数学归纳法以及其在初等数论中的应用论文答辩
数学归纳法以及其在初等数论中的应用
+14 28 4 · ·高二第二次阶段测试化学试卷12、21班级 姓名 学号可能用到的相对原子质量:H —1 O —16 Na-23 Cl —35.5Mn-55 Ag-108一、选择题(每题只有1个选项符合题意。
本大题共23题,每题3分,共69分)1.现代社会提倡低碳生活。
下列燃料能实现二氧化碳零排放的是 A .氢气 B .天然气 C .石油 D .煤炭2.下列化学用语正确的是A .硅的原子结构示意图:B .乙烯分子比例模型:C .次氯酸分子的电子式:D .乙酸分子的结构简式:C 2H 4O 23.下列气体中,有颜色且具有刺激性气味的是A .SO 2B .NOC .NH 3D .Cl 2 4.胶体区别于其它分散系的本质特征是A .胶体稳定B .胶体有丁达尔效应C .胶体能净水D .胶粒直径在1—100nm 之间5.下列物质中只含有离子键的是A .NaOHB .CO 2C .MgCl 2D .HClH H H HC =CH ∶Cl ∶O ∶6.运输乙醇或汽油的车辆,贴有的危险化学品标志是A B C D 7.下列物质中,属于纯净物的是A.氯水B.聚乙烯C.蔗糖.D、加碘食盐8.下列物质不.需.经过化学变化就能从海水中获得的是A.烧碱B.食盐C.单质镁D.单质溴9.下列物质互为同分异构体的一组是A.35Cl和37Cl B.O2和O3C.CH3CH2OH和CH3OCH3D.甲烷和丁烷10.下列物质间的转化,通过一步反应不能完成的是A、FeCl3→FeCl2B、NO2→HNO3C、Al2O3→NaAlO2D、SiO2→H2SiO311.某溶液中存在大量的OHˉ、Clˉ、CO32ˉ,该溶液中还可能大量存在的离子是A.NH4+B.Ca2+C.HCO3ˉD.SO42ˉ12.N2+3H22NH3是工业制氮肥的重要反应。
下列关于该反应的说法正确的是A .增加N 2的浓度能加快反应速率B .降低体系温度能加快反应速率C .使用催化剂不影响反应速率D .若反应在密闭容器中进行,通过改变条件可以使N 2和H 2能完全转化为NH 313.下列反应中生成物总能量高于反应物总能量的是 A .氧化钙溶于水 B .乙醇燃烧C .铝粉与氧化铁粉末反应D .断开1mol 氮气分子中的氮氮叁键14.下列图示装置的实验中,操作正确的是A .图1分离碘酒中的碘和酒精B .图2稀释浓硫酸C .图3从食盐水中获得食盐晶体D .图4除去HCl 中的Cl 2并副产漂白粉15.下列反应中,与其它三个反应不属于同一类型的反应是A .B .C .D .图1 图2 图3 图4碘酒HCl(Cl 2)石灰水溶液浓硫酸 H 2O16.食品的主要成分大都是有机化合物。
毕业论文:数学归纳法及其应用论文
数学归纳法及其应用数学归纳法是一种证明与正整数有关的命题的非常重要的数学方法,它不仅对我们中学数学的学习有着很大的帮助,而且在进一步学习及研究高等数学时,也是一种非常重要的方法.数学归纳法在证明与正整数有关的命题时有其独特之处.对数学归纳法逻辑基础即原理的准确理解,是掌握这种证明方法的关键.要熟练的掌握及应用数学归纳法,首先必须准确的理解其意义以及熟练地掌握解题步骤,而在三个步骤中,运用归纳假设尤为关键,运用归纳假设推出结论最为重要.数学归纳法可以用来证明与正整数有关的代数恒等式、不等式、整除性问题和几何问题等.n时表示一个命题,正整数是无穷的.一个与正整数N有关的命题,当1n时又表示一个命题,如此等等,无穷无尽.因此,一个与正整数N有关当2的命题本质上包含了无穷多个命题.假如我们对于这无穷多个命题,按部就班地一个一个去证,那么不管我们的证题速度有多快,也是今生今世都证不完的.在一个与正整数N有关的命题面前,作为万物之灵的人,发明了一种方法,叫做“数学归纳法”.人们运用此法,只需寥寥几步,像变戏法似的,便把无穷多个命题一个不剩的全证完了[1].数学归纳法是数学论证的一个基本工具,是一种非常重要的数学证明方法,它典型地用于确定一个表达式在所有正整数范围内是成立的,或者用于确定一个其他的形式在一个无穷序列是成立的.最简单和最常见的数学归纳法证明是证明当n属于所有正整数时一个表达式成立,这种方法是由下面两步组成,第一步是递推的基础: 证明当1n时表达式成立.第二步是递推的依据: 证明如果当n k时成立,那么当1n k时同样成立.(递推的依据中的“如果”被定义为归纳假设.不要把整个第二步称为归纳假设.) 这个方法的原理在于第一步证明起始值在表达式中是成立的,然后证明一个值到下一个值的证明过程是有效的.如果这两步都被证明了,那么任何一个值的证明都可以被包含在重复不断进行的过程中.1数学归纳法的概述1.1 常用数学证明方法数学是一门非常注重学习方法的学科,而数学的证明更是将这些方法体现的淋漓尽致,数学中研究问题的方法一般有以下分类:1.1.1 演绎推理——从一般到特殊的推理叫做演绎推理,它又称演绎法.1.1.2 归纳推理——由特殊事例得出一般结论的归纳推理方法,通常叫做归纳推理,它又称归纳法.根据推理过程中考察的对象是涉及事物的一部分还是全部,归纳法又可分为不完全归纳法和完全归纳法.不完全归纳法是根据事物的部分(而不是全部)特例得出一般结论的推理方法.不完全归纳法所得到的命题并不一定成立,所以这种方法并不能作为一种论证方法.但是,不完全归纳法是研究数学的一把钥匙,是发现数学规律的一种重要手段.在问题探索中,为了寻求一般规律,往往先考察一些特例,通过对这些特例的不完全归纳形成猜想,然后再试图去证明或否定这种猜想.因而学会用不完全归纳法对问题进行探索,对提高数学能力十分重要.完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法.与不完全归纳法不同,用完全归纳法得出的结论是可靠的.通常在事物包括的特殊情况数不多时,采用完全归纳法[2].1.2 数学归纳法的定义数学归纳法概念:数学归纳法是数学上证明与正整数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题.1.3 数学归纳法的逻辑基础意大利有一个数学家,名叫皮亚诺(G.Peano,1858-1932),他总结了自然数的有关性质,并在关于自然数的理论中提出了关于自然数的五条公理,后人称之为“皮亚诺公理”.皮亚诺公理的内容如下:任何一个满足下列条件的非空集合N的元素叫做自然数.在这个集合中,某些元素之间存在着一种基本关系——“随从”关系(或者叫做“直接后继”关系)并且满足以下五条公理:Ⅰ.0N(即“0是自然数”).Ⅱ.对于N的每一个元素a,在N中都有一个确定的随从'a(我们用符号'a 表示a的随从,以下类同).Ⅲ. 0不是N中任何一个元素的随从.a b可以推出a b(这就是说,N中的每个元素只能是某一个元Ⅳ.由''素的随从,或者根本不是随从).Ⅴ.设M是自然数的集合,若它具有下列性质:(1)自然数0属于M;(2)如果自然数a属于M,那么它的随从'a也属于M;则集合M包含一切自然数[1].自然数就是满足上述皮亚诺公理的集合N中的元素.关于自然数的所有性质都是这些公理的直接推论.由皮亚诺公理可知,0是自然数关于“后继”的起n n,…,则始元素,如果记'01,'12,'23,…,'1{0,1,2,,,}N n皮亚诺公理与最小数原理是等价的,我们可以用皮亚诺公理来证明最小数原理.定理1 (最小数原理) 自然数集N 的任意非空子集A 都有最小数. 证 设M 是不大于A 中任何数的所有自然数的集合,即{|,}Mn nN nm mA 且对任意由于A 非空,至少有一自然数a A ,而1()a a 不在M 中,所以M N .从而必存在自然数0m M ,且01m M .因为若不然,就有(1)0M (0不大于任一自然数); (2)若m M ,则1m M .根据归纳原理,集合M 包含一切自然数.此与M 是不大于A 中任何数的所有自然数的集合矛盾.这个自然数0m 就是集合A 的最小数,因为对任何aA ,都有0m a ;而且0m A .事实上,若0m A ,则有01m a ,对任意a A ,于是01m M ,这又与0m 的选取相矛盾.下面我们用最小数原理来证明数学归纳法原理.定理2 (数学归纳法原理)一个与自然数有相关的命题()T n ,如果(1)00()(0)T n n 为真;(2)假设0()()T n nn 为真,则可以推出(1)T n 也为真.那么,对所有大于等于0n 的正整数n ,命题()T n 为真.证 用反证法.若命题()T n 不是对所有的自然数n 为真,则0{|,()}Mm mN mn T m 且不真非空.根据定理1,M 中有最小数0m .由(1),00m n ,从而001m n 且0(1)T m 为真.由(2),取01nm 即知0()T m 为真.此与0()T m 不真相矛盾.从而证明了定理2[4].因而从理论上讲,皮亚诺公理中的第五条公理正是数学归纳法的依据,因此,第五条公理也称做数学归纳法原理。
浅谈数学归纳法在中学数学中的应用
浅谈数学归纳法在中学数学中的应用摘要:数学归纳法是建立在最小数原理基础上的一种用于证明和自然数有关的命题的常用方法,分为第一数学归纳法和第二数学归纳法。
本文介绍了数学归纳法基于最小数原理的理论背景,同时以例题的形式阐述了两种数学归纳法的使用方式,分析了其各自的特点,同时通过特殊例题浅要比较了两种归纳法本质的区别。
在文章的最后,浅要给出了数学归纳法在中学阶段教法和学法的建议。
一.绪论1.研究背景在高中数学中,像数列,不等式,以及一些求和公式,很多题目都会要求你证明和自然数有关的命题,而数学归纳法主要就是争对有关自然数的命题的一种高效简便的方法,如果能够熟练的掌握数学归纳法的概念及使用方法,并能够巧妙地应用在实际的问题当中,那很多时候一些很复杂的问题都可以得到一个很巧妙的解法。
在近几年的高考数学大题中,出现了很多以数列不等式为背景的证明题,数列本是一种定义在自然数集中的特殊函数,所以很多这种类型的题目都可以用数学归纳法巧妙解决。
同时,数学归纳法可以锻炼学生的归纳总结能力,类比推理能力,对高中生增加适当的数学归纳法的教学可以增加其数学修养。
数学归纳法是一套解决一大类问题的完美工具。
2.研究意义在大学四年数学专业课的学习中,像高等代数,初等数论,图论这样的课程中,在证明一些结论的时候都会用到数学归纳法,由此可见,数学归纳法的应用面非常的广泛。
同时,数学归纳法的解题步骤和里面的原理是很容易让高中阶段的学生理解的。
所以在教学过程中,对于一些合适的题讲述出用数学归纳法的解法是很有必要的。
数学是一门锻炼学生思维能力的学科,所以一味的让学生死记硬背的教学方法是不可取的,数学归纳法,主要是对相关数学知识进行合理地证明,以具体的命题为解题基础,能够使其在自然数的范围中成立,把有关于数学基础知识正确地应用在解题的过程中,从而对数学习题的求证。
二.数学归纳法的理论背景及使用方法1.数学归纳法的证明设 M 是自然数集的任一非空子集, 则必存在一个自然数m∈M, 使对一切n∈M, 都有m≤n。
关于数学归纳法的论文
数学归纳法在问题求解中的应用作者:管国策指导老师:张胜摘要数学归纳法是一种常用的证明方法,在不少数学问题的证明中,它都有着其他方法所不能替代的作用.甚至在物理、生物等方面都有着广泛的前景,本文首先阐述数学归纳法的理论依据以及表现形式,然后通过一些具有代表性的典型例题重点讨论数学归纳法在初等数学、高等数学、离散数学以及中学数学竞赛中的应用,最后详细叙述对数学归纳法的认识和使用中应该注意的问题.关键词数学归纳法数列行列式离散数学树数学竞赛1、数学归纳法的理论依据归纳法和演绎法都是重要的数学方法.归纳法中的完全归纳法和演绎法都是逻辑方法;不完全归纳法是非逻辑方法,只适用于数学发现规律,不适用于数学严谨证明.数学归纳法既不是归纳法,也不是演绎法,是一种递归推理,其理论依据是下列归纳公理:(1)存在一个自然数0∈N.(2)每一个自然数a有一个后继元素'a,如果'a是a的后继元素,则a叫做'a的生成元素.(3)自然数0无生成元素.(4)如果'a='b,则a=b.(5)(归纳公理)自然数N的每个子集M,如果M含有0,并且含有M内每个元素的后继元素,则M=N.自然数就是满足上述公理的集合N中的元素,关于自然数的所有性质都是这些公理的直接理论.由以上公理可知,0是自然数关于“后继”的起始元素.如果记'0=1,'1=2,'2=3,…,'n=n+1,…,则N={0,1,2,…,n,…}.由以上公理所定义的自然数与前面由集合所定义的自然数在本质上是一致的.20世纪90年代以前的中学数学教材将自然数的起始元素视作1,则自然数集即为正整数集.现在已统一采用上面的证法,即将0作为第1个自然数.为了阐述数学归纳法,我们首先介绍一下正整数集的最小数原理.最小数原理:正整数集中≤,的任意一个非空子集必含有一个最小数.也就是说,存在数a∈S,对于∀x∈S都有a x最小数原理也就是数学归纳法的理论依据.2、数学归纳法的表现形式2.1.第一数学归纳法在教科书里我们常见到的就是第一数学归纳法,介绍如下:原理:设有一个与正整数n有关的命题()P n .如果:(1)当n =1时命题成立(2)假设n =k 时命题成立(3)若能证明n =k +1时命题也成立.证明:反证法.假设该命题不是对于一切正整数都成立.令S 表示使该命题不成立的正整数作成的集合,那么S ≠∅.于是由最小数原理,S 中有最小数a .因为命题对于n =1时成立,所以1a ≠, a >1.从而a -1是个正整数.又由于条件(3),当n =a 时命题也成立.因此a S ∉,导致矛盾.因此该命题对于一切正整数都成立.定理证毕.在应用数学归纳法时,有些命题不一定从c 开始的,这时在叙述上只要将n =1换成n =c 即可.第一数学归纳法主要可概括为以下三步:(1)归纳基础:证明c 时命题成立(2)归纳假设:假设n =k 时命题成立(3)归纳递推:由归纳假设推出n =k +1时命题也成立.2.2.第二数学归纳法第二数学归纳法与第一归纳法是等价的.在有些情况下,由归纳法“假设n =k 时命题成立”还不够,而需要更强的假定.也就是说,对于命题()P n ,在证明(1)P k +成立,不仅依赖()P k 成立,而且依赖于前面各步成立,这时一般要选用第二数学归纳法.原理:设有一个与正整数n 有关的命题()P n .如果:(1)当n =1时命题成立(2)在假设命题对于一切正整数n k ≤成立时(3)若能证明n =k +1时命题也成立.则这个命题对于一切正整数n 都成立.其证明方法与上述证明方法类似,在这个地方不再赘述.第二数学归纳法可概括为一下几个三步:(1)归纳基础:证明n =1时命题成立(2)归纳假设:假设n k ≤时命题成立(3)归纳递推:由归纳假设推出n =k +1时命题也成立.第二数学归纳法与第一数学归纳法基本形式的区别在于归纳假设.2.3.反向归纳法反向数学归纳法是数学家柯西最先使用的,下面我们就来介绍一下.原理:设有一个与正整数n 有关的命题()P n .如果:(1)命题()P n 对于无限多个正整数n 成立(2)假设n =k 时命题成立(3)若能证明n =k -1时命题也成立,则这个命题对一切正整数n 都成立.证明:反证法.假设该命题不是对于一切正整数都成立.令A 表示使该命题不成立的正整数作成的集合,那么A ≠∅.任取a A ∈,由条件(1)知必有正整数b >a ,使()P b 成立.令这样的正整数b 组成的集合为B .因为集合B ≠∅,故必有最小数,设这个最小数为m ,显然m >1,由条件(3)知:(1)P m -成立,由a 的取法知:3、数学归纳法的应用数学归纳法作为一种证明方法有着广泛的应用,它不仅可以用来证明与自然数n 有关的初等代数问题,在高等数学、几何学、离散数学、概率论甚至物理、生物、计算机等方面的应用也相当突出.在用数学归纳法解决以上问题时,不仅思路清晰、大大降低了问题的复杂性,又能找出相应的递推关系,非常有效.下面重点谈谈它在初等代数、高等数学、离散数学以及数学竞赛中的应用. 3.1.数学归纳法在初等代数中的应用数学归纳法在恒等式问题、整除问题、三角函数问题、数列问题以及不等式问题中均有着广泛的应用.例1.求证:3n +5n (n N +∈)能被6整除证明:(1)当n =1时,31+51⨯=6能被6整除,命题成立(2)假设n =k 时,命题成立,即3k +5k 能被6整除当n =k +1时,有3(1)k ++5(1)k +=(3k +32k +3k +1)+(5k +5) =(35k k +)+3(1)k k ++6 因为两个连续的正整数的乘积(1)k k +是偶数,所以3(1)k k +能被6整除 则(35k k +)+3(1)k k ++6能被6整除,即当n =k +1时命题也成立 综上所述,对一切正整数n 命题都成立.例2.已知在各项均为正整数的数列{}n a 中,它的前n 项和n S 满足n S =11()2n na a +,试猜想数列{}n a 的通项公式,并有数学归纳法证明你的猜想. 解:1S =1111()2a a + 21a ∴=1n a >0 1a ∴=12S =1a +2a =2211()2a a +即22a +22a -1=0又n a >0 ∴2a-13S =1a +2a +3a=1+(1+3a =331()a a +即23a+3a -1=0 又n a >0 ∴3a…猜想:n an N +∈)下面用数学归纳法证明这个猜想(1)当n =1时,1a=1,命题成立(2)假设n k =(1k ≥)时,k a1n k =+时,有:1k a +=1k S +-k S =1111()2k k a a +++-11()2k ka a +,即1k a +=1111()2k k a a +++-12=1111()2k k a a +++21k a +∴1k a +-1=0又n a >0 1k a +∴∴当1n k =+时,命题也成立.由(1)(2)可知:当n N +∈时,n a 例3:已知数列{}n b 是等差数列, 1b =1,1b +2b +…10b =145 (1)求数列{}n b 的通项公式n b (2)设数列{}n a 的通项n a =1log(1)nb +(a >0且1a ≠),记n S 是数列{}n a 的前n 项和,试比较n S 与11log 3a nb +的大小并证明你的结论. 解:(1)设数列{}n b 的公差为d 由题意知:1b =1;1b +10(101)2d -=145 解得:d =3 ∴n b =3n -2(2)由n b =3n -2知:n S =log (11)a ++1log (1)4a ++ (1)log (1)32a n +- =1log [(11)(1)4a ++ (1)(1)]32n +-而11log 3a nb +=log an S 与11log 3a nb +的大小,就是要比较1(11)(1)4++ (1)(1)32n +-的大小取n =1,有(1+1)取n =2,有1(11)(1)4++推测:1(11)(1)4++ (1)(1)32n +-()* (1)当n =1时,已验证()*式成立(2)假设n k =(k >1且k N +∈)时()*式成立.即1(11)(1)4++ (1)(1)32k +-则当1n k =+时,1(11)(1)4++…1(1)32k +-1(1)3(1)2k ++-1(1)31k ++=3231k k +-33332(31k k +-+=322(32)(34)(31)(31)k k k k +-+++=294(31)k k ++>0从而1(11)(1)4++…1(1)32k +-1(1)31k ++即当n =1k +时()*式也成立由(1)(2)知:()*式对任意正整数n 都成立于是当a >1时,n S >11log 3a n b +;当0<a <1时,n S <11log 3a nb +3.2.数学归纳法在高等数学中的应用证明是高等数学的一个重要的组成部分,它的重要性,不仅表现在数学命题需要严格的推理证明,才能确定其真实性,更重要的还在于通过数学证明有助于学生弄清命题的条件与结论之间的本质联系,加强对数学问题的认识,有助于学生深刻理解数学本质,养成严谨的思考问题的习惯,从而自觉掌握数学规律,从根本上提高分析问题和解决问题的能力.例4:如果对一切实数x 和y ,等式()f x y +=()f x +()f y 成立,试证对一切有理数r ,有()f rx =()rf x证:令x =y ,则由已知条件有: (2)f x =()f x +()f x =2()f x (3)f x =()f x +(2)f x =3()f x用数学归纳法可证,对一切自然数n 有()f nx =()nf x另外,对正分数p q (,p q 互质且q >1)有:()pf x =()f px =()p f q x q =()p qf x q()p f x q ∴=()()pf x q令x =y =0,有(0)f =2(0)f ∴(0)f =0接着令y =x -,有()f x +()f x -=0 ∴()f x -=-()f x 同理,对负数p q -(,p q 互质且p >0, q >1)有:()p f x q-=pq -()f x因此,可知对一切有理数r 命题成立. 例5.证明211arctan2n n ∞=⋅∑收敛 证:令n a =21arctan2n ⋅ 求出该数列的部分和n S 1S =1arctan22S =1arctan 2+21arctan 22⋅=2211222arctan111222+⋅-⋅⋅=2arctan 3 3S =1a +2a +3a =2S +3a =2arctan 3+21arctan 23⋅=3arctan 4猜想:n S =arctan 1nn +下面用数学归纳法证明: 假设1k S -=1arctank k-,将上式两边同时加上k a ,得: k S =1k S -+k a =1arctan k k -+21arctan 2k ⋅=23(221)arctan 21k k k k k -+-+=arctan 1k k + 证出等式在n =k 时成立. 因此n S =arctan1nn + 又lim 1n n n →∞+=1,arctan1=4π,证得级数211arctan 2n n ∞=⋅∑收敛 S =4π例6:证明:n D =cos 10012cos 100012cos 012cos aa aa=cos na证:对n 施第二数学归纳法 (1)当n =2时,cos 112cos a a=22cos a -1=cos2a(2)假设<n 时结论成立,则当n 时n D =cos 1012cos 10012cos 001aa a -+21cos n aD - =2n D --+12cos n aD -=cos(2)n a --+2cos cos(1)a n a ⋅- =cos(2)n a --+2cos[(2)]cos n a a a -+⋅=cos(2)n a --+2[cos(2)cos sin(2)sin ]cos n a a n a a a -⋅--⋅ =cos(2)n a --+22cos(2)cos 2sin(2)cos sin n a a n a a a -⋅--⋅⋅=2cos(2)(2cos 1)sin(2)sin 2n a a n a -⋅---⋅ =cos(2)cos 2sin(2)sin 2n a a n a a -⋅--⋅ =cos[(2)2]n a a -+=cos na3.3.数学归纳法在离散数学中的应用随着计算机科学的发展,离散数学在计算机的研究中的作用越来越大,而离散数学中(特别是图论中)的许多命题的论证,数学归纳法不失为一种行之有效的方法.例7.设R 是集合X 上的关系,则()t R =1i i R ∞==R ⋃2R ⋃3R ⋃…证明:用第一归纳法先证明1i i R ∞=⊆()t R ;(1)当n =1时,根据传递闭包定义R ⊆()t R ; (2)假设1n ≥时,nR ⊆()t R .设(,)x y ⊆1n R+,因为1n R+⊆n R ⋃R ,故必有某个c x ∈,使(,)x c ∈n R ,(,)c y ∈R由归纳假设,有(,)x c ∈()t R ,(,)c y ∈()t R ,即(,)x y ∈()t R 1n R+∴⊆()t R故对任意的自然数n ,有nR ⊆()t R ,因而1i i R ∞=⊆()t R再证()t R ⊆1i i R ∞=设(,)x y ∈1ii R ∞=,(,)y z ∈1i i R ∞=,则必存在整数,s t ,使得(,)x y ∈s R ,(,)y z ∈t R这样(,)x z ∈s R ⋃tR ,即(,)x z ∈1i i R ∞=∴1i i R ∞=是传递的由传递闭包的定义可知:()t R =1i i R ∞=例8:设T 为任意一颗完全二元树,m 为边数,t 为树叶数,试证明m =22t -,这里2t ≥证明:对树叶数t 进行证明当t =2时,结点树为3,边数m =2,故m =22t -成立假设t =k (2)k ≥时,结论成立,下面证明t =1k +时结论也成立由于T 为二元数,因此T 中一定存在都是兄弟结点12,v v ,设v 是12,v v 的父亲,在T中删除12,v v ,得到'T ,'T 仍为二元完全树,这时结点v 成为树叶,树叶数't =21t -+=11k +-=k ,边数'm =2m -由归纳假设知:'m ='22t -所以2m -=2(21)2t -+-,故m =22t -3.4.数学归纳法在中学竞赛中的应用我们知道中学数学竞赛里有的知识解决需要用的数学归纳法,它方便了我们的解题,下面举几个例子看看它在数学竞赛里是如何运用的.例9.数列{}n a 中有1a =2a =1,1n a +=1n a -+n a (2)n ≥,请你证明:n a =]n n -(这个数列叫做斐波那契数列,它的前12项是1,1,2,3,5,8,13,21,34,55,89,144)证明:(1)当1n =时,11522--=5(1)T ∴成立当2n =时,2211(]522+-=33(544+--=5(2)T ∴成立(2)假设n k =和1n k =+时,()T k ,(1)T k +都成立即k a ]k k -且1k a +11]k k ++- 则当2n k =+时,2k a +=k a +1k a +]k k -11]k k ++-(1(1k k +-+k k=221111[(()((]52222k k ⋅-⋅=2211[()(]522k k ++- (2)T k ∴+也成立.由(1)(2)可知:对一切正整数,n a =11()]522n n--恒成立. 例10.设x +1x =2cos θ(其中x 为复数),请用θ的三角函数式表示nx +1n x(n 是正整数),并用数学归纳法证明你的结论.解:(1)当1n =时,x +1x=2cos θ 当2n =时,2x +21x=21()2x x +-=22(2cos 1)θ-∴2x +21x=2cos2θ当3n =时,3x +31x =22111()()()x x x x x x++-+=2cos 2cos22cos θθθ⋅-=2cos32cos 2cos θθθ+- =2cos3θ 猜想:nx +1n x=2cos n θ (2)假设1n k =-时,1k x -+11k x -=2cos(1)k θ-n k =时,kx +1k x=2cos (2)k k θ≥ 那么1n k =+时,1k x ++11k x+=11111()()()k k k k x x x x x x --++-+=2cos 2cos 2cos(1)k k θθθ⋅--=2cos(1)2cos(1)2cos(1)k k k θθθ++--- =2cos(1)k θ+ (1)T k ∴+成立由(1)(2)知,对一切n 恒有nx +1n x=2cos n θ(其中n 为正整数) 4、对数学归纳法的认识数学归纳法有时也叫逐次归纳法或者完全归纳法.前面两种叫法最早见于英国数学家德摩根1838年所写的《小百科全书》的引言中.因为在使用这个方法论证的时候,有一个形式上的归纳步骤,即确证命题对于第一项为真时,并由此归纳得出命题对于第n 项为真,“这个和通常的归纳程序有极其相似之处”.所以德摩根赋予它“逐次归纳法”的名称.也许是由于这种方法主要被用来数学中的证明的缘故.在《引言》的结尾处,德摩根又提出“数学归纳法”这个名称.比起逐次归纳法,人们似乎更喜欢数学归纳法,因为后者更能表明它论证的可靠性.此后,1887年,德国数学家戴德金又称此法为“完全归纳法”.有一个时期,这个叫法在德国很流行,后来由于逻辑学上完全归纳法专指“从列举对应的一切特殊的前提中,推出关于全部对象的一般结论的一种推理方法”,所以与“数学归纳法”不完全等价了.虽然数学归纳法和普通归纳法有着相似之处,但本质是完全不同的.归纳法常常是通过简单的枚举而没有碰到矛盾事实出发的.在这种方法里,它的前提只是已被考察过的部分对象的属性,而结论却是关于同类对象全体的.因此,由归纳所得出的结论并不一定是可靠的.比如,从1到40个自然数中,归纳出素数公式是“n 2-n+41”,这个公式对于n=1,2,…,40是正确的,可是当n=41时,得出的412确不是素数,看来归纳法不能用来作为严格的、科学的证明,仅能帮助我们从需要情况的考察中揭露并找出一般的规律性.然而,数学归纳法则不同,它的基础是递归推理原理,隐含着推向无穷的可能.由于数学归纳法包括着一串有穷多个三段论,每一个三段论自身都是一致的,所以从一定意义上说它又是古典演绎逻辑的一种发展了的形式,其严密性与演绎推理相同.庞加莱很彻底地指出了普通归纳法和数学归纳法的本质区别.他说:“我们必须承认,这(数学归纳法)和通常的归纳法程序有极其相似的不同,归纳法,当其应用于自然科学时,常是不确定的,因为它的基础是相信宇宙中有一种普通顺序,一种在我们之外的顺序.相反,数学归纳法,即递归证法,把自身视为一种必然,因为它不过是心灵本身的一种性质……”庞加莱十分推崇数学归纳法,称它“是数学中全部优点的根源”,“我们只能循着数学归纳法前进,只有它能交给我们新的东西.如果没有这种与自然(普通)归纳法不同但却同样极为有用的归纳法的帮助,演绎法是无法去创造出一种科学来的."应该说数学归纳法早就被明确提出并广泛应用了,它在数学中的地位已经完全确立.其实不然,仔细想来,数学归纳法的逻辑基础仍然是不明确的.数学归纳法是说“一个对1真的命题,如果它对任一数为真的,对其后继数也为真,则这个命题对于一切数都是真的.”人们不禁要问,何以断定每一个数都有后继数呢?这个问题不解决,自然也就谈不到数学归纳法的可靠性,所以归纳法的逻辑基础问题,与自然数理论密切联系.有趣的是,数的推展是由自然数向着有理数、实数、复数的方向进行的;然而,数的逻辑基础的奠定却循着一个相反的方向.自然数理论建立以后,与有理数数论一起建立起来的.1889年,意大利数学家皮亚诺发表《算数原理新方法》,他从不经定义的“集合”、“后继者”以及“属于”等概念出发,建立起关于自然数的五条公理,即:(1)1是自然数;(2)1不是任何自然数的后继者;(3)每一个自然数a 都是一个后继者;(4)若a 和b 的后继者相等,则a 和b 也相等;(5)(归纳公理)若有一个由自然数组成的集合S 含有1,又若当S 中含有一个数a 时,它一定也含有a 的后继者,则S 就含有全部自然数.这样,皮亚诺不仅以公理的形式保证了一个数的后继者的存在,而且为用数学归纳法推证的结果对全体自然数的有效性作了保证.皮亚诺把数学归纳法原理奠基在下述事实的基础上:在任一整数a 之后接着便有下一个a+1,从而从整数1出发,通过有限次这种步骤,便能达到选定的整数n.自然数理论的简历,标志着数学归纳法逻辑基础的奠定,也是严格意义下的数学归纳法的进一步明确.对于数学归纳法的深入研究,重在运用它去解决或证明一些问题,在社会生活和自然科学中有着极其广泛的应用.例如在中学数学中的许多重要定理或结论都可以用数学归纳法来证明.比如等差数列、等比数列的通项公式以及二项式定理.当然,我们在重视它的应用的同时,也不要忘记它的审美价值和哲学价值.数学是自然界中所有美的集合,也是哲学辩证思维和逻辑思维的重要组成部分.5.数学归纳法在应用中要注意的问题5.1在应用第一数学归纳法时,只有第2步而无第1步的证明可能导致错误.例11.设n =k ,等式2+4+…+2n =2n +n +1成立,即:2+4+…+2k =2k +k +1(1)两边同时加上2(1)k +,则有:2+4+…+2(1)k +=2(1)k ++(1)k ++1成立,即:如果n =k 时,等式(1)成立,则n =k +1时,等式也成立.由此得出结论:对于一切自然数n ,等式(1)是成立,这是错误的.因为n =1时,有2=3的错误. 5.2在应用第一数学归纳法时,只第1步骤而无第2步骤的归纳证明可能导致错误的结论.例12.在函数()f n =2n +n +17中,由(1)f =19,(2)f =23,(3)f =29,…,(15)f =257等都是质数,便说:“n 为任何自然数时()f n =2n +n +17的值都是质数”便是错误的.因为:(16)f =216+16+17=16(16+1)+17=17(16+1)=217=289就不是质数如果缺少了第2步,则不论对于多少个自然数来验证命题()T n 的正确性,都不能肯定命题对所有自然数都正确.例如:歌德巴赫猜想“对于不小于6的偶数都可以表示成两个质数之和”,虽然对大量偶数进行了具体验证,但因缺少第2步归纳递推,所以仍只停留在归纳的第1步,至今只是个猜想而已.第2步在证明(1)T n +为真时,一定要用到归纳假设,即要由()T n 为真,推出(1)T n +为真;或由“0()T n ,0(1)T n +,…,(1)T k -为真,推出()T k 为真”的实质蕴含真正体现出来,否则不是数学归纳法证明.5.3并不是凡与自然数相关的命题()T n 都要用数学归纳法来证明,而且也不是所有这类命题都能用数学归纳法给以证明的.结 束 语数学归纳法是一种常用的不可缺少的推理论证方法,第一数学归纳法与第二数学归纳法在数学的证明中经常用到,而反向归纳法在数学的证明中不是很常见.通过数学归纳法去证明与自然数有关的命题,可降低证明过程中的复杂性,使推理过程简单、清晰、也保证了推理的严谨性.正如华罗庚先生在《数学归纳法》一书中提到的:“数学归纳法整数体现了人的认识从有限到无限的飞跃.”参考文献[1]吉米多维奇,数学分析习题集题解[M],济南,山东科学技术出版社,1983.[2]王仁发,代数与解析几何[M],长春,东北师范大学出版社,1999年9月第一版.[3]北京大学数学系几何与代数教研室代数小组编,《高等代数》(第三版).高等教育出版社.[4]左孝凌等《离散数学》[M],上海科学技术文献出版社,1982.[5]卢开澄,卢明华,图论及其应用[M],北京,清华大学出版社1995.[6]KAWAHIGASHIY.Generalized Longo-Rehren subfactors and A-induction[J],Comm Math Phys,2002,26(2),269-287[7]苏淳《数学奥赛辅导丛书,漫谈数学归纳法》[M],中国科学技术大学出版社,2009.4Mathematical induction application in problem solvingAuthor: Guan guoce Supervisor: Zhang ShengAbstract Mathematical induction is a kind of common methods of proof.In the proof of many mathematics problems ,it has the function which cannot be replaced by other methods,it has broad prospects even in physics,biology and so on.This paper firstly state the theoretical basis of Mathematical induction and its form of expression,then mainly discuss the Mathematical induction in elementary mathematics,higher mathematics,discrete mathematics and the application of mathematical contest through some representatively typical examples.Finally give an account of the cognition to Mathematicalinduction in detail and the problem when using it.Keywords Mathematical induction sequence determinant discrete mathematics tree mathematical contest。
数学归纳法在初等数学中的应用
龙源期刊网 数学归纳法在初等数学中的应用作者:刘玮来源:《考试周刊》2013年第29期摘要:在数学教学中,在培养学生演绎推理能力的同时要重视合情推理能力的培养,与之对应的是归纳、猜想的思想和数学归纳的方法.运用数学归纳法证明,能起到化繁为简的作用,有助于培养学生的观察、猜想与归纳的合情推理能力.关键词:数学归纳法中学数学教学合情推理演绎推理数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法.运用数学归纳法处理问题,能起到化繁为简的作用,有助于培养学生的观察、猜想与归纳的合情推理能力.在实际教学中,教师对数学归纳法的讲授和应用多停留在数列、恒等式和不等式相关问题上.其实数学归纳法在中学数学中的应用远不止于此,它还可用来解答或证明整除性、三角函数和几何等方面的问题.1.数学归纳法在整除性问题上的应用3.数学归纳法在平面几何中的应用例3:平面内有n个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,求证:这n个圆把平面分成n■-n+2个部分.分析:用数学归纳法证明几何问题,主要是搞清楚当n=k+1时比n=k时,分点增加了多少,区域增加了几块.本题中第k+1个圆被原来的k个圆分成2k条弧,而每一条弧把它所在的部分分成了两部分,此时共增加了2k个部分,问题得到了解决.证明:①当n=1时,平面内1个圆把平面分成2个部分.4.在函数迭代中的应用数学归纳法在中学数学中用途甚广,可是实际上学生对数学归纳法并不能做到熟练运用,通常仅限于数列和函数方面的应用.由此导致学生在真正运用数学归纳法处理问题时常出现两个比较重大的错误:一是弄不清第二步到第三步的具体变化,二是在证明时根本没有运用到第二步的假设.因此,教师要对数学归纳法在中学数学中各个方面的应用进行深入探讨,把握规律,方能做到在教学中胸有成竹,成功地引导学生掌握归纳猜想的思想和相应的数学归纳法.。
数学论文 浅谈数学归纳法的应用
浅谈数学归纳法的应用数学归纳法是证明与自然数有关的命题的一种方法,应用广泛.在最近几年的高考试卷中体现的特别明显,以下通过几道高考试题来谈一谈数学归纳法的应用。
一、用数学归纳法证明整除问题用数学归纳法证明整除问题时,由到时,首先要从要证的式子中拼凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除,这是数学归纳法证明问题的一大技巧。
例1、是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意自然数n 都能被m 整除?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由.证明:解:由f (n )=(2n +7)·3n +9,得f (1)=36, f (2)=3×36, f (3)=10×36, f (4)=34×36,由此猜想m =36.下面用数学归纳法证明:(1)当n =1时,显然成立.(2)假设n =k 时, f (k )能被36整除,即f (k )=(2k +7)·3k +9能被36整除;当n =k +1时,[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k --1-1),由于3k -1-1是2的倍数,故18(3k -1-1)能被36整除.这就是说,当n =k +1时,f (n )也能被36整除.由(1)(2)可知对一切正整数n 都有f (n )=(2n +7)·3n +9能被36整除,m 的最大值为36.二、用数学归纳法证明恒等式问题对于证明恒等的问题,在由证等式也成立时,应及时把结论和推导过程对比,也就是我们通常所说的两边凑的方法,以减小计算的复杂程度,从而发现所要证明的式子,使问题的证明有目的性.例2、是否存在常数c b a ,,,使得等式)(12)1()1(32212222c bn an n n n n +++=+•++•+•对一切自然数n 成立?并证明你的结论.解:假设存在c b a ,,,使得题设的等式成立,则当时3,2,1=n 也成立,代入得⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=++=c b a c b a c b a 3970)24(2122)(614 解得10,11,3===c b a ,于是对3,2,1=n ,下面等式成立:)10113(12)1()1(32212222+++=+•++•+•n n n n n n 令222)1(3221+•++•+•=n n S n假设k n =时上式成立,即)10113(12)1(2+++=k k k k S k 那么21)2)(1(+++=+k k S S k k 22)2)(1()10113(12)1(++++++=k k k k k k2)2)(1()53)(2(12)1(++++++=k k k k k k )101253(12)2)(1(2+++++=k k k k k ]10)1(11)1(3[12)2)(1(2++++++=k k k k 这就是说,等式当1+=k n 时也成立.综上所述,当10,11,3===c b a 时,题设的等式对一切自然数n 都成立. 三、用数学归纳法证明不等式问题用数学归纳法证明一些与n 有关的不等式时,推导“n =k +1”时成立,有时要进行一些简单的放缩,有时还要用到一些其他的证明不等式的方法,如比较法、综合法、分析法、反证法等等.例3.已知函数).1(13)(-≠++=x x x x f 设数列n a {}满足)(,111n n a f a a ==+,数列n b {}满足).(|,3|*21N n b b b S a b n n n n ∈+++=-=(Ⅰ)用数学归纳法证明12)13(--≤n n n b ; (Ⅱ)证明.332<n S 证明:解:(Ⅰ)证明:当.1121)(,0≥++=≥x x f x 时 因为a 1=1,所以*).(1N n a n ∈≥下面用数学归纳法证明不等式.2)13(1--≤n nn b (1)当n=1时,b 1=13-,不等式成立,(2)假设当n=k 时,不等式成立,即.2)13(1--≤k kk b 那么 kk k k a a a b +--=-=+-1|3|)13(|3|11.2)13(2131k k k b +-≤-≤ 所以,当n=k+1时,不等也成立。
浅谈数学归纳法的应用数学毕业论文
I浅谈数学归纳法的应用摘要数学归纳法是一种非常重要的数学方法,它不仅对我们中学数学的学习有着很大的帮助,而且在高等数学的学习及研究中也是一种重要的方法,数学归纳法对公式的正确性检验中也有着很大的应用。
数学归纳法是将无限化为有限的桥梁,主要探讨关于自然数集的有关命题或者恒等式,数学归纳法在中学数学中的整除问题,恒等式证明,公理证明,排列和组合,几何领域等都有着广泛的应用,这里我们主要结合初中教材来详细列举数学归纳法在中学数学以及在高等数学中的应用。
要准确的运用数学归纳法,首先必须准确的理解其原理和意义以及熟练地掌握解题步骤,而在三个步骤中运用归纳假设尤为关键,运用归纳假设推出猜想最为重要。
最后我们在通过用数学归纳法证明一些数学问题的过程中,可以更加深刻理解和掌握“归纳——猜想——证明”这一探索发现的思维方法。
关键词:归纳法,数学归纳法,证明II the Application of Mathematical InductionABSTRACTMathematical induction is a very important mathematical method, it not only of the middle school mathematics learning has the very big help to us, but in the higher mathematics study and research is also a kind of important method, mathematical induction test the correctness of the formulas is also has a lot of applications. Mathematical induction is a bridge to infinite into a limited, mainly discusses about the relevant propositions or identities of natural number set mathematical induction method in middle school mathematics problem of divisible identities are proved, axiom proves that the permutation and combination, geometric field, has a wide range of applications, here we mainly combined with junior high school textbooks to detailed mathematical induction method in middle school mathematics and application in advanced mathematics. To use mathematical induction accurate, it must first be accurately understand its principle and the significance as well as expertly grasp the problem solving steps, and in three steps, it is important to use inductive hypothesis, using the induction hypothesis launch a guess that the most important. Finally we through use mathematical induction to prove some math problems in the process of, can be more profound understanding and mastering "induction - guess - proof" theIII discovery of thinking method.KEY WORDS: induction method, mathematical induction, proof目录1 绪论 (1)1.1 引言 (2)1.2 数学归纳法的来源 (2)2 数学归纳法的概述 (4)2.1 常用数学证明方法 (4)2.1.1 演绎法 (4)2.1.2 归纳法 (4)2.2 数学归纳法基本原理及其其它形式 (5)2.2.1 数学归纳法概念 (5)2.2.2 数学归纳法的基本原理 (5)2.2.3 数学归纳法的其它形式 (7)3 数学归纳法的步骤 (9)3.1 数学归纳法的步骤 (9)3.2 三个步骤缺一不可 (10)4 数学归纳法的典型应用 (13)4.1证明恒等式 (13)4.2 证明不等式 (15)4.3 证明整除问题 (18)IV4.4 证明几何问题 (19)4.5 行列式与矩阵的证明 (19)5运用数学归纳法时容易出现的错误分析 (22)5.1 忽略了归纳奠定基础的必要性 (23)5.3 在第二步证明中没有利用归纳假设 (24)6 应用数学归纳法时的一些技巧 (25)6.1 灵活选取“起点” (25)6.2 恰当选取“跨度” (26)6.3 选取合适的假设方式 (27)6.3.1 以“假设n k=时成立” (27)£时成立”代替“假设n k6.3.2 以“假设n k=+时成立”代替“假设n k=时成立”28n k=,17 数学归纳法的地位和作用 (30)致谢 (31)参考文献 (33)浅谈数学归纳法的应用11 绪论在高中数学教科书中,我们已经学习过数学归纳法,在高中阶段,学生主要是通过了解数学归纳法的证明三步骤来模仿证明其他表达式的成立,学生也往往满足于“k时命题成立,那么1+k时命题也成立”的证明方法。
数学归纳法在中学数学教学中的应用
浅谈数学归纳法在中学数学教学中的应用摘要:数学归纳法是一种十分重要的数学论证方法,常用于与正整数有关命题的证明。
本文是从数学归纳法的概念、正确的应用数学归纳法、灵活的应用数学归纳法来说明数学归纳法在中学数学教学中的应用。
关键字:数学归纳法;正确、灵活的应用引言数学归纳法是一种十分重要的证明方法,在数学学习中的应用十分广泛,而首先使用数学归纳法的是意大利数学家马奥罗修勒斯,他在1575年的著作《算术》中,用数学归纳法证明了前n 个正奇数之和是2n 。
正是有了这个方法,我们在中学的数学学习中,数学归纳法被广泛用来解决一些数列、不等式、整除等问题。
一、数学归纳法的概念在介绍什么是数学归纳法的之前,我们先来看看我国著名数学家华罗庚是这样评价数学归纳法的:“把数学归纳法学好了,对进一步学好高等数学有帮助,甚至对认识数学的性质,也会有所裨益。
[1]”由此可见数学归纳法是多么重要,那么究竟什么是数学归纳法呢?数学归纳法就是数学上证明与自然数N 有关的命题的一种特殊方法,它主要是从特殊到一般的思想,它使我们能够在一些个别事例的基础上,对某个普遍规律做出判断,作为证明某些与自然数有关的命题的一种推论方法,在解数学题中有着广泛的应用。
在高中数学中常用来证明等式成立和数列通项公式成立。
那么用数学归纳法论证的一般步骤是什么呢?第一步是证明命题0n n =时成立,这是递推的基础;第二步是假设在n k =时命题成立,再证明当1n k =+时命题也成立,这是无限递推下去的理论依据。
而数学归纳法所依据的数学公理是意大利数学家皮亚诺提出的皮亚诺自然数公理的的第五条(归纳公理):任意一个自然数集合N ,1属于N ;假定N 包含n ,N 也一定包含后继数n ',则N 包含所有自然数。
[2]归纳公理用准确的逻辑术语表达了自然数的性质,这是数学归纳原理的数学依据。
从1开始,一个一个地选取可以达到任意自然数。
这样一下子把整个自然数的无穷集合引入到论证中去,从而清楚地阐明了,为什么数学归纳法只用证两步,命题就被证明了。
初等数论潘承洞答案
初等数论潘承洞答案【篇一:初等数论与中学数学】摘要:《初等数论》是数学与应用数学、数学教育专业的一门专业基础课,主要研究整数的性质,历史上遗留下来没有解决的大多数数论难题其问题本身容易搞懂,容易引起人的兴趣,但是解决它们却非常困难。
近年来,数论在中学数学中的运用越来越多,特别是在中学的数学竞赛中运用极为广泛。
本文主要介绍初等数论在中学数学中的应用以及初等数论与中学数学教学的相关问题。
关键词:初等数论中学数学数学竞赛中学数学教学正文:一、初等数论在中学数学中的应用在中学数学中,整数是最为常用的一种数之一,而初等数论是研究整数最基本的性质,与算术密切相关的一门学科,初等数论可以说是算术问题的延深。
初等数论中的整除性质,抽屉原理等一直是中学数学竞赛最热门的话题,由此可见初等数论在中学数学中的应用是极为广泛的。
(一)中学数学中与初等数论相关的几个问题1、整除问题在小学的时候我们就知道,要知道一个数能不能被令一个数整除,可以用长除法来判断,但当被除数位数较多的时候,计算量增大,问题就变得非常麻烦了。
但在学习了初等数论之后问题会得到大大的简化。
1.1整除的概念及其性质定义1(整除)设a、b是整数,b≠0,如果存在整数q,使得a=bq 成立,则称b整除a,或a能被b整除,记作:b∣a。
定理1 (传递性)b∣a,c∣b =〉c∣a定理3 m∣a1,……,m∣an,q1,q2,……qn∈z=〉m∣(a1q1+a1q2+……+anqn)定理4 设a与b是两个整数,b0,则存在唯一的两个整数q和r,使得a=bq+r,0≤rb (1)并称q为a被b除所得的不完全商;r叫做a被b除所得的余数;(2)式称为带余数除法。
1.2下面举几个例子:例1 证明3∣n(n+1)(2n+1),这里的n是任意整数。
证法一:根据题意,n可以写成n=3q+r,这里r=0,1,2,q为整数,对取不同的值进行讨论,得出结论。
证法二:根据整数定义,任何连续三个整数的乘积必是3的倍数。
数学归纳法在中学数学证明中的应用本科毕业论文(可编辑)
摘要数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,同时也是数学命题证明的一种数学思想.针对与自然数有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等的证明,在中学数学课堂教学及证明中具有广泛的运用,本文对它在中学数学不同类型证明中作简要分析,目的在于培养学生观察能力、逻辑思维能力、形象思维以及解决整体性问题的能力.数学归纳法作为由特殊概括出一般的一种思维方法,具有两种基本意义,首先数学归纳法是一种推理方法,称为归纳推理,它可以为我们提出猜想,为论证提供基础和依据.其次归纳是一种研究方法,归纳是一种又创造性的探索式思维方法,能开发智力,拓宽思路,引出猜想,它在发现问题和探索解题途径的过程中起着重要作用.数学归纳法可按照它的概括事物是否完全分为两种基本形式??不完全归纳和完全归纳.本文还介绍了在数学解题过程中归纳发现的思考方法:利用归纳法发现和提出数学猜想,利用归纳法发现问题的结论,运用归纳法发现解题途径等.关键词:数学归纳法;不完全归纳法;完全归纳法;中学数学;应用AbstractMathematical induction is a kind of reasoning methods, which is used to prove some propositions related mathematical natural number, it is also a kind of mathematical proposition proof mathematical thoughts. According to the concerned with natural number , algebraic inequalities identities, triangular, inequality series problem, geometry problems, division of sexual problems ,it has widely applied to the classroom teaching and proof in high school. As different mathematical inductions have different types of proof in middle school, this paper makes a brief analysis aims to cultivate the students' observation, logical thinking ability, visual thinking and solving integrity question ability. Mathematical induction, as summarized by the general as a special way of thinking, has two basic meanings, the first mathematical induction is a kind of reasoning, known as inductive reasoning, it can bring up us suppose ,Provide the basis and foundation for the argument. Second, induction is a research method, induction is a creative exploration of another type of thinking, can develop intelligence, broaden thinking,leads to speculation, it plays an important role in finding the problem and ways to explore the process of problem solving. Mathematical induction, in accordance with its general matter is completely divided into two basic forms - incomplete induction and complete induction. This article also describes the process of mathematics problem solving way of inductive methods of discovery: using mathematical induction to find and put forward mathematical suppose, using induction to find conclusions of the problems, using induction to find problem-solving approach.Keywords: mathematical induction;mathematics of middle school;application目录第1章绪论 1第2章数学归纳法的概述 12.1 数学归纳法的来源12.2 数学归纳法原理 22.3 数学归纳思想??从特殊到一般 22.4 数学归纳思想??递推思想 22.4.1 什么叫推理? 22.4.2 推理的形成 32.4.3 数学归纳法的形式 3第3章数学归纳法应注意的几个问题33.1 应认真领会数学归纳法的实质 43.2 与自然数有关的具体命题内容的理解 43.3 对数学归纳法原理的理解 4第4章数学归纳法在几种命题中的应用举例 54.1 运用数学归纳法证明数列问题 54.2 运用数学归纳法证明不等式问题 54.3运用数学归纳法证明几何问题 64.4运用数学归纳法证明整除性问题74.5运用数学归纳法证明三角恒等式问题8第5章数学归纳法在中学数学中的地位和作用8第6章结束语9致谢9参考文献9第1章绪论数学归纳法是数学中一种重要的证明方法,用于证明与自然数有关的命题.一旦涉及无穷,总会花费人们大量的时间与精力,去研究它的真正意义.数学归纳法这个涉及“无穷”而无法直观感觉的概念,自然也需要一个漫长的认识过程.一般认为,归纳推理可以追溯到公元前6世纪的毕达哥拉斯时代.毕达哥拉斯对点子数的讨论是相当精彩的.他由有限个特殊情况而作出一般结论,具有明显的推理过程,但这些推理只是简单的列举,没有涉及归纳结果,因此是不完全的归纳推理.完整的归纳推理,即数学归纳法的早期例证是公元前3世纪欧几里得《几何原本》中对素数无限的证明.其中已经蕴含着归纳步骤和传递步骤的推理.16世纪中叶,意大利数学家莫罗利科F?Maurolycus对与自然数有关命题的证明进行了深入的研究.莫罗利科认识到,对于一个与自然数有关的命题,为了检验其正确与否,若采取逐一代入数进行检验的方法,那不是严格意义上的数学证明,要把所有的自然数都检验一遍是不可能做得到的[1],因为自然数有无穷多个.那么对于这类问题该如何解决呢?1575年,莫罗利科在他的《算术》一书中,明确地提出了“递归推理”这个思想方法.法国数学家B?帕斯卡Pascal对莫罗利科提出的递归推理思想进行了提炼和发扬.在他的《论算术三角形》中首次使用数学归纳法,并用其证明了“帕斯卡三角形”--项展开式系数表,中国称为“贾宪i角性”或“杨辉三角形”等命题.“数学归纳法”这一名称最早见于英国数学家A.德?摩根1838年所著的《小百科全书》的引言中.德?摩根指出“这和通常的归纳程序有极其相似之处”,故赋予它“逐次归纳法”的名称.由于这种方法主要应用于数学命题的证明,德?摩根又提出了“数学归纳法”这个名称.虽然数学归纳法早就被提出并广泛应用了,一直以来它的逻辑基础都是不明确的.1889年意大利数学家皮亚诺G.Peano 建立了自然数的序数理论,将“后继”作为一种不加定义的基本关系,列举了自然数不加证明的五条基本性质,其中归纳公理便为数学归纳法的逻辑基础.至此,数学归纳法有了严格的逻辑基础,并逐渐演变为一种常用的数学方法.我国著名的数学家华罗庚曾说:“把数学归纳法学好了,对进一步学好高等数学有帮助,甚至对认识数学的性质,也会有所裨益.”数学归纳法是数学中一种证明与自然数有关的数学命题的重要方法,已知最早的使用数学归纳法的证明出现于Francesco Maurolico 的Arithmeticorum libri duo 1575年[2].Maurolico 证明了前个奇数的总和是,最简单和常见的数学归纳法证明方法是证明当属于所有自然数时一个表达式成立.它是一个递推的数学论证方法,论证的第一步是证明命题在或时成立,这是递推的基础;第二步是假设在时命题成立,再证明时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限.这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或且)结论都正确[2].宏观来看,数学归纳法看似单一,可看作一个公式来证明命题,实则不然,它要求学生掌握必备的知识与技能,同时还要有一定的逻辑思维能力等.最后我们通过运用数学归纳法的了解和运用数学归纳法解决一些与自然数有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等的证明,最终熟练掌握“归纳??猜想??证明[2]”这一思维方法,这也是中学数学课堂教学的一项重要内容.第2章数学归纳法的概述数学归纳法作为数学命题证明中的一种重要方法,有其独特的历史来源、基本原理、推理思想以及固定模式.2.1 数学归纳法的来源数学归纳法来源于皮亚诺(peano)自然公理[4],其用非形式化的方法叙述如下:(1)1是自然数;(2)每一个确定的自然数都有一个确定的后继数,记作或,也是自然数;(3)如果、都是自然数,那么 ;(4)1不是任何自然数的后继数;(5)如果一些自然数的集合S具有性质:11在中;2若在中,则也在中.那么公理中(5)就为数学归纳法提供了依据,保证了数学归纳法的正确性,从而被称为归纳法原理.2.2 数学归纳法原理不同的领域数学归纳法有不同的形式,在中学数学中,数学归纳法原理有以下两种基本形式[4]:1)第一数学归纳法设是一个关于正整数的命题,如果(1)成立奠基;(2)假设成立,可以推出成立归纳;那么,对一切大于等于的自然数都成立.2)第二数学归纳法设是关于自然数的命题,若(1),()成立奠基;(2)假设 ,成立,则成立归纳;那么,,成立.两种数学归纳法都是分两步完成,第一步是推理的过程,第二步是递推的依据.也就相当于是对一切自然数,命题成立的话,那么后面的一个自然数都满足命题成立[4].即在前一个命题成立的前提下,后一个命题就一定成立.这样依次递推下去就有了命题对任意(,成立.这也就将有限的问题转化为无限次的验证过程了,体现了数学归纳法由无限到有限的转化.2.3 数学归纳思想??从特殊到一般“从特殊到一般”与“由一般到特殊”乃是人类认识客观世界的一个普遍规律,而在人类探索世界奥秘的奋斗中诞生和发展起来的任何一门学科,都将受到这一规律的制约.数学当然也不例外,同样要被纳入这一规律的模式之中.由于事物的特殊性中包括着普遍性,即所谓共性存在于个性之中,而相对于“一般”而言,特殊的事物往往显得简单、直观和具体,并为人们所熟知.另一方面,由于“一般”概括了“特殊”,“普遍”比“特殊”更能反映事物的本质,因而当我们在处理问题的时候,若能置待解决的问题于更为普遍的情形中,进而通过对一般情形的研究去处理特殊情形的思考方式,不仅是可行的,而且是必要的.正因为如此,实践和归纳成了数学家寻找真理和发现真理的主要手段.如勾股定理,多面体的面顶棱公式,前个自然数的立方和公式,二项展开式和杨辉三角形等,无一不是观察、实验和归纳的结果.伟大的数学家欧拉曾说“数学这门科学,同样需要观察、实验”.无独有偶,大数学家高斯也曾说过,他的许多定理都是靠归纳法发现的,证明只是一个补行的手续.纵观古今,科学的发展史其实也是一部观察史、一部猜想史,更是一部论证史.数学的发展更是这样的.科学结论的得到大致包含以下几个阶段:观察、实践→推广→猜测一般性结论→论证结论.而数学归纳法恰恰是论证结论的最佳方法.这与数学大师所说的“先从少数的事例中摸索出规律来,再从理论上论证这一规律的一般性,这是人们认识自然的客观法则之一”的观点大致相同.2.4 数学归纳思想??递推思想[5]数学归纳法独到之处便是解决了有限与无限这一矛盾,即运用了有限个步骤解决无限多种数学情况,实现这一目的的工具就是递推思想.递推也就存在推理,既然是推理的过程,那就为数学归纳法奠定了基础,那推理是如何体现数学归纳法的呢?2.3.1 什么叫推理?由旧知识通过实践、推理、验证,得出新知识的过程就叫推理[5].2.3.2 推理的形成:1°大前提:认可一些事理2°小前提:和大前提相关的一些特殊事实3°结论:依据大小前提做出判断以上就是我们所说的三段论法,就推理思维方式的不同得出归纳法的定义,也就是有特殊到一般的推理就是数学归纳法.2.3.3 数学归纳法的形式对可数的事物要证其具有某种共有的性质,不可能一一加以证明,这时就需要用数学归纳法.原理[5]:将可数事物按自然数的系列排列为:,,若 1°具有性质;2°在该系列中有遗传性,即:当有性质时,必有性质,则自以后的都具有性质.步骤[6]:1°将研究对象按自然数系列对应的顺序排列;2°证明命题对系列的首项来说为真;3°假定命题对系列中任意指定项都为真;4°证明其后一项也为真;5°作出判断,得出结论.数学归纳法就推理证明的过程是很简单明了的,只要涉及与自然数有关的命题证明,很容易反应到数学归纳法的思想,可推理和证明的三段式理论真正掌握,还得有其独特的推理过程及逻辑结构.它要求学生掌握必备的知识与技能,在利用数学归纳法证题时,就存在各种技巧上的应用,同时数学归纳法的难点还是在于运用这种整体思想来穿插于其他不同类型的证明方法上[7].因此我们对于数学归纳法的理解和应用上还得给予足够的重视,证法单一,运用却十分广泛.第3章数学归纳法应注意的几个问题数学归纳法是中学数学中的一种重要的证明方法,它在中学数学中占有很重要的地位.对于初学者来说这部分内容学起来虽困难不大,它呈现出固定的程式,人们一般容易简单模仿,而在具体问题的运用中就会出现力不从心,错误百出,在应用数学归纳法证明题目时,就容易出现许多问题,值得注意.3.1 应认真领会数学归纳法的实质数学归纳法由“奠基”和“归纳”两步组成,在归纳过程中必须用到“归纳假设”.对数学归纳法递推思想证明与自然数有关的数学问题时,不仅要掌握一定的知识背景,同时还应具备一定的转化和技巧性[8],比如常用到得数学思想:放缩法、解析法等.现概括出数学归纳法推证步骤程序图[8]如图3-1:3.2 与自然数有关的具体命题内容的理解利用数学归纳法可以证明一类与自然数有关的数学命题,但不是只要与自然数有关的命题都可用数学归纳法求证,有时就具有可靠性的,“哥德巴赫猜想”的证明除我国数学家陈景润得以证明外,至今就没有哪位能用数学归纳法加以证明.同时,不是一切与自然数有关的命题用数学归纳法证就是最简捷,同样存在一定的局限性.图3-1 数学归纳法推证步骤程序图3.3 对数学归纳法原理的理解数学归纳法证明的第一步中的取值应该和题目条件确定的第一个自然数取值开始,有时不一定就是自然数1,还有情况下可能不只取一个,在一般的情况下,只要建立起递推的关系即可[11].在第二步中由归纳假设到推理的下一步是关键,这里我们需要注意的地方有两点:1°必须要用到归纳假设;2°在已有的归纳假设结论的基础上,根据具体问题和已有的知识链合理选取与问题相关的定理、公理、性质等加以论证.利用数学归纳法证明时,两个步骤缺一不可,即有第一步没有第二步或是只有第二步没有第一步的过程,对要验证的结论都不一定可靠,递推思想,先从一般开始入手,然后对有限的结论作假设,再推广到无限的假设进行验证,得出结论[6].形成以验证、假设、证明的过程,这样的推理验证才具有一定的可靠性.第4章数学归纳法在几种命题中的应用举例4.1 运用数学归纳法证明数列问题中学我们在学习数列时就与自然数有直接的关系,因此在求解数列问题的证明中就常常用到数学归纳法来证明.例1[9] 已知数列的通项公式,数列的通项满足,用数学归纳法证明.证明(1)当时,成立;(2)假设,则.即时命题成立.由(1)(2)得得证.例2 试证明:等差数列的前项和由下列公式表示:=+.证明:1、当时,公式是正确的,=.2、假设当时公式正确,即=+,当时,= .因此,对一切自然数的值,前项和公式都是成立的.点评在做此类型的题时容易出错的是:既然是任意的自然数,就是正确的,那么也是正确的,这很容易理解.可是一旦第二步假定出来,它就是一个固定的自然数了,所以说由的假设后,必须验证时命题也正确才可作出结论,这也就出现了数学归纳法问题的跨越,发生质的转变,也正是数学归纳法的精髓所在.4.2 运用数学归纳法证明不等式问题利用数学归纳法证明一些不等式的情形,常常需要我们利用一些等量转化或放大(缩小)不等式的方法来解决.例3 设=++…+ ,证明:.分析与自然数有关,考虑用数学归纳法证明.时容易证得,时,因为,所以在假设成立得到的不等式中同时加上,再与目标比较而进行适当的放缩求解.证明 (1)当时,=,+1=,=2 ,∴时不等式成立.(2)假设当时不等式成立,即:,当时,++,++= ,+=+++=.所以,即时不等式也成立.由(1)(2)得对所有的,不等式恒成立.例4[10] 设和.(n1)求证:证明:1、当时,因,,所以,即 ,命题显然成立.当时,由.可知命题也成立.2、假设当的时候命题成立,则当时, ,即,可以推出,故当时,命题成立,于是对于任意大于1的自然数,原不等式成立.点评用数学归纳法解决与自然数有关的不等式问题,注意适当选用放缩法.本题中分别将缩小成k+1、将放大成+的两步放缩是证时不等式成立的关键.为什么这样放缩,而不放大成+2,这是与目标比较后的要求,也是遵循放缩要适当的原则.4.3运用数学归纳法证明几何问题例 4[11] 平面内有条直线,其中任何两条不平行,任何三条不共点,求证:这条直线把平面分成个部分.证明 (1当=1时,一条直线将平面分成两个部分,而,∴命题成立.2假设当时,命题成立,即条直线把平面分成个部分,当时,即增加一条直线,因为任何两条直线不平行∴与条直线都相交有个交点;又因为任何三条不共点,所以这个交点不同于条直线的交点,且个交点也互不相同.如此这个交点把直线分成段,每一段把它所在的平面区域分为两部分,故新增加的平面分为.∴时命题成立.由(1),2)可知,当时,命题成立.4.4运用数学归纳法证明整除性问题例5[12] 当,求证:能被整除证明 1当时,能被整除,命题成立2假设时,命题成立,即能被整除当时,根据归纳假设,能被整除,又能被整除.∴ 11k+1+122k+1-1能被整除,即时,命题成立.由1,2命题时都成立.点评用数学归纳法证明有关数或式的整除问题时,要充分利用整除的性质,若干个数(或整式)都能被某一个数(或整式)整除,则其和、差、积也能被这个数(或整式)整除.在由时命题成立,证明命题也成立时.要注意设法化去增加的项,通常要用到拆项、结合、添项、减项、分解、化简等技巧4.5运用数学归纳法证明三角恒等式问题例6[13] 用数学归纳法证明:,分析本题第一步的验证要取,在第二步的证明中应在归纳假设的基础上正确地使用正切的和角公式证明 1当时,右边左边,等式成立2假设当时,等式成立,就是.点评本题在第2步的证明过程中使用了正切和差角的变形形式,即1,因此在用数学归纳法证明三角命题时,应针对时命题的特征,合理地选择和使用三角公式.证明三角恒等式时,常动用有关三角知识、三角公式及三角的变换法.4.6运用数学归纳法证明函数迭代问题一些比较简单的函数,它的n次迭代表达式,可以根据定义直接代入计算,归纳出一般规律后,再用数学归纳法予以证明.所以,直接求法的本质,就是数学归纳法.其中,关键是通过不完全归纳法,找出的一般表达式.例7 ,求.解:由定义,.,.一般地,由不完全归纳可猜测, .事实上,因为假定上式成立,则有,.所以,由数学归纳法知,对所有的自然数n都成立.例8 ,求.解:由定义,,,,一般地,可猜得,.假定上式成立,则有.由数学归纳法知,对所有自然数n都成立.第5章数学归纳法在中学数学中的地位和作用数学归纳法作为一种证明与自然数相关的论证方法,通常用来证明数学上的一些猜想,而这些猜想正式我们通过某种归纳方法所获得的.在中学数学证明中,它的地位和作用可从以下四个方面体现:1°从数学归纳法在教材中地位来看,教科书中多结论、公式、定理都可用数学归纳法来得到验证,如等比数列、等差数列以及求和公式,二项式定理的证明.一般与自然数有关的数学命题大多都可用数学归纳法来证.2°从给学生开阔视野的角度,在中学数学,数学归纳法主要用于证明题,给学生提供一个新的解题思路.3°从应试角度,数学归纳法是中学数学的必修课,也是考试必考的知识点,也是比较好拿分的知识点,还可以运用数学归纳法证明许多数学问题.4°从未来应用的角度,将来会涉及到计算机编程,数学归纳法是递归循环的简单形式,有利于学生今后理工科知识的理解和学习,为以后的高等代数等的学习打下良好基础.第6章结束语数学归纳法主要是针对一些与自然数的相关命题,所以在证明和自然数有关的命题中有着不可替代的作用,对于一些和自然数有关的长式子、繁式子都有化长为短、化繁为简的功效.用数学归纳法证明数学问题时,要注意它的两个步骤缺一不可,第一步是命题递推的基础,第二步是命题递推的依据,也是证明的关键和难点,两个步骤各司其职,互相配合,同时,数学归纳法的证明步骤与格式的规范是数学归纳法的特征,如时的假设是第二步证明的“已知”步,证明时一定要用到它,否则就不是数学归纳法,证三角恒等式时,常动用有关三角知识、三角公式以及三角的变换法.通过这些变换可以更容易的让命题得证.在证明时命题成立,要用到一些技巧,如:一凑假设,二凑结论,加减项、拆项、不等式的放缩、等价转化等,这些解题的技巧要在实践中不断总结和积累,总之要记住:“递推基础不可少,归纳假设要用到,结论写时莫忘掉”,这样我们才可以更好的运用数学归纳法.数学归纳法是一种重要的数学方法,也是中学数学的重难点之一,它在对于开阔眼界,训练推理能力等方面都有很大的帮助.在中学数学中,数学归纳法对于许多重要的结论,如等差数列、等比数列的通项公式与前项和公式,二项公式定理等都可以用数学归纳法进行证明,进而可以加深对教材以及知识的理解.当然不仅在中学数学中,在进一步学习高等数学的过程中,数学归纳法也是一种不可或缺的方法.致谢首先,要感谢我的指导老师何方国.在毕业论文和设计的完成过程中,何老师在百忙之中查阅和修改本论文,给予了很多悉心的指导,对论文的修改建议很细致,给予了很多完善论文的启发.通过与何老师问题的交流和整个论文的完成实现的过程,我在各个方面都得到了很大的提高,在这里,学生真诚地对何老师表示深深的感激与谢意.其次,还要感谢我的那帮可爱的同学们,在设计过程他们也给予了很多帮助,给予了我很多新奇的创意和开阔的思路,在此向她们表示感谢.参考文献[1]CajoriF.Orionof the Name“MathematicalInduction”[J].American Mathematical Monthly,1918,255:197,200.[2]史久一,朱梧?著.化归与归纳?类比?猜想.大连理工大学出版社,2008.[3]BusseyWH.The Ofin of Mathematical Induction[J].AmericanMathematicalMonthly,1917,245:200?202.[4] 蒋文蔚.数学归纳法[M].北京:科学出版社,2002:12-25.[5] 张奠宙.中国数学双基教学[M].上海:教育出版社,2006:15-36.[6] 吴谦.中学数学中常用的思想方法[J].内蒙古电大学刊,2008,34: 94-95.[7] 张黎明.数学归纳法的应用与技巧[J].民族师范学院学报,2001,51:44-46.[8] 吴厚荣.中学阶段《数学归纳法》的理解[J].文化与教育技术,2010,96:247-249.[9] 张玉芹.数学归纳法教学的几点思考[J].中学理科教学,1999,33:36-36[10]吴志翔著.证明不等式.河北人民出版社,1982[11] 郭兆高.数学归纳法在中学数学解题中的妙用[J].科技信息,2009,84:219-219.[12] 夏兴国.数学归纳法纵横法[J].科学技术出版社,2004,62:3-13.[13] 刘金山.数学归纳法证题时应注意的几个问题[J].数学教学研,1999,71:8-10。
数学归纳法以及其在初等数论中的应用论文答辩
洛阳师范学院
数学归纳法在初等数论中应注意的问题 4.1起步错误 容易忽略,觉得无关紧要,可有可无,不去认真的验证这一步,或者 根本没有这一步,都可能陷入错误之中,推出看似正确的答案. 4.2 机械套用数学归纳法的两个步骤致误 有时直接应用第一类或者第二类条件是不足的,此时,应该用 其他,但是往往不注意. 4.3 混淆概念所致 套用不完全归纳法
数学归纳法以及在初等数论中的应用
指导老师:**
答辩人:孙**
洛阳师范学院
1
2 3
选题的意义
论文轮廓
主要内容
4
论文的不足
洛阳师范学院
选题的意义
1
数学归纳法我 们从中学就开 始接触,但是 有时对的原理 并非特别清楚。
2
独特性,在诸多 证明方法中,由 于数学归纳法那 种机械又明快的 结构,特立独行 .。
洛阳师范学院
4.4 归纳递推的必要性 这步致错的原因往往是没有用到归纳假设,直接得 的正确性.
出式子
洛阳师范学院
结 论
用数学归纳法证明命题可以降低过程的复 杂性,使推理过程简单,清晰,也保证了推理的 严谨性,特别是在初等数论中的众多命题的证 明时,使得证明过程简洁明了,而不失严密性, 数学归纳法是一种行之有效的证明方法.
在用数学归纳法证明与自然数有关的命题 时,两个基本步骤是不可缺少的,否则命题不一 定成立.
洛阳师范学院
论文不足
第一:数学归纳法的应用非常广泛,由于本人涉 及方面有限,本文只对一些基本应用做了论述, 旨在说明一种基本的数学证明思维方法.
第二:数学归纳法可以证明很多有关自然数的 命题,特别是在初等数论中.但是由于本文篇幅 有限,只是叙述了部分命题.
洛阳师范学院
谈谈数学归纳法 毕业论文
谈谈数学归纳法毕业论文数学归纳法是一种证明数学命题的常见方法,它通常用于证明关于自然数的命题。
本文将从数学归纳法的定义、应用原理、常见例题等方面进行阐述,旨在深入了解并掌握这一重要的数学工具。
一、数学归纳法的定义数学归纳法是由法国数学家Blaise Pascal于17世纪发明的一种证明方法。
它的基本思想是从一个已知的命题开始,利用数学归纳原理逐步推导出所有相似的命题的正确性。
具体的数学归纳法可以分为强归纳法和弱归纳法,这里我们先从弱归纳法的定义入手。
弱归纳法:设$P(n)$是关于自然数n的命题,如果$P(1)$成立,且对于任意正整数$k$,$P(k)$成立时$P(k+1)$也成立,则可以得出结论:对于任意自然数$n$,命题$P(n)$都成立。
弱归纳法主要考虑了$P(1)$成立的时候,能否通过任意的$k$将$P(n)$扩展到任意自然数$n$上去。
而强归纳法则更强一些,它关注的不仅是$k$,而是任意的$k' <k$范围内的所有$P(k')$是否满足,只有所有的$P(k')$都成立时才能推导出$P(k)$。
二、数学归纳法的应用原理数学归纳法是一种非常强大的证明方法,它的应用原理可以归纳如下:1. 证明基础部分:首先要证明归纳的基础部分即$P(1)$成立;2. 归纳假设:假设对于任意正整数$k$,都有$P(k)$成立;3. 归纳步骤:接下来证明当$k=n$时,$P(n+1)$也成立。
利用归纳假设,我们可以假设$P(n)$成立,则接下来考虑$P(n+1)$是否成立,如果成立则可以得出:对于任意自然数$n$,命题$P(n)$都成立。
三、数学归纳法的例题下面来看几个关于数学归纳法的例题,帮助大家更好地理解它的运用:1. 证明$1 + 2 + … + n = (1+n)n/2$。
(1)证明基础部分:$n=1$时,$1=(1+1)/2$成立;(2)归纳假设:假设对于任意正整数$k$,都有$1+2+…+k = (1+k)k/2$成立;(3)归纳步骤:现在考虑证明$1+2+…+k+(k+1) = (1+k+1)(k+1)/2$成立。
数学归纳法论文文献综述
本科毕业论文文献综述题目数学归纳法及其在数列中的应用学院数学与信息科学专业数学与应用数学班级11数本一学号*********** 学生姓名夏博指导教师何文明温州大学教务处制数学归纳法及其在数列中的应用文献综述摘要:数学归纳法是数学中一种重要的证明方法,也是中学数学一个非常重要的内容,用于证明与无穷的自然数集相关的命题.但凡涉及无穷,总会花费数学家大量时间与精力,去理解并弄清它的真正意义.普通归纳法与自然数这一最古老的数学概念及“无穷”这个无法直观感觉的概念相结合的“数学归纳法”,自然也需要一个漫长的认识过程。
在中学中,数学归纳法是解决数列问题的一种重要手段,只有在理解了数学归纳法的数学思想,理解了数学归纳法的原理和实质,掌握数学归纳法的步骤才能更为有效的解决数列问题。
关键字:数学归纳法;数列§1、前言一般认为,归纳推理可以追溯到公元前 6 世纪的毕达哥拉斯时代。
毕达哥拉斯对点子数的讨论是相当精彩的。
他由有限个特殊情况而作出一般结论, 具有明显的推理过程,但这些推理只是简单的列举,没有涉及归纳结果,因此是不完全的归纳推理。
完整的归纳推理,即数学归纳法的早期例证是公元前 3世纪欧几里得《几何原本》中对素数无限的证明。
其中已经蕴含着归纳步骤和传递步骤的推理。
16 纪中叶,意大利数学家莫罗利科(F·Maurolycus)对与自然数有关命题的证明进行了深入的研究。
莫罗利科认识到,对于一个与自然数有关的命题,为了检验其正确与否,若采取逐一代入数进行检验的方法,是严格意义上的数学证明, 要把所有的自然数都检验一遍是不可能做得到的,因为自然数有无穷多个。
那么对于这类问题该如何解决呢?1575 年,莫罗利科在他的《算术》一书中,明确地提出了“递归推理”这个思想方法。
法国数学家 B·帕斯卡(Pascal)对莫罗利科提出的递归推理思想进行了提炼和发扬。
在他的《论算术三角形》中首次使用数学归纳法,并用其证明了“帕斯卡三角形”(二项展开式系数表,中国称为“贾宪三角性”或“杨辉三角形”)等命题。
数学毕业论文答辩
数学毕业论文答辩数学毕业论文答辩数学毕业论文答辩是每位数学专业学生大学生涯中的重要一环。
在这个过程中,学生需要向评委展示他们的研究成果、解释他们的研究方法和结果,并回答评委的问题。
这是一个对学生数学知识、研究能力和表达能力的全面考验。
首先,数学毕业论文答辩的第一部分通常是学生的开场陈述。
学生需要简要介绍他们的研究主题和目标,解释他们的研究方法和选择的数学模型。
此外,学生还应该概述他们的研究结果和对实际问题的应用。
这一部分的目的是让评委对论文的内容有一个整体的了解。
接下来,学生需要详细介绍他们的研究方法和数学模型。
他们应该解释他们选择这些方法和模型的原因,并详细描述他们的实施过程。
在这一部分,学生需要展示他们对数学理论的理解和运用能力。
他们应该能够清晰地解释数学背后的逻辑和原理,并展示他们如何将这些理论应用到实际问题中。
在论文答辩的第三部分,学生需要展示他们的研究结果和分析。
他们应该详细描述他们的数据收集和处理过程,并展示他们的研究结果。
此外,学生还应该对结果进行深入的分析和解释。
他们应该能够解释结果的意义,并讨论结果对相关领域的影响。
这一部分的目的是让评委对学生的研究成果有一个清晰的了解。
最后,学生需要回答评委的问题。
评委可能会提出关于学生的研究内容、方法或结果的问题。
学生需要准备充分,对这些问题进行思考和回答。
他们应该能够清晰地表达自己的观点,并用数学知识和逻辑进行论证。
回答问题的过程中,学生应该展示他们的思维能力和解决问题的能力。
总结起来,数学毕业论文答辩是一个对学生综合能力的考验。
在答辩过程中,学生需要展示他们的研究成果、解释他们的研究方法和结果,并回答评委的问题。
这需要学生具备扎实的数学知识、良好的研究能力和清晰的表达能力。
通过这个过程,学生不仅可以展示自己的研究成果,还可以提升自己的学术能力和自信心。
因此,数学毕业论文答辩对每位数学专业学生来说是一个重要的里程碑。
数学归纳法论文答辩ppt
论文的不足
第一:数学归纳法的应用非常广泛,由于本 人涉及方面有限,本文只对一些基本应用做了论 述,旨在说明一种基本的数学证明思维方法。
第二:数学归纳法可以证明很多有关自然数 的命题,但是,对于某些特殊的论证,套用第 一数学归纳法去证明却很困难,所以对第一数 学归纳法的一般形式可进行适当的变形和拓广 ,但是由于本文篇幅有限,对于这些变形未做 论述。
Section header
Business ate
Section header
Section header
Section header
Section header
Section header
Business template
Section header
Section header
Section header
Section header
第三:经济性,只用有限的笔墨,确在完成 一个宏观世界的无限次的验证,这是一架何等精 巧的机器,以最省的烧料永不停息地驶向无穷远 方。
论文基本构思及内容
第一部分:引言,重点阐述了数学归纳法 的国内外研究现状,以及它的历史。
第二部分:数学归纳法的原理,力图用比较 浅显的语言,通过贴近生活的例子、饶有兴趣 的游戏,把数学归纳法神奇的原理呈现在大家 面前。并且简单介绍了他的基本思想,主要步 骤。
第一数学归纳法以及应用
指导老师:查正邦 答辩人:胡晓丹
选题的价值 论文基本构思及内容 论文的不足
选题的价值
第一:它的思想性价值很高,是从有限通向无 限的第一条高速公路,有里程碑式的作用.
第二:独特性,在诸多证明方法中,由于数学 归纳法那种机械又明快的结构,特立独行,令每 一个领略过它的人都为之激动。
数学专业毕业答辩技巧解读数学定理
数学专业毕业答辩技巧解读数学定理一、引言在数学专业的学习中,毕业答辩是每位学生必须经历的重要环节。
而作为数学专业的学生,除了掌握扎实的数学知识外,还需要具备一定的答辩技巧。
本文将结合数学定理,探讨数学专业毕业答辩的技巧,帮助同学们在答辩中更加游刃有余。
二、数学定理的重要性数学定理是数学领域中最基础、最重要的内容之一。
它们是由严密的逻辑推导和证明构成,具有普遍性和确定性。
在毕业答辩中,运用数学定理可以提高论证的严谨性和说服力,展现出自己对数学知识的深刻理解和应用能力。
三、毕业答辩技巧解读1. 熟悉所选定理在准备毕业答辩时,首先要选择一个熟悉且具有代表性的数学定理作为主要内容。
通过深入研究该定理的证明过程和相关应用,做到信手拈来,游刃有余地进行阐述。
2. 结构清晰,逻辑严谨在答辩过程中,要注意结构清晰,逻辑严谨。
可以按照引言、定理陈述、证明过程、相关应用等步骤展开论述,确保观众能够清晰地理解你的论证思路。
3. 举一反三,拓展思维除了对所选定理本身进行深入剖析外,还可以通过举一反三的方法,将该定理与其他相关定理或问题联系起来,展示自己的拓展思维和综合应用能力。
4. 自信从容,应对问题在答辩过程中,要保持自信从容的态度。
当遇到评委提出的问题时,可以冷静分析、沉着应对,展现出自己对数学知识的全面掌握和解决问题的能力。
四、总结毕业答辩是展示自己数学水平和综合能力的重要机会。
通过深入研究数学定理、掌握答辩技巧,可以在答辩中取得更好的表现。
希望同学们在毕业答辩中取得优异成绩,顺利完成自己的学业。
以上就是关于数学专业毕业答辩技巧解读数学定理的内容,希望对大家有所帮助。
祝愿大家在毕业答辩中取得优异成绩!。
数学归纳法以及其在数论中的应用开题报告
_成 绩评定答辩小组评语:论文首先介绍了五种数学归纳法,并给出相关的例题。
紧接着又介绍了数学归纳法在初等数论中的应用且应注意的问题。
该生参考了一定的文献资料,对其理解和应用一般,文章篇幅基本符合学院规定,内容基本完整,层次结构安排基本恰当,但论文选题一般且缺乏个人见解。
论文选题符合专业培养目标,题目有一定难度,但工作量一般,基本达到了本科毕业论文的要求。
论文观点明确,文字基本通顺,答辩时表达基本清楚,回答问题基本正确,经答辩小组充分讨论,一致同意通过毕业论文答辩。
评定成绩(优秀、良好、中等、及格、不及格): 答辩小组组长签名: 年 月 日分学位委员会意见:分学位委员会主席签名: 年 月 日洛阳师范学院本科生毕业论文(设计)基本情况表__数学科学学院__院(系)开 题 报 告姓 名 性别 学 号 专 业 年 级 孙**女110412016数学与应用数学2011级 题 目数学归纳法及其在初等数论中的应用课题来源 (2)综述 选题目的、国外研究现状、选题意义、需要解决的主要问题及可行性等。
选题目的:数学归纳法我们从中学就开始接触,但是有时对的原理并非特别清楚。
在诸多证明方法中,数学归纳法那种机械又明快的结构,特立独行. 它的思想性价值很高,是从有限通向无限的第一条高速公路,有里程碑式的作用。
特别是在初等数论中的应用。
国内外研究现状:在国内外大学教育中,数学归纳法是数学研究中必不可少的一部分,具有特别重要的地位,因此引起了大量学者对它的研究,其研究也是比较完整和全面的。
选题意义:虽然在课本上有许多例题应用数学归纳法,但是并没有详细介绍它的来源和原理,而且它在证明初等数论中的定理和各种各样的数学问题时,还有着非常广泛的应用,这就是这篇论文产生的必要性。
需要解决的主要问题及可行性:大学课本上关于数学归纳法定理的证明不是十分完整。
本文将会补充完整.说明一些定理在初等数论中成立,最后再将这些定理通过一些例题进行应用。
第一数学归纳法及其应用 毕业论文
2012届本科毕业论文第一数学归纳法及其应用院(系)名称数学科学学院专业名称数学与应用数学学生姓名学号指导教师完成时间2012.5第一数学归纳法及其应用摘要:数学归纳法是数学思维方法中最重要、最常用的方法之一, 这不仅因为其中大量问题都与自然数有关, 更重要的是它贯穿于发现问题和解决问题的全过程. 本文对数学归纳法的由来、运用技巧以及需要注意的问题进行较为完整的系统论述. 重点阐述了第一数学归纳法的精髓和一般的解题思路, 以及在求解数学问题中的应用和技巧.关键词:归纳法第一数学归纳法不等式数列1 引言对于数学归纳法的研究国内已有不少论文, 这些论文在具体方面做了详尽的论述. 同时还有数量不少的论文从数学归纳法的细微处着眼. 我国的数学期刊或数理杂志, 如《数学教育报》, 《数学通报》, 《数学通讯》等, 刊载的相关文章都从各个角度具体阐述了数学归纳法的常见问题. 数学归纳法是数学中一种重要的证明方法, 也是中学数学一个非常重要的内容, 用于证明与无穷的自然数集相关的命题. 但凡涉及无穷, 总会花费数学家大量时间与精力, 去理解并弄清它的真正意义. 普通归纳法与自然数这一最古老的数学概念及“无穷”这个无法直观感觉的概念相结合的“数学归纳法”, 自然也需要一个漫长的认识过程.在16世纪晚期, 数学归纳法开始出现在代数中. 1575年意大利数学家莫洛里克斯(1494-1575)在他的著作《算术》中就提出了这种方法, 并证明了2135(21)+++++=, 虽然莫洛里克斯并没有把数学归纳法贯彻到底, 例如n n经有限的验证后便以“等等”一类的话代替了必要的演绎, 但是可以说莫洛里克斯算是一个与数学归纳法有关的一个早期的数学家, 一般认为, 历史上第一次成功利用数学归纳法的是17世纪法国数学家帕斯卡(1623-1662), 1654年, 帕斯卡第一次用数学归纳法证明了指数为正整数时的二项式()n展开式的系数公式,a b从而得到有名的帕斯卡三角阵.继帕斯卡之后, 数学归纳法就成为数学家们手中得心应手的工具, 如在费马(1601-1665)、伯努力(1654-1705)、欧拉(1707-1783)这些大数学家们的出色工作中, 都可以找到数学归纳法的例子, 1889年意大利数学家皮亚诺(C·Peano, 1858~1932, 意大利)发表《算术原理新方法》, 给出自然数的公里体系, 使数学归纳法有了一个准确、合理的理论基础.现在开始我们重新认识一下数学归纳法.2 数学归纳法的原理2.1 归纳法在现实中的一些运用先从少数的事例中摸索出规律来, 再从理论上来证明这一规律的一般性, 这是人们认识客观世界的方法之一. 不论在数学上, 或在其他场合, 从对一系列具体事物的考察中引出一般性结论的推理方法或过程, 叫做归纳法. 人们从有限的经验中得出经验性的结论是屡见不鲜的, 在这个过程中人们自觉或不自觉地运用了归纳法. 许多闪烁着人类思想光芒的谚语、成语、格言等, 都是应用归纳法的产物. 如“兵贵神速”、“骄兵必败”, 都是对战争的胜负规律的一种认识, 同样“滴水石穿”、“有志竟成”是人们考察了古往今来许多有成就者的经历后得出的.2.2 数学归纳法的本原理解了归纳法我们再具体到数学中来, 以识数为例. 小孩子识数, 先学会数1个、2个、3个, 过些时候, 能够数到10了, 又过些时候, 会数到20, 30, …100了, 但后来, 就不再是这样一段段地增长了, 而是飞越前进. 倒了某个时候, 他领悟了, 就什么数都会数了, 这一飞跃, 竟是从有限到无穷!怎样会有这种方式呢? 首先, 他知道从头数; 其次, 他知道一个一个按次序数, 而且不愁数了一个以后, 下一个不会数, 也就是领悟了下一个数的表达方式, 可以由上一个数来决定, 于是, 他也就会数任何数了. 解释这个飞跃的原理就是, 正是运用了数学归纳法的思想, 数学归纳法大大地帮助我们认识客观事物, 由简到繁, 由有限到无穷.1979年6月9日, 在英国伦敦, 一群记者和上千名观众静静注视着一个人,急切的等待着一项基尼斯世界纪录的诞生. 这个人就是迈克·凯尼, 他用13天的时间, 用了169713块骨牌搭出一个长达6900米的多米诺牌阵, 当迈克·凯尼走到第一块骨牌前, 用手轻轻推到它时, 奇迹出现了——将近17万张骨牌组成的长达6900米的多米诺阵在半小时内统统颠覆. 这就是神奇的多米诺现象, 在这个过程中要使所有的骨牌倒下必须满足两个条件, (1)第一块骨牌倒下;(2)任意两块相邻骨牌, 只要前一块倒下, 后一块必定倒下. 这样我们就会发现这与数学中一个极其重要的证明方法——数学归纳法如出一辙. 并且摆多米诺阵的人应该注意的关键问题竟然也和使用数学归纳法的人应该注意的关键问题神似韵合. 2.3 命题的长蛇阵在前面我们屡次提到数学归纳法, 那么究竟什么是数学归纳法?我们现在先看一个命题.试证:在一个正方形的纸上有n个点, 已知这n个点连同正方形的4个顶点, 其中任意3点都不共线.试证:至多可以剪得顶点属于上述4n+个点的三角形纸片22n+个.我们可以把这个命题看成是无穷多个命题组合而成, 这无穷多个命题列举如下:命题1:在一个正方形纸上有1个点, 已知这5个点中任意3点都不共线, 证明:至多可以剪得顶点属于上诉5个点的三角形4个.命题2:在一个正方形纸上有2个点, 已知这6个点中任意3点都不共线, 证明:至多可以剪得顶点属于上诉6个点的三角形6个.命题3:在一个正方形纸上有3个点, 已知这7个点中任意3点都不共线, 证明:至多可以剪得顶点属于上诉7个点的三角形8个.……命题k:在一个正方形纸上有k个点, 已知这4k+个点中任意3点都不共线证明:至多可以剪得顶点属于上诉4k+个.k+个点的三角形22命题1k+个点中任意3点都不k+个点, 已知这5k+:在一个正方形纸上有1共线, 证明:至多可以剪得顶点属于上诉5k++个.k+个点的三角形2(1)2上述无穷多个命题排成了一个命题的长蛇阵, 它像无穷多个骨牌, 一个接着一个的摆放在那里. 如何证明这无穷多个命题呢?命题1的证明:当正方形内有一点, 且五点不共线, 则可以如图1所示, 得到4个三角形. 命题1得证.命题2的证明:根据命题1, 当正方形中有2点, 则另外一点一定在上题所分的4个三角行中任一个中, 假设如图2所示, 则可看作这一点把其中一个分成3个, 即多了2个, 有6个, 命题2得证.命题3的证明:根据命题2, 当正方形中有3点, 则另外一点一定在上题所分6个三角形中任一个中, 假设如图3所示, 则可看作是这一点把其中一个分成了3个, 即多了2个, 共有8个, 命题3得证.继续这个过程, 我们可以依次证明命题4、命题5、……. 也就是说, 我们可以证明这一系列命题中的任何一个命题. 因此, 一开始给出的命题, 当n是任意自然数时都是正确的.(图1)(图2)(图3)2.4 什么是数学归纳法在上一部分, 我们把一个与自然数有关的命题写成一个命题长蛇阵, 然后依次来证明, 这种方法显然给人一种繁琐的感觉. 但是我们可以看到, 从命题2开始, 命题长蛇阵中的每一个命题都是在前一个命题成立的基础上被证明的, 并且证明的方式很类似. 也就是说, 命题1k+是在命题k成立的基础上被证明的. 因此我们处理长蛇阵的方法可以改用以下两步:1.证明命题1成立;2.根据命题k成立, 推出命题1k+成立. 这样根据第二步可知以后每个命题都成立. 可见, 有这两步已经足够了. 如果把命题长蛇阵里的一个命题比作一块骨牌, 那么第二步就像把这些骨牌统统摆到了能产生“多米诺”现象的位置, 第一步恰如用手指轻轻地推倒了第一块骨牌. 仅用这两步就可以使命题长蛇阵中的每一个命题一个接一个的自动证明.一般来说, 一个与自然数n有关的命题可以看成是一个命题长蛇阵. 1n=时为命题1, 2n=时为命题2, 依次类推. 因此, 在证明一个与自然数有关的命题时, 可以采用以下两步:()1证明1n=时命题成立;()2证明:如果n k=时命题成立, 那么1n k=+时命题也成立.这种证明方法就叫做数学归纳法. 这种方法也可以概括为:“1对;假设n对, 那么1n+也对”. 这种概括是著名数学家华罗庚提出来的.2.5 数学归纳法的历史与原理在前面的论述中我们从游戏入手已经基本理解了数学归纳法的基本思想和主要步骤, 那么什么事保证数学归纳法的正确性呢?数学归纳法的背景是什么呢?在这里我们简要地介绍一下数学归纳法的理论背景.意大利有一个数学家, 名叫皮亚诺(C·Peano, 1858~1932, 意大利), 他总结了自然数的有关性质, 并在关于自然数的理论中提出了关于自然数的五条公理, 后人称为“皮亚诺公理”.()1 1是一个自然数;()2 1不是任何其他自然数的后继;()3每个自然数的后继是自然数;()4若两个自然数的后继相等, 则这两个自然数也相等;()5(归纳公理)自然数的某个集合若含有1, 而且如果含一个自然数就一定含有这个自然数的后继, 那么这个集合含全体自然数.其中公理5被称为归纳公理, 是数学归纳法的逻辑基础.自然数系公理系统直接地保证了数学归纳法的合理性, 所以也可以把数学归纳法当作公理来看待. 所谓公理不是已知数学理论的逻辑推理的产物, 而是未经证明的产物, 其承认的的根据是生活实践.3 第一数学归纳法第一步:当1n =时, 等式成立;第二步:假设当n k =时, 这个等式是成立;也就是假设3.1 第一数学归纳法的步骤及其误区下面我们具体论述第一数学归纳法的步骤.设()P n 是一个含有自然数n 的命题, 利用第一数学归纳法的证明步骤是: 验证00(1)n n n =≥时()P n 成立;假设0()n k k n =≥时()P k 成立, 能推出1n k =+时(1)P k +也成立.根据(1)、(2)知, 对一切自然数0()n n n ≥,()P n 成立.第一数学归纳法的第一个步骤是奠基, 是命题论证的基础;第二个步骤是归纳, 是命题的正确性能够由特殊递推到一般的依据. 这两个步骤密切相关, 缺一不可. 如果只有奠基步骤而没有归纳步骤则属于不完全归纳法, 因而论断的普遍性是不可靠的. 如果只有归纳步骤而没有奠基步骤, 则归纳的假设就失去了依据, 从而是归纳法步骤的证明失去意义. 甚至会导致一些错误. 下面我们来看几个例子.误区一:忽略了归纳奠基的必要性.例1 试证明(1)12312n n n +++++=+. 错证:假设n k =时等式成立, 即(1)12312k k k +++++=+, 当1n k =+时.1231k k ++++++(1)112k k k +=+++(1)(2)12k k ++=+ 则1n k =+时等式成立. 根据数学归纳法原理可知, 当n 是任意自然数时, 等式都成立.事实上我们知道这个题目本身就是错的, 但是我们竟然把错误的结论“证明”出来了, 此种怪现象出现的原因, 就是缺乏归纳奠基这一步.切莫以为归纳基础这一步就是“当1n =时命题正确”这么一句话, 似乎无关紧要, 可有可无. 从上例可以看出, 不去认真的验证这一步, 或者根本没有这一步, 都可能陷入错误之中.误区二:忽略了归纳递推的必要性例2 求证:22221123(1)(21)6n n n n ++++=++ 错证:当1n =时, 得21112316=⨯⨯⨯=;这时等式成立. 假设n k =时, 这个等式成立;也就是说假设22221123(1)(21)6k k k k ++++=++. 当1n k =+时, 222221123(1)(1)[(1)1][2(1)1]6k k k k k ++++++=+++++ 而 11(1)[(1)1][2(1)1](1)(2)(23)66k k k k k k +++++=+++ 所以222221123(1)(1)(2)(23)6k k k k k ++++++=+++ 也就是说, 当1n k =+时, 这个等式也是成立的.归纳步骤完成, 结论成立. 乍看起来, 上面的证明似乎也用到了数学归纳法的两个步骤, 特别是也有了第二个步骤, 但事实上, 在证明等式222221123(1)(1)(2)(23)6k k k k k ++++++=+++ 的过程中根本没有用到22221123(1)(21)6k k k k ++++=++这个式子. 所谓从“k ”到“1k +”的过程, 意思是必须把“n k =”时的命题, 当作已经给定的条件(假设), 在这个基础上来证明“1n k =+”时的命题.上面这个证明的过程中, 只不过是把要证明的公式加以“注解”而已, 等于什么也没有做.正确的证法应该是:22221123(1)(21)6k k k k ++++=++ 在这个等式两边都加上2(1)k +,得2222221123(1)(1)(21)(1)6k k k k k k ++++++=+++ 而 21(1)(21)(1)6k k k k ++++ 1(1)[(21)(1)]6k k k k =++++ 21(1)[266]6k k k k =++++ 21(1)[276]6k k k =+++ 1(1)(2)(23)6k k k =+++. 所以 222221123(1)(1)(2)(23)6k k k k k ++++++=+++. 这就是说, 当1n k =+时, 这个等式是成立的.归纳步骤完成, 就可以断定, 对于任何自然数n , 这个等式都能成立. 误区三:忽略了归纳递推与归纳奠基之间的协同配合例3 试证任何n 个人都一样高.错证:当1n =时, 命题变成“任何一个人都一样高”, 结论显然成立. 设n k =时, 结论成立, 即“任何k 个人都一样高”, 那么, 当1n k =+时将1k +个人记为121,,,k k A A A A +,由归纳假设, 12,,,k A A A 都一样高, 而23,,A A 1,k k A A +也都一样高,故121,,,k k A A A A +都一样高. 根据数学归纳法原理, 任何人都一样高.显然, 例题3的题目是错误的, 但是错证中数学归纳法的步骤齐全, 这次的问题出在什么地方呢?我们注意到在上述归纳推理步骤中, 有一个步骤是这样的:“由归纳假设, 12,,,k A A A 都一样高, 而231,,,k k A A A A +也都一样高,故121,,,k k A A A A +都一样高. ”仔细推敲, 不难发现, 这个推理只有在2k ≥时才能成立, 而在1k =时不成立. 这就是说, 尽管由2n k =≥时命题成立, 可以推出1n k =+时命题也成立, 但是由1n =时命题成立, 不可能推倒出2n =时命题成立. 此例中显然还需要“2n =时命题成立”作为它的归纳奠基, 这显然是不会成立的. 这道题问题就出在归纳递推步骤与归纳奠基的协同配合.上面举的几类错误地应用数学归纳法的例子, 实际上通过这些例子说明了应用数学归纳法应当注意的地方. 让大家明白数学归纳法的两个步骤是密切联系、缺一不可的.3.2 数学归纳法的应用在上一部分我们说明了数学归纳法的步骤及误区, 并且我们可以知道数学归纳法是一些涉及自然数的论断, 我们可能会这样问:“是不是涉及自然数的论断都可以用数学归纳法呢?或者什么时候用数学归纳法呢?”这个问题较难回答, 主要是决定于问题的具体情况.例如, 要证明对于任意自然数n , 等式2(3)(1)23n n n n +-=+-成立. 我们可以直接计算左边式子而得到证明. 又如, 如果a b <,,a b 都是自然数, 要证明对于任意自然数n , 有a a n b b n+<+. 这里, 我们可以利用分数的基本性质, 通过计算来证明这个不等式成立. 像这类问题就不必用数学归纳法.但是对于那些无法直接计算而必须按从小到大的顺序逐步计算的式子, 要证明这些论断的正确性, 一般需要应用数学归纳法. 运用数学归纳法, 可以证明下列问题:与自然数n 有关的恒等式、代数不等式、数列问题、几何问题、整除性问题等等.下面说明数学归纳法在一些数学问题中的应用3.2.1 用归纳法证明代数恒等式例4 (全国高考试题)证明下列恒等式Ⅲ:()()()()()()22222212233445212221143n n n n n n n ⎡⎤⨯-⨯+⨯-⨯++--+=-++⎣⎦证明:当1n =时, 左边=22122341814⨯-⨯=-=-;右边()()11141314=-+⨯+=-. 等式成立.假设当n k =时等式成立, 即()()()()()()22222212233445212221143k k k k k k k ⎡⎤⨯-⨯+⨯-⨯++--+=-++⎣⎦当1n k =+时,()()()()()()()()222222221223344521222121222223k k k k k k k k ⎡⎤⨯-⨯+⨯-⨯++--++⎣⎦⎡⎤++-++⎣⎦()()()()()()2214321222223k k k k k k k ⎡⎤=-+++++-++⎣⎦()()()()()()214321221123k k k k k k k ⎡⎤=-++++++-+⎣⎦()()()()1432167k k k k k =-++-++()()2141514k k k =-+++ ()()()1247k k k =-+++()()()111413k k k =-+++++⎡⎤⎡⎤⎣⎦⎣⎦说明当1n k =+时等式也成立, 恒等式对任何正整数n 都成立.3.2.2 用归纳法证明不等式例5 设01n a <<, 用数学归纳法证:()()()12121111n n a a a a a a --->----证明:当1,2n =时, 101a <<, 201a <<, ()()121212111a a a a a a --=---, 所以()()1212111a a a a -->--,假设n k =时, ()()()12121111k k a a a a a a --->----成立.证明1n k =+时, ()()()()()()()12112112112112111111111k k k k k k k k k k a a a a a a a a a a a a a a a a a a a a +++++---->-----=-----++++>----- 也成立. 所以原命题成立.3.2.3 用数学归纳法解决整除问题运用数学归纳法来证明整除问题, 是充分运用整除的性质, 即:/,/h f h g 则/h f g +.例6 证明22633n n n +++能被11整除.证明:当n=l 时, 22633n n n +++=2363366++=能被ll 整除.假设n k =时, 22633k k k +++能被ll 整除.则当1n k =+时,()()()()2112122222226333663333366363333363333366333333k k k k k kk k k k k k k k k k ++++++++++=⨯+⨯+⨯=⨯+⨯-⨯+⨯-⨯=++-+由于22633k k k +++能被1l 整除, ()23333k k ++能整除ll,所以()()222366333333k k k k k ++++-+能整除ll .即当1n k =+时命题也成立. 根据数学归纳法第一步与第二步可知, 等式对一切n N *∈成立.3.2.4 运用数学归纳法证明与数列有关的命题例7 设数列{}n a 的前n 项和为nS , 若对于所有的自然数n , 都有()12n n n a a S +=, 证明:{}n a 是等差数列.分析:要证明{}n a 是等差数列, 可以证明其通项符合等差数列的通项公式的形式, 即证:()11n a a n d =+-. 命题与n 有关, 考虑是否可以用数学归纳法进行证明.证明:设21a a d -=, 猜测()11n a a n d =+-.当1n =时, 1n a a =, 当1n =时猜测正确.当2n =时, ()11221a d a d a +-=+=,当2n =时猜测正确假设当()2n k k =≥()2n k k =≥时, 猜测正确, 即:()11k a a k d =+-.当1n k =+时,()()()11111122k k k k k k a a k a a a S S ++++++=-=- 将()11k a a k d =+-代入上式, 得()()()11112121k k a k a a ka k k d ++=++---整理得()()()11111k k a k a k k d +-=-+-因为2k ≥, 所以11k a a kd +=+, 即1n k =+时猜测正确.综上所述, 对所有的自然数n , 都有()11n a a n d =+-,从而{}n a 是等差数列. 评注:将证明等差数列的问题转化成证明数学恒等式关于自然数n 成立的问题.在证明过程中a 的得出是本题解答的关键. 利用已知的等式()12n n n a a S +=,数列中通项与前n 项和的关系11k k k a S S ++=-建立含a 的方程, 代人假设成立的式子()11k a a k d =+-解出1k a +. 另外, 不能忽视验证1n =、2n =的正确性,本题 用数学归纳法证明时递推的基础是2n =时等式成立,因为()()1111k k a k a +-=-+ ()1k k d -得到11k a a kd +=+的条件是2k ≥.3.2.5 用数学归纳法证明几何问题例8 平面内有n 个圆, 其中每两个圆都相交于两点, 且每三个圆都不相交于同一点. 求证:这n 个圆把平面分成22n n -+个部分.证明:当1n =时, 一个圆把平面分成两部分, 21122-+=, 命题成立. 假设当n k = 时命题成立, 即k 个圆把平面分成22k k -+.当1n k =+时.这1k +个圆中的k 个圆把平面分成22k k -+个部分, 第1k +个圆被前k 个圆分成2k 条弧, 每条弧把它所在部分分成了两个部分, 这时共增加了2k 个部分.即1k +个圆把平面分成()()()2222112k k k k k -++=+-++ 即命题也成立.根据数学归纳法第一步与第二步可知, 等式对一切n N *∈成立.从上面的一些例子可以看到, 数学归纳法在代数、几何等方面都有很广泛的应用, 当然这些例子只是九牛一毛, 例如运用数学归纳法证明三角函数的求和公式, 证明组合里的一些公式, 证明函数的各种性质, 以及在微积分行列式一些证明中的应用等等. 总之, 遇到一个涉及自然数的问题的时候, 首先我们要考虑的是, 有没有简单直接的方法来把它算出来. 如果没有简单直接的方法, 就可以用数学归纳法来试试, 至于那些从对1,2,3n =等情况递推而归纳出的结果, 它的正确性, 一般要用数学归纳法来证明.4 第一数学归纳法的技巧应用数学归纳法证题, 易陷入困境的常在第二步, 解决这个问题并无万能方法, 应该遵循的基本原则:积极创造条件, 有效利用归纳假设, 巧妙变形过渡,4.1 欲进先退若在由()P k 到()1P k +的推导过程中陷入困境, 不妨先由()1P k + 退到()P k , 然后用归纳假设再进回到()1P k +. 退的技巧有很多, 常用的有撤出、合并等.4.1.1 撤出例9 有()21n n N +∈个飞机场, 每个飞机场都有一架飞机, 各个飞机场之间的距离互不相等. 现让所有的飞机一起起飞, 飞向最近的机场降落, 求证必存在一个机场没有飞机降落.证明:当1n =时, 设3个飞机场为,,,A B C 其中BC⎪⎪<⎪AB⎪,BC AC ⎪⎪<⎪⎪,则,B C 间的飞机必定对飞. 而不管A 机场的飞机飞向B 还是飞向C , 都使A 机场无飞机降落.现假设n k =时命题成立, 当1n k =+时, 由于机场之间的距离两两不等, 必有两处机场的距离是最近的, 这两处的飞机会对飞, 不会影响其他机场. 我们将这两个机场先撤出, 由归纳假设, 剩下的21k +个机场中, 存在一个机场P 没有飞机降落, 再把撤走的机场放回, 则P 仍无飞机降落, 从而可知当1n k =+时命题成立.4.1.2 合并例10 设有2n 个球分成了许多堆, 我们可以任意选甲, 乙两堆来按照以下规则挪动:若甲堆的球数p 不少于乙堆的球数q , 则从甲堆拿q 个球放到乙堆去, 这样算挪动一次, 求证:可以经过有限次挪动把所有的球合并成一堆.证明:当1n =时, 共有2个球, 若已成一堆, 则不必挪动;若分成两堆, 则挪动一次便可成功.假设n k =时命题成立, 当1n k =+时,对于12k +个球, 若将2个粘合成1个便退到2k 个球的情况, 这种粘合要求每堆球的个数为偶数, 可讨论如下:若每堆球的个数为偶数, 则每挪动一次都挪动了偶数个球, 这样的任意一次挪动与将球两两粘合在一起挪动无本质区别, 从而等价与2k 个球的挪动, 根据归纳假设, 这是可以做到的.若存在球数为奇数的堆, 则由总球数为偶数知, 有奇数的堆数为偶数, 将它们配对先挪动一次, 于是每堆球数都为偶数, 问题可以解决.4.2 构造在用数学归纳法证明某些问题时, 从n k =到1n k =+的证明中有时需要巧妙构造.例11 对每个2n ≥, 求证存在n 个互不相等的正整数12,,n a a a ,使得()()i j i ja a a a -|+,对任意的{},1,2,,i j n i j ∈≠成立. 证明:当2n =时, 取121,2a a ==, 命题显然成立.假设n k =时命题成立, 即存在12,,k a a a 满足()()i j i j a a a a -|+,记b 为12,,k a a a 及它们每两数之差的最小公倍数,则1k +个数b ,12,,k a b a b a b +++也满足()()t t a b b a b b +-|++⎡⎤⎡⎤⎣⎦⎣⎦,()1,2,t k =,()()()()i j i j a b a b a b a b ⎡⎤⎡⎤+-+⎪+++⎣⎦⎣⎦,(),1,2,i j k i j =≠,即命题对1n k =+时成立, 由数学归纳法知命题得证.上例证明中从n k =到1n k =+的过渡用到了较高的构造技巧.4.3 凑配有些问题从n k =到1n k =+证明过程中需要凑配出一些特定形式.例12 设数列n n a n =, 求证:当3n ≥时, 1n n a a +<.证明:显然, 题设数列是正数列当3n =时, 4264428a ===, 而36339a ====, 所以43a a <,原不等式成立.假设3n k =≥时, 有11k k k ++<,即 ()11k k k k ++<, ()1当1n k =+时,要证2121k k k +++<+, 即要证()()1221k k k k +++<+, ()2 由()1式两边分别乘以()12k k ++, 从而()()()()11121221k k k k k k k k k +++⎡⎤++<+<+⎡⎤⎣⎦⎣⎦, 两边消去()1k k +, 得()()1221k k k k +++<+.两边开()()12k k ++次方即得2121k k k +++<+.即当1n k =+时, 原式成立.综上, 证得原命题成立.上例证明第二步若要直接将()1代入()2是困难的, 因此用凑配法, 先在()1的两边乘以()12k k ++, 问题就迎刃而解了.4.4 先猜后证有些题目的结论是不容易以下求得的, 根据特殊到一般的规律, 先从符合题意的最小基数0n n =入手, 探索0n n =, 01n n =+, …等个别特例的结果, 发现、总结其规律性. 对一般的自然数n 给出一个猜想, 再用数学归纳法论证这个猜想的正确性. 即先猜后证.例13 设列{}n a 的通项公式为()()12131,2n n a n n -=+=求数列的前n 项和的公式.解:因为 ()111121133S a -==⨯+⨯=,()212212322131823S S a -=+=+⨯+⨯==⨯,()231233222323139333S S a -=+=⨯+⨯+⨯=⨯=⨯,()3413443433241312343S S a -=+=⨯+⨯+⨯=⨯=⨯,至此, 可以猜测数列的前n 项和公式是()31,2,n n S n n == ()3下面用数学归纳法证明. 当1n =时由上述计算可知公式()3是正确的.设公式当()4n k k =≥时正确, 当1n k =+时,因为()()()111321333313k k k k k k k S S a k k k k +++=+=++=+=+⎡⎤⎣⎦故公式()3当1n k =+时也是正确的.因此, 公式()3对一切自然数n 都成立. 即()3是数列{}前n 项和公式. 这种求和方法——观察-归纳-证明, 实质上是一种由不完全归纳到完全归纳的方法. 由于这种方法中, n S 的形式要从1S , 2S , 3S , 4S 等几个数值中看出来, 因而对1S , 2S , 3S , 4S 等几个数值的化简式变形就成了关键, 只有待其体现了某种规律时, 才有可能猜想出n S 的形式.4.5 顺势分流假如要做一件事, 一下子做不了, 我们不妨把其中能做的那一部分分出来先做了, 然后再去做剩下的一部分. 假如用数学归纳法证题, 一下子证不出来, 我们不妨把其中能用数学归纳法的证明的那一部分分出来先证, 然后再去证明剩下的那一部分, 我们把这种方法叫做顺势分流, 即顺着数学归纳法之势, 将能做的与不能做的分开处理.例14 试证:对于一切自然数n , 都有222n n +>.分析:当1n =时结论显然成立, 设n k =时结论成立, 即222k k +>,当1n k =+时,()()()()212222212222322331k k k k k k k k k k ++-+=+---≥---=-+ 此时发现, 仅当3k ≥时,才有()212210k k ++-+≥. 这就是说, 仅当3k ≥时, 命题n=k+1成立.因此我们不得不将3n ≥的情况与2n ≤的情况分开来处理, 具体的说, 我们可以采用以下的方式证题:①直接验证2n ≤时不等式成立, 即验证1,2n n ==时不等式成立;②用数学归纳法证明3n ≥时不等式成立, 即验证“3n =时对, 假设3n k =≥时对, 推证1n k =+时成立”.命题即可得证, 证明从略.通过上述论证可以看出, 数学归纳法的论证十分的灵活多变, 要完全掌握这一方法单靠死记硬背是行不通的, 关键是要培养自己的逻辑思维能力, 把握住归纳奠基与归纳递推所展示的逻辑链, 而逻辑思维能力是一个需要毕生精力不断苦练的功夫.5 小结通过上述论证可以看出, 数学归纳法是十分有效的方法, 也是一种认识可数无限集合性质的重要方法. 使用数学归纳法进行论证, 将会更深刻的理解所 要论证的命题, 实现由有限到无限的飞跃.当然, 并非一切与自然数有关的命题的证明都一定要采用数学归纳法, 有些命题虽与自然数有关, 但不用数学归纳法也可以证明. 另外, 对于有些问题运用数学归纳法比较简便, 而另一些问题则以不用数学归纳法较为方便. 因此在具体。
数学归纳法在初等数论教学中的应用
知识文库 第20期197数学归纳法在初等数论教学中的应用杨全会数学归纳法是数学中一种极为重要的数学方法,它在数学各个分支中都有着举足轻重的作用.本文通过举例说明它在数论中的一些应用.数学归纳法是数学中极为重要的一种方法,它又分为第一数学归纳法,第二数学归纳法,跳跃数学归纳法,反向归纳法,螺旋归纳法,加强数学归纳法等. 合理的运用好数学归纳法并不是一件容易的事情. 下面我们以初等数论的例题教学为例,简单介绍一下何时用数学归纳法.证明过程中条件不够的情形.我们在证明结论时,发现题目并没有条件,或者根据现有的条件不能直接推出结论. 在这种情况下,我们要证明出结论必须要增加新的条件,此时我们可以想到用数学归纳法,它可以增加“归纳假设”这一新的条件,让解题柳暗花明又一村. 下面我们看这个例子.例1. 对于正整数,210n a a a a <<<< 证明:.211],[1],[1],[112110n n n a a a a a a -≤+++-证明:当1=n 时,由于21≥a ,故命题显然成立. 假设命题对)2(1≥-=m m n 成立,下证命题对m n =成立.情形1:m m a 2≤. 由于对m k ,,2,1 =均有,11),(],[1111111k k k k k k k k k k k k a a a a a a a a a a a a -=-≤=------ 故.211111111],[101111m m m mk k k mk k k a a a a a a a -≤-≤-=⎪⎪⎭⎫ ⎝⎛-≤∑∑=-=- 情形2: .2m m a >由归纳假设知,1111211],[1--=--≤∑m m k k k a a 因此.21121211],[1211],[111111m m m m m m mk k k a a a a -=+-<+-≤---=-∑ 综上可得命题对m n =也成立. 因此命题得证.1.命题可等价转化到变量较小的情形.当证明关于n 的命题)(n P 时,若)(n P 与)(m P 等价,其中n m <,则此时我们可用数学归纳法. 下面我们看如下例子.例2. 对于任意的整数1≥n ,证明数列 ,2,2,2222自某项起, 各项对模n 同余.证明:显然当1=n时结论成立. 假设)2(1≥-≤m m n 时结论成立,下证命题对m n=也成立. 设12m m k =,其中1m 为奇数, 则只要证明自某项起, 各项分别对模k2和模1m 同余. 显然自某项起,各项对模k2同余. 当mm <1时, 由归纳假设知,自某项起模1m 同余. 下面不妨设m m =1. 用i a 表示该数列的第i 项. 要证存在s ,当s i ≥时, )(mod 11m a a s i ++≡, 即)(mod 22m sia a ≡.这等价于)()(mod 12s i m s i a a ≥≡-.设δ为最小的正整数使得)(mod 12m ≡δ,则s i a a -|δ,即)(mod δs i a a ≡. 由欧拉定理知,m m <≤)(ϕδ. 因此,由归纳假设可得,存在s 使得当s i ≥时,).(mod δs i a a ≡因此,命题对m n =成立, 故命题得证.2.小结我们一般在解题过程中没有招时可想一想数学归纳法是否可行,它本质上反应了问题的继承关系,能够降低问题的难度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.4 归纳递推的必要性 这步致错的原因往往是没有用到归纳假设,直接得 的正确性.
出式子
洛阳师范学院
结 论
用数学归纳法证明命题可以降低过程的复 杂性,使推理过程简单,清晰,也保证了推理的 严谨性,特别是在初等数论中的众多命题的证 明时,使得证明过程简洁明了,而不失严密性, 数学归纳法是一种行之有效的证明方法.
在用数学归纳法证明与自然数有关的命题 时,两个基本步骤是不可缺少的,否则命题不一 定成立.
洛阳师范学院
论文不足
第一:数学归纳法的应用非常广泛,由于本人涉 及方面有限,本文只对一些基本应用做了论述, 旨在说明一种基本的数学证明思维方法.
第二:数学归纳法可以证明很多有关自然数的 命题,特别是在初等数论中.但是由于本文篇幅 有限,只是叙述了部分命题.
数学归纳法以及在初等数论中的应用
指导老师:**
答辩人:孙**
洛阳师范学院
1
2
选题的意义
论文轮廓
主要内容
4
论文的不足
洛阳师范学院
选题的意义
1
数学归纳法我 们从中学就开 始接触,但是 有时对的原理 并非特别清楚。
2
独特性,在诸多 证明方法中,由 于数学归纳法那 种机械又明快的 结构,特立独行 .。
洛阳师范学院
第二类数学归纳法 第二类数学归纳法 第一类数学归纳法与第二类数学归纳是等 价的。但是在有些情况下,仅仅依靠n=k 时,命题成立,还不够,还需要依赖前面 各步成立。此时需要用第二类数学归纳法。
洛阳师范学院
反向数学归纳法 反向数学归纳法 若命题对无数个自然数成立,可以由 k+1推出k成立。 通常适合容易确定对无数多个自然数 成立的命题。但不是所有的自然数成立。 这类命题比较适合反向归纳法。
洛阳师范学院
数学归纳法在初等数论中应注意的问题 4.1起步错误 容易忽略,觉得无关紧要,可有可无,不去认真的验证这一步,或者 根本没有这一步,都可能陷入错误之中,推出看似正确的答案. 4.2 机械套用数学归纳法的两个步骤致误 有时直接应用第一类或者第二类条件是不足的,此时,应该用 其他,但是往往不注意. 4.3 混淆概念所致 套用不完全归纳法
洛阳师范学院
论文的轮廓
第四部分:重点介绍了数学归纳法在初等数论中 容易出错点。数学归纳法的步骤看起来很简单, 但是它的论证却十分的灵活,稍加不小心,就容 易错误。 第五部分:结语、参考文献以及英文摘要。
洛阳师范学院
数学归纳法
第一类数学归纳法 第二类数学归纳法 反向数学归纳法 跳跃数学归纳法 二重数学归纳法
3
它的思想性价值 很高,是从有限 通向无限的第一 条高速公路,有 里程碑式的作用。
洛阳师范学院
论文的轮廓
引言,通过直接证法引入数学归纳法,以此来显 示它的优越性和必要性。 第二部分:证明第一类和第二类数学归纳法的原 理及之间的关系,更好的理解它。 第三部分:介绍了如何利用数学归纳法来研究初 等数论。重点介绍了在整除性、不定方程、同余、 以及一些不等式的证明。
洛阳师范学院
跳跃数学归纳法 跳跃数学归纳法 所谓跳跃实际就是将自然数集合分解 成若干互不相交的子集,再对每个子集分 别证明。
一般来说如果那个命题在不同值成立 的条件不一样,跳跃归纳法就适合。
洛阳师范学院
二重数学归纳法 二重数学归纳法 若命题与两个独立的自然数对m与n 有关,适合用二重数学归纳法。
洛阳师范学院