第二章 热力学第一律--题加答案
第二章热力学第一定律练习题及答案
第一章热力学第一定律练习题一、判断题(说法对否):1.当系统的状态一定时,所有的状态函数都有一定的数值。
当系统的状态发生变化时,所有的状态函数的数值也随之发生变化。
2.在101.325kPa、100℃下有lmol的水和水蒸气共存的系统,该系统的状态完全确定。
3.一定量的理想气体,当热力学能与温度确定之后,则所有的状态函数也完全确定。
4.系统温度升高则一定从环境吸热,系统温度不变就不与环境换热。
5.从同一始态经不同的过程到达同一终态,则Q和W的值一般不同,Q + W的值一般也不相同。
6.因Q P = ΔH,Q V = ΔU,所以Q P与Q V都是状态函数。
7.体积是广度性质的状态函数;在有过剩NaCl(s) 存在的饱和水溶液中,当温度、压力一定时;系统的体积与系统中水和NaCl的总量成正比。
8.封闭系统在压力恒定的过程中吸收的热等于该系统的焓。
9.在101.325kPa下,1mol l00℃的水恒温蒸发为100℃的水蒸气。
若水蒸气可视为理想气体,那么由于过程等温,所以该过程ΔU = 0。
10.一个系统经历了一个无限小的过程,则此过程是可逆过程。
11.1mol水在l01.325kPa下由25℃升温至120℃,其ΔH= ∑C P,m d T。
12.因焓是温度、压力的函数,即H = f(T,p),所以在恒温、恒压下发生相变时,由于d T = 0,d p = 0,故可得ΔH = 0。
13.因Q p = ΔH,Q V = ΔU,所以Q p - Q V = ΔH - ΔU = Δ(p V) = -W。
14.卡诺循环是可逆循环,当系统经一个卡诺循环后,不仅系统复原了,环境也会复原。
15.若一个过程中每一步都无限接近平衡态,则此过程一定是可逆过程。
16.(?U/?V)T = 0 的气体一定是理想气体。
17.一定量的理想气体由0℃、200kPa的始态反抗恒定外压(p环= 100kPa) 绝热膨胀达平衡,则末态温度不变。
物理化学第四版 第二章热力学第一定律习题(答案)
p外
(
nRT2 p2
nRT1 ) p1
nCV ,m (T2
T1)
T2 174.8K
U 5.40 kJ, H -9.0 kJ , w 5.40kJ
2020/4/12
14
例3. 试求下列过程的U和H:
A(蒸气) n = 2mol T1 = 400K p1 = 50.663kPa
A(液体) n = 2mol T2 = 350K p2 = 101.325kPa
⑥ 任何绝热过程
W=ΔU
2020/4/12
4
(ⅱ)热量Q的计算:
QV= ∫nCV,mdT= ΔU Qp = ∫nCp,mdT= ΔH
相变热 Qp = ΔH (定温、定压)
ΔvapHm(T) ΔfusHm(T) …
2020/4/12
5
1.试写出实际气体的范德华方程
。
2.封闭系统的热力学第一定律的数学表达式为
= H + nRT =-79 kJ + 2 8.314 400 103 kJ
2020/4/12
=-72.35 kJ
16
例4:求反应CH3COOH(g)
CH4(g)+CO2(g)在
1000K时的标准摩尔反应焓 r H m,已知数据如下表:
物质
CH3COOH(g)
f
H
m
(298K
)
kJ.mol -1
He(g)
n= 4.403mol
T1=273K p1=1.0×106 Pa
V1=0.01m3
(1) Q = 0,可逆
(2) Q = 0 p外= p2
He(e)
n=4.403mol
T2=? P2=1.0×105Pa
大学物理化学上学期各章节复习题及答案(傅献彩版)
第二章热力学第一定律一、选择题1、下列叙述中不具状态函数特征的是:()(A)系统状态确定后,状态函数的值也确定(B)系统变化时,状态函数的改变值只由系统的初终态决定(C)经循环过程,状态函数的值不变(D)状态函数均有加和性2、下列叙述中,不具可逆过程特征的是:()(A)过程的每一步都接近平衡态,故进行得无限缓慢(B)沿原途径反向进行时,每一小步系统与环境均能复原(C)过程的初态与终态必定相同(D)过程中,若做功则做最大功,若耗功则耗最小功3、如图,将CuSO4水溶液置于绝热箱中,插入两个铜电极,以蓄电池为电源进行电解,可以看作封闭体系的是:()(A)绝热箱中所有物质(B)两个铜电极(C)蓄电池和铜电极(D) CuSO4水溶液5、在下列关于焓的描述中,正确的是()(A)因为ΔH=QP,所以焓是恒压热(B)气体的焓只是温度的函数(C)气体在节流膨胀中,它的焓不改变(D)因为ΔH=ΔU+Δ(PV),所以任何过程都有ΔH>0的结论6、在标准压力下,1mol石墨与氧气反应生成1mol二氧化碳的反应热为ΔrH ,下列哪种说法是错误的? ()(A) ΔH 是CO2(g)的标准生成热(B) ΔH =ΔU(C) ΔH 是石墨的燃烧热(D) ΔU <ΔH7、在标准状态下,反应C2H5OH(l)+3O2(g) →2CO2(g)+3H2O(g)的反应焓为Δr H mθ, ΔC p>0, 下列说法中正确的是()(A)Δr H mθ是C2H5OH(l)的标准摩尔燃烧焓(B)Δr H mθ〈0(C)Δr H mθ=ΔrUmθ(D)Δr H mθ不随温度变化而变化8、下面关于标准摩尔生成焓的描述中,不正确的是()(A)生成反应中的单质必须是稳定的相态单质(B)稳态单质的标准摩尔生成焓被定为零(C)生成反应的温度必须是298.15K(D)生成反应中各物质所达到的压力必须是100KPa9、在一个绝热钢瓶中,发生一个放热的分子数增加的化学反应,那么:()(A) Q > 0,W > 0,∆U > 0 (B)Q = 0,W = 0,∆U < 0(C) Q = 0,W = 0,∆U = 0 (D) Q < 0,W > 0,∆U < 010、非理想气体进行绝热自由膨胀时,下述答案中哪一个是错误的? ( )(A) Q=0 (B) W=0 (C) ΔU=0 (D) ΔH=011、下列表示式中正确的是( )(A)恒压过程ΔH=ΔU+pΔV (B)恒压过程ΔH=0(C)恒压过程ΔH=ΔU+VΔp (D)恒容过程ΔH=012、理想气体等温反抗恒外压膨胀,则( )(A)Q>W (B)Q<W (C)Q=W (D)Q=△U13、当理想气体其温度由298K升高到348K,经(1)绝热过程和(2)等压过程,则两过程的()(A)△H1>△H2W1<W2(B)△H1<△H2W1>W2(C)△H1=△H2W1<W2(D)△H1=△H2 W1>W214、当理想气体从298K,2×105Pa 经历(1)绝热可逆膨胀和(2)等温可逆膨胀到1×105Pa时,则( )(A)△H1<△H2W1>W2(B)△H1>△H2 W1<W2(C)△H1<△H2W1<W2(D)△H1>△H2 W1>W215、对于封闭体系,在指定始终态间的绝热可逆途径可以有:( )(A) 一条(B) 二条(C) 三条(D) 三条以上16、实际气体绝热恒外压膨胀时,其温度将:( )(A) 升高(B) 降低(C) 不变(D) 不确定17、功的计算公式为W=nC v,m(T2-T1),下列过程中不能用此式的是()(A)理想气体的可逆绝热过程(B)理想气体的绝热恒外压过程(C)实际气体的绝热过程(D)凝聚系统的绝热过程18、凡是在孤立体系中进行的变化,其ΔU和ΔH的值一定是:( )(A) ΔU> 0 , ΔH > 0 (B) ΔU= 0 , ΔH = 0(C) ΔU< 0 , ΔH < 0 (D) ΔU= 0 , ΔH大于、小于或等于零不确定19、一定量的理想气体从同一始态出发,分别经(1) 等温压缩,(2) 绝热压缩到具有相同压力的终态,以H1,H2分别表示两个终态的焓值,则有:( )(A) H1> H2 (B) H1= H2 (C) H1< H2 (D) H1>=H220、将H2(g)与O2以2:1的比例在绝热刚性密闭容器中完全反应,则该过程中应有()(A)ΔT=0 (B)Δp=0 (C)ΔU=0 (D)ΔH=021、刚性绝热箱内发生一化学反应,则反应体系为( )(A)孤立体系(B)敞开体系(C)封闭体系(D)绝热体系22、理想气体可逆绝热膨胀,则下列说法中正确的是( )(A)焓总是不变(B)内能总是增加(C)焓总是增加(D)内能总是减少23、关于等压摩尔热容和等容摩尔热容,下面的说法中不正确的是( )(A)C p,m与C v,m不相等,因等压过程比等容过程系统多作体积功(B)C p,m–C v,m=R既适用于理想气体体系,也适用于实际气体体系(C)C v,m=3/2R适用于单原子理想气体混合物(D)在可逆相变中C p,m和C v,m都为无限大24、下列哪个过程的dT≠0,dH=0?( )(A)理想气体等压过程(B)实际气体等压过程(C)理想气体等容过程(D)实际气体节流膨胀过程25、隔离系统内发生一变化过程,则系统的:(A)热力学能守恒,焓守恒(B)热力学能不一定守恒,焓守恒(C)热力学能守恒,焓不一定守恒(D)热力学能、焓均不一定守恒二、判断题1、体系在某过程中向环境放热,则体系的内能减少。
第二章-第一定律习题及解答
(1)在空气压力为100 kPa时,体积胀大1dm3;
(2)在空气压力为100 kPa时,膨胀到气体压力也是100 kPa;
(3)等温可逆膨胀到气体压力为100 kPa。
解(1)属于等外压膨胀过程
W1=-p环ΔV=-100kPa×1dm3=-100J
(2)也是等外压膨胀过程
W2=-p环(V2-V1)=-nRT(1-p2/p1)
=-10mol×8.314J·K-1·mol-1×300K(1-100/1000)
=-22448J
(3)等温可逆膨胀过程
W3=-nRTln(p1/p2)
=-10mol×8.314J·K-1·mol-1×300K×ln(1000/100)
=-57431J
4.在291K和pӨ压力下,1mol Zn(s)溶于足量稀盐酸中,置换出1mol H2并放热152kJ。若以Zn和盐酸为体系,求该反应所作的功及体系内能的变化。
解Zn(s)+2HCl(aq) = ZnCl2(aq)+H2(g)
W = -pΔV = -p(V2-V1)≈-pV(H2) = -nRT
= -(1mol)×(8.314J·K-1·mol-1)×(291K)
= -2.42kJ
ΔU= Q+W = (-152-2.42)kJ =-154.4kJ
5.在298K时,有2mol N2(g),始态体积为15dm3,保持温度不变,经下列三个过程膨胀到终态体积为50 dm3,计算各过程的ΔU、ΔH、W和Q的值。设气体为理想气体。
=-5966J,
Q3=-W3=5966J。
7.理想气体等温可逆膨胀,体积从V1胀大到10V1,对外作了41.85kJ的功,体系的起始压力为202.65kPa。
物理化学-课后答案-热力学第一定律
第二章热力学第一定律【复习题】【1】判断下列说法是否正确。
(1)状态给定后,状态函数就有一定的值,反之亦然。
(2)状态函数改变后,状态一定改变。
(3)状态改变后,状态函数一定都改变。
(4)因为△U=Q v, △H =Q p,所以Q v,Q p是特定条件下的状态函数。
(5)恒温过程一定是可逆过程。
(6)汽缸内有一定量的理想气体,反抗一定外压做绝热膨胀,则△H= Q p=0。
(7)根据热力学第一定律,因为能量不能无中生有,所以一个系统若要对外做功,必须从外界吸收热量。
(8)系统从状态Ⅰ变化到状态Ⅱ,若△T=0,则Q=0,无热量交换。
(9)在等压下,机械搅拌绝热容器中的液体,使其温度上升,则△H = Q p = 0。
(10)理想气体绝热变化过程中,W=△U,即W R=△U=C V△T,W IR=△U=C V△T,所以W R=W IR。
(11)有一个封闭系统,当始态和终态确定后;(a)若经历一个绝热过程,则功有定值;(b)若经历一个等容过程,则Q有定值(设不做非膨胀力);(c)若经历一个等温过程,则热力学能有定值;(d)若经历一个多方过程,则热和功的代数和有定值。
(12)某一化学反应在烧杯中进行,放热Q1,焓变为△H1,若安排成可逆电池,使终态和终态都相同,这时放热Q2,焓变为△H2,则△H1=△H2。
【答】(1)正确,因为状态函数是体系的单质函数,体系确定后,体系的一系列状态函数就确定。
相反如果体系的一系列状态函数确定后,体系的状态也就被惟一确定。
(2)正确,根据状态函数的单值性,当体系的某一状态函数改变了,则状态函数必定发生改变。
(3)不正确,因为状态改变后,有些状态函数不一定改变,例如理想气体的等温变化,内能就不变。
(4)不正确,ΔH=Qp,只说明Qp 等于状态函数H的变化值ΔH,仅是数值上相等,并不意味着Qp 具有状态函数的性质。
ΔH=Qp 只能说在恒压而不做非体积功的特定条件下,Qp 的数值等于体系状态函数H 的改变,而不能认为Qp 也是状态函数。
《物理化学》第二章热力学第一定律练习题(含答案)
《物理化学》第二章热力学第一定律练习题(含答案)第二章练习1,填入1,根据系统与环境之间的能量和物质交换,系统可分为,,2,强度性质显示了体系的特征,与物质的量无关。
容量属性体现了系统的特征,它与物质的数量有关,具有性别。
3年,热力学平衡态同时达到四种平衡,即,,,4,系统状态改变称为进程常见的过程有、、、和,5.从统计热力学的观点来看,功的微观本质是热的微观本质6,每种气体的真空膨胀功w = 0.7,在绝热钢瓶内的化学反应△ u = 0.8,焓定义为2.真或假:1。
当系统的状态不变时,所有状态函数都有一定的值(√) 2。
当系统的状态改变时,所有状态函数的值也相应地改变。
(χ) 3。
因为=δH和=δU,所以和都是状态函数(χ)4,密闭系统在恒压过程中吸收的热量等于系统的焓(χ)误差只有当封闭系统不做非膨胀功等压过程δH = QP5且状态被给定时,状态函数才有固定值;在状态函数被确定之后,状态也被确定(√) 6。
热力学过程中的W值由具体过程(√)7和1摩尔理想气体从同一初始状态经过不同的循环路径后返回初始状态决定,其热力学能量保持不变(√) 3。
单一主题1。
系统中的以下几组物理量都是状态函数:(C) A,T,P,V,Q B,M,W,P,H C,T,P,V,N,D,T,P,U,W2,对于内能是系统的单值函数的概念,误解是(C)系统A处于某一状态,某一内能B对应于某一状态,内能只能有一个值,不能有两个以上的值c的状态改变,内部能量也必须随着对应于内部能量值的d而改变。
可以有多种状态3以下语句不具有状态函数的特征:(d)当系统A的状态确定后状态函数值也确定时,状态函数值的变化值只由系统C的恒定状态通过循环过程来确定。
状态函数值是常数。
D态函数的可加性为4。
在下面的描述中正确的是(a)A物体的温度越高,它的内能越大,B物体的温度越高,它包含的热量越多。
当系统温度升高时,一定是它吸收了热量。
当系统温度恒定时,解释它既不吸热也不放热。
第二章 热力学第一定律自测题
第二章热力学第一定律自测题与答案. I选择题1.物质的量为n的纯理想气体,该气体的下列物理量中,其值确定后,其他状态函数方有定值打得是(d)。
(a)p(b)V (c)T,U (d)T,p2.有一真空绝热瓶子,通过阀门和大气相隔。
当阀门打开时,大气(视为理想气体)进入瓶内,此时瓶内气体的温度将(a)。
(a)升高(b)降低(c)不变(d)不确定3.公式∆H=Q p适用于下列过程中的(b)。
(a)理想气体从1013.25 kPa反抗很定的外压101.325 kPa膨胀(b)273 K,1013.25 kPa下冰融化成水(c)298 K,下电解CuSO4水溶液(d)气体从状态I等温可逆变化到状态II4.可逆机的效率为η,冷冻机的冷冻系数为β,则β和η的数值满足(d)。
(a)η<1,β<1 (a)η<1,β<1(a)η<1,β>1 (a)η<1,β可能小于、等于或大于15.对于一定量的理想气体,有可能发生的过程是(a)。
(1)对外做功且放出热量(2)很容绝热升温、无非膨胀功(3)恒压绝热膨胀(4)恒温绝热膨胀(a)(1),(4)(b)(2),(3)(c)(3),(4)(d)(1),(2)6.实际气体经节流膨胀后,(d)。
(a)Q<0,∆H=0,∆p<0(a)Q=0,∆H=0,∆T<0(a)Q=0,∆H<0,∆p<0(a)Q=0,∆H=0,∆p<07.某气体的状态方程为pV m=RT+bp(b为大于零的常数)。
此气体向真空绝热膨胀后的温度将(a)。
(a)升高(b)降低(c)不变(d)不确定8.根据定义:等压膨胀系数1=pVV Tα∂⎛⎫⎪∂⎝⎭,等容压力系数1=Vpp Tβ∂⎛⎫⎪∂⎝⎭,等温压缩系数1=TVV pκ⎛⎫∂⎪∂⎝⎭。
,,αβκ三者间的关系为(d)。
(a)α⋅β=p⋅κ(b)α⋅β⋅κ=1(c)α⋅κ=β/p(d)α=p⋅β⋅κ9.van der waals 气体经Joule实验后(绝热向真空膨胀),气体的温度将(b)。
物理化学热力学第一定律习题答案
第二章 热力学第一定律2-1 1mol 理想气体于恒定压力下升温1℃,试求过程中气体与环境交换的功W 。
解:体系压力保持恒定进行升温,即有P外=P ,即反抗恒定外压进行膨胀,JT nR nRT nRT pV pV V V p W amb 314.8)(121212-=∆-=+-=+-=--=2-2 系统由相同的始态经过不同途径达到相同的末态。
若途径a 的Q a =2.078kJ ,W a = -4.157kJ ;而途径b 的Q b = -0.692kJ 。
求W b 。
解:应用状态函数法。
因两条途径的始末态相同,故有△U a =△U b ,则 b b a a W Q W Q +=+ 所以有,kJ Q W Q W b a a b 387.1692.0157.4078.2-=+-=-+=2-3 4mol 某理想气体,温度升高20℃,求△H -△U 的值。
解: 方法一: 665.16J208.3144 )20()( 2020,,20,20,=⨯⨯=-+==-=-=∆-∆⎰⎰⎰⎰++++T K T nR nRdT dT C C n dTnC dT nC U H K T TKT Tm V m p KT Tm V K T T m p方法二:可以用△H=△U+△(PV)进行计算。
2-4 某理想气体, 1.5V m C R =。
今有该气体5 mol 在恒容下温度升高50℃,求过程的W ,Q ,△H 和△U 。
解:恒容:W=0; kJJ K nC T K T nC dT nC U m V m V K T Tm V 118.33118503145.823550 )50(,,50,==⨯⨯⨯=⨯=-+==∆⎰+kJJ KR C n T K T nC dT nC H m V m p KT Tm p 196.55196503145.8255 50)()50(,,50,==⨯⨯⨯=⨯+==-+==∆⎰+根据热力学第一定律,:W=0,故有Q=△U=3.118kJ2-5 某理想气体, 2.5V m C R =。
第二章热力学第一定律__题加的答案解析
第二章热力学第一定律1. 始态为25 °C,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。
途经a先经绝热膨胀到-28.47 °C,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。
途径b为恒压加热过程。
求途径b的及。
(天大2.5题)解:先确定系统的始、末态对于途径b,其功为根据热力学第一定律2. 2 mol某理想气体,。
由始态100 kPa,50 dm3,先恒容加热使压力增大到200 dm3,再恒压冷却使体积缩小至25 dm3。
求整个过程的。
(天大2.10题)解:过程图示如下由于,则,对有理想气体和只是温度的函数该途径只涉及恒容和恒压过程,因此计算功是方便的根据热力学第一定律3. 单原子理想气体A与双原子理想气体B的混合物共5 mol,摩尔分数,始态温度,压力。
今该混合气体绝热反抗恒外压膨胀到平衡态。
求末态温度及过程的。
(天大2.18题)解:过程图示如下分析:因为是绝热过程,过程热力学能的变化等于系统与环境间以功的形势所交换的能量。
因此,单原子分子,双原子分子由于对理想气体U和H均只是温度的函数,所以4. 1.00mol(单原子分子)理想气体,由10.1kPa、300K按下列两种不同的途径压缩到25.3kPa、300K,试计算并比较两途径的Q、W、ΔU及ΔH。
(1)等压冷却,然后经过等容加热;(2)等容加热,然后经过等压冷却。
解:C p,m=2.5R, C V,m=1.5R(1)10.1kPa、300K 10.1kPa、119.8 25.3kPa、300K0.2470dm30.09858 dm30.09858 dm3Q=Q1+Q2=1.00×2.5R×(119.8-300)+ 1.00×1.5R×(300-119.8)=-3745+2247=-1499(J)W=W1+W2=-10.1×103×(0.09858-0.2470)+0=1499(J)ΔU=Q+W=0ΔH=ΔU+Δ(pV)=0+25.3×0.09858-10.1×0.2470=0(2)10.1kPa、300K 25.3kPa、751.6 25.3kPa、300K0.2470dm30.2470dm30.09858 dm3Q=Q1+Q2=1.00×1.5R×(751.6-300)+ 1.00×2.5R×(300-751.6)=5632-9387=-3755(J)W=W1+W2=0-25.3×103×(0.09858-0.2470) =3755(J)ΔU=Q+W=0ΔH=ΔU+Δ(pV)=0+25.3×0.09858-10.1×0.2470=0计算结果表明,Q、W与途径有关,而ΔU、ΔH与途径无关。
(完整版)第二章热力学第一定律习题
第二章热力学第一定律选择题1. 热力学第一定律厶U=Q+W只适用于(A) 单纯状态变化(B) 相变化(C) 化学变化(D) 封闭物系的任何变化答案:D2. 关于热和功, 下面的说法中, 不正确的是(A) 功和热只出现于系统状态变化的过程中, 只存在于系统和环境间的界面上(B) 只有在封闭系统发生的过程中, 功和热才有明确的意义(C) 功和热不是能量, 而是能量传递的两种形式, 可称之为被交换的能量(D) 在封闭系统中发生的过程中, 如果内能不变, 则功和热对系统的影响必互相抵消答案:B3. 关于焓的性质, 下列说法中正确的是(A) 焓是系统内含的热能, 所以常称它为热焓(B) 焓是能量, 它遵守热力学第一定律(C) 系统的焓值等于内能加体积功(D) 焓的增量只与系统的始末态有关答案:D。
因焓是状态函数。
4. 涉及焓的下列说法中正确的是(A) 单质的焓值均等于零(B) 在等温过程中焓变为零(C) 在绝热可逆过程中焓变为零(D) 化学反应中系统的焓变不一定大于内能变化答案:D。
因为焓变厶HM U+A (pV),可以看出若△ (pV) V 0则厶H VA Uo5. 下列哪个封闭体系的内能和焓仅是温度的函数(A) 理想溶液(B) 稀溶液(C) 所有气体(D) 理想气体答案:D6. 与物质的生成热有关的下列表述中不正确的是(A) 标准状态下单质的生成热都规定为零(B) 化合物的生成热一定不为零(C) 很多物质的生成热都不能用实验直接测量(D) 通常所使用的物质的标准生成热数据实际上都是相对值答案:A。
按规定,标准态下最稳定单质的生成热为零。
7. dU=CvdT及dUm=Cv,md■适用的条件完整地说应当是(A) 等容过程(B) 无化学反应和相变的等容过程(C) 组成不变的均相系统的等容过程(D) 无化学反应和相变且不做非体积功的任何等容过程及无反应和相变而且系统内能只与温度有关的非等容过程答案:D8.下列过程中, 系统内能变化不为零的是(A) 不可逆循环过程(B) 可逆循环过程(C) 两种理想气体的混合过程(D) 纯液体的真空蒸发过程答案:0因液体分子与气体分子之间的相互作用力是不同的故内能不同。
(完整版)《物理化学》第二章热力学第一定律练习题(含答案)
(完整版)《物理化学》第⼆章热⼒学第⼀定律练习题(含答案)第⼆章练习题⼀、填空题1、根据体系和环境之间能量和物质的交换情况,可将体系分成、、。
2、强度性质表现体系的特征,与物质的数量⽆关。
容量性质表现体系的特征,与物质的数量有关,具有性。
3、热⼒学平衡状态同时达到四种平衡,分别是、、、。
4、体系状态发⽣变化的称为过程。
常见的过程有、、、、。
5、从统计热⼒学观点看,功的微观本质是,热的微观本质是。
6、⽓体各真空膨胀膨胀功W= 07、在绝热钢瓶中化学反应△U= 08、焓的定义式为。
⼆、判断题(说法对否):1、当体系的状态⼀定时,所有的状态函数都有⼀定的数值。
(√)2、当体系的状态发⽣变化时,所有的状态函数的数值也随之发⽣变化。
(χ)3.因= ΔH, = ΔU,所以与都是状态函数。
(χ)4、封闭系统在压⼒恒定的过程中吸收的热等于该系统的焓。
(χ)错。
只有封闭系统不做⾮膨胀功等压过程ΔH=Q P5、状态给定后,状态函数就有定值;状态函数确定后,状态也就确定了。
(√)6、热⼒学过程中W的值应由具体过程决定( √ )7、1mol理想⽓体从同⼀始态经过不同的循环途径后回到初始状态,其热⼒学能不变。
( √ )三、单选题1、体系的下列各组物理量中都是状态函数的是( C )A 、T、P、V、QB 、m、W、P、HC、T、P、V、n、D、T、P、U、W2、对于内能是体系的单值函数概念,错误理解是( C )A体系处于⼀定的状态,具有⼀定的内能B对应于某⼀状态,内能只能有⼀数值不能有两个以上的数值C状态发⽣变化,内能也⼀定跟着变化D对应于⼀个内能值,可以有多个状态3下列叙述中不具有状态函数特征的是(D )A体系状态确定后,状态函数的值也确定B体系变化时,状态函数的改变值只由体系的始终态决定C经循环过程,状态函数的值不变D状态函数均有加和性4、下列叙述中正确的是( A )A物体温度越⾼,说明其内能越⼤B物体温度越⾼,说明其所含热量越多C凡体系温度升⾼,就肯定是它吸收了热D凡体系温度不变,说明它既不吸热也不放热5、下列哪⼀种说法错误( D )A焓是定义的⼀种具有能量量纲的热⼒学量B只有在某些特定条件下,焓变△H才与体系吸热相等C焓是状态函数D焓是体系能与环境能进⾏热交换的能量6、热⼒学第⼀定律仅适⽤于什么途径(A)A同⼀过程的任何途径B同⼀过程的可逆途径C同⼀过程的不可逆途径D不同过程的任何途径7. 如图,将CuSO4⽔溶液置于绝热箱中,插⼊两个铜电极,以蓄电池为电源进⾏电解,可以看作封闭系统的是(A)(A) 绝热箱中所有物质; (B) 两个铜电极;(C) 蓄电池和铜电极;(D) CuSO4⽔溶液。
第 二 章 热力学第一定律练习题及解答
第 二 章 热力学第一定律一、思考题1. 判断下列说法是否正确,并简述判断的依据(1)状态给定后,状态函数就有定值,状态函数固定后,状态也就固定了。
答:是对的。
因为状态函数是状态的单值函数。
(2)状态改变后,状态函数一定都改变。
答:是错的。
因为只要有一个状态函数变了,状态也就变了,但并不是所有的状态函数都得变。
(3)因为ΔU=Q V ,ΔH=Q p ,所以Q V ,Q p 是特定条件下的状态函数? 这种说法对吗?答:是错的。
∆U ,∆H 本身不是状态函数,仅是状态函数的变量,只有在特定条件下与Q V ,Q p 的数值相等,所以Q V ,Q p 不是状态函数。
(4)根据热力学第一定律,因为能量不会无中生有,所以一个系统如要对外做功,必须从外界吸收热量。
答:是错的。
根据热力学第一定律U Q W ∆=+,它不仅说明热力学能(ΔU )、热(Q )和功(W )之间可以转化,有表述了它们转化是的定量关系,即能量守恒定律。
所以功的转化形式不仅有热,也可转化为热力学能系。
(5)在等压下,用机械搅拌某绝热容器中的液体,是液体的温度上升,这时ΔH=Q p =0答:是错的。
这虽然是一个等压过程,而此过程存在机械功,即W f ≠0,所以ΔH≠Q p 。
(6)某一化学反应在烧杯中进行,热效应为Q 1,焓变为ΔH 1。
如将化学反应安排成反应相同的可逆电池,使化学反应和电池反应的始态和终态形同,这时热效应为Q 2,焓变为ΔH 2,则ΔH 1=ΔH 2。
答:是对的。
Q 是非状态函数,由于经过的途径不同,则Q 值不同,焓(H )是状态函数,只要始终态相同,不考虑所经过的过程,则两焓变值∆H 1和∆H 2相等。
2 . 回答下列问题,并说明原因(1)可逆热机的效率最高,在其它条件相同的前提下,用可逆热机去牵引货车,能否使火车的速度加快? 答?不能。
热机效率hQ W -=η是指从高温热源所吸收的热最大的转换成对环境所做的功。
但可逆热机循环一周是一个缓慢的过程,所需时间是无限长。
《物理化学》第二章-热力学第一定律练习题(含标准答案)
《物理化学》第二章-热力学第一定律练习题(含答案)————————————————————————————————作者:————————————————————————————————日期:第二章练习题一、填空题1、根据体系和环境之间能量和物质的交换情况,可将体系分成、、。
2、强度性质表现体系的特征,与物质的数量无关。
容量性质表现体系的特征,与物质的数量有关,具有性。
3、热力学平衡状态同时达到四种平衡,分别是、、、。
4、体系状态发生变化的称为过程。
常见的过程有、、、、。
5、从统计热力学观点看,功的微观本质是,热的微观本质是。
6、气体各真空膨胀膨胀功W= 07、在绝热钢瓶中化学反应△U= 08、焓的定义式为。
二、判断题(说法对否):1、当体系的状态一定时,所有的状态函数都有一定的数值。
(√)2、当体系的状态发生变化时,所有的状态函数的数值也随之发生变化。
(χ)3.因= ΔH, = ΔU,所以与都是状态函数。
(χ)4、封闭系统在压力恒定的过程中吸收的热等于该系统的焓。
(χ)错。
只有封闭系统不做非膨胀功等压过程ΔH=Q P5、状态给定后,状态函数就有定值;状态函数确定后,状态也就确定了。
(√)6、热力学过程中W的值应由具体过程决定( √ )7、1mol理想气体从同一始态经过不同的循环途径后回到初始状态,其热力学能不变。
( √ )三、单选题1、体系的下列各组物理量中都是状态函数的是( C )A 、T、P、V、QB 、m、W、P、HC、T、P、V、n、D、T、P、U、W2、对于内能是体系的单值函数概念,错误理解是( C )A体系处于一定的状态,具有一定的内能B对应于某一状态,内能只能有一数值不能有两个以上的数值C状态发生变化,内能也一定跟着变化D对应于一个内能值,可以有多个状态3下列叙述中不具有状态函数特征的是(D )A体系状态确定后,状态函数的值也确定B体系变化时,状态函数的改变值只由体系的始终态决定C经循环过程,状态函数的值不变D状态函数均有加和性4、下列叙述中正确的是( A )A物体温度越高,说明其内能越大B物体温度越高,说明其所含热量越多C凡体系温度升高,就肯定是它吸收了热D凡体系温度不变,说明它既不吸热也不放热5、下列哪一种说法错误( D )A焓是定义的一种具有能量量纲的热力学量B只有在某些特定条件下,焓变△H才与体系吸热相等C焓是状态函数D焓是体系能与环境能进行热交换的能量6、热力学第一定律仅适用于什么途径(A)A同一过程的任何途径B同一过程的可逆途径C同一过程的不可逆途径D不同过程的任何途径7. 如图,将CuSO4水溶液置于绝热箱中,插入两个铜电极,以蓄电池为电源进行电解,可以看作封闭系统的是(A)(A) 绝热箱中所有物质; (B) 两个铜电极;(C) 蓄电池和铜电极;(D) CuSO4水溶液。
第二章 热学第一定律-附答案
第二章热力学第一定律――附答案引用参考资料(1)天津大学物理化学习题解答(第五版);(2)江南大学课件附带习题中选择题和填空题部分;(3)2001-山东大学-物理化学中的术语概念及练习;一、填空题1. 理想气体向真空膨胀过程, 下列变量中等于零的有: 。
2. 双原子理想气体经加热内能变化为,则其焓变为。
3. 在以绝热箱中置一绝热隔板,将向分成两部分,分别装有温度,压力都不同的两种气体,将隔板抽走室气体混合,若以气体为系统,则此过程。
=、=、=4. 绝热刚壁容器内发生CH4+2O2=CO2+2H2O的燃烧反应,系统的Q ___ 0 ; W ___ 0 ; ∆U ___ 0 ; ∆H ___ 0 ===<=+∆=∆∆UpH∆VpV5. 某循环过程Q = 5 kJ, 则∆U + 2W + 3 ∆(pV) = __________. -10kJ6. 298K时, S的标准燃烧焓为-296.8 kJ×mol-1, 298K时反应的标准摩尔反应焓∆r H m = ________ kJ×mol-1 . 148.47. 已知的, 则的。
-285.848. 某均相化学反应在恒压,绝热非体积功为零的条件下进行,系统的温度由升高到则此过程的;如果此反应是在恒温,恒压,不作非体积功的条件下进行,则。
=、<9. 25 ℃ 的液体苯在弹式量热计中完全燃烧 , 放热则反应的 。
-6528 、-653510.系统的宏观性质可以分为( ),凡与系统物质的量成正比的物理量皆称为( )。
广度量和强度量;广度量11.在300K 的常压下,2mol 的某固体物质完全升华过程的体积功W=( ).。
-4.99kJ ()kJ 99.4-J 300314.82-g =⨯⨯-==-=∆-=nRT pV V p W12.某化学反应:A(l)+0.5B(g)-- C(g) 在500K 恒容条件下进行,反应进度为1mol 时放热10KJ,若反应在同样温度恒压条件下进行,反应进度为1mol 时放热( )。
第二章 热力学第一定律-附答案
(A)V1 V2
(B)V1 V2
(C)V1 V2
(D) 无法确定
答案:C(因绝热过程无法从环境吸热,则同样温度下压力较低,体积较小。) 16. 始态(p1,T1)完全相同的一个理想气体体系和另一个范德华气体体系,分别进行绝热恒
答案:B。 H Q p 成立的条件是恒压、W' 0 。
13. 某化学反应在恒压、绝热和只作体积功的条件下进行,体系温度由 T1 升高 T2 ,则此过
程的焓变 H :
(A)小于零 (B)大于零
(C)等于零 (D)不能确定
答案:C。因恒压、不做其它功, H Q p ,又因绝热故 H 0 。
14. 体系的状态改变了,其内能值: (A)必定改变 (B) 必定不变 (C) 不一定改变 (D) 状态与内能无关 答案:C。例如,理想气体恒温下体积发生变化其内能不变。
二、选择题
1. 热力学第一定律中的 W 是指______ C A. 体积功 B. 非体积功 C. 各种形式功之和
D. 机械功
2. 热力学第一定律ΔU=Q+W 只适用于
(A) 单纯状态变化
(B) 相变化
(C) 化学变化
(D) 封闭物系的任何变化
答案:D
3.关于热和功, 下面的说法中, 不正确的是
(A) 功和热只出现于系统状态变化的过程中, 只存在于系统和环境间的界面上
C. T2 ' T2 ,V2 ' V2
答案:C
D. T2 ' T2 ,V2 ' V2
22.分子数增加的放热化学反应在一绝热钢瓶中进行,则( )
第二章热力学第一定律习题和答案
第二章热力学第一定律一选择题1.某绝热体系在接受了环境所做的功之后,其温度() AA.一定升高B.一定降低C.一定不变D.不一定改变2.当体系将热量传递给环境后,体系的焓() DA.必定减少B.必定增加C.没有变化D.不一定改变3.热力学状态和热力学状态函数的关系为() BA.状态函数一定,状态就单一的确定B.状态一定,状态函数就单值的确定C .A、B 都对 D. A、B 都不对4.系统的状态函数,定义为H=U+pV 若系统发生状态变化时,则焓的变化为△H=△U+△(pV),式中△(pV)的意思是() BA. △(pV) = △P△VB.△(pV) = p2V2-p1V1C. △(pV) = p△V+V△p5.在一个密闭绝热的房间里放置一台电冰箱,将冰箱门打开,接通电源使冰箱工作,过一段时间后,室内的平均气温将如何变化?()A.升高B.降低C.不变D.先升后降 A6.分子数增加的放热化学反应在一绝热钢瓶中进行,则() DA. B.C. D.7.1mol 单原子理想气体,从p1=202650Pa,T1=273K 经p/T=常数的途径加热使压力增加到p2=405300Pa,则体系做的功为() CA.大于零B.小于零C.零D.无法确定8. 氧气的燃烧热应为何值() DA.大于零B.小于零C.等于零D.不存在9.下述说法中,哪一个正确?() BA.水蒸气的生成热即是氢气的燃烧热B.水的生成热即是氢气的燃烧热C.水的生成热即是氧气的燃烧热D.水蒸气的生成热即是氧气的燃烧热9.298K 及101325Pa 条件下,1mol 过冷水蒸气变成1mol 的液态水则ΔG 为 ( )A.ΔG < 0B.ΔG > 0C.ΔG = 0D.不一定 A10.关于焓,下述说法不正确的是() AA.△H=Q 适用于封闭体系等压只做功的过程B.对于常压下的凝聚相,过程△H≈△UC.对理想气体的恒容过程△H=△U+V△PD 对于任何体系等压只做体积功的过程△H=△U-W11.将某理想气体从温度T1加热到T2,若此变化为非恒容途径,则其热力学能的变化△U 应() BA.= 0B.= Cv(T2-T1)C.不存在D.等于其他值12.对于封闭体系,当过程的始终态确定后,下列值中不能确定的是()A.恒容、无其它功过程的QB.可逆过程的WC.任意过程的Q+WD.绝热过程的W D13.化学反应在只做体积功的定温定压条件下,若从反应物开始进进行反应,由此过程为() CA.是热力学可逆过程B.是热力学不可逆过程C.是否过逆不能确定 C.是不能进行的过程14.下面陈述中,正确的是() C A.虽然Q 和W 是过程量,但由于Q v=△U,Q p=△H,而U 和H 是状态函数,所以Q v 和Q p 是状态函数B.热量是由于温度差而传递的能量,它总是倾向于从含热量较多的高温物体流向含热量较少的低温物体C.封闭系统与环境之间交换能量的形式非功即热D.两物体之间只有存在温差,才可传递能量,反过来系统与环境间发生热量传递后, 必然要引起系统温度变化15.物质的量为n 的纯理想气体,若该气体的哪一组物理量确定之后,其它状态函数方有定值。
(完整版)第二章热力学第一定律习题
第二章热力学第一定律选择题1.热力学第一定律ΔU=Q+W 只适用于(A) 单纯状态变化 (B) 相变化(C) 化学变化 (D) 封闭物系的任何变化答案:D2.关于热和功, 下面的说法中, 不正确的是(A) 功和热只出现于系统状态变化的过程中, 只存在于系统和环境间的界面上(B) 只有在封闭系统发生的过程中, 功和热才有明确的意义(C) 功和热不是能量, 而是能量传递的两种形式, 可称之为被交换的能量(D) 在封闭系统中发生的过程中, 如果内能不变, 则功和热对系统的影响必互相抵消答案:B3.关于焓的性质, 下列说法中正确的是(A) 焓是系统内含的热能, 所以常称它为热焓(B) 焓是能量, 它遵守热力学第一定律(C) 系统的焓值等于内能加体积功(D) 焓的增量只与系统的始末态有关答案:D。
因焓是状态函数。
4.涉及焓的下列说法中正确的是(A) 单质的焓值均等于零(B) 在等温过程中焓变为零(C) 在绝热可逆过程中焓变为零(D) 化学反应中系统的焓变不一定大于内能变化答案:D。
因为焓变ΔH=ΔU+Δ(pV),可以看出若Δ(pV)<0则ΔH<ΔU。
5.下列哪个封闭体系的内能和焓仅是温度的函数(A) 理想溶液 (B) 稀溶液 (C) 所有气体 (D) 理想气体答案:D6.与物质的生成热有关的下列表述中不正确的是(A) 标准状态下单质的生成热都规定为零(B) 化合物的生成热一定不为零(C) 很多物质的生成热都不能用实验直接测量(D) 通常所使用的物质的标准生成热数据实际上都是相对值答案:A。
按规定,标准态下最稳定单质的生成热为零。
7.dU=CvdT及dUm=Cv,mdT适用的条件完整地说应当是(A) 等容过程(B)无化学反应和相变的等容过程(C) 组成不变的均相系统的等容过程(D) 无化学反应和相变且不做非体积功的任何等容过程及无反应和相变而且系统内能只与温度有关的非等容过程答案:D8.下列过程中, 系统内能变化不为零的是(A) 不可逆循环过程 (B) 可逆循环过程(C) 两种理想气体的混合过程 (D) 纯液体的真空蒸发过程答案:D 。
工程热力学第二章答案
第二章 热力学第一定律2-1 一辆汽车 1 小时消耗汽油 34.1 升,已知汽油发热量为44 000 kJ/kg ,汽油密度0.75g/cm 3。
测得该车通过车轮出的功率为 64kW ,试求汽车通过排气,水箱散热等各种途径所放出的热量。
解:汽油总发热量33334.110m 750kg/m 44000kJ/kg 1125300kJQ −=×××=汽车散发热量out 3600(1125300643600)kJ/h 894900kJ/hQ Q W =−×=−×=2−2 质量为1 275 kg 的汽车在以60 000 m /h 速度行驶时被踩刹车止动,速度降至20 000 m/h ,假定刹车过程中0.5kg 的刹车带和4kg 钢刹车鼓均匀加热,但与外界没有传热,已知刹车带和钢刹车鼓的比热容分别是1.1kJ/(kg·K)和0.46kJ/(kg·K),求刹车带和刹车鼓的温升。
解:汽车速度降低,动能转化为刹车带和刹车鼓的热力学能,没有传热和对外作功,故22car 2121()()02m c c U U E −+−=Δ= 160000m 16.67m/s 3600sc ==,220000m 5.56m/s 3600sc ==21s ,s b ,b 21()()V V U U m c m c t t −=+−22car 2121s ,s b ,b 22()()2()1275kg [(16.67m/s)(5.56m/s)]65.9C2[0.5kg 1.1kJ/(kg K)4kg 0.46kJ/(kg K)]V V m c c t t m c m c −−=−+×−=−=××⋅+×⋅D 2−3 1kg 氧气置于图2-1所示气缸内,缸壁能充分导热,且活塞与缸壁无磨擦。
初始时氧气压力为0.5MPa ,温度为27℃,若气缸长度2l ,活塞质量为10kg 。
物理化学 第二章 热力学第一定律 经典习题及答案
V3 = V2 =
W b = − p外 ΔV = − p3 (V3 − V1 ) = − 200 × 103 (0.10167 − 0.06197) = −7.940kJ
由热力学第一定律
Wa + Qa = Wb + Qb -5.57+25.42= − 7.940 + Qb ∴ Qb = 27.79
= − 2 × 8.314 × 300 × (1 −
2.
∂H ∂p 求证: C p − CV = − + V ∂p T ∂ T V
方法一:和课件中的证明类似
方法二:
∂H ∂U ∂H ∂( H m − pVm C p,m − CV,m = m − m = m − ∂T ∂T p ∂T V ∂T p V ∂H ∂H ∂p = m − m +Vm ∂T V ∂T p ∂T V 令H = H (T , p) ∂H ∂H dH = dT + dp ∂T p ∂p T
2.10 2 mol 某理想气体,
。由始态 100 kPa,50 dm3,先恒容加热使
压力体积增大到 150 dm3,再恒压冷却使体积缩小至 25 dm3。求整个过程的 。 解:过程图示如下 n = 2mol 理想气体 T1 = ? p1 = 100kPa V1 = 0.05m3 n = 2mol 理想气体 恒容 → T2 = ? p2 = 200kPa V2 = 0.05m3 n = 2mol 理想气体 恒压 → T3 = ? p3 = 200kPa V3 = 0.025m3
3.
∂U 已知:理想气体 =0 ∂V T
第二章 热力学第一定律--题加答案
第二章热力学第一定律1. 始态为25 °C,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。
途经a先经绝热膨胀到-28.47 °C,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。
途径b为恒压加热过程。
求途径b的及。
(天大2.5题)解:先确定系统的始、末态对于途径b,其功为根据热力学第一定律2. 2 mol某理想气体,。
由始态100 kPa,50 dm3,先恒容加热使压力增大到200 dm3,再恒压冷却使体积缩小至25 dm3。
求整个过程的。
(天大2.10题)解:过程图示如下由于,则,对有理想气体和只是温度的函数该途径只涉及恒容和恒压过程,因此计算功是方便的根据热力学第一定律3. 单原子理想气体A与双原子理想气体B的混合物共5 mol,摩尔分数,始态温度,压力。
今该混合气体绝热反抗恒外压膨胀到平衡态。
求末态温度及过程的。
(天大2.18题)解:过程图示如下分析:因为是绝热过程,过程热力学能的变化等于系统与环境间以功的形势所交换的能量。
因此,单原子分子,双原子分子由于对理想气体U和H均只是温度的函数,所以4. 1.00mol(单原子分子)理想气体,由10.1kPa、300K按下列两种不同的途径压缩到25.3kPa、300K,试计算并比较两途径的Q、W、ΔU及ΔH。
(1)等压冷却,然后经过等容加热;(2)等容加热,然后经过等压冷却。
解:C p,m=2.5R, C V,m=1.5R(1)10.1kPa、300K 10.1kPa、119.8 25.3kPa、300K0.2470dm30.09858 dm30.09858 dm3Q=Q1+Q2=1.00×2.5R×(119.8-300)+ 1.00×1.5R×(300-119.8)=-3745+2247=-1499(J)W=W1+W2=-10.1×103×(0.09858-0.2470)+0=1499(J)ΔU=Q+W=0ΔH=ΔU+Δ(pV)=0+25.3×0.09858-10.1×0.2470=0(2)10.1kPa、300K 25.3kPa、751.6 25.3kPa、300K0.2470dm30.2470dm30.09858 dm3Q=Q1+Q2=1.00×1.5R×(751.6-300)+ 1.00×2.5R×(300-751.6)=5632-9387=-3755(J)W=W1+W2=0-25.3×103×(0.09858-0.2470) =3755(J)ΔU=Q+W=0ΔH=ΔU+Δ(pV)=0+25.3×0.09858-10.1×0.2470=0计算结果表明,Q、W与途径有关,而ΔU、ΔH与途径无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章热力学第一定律1. 始态为25 °C,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。
途经a先经绝热膨胀到-28.47 °C,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。
途径b为恒压加热过程。
求途径b的及。
(天大2.5题)解:先确定系统的始、末态对于途径b,其功为根据热力学第一定律2. 2 mol某理想气体,。
由始态100 kPa,50 dm3,先恒容加热使压力增大到200 dm3,再恒压冷却使体积缩小至25 dm3。
求整个过程的。
(天大2.10题)解:过程图示如下由于,则,对有理想气体和只是温度的函数该途径只涉及恒容和恒压过程,因此计算功是方便的根据热力学第一定律3. 单原子理想气体A与双原子理想气体B的混合物共5 mol,摩尔分数,始态温度,压力。
今该混合气体绝热反抗恒外压膨胀到平衡态。
求末态温度及过程的。
(天大2.18题)解:过程图示如下分析:因为是绝热过程,过程热力学能的变化等于系统与环境间以功的形势所交换的能量。
因此,单原子分子,双原子分子由于对理想气体U和H均只是温度的函数,所以4. 1.00mol(单原子分子)理想气体,由10.1kPa、300K按下列两种不同的途径压缩到25.3kPa、300K,试计算并比较两途径的Q、W、ΔU及ΔH。
(1)等压冷却,然后经过等容加热;(2)等容加热,然后经过等压冷却。
解:C p,m=2.5R, C V,m=1.5R(1)10.1kPa、300K 10.1kPa、119.8 25.3kPa、300K0.2470dm30.09858 dm30.09858 dm3Q=Q1+Q2=1.00×2.5R×(119.8-300)+ 1.00×1.5R×(300-119.8)=-3745+2247=-1499(J)W=W1+W2=-10.1×103×(0.09858-0.2470)+0=1499(J)ΔU=Q+W=0ΔH=ΔU+Δ(pV)=0+25.3×0.09858-10.1×0.2470=0(2)10.1kPa、300K 25.3kPa、751.6 25.3kPa、300K0.2470dm30.2470dm30.09858 dm3Q=Q1+Q2=1.00×1.5R×(751.6-300)+ 1.00×2.5R×(300-751.6)=5632-9387=-3755(J)W=W1+W2=0-25.3×103×(0.09858-0.2470) =3755(J)ΔU=Q+W=0ΔH=ΔU+Δ(pV)=0+25.3×0.09858-10.1×0.2470=0计算结果表明,Q、W与途径有关,而ΔU、ΔH与途径无关。
5. 在一带活塞的绝热容器中有一固定的绝热隔板。
隔板靠活塞一侧为2 mol,0 °C的单原子理想气体A,压力与恒定的环境压力相等;隔板的另一侧为6 mol,100 °C的双原子理想气体B,其体积恒定。
今将绝热隔板的绝热层去掉使之变成导热板,求系统达平衡时的T及过程的。
解:过程图示如下显然,在过程中A为恒压,而B为恒容,因此同上题,先求功同样,由于汽缸绝热,根据热力学第一定律6.1mol 理想气体从300K,100kPa下等压加热到600K,求此过程的Q、W、∆U、∆H。
已知此理想气体C p,m=30.0 J·K-1·mol-1。
解W=-p(V2-V1) = nR(T1-T2)=1×8.314×(300-600)= -2494.2J∆U= nC V,m (T2-T1)=1×(30.00-8.314)×(600-300)= 6506J∆H= nC p,m (T2-T1)=1×30.00×(600-300)= 9000JQ p= ∆H =9000J7. 5 mol双原子气体从始态300 K,200 kPa,先恒温可逆膨胀到压力为50 kPa,在绝热可逆压缩到末态压力200 kPa。
求末态温度T及整个过程的及。
解:过程图示如下要确定,只需对第二步应用绝热状态方程,对双原子气体因此由于理想气体的U和H只是温度的函数,整个过程由于第二步为绝热,计算热是方便的。
而第一步为恒温可逆8. 一水平放置的绝热恒容的圆筒中装有无摩擦的绝热理想活塞,活塞左、右两侧分别为50 dm3的单原子理想气体A和50 dm3的双原子理想气体B。
两气体均为0 °C,100 kPa。
A气体内部有一体积和热容均可忽略的电热丝。
现在经过通电缓慢加热左侧气体A,使推动活塞压缩右侧气体B到最终压力增至200 kPa。
求:(1)气体B的末态温度。
(2)气体B得到的功。
(3)气体A的末态温度。
(4)气体A从电热丝得到的热。
解:过程图示如下由于加热缓慢,B可看作经历了一个绝热可逆过程,因此功用热力学第一定律求解气体A的末态温度可用理想气体状态方程直接求解,将A与B的看作整体,W = 0,因此9. 在带活塞的绝热容器中有4.25 mol的某固态物质A及5 mol某单原子理想气体B,物质A的。
始态温度,压力。
今以气体B为系统,求经可逆膨胀到时,系统的及过程的。
解:过程图示如下将A和B共同看作系统,则该过程为绝热可逆过程。
作以下假设(1)固体B的体积不随温度变化;(2)对固体B,则从而对于气体B10. 已知水(H2O, l)在100 °C的饱和蒸气压,在此温度、压力下水的摩尔蒸发焓。
求在在100 °C,101.325 kPa下使1 kg水蒸气全部凝结成液体水时的。
设水蒸气适用理想气体状态方程式。
解:该过程为可逆相变11. 100 kPa下,冰(H2O, s)的熔点为0 °C。
在此条件下冰的摩尔融化热。
已知在-10 °C ~ 0 °C范围内过冷水(H2O, l)和冰的摩尔定压热容分别为和。
求在常压及-10 °C下过冷水结冰的摩尔凝固焓。
解:过程图示如下平衡相变点,因此12. 应用附录中有关物质在25 °C的标准摩尔生成焓的数据,计算下列反应在25 °C时的及。
(1)(2)(3)解:查表知NH3(g) NO(g) H2O(g) H2O(l)-46.11 90.25 -241.818 -285.830NO2(g) HNO3(l) Fe2O3(s) CO(g)33.18 -174.10 -824.2 -110.525(1)(2)(3)13. 应用附录中有关物质的热化学数据,计算25 °C时反应的标准摩尔反应焓,要求: (1) 应用25 °C 的标准摩尔生成焓数据;()13f 07.379,-Θ⋅-=∆mol KJ l HCOOCH H m(2) 应用25 °C 的标准摩尔燃烧焓数据。
解: 查表知Compound0 因 此,由标准摩尔生成焓()()()()1mm 41.47366.238207.379830.2852-ΘΘ⋅-=-⨯--+-⨯=∆=∆∑mol KJ B H n H f BB 由标 准摩尔燃烧焓()(){}1mc m 52.47351.72625.979--ΘΘ⋅-=-⨯---=∆=∆∑mol KJ B H n H BB 14. 已知25 °C 甲酸甲脂(HCOOCH 3, l )的标准摩尔燃烧焓为,甲酸(HCOOH, l )、甲醇(CH 3OH, l )、水(H 2O, l )及二氧化碳(CO 2,g )的标准摩尔生成焓分别为、、及。
应用这些数据求25 °C 时下列反应的标准摩尔反应焓。
解:显然要求出甲酸甲脂(HCOOCH 3, l )的标准摩尔生成焓15. 对于化学反应应用附录中4种物质在25 °C 时的标准摩尔生成焓数据及摩尔定压热容与温度的函数关系式: (1) 将表示成温度的函数关系式(2) 求该反应在1000 °C 时的。
解:与温度的关系用Kirchhoff 公式表示()()⎰ΘΘΘ∆+∆=∆T T m p m m dT C T H T H 0,r 0r r ()()()()132612311132612311m p,m p,r 108605.17102619.69867.6310022.299.17172.13265.031049.14496.756831.7347.4316.2915.14537.2688.263--------------ΘΘ⋅⋅⨯+⋅⋅⨯-⋅⋅=⋅⋅⨯++-⨯-+⋅⋅⨯--+⨯+⋅⋅--+⨯==∆∑mol K J T mol K TJ mol K J mol K J T mol K TJ mol K J B C n C BB()()1m 0mr 103.20681.74818.241525.110-ΘΘ⋅=++-=∆=∆∑mol KJ B H n T H f BB 因 此,1000 K时,。