一、八年级数学轴对称三角形填空题(难)1.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.的边长为8,E是中线AD上一点,以CE为一边在CE下方作2.如图,已知等边ABC等边CEF ∆,连接BF 并延长至点,N M 为BN 上一点,且5CM CN ==,则MN 的长为_________.【答案】6【解析】【分析】作CG ⊥MN 于G ,证△ACE ≌△BCF ,求出∠CBF=∠CAE=30°,则可以得出124CG BC ==,在Rt △CMG 中,由勾股定理求出MG ,即可得到MN 的长.【详解】解:如图示:作CG ⊥MN 于G ,∵△ABC 和△CEF 是等边三角形,∴AC=BC ,CE=CF ,∠ACB=∠ECF=60°,∴∠ACB-∠BCE=∠ECF-∠BCE ,即∠ACE=∠BCF ,在△ACE 与△BCF 中AC BC ACE BCFCE CF =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△BCF (SAS ),又∵AD 是三角形△ABC 的中线∴∠CBF=∠CAE=30°,∴124CG BC ==, 在Rt △CMG 中,2222543MG CM CG =-=-,∴MN=2MG=6,故答案为:6.【点睛】本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF ≌△BCF .3.如图,点P 是AOB 内任意一点,5OP cm =,点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,连接CD 交OA 于点E ,交OB 于点F ,当PEF 的周长是5cm 时,AOB ∠的度数是______度.【答案】30【解析】【分析】根据轴对称得出OA 为PC 的垂直平分线,OB 是PD 的垂直平分线,根据线段垂直平分线性质得出12COA AOP COP ,12POB DOB POD ,PE=CE ,OP=OC=5cm ,PF=FD ,OP=OD=5cm ,求出△COD 是等边三角形,即可得出答案.【详解】解:如图示:连接OC ,OD ,∵点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,∴OA 为PC 的垂直平分线,OB 是PD 的垂直平分线, ∵OP=5cm ,∴12COA AOP COP ,12POB DOB POD ,PE=CE ,OP=OC=5cm ,PF=FD ,OP=OD=5cm ,∵△PEF 的周长是5cm ,∴PE+EF+PF=CE+EF+FD=CD=5cm ,∴CD=OD=OD=5cm ,∴△OCD 是等边三角形,∴∠COD=60°, ∴11122230AOB AOP BOP COP DOP COD ,故答案为:30.【点睛】本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判定,能求出△COD 是等边三角形是解此题的关键.4.如图,在△ABC 中,P ,Q 分别是BC ,AC 上的点,PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若AQ PQ =,PR PS =,那么下面四个结论:①AS AR =;②QP //AR ;③△BRP ≌△QSP ;④BRQS ,其中一定正确的是(填写编号)_____________.【答案】①,②【解析】【分析】连接AP ,根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS ,根据等腰三角形性质推出∠QAP=∠QPA ,推出∠QPA=∠BAP ,根据平行线判定推出QP ∥AB 即可;在Rt △BRP 和Rt △QSP 中,只有PR=PS .无法判断△BRP ≌△QSP 也无法证明BRQS .【详解】解:连接AP①∵PR ⊥AB ,PS ⊥AC ,PR=PS ,∴点P 在∠BAC 的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP ,在Rt △ARP 和Rt △ASP 中,由勾股定理得:AR 2=AP 2-PR 2,AS 2=AP 2-PS 2,∵AP=AP ,PR=PS ,∴AR=AS ,∴①正确;②∵AQ=QP ,∴∠QAP=∠QPA ,∵∠QAP=∠BAP ,∴∠QPA=∠BAP ,∴QP ∥AR ,∴②正确;③在Rt △BRP 和Rt △QSP 中,只有PR=PS ,不满足三角形全等的条件,故③④错误;故答案为:①②.【点睛】本题主要考查了角平分线的性质与勾股定理的应用,熟练掌握根据垂直与相等得出点在角平分线上是解题的关键.5.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC 即可.【详解】∵CD 平分∠ACE ,∴∠ACE=2∠ACD=2∠ECD ,∴∠ECB=∠ACB -∠ACE=∠ACB -2∠ACD ,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB-2∠ACD=100°,∵AB=AC,∴∠ABC=∠ACB,∴2∠ACB-2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.6.如图,△ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点,如果点P在线段BC 上以v厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动。

人教版八年级数学上册全等三角形典型6类难题题型归类

人教版八年级数学上册全等三角形典型6类难题题型归类

人教版八年级数学上册 全等三角形 典型6类难题题型归类一、角平分线型角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线 。

(1)构造全等三角形1. 如图,在Δ ABC 中, D 是边 BC 上一点, AD 平分∠ BAC ,在 AB 上截取 AE=AC ,连结 DE ,已知 DE=2cm , BD=3cm ,求线段 BC 的长。

2. 已知:如图所示, BD 为∠ ABC 的平分线, AB=BC ,点 P 在 BD 上, PM ⊥ AD 于 M , •PN ⊥ CD 于 N ,判断 PM 与 PN 的关系.PD A C M N思路:截取构造全等三角形思路:构造全等三角形3. 已知:如图 E 在△ ABC 的边 AC 上,且∠ AEB= ∠ ABC 。

(1) 求证:∠ ABE= ∠ C ;(2) 若∠ BAE 的平分线 AF 交 BE 于 F , FD ∥ BC 交 AC 于 D ,设 AB=5 , AC=8 ,求 DC 的长。

4、 如图所示,已知∠ 1= ∠ 2 , EF ⊥ AD 于 P ,交 BC 延长线于 M ,求证: 2 ∠ M= (∠ ACB- ∠ B )5、 如图,在△ ABC 中,∠ ABC=60 °, AD 、 CE 分别平分∠ BAC 、∠ ACB , 求证: AC=AE+CD .思路: 外角的性质+代数思想 思路:(1)三角形内角和+等量代换 (2)构造全等三角形6、如下图,已知在四边形ABCD 中,BC >AB,AD=CD,BD 平分∠ABC.求证:∠A +∠C=180°.(可转化为证明一个角是另一个角的邻补角)7、如下图,已知在△ABC 是等腰直角三角形,∠BAC=90°,AB=AC ,BE 平分∠ABC ,CE ⊥BE.求证:CE=1/2BD.思路:1. 构造全等(角平分线添加辅助线)2. 内角平分线形成的∠A0C=思路:构造全等(角平分线添加辅助线)(1)向两边作垂线(2)翻折(截取)构造全等 思路:构造全等(角平分线添加辅助线)(3)“角平分线+垂直”构造等腰三角形二、中点型由中点应产生以下联想:1、利用中心对称图形构造 8 字型全等三角形2 、想到中线,倍长中线1、如图 , 已知 : AD 是 BC 上的中线 , 且 DF=DE .求证 :BE ∥ CF .思路:构造 8 字型全等三角形2 、如图,△ ABC 中, D 是 BC 的中点, DE ⊥ DF ,试判断 BE+CF 与 EF 的大小关系,并证明你的结论。

八年级数学上册第十二章全等三角形考点题型与解题方法(带答案)

八年级数学上册第十二章全等三角形考点题型与解题方法(带答案)

八年级数学上册第十二章全等三角形考点题型与解题方法单选题1、如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.7B.3.5C.3D.2答案:C分析:利用全等三角形的性质求解即可.解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故选C.小提示:本题主要考查了全等三角形的性质,熟知全等三角形对应边相等是解题的关键.2、如图,AD平分∠BAC,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF.则下列结论中:①AD是△ABC的高;②AD是△ABC的中线;③ED=FD;④AB=AE+BF.其中正确的个数有()A.4个B.3个C.2个D.1个答案:A分析:过点D作DG⊥AB于点G,由角平分线的定义及平行线的性质可得∠ADB=90°,然后可证△ADC≌△ADB,△DEC≌△DFB,进而问题可求解.解:∵AD平分∠BAC,BC平分∠ABF,∴∠CAD=∠BAD=12∠CAB,∠ABC=∠FBC=12∠ABF,∵BF∥AC,∴∠CAB+∠ABF=180°,∴∠DAB+∠ABD=90°,即∠ADB=90°,∴AD⊥BC,即AD是△ABC的高,故①正确;∵∠ADB=∠ADC=90°,AD=AD,∴△ADC≌△ADB(ASA),∴DB=DC,即AD是△ABC的中线,故②正确;∵BF∥AC,∴∠CED=∠F,∵∠CDE=∠BDF,∴△DEC≌△DFB(AAS),∴ED=FD,故③正确;过点D作DG⊥AB于点G,如图所示:∵AD平分∠BAC,BC平分∠ABF,∠AED=∠F=90°,∴DE=DG=DF,∵AD=AD,∴△AED≌△AGD(HL),∴AE=AG,同理可知BF=BG,∵AB=AG+BG,∴AB=AE+BF,故④正确;综上所述:正确的个数有4个;故选A.小提示:本题主要考查全等三角形的性质与判定、平行线的性质及角平分线的性质,熟练掌握全等三角形的性质与判定、平行线的性质及角平分线的性质是解题的关键.3、墨墨想在纸上作∠A1O1B1等于已知的∠AOB,步骤有:①画射线O1M;②以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;③以点A1为圆心,以CD为半径画弧,与已画的弧交于点B1,作射线O1B1;④以点O1为圆心,以OC为半径画弧,交O1M于点A1.在上述的步骤中,作∠A1O1B1的正确顺序应为()A.①④②③B.②③④①C.①②④③D.①③④②答案:C分析:根据作一个角等于已知角的方法,选择合适的顺序即可.解:根据作一个角等于已知角的步骤可知,正确的顺序是①②④③故选C.小提示:此题考查了尺规作图-作一个角等于已知角,熟练掌握其作法步骤过程是解题的关键.4、如图,已知AB=AD,BC=DE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,则∠EGF的度数为()A.120°B.135°C.115°D.125°答案:C分析:由已知可得△ABC≌△ADE,故有∠BAC=∠DAE,由∠EAB=120°及∠CAD=10°可求得∠AFB的度数,进而得∠GFD的度数,在△FGD中,由三角形的外角等于不相邻的两个内角的和即可求得∠EGF的度数.在△ABC和△ADE中{AB=AD ∠B=∠D BC=DE∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE∵∠EAB=∠BAC+∠DAE+∠CAD=120°∴∠BAC=∠DAE=12×(120°−10°)=55°∴∠BAF=∠BAC+∠CAD=65°∴在△AFB中,∠AFB=180°-∠B-∠BAF=90°∴∠GFD=90°在△FGD中,∠EGF=∠D+∠GFD=115°故选:C小提示:本题考查了三角形全等的判定和性质、三角形内角和定理,关键求得∠BAC的度数.5、如图,四边形ABCD中,AC、BD为对角线,且AC=AB,∠ACD=∠ABD,AE⊥BD于点E,若BD=6,CD=4.则DE的长度为()A.2B.1C.1.4D.1.6答案:B分析:过点A作AF⊥CD交CD的延长线于点F,根据AAS证明△AFC≌△AEB,得到AF=AE,CF=BE,再根据HL 证明Rt△AFD≌Rt△AED,得到DF=DE,最后根据线段的和差即可求解.解:过点A作AF⊥CD交CD的延长线于点F,∴∠AFC=90°,∵AE⊥BD,∴∠AFC=∠AED=∠AEB=90°,在△AFC和△AEB中,{∠AFC=AEB∠ACF=∠ABEAC=AB,∴△AFC≌△AEB(AAS),∴AF=AE,CF=BE,在Rt△AFD和Rt△AED中,{AF=AEAD=AD,∴Rt△AFD≌Rt△AED(HL),∴DF=DE,∵CF=CD+DF,BE=BD-DE,CF=BE,∴CD+DF=BD-DE,∴2DE=BD-CD,∵BD=6,CD=4,∴2DE=2,∴DE=1,故选:B.小提示:此题考查了全等三角形的判定与性质,根据AAS证明△AFC≌△AEB及根据HL证明Rt△AFD≌Rt△AED是解题的关键.6、如图,在△ADE和△ABC中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE,垂足为F,DE交CB的延长线于点G,连接AG.四边形DGBA的面积为12,AF=4,则FG的长是()A.2B.2.5C.3D.103答案:C分析:过点A作AH⊥BC于H,证△ABC≌△AED,得AF=AH,再证Rt△AFG≌Rt△AHG(HL),同理Rt△ADF≌Rt△ABH,得S四边形DGBA=S四边形AFGH=12,然后求得Rt△AFG的面积=6,进而得到FG的长.如图所示,过点A作AH⊥BC于H,在△ABC与△ADE中,{AC=AE∠C=∠E BC=DE,∴△ABC≌△ADE(SAS),∴AD=AB,S△ABC=S△AED,又∵AF⊥DE,∴12×DE×AF=12×BC×AH,∴AF=AH,∵AF⊥DE,AH⊥BC,∴∠AFG=∠AHG=90°,在Rt△AFG和Rt△AHG中,,{AG=AGAF=AH∴Rt△AFG≌Rt△AHG(HL),同理:Rt△ADF≌Rt△ABH(HL),∴S四边形DGBA=S四边形AFGH=12,∵Rt△AFG≌Rt△AHG,∴SRt△AFG=6,∵AF=4,∴1×FG×4=6,2解得:FG=3.故选:C.小提示:本题考查全等三角形的判定与性质,综合运用各知识点是解题的基础,作出合适的辅助线是解此题的关键.7、如图,已知AB=AD,AE=AC=BC,∠1=∠2,∠C=40°,则∠ADE的度数为()A.40°B.65°C.70°D.75°答案:C分析:首先根据已知条件证明△ABC≅△ADE,再利用等腰三角形求角度即可.解:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,在△ABC与△ADE中,∵{AB=AD∠BAC=∠DAEAC=AE,∴△ABC≅△ADE(SAS),∴∠C=∠E=40°,AE=BC=DE,∴∠ADE=∠EAD=12(180°−∠E)=12(180°−40°)=70°,故选:C.小提示:本题主要考查三角形全等的证明,利用已知条件进行证明是解题的关键.8、小明不慎将一块三角形的玻璃摔碎成如图的四块,你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块答案:B分析:根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.小提示:本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.9、如图,一块玻璃被打碎成三块,如果要去玻璃店配一块完全一样的玻璃,那么最合理的办法是()A.带①去B.带②去C.带③去D.带①②③去答案:C分析:根据三角形的定义,不在同一平面的三条线段,首尾相连组成的图形是三角形,即可求出答案.解:A选项的①上下两边可以无限延伸,无法确定③的大小,不符合题意;B选项的②上下两边可以无限延伸,能确定①的大小,无法确定③的大小,不符合题意;C选项的③上下两边可以延伸,能确定①、②的大小,符合题意,故选C;D选项不符合题意,只需带③即可配一块完全相同的玻璃.故选:C.小提示:本题主要考查三角形的定义,理解和识记三角形的定义,即可求出答案.10、如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB,若AB=4,CF=3,则BD的长是( )A.0.5B.1C.1.5D.2答案:B分析:根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出ΔADE≅ΔCFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.∵CF//AB,∴∠A=∠FCE,∠ADE=∠F,在ΔADE和ΔFCE中{∠A=∠FCE∠ADE=∠FDE=FE,∴ΔADE≅ΔCFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB−AD=4−3=1.故选B.小提示:本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定ΔADE≅ΔFCE是解此题的关键.填空题11、如图所示,△ABC与△ADE全等,则∠B的对应角是_________,AC的对应边是_________.答案:∠E AD首先确定三角形的对应顶点,再将对应顶点放在对应位置写出两个三角形的全等关系,即△ABC≌△AED,然后按照对应关系即可写出对应边和对应角,∠B的对应角为∠E,AC的对应边为AD.∠E AD12、如图,在Rt△ABC中,∠C=90°,AC=AE,DE⊥AB,若∠BDE=46°,则∠DAE=_______.答案:23°##23度分析:根据题目所给条件,可以得到∠CDE的度数,再根据题目所给条件以及角平分线的判定定理,可以得到DA是∠CDE的角平分线,即可得到∠ADE,再根据△ADE是直角三角形,从而得到最后的答案.解:∵∠BDE=46°,∴∠CDE=180°−∠BDE=180°−46°=134°,∵DE⊥AB,∴∠DEA=90°,又∵AC=AE,∠DEA=90°,∠C=90°,∴DA是∠CDE的角平分线,∴∠ADE=12∠CDE=12×134°=67°,∴在Rt△ADE中,∠DAE=180°−∠DEA−∠ADE=180°−∠90°−67°=23°,所以答案是:23°.小提示:本题考查的是三角形的内角和定理,角平分线的判定定理与性质,解答本题的关键是熟练掌握角平分线的性质和判定定理.13、如图所示的图案是由全等的图形拼成的,其中AD=0.5,BC=1,则AF=______.答案:6分析:由图形知,所示的图案是由梯形ABCD和七个与它全等的梯形拼接而成,根据全等则重合的性质求解即可.解:由题可知,图中有8个全等的梯形,所以AF=4AD+4BC=4×0.5+4×1=6.所以答案是:6.小提示:考查了全等图形的性质,本题利用了全等形图形一定重合的性质求解,做题的关键是找准相互重合的对应边.14、如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以v cm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为_____时,△ABP与△PCQ全等.答案:2或83分析:可分两种情况:①ΔABP≅ΔPCQ得到BP=CQ,AB=PC,②ΔABP≅ΔQCP得到BA=CQ,PB= PC,然后分别计算出t的值,进而得到v的值.解:①当BP=CQ,AB=PC时,ΔABP≅ΔPCQ,∵AB=8cm,∴PC=8cm,∴BP=12−8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②当BA=CQ,PB=PC时,ΔABP≅ΔQCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,,解得:v=83时,ΔABP与ΔPQC全等,综上所述,当v=2或83.所以答案是:2或83小提示:主要考查了全等三角形的性质,矩形的性质,解本题的关键是熟练掌握全等三角形的判定与性质.15、如图,AD是△ABC的角平分线,若△ABC的面积是48,且AC=16,AB=8,则点D到AB的距离是______.答案:4分析:过D点作DE⊥AB于E,DF⊥AC于F,如图,根据角平分线的性质得到SΔABD+SΔACD=SΔABC,再利用三角形面积公式得到12×8×DE+12×DE×16=48,然后求出DE即可.解:过D点作DE⊥AB于E,DF⊥AC于F,如图,∵AD是ΔABC的角平分线,∴DE=DF,∵SΔABD+SΔACD=SΔABC,∴12AB⋅DE+12AC⋅DF=48,即12×8×DE+12×DE×16=48,∴DE=4,即点D到AB的距离为4.所以答案是:4.小提示:本题考查了角平分线的性质,解题的关键是掌握角的平分线上的点到角的两边的距离相等,也考查了三角形面积.解答题16、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN 绕点C 旋转到图①的位置时,求证:DE =AD +BE ;(2)当直线MN 绕点C 旋转到图②的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.(3)当直线MN 绕点C 旋转到图③的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.答案:(1)证明见解析(2)AD =BE +DE ,证明见解析(3)BE =AD +DE ,证明见解析分析:(1)先用AAS 证明△ADC ≌△CEB ,得AD =CE ,BE =CD ,进而得出DE =BE +CD ;(2)先证明△ACD ≌△CBE (AAS ),可得AD =CE ,CD =BE ,进而得出AD =CD +DE =BE +DE ;(3)证明过程同(2),进而可得BE =AD +DE .(1)证明:由题意知,∠BCA =90°,∠ADC =∠BEC =90°,∴∠ACD +∠BCE =90°,∠BCE +CBE =90°,∴∠ACD =∠CBE ,在△ADC 和△CEB 中,∵{∠ADC =∠CEB =90°∠ACD =∠CBE AC =BC,∴△ADC ≌△CEB (AAS ),∴AD =CE ,BE =CD ,∴DE =DC +CE =BE +AD .(2)解:AD=BE+DE.证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∴∠ACD+∠BCD=90°,∠BCD+∠CBE=90°,∴∠ACD=∠CBE,在△ABD和△ACE中,∵{∠ADC=∠CEB∠ACD=∠CBEAC=BC,∴△ACD≌△CBE(AAS),∴AD=CE,CD=BE,∴AD=CD+DE=BE+DE.(3)解:BE=AD+DE.证明:∵AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠BEC=90º,∴∠EBC+∠BCE=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠ACD=∠EBC,在△ACD和△CBE中,∵{∠ADC=∠CEB∠ACD=∠CBEAC=BC,∴△ACD≌△CBE(AAS),∴BE=CD,AD=CE,∴BE=CE+DE=AD+DE,∴BE=AD+DE.小提示:本题考查了全等三角形的判定与性质.解题的关键在于找出证明三角形全等的条件.17、如图,已知点C是AB的中点,CD//BE,且CD=BE.(1)求证:△ACD≌△CBE.(2)若∠A=87°,∠D=32°,求∠B的度数.答案:(1)见解析;(2)61∘分析:(1)根据SAS证明△ACD≌△CBE;(2)根据三角形内角和定理求得∠ACD,再根据三角形全等的性质得到∠B=∠ACD.(1)∵C是AB的中点,∴AC=CB,∵CD//BE,∴∠ACD=∠CBE,在△ACD和△CBE中,{AC=CB∠ACD=∠CBECD=BE,∴ΔACD≅ΔCBE;(2)∵∠A=87°,∠D=32°,∴∠ACD=180°−∠A−∠D=180°−87°−32°=61°,又∵ΔACD≅ΔCBE,∴∠B=∠ACD=61°.小提示:考查了全等三角形的判定和性质,解题关键是根据SAS证明△ACD≌△CBE.18、阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.答案:(1)2;(2)4分析:(1)根据题意可直接求等腰直角三角形EAC的面积即可;(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证△FGH≌△FNK,则有FK=FH,因为HM=GH+MN易证△FMK≌△FMH,故可求解.(1)由题意知S四边形ABCD =S△ABC+S△ADC=S△ABC+S△ABE=S△AEC=12AC2=2,故答案为2;(2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所示:∵ FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,∴∠FNK=∠FGH=90°,∴△FGH≌△FNK,∴FH=FK,又∵FM=FM,HM=KM=MN+GH=MN+NK,∴△FMK≌△FMH,∴MK=FN=2cm,∴S五边形FGHMN =S△FGH+S△HFM+S△MFN=2S△FMK=2×12MK⋅FN=4.小提示:本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用.。

(完整word版)八年级数学全等三角形难题集锦

(完整word版)八年级数学全等三角形难题集锦

1. 如图① , 在△ ABC中 , ∠ ACB=90° ,AC=BC, 过点C 在△ ABC外作直线MN,AM⊥ MN于点M,BN⊥MN于点 N.(1)试说明 :MN=AM+BN.(2)如图② , 若过点 C作直线 MN与线段 AB订交 ,AM⊥MN 于点 M,BN⊥MN于点 N(AM>BN),(1) 中的结论能否仍旧建立 ?说明原因 .【答案】 (1) 答案看法析 ;(2) 不建立【分析】试题剖析:(1)利用互余关系证明∠ MAC =∠ NCB,又∠ AMC=∠CNB=90°, AC=BC,故可证△ AMC ≌△ CNB,进而有 AM=CN, MC=BN,即可得出结论;(2)近似于( 1)的方法,证明△ AMC ≌△ CNB,进而有 AM =CN ,MC =BN,可推出 AM 、 BN 与 MN 之间的数目关系.试题分析:解:( 1)∵ AM ⊥ MN , BN⊥ MN,∴∠ AMC=∠CNB=90°.∵∠ ACB=90°,∴∠ MAC +∠ ACM=90°,∠ NCB+∠ ACM=90°,∴∠ MAC=∠NCB.在△ AMC 和△ CNB 中,∵∠ AMC =∠ CNB,∠ MAC =∠ NCB, AC= CB,∴△ AMC ≌△ CNB(AAS ),∴ AM =CN ,MC =NB.∵MN =NC+CM ,∴ MN =AM+BN;(2)图( 1)中的结论不建立, MN =BN-AM.原因以下:∵AM ⊥ MN , BN⊥ MN ,∴∠ AMC=∠ CNB=90°.∵∠ ACB=90°,∴∠ MAC +∠ ACM=90°,∠ NCB+∠ ACM=90°,∴∠ MAC=∠NCB.在△ AMC 和△ CNB 中,∵∠ AMC =∠ CNB,∠ MAC =∠ NCB, AC= CB,∴△ AMC ≌△ CNB(AAS ),∴ AM =CN ,MC =NB.∵MN =CM -CN,∴ MN=BN-AM .点睛:此题考察了全等三角形的判断与性质.重点是利用互余关系推出对应角相等,证明三角形全等.2. 如图, BE、CF 是△ ABC 的高且订交于点 P,AQ∥ BC 交 CF 延伸线于点 Q,如有 BP=AC ,CQ=AB ,线段 AP 与 AQ 的关系怎样?说明原因。

八年级上册数学《全等三角形》知识归纳与题型突破含解析

八年级上册数学《全等三角形》知识归纳与题型突破含解析

第十二章 全等三角形知识归纳与题型突破(题型清单)一、全等图形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.二、全等三角形能够完全重合的两个三角形叫全等三角形.三、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.四、全等三角形的判定01 思维导图02 知识速记五、全等三角形的证明思路SAS HLSSS AAS SAS ASAAAS ASA AAS→ → → →→ → → → → → 找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边六、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2.证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.七、 角平分线概念:从一个角的顶点引出一条射线,把这个角分成完全相同的角,这条射线叫做这个角的角平分线。

全等三角形题型归类及解析

全等三角形题型归类及解析

全等三角形题型归类及解析全等三角形难题题型归类及解析一、角平分线型角平分线具有轴对称性,因此我们可以充分利用这一特点,常用的辅助线有两种:一是利用截取的线段构造全等三角形,二是通过平分线上的一点作两边的垂线。

此外,还要掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。

例如,在三角形ABC中,点D在边BC上,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm,求线段BC的长度。

又如,在图中,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,要判断PM与PN的关系。

还有,在△ABC中,E在边AC上,且∠AEB=∠ABC,要证明∠ABE=∠C;如果∠BAE的平分线AF交BE于F,FD∥BC交AC于D,且AB=5,AC=8,要求DC的长度。

2、中点型由中点可产生以下XXX:1、中线、倍长中线2、利用中心对称图形构造8字型全等三角形3、在直角三角形中联想直角三角形斜边上的中线4、三角形的中位线例如,在△ABC中,BE⊥AC,CD⊥XXX于D,BE平分∠ABC,且∠ABC=45°,与CD相交于点F,H是BC边的中点,DH与BE相交于点G,要证明BF=AC和CE=BF/2.还有,在△ABC中,D是BC的中点,DE⊥DF,要判断BE+CF与EF的大小关系,并证明结论。

又如,在△ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC于F,要证明AF=EF。

3、多个直角型除了以上两种常见的题型,还有一些涉及多个直角的题目,需要运用勾股定理和全等三角形的性质来解决。

例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,要证明XXX。

要证明BE=CF,根据题目已知,AD是BC的中线,所以AD=DC,又因为DF=DE,所以三角形ADF和CED相等,所以∠A=∠C,即AB∥CF,同理可得BE∥AC,所以BE=CF,证毕。

八年级数学上册 全等三角形(篇)(Word版 含解析)

八年级数学上册 全等三角形(篇)(Word版 含解析)

八年级数学上册 全等三角形(篇)(Word 版 含解析)一、八年级数学轴对称三角形填空题(难)1.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.【答案】80或100【解析】【分析】根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.【详解】由题意可分如下两种情况:(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠(等边对等角),两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,又12DAE BAC ∠+∠+∠=∠20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒,由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠+︒+∠=︒,80BAC ∴∠=︒;(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,3,4B C ∴∠=∠∠=∠(等边对等角),两式相加得34B C ∠+∠=∠+∠,又34DAE BAC ∠+∠+∠=∠,3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒,20B C BAC ∴∠+∠=∠-︒由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠-︒+∠=︒,100BAC ∴∠=︒.故答案为80或100.【点睛】本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.2.如图,点P 是∠AOB 内任意一点,OP =5,M ,N 分别是射线OA 和OB 上的动点,若△PMN 周长的最小值为5,则∠AOB 的度数为_____.【答案】30°.【解析】【分析】如图:分别作点P 关于OB 、AO 的对称点P'、P'',分别连OP'、O P''、P' P''交OB 、OA 于M 、N ,则可证明此时△PMN 周长的最小,由轴对称性,可证明△P'O P''为等边三角形,∠AOB=12∠P'O P''=30°. 【详解】解:如图:分别作点P 关于OB 、AO 的对称点P'、P'',分别连OP'、O 、P' 交OB 、OA 于M 、N ,由轴对称△PMN 周长等于PN+NM+MP=P'N+NM+MP"=P'P"∴由两点之间线段最短可知,此时△PMN 周长的最小∴P'P"=5由对称OP=OP'=OP"=5∴△P'OP"为等边三角形∴∠P'OP"=60∵∠P'OB=∠POB ,∠P"OA=∠POA∴∠AOB=12∠P'O P''=30°. 故答案为30°.【点睛】 本题是动点问题的几何探究题,考查最短路径问题,应用了轴对称图形性质和等边三角形性质.3.如图,在△ABC 中,P ,Q 分别是BC ,AC 上的点,PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若AQ PQ =,PR PS =,那么下面四个结论:①AS AR =;②QP //AR ;③△BRP ≌△QSP ;④BRQS ,其中一定正确的是(填写编号)_____________.【答案】①,②【解析】【分析】连接AP,根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断△BRP≌△QSP也无法证明BR QS.【详解】解:连接AP①∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠BAC的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2-PR2,AS2=AP2-PS2,∵AP=AP,PR=PS,∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③④错误;故答案为:①②.【点睛】本题主要考查了角平分线的性质与勾股定理的应用,熟练掌握根据垂直与相等得出点在角平分线上是解题的关键.4.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AE平分∠BAC,∠D=∠DBC=60°,若BD=5cm,DE=3cm,则BC的长是 ______cm.【答案】8.【解析】【分析】作出辅助线后根据等边三角形的判定得出△BDM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【详解】解:延长DE交BC于M,延长AE交BC于N,作EF∥BC于F,∵AB=AC,AE平分∠BAC,∴AN⊥BC,BN=CN,∵∠DBC=∠D=60°,∴△BDM为等边三角形,∴△EFD为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM为等边三角形,∴∠DMB=60°,∵AN⊥BC,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm),故答案为8.【点睛】本题考查等边三角形的判定与性质;等腰三角形的性质.5.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC 即可.【详解】∵CD 平分∠ACE ,∴∠ACE=2∠ACD=2∠ECD ,∴∠ECB=∠ACB -∠ACE=∠ACB -2∠ACD ,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB -2∠ACD=100°,∵AB=AC ,∴∠ABC=∠ACB,∴2∠ACB -2∠ACD=100°,∴∠ACB -∠ACD=50°,即∠DCB=50°,∵DB=DC ,∴∠DBC=∠DCB ,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.6.如图,△ABC 中, AB=11 , AC= 5 ,∠ BAC 的平分线 AD 与边 BC 的垂直平分线 CD 相 交于点 D ,过点 D 分别作 DE ⊥AB ,DF ⊥AC ,垂足分别为 E 、F ,则 BE 的长为_____.【答案】3【解析】【分析】连接CD ,BD ,由∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD ,DF=DE ,继而可得AF=AE ,易证得Rt △CDF ≌Rt △BDE ,则可得BE=CF ,继而求得答案.【详解】如图,连接CD ,BD ,∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE ,∠F=∠DEB=90°,∠ADF=∠ADE ,∴AE=AF ,∵DG 是BC 的垂直平分线,∴CD=BD ,在Rt △CDF 和Rt △BDE 中,CD BD DF DE ⎧⎨⎩==,∴Rt △CDF ≌Rt △BDE (HL ),∴BE=CF ,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE ,∵AB=11,AC=5, ∴BE=12(11-5)=3. 故答案为:3.【点睛】 此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.7.已知等边△ABC中,点D为射线BA上一点,作DE=DC,交直线BC于点E,∠ABC的平分线BF交CD于点F,过点A作AH⊥CD于H,当EDC=30︒,CF=43,则DH=______.【答案】23【解析】连接AF.∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=∠BAC=60°.∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°.∵BF平分∠ABC,∴∠ABF=∠CBF.在△ABF和△CBF中,AB BCABF CBFBF BF⎧⎪∠∠⎨⎪⎩===,∴△ABF≌△CBF,∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°.∵AH⊥CD,∴AH=12AF=12CF=23.∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=2 3 .故答案为2 3 .点睛:本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键,注意辅助线的作法.8.如图,∠AOB=45°,点M、点C在射线OA上,点P、点D在射线OB上,且OD=32,则CP+PM+DM的最小值是_____.34【解析】【分析】如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,根据轴对称的性质得到OC′=OC=2,OD′=OD=2,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,于是得到CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,于是得到结论.【详解】解:如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,则OC′=OC=2,OD′=OD=2,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,∴CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,则C′T=OT2,∴D′T=2,∴C′D34∴CP+PM+DM3434【点睛】本题考查了最短路径问题,掌握作轴对称点是解题的关键.9.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=_____cm.【答案】8cm.【解析】【详解】解:如图,延长ED交BC于M,延长AD交BC于N,作DF∥BC,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=6cm,DE=2cm,∴DM=4,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=36°,∴NM=2,∴BN=4,∴BC=8.10.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60︒,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.【答案】①②③④【解析】【分析】依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.【详解】有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.故此题正确的是①②③④.【点睛】此题考查等边三角形的判定方法,熟记方法才能熟练运用.二、八年级数学轴对称三角形选择题(难)11.已知点M(2,2),且,在坐标轴上求作一点P,使△OMP为等腰三角形,则点P的坐标不可能是()A.B.(0,4) C.(4,0) D.)【答案】D【解析】【分析】分类讨论:OM=OP;MO=MP;PM=PO,分别计算出相应的P点,从而得出答案.【详解】∵M(2,2),且,且点P在坐标轴上当OM OP==时±±,A满足;P点坐标为:()(,0,当22MO MP==时:P点坐标为:()()4,0,0,4,B满足;当PM PO=时:P点坐标为:()()2,0,0,2,C满足故答案选:D【点睛】本题考查动点问题构成等腰三角形,利用等腰三角形的性质分类讨论是解题关键.12.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.3B.33C.32D.不能确定【答案】B【解析】已知,如图,P为等边三角形内任意一点,PD、PE、PF分别是点P到边AB、BC、AC的距离,连接AP、BP、CP,过点A作AH⊥BC于点H,已知等边三角形的边长为3,可求得高线AH=332,因S△ABC=12BC•AH=12AB•PD+12BC•PE+12AC•PF,所以1 2×3×AH=12×3×PD+12×3×PE+12×3×PF,即可得PD+PE+PF=AH=332,即点P到三角形三边距离之和为332.故选B.点睛:本题考查了等边三角形的性质,根据三角形的面积求点P到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.13.如图,已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②连结AC、BC;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB=a;以上画法正确的顺序是()A.①②③④B.①④③②C.①④②③D.②①④③【答案】B【解析】【分析】根据尺规作等边三角形的过程逐项判断即可解答.【详解】解:已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②在射线AM上截取AB=a;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④连结AC、BC.△ABC即为所求作的三角形.故选答案为B.【点睛】本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.14.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【答案】C【解析】【分析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明∠HCN=120°HN=MN=x即可解决问题.【详解】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°.∵∠MON=30°,∴∠CBH+∠CBN=∠ABM+∠CBN=30°,∴∠NBM=∠NBH.∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x.∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形.故选C.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、旋转的性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.的正方形网格中,A,B是如图所示的两个格点,如果C也是格点,且15.在一个33ABC是等腰三角形,则符合条件的C点的个数是()A.6B.7C.8D.9【答案】C【解析】【分析】根据题意、结合图形,画出图形即可确定答案.【详解】解:根据题意,画出图形如图:共8个.故答案为C.【点睛】本题主要考查了等腰三角形的判定,根据题意、画出符合实际条件的图形是解答本题的关键.16.如图,△ABC、△CDE都是等腰三角形,且CA=CB, CD=CE,∠ACB=∠DCE=α,AD,BE相交于点O,点M,N分别是线段AD,BE的中点,以下4个结论:①AD=BE;②∠DOB=180°-α;③△CMN是等边三角形;④连OC,则OC平分∠AOE.正确的是()A .①②③B .①②④C .①③④D .①②③④【答案】B【解析】【分析】 ①根据全等三角形的判定定理得到△ACD ≌△BCE (SAS ),由全等三角形的性质得到AD=BE ;故①正确;②设CD 与BE 交于F ,根据全等三角形的性质得到∠ADC=∠BEC ,得到∠DOE=∠DCE=α,根据平角的定义得到∠BOD=180°-∠DOE=180°-α,故②正确; ③根据全等三角形的性质得到∠CAD=∠CBE ,AD=BE ,AC=BC 根据线段的中点的定义得到AM=BN ,根据全等三角形的性质得到CM=CN ,∠ACM=∠BCN ,得到∠MCN=α,推出△MNC 不一定是等边三角形,故③不符合题意;④过C 作CG ⊥BE 于G ,CH ⊥AD 于H ,根据全等三角形的性质得到CH=CG ,根据角平分线的判定定理即可得到OC 平分∠AOE ,故④正确.【详解】解:①∵CA=CB ,CD=CE ,∠ACB=∠DCE=α,∴∠ACB+∠BCD=∠DCE+∠BCD ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中AC BC ACD BCE CD CE ⎪∠⎪⎩∠⎧⎨=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ;故①正确;②设CD 与BE 交于F ,∵△ACD ≌△BCE ,∴∠ADC=∠BEC ,∵∠CFE=∠DFO ,∴∠DOE=∠DCE=α,∴∠BOD=180°-∠DOE=180°-α,故②正确;③∵△ACD ≌△BCE ,∴∠CAD=∠CBE ,AD=BE ,AC=BC又∵点M 、N 分别是线段AD 、BE 的中点,∴AM=12AD ,BN=12BE , ∴AM=BN ,在△ACM 和△BCN 中 AC BC CAM CBN AM BN ⎪∠⎪⎩∠⎧⎨=== ∴△ACM ≌△BCN (SAS ),∴CM=CN ,∠ACM=∠BCN ,又∠ACB=α,∴∠ACM+∠MCB=α,∴∠BCN+∠MCB=α,∴∠MCN=α,∴△MNC 不一定是等边三角形,故③不符合题意;④过C 作CG ⊥BE 于G ,CH ⊥AD 于H ,∴∠CHD=∠ECG=90°,∵∠CEG=∠CDH ,CE=CD ,∴△CGE ≌△CHD (AAS ),∴CH=CG ,∴OC 平分∠AOE ,故④正确,故选:B .【点睛】本题综合考查了全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的应用,解此题的关键是根据性质进行推理,此题综合性比较强,有一定的代表性.17.如图,在△ABC 中,BC 的垂直平分线分别交AC ,BC 于点D ,E ,若△ABC 的周长为24,CE =4,则△ABD 的周长为( )A.16 B.18 C.20 D.24【答案】A【解析】【分析】根据线段的垂直平分线的性质和三角形的周长公式进行解答即可.【详解】解:∵DE是BC的垂直平分线,∴DB=DC,BC=2CE=8又∵AABC的周长为24,∴AB+BC+AC=24∴AB+AC=24-BC=24-8=16∴△ABD的周长=AD+BD+AB=AD+CD+AB=AB+AC=16,故答案为A【点睛】本题考查的是线段的垂直平分线的性质,理解并应用线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.如图,在Rt△ABC中,AC=BC,∠ACB=90°,D为AB的中点,E为线段AD上一点,过E点的线段FG交CD的延长线于G点,交AC于F点,且EG=AE,分别延长CE,BG交于点H,若EH平分∠AEG,HD平分∠CHG则下列说法:①∠GDH=45°;②GD=ED;③EF=2DM;④CG=2DE+AE,正确的是()A.①②③B.①②④C.②③④D.①②③④【答案】B【解析】【分析】首先证明△AEC≌△GEC(SAS),推出CA=CG,∠A=∠CGE=45°,推出DE=DG,故②正确;再证明△EDC≌△GDB,推出∠CED=∠BGD,ED=GD,由三角形外角的性质得出∠HDG=∠HDE,进而得出∠GDH=∠EDH=45°,即可判断①正确;通过证明△EDC和△EMD是等腰直角三角形,得到ED2MD,再通过证明△EFC≌△EDC,得到EF=ED,从而可判断③错误;由CG=CD+DG,CD=AD,ED=GD,变形即可判断④正确.【详解】∵AC=BC,∠ACB=90°,AD=DB,∴CD⊥AB,CD=AD=DB,∠A=∠CBD=45°.∵EH平分∠AEG,∴∠AEH=∠GEH.∵∠AEH+∠AEC=180°,∠GEH+∠CEG=180°,∴∠AEC=∠CEG.∵AE=GE,EC=EC,∴△AEC≌△GEC(SAS),∴CA=CG,∠A=∠CGE=45°.∵∠EDG=90°,∴∠DEG=∠DGE=45°,∴DE=DG,∠AEF=∠DEG=∠A=45°,故②正确;∵DE=DG,∠CDE=∠BDG=90°,DC=DB,∴△EDC≌△GDB(SAS),∴∠CED=∠BGD,ED=GD.∵HD平分∠CHG,∴∠GHD=∠EHD.∵∠CED=∠EHD+∠HDE,∠BGD=∠GHD+∠HDG,∴∠HDG=∠HDE.∵∠EDG=∠ADC=90°,∴∠GDH=∠EDH=45°,故①正确;∵∠EDC=90°,ED=GD,∴△EDC是等腰直角三角形,∴∠DEG=45°.∵∠GDH=45°,∴∠EDH=45°,∴△EMD是等腰直角三角形,∴ED MD.∵∠AEF=∠DEG=∠A=45°,∴∠AFE=∠CFG=90°.∵∠EDC=90°,∴∠EFC=∠EDC=90°.∵EH平分∠AEG,∴∠AEH=∠GEH.∵∠FEC=∠GEH,∠DEC=∠AEH,∴∠FEC=∠DEC.∵EC=EC,∴△EFC≌△EDC,∴EF=ED,∴EF=2MD.故③错误;∵CG=CD+DG=AD+ED=AE+ED+ED,∴CG=2DE+AE,故④正确.故选B.【点睛】本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.19.如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且速度都为1cm/s,连接AQ、CP交于点M,下面四个结论:①BP=CM;②△ABQ≌△CAP;③∠CMQ的度数不变,始终等于60°;④当第43秒或第83秒时,△PBQ为直角三角形,正确的有几个 ( )A.1 B.2 C.3 D.4【答案】C【解析】【分析】①等边三角形ABC中,AB=BC,而AP=BQ,所以BP=CQ.②根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;③由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠CMQ=60°;④设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,因为∠B=60°,所以PB=2BQ,即4-t=2t故可得出t的值,当∠BPQ=90°时,同理可得BQ=2BP,即t=2(4-t),由此两种情况即可得出结论.【详解】①在等边△ABC中,AB=BC.∵点P、Q的速度都为1cm/s,∴AP=BQ,∴BP=CQ.只有当CM=CQ时,BP=CM.故①错误;②∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∵AB CAABQ CAP AP BQ⎧⎪∠∠⎨⎪⎩===,∴△ABQ≌△CAP(SAS).故②正确;③点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠CMQ=∠BAQ+∠MAC=∠BAC=60°.故③正确;④设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,即4-t=2t,t=43,当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4-t),t=83,∴当第43秒或第83秒时,△PBQ为直角三角形.故④正确.正确的是②③④,故选C.【点睛】此题是一个综合性题目,主要考查等边三角形的性质、全等三角形的判定与性质等知识.熟知等边三角形的三个内角都是60°是解答此题的关键.20.如图,已知△ABC与△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD 交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数为( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据题意,结合图形,对选项一一求证,即可得出正确选项.【详解】(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°.在△BCD和△ACE中,∵AC BCBCD ACECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△BCD≌△ACE,∴AE=BD,故结论①正确;(2)∵△BCD≌△ECA,∴∠GAC=∠FBC.又∵∠ACG=∠BCF=60°,AC=BC,∴△ACG≌△BCF,∴AG=BF,故结论②正确;(3)∵△ACG≌△BCF,∴CG=CF.∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴△FCG为等边三角形,∴∠FGC=60°,∴∠FGC=∠DCE,∴FG∥BE,故结论③正确;(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°.∵△ACE≌△BCD,∴∠CDZ=∠CEN.在△CDZ和△CEN中,CZD CNECDZ CENCD CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDZ≌△CEN,∴CZ=CN.∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.综上所述:四个结论均正确.故选D.【点睛】本题综合考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的判定定理等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形难题题型归类
一、角平分线型
角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。

另外掌
握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。

1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,
连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。

2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,
•PN ⊥CD 于N ,判断PM 与PN 的关系.
3. 如图所示,P 为∠AOB 的平分线上一点,PC ⊥OA 于C ,•∠OAP+∠OBP=180°,
若OC=4cm ,求AO+BO 的值.
4. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。

(1) 求证:∠ABE=∠C ;
(2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。


A
B C D E P
D A C
B
M N P D
A C
B O
5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B )
6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .
(1) 若BD 平分∠ABC ,求证CE=1
2
BD ;
(2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;
若不变,求出它的度数,并说明理由。

7、如图:四边形ABCD 中,AD ∥BC ,AB=AD+BC ,E 是CD 的中点,求证:AE ⊥BE 。

E
D C B
A
B
E
8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB , 求证:AC=AE+CD .
二、中点型
由中点应产生以下联想: 1、想到中线,倍长中线
2、利用中心对称图形构造8字型全等三角形
3、在直角三角形中联想直角三角形斜边上的中线
4、三角形的中位线
1、△ABC 中,∠A=90°,AB=AC ,D 为BC 中点,E 、F 分别在AC 、AB 上,且DE ⊥DF ,试判断DE 、DF 的数量关系,并说明理由.
D
C A
2、已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =; (2)求证:1
2
CE BF =
D A
E F
C
H
G
B
3、如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关
系,并证明你的结论。

4、如图,已知在△ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC于F,求证:AF=EF
三、多个直角型
在多个直角的问题中很容易找的条件是直角相等以及边相等,而最难找的是锐角相等,所以“同角的余角相等”这个定理就显得非常重要,它是证明多个直角问题中锐角相等的有利工具。

1、如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.
E F
C D
A
2、如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF .
3、如图,∠ABC=90°,AB=BC ,BP 为一条射线,AD ⊥BP ,CE ⊥PB ,若AD=4,EC=2.求DE 的长。

4、如图,ΔABC 的两条高AD 、BE 相交于H ,且AD=BD ,试说明下列结论成立的理由。

(1)∠DBH=∠DAC ; (2)ΔBDH ≌ΔADC 。

5. 如图∠ACB=90°,AC=BC,BE ⊥CE,AD ⊥CE 于D ,AD=2、5cm ,DE=1.7cm,求BE
的长
F
G
E D C B A A
B C D
E
H
6.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,
若AB=CD,AF=CE,BD交AC于点M.
(1)求证:MB=MD,ME=MF
(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.
7.如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、
C在A、E的异侧, BD⊥AE于D, CE⊥AE于E
(1)试说明: BD=DE+CE.
(2)若直线AE绕A点旋转到图(2)位置时(BD<CE), 其余条件不变, 问BD与DE、CE的关系如何? 为什么?
(3)若直线AE绕A点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD与DE、CE的关系如何? 请直接写出结果, 不需说明.
F
E
D C
B A
(4)归纳前二个问得出BD、DE、CE关系。

用简洁的语言加以说明。

四、等边三角形型
由于等边三角形是轴对称图形,所以很多时候利用其轴对称性进行构造全等三角形,另外等边三角形又具有60度和120度的旋转对称性,所以经常利用旋转全等的知识进行解答,同时等边三角形具有丰富的边角相等的性质,因此当我们看到有60度的角的时候经常构造等边三角形解题。

1、如图,已知ABC
∆为等边三角形,D、E、F分别在边BC、CA、AB上,且DEF
∆也是等边三角形.
(2)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;
(3)你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.
2、已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。

3、如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由.
E
D
C
B
A
4、已知,△ABC 和△ECD 都是等边三角形,且点B ,C ,D 在一条直线上.求证:BE=AD
5、 已知P 是正方形ABCD 内的一点,PA ∶PB ∶PC=1∶2∶3,APB 则的度数为多少?.
A
B
D
C
P
E
A
B
C
D
E
F
G
五、等腰三角形型
由于等腰三角形是轴对称图形,所以很多时候利用其轴对称性进行构造全等三角形,另外等腰三角形又具有旋转对称性,所以经常利用旋转全等的知识进行解答
1、如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。

求证:(1)EC=BF ;(2)EC ⊥BF
2. 在△ABC 中,,AB=AC , 在AB 边上取点D ,在AC 延长线上取点E ,使CE=BD ,
A
E B
M C
F
连接DE交BC于点F,求证DF=EF .
3.如图所示,已知D是等腰△ABC底边BC上的一点,
它到两腰AB、AC的距离分别为DE、DF,CM⊥AB,垂足为M,请你探索一下线段DE、DF、CM三者之间的数量关系, 并给予证明.
E
D
C
B
A
M
F
折叠型
23、如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P,连接EP.
(1)如图②,若M为AD边的中点,
①,△AEM的周长=_____cm;
②求证:EP=AE+DP;
(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
F
C
B
E
D。

相关文档
最新文档