实验(1)PWM电机调速实验报告

合集下载

直流PWM调速系统原理及特性实验报告

直流PWM调速系统原理及特性实验报告

直流PWM 调速系统原理及特性实验一、实验目的通过实验掌握双极性直流PWM 调速系统的组成、原理及特性;二、预习要求1.复习双极式直流PWM 调速系统原理及特性。

2.回答下列问题:(1)直流PWM 放大器在直流PWM 调速系统中的作用是什么?答:用脉宽调制的方法,把恒定的直流电源电压调制成频率一定,宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速。

(2) 调节直流电机的速度主要有哪几种方法?答:由公式可知:e U IRn K -=Φ其中n 为电机转速,U 为电枢电压,I 为电枢电流,R 为电枢回路总电阻,Φ为励磁磁通,Ke 为电动势常数。

因此,调速方法有以下几种: 1)调节电枢供电电压U 2)减弱励磁磁通Φ3)改变电枢回路总电阻R(3) 调速系统的性能指标主要有哪些?答:A. 稳态指标。

1)调速范围D :生产机械要求电动机能达到的最高转速和最低转速之比。

2)静差率S :当系统在某一转速下运行时,负载由理想空载变到额定负载时所对应的转速降落与理想空载转速之比。

B. 动态指标。

(a )跟随性能指标:在给定信号(或称参考输入信号)R (t )的作用下,系统输出量C (t )的变化情况用跟随性能指标来描述。

跟随性能指标包括上升时间、超调量、调节时间等指标。

(b )抗扰性能指标:控制系统在稳态运行中,如果受到外部扰动(如负载变化、电网电压波动),就会引起输出量的变化。

输出量变化多少?经过多长时间能恢复稳定运行?这些问题反映了系统抵抗扰动的能力。

抗扰性能指标包括最大动态变化量和恢复时间等指标。

三、实验仪器及设备1.三相调压器一台2.交流电机+直流电机机组一套3.双线示波器一台4.实验与开发平台一套5.转速表一只四、实验内容及步骤1.断开总电源开关,检查实验设备的连接线。

2.合上总电源开关,压合“控制电源”键,控制电源指示灯亮。

3.选择操作及测试面板上相关按键的状态:设置“主控微机”键为“MCU”状态、设置“给定方式”键为“数字”状态(若希望由上位计算机发出命令)或“模拟”状态(若给定由面板上模拟电位器设置)、“运行模式”键此时不起作用、设置“电机选择”键为“DM”状态、设置“运行状态”键为“停止”状态。

pwm实验报告

pwm实验报告

pwm实验报告PWM实验报告一、引言脉宽调制(Pulse Width Modulation,PWM)是一种常用的电子技术,用于控制电子设备中的电压和电流。

通过改变信号的脉冲宽度,PWM可以调节电子设备的输出功率,从而实现对电机、灯光等设备的精确控制。

本实验旨在通过搭建PWM电路并进行实际测试,探究PWM技术的原理和应用。

二、实验原理PWM技术通过改变信号的占空比来控制输出信号的电压或电流。

占空比是指脉冲信号中高电平的时间与一个周期的时间之比。

当占空比为0%时,输出信号为低电平;当占空比为100%时,输出信号为高电平;当占空比在0%和100%之间时,输出信号为一个周期内高电平和低电平的交替。

通过调整占空比,可以实现对输出信号的精确控制。

三、实验材料和方法1. 材料:- Arduino开发板- 电阻、电容等基本电子元件- 电机或LED等输出设备- 连接线等实验器材2. 方法:1) 搭建PWM电路:根据实验要求,按照电路图连接电子元件和Arduino开发板。

2) 编写程序:使用Arduino开发环境,编写程序控制PWM输出信号的占空比。

3) 实验测试:将输出设备连接到PWM输出引脚,通过改变占空比,观察输出设备的变化。

四、实验结果和分析在实验中,我们搭建了一个基本的PWM电路,并使用Arduino开发环境编写程序来控制PWM输出信号的占空比。

通过改变占空比,我们观察到输出设备的亮度或转速发生了变化。

在实验过程中,我们发现当占空比较小时,输出设备的亮度或转速较低;而当占空比较大时,输出设备的亮度或转速较高。

这是因为占空比的变化直接影响了输出信号的电压或电流大小,从而改变了输出设备的工作状态。

PWM技术在实际应用中具有广泛的用途。

例如,它可以用于电机控制,通过调整占空比来控制电机的转速和方向;它还可以用于灯光控制,通过调整占空比来调节灯光的亮度;此外,PWM技术还可以应用于电源管理、音频处理等领域。

五、实验总结通过本次实验,我们深入了解了PWM技术的原理和应用。

直流调速电机实验报告

直流调速电机实验报告

一、实验目的1. 理解直流调速电机的工作原理和调速方法。

2. 掌握直流调速电机的调速性能指标及其测试方法。

3. 熟悉直流调速电机的驱动电路和控制系统。

4. 培养实验操作技能和数据分析能力。

二、实验仪器与设备1. 直流调速电机:一台2. 可调直流电源:一台3. 电机转速测量仪:一台4. 电流表:一台5. 电压表:一台6. 实验台:一套三、实验原理直流调速电机是通过改变电枢电压或励磁电流来调节电机转速的。

本实验采用改变电枢电压的方式来实现调速。

四、实验内容与步骤1. 实验一:直流调速电机调速性能测试(1)连接实验电路,确保接线正确无误。

(2)将可调直流电源输出电压调至一定值,启动电机。

(3)使用电机转速测量仪测量电机转速。

(4)改变可调直流电源输出电压,重复步骤(3),记录不同电压下的电机转速。

(5)绘制电机转速与电压的关系曲线。

2. 实验二:直流调速电机驱动电路与控制系统测试(1)连接实验电路,确保接线正确无误。

(2)启动电机,观察电机正反转及转速。

(3)调整驱动电路中的PWM波占空比,观察电机转速变化。

(4)改变PWM波频率,观察电机转速变化。

(5)绘制电机转速与PWM波占空比、频率的关系曲线。

五、实验结果与分析1. 实验一结果分析根据实验一的数据,绘制电机转速与电压的关系曲线。

分析曲线,得出以下结论:(1)电机转速与电枢电压成正比关系。

(2)电机转速存在最大值和最小值,分别为电机空载转速和堵转转速。

2. 实验二结果分析根据实验二的数据,绘制电机转速与PWM波占空比、频率的关系曲线。

分析曲线,得出以下结论:(1)电机转速与PWM波占空比成正比关系。

(2)电机转速与PWM波频率成反比关系。

(3)PWM波频率过高或过低都会导致电机转速不稳定。

六、实验总结1. 通过本次实验,掌握了直流调速电机的工作原理和调速方法。

2. 熟悉了直流调速电机的调速性能指标及其测试方法。

3. 掌握了直流调速电机的驱动电路和控制系统。

电机调速控制系统实训报告

电机调速控制系统实训报告

一、实验目的1. 理解电机调速控制系统的基本原理和结构。

2. 掌握电机调速控制系统的设计方法和步骤。

3. 熟悉电机调速控制系统的调试与优化方法。

4. 提高实际操作能力和分析解决问题的能力。

二、实验原理电机调速控制系统是利用电力电子技术、微电子技术和计算机技术实现电机转速的精确控制。

常见的调速方式有直流调速、交流调速和变频调速等。

本实验以直流调速系统为例,通过PWM(脉宽调制)技术实现对直流电机的调速。

三、实验内容1. 实验器材- 直流电机- 电机驱动器- PWM控制器- 测速传感器- 电脑- 数据采集卡2. 实验步骤(1)搭建实验电路:将直流电机、电机驱动器、PWM控制器、测速传感器和数据采集卡连接起来,形成电机调速控制系统。

(2)编写程序:利用编程软件编写PWM控制器程序,实现对电机转速的控制。

(3)调试系统:通过调整PWM控制器的占空比,观察电机转速的变化,直至达到预期转速。

(4)采集数据:利用数据采集卡采集电机转速、电流等数据,进行分析和处理。

(5)优化系统:根据实验结果,调整PWM控制器的参数,优化电机调速控制系统。

四、实验结果与分析1. 实验结果通过实验,成功搭建了电机调速控制系统,并实现了对直流电机的精确调速。

2. 数据分析(1)电机转速与PWM占空比的关系:实验结果表明,电机转速与PWM占空比呈线性关系。

当占空比增大时,电机转速提高;当占空比减小时,电机转速降低。

(2)电机电流与PWM占空比的关系:实验结果表明,电机电流与PWM占空比呈非线性关系。

当占空比增大时,电机电流先增大后减小;当占空比减小时,电机电流先减小后增大。

(3)电机转速与负载的关系:实验结果表明,电机转速与负载呈非线性关系。

当负载增大时,电机转速降低;当负载减小时,电机转速提高。

五、实验总结1. 本实验成功搭建了电机调速控制系统,并实现了对直流电机的精确调速。

2. 通过实验,掌握了电机调速控制系统的基本原理和设计方法。

PWM直流电机调速实验报告

PWM直流电机调速实验报告
uchar count ,count_time= 0;
int real_count=0;
uchar time;
uchar PWMH = 400;uchar PWML = 400;
uchar code table[]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,\
sent(table[speed1%100/10]);
sent(table[speed1%100%10]);
}
void timer0init(void)
{
TMOD = 0X01;
TH0=0XD8;
TL0=0XF0;
}
void detectspeed(void)
{
real_count=count/3.0;
{
while(length--){_nop_();}
}
vo value to the display
{
uchar i = 0;
for(i;i<8;i++)
{
DIN = dat&0x80;
CLK = 0;_nop_();CLK = 1;
dat<<=1;
题目:
PWM直流电机调速实验
学生姓名:
学号:
指导教师:
张友旺
学院:
机电工程学院
专业班级:
机械1604班
日期2019年12月
一、实验目的
1.了解脉宽调制(PWM)的原理
2.学习用PWM输出模拟量驱动直流电机
3.熟悉51系列单片机的延时程序
二、实验步骤
本实验需要用到本实验需要用到单片机最小应用系统(F1区)、串行静态显示(I3区)和直流电机驱动模块(M1区 )。

转速电流双闭环pwm—m可逆直流脉宽调速系统实验报告

转速电流双闭环pwm—m可逆直流脉宽调速系统实验报告

转速电流双闭环pwm—m可逆直流脉宽调速系统实验报告转速电流双闭环PWM-M可逆直流脉宽调速系统实验报告一、引言直流调速系统是现代工业中常用的电机调速方式之一,在实际应用中具有广泛的使用。

其中,转速电流双闭环PWM-M可逆直流脉宽调速系统是其中一种典型的调速控制方式。

本实验旨在通过搭建转速电流双闭环PWM-M可逆直流脉宽调速系统,研究其调速性能以及运行特点。

二、实验目的1. 理解转速电流双闭环PWM-M可逆直流脉宽调速系统的原理和结构;2. 掌握控制脉宽调制技术在直流电机调速系统中的应用;3. 通过实验验证该调速系统的性能和运行特点。

三、实验原理转速电流双闭环PWM-M可逆直流脉宽调速系统是将转速和电流两个回路分别采用闭环控制的直流调速系统。

其中,转速回路通过传感器对电机转速进行采集,与期望转速进行比较后,经过PID控制器得到转速控制信号,再经过比较器进行与PWM脉宽控制信号进行比较产生控制脉宽;电流回路通过采集直流电机的电流信号,经过PID控制器得到电流控制信号,再与PWM控制脉宽信号进行比较生成最终的输出脉宽。

四、实验步骤1. 搭建转速电流双闭环PWM-M可逆直流脉宽调速系统实验装置;2. 设置期望转速和电流参考值;3. 分别采集电机转速和电流信号;4. 利用PID控制器对转速和电流进行闭环控制;5. 通过比较器生成脉宽控制信号,控制电机转矩;6. 记录实验数据并进行分析。

五、实验结果与分析通过实验,我们可以得到实验数据并进行分析。

其中,我们可以通过比较实际转速与期望转速的差距,来评价转速闭环控制的性能。

同时,通过比较实际电流值与期望电流值之间的差距,来评价电流闭环控制的性能。

根据实验数据,我们可以得到转速与电流控制的准确性、稳定性以及响应速度等指标,评估整个调速系统的性能。

六、结论通过实验,我们成功搭建了转速电流双闭环PWM-M可逆直流脉宽调速系统实验装置,并完成了相关实验。

根据实验结果分析,我们可以评估该调速系统的性能和运行特点。

电机调速实验报告

电机调速实验报告

电机调速实验报告电机调速实验报告引言:电机调速是现代工业中常见的控制技术,它在各种机械设备中起着至关重要的作用。

本实验旨在通过对电机调速实验的研究,深入了解电机调速的原理和方法,并通过实际操作验证其有效性。

一、实验目的本实验的主要目的是研究电机调速的原理和方法,通过实际操作验证电机调速的效果。

具体目标如下:1. 了解电机调速的基本原理和分类;2. 掌握电机调速的常用方法和技术;3. 进行电机调速实验,验证调速效果;4. 分析实验结果,总结电机调速的优缺点。

二、实验原理1. 电机调速的基本原理电机调速是通过改变电机输入电压、电流或频率等参数,来调整电机的转速。

根据电机调速的原理,可以将电机调速方法分为电压调速、电流调速、频率调速和转子电阻调速等。

2. 电机调速的分类根据电机调速的分类,可以将其分为感应电动机调速、直流电动机调速和步进电动机调速等。

每种调速方法都有其适用的场景和优缺点。

三、实验步骤1. 准备工作在实验开始前,需要准备好实验所需的设备和材料,包括电机、电源、电压表、电流表等。

2. 实验操作(1)连接电路将电源与电机连接,并通过电压表和电流表测量电机的输入电压和电流。

(2)调整电压通过调节电源的输出电压,改变电机的输入电压,观察电机的转速变化。

(3)调整电流通过调节电源的输出电流,改变电机的输入电流,观察电机的转速变化。

(4)调整频率通过调节电源的输出频率,改变电机的输入频率,观察电机的转速变化。

(5)调整转子电阻通过改变电机转子电阻的大小,来调整电机的转速,观察电机的转速变化。

四、实验结果与分析通过实验操作,我们观察到电机调速的效果。

在调整电压、电流、频率和转子电阻的过程中,电机的转速发生了相应的变化。

通过分析实验结果,我们可以得出以下结论:1. 电压调速:电压的增加会提高电机的转速,但过高的电压可能会损坏电机。

2. 电流调速:电流的增加会提高电机的转速,但过高的电流可能会导致电机过载。

直流电机PWM波调速的设计与制作实验报告

直流电机PWM波调速的设计与制作实验报告

《单片机原理与应用》课程设计报告直流电机PWM波调速的设计与制作要求:一、功能要求1、实现利用PWM波控制直流电机的转速;2、用数码管显示PWM波的输出占空比;3、用数码管显示直流电机的转速标志;4、实现对直流电机的速度调制;二、设计过程要求1、查阅资料确定设计方案;2、对设计方案进行仿真验证;3、选择合适的元器件,搭建电路实验验证效果;4、画出PCB图;5、书写设计报告;6、答辩。

三、设计报告要求设计报告主要包括:题目、内容和要求、总体方案和设计思路、仿真电路图、软件设计、仿真调试效果、实验测试效果图、PCB图、心得体会。

姓名:谭德兵学号:1886100112专业:电子科学与技术班级:10级01班成绩:评阅人:安徽科技学院理学院物电系一、实验设计目的1、掌握脉宽调制的方法;2、用程序实现脉宽调制,并对直流电机进行调速控制;3、学习用LM339内部四个电压比较器产生锯齿波、直流电压、PWM脉宽;4、掌握脉宽调制PWM控制模式;5、掌握电子系统的一般设计方法;6、培养综合应用所学知识来指导实践的能力;7、掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法进一步掌握制版、电路调试等技能。

二、实验设计设备单片机开发板,单片机最小系统,驱动器,直流电机,连接导线等三、实验设计原理1)设计总体方案总体设计模块1、STC89C52本设计运用单片机芯片STC89C52,通过控制单片机输出引脚P1.7输出的高低电平的延时时间长短来达到控制电机的目的,运用单片机定时器/计数器1对光电编码盘产生的冲进行计数,将所得到的数值送到P0口显示。

8051单片机引脚描述·电源引脚Vcc和Vss : Vcc:电源端,接+5V,Vss:接地端。

·时钟电路引脚XTAL1和XTAL2:·XTAL1:接外部晶振和微调电容的一端,在片内它是振荡器倒相放大器的输入,若使用外部TTL时钟时,该引脚必须接地。

pwm直流电机调速实验报告

pwm直流电机调速实验报告

pwm直流电机调速实验报告PWM控制直流电机实验报告PWM控制直流电机实验报告PWM控制直流电机实验一、实验目的1、熟悉PWM调制的原理和运用。

2、熟悉直流电机的工作原理。

3、能够读懂和编写直流电机的控制程序。

二、实验原理:运动控制系统是以机械运动的驱动设备??电机为控制对象,以控制器为核心,以电力电子器件及功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。

这类系统控制电机的转矩、转速和转角,将电能转换为机械能,实现运动控制的运动要求。

可以看出,控制技术的发展是通过电机实现系统的要求,电机的进步带来了对驱动和控制的要求。

电机的发展和控制、驱动技术的不断成熟,使运动控制经历了不同的发展阶段。

1、直流电机的工作原理: 直流电机的原理图图中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。

转动部分有环形铁心和绕在环形铁心上的绕组。

(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的)。

上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。

定子与转子之间有一气隙。

在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。

换向片之间互相绝缘,由换向片构成的整体称为换向器。

换向器固定在转轴上,换向片与转轴之间亦互相绝缘。

在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。

当给电刷加一直流电压,绕组线圈中就有电流流过,由电磁力定律可知导体会受到电磁力作用。

导体处于N极下与电刷A接触电流向里流,产生电磁力矩为逆时针;导体处于S极下与电刷B接触电流向外流,产生电磁力矩仍为逆时针。

转子在该电磁力矩作用下开始旋转。

2、PWM调制原理脉冲宽度调节(PWM)是英文Pulse Width Modulation的缩写,简称脉宽调制。

电机调速实验报告

电机调速实验报告

PWM电机调速班级:学生:指导老师:时间:2011年10月20日一、实验名称PWM电机调速实验二、实验要求1.掌握脉宽调制PWM控制模式。

2.进一步掌握制版、电路调试等技能。

三、实验器材清单名称规格数量电阻1K 1 开关二极管1N4148 1 电阻2K 1 电阻 3.9K 1 电阻3K 1 电阻 4.7K 2 电容 4.7uF 1 电阻10K 3 可调变位器10K 2 可调变位器20K 1 电阻22K 1 电容33nF 1 电阻47K 1 电阻50K 1 电容100nF 1 电阻150 1 电阻500K 1 整流二极管IN4007 1 芯片LM339 1TIP122 1 插槽DIP14 1四、电路工作原理(1)LM339的内部结构图LM339的管脚功能说明:LM339是一个由四个独立的电压比较器组成的一个电压比较器芯片,由图可知1/6/7,2/4/5,13/11/10及14 /8/9分别为四个独立电压比较器的输入输出端口,3和12为电源管脚。

(2)基于PWM 的电机调速原理脉宽调制的全称为:Pulse WidthModulator、简称PWM、由于它的特殊性能、常被用于直流负载回路中、灯具调光或直流电动机调速。

工作原理:是通过改变输出方波的占空比使负载上的平均电流功率从0-100%变化、从而改变负载两端的电压。

利用脉宽调制(PWM)方式、实现调光/调速、它的优点是电源的能量功率、能得到充分利用、电路的效率高。

例如:当输出为50%的方波时,脉宽调制(PWM)电路输出能量功率也为50%,即几乎所有的能量都转换给负载。

五、电路原理图六、PCB图七、实验结果(1) 4脚输出的波形是通过调节滑阻203来改变输出的频率。

其电路输出波形如下图所示:(2) 芯片的9脚是电压基准,通过调节滑阻103来改变输出9脚的电压幅度。

其波形如下图所示:(3) 由于在本次实验中电路的焊接不良导致只要三极管9012接上去芯片就会出现烧毁现象,从而导致14脚的输出波形不能够正常显示出来,所以14脚的波形没能够达到预定的效果显示出来。

PWM电机调速实验报告

PWM电机调速实验报告

PWM电机调速——课程实验报告题目:PWM点机调速专业:应用电子技术班级:应用电子技术(五)班学号:0906020129姓名:刘*日期:2011-10-18指导老师:陈*目录1设计的目的及任务 (1)1.1课程设计目的 (1)1.2课程设计任务 (1)1.3课程设计要求 (1)2 各部分电路设计 (2)2.1总电路图 (2)2.2锯齿波振荡电路 (2)2.3锯齿波转方波电路 (2)2.4输出放大级 (3)3 各部分电路调试结果 (4)3.1 R5、R6均不变时各级输出波形及数据 (4)3.2 R6(103)电阻减小时各级输出波形及数据 (5)3.3 R6(103)电阻上升时各级输出波形及数据 (6)3-4 R5(203)电阻下降各个输出的波形及数据 (7)3.5 R5(203)电阻上升各个输出的波形及数据 (8)4 电路的安装与调试 (9)4.1 安装调试步骤 (9)4.2 安装调试中遇到的问题及解决办法 (9)5 实验总结 (10)6 参考文献 (10)附件1 (11)附件2 (12)1 设计的目的及任务1.1课程设计目的1.学会用LM339及场效管设计一个电机调速电路。

2.知道如何调整电路利用其占空比调速。

3.熟练PCB制板等。

1.2课程设计任务设计由LM339,场效管组合而成的pwm电机调速电路,并调节电路使电路达到最佳。

1.3课程设计要求1.掌握脉宽调制PWM控制模式2.进一步掌握制版、电路调试等技能。

3.要求用protel按照器件标准画出原理图。

2 各部分电路设计2.1总电路图图2-1 pwm电机调速总电路图2.2锯齿波振荡电路如图2-2所示R5、C1及运放组成锯齿波产生电路,通过调节R5可调节锯齿波产生的时间常数(t=R5*C1),锯齿波通过1脚输出。

(图2-2)2.3锯齿波转方波电路如图2-3所示反相端输入由前级产生的锯齿波信号,通过与同向输入端的直流信号进行比较,通过调节R7调节占空比,调整输出信号大小。

电机控制实验报告分析(3篇)

电机控制实验报告分析(3篇)

第1篇一、实验背景电机控制技术在现代工业和日常生活中扮演着重要角色,其性能直接影响着设备的运行效率和稳定性。

为了更好地理解和掌握电机控制技术,我们进行了一系列电机控制实验。

本报告将对实验过程、结果及分析进行详细阐述。

二、实验目的1. 熟悉电机控制系统的基本组成和原理;2. 掌握电机控制实验的操作步骤和注意事项;3. 分析实验数据,验证电机控制理论;4. 提高实际操作能力和故障排除能力。

三、实验内容1. 电机控制实验平台搭建实验平台主要包括电机、控制器、传感器、电源等设备。

实验过程中,我们需要根据实验要求,正确连接各设备,确保实验顺利进行。

2. 电机调速实验通过调整PWM信号的占空比,实现对电机转速的调节。

实验中,我们测试了不同占空比下电机的转速,并记录实验数据。

3. 电机转向控制实验通过改变PWM信号的极性,实现对电机转向的控制。

实验中,我们测试了不同极性下电机的转向,并记录实验数据。

4. 电机制动实验通过调整PWM信号的占空比和极性,实现对电机制动的控制。

实验中,我们测试了不同制动条件下电机的制动效果,并记录实验数据。

四、实验结果与分析1. 电机调速实验结果分析实验结果显示,随着PWM占空比的增大,电机转速逐渐提高。

当占空比为100%时,电机达到最大转速。

实验数据与理论分析基本一致。

2. 电机转向控制实验结果分析实验结果显示,通过改变PWM信号的极性,可以实现对电机转向的控制。

当PWM信号极性为正时,电机正转;当PWM信号极性为负时,电机反转。

实验数据与理论分析相符。

3. 电机制动实验结果分析实验结果显示,通过调整PWM信号的占空比和极性,可以实现对电机制动的控制。

当PWM信号占空比为0时,电机完全制动;当占空比逐渐增大时,电机制动效果逐渐减弱。

实验数据与理论分析基本一致。

五、实验结论1. 电机控制实验平台搭建成功,能够满足实验要求;2. 电机调速、转向和制动实验均取得了良好的效果,验证了电机控制理论;3. 通过实验,提高了实际操作能力和故障排除能力。

PWM实验报告

PWM实验报告

51单片机控制直流电机PWM调速实验时间:第12周星期六1-4节51单片机控制直流电机PWM调速实验目的1.掌握脉宽调制 (PWM) 的方法。

2.用程序实现脉宽调制,并对直流电机进行调速控制。

实验设备PC 机一台,单片机最小系统,驱动板、直流电机,连接导线等实验原理1.PWM (Pulse Width Modulation) 简称脉宽调制。

即,通过改变输出脉冲的占空比,实现对直流电机进行调压调速控制。

2.实验线路图:实验内容:1. 利用实验室提供的单片机应用系统及直流电机驱动电路板,编制控制程序,实现直流电机PWM调速控制。

2.实验原理图:3. 程序如下:#include<reg52.h>#define uchar unsigned char#define uint unsigned intsbit KEY1 = P3^4;sbit KEY2 = P3^5;sbit KEY3 = P3^6;sbit IN1 = P1^0;sbit IN2 = P1^1;sbit ENA = P1^2;sfr ldata=0x80;sbit dula=P2^6;sbit wela=P2^7; //sbit lcden=P3^4;//uchar timer,ms,t_set = 1;uchar T_N=100;uchar T_N1=100;uchar T_H_N=50;uchar T_H_N1=50;void msplay(uchar,uchar);uchar codex1[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x27,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79 ,0x71};//uchar code x2[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xd8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};uchar code x3[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf};//uchar code x4[]={0x01,0x02,0x04,0x08,0x10,0x20};void delay(uint z) //延时函数{uint x;for(x=z;x>0;x--);}void Key_Scan(){if(KEY1 == 0){delay(20);while(!KEY1);T_H_N++;if(T_H_N >=99){T_H_N =99;}}if(KEY2 == 0){delay(20);while(!KEY2);T_H_N--;if(T_H_N <= 1){T_H_N = 1;}}if(KEY3 == 0){delay(15);while(!KEY3);IN1=~IN1;IN2=~IN2;}}void Motor_Init(){ENA = 0;IN1 = 1;IN2 = 0;}void Timer0_Init(){TMOD=0X12;TH0=(256-50);TL0=(256-50);// TH1=(65535-T_H)/256;// TL1=(65535-T_H)%256;EA=1;ET0=1;TR0=1; }void main(){uchar k3,k2,k1,k0;Timer0_Init();Motor_Init();while(1){k2=T_H_N/10;k3=T_H_N%10;k1=0;k0=0;msplay(k0,2);msplay(k1,3);msplay(k2,4);msplay(k3,5);Key_Scan();}}void timer0() interrupt 1{TR0=0;// TH0=(65536-50)/256;// TL0=(65536-50)%256;T_H_N1--;if(0==T_H_N1){ENA=0;T_H_N1=1;}T_N1--;if(T_N1==0){ENA=1;T_N1=100;T_H_N1=T_H_N;}TR0=1;} void msplay(uchar y1,uchar y2){ldata = x1[y1];dula=1;dula=0;delay(1);ldata = x3[y2];wela=1;wela=0;delay(1);ldata = 0x00;dula=1;dula=0;delay(1);ldata = 0x0ff;wela=1;wela=0;delay(1);}占空比数值显示为70时,原理图的显占空比为70%时的调试图实验思考题本实验中是通过改变脉冲的占空比,周期T 不变的方法来改变电机转速的,还有什么办法能改变电机的转速,应该怎么实现?答:可以让占空比不变,改变周期T的大小来改变电机的转速。

直流电机PWM 调速实验报告

直流电机PWM 调速实验报告

直流电机PWM调速实验报告学院:专业:机械设计制造及其自动化姓名:班级:学号:指导老师:直流电机PWM调速实验一、实验目的:1、掌握脉宽调制的方法;2、用程序实现脉宽调制,并对直流电机进行调速控制二、实验设备:PC机一台,单片机最小系统,驱动板,直流电机,连接导线等三、实验原理:1、PWM(Pulse Width Modulation)简称脉宽调制。

即,通过改变输出脉冲的占空比,实现对直流电机进行调速控制。

2、实验线路图:四、实验内容:1、利用实验时提供的单片机应用系统及直流电机驱动电路板,编制控制程序,实现直流电机PWM调速控制。

2、连接实验电路,观察PWM调控速度控制,实现的加速、减速等调速控制。

五、实验步骤:1、按系统电路图连线,调试完成;2、开启单片机,按下键盘启动按钮,电机正常旋转;3、按动键盘加速、减速、正转、反转、停止按键,分别实现预定功能。

4、实验完成,收拾实验器械,整理。

六、实验程序:#include<reg51.h>#define TH0_TL0 (65536-1000)//设定中断的间隔时长unsigned char count0 = 50;//低电平的占空比unsigned char count1 = 0;//高电平的占空比bit Flag = 1;//电机正反转标志位,1正转,0反转sbitKey_add=P2 ^ 0; //电机减速sbitKey_dec=P2 ^ 1; //电机加速sbitKey_turn=P2 ^ 2; //电机换向sbit PWM1=P2^6;//PWM 通道1,反转脉冲sbit PWM2=P2^7;//PWM 通道2,正转脉冲unsigned char Time_delay;/************函数声明**************/void Delay(unsigned char x);voidMotor_speed_high(void);voidMotor_speed_low(void);voidMotor_turn(void);void Timer0_init(void);/****************延时处理**********************/void Delay(unsigned char x){Time_delay = x;while(Time_delay != 0);//等待中断,可减少PWM输出时间间隔}/*******按键处理加pwm占空比,电机加速**********/voidMotor_speed_high(void)//{if(Key_add==0)Delay(10);if(Key_add==0){count0 += 5;if(count0 >= 100){count0 = 100;}}while(!Key_add);//等待键松开}}/******按键处理减pwm占空比,电机减速*****/ voidMotor_speed_low(void){if(Key_dec==0){Delay(10);if(Key_dec==0){ count0 -= 5;if(count0 <= 0){count0 = 0; }}while(!Key_dec );}}/************电机正反向控制**************/ voidMotor_turn(void){if(Key_turn == 0){Delay(10);if(Key_turn == 0){Flag = ~Flag; }while(!Key_turn);}/***********定时器0初始化***********/void Timer0_init(void){TMOD=0x01; //定时器0工作于方式1TH0=TH0_TL0/256;TL0=TH0_TL0%256;TR0=1;ET0=1;EA=1;}/*********主函数********************/void main(void){Timer0_init();while(1){Motor_turn();Motor_speed_high();Motor_speed_low();}}/**************定时0中断处理******************/ void Timer0_int(void) interrupt 1 using 1{TR0 = 0;//设置定时器初值期间,关闭定时器TL0 = TH0_TL0 % 256;TH0 = TH0_TL0 / 256 ;//定时器装初值TR0 = 1;if(Time_delay != 0)//延时函数用{Time_delay--;}if(Flag == 1)//电机正转{ PWM1 = 0;if(++count1 < count0){PWM2 = 1;}elsePWM2 = 0;if(count1 >= 100){count1=0; }}else //电机反转{PWM2 = 0;if(++count1 < count0){ PWM1 = 1;}else PWM1 = 0;if(count1 >= 100){ count1=0;}七、实验心得:此次实验,不仅锻炼了我们的独立思考和动手能力。

直流电机调速_实训报告

直流电机调速_实训报告

一、引言直流电机因其结构简单、运行可靠、调速方便等优点,广泛应用于各种工业和家用电器中。

为了更好地掌握直流电机的调速原理和实现方法,我们进行了直流电机调速实训。

本报告将详细介绍实训过程、实验结果及分析。

二、实训目的1. 理解直流电机的调速原理和实现方法;2. 掌握直流电机调速电路的设计与搭建;3. 学会使用示波器、万用表等仪器对电路进行测试和分析;4. 提高动手实践能力和工程意识。

三、实训内容1. 直流电机调速原理直流电机调速主要采用调压、调阻和PWM调制三种方法。

本实训采用调压方法,通过改变输入电压来控制电机的转速。

2. 直流电机调速电路设计(1)电路组成:电源、直流电机、调速电路、负载、保护电路等。

(2)调速电路设计:采用继电器和电位器组成的分压电路,通过改变电位器阻值来调整输入电压。

3. 仪器使用(1)示波器:用于观察电压、电流等信号波形。

(2)万用表:用于测量电压、电流、电阻等参数。

四、实训步骤1. 搭建直流电机调速电路。

2. 连接电源,启动电机。

3. 调整电位器,观察电机转速变化。

4. 使用示波器观察电压、电流等信号波形。

5. 使用万用表测量电压、电流、电阻等参数。

6. 记录实验数据,分析实验结果。

五、实验结果与分析1. 实验数据(1)输入电压:0V、2V、4V、6V、8V。

(2)电机转速:0r/min、300r/min、600r/min、900r/min、1200r/min。

(3)电流:0A、1A、2A、3A、4A。

2. 实验结果分析(1)电机转速与输入电压的关系:随着输入电压的增加,电机转速逐渐升高。

(2)电流与输入电压的关系:随着输入电压的增加,电流逐渐增大。

(3)电机转速与电流的关系:电机转速与电流成正比。

六、结论1. 通过本次实训,我们掌握了直流电机调速原理和实现方法。

2. 通过搭建直流电机调速电路,实现了对电机转速的调节。

3. 通过使用示波器和万用表等仪器,我们对电路进行了测试和分析,验证了实验结果的准确性。

实验八 直流电机PWM调速控制实验

实验八 直流电机PWM调速控制实验

实验八 直流电机PWM 调速控制实验(一)实验目的:通过直流电机PWM 调速控制实验,掌握脉宽调制(PWM )控制和计算机控制程序实现的方法。

(二)实验设备: PC 机 一台 TD-ACC 教学实验系统 一台(三)实验原理:脉宽调制(Pulse Width Modulation ,PWM )控制是通过改变输出脉冲的占空比,实现对直流电机的调速控制。

用这种方法,直流电机通电的时候速度增加, 直流电机断电的时候速度减少,只要按一定的周期改变通断电的时间,直流电机的速度就可以达到一个稳定值。

改变通断电的时间可以用调整PWM 控制脉冲的占空比D (D = t /τ)实现,图8-1。

图8-1 PWM 控制脉冲与占空比图8-2 实验电路原理和线路图(四)实验内容:实验中使用8088控制机的8255并行接口B 口的PB0位控制直流电动机。

在PB0接口输出PWM 脉冲,经过驱动单元的达林顿晶体管驱动直流电动机运行,实现脉冲调宽控制。

实验要求编写控制程序实现直流电动机的PWM 控制,图8-3是实验程序的参考框图。

在参考程序框图中,变量AA1对应脉冲周期中的t ,变量BB1对应脉冲周期中的τ-t ,τ=0FFH 。

设置变量的初始值:AA1=7FH ,BB1=τ-AA1,V A1=7FH ,VB1=00H ,FPWM=01H 。

8255的B 口地址是61H 。

向地址61H 写01H ,停止电机运转。

(五)实验步骤:(1)参考图8-3的程序参考框图,编写实验控制程序。

(2)按图8-2在TD-ACC 实验系统上连接导线,检查导线连接无错误后打开实验系统电源。

(3)编辑,汇编连接实验程序,无错误后下载到实验系统的8088控制机里。

(4)运行实验程序(参考Ac9-2-1),观察电动机的运行情况。

(5)加大(或减小)脉冲的宽度,重复第(4)步,观察电动机的运行。

tτ占空比D =t τPWM 控制脉冲图8-3 实验参考程序框图。

实验PWM电机调速实验报告

实验PWM电机调速实验报告

PWM电机调速班级:09应电(5)班姓名:学号:0906020122指导老师时间:2011年10月20日目录一、实验名称 (2)二、实验设计的目的和要求 (2)三、预习要求 (2)四、电路原理图 (4)五、电路工作原理 (4)六、 PCB图 (5)七、实验结果 (6)·八、实验中出现的问题以及解决方法 (13)九、实验心得 (13)十、参考文献 (14)十一、元件清单 (14)一、实验名称:PWM电机调速二、实验设计的目的和要求1)学习用LM339内部四个电压比较器产生锯齿波、直流电压、PWM脉宽;2)掌握脉宽调制PWM控制模式;3)掌握电子系统的一般设计方法;4)培养综合应用所学知识来指导实践的能力;5)掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法进一步掌握制版、电路调试等技能。

三、预习要求3.1关于LM339器件的特点和一些参数图3-1 LM339管脚分配图1)电压失调小,一般是2mV;2)共模范围非常大,为0v到电源电压减1.5v;3)他对比较信号源的内阻限制很宽;4)LM339 vcc电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;5)输出端电位可灵活方便地选用;6)差动输入电压范围很大,甚至能等于vcc。

3.2 分析PWM电机调速电路的系统组成原理,画出每一级电路输出的波形1)由1、6、7管脚构成的电压比较器,通过RC积分电路调节可调变阻器R5(203),产生锯齿波图3-2 锯齿波2) 由8、9、14管脚构成的比较器,通过8管脚接入前一个比较器1管脚产生的锯齿波信号与调节R7(103)取样得到的9管脚电压做比较通过比较器14管脚输出的是PWM脉宽图3-3 脉冲波(pwm)3)PWM电机调速电路中有两个三极管,是具有耦合放大作用的4)另外电路中的输入4、5管脚和10、11管脚的两个电压比较器在整个电路中具有欠压保护和过流保护四、电路原理图图4-1 PWM电机调速原理图五、电路工作原理直流电机的PWM调速原理是通过调节驱动电压脉冲宽度的方式,并与电路中一些相应的储能元件配合,改变了输送到电枢电压的幅值,从而达到改变直流电机转速的目的。

直流脉宽调速实验报告

直流脉宽调速实验报告

直流脉宽调速实验报告1.任务和意义:生产实习的主要任务是设计一个直流电动机的脉宽调速(直流PWM)驱动电源。

纵观运动控制的发展历史,交、直流两大电气传动并存于各个应用领域。

由于直流电机的调速性能和转矩控制性能好,20世纪30年代起就开始使用直流调速系统。

直流调速系统由最早的旋转变流机组控制,发展为用静止的晶闸管变流装置和模拟控制器实现调速,到现在由大功率开关器件组成的PWM电路实现数字化的调速,系统的快速性、可靠性、经济性不断提高,应用领域不断扩展。

尽管目前对交流系统的研究比较“热门”,但是其控制性能在某些方面还达不到直流PWM系统的水平。

直流PWM控制技术作为一门新型的控制技术,其发展潜力还是相当大的。

而且,直流PWM技术是电力电子领域广泛采用的各种PWM技术的典型应用和重要基础,掌握直流PWM技术对于学习和运用交流变频调速中SPWM技术有很大的帮助和借鉴作用。

2.设计内容:1)主电路的设计,器件的选型。

包括含整流变压器在内的整流电路设计和H桥可逆斩波电路的设计(要求采用IPM作为DC/DC变换的主电路,型号为PS21564)。

2)PWM控制电路的设计(指以SG3525为核心的脉宽调节电路)。

3)IPM接口电路设计(包括上下桥臂元件的开通延迟,及上桥臂驱动电源的自举电路)。

4)DC15V 控制电源的设计(采用LM2575系列开关稳压集成电路,直接从主电路的直流母线电压经稳压获得)。

2 主电路设计说明1.概述可逆PWM 变换器主电路的结构型式有H 型、T 型等类, H 型变换器,它是由四个功率场效应管和四个续流二极管组成的桥式电路。

H 型变换器在控制方式上分双极式、单极式和受限单极式三种,在此使用双极式H 型PWM 变换器。

二极管整流桥把输入的交流电变为直流电。

四只功率器件构成H 桥,根据脉冲占空比的不同,在直流电机上可得到+或-的直流电压。

2.设计说明1)由于电源部分是交流电源,所以需要对电源进行整流,整流部分采用4个二极管集成在一起的整流桥模块,在电源交流的正负半周轮流导通,以达到整流的目的。

电机调速课设实验大纲及报告-单相PWM、SPWM脉宽调制波形发生电路的研究

电机调速课设实验大纲及报告-单相PWM、SPWM脉宽调制波形发生电路的研究

成绩专业综合实验实验报告院(系)名称自动化科学与电气工程学院专业名称学生学号学生姓名指导教师2015年12月1实验大纲部分实验一单相PWM、SPWM脉宽调制波形发生电路的研究实验时间2015.12.8 同组同学一、实验目的1. 了解单相PWM、SPWM波形发生电路的工作原理。

2. 熟悉单相PWM、SPWM波形发生电路的一般特点。

3. 熟悉DT03单元的使用方法,为后续实验操作做准备。

二、实验内容用示波器观察触发电路各测试点,记录各点波形,分析电路的工作原理。

三、实验系统组成单相PWM、SPWM波形发生器面板如图1所示。

图 1.1 单相PWM、SPWM波形发生器面板图中P+、P-为两路相位互差180°的PWM或SPWM波形输出端口;A、A1、B 为同步信号引入端;M 为信号输出供单相调功电路使用;PM、PA 是给软开关实验中辅管脉冲输出端;IN1、IN2 为两路脉冲功率放大电路的输入端口,一般对应将P+、P-信号输出引入其端口,通过放大输出。

DT03 单元为多功能波形发生器电路,可以实现PWM 波形发生、SPWM 波形发生以及单相调功电路的可控宽度脉冲列的产生等。

电路中包含三角波发生器、正弦波发生器、直流电压给定、死区生成电路、软开关控制脉3冲生成电路、调功控制脉冲生成电路以及脉冲功率放大电路等。

四、实验原理1. PWM波形检测本实验采用三角波调制,以三角波为载波,与调制波信号进行比较输出不同宽度的脉冲。

开关S1拨向下时,DT03单元中的两运放的正向、反向输入端分别接三角波发生器及电位器,但接入的极性相反。

当运放正向输入端电压高于反向输入端电压时,运放输出高电平,反之输出低电平。

故当两运放的三角波及参考电压接入极性相反时,输出P+、P-的波形为两路相位互差180°的PWM信号。

调节参考电压的大小可改变输出PWM 信号的占空比。

在Multisim中的仿真电路及仿真波形如图2a, b, c所示,可见当三角波分别从两运放的正向、反向输入端且相同的参考电压从另一端输入时,输出为两路互差180°的PWM信号,调节参考电压大小可改变占空比。

实验(1)PWM电机调速实验报告

实验(1)PWM电机调速实验报告

PWM电机调速班级:09应电(5)班姓名:学号:0906020122指导老师时间:2011年10月20日目录一、实验名称 (2)二、实验设计的目的和要求 (2)三、预习要求 (2)四、电路原理图 (4)五、电路工作原理 (4)六、 PCB图 (5)七、实验结果 (6)·八、实验中出现的问题以及解决方法 (13)九、实验心得 (13)十、参考文献 (14)十一、元件清单 (14)一、实验名称:PWM电机调速二、实验设计的目的和要求1)学习用LM339内部四个电压比较器产生锯齿波、直流电压、PWM脉宽;2)掌握脉宽调制PWM控制模式;3)掌握电子系统的一般设计方法;4)培养综合应用所学知识来指导实践的能力;5)掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法进一步掌握制版、电路调试等技能。

三、预习要求3.1关于 LM339器件的特点和一些参数图3-1 LM339管脚分配图1)电压失调小,一般是2mV;2)共模范围非常大,为0v到电源电压减1.5v;3)他对比较信号源的内阻限制很宽;4)LM339 vcc电压范围宽,单电源为 2-36V,双电源电压为±1V-±18V;5)输出端电位可灵活方便地选用;6)差动输入电压范围很大,甚至能等于vcc。

3.2 分析PWM电机调速电路的系统组成原理,画出每一级电路输出的波形1)由1、6、7管脚构成的电压比较器,通过RC积分电路调节可调变阻器R5(203),产生锯齿波图3-2 锯齿波2) 由8、9、14管脚构成的比较器,通过8管脚接入前一个比较器1管脚产生的锯齿波信号与调节R7(103)取样得到的9管脚电压做比较通过比较器14管脚输出的是PWM脉宽图3-3 脉冲波(pwm)3)PWM电机调速电路中有两个三极管,是具有耦合放大作用的4)另外电路中的输入4、5管脚和10、11管脚的两个电压比较器在整个电路中具有欠压保护和过流保护四、电路原理图图4-1 PWM电机调速原理图五、电路工作原理直流电机的PWM调速原理是通过调节驱动电压脉冲宽度的方式,并与电路中一些相应的储能元件配合,改变了输送到电枢电压的幅值,从而达到改变直流电机转速的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PWM电机调速
班级:09应电(5)班
姓名:
学号:0906020122
指导老师
时间:2011年10月20日
目录
一、实验名称 (2)
二、实验设计的目的和要求 (2)
三、预习要求 (2)
四、电路原理图 (4)
五、电路工作原理 (4)
六、 PCB图 (5)
七、实验结果 (6)
·
八、实验中出现的问题以及解决方法 (13)
九、实验心得 (13)
十、参考文献 (14)
十一、元件清单 (14)
一、实验名称:PWM电机调速
二、实验设计的目的和要求
1)学习用LM339内部四个电压比较器产生锯齿波、直流电压、PWM脉宽;
2)掌握脉宽调制PWM控制模式;
3)掌握电子系统的一般设计方法;
4)培养综合应用所学知识来指导实践的能力;
5)掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法进一步掌握制版、电路调试等技能。

三、预习要求
3.1关于LM339器件的特点和一些参数
图3-1 LM339管脚分配图
1)电压失调小,一般是2mV;
2)共模范围非常大,为0v到电源电压减1.5v;
3)他对比较信号源的内阻限制很宽;
4)LM339 vcc电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;
5)输出端电位可灵活方便地选用;
6)差动输入电压范围很大,甚至能等于vcc。

3.2 分析PWM电机调速电路的系统组成原理,画出每一级电路输出的波形
1)由1、6、7管脚构成的电压比较器,通过RC积分电路调节可调变阻器R5(203),产生锯齿波
图3-2 锯齿波
2) 由8、9、14管脚构成的比较器,通过8管脚接入前一个比较器1管脚产生的锯齿波信号与调节R7(103)取样得到的9管脚电压做比较通过比较器14管脚输出的是PWM脉宽
图3-3 脉冲波(pwm)
3)PWM电机调速电路中有两个三极管,是具有耦合放大作用的
4)另外电路中的输入4、5管脚和10、11管脚的两个电压比较器在整个电路中具有欠压保护和过流保护
四、电路原理图
图4-1 PWM电机调速原理图
五、电路工作原理
直流电机的PWM调速原理是通过调节驱动电压脉冲宽度的方式,并与电路中一些相应的储能元件配合,改变了输送到电枢电压的幅值,从而达到改变直流电机转速的目的。

它的调制方式是调幅。

PWM的占空比决定输出到直流电机的平均电压,PWM的意思是脉宽调节;也就是调节方波高电平和低电平的时间比,一个20%占空比波形,会有20%的高电平时间和80%的低电平时间,而一个60%占空比的波形则具有60%的高电平时间和40%的低电平时间,占空比越大,高电平时间越长,则输出的脉冲幅度越高,即电压越高;如果占空比为0%,那么高电平时间为0,则没有电压输出.如果占空比为100%;那么输出全部电压,所以通过调节占空比,可以实现调节输出电压的目的,而且输出电压可以无级连续调节。

.
1)锯齿波脉冲形成
参见图3-2和图4-1,该控制器的锯齿波脉冲由内的比较器A,定时元件R1~R5,以及C1等组成的施密特振荡器产生。

2)PWM脉冲形成
参见图3-3和图4-1,PWM脉冲形成电路以LM339内的比较器U2C为核心构成。

由锯齿波形成电路输出的锯齿波脉冲加到比较器的反相输入端8脚,与同相输入端9脚输入的直流电压比较后,就可在它的输出端14脚输出矩形的调宽脉冲电压。

3)信号放大
参见图,4-1,矩形脉冲信号放大电路由驱动电路和功率放大电路两部分构成。

驱动电路采用了9012和9013三极管组成的推挽放大电路;功率放大电路采用了大功率场效应管以获得足够大的电流和功率。

当矩形脉冲为高电平时,9012(Q2)截止、9013(Q1)导通,经9013(Q1)射随放大后从E极输出,再经电阻R18驱动效应管TRF530导通,此时电源提供的电压通过电机、效应管TRF530的G/S极、R17到地构成回路,回路中的电流驱动电机旋转。

当矩形脉冲为低电平时,9013(Q1)截止、9012(Q2)导通,将效应管TRF530栅极存储的电压迅速对地释放,以免效应管TRF530因存储效应不能及时关断而产生过大的功耗。

效应管TRF530截止后,流过电机绕组的导通电流消失,使绕组产生反相的电动势。

为了防止这个电动势导致效应管TRF530过压损坏,在效应管TRF530的G极与供电之间设置了泄放二极管D4。

R14是驱动电路的上拉电阻。

4)保护电路
为了防止场效应管IRF640过流损坏,该电路设置了过流保护电路。

该保护电路由内的比较器U1D和取样电路构成。

比较器U1D的同相输入端11管脚通过R11和R12采样得到正电压。

,而它的反相输入端通过脚接R13反馈电阻取得取样电阻R17的取样电压,当电机运转正常,流过效应管IRF640的S极电流正常时,R17产生的上正下负的压降较小,5V电压,于是13脚输出高电平控制电压,不影响PWM调制器的工作,控制器正常工作。

一旦电机运转不正常等原因导致效应管IRF640过流,使R17两端的压降增大,通过R13使脚电位变为低电平后,13脚输出低电平电压,使电位变为低电平,于是14脚输出低电平电压,致使9013截止、9012导通,于是效应管IRF640截止,电机停转,实现了过流保护。

六、PCB图
图6-1 PWM电机调速PCB图
七、实验结果
1) 电源端分别接15V和24V和5V
2) 当可调电阻R7(103)电阻和R5(203)电阻都不动的时候,电机两端的输出电压
Uo=9V;LM339芯片6、9、14管脚输出波形分别如下所示
图7-1 管脚6波形
图7-2 9管脚电压值
图7-3 管脚14波形
3) 当可调电阻R5(203)不动;R7(103)调大的时候,电机两端的输出电压Uo=10V;LM339
芯片管脚6、9、14输出波形分别如下图所示
图7-4 管脚6波形
图7-5 管脚9波形
图7-6 管脚14的波形
4)当可调电阻R5(203)不动;R7(103)调小的时候,电机两端的输出电压Uo=9V;LM339芯
片管脚6、9、14输出波形分别如下图所示
图7-7 管脚6波形
图7-8 管脚9波形
图7-9 管脚14波形
5)当可调电阻R7(103)不动;R5(203)调大的时候,电机两端的输出电压Uo=9V;LM339芯
片管脚6、9、14输出波形分别如下图所示
图7-10 管脚6波形
图7-11 管脚9波形
图7-12 管脚14波形
6)当可调电阻R7(103)不动;R5(203)调大的时候,电机两端的输出电压Uo=9V;LM339芯
片管脚6、9、14输出波形分别如下图所示
图7-13 管脚6波形
图1-14 管脚9波形
图7-15 管脚14波形
八、实验中出现的问题以及解决方法
在制作PCB电路板时,由于三极管封装有误,导致Q2(9013)损坏,后经改造电路连接,把三极管接正,电路得以正常
在调试电路板的时候,当我把可调电阻103和203调到最下或最大的时候,14管脚波形和输出Uo波形出现一条直线,当时我以为是电路是不是电路出错,就开始调可调电阻103或203,结果波行发生了变化,于是就想也许是由于我把可调电阻调的太小或太大了,所以才会出现这样的波形,现象出现后老师得知就是因为我把电阻调到了最大或最小,所以才出现波形式一条直线的现象
九、实验心得
通过这次试验我学会了LM339,IRF530,三极管,可调电阻等元器件的应用,当电路发下时,通过分析电路图、画板、做板、焊板、调试更加熟悉的学会电路的设计和制作,在画PCB时候由于对三极管管脚的连接不熟悉,导致电路出现问题,所以以后我会更加认真画图,在焊接电路板时要仔细放置元件,做调试时候会注意接线安全。

在调试过程中也得到一些同学和老师的帮助,学会互相帮助,为此感谢!
十、参考文献
王川主编/实用电源技术-重庆大学出版社2000.8 十一、元件清单(单位都是一个)
插槽DIP40
芯片A1D LM339D
电容C1 33nF
C2 4.7uF
C3 100nF
二极管D1 1N4148
D4 DIODE
电机J111 CON2
三极管Q1 2N222A
Q2 2N2907
场效应管Q3 IRF530
电阻R1 22k
R2 3.0k
R3 10k
R4 20k
R5 20k
R6 4.7k
R7 10k
R8 4.7k
R9 10k
R10 10k
R11 500k
R12 3.9k
R13 10k
R14 10k
R17 0.33
R18 150
R19 4.7k。

相关文档
最新文档