实验(1)PWM电机调速实验报告材料

合集下载

小直流电机调速实验报告

小直流电机调速实验报告

小直流电机调速实验报告【前言】小直流电机调速是电动机控制的基础,也是电力电子技术中的一个重要实验项目,本实验通过对小直流电动机调速系统的搭建和调试,了解电力电子技术在电动机控制中的应用,提高学生对电动机控制的认识和理解。

【实验目的】1. 熟悉小直流电动机的电路结构和性能特点;2. 掌握控制小直流电机转速的方法;3. 学会使用单相可控硅控制直流电机;4. 掌握直流电动机调速原理及其控制策略;5. 了解直流电动机调速系统的工作流程和控制方法。

1. 小直流电机2. 可控硅触发电路3. 脉冲宽度调制器(PWM)模块4. 直流电源5. 数字万用表小直流电动机调速的基本原理是通过改变电动机的电压和电流来改变转速,实现精度调速。

当调整电动机电源的电压时,电动机转速会相应地变化。

可控硅是被广泛应用的电力半导体器件之一,使用可控硅控制电动机启动和停止,可以实现对电动机的精确控制。

触发电路通过贝尔定律、黎曼和华氏定理结合可控硅的工作原理将正弦波信号转换成脉冲波信号,从而使可控硅转导角度和电流变化。

PWM模块控制可控硅导通时间,间断时间和工作周期,从而实现电机转速的精确调节。

1. 搭建电路:将可控硅触发电路和小直流电动机连接到直流电源上;2. 打开电源开关,将电压调节到合适的值;3. 启动可控硅触发电路,使电机开始运转;4. 使用数字万用表,测量电机运转的转速,记录结果;5. 按照实验要求,改变PWM模块的各种参数,观察电动机转速的变化;6. 记录实验过程和结果,写出实验报告。

【实验结果与分析】通过实验,成功地搭建了小直流电动机调速系统,实现了对电机的转速精确控制。

在调节可控硅导通角度的过程中,电机转速随着导通角度的变化而发生变化,证明控制电机转速的方法是可行的。

在调节PWM模块参数的过程中,也可以看到电机转速的变化。

实验结果表明,小直流电动机调速采用可控硅和PWM模块控制,可以实现高精度、高效率的电机转速调节。

【结论】【改进方向】本实验中使用的是单相可控硅,受限于控制系统的复杂度和硬件成本,只能实现单向控制,控制效果相对较差。

基于.PWM的电机调速系统

基于.PWM的电机调速系统

基于PWM的电机调速系统实验目的:1.学会并掌握可keil软件的使用;2.学会并掌握protues软件的使用;3.通过实验巩固单片机相关知识和检验自身动手能力实验要求:掌握单片机相关知识,利用调PWM占空比的方式来控制直流电机的转速,并且在led数码管上显示转速。

实验设备和仪器:1.89c51单片机最小系统2.直流电机3.示波器实验内容:本次实验设计是由小组五个成员共同完成基于PWM的电机调速系统并完成实物搭建和撰写实验报告。

本次实验小组共提供了两个方案,方案一和方案二,两个方案各自具有优缺点,详细内容会在下面给出。

方案一实验步骤:1.利用protues画电路图,电路图如图1所示:图1:方案一电路图2.根据电路图编写C语言代码:代码如下:#include <reg51.h>sbit PWM=P2^7;sbit CS3=P2^3;sbit CS2=P2^2;sbit CS1=P2^1;sbit CS0=P2^0;sbit key1=P1^0;sbit key2=P1^1;sbit key3=P1^2;sbit key4=P1^3;unsigned char timer1;unsigned char tab[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};void Time1Config();void main(void){Time1Config();while(1){if(timer1>100) //PWM周期为100*0.5ms{timer1=0;}if(~key1){if(timer1 <30) //改变30这个值可以改变直流电机的速度{PWM=1;}else{PWM=0;}CS0=0;CS1=0;CS2=1;CS3=0;P0=tab[3];P0=0xff;CS0=0;CS1=0;CS2=0;CS3=1;P0=tab[0];P0=0xff;}else if(~key2){if(timer1 <50){PWM=1;else{PWM=0;}CS0=0;CS1=0;CS2=1;CS3=0; P0=tab[5];P0=0xff;CS0=0;CS1=0;CS2=0;CS3=1; P0=tab[0];P0=0xff;}else if(~key3){if(timer1 <80){PWM=1;}else{PWM=0;}CS0=0;CS1=0;CS2=1;CS3=0; P0=tab[8];P0=0xff;CS0=0;CS1=0;CS2=0;CS3=1; P0=tab[0];P0=0xff;}else if(~key4){if(timer1 <100){PWM=1;}else{PWM=0;}CS0=0;CS1=1;CS2=0;CS3=0; P0=tab[1];CS0=0;CS1=0;CS2=1;CS3=0;P0=tab[0];P0=0xff;CS0=0;CS1=0;CS2=0;CS3=1;P0=tab[0];P0=0xff;}}}void Time1Config(){TMOD|= 0x10; //设置定时计数器工作方式1为定时器//--定时器赋初始值,12MHZ下定时0.5ms--//TH1 = 0xFE;TL1 = 0x0C;ET1 = 1; //开启定时器1中断EA = 1;TR1 = 1; //开启定时器}void Time1(void) interrupt 3 //3 为定时器1的中断号{TH1 = 0xFE; //重新赋初值TL1 = 0x0C;timer1++;}3.实验仿真,部分仿真结果如图2图3所示:图2:仿真结果图(1)图3:仿真结果图(2)4.实物验证结果如图4所示:图4:方案一实物验证结果实物验证可以明显感觉到电机转速的变化,由于每个开发板不同,相比仿真程序,对实物验证程序进行了略微的修改,最终能达到要求。

1-3 直流电动机的脉宽调制(PWM)调速

1-3 直流电动机的脉宽调制(PWM)调速

若VT1关断时间长,在t=t2时,电枢电流ia衰减 到零,那么在电动机内电势Ea的作用下,VT2导通, 电枢电流ia 将沿着相反的方向从B点流入A点,电机 进入能耗制动。通过控制VT2的时间间隔可以控制电 机的制动转矩 注意:在VT1重新导通之间,必须先关闭VT2, 让电枢电流经过VD1续流,电机短时进入再生制动状 态,否则在VT2还没有完全关断之前就让VT1导通, 电源经过VT2、VT1直接短路,损坏开关元件。
1、单极性脉宽调制方式 系统输出电压UA的极性是通过一个控制电压Uc 来改变的。 Uc为正,VT1与VT2交替导通,VT4一直导通, VT3关断,此时,B点总是为正,A点总是为负 Uc为负,VT3与VT4交替导通,VT2一直导通, VT1关断,此时,B点总是为负,A点总是为正
工作原理: Uc为正时 0<t<t1时,VT1导通,VT2关断,若Us>Ea, 电枢电流经VT1、VT4从B流到A,电机处在电动 机状态。 在t1<t<T时,VT1关闭,VD2与VT4续流,电枢 电流方向不变,电机仍处在电动机状态。 若在t1<t<T期间的某一时刻t2电枢电流衰减到 零,那么在t2<t<T期间,Ea使VT2导通,电枢电 流反向,经VT2、VD4从A流到B,电机进入能耗 制动状态 若Ea>Us,在VT2关断期间,电枢电流经VD1 和VD4输回电网,电机作再生制动 Uc为负时,原理与此类似,电机反向
如果电流连续,则电机始终处于电动状态 若在t1<t<T期间的某一时刻t2电枢电流衰减到 零,那么在t2<t<T期间,Us和Ea共同作用,使 VT2、VT3导通,电枢电流反向,经VT2、VT3从A 流到B,电机进入反接制动状态 在VT1、VT4再次导通之前,必须关断VT2、 VT3,电枢电流VD1、VD4续流,电机进入再生制 动

用PWM方法实现电动机调速的设计(模板)任务书.doc

用PWM方法实现电动机调速的设计(模板)任务书.doc

一、电机调速控制模块:方案一:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。

但是电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。

更主要的问题在于一般电动机的电阻很小,但电流很大;分压不仅会降低效率,而且实现很困难。

方案二:采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整。

这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可靠性不高。

方案三:采用集成芯片L298N 。

L298N是SGS(通标标准技术服务有限公司)公司的产品,内部包含4通道逻辑驱动电路。

是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。

其有控制精度高、稳定性好、响应速度快等优点,使用它和PWM技术可控制驱动电流大小以达到电机速度的调整。

兼于方案三调速特性优良、调整平滑、调速范围广、过载能力大,因此本设计采用方案三。

二、电机测速模块方案一:使用霍尔传感器。

霍尔传感器是利用霍尔效应实现磁电转换的一种传感器,它具有灵敏度高,线性度好,稳定性高、体积小和耐高温等特点,在机车控制系统中占有非常重要的地位。

对测速装置的要求是分辨能力强、高精度和尽可能短的检测时间。

其对硬件电路要求也要高。

方案二:使用光电码盘。

光电码盘是由光学玻璃制成,在上面刻有许多同心码道,每个码道上都有按一定规律排列的透光和不透光部分。

工作时,光投射在码盘上,码盘随运动物体一起旋转,透过亮区的光经过狭缝后由光敏元件接受,光敏元件的排列与码道一一对应,对于亮区和暗区的光敏元件输出的信号,前者为“1”,后者为“0”,当码盘旋转在不同位置时,光敏元件输出信号的组合反映出一定规律的数字量,代表了码盘轴的角位移。

但其使用较麻烦,准确度与反应速度不高。

对软件方面要求也高。

方案三:使用光电开关GK105。

光电开关(光电传感器)是光电接近开关的简称,它是利用被检测物对光束的遮挡或反射,由同步回路选通电路,从而检测物体有无的。

基于pwm技术的无刷直流电机的调速系统设计大学论文

基于pwm技术的无刷直流电机的调速系统设计大学论文

基于PWM技术的无刷直流电机的调速系统设计Brushless DC Motor Speed Control System Based On PWM摘要无刷直流电机(BLDCM)具有调速性能优异、运行性能可靠和维护方便等优点,相较于有刷直流电机,其采用电子换向取代机械换向,有效地提高了电动机的运行效率,也使得其成品体积更加的轻巧。

但是无刷直流电机也存在转矩脉动、控制器复杂、成本较高等缺陷,这些缺陷的存在也一定程度上影响了无刷直流电机作为高效、先进电机在应用上的普及,因此研究如何改善以及解决无刷直流电机存在的问题便具有更加明显的现实意义。

MATLAB是一款用于数据分析与计算、算法开发以及动态系统建立与仿真的数学软件。

最初是由美国MathWorks公司出品的商用数学软件,其由Matlab和Simulink 两个重要组成部分构成,现在更是应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

本文通过对无刷直流电机结构以及工作原理的研究与分析,找出导致其具有较大转矩脉动的原因,并先从理论上得到如何抑制转矩脉动的方法,再通过Matlab 建立起无刷直流电机的仿真模型,对其仿真结果进行分析与改善,从而有效地抑制无刷直流电机的转矩脉动。

关键词:无刷直流电机,转矩脉动,仿真模型AbstractBrushless DC motor (BLDCM) has excellent speed performance, reliable performance and easy maintenance, etc., compared to a brush DC motor, which uses electronically commutated replace mechanical commutation, effectively improve the operating efficiency of the motor, but also so that the volume of the finished product more compact. But there brushless DC motor torque ripple controller complexity, high cost and other defects, the presence of these defects also affected to some extent, a brushless DC motor as efficient and advanced motor universal in application, how to improve and therefore research solve the problems of the brushless DC motor will have more obvious practical significance.MATLAB is a tool for data analysis and computation, algorithm development, and simulation of dynamic systems to establish and mathematical software. MathWorks was originally developed by the US company produced commercial mathematical software, which consists of Matlab and Simulink are two important parts, and now it is used in engineering calculations, control design, signal processing and communications, image processing, signal detection, financial modeling design and analysis and other fields.Based on the brushless DC motor structure and working principle of research and analysis to identify the cause of which has a large torque ripple, and theoretically first get how to suppress torque ripples, established through Matlab brushless Simulation Model DC motor, its simulation results are analyzed and improved in order to effectively suppress the torque ripple of the brushless DC motorKeywords:Brushless DC motor; The torque pulsation; The simulation model目录第一章绪论 (6)1.1 研究背景及研究意义 (6)1.2 无刷直流电机调速系统的国内外研究现状 (7)1.3 本文的主要研究内容及章节安排 (8)第二章无刷直流电机的基本原理 (9)2.1 无刷直流电机的基本结构 (9)2.1.1 电机本体 (9)1.电动机定子 (9)2. 电动机转子 (10)2.1.2 位置传感器 (10)2.2 无刷直流电机的工作原理及换相过程 (12)2.2.1 无刷直流电机的工作原理 (13)2.2.2 无刷直流电机的换相过程 (15)2.3 无刷直流电机的应用 (16)2.4 本章小结 (16)第三章基于PWM技术的无刷直流电机转矩脉动抑制 (17)3.1 PWM控制技术简介 (17)3.1.1 PWM控制技术的基本原理 (17)3.1.2 PWM控制技术的控制方法 (18)3.2 Buck变换器的原理及控制方式 (19)3.2.1 Buck变换器的原理 (19)3.2.2 Buck变换器的控制方式 (20)3.3 无刷直流电机转矩脉动的产生 (20)3.3.1传导区转矩脉动 (21)3.3.2换相区转矩脉动 (22)3.4 无刷直流电机转矩脉动的抑制 (24)3.5 本章小结 (27)第四章无刷直流电机的仿真分析 (28)4.1 MATLAB和SIMULINK的介绍 (28)4.2 无刷直流电机的数学模型 (29)4.2.1电机本体模块 (30)4.2.2转矩计算模块 (31)4.2.3速度控制模块 (32)4.2.4电流控制模块 (32)4.2.5电压逆变模块 (33)4.3无刷直流电机的仿真结果 (33)4.4本章小结 (38)结论 (39)致谢 (40)参考文献 (41)附录 (42)第一章绪论1.1 研究背景及研究意义对于工厂生产和社会发展而言,电力拖动都有着举足轻重的地位,为了满足生产工艺的需求,通过控制电机的转矩以及转速来控制电动机的转速以及位置,这样就可以形成一个自动化系统,称之为电力拖动。

电机调速控制系统实训报告

电机调速控制系统实训报告

一、实验目的1. 理解电机调速控制系统的基本原理和结构。

2. 掌握电机调速控制系统的设计方法和步骤。

3. 熟悉电机调速控制系统的调试与优化方法。

4. 提高实际操作能力和分析解决问题的能力。

二、实验原理电机调速控制系统是利用电力电子技术、微电子技术和计算机技术实现电机转速的精确控制。

常见的调速方式有直流调速、交流调速和变频调速等。

本实验以直流调速系统为例,通过PWM(脉宽调制)技术实现对直流电机的调速。

三、实验内容1. 实验器材- 直流电机- 电机驱动器- PWM控制器- 测速传感器- 电脑- 数据采集卡2. 实验步骤(1)搭建实验电路:将直流电机、电机驱动器、PWM控制器、测速传感器和数据采集卡连接起来,形成电机调速控制系统。

(2)编写程序:利用编程软件编写PWM控制器程序,实现对电机转速的控制。

(3)调试系统:通过调整PWM控制器的占空比,观察电机转速的变化,直至达到预期转速。

(4)采集数据:利用数据采集卡采集电机转速、电流等数据,进行分析和处理。

(5)优化系统:根据实验结果,调整PWM控制器的参数,优化电机调速控制系统。

四、实验结果与分析1. 实验结果通过实验,成功搭建了电机调速控制系统,并实现了对直流电机的精确调速。

2. 数据分析(1)电机转速与PWM占空比的关系:实验结果表明,电机转速与PWM占空比呈线性关系。

当占空比增大时,电机转速提高;当占空比减小时,电机转速降低。

(2)电机电流与PWM占空比的关系:实验结果表明,电机电流与PWM占空比呈非线性关系。

当占空比增大时,电机电流先增大后减小;当占空比减小时,电机电流先减小后增大。

(3)电机转速与负载的关系:实验结果表明,电机转速与负载呈非线性关系。

当负载增大时,电机转速降低;当负载减小时,电机转速提高。

五、实验总结1. 本实验成功搭建了电机调速控制系统,并实现了对直流电机的精确调速。

2. 通过实验,掌握了电机调速控制系统的基本原理和设计方法。

PWM直流电机调速实验报告

PWM直流电机调速实验报告
uchar count ,count_time= 0;
int real_count=0;
uchar time;
uchar PWMH = 400;uchar PWML = 400;
uchar code table[]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,\
sent(table[speed1%100/10]);
sent(table[speed1%100%10]);
}
void timer0init(void)
{
TMOD = 0X01;
TH0=0XD8;
TL0=0XF0;
}
void detectspeed(void)
{
real_count=count/3.0;
{
while(length--){_nop_();}
}
vo value to the display
{
uchar i = 0;
for(i;i<8;i++)
{
DIN = dat&0x80;
CLK = 0;_nop_();CLK = 1;
dat<<=1;
题目:
PWM直流电机调速实验
学生姓名:
学号:
指导教师:
张友旺
学院:
机电工程学院
专业班级:
机械1604班
日期2019年12月
一、实验目的
1.了解脉宽调制(PWM)的原理
2.学习用PWM输出模拟量驱动直流电机
3.熟悉51系列单片机的延时程序
二、实验步骤
本实验需要用到本实验需要用到单片机最小应用系统(F1区)、串行静态显示(I3区)和直流电机驱动模块(M1区 )。

直流脉宽(PWM)调速系统设计与研究——主电路设计课设报告

直流脉宽(PWM)调速系统设计与研究——主电路设计课设报告

沈阳理工大学课程设计摘要调速系统是当今电力拖动自动控制系统中应用最广泛的一中系统。

目前对调速性能要求较高的各类生产机械大多采用直流传动,简称为直流调速。

早在20世纪40年代采用的是发电机-电动机系统,又称放大机控制的发电机-电动机组系统。

这种系统在40年代广泛应用,但是它的缺点是占地大,效率低,运行费用昂贵,维护不方便等,特别是至少要包含两台与被调速电机容量相同的电机。

为了克服这些缺点,50年代开始使用水银整流器作为可控变流装置。

这种系统缺点也很明显,主要是污染环境,危害人体健康。

50年代末晶闸管出现,晶闸管变流技术日益成熟,使直流调速系统更加完善。

晶闸管-电动机调速系统已经成为当今主要的直流调速系统,广泛应用于世界各国。

近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。

直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。

不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、高智能化特点。

同时直流电机的低速特性,大大优于交流鼠笼式异步电机,为直流调速系统展现了无限前景。

单闭环直流调速系统对于运行性能要求很高的机床还存在着很多不足,快速性还不够好。

而基于电流和转速的双闭环直流调速系统静动态特性都很理想。

关键字:调速系统直流调速器晶闸管晶闸管-电动机调速系统沈阳理工大学课程设计目录1 绪论 (1)1.1 背景 (1)1.2 直流调速系统的方案设计 (1)1.2.1 设计已知参数 (1)1.2.2 设计指标 (2)1.2.3 现行方案的讨论与比较 (2)1.2.4 选择PWM控制系统的理由 (2)1.2.5 选择IGBT的H桥型主电路的理由 (3)1.2.6 采用转速电流双闭环的理由 (3)2 直流脉宽调速系统主电路设计 (4)2.1 主电路结构设计 (4)2.1.1 PWM变换器介绍 (4)2.1.2 泵升电路 (7)2.2 参数设计 (7)2.2.1 IGBT管的参数 (7)2.2.2 缓冲电路参数 (8)2.2.3 泵升电路参数 (8)3 直流脉宽调速系统控制电路设计 (9)3.1 PWM信号发生器 (9)3.2 转速、电流双闭环设计 (9)3.2.1 电流调节器设计 (10)3.2.2 转速调节器设计 (13)4 系统调试 (17)4.1 系统结构框图 (17)4.2 系统单元调试 (17)4.2.1 基本调速 (17)4.2.2 转速反馈调节器、电流反馈调节器的整定 (18)4.3 实验结果 (18)4.3.1 开环机械特性测试 (18)4.3.2 闭环系统调试及闭环静特性测定 (19)5 总结 (20)参考文献 (21)附录A (22)A.1 晶闸管直流调速系统参数和环节特性的测定 (22)A.2 双闭环可逆直流脉宽调速系统性能测试 (26)沈阳理工大学课程设计1 绪论背景在现代科学技术革命过程中,电气自动化在20世纪的后四十年曾进行了两次重大的技术更新。

(完整word版)直流电动机的PWM调压调速原理(word文档良心出品)

(完整word版)直流电动机的PWM调压调速原理(word文档良心出品)

直流电动机的PWM调压调速原理直流电动机转速N的表达式为:N=U-IR/Kφ由上式可得,直流电动机的转速控制方法可分为两类:调节励磁磁通的励磁控制方法和调节电枢电压的电枢控制方法。

其中励磁控制方法在低速时受磁极饱和的限制,在高速时受换向火花和换向器结构强度的限制,并且励磁线圈电感较大,动态响应较差,所以这种控制方法用得很少。

现在,大多数应用场合都使用电枢控制方法。

对电动机的驱动离不开半导体功率器件。

在对直流电动机电枢电压的控制和驱动中,对半导体器件的使用上又可分为两种方式:线性放大驱动方式和开关驱动方式。

线性放大驱动方式是使半导体功率器件工作在线性区。

这种方式的优点是:控制原理简单,输出波动小,线性好,对邻近电路干扰小;但是功率器件在线性区工作时由于产生热量会消耗大部分电功率,效率和散热问题严重,因此这种方式只用于微小功率直流电动机的驱动。

绝大多数直流电动机采用开关驱动方式。

开关驱动方式是使半导体器件工作在开关状态,通过脉宽调制PWM来控制电动机电枢电压,实现调速。

在PWM调速时,占空比α是一个重要参数。

以下3种方法都可以改变占空比的值。

(1)定宽调频法这种方法是保持t1不变,只改变t2,这样使周期T(或频率)也随之改变。

(2)调频调宽法这种方法是保持t2不变,只改变t1,这样使周期T(或频率)也随之改变。

(3)定频调宽法这种方法是使周期T(或频率)保持不变,而同时改变t1和t2。

前两种方法由于在调速时改变了控制脉冲的周期(或频率),当控制脉冲的频率与系统的固有频率接近时,将会引起振荡,因此这两种方法用得很少。

目前,在直流电动机的控制中,主要使用定频调宽法。

直流电动机双极性驱动可逆PWM控制系统双极性驱动则是指在一个PWM周期里,作为在电枢两端的脉冲电压是正负交替的。

双极性驱动电路有两种,一种称为T型,它由两个开关管组成,采用正负电源,相当于两个不可逆控制系统的组合。

但由于T型双极性驱动中的开关管要承受较高的反向电压,因此只用在低压小功率直流电动机驱动。

转速电流双闭环pwm—m可逆直流脉宽调速系统实验报告

转速电流双闭环pwm—m可逆直流脉宽调速系统实验报告

转速电流双闭环pwm—m可逆直流脉宽调速系统实验报告转速电流双闭环PWM-M可逆直流脉宽调速系统实验报告一、引言直流调速系统是现代工业中常用的电机调速方式之一,在实际应用中具有广泛的使用。

其中,转速电流双闭环PWM-M可逆直流脉宽调速系统是其中一种典型的调速控制方式。

本实验旨在通过搭建转速电流双闭环PWM-M可逆直流脉宽调速系统,研究其调速性能以及运行特点。

二、实验目的1. 理解转速电流双闭环PWM-M可逆直流脉宽调速系统的原理和结构;2. 掌握控制脉宽调制技术在直流电机调速系统中的应用;3. 通过实验验证该调速系统的性能和运行特点。

三、实验原理转速电流双闭环PWM-M可逆直流脉宽调速系统是将转速和电流两个回路分别采用闭环控制的直流调速系统。

其中,转速回路通过传感器对电机转速进行采集,与期望转速进行比较后,经过PID控制器得到转速控制信号,再经过比较器进行与PWM脉宽控制信号进行比较产生控制脉宽;电流回路通过采集直流电机的电流信号,经过PID控制器得到电流控制信号,再与PWM控制脉宽信号进行比较生成最终的输出脉宽。

四、实验步骤1. 搭建转速电流双闭环PWM-M可逆直流脉宽调速系统实验装置;2. 设置期望转速和电流参考值;3. 分别采集电机转速和电流信号;4. 利用PID控制器对转速和电流进行闭环控制;5. 通过比较器生成脉宽控制信号,控制电机转矩;6. 记录实验数据并进行分析。

五、实验结果与分析通过实验,我们可以得到实验数据并进行分析。

其中,我们可以通过比较实际转速与期望转速的差距,来评价转速闭环控制的性能。

同时,通过比较实际电流值与期望电流值之间的差距,来评价电流闭环控制的性能。

根据实验数据,我们可以得到转速与电流控制的准确性、稳定性以及响应速度等指标,评估整个调速系统的性能。

六、结论通过实验,我们成功搭建了转速电流双闭环PWM-M可逆直流脉宽调速系统实验装置,并完成了相关实验。

根据实验结果分析,我们可以评估该调速系统的性能和运行特点。

直流电机PWM调速

直流电机PWM调速

直流电机转速的PWM控制测速王鹏辉姬玉燕摘要本设计采用PWM的控制原理来完成对直流电机的正转、反转以及其加速、减速过程的控制,在此过程中是通过单片机的定时器加上中断的方式产生不同时长的高低电压脉冲信号来完成。

并通过霍尔传感器对直流电机的转速进行测定,最后将实时测定的转速数值1602液晶屏上。

关键词:PWM控制直流电机霍尔传感器 1602液晶显示屏 L298驱动一、设计目的:了解直流电机工作原理,掌握用单片机来控制直流电机系统的硬件设计方法,熟悉直流电机驱动程序的设计与调试,能够熟练应用PWM方法来控制直流电机的正反转和加减速,提高单片机应用系统设计和调试水平。

1.1系统方案提出和论证转速测量的方案选择,一般要考虑传感器的结构、安装以及测速范围与环境条件等方面的适用性;再就是二次仪表的要求,除了显示以外还有控制、通讯和远传方面的要求。

本说明书中给出两种转速测量方案,经过我和伙伴查资料、构思和自己的设计,总体电路我们有两套设计方案,部分重要模块也考虑了其它设计方法,经过分析,从实现难度、熟悉程度、器件用量等方面综合考虑,我们才最终选择了一个方案。

下面就看一下我们对两套设计方案的简要说明。

1.2 方案一:霍尔传感器测量方案霍尔传感器是利用霍尔效应进行工作的?其核心元件是根据霍尔效应原理制成的霍尔元件。

本文介绍一种泵驱动轴的转速采用霍尔转速传感器测量。

霍尔转速传感器的结构原理图如图3.1, 霍尔转速传感器的接线图如图3.2 。

传感器的定子上有2 个互相垂直的绕组A 和B, 在绕组的中心线上粘有霍尔片HA 和HB ,转子为永久磁钢,霍尔元件HA 和HB 的激励电机分别与绕组A 和B 相连,它们的霍尔电极串联后作为传感器的输出。

图3.1 霍尔转速传感器的结构原理图方案霍尔转速传感器的接线图缺点:采用霍尔传感器在信号采样的时候,会出现采样不精确,因为它是靠磁性感应才采集脉冲的,使用时间长了会出现磁性变小,影响脉冲的采样精度。

电机控制实验报告分析(3篇)

电机控制实验报告分析(3篇)

第1篇一、实验背景电机控制技术在现代工业和日常生活中扮演着重要角色,其性能直接影响着设备的运行效率和稳定性。

为了更好地理解和掌握电机控制技术,我们进行了一系列电机控制实验。

本报告将对实验过程、结果及分析进行详细阐述。

二、实验目的1. 熟悉电机控制系统的基本组成和原理;2. 掌握电机控制实验的操作步骤和注意事项;3. 分析实验数据,验证电机控制理论;4. 提高实际操作能力和故障排除能力。

三、实验内容1. 电机控制实验平台搭建实验平台主要包括电机、控制器、传感器、电源等设备。

实验过程中,我们需要根据实验要求,正确连接各设备,确保实验顺利进行。

2. 电机调速实验通过调整PWM信号的占空比,实现对电机转速的调节。

实验中,我们测试了不同占空比下电机的转速,并记录实验数据。

3. 电机转向控制实验通过改变PWM信号的极性,实现对电机转向的控制。

实验中,我们测试了不同极性下电机的转向,并记录实验数据。

4. 电机制动实验通过调整PWM信号的占空比和极性,实现对电机制动的控制。

实验中,我们测试了不同制动条件下电机的制动效果,并记录实验数据。

四、实验结果与分析1. 电机调速实验结果分析实验结果显示,随着PWM占空比的增大,电机转速逐渐提高。

当占空比为100%时,电机达到最大转速。

实验数据与理论分析基本一致。

2. 电机转向控制实验结果分析实验结果显示,通过改变PWM信号的极性,可以实现对电机转向的控制。

当PWM信号极性为正时,电机正转;当PWM信号极性为负时,电机反转。

实验数据与理论分析相符。

3. 电机制动实验结果分析实验结果显示,通过调整PWM信号的占空比和极性,可以实现对电机制动的控制。

当PWM信号占空比为0时,电机完全制动;当占空比逐渐增大时,电机制动效果逐渐减弱。

实验数据与理论分析基本一致。

五、实验结论1. 电机控制实验平台搭建成功,能够满足实验要求;2. 电机调速、转向和制动实验均取得了良好的效果,验证了电机控制理论;3. 通过实验,提高了实际操作能力和故障排除能力。

PWM实验报告

PWM实验报告

51单片机控制直流电机PWM调速实验时间:第12周星期六1-4节51单片机控制直流电机PWM调速实验目的1.掌握脉宽调制 (PWM) 的方法。

2.用程序实现脉宽调制,并对直流电机进行调速控制。

实验设备PC 机一台,单片机最小系统,驱动板、直流电机,连接导线等实验原理1.PWM (Pulse Width Modulation) 简称脉宽调制。

即,通过改变输出脉冲的占空比,实现对直流电机进行调压调速控制。

2.实验线路图:实验内容:1. 利用实验室提供的单片机应用系统及直流电机驱动电路板,编制控制程序,实现直流电机PWM调速控制。

2.实验原理图:3. 程序如下:#include<reg52.h>#define uchar unsigned char#define uint unsigned intsbit KEY1 = P3^4;sbit KEY2 = P3^5;sbit KEY3 = P3^6;sbit IN1 = P1^0;sbit IN2 = P1^1;sbit ENA = P1^2;sfr ldata=0x80;sbit dula=P2^6;sbit wela=P2^7; //sbit lcden=P3^4;//uchar timer,ms,t_set = 1;uchar T_N=100;uchar T_N1=100;uchar T_H_N=50;uchar T_H_N1=50;void msplay(uchar,uchar);uchar codex1[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x27,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79 ,0x71};//uchar code x2[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xd8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};uchar code x3[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf};//uchar code x4[]={0x01,0x02,0x04,0x08,0x10,0x20};void delay(uint z) //延时函数{uint x;for(x=z;x>0;x--);}void Key_Scan(){if(KEY1 == 0){delay(20);while(!KEY1);T_H_N++;if(T_H_N >=99){T_H_N =99;}}if(KEY2 == 0){delay(20);while(!KEY2);T_H_N--;if(T_H_N <= 1){T_H_N = 1;}}if(KEY3 == 0){delay(15);while(!KEY3);IN1=~IN1;IN2=~IN2;}}void Motor_Init(){ENA = 0;IN1 = 1;IN2 = 0;}void Timer0_Init(){TMOD=0X12;TH0=(256-50);TL0=(256-50);// TH1=(65535-T_H)/256;// TL1=(65535-T_H)%256;EA=1;ET0=1;TR0=1; }void main(){uchar k3,k2,k1,k0;Timer0_Init();Motor_Init();while(1){k2=T_H_N/10;k3=T_H_N%10;k1=0;k0=0;msplay(k0,2);msplay(k1,3);msplay(k2,4);msplay(k3,5);Key_Scan();}}void timer0() interrupt 1{TR0=0;// TH0=(65536-50)/256;// TL0=(65536-50)%256;T_H_N1--;if(0==T_H_N1){ENA=0;T_H_N1=1;}T_N1--;if(T_N1==0){ENA=1;T_N1=100;T_H_N1=T_H_N;}TR0=1;} void msplay(uchar y1,uchar y2){ldata = x1[y1];dula=1;dula=0;delay(1);ldata = x3[y2];wela=1;wela=0;delay(1);ldata = 0x00;dula=1;dula=0;delay(1);ldata = 0x0ff;wela=1;wela=0;delay(1);}占空比数值显示为70时,原理图的显占空比为70%时的调试图实验思考题本实验中是通过改变脉冲的占空比,周期T 不变的方法来改变电机转速的,还有什么办法能改变电机的转速,应该怎么实现?答:可以让占空比不变,改变周期T的大小来改变电机的转速。

直流电机PWM 调速实验报告

直流电机PWM 调速实验报告

直流电机PWM调速实验报告学院:专业:机械设计制造及其自动化姓名:班级:学号:指导老师:直流电机PWM调速实验一、实验目的:1、掌握脉宽调制的方法;2、用程序实现脉宽调制,并对直流电机进行调速控制二、实验设备:PC机一台,单片机最小系统,驱动板,直流电机,连接导线等三、实验原理:1、PWM(Pulse Width Modulation)简称脉宽调制。

即,通过改变输出脉冲的占空比,实现对直流电机进行调速控制。

2、实验线路图:四、实验内容:1、利用实验时提供的单片机应用系统及直流电机驱动电路板,编制控制程序,实现直流电机PWM调速控制。

2、连接实验电路,观察PWM调控速度控制,实现的加速、减速等调速控制。

五、实验步骤:1、按系统电路图连线,调试完成;2、开启单片机,按下键盘启动按钮,电机正常旋转;3、按动键盘加速、减速、正转、反转、停止按键,分别实现预定功能。

4、实验完成,收拾实验器械,整理。

六、实验程序:#include<reg51.h>#define TH0_TL0 (65536-1000)//设定中断的间隔时长unsigned char count0 = 50;//低电平的占空比unsigned char count1 = 0;//高电平的占空比bit Flag = 1;//电机正反转标志位,1正转,0反转sbitKey_add=P2 ^ 0; //电机减速sbitKey_dec=P2 ^ 1; //电机加速sbitKey_turn=P2 ^ 2; //电机换向sbit PWM1=P2^6;//PWM 通道1,反转脉冲sbit PWM2=P2^7;//PWM 通道2,正转脉冲unsigned char Time_delay;/************函数声明**************/void Delay(unsigned char x);voidMotor_speed_high(void);voidMotor_speed_low(void);voidMotor_turn(void);void Timer0_init(void);/****************延时处理**********************/void Delay(unsigned char x){Time_delay = x;while(Time_delay != 0);//等待中断,可减少PWM输出时间间隔}/*******按键处理加pwm占空比,电机加速**********/voidMotor_speed_high(void)//{if(Key_add==0)Delay(10);if(Key_add==0){count0 += 5;if(count0 >= 100){count0 = 100;}}while(!Key_add);//等待键松开}}/******按键处理减pwm占空比,电机减速*****/ voidMotor_speed_low(void){if(Key_dec==0){Delay(10);if(Key_dec==0){ count0 -= 5;if(count0 <= 0){count0 = 0; }}while(!Key_dec );}}/************电机正反向控制**************/ voidMotor_turn(void){if(Key_turn == 0){Delay(10);if(Key_turn == 0){Flag = ~Flag; }while(!Key_turn);}/***********定时器0初始化***********/void Timer0_init(void){TMOD=0x01; //定时器0工作于方式1TH0=TH0_TL0/256;TL0=TH0_TL0%256;TR0=1;ET0=1;EA=1;}/*********主函数********************/void main(void){Timer0_init();while(1){Motor_turn();Motor_speed_high();Motor_speed_low();}}/**************定时0中断处理******************/ void Timer0_int(void) interrupt 1 using 1{TR0 = 0;//设置定时器初值期间,关闭定时器TL0 = TH0_TL0 % 256;TH0 = TH0_TL0 / 256 ;//定时器装初值TR0 = 1;if(Time_delay != 0)//延时函数用{Time_delay--;}if(Flag == 1)//电机正转{ PWM1 = 0;if(++count1 < count0){PWM2 = 1;}elsePWM2 = 0;if(count1 >= 100){count1=0; }}else //电机反转{PWM2 = 0;if(++count1 < count0){ PWM1 = 1;}else PWM1 = 0;if(count1 >= 100){ count1=0;}七、实验心得:此次实验,不仅锻炼了我们的独立思考和动手能力。

直流电机调速_实训报告

直流电机调速_实训报告

一、引言直流电机因其结构简单、运行可靠、调速方便等优点,广泛应用于各种工业和家用电器中。

为了更好地掌握直流电机的调速原理和实现方法,我们进行了直流电机调速实训。

本报告将详细介绍实训过程、实验结果及分析。

二、实训目的1. 理解直流电机的调速原理和实现方法;2. 掌握直流电机调速电路的设计与搭建;3. 学会使用示波器、万用表等仪器对电路进行测试和分析;4. 提高动手实践能力和工程意识。

三、实训内容1. 直流电机调速原理直流电机调速主要采用调压、调阻和PWM调制三种方法。

本实训采用调压方法,通过改变输入电压来控制电机的转速。

2. 直流电机调速电路设计(1)电路组成:电源、直流电机、调速电路、负载、保护电路等。

(2)调速电路设计:采用继电器和电位器组成的分压电路,通过改变电位器阻值来调整输入电压。

3. 仪器使用(1)示波器:用于观察电压、电流等信号波形。

(2)万用表:用于测量电压、电流、电阻等参数。

四、实训步骤1. 搭建直流电机调速电路。

2. 连接电源,启动电机。

3. 调整电位器,观察电机转速变化。

4. 使用示波器观察电压、电流等信号波形。

5. 使用万用表测量电压、电流、电阻等参数。

6. 记录实验数据,分析实验结果。

五、实验结果与分析1. 实验数据(1)输入电压:0V、2V、4V、6V、8V。

(2)电机转速:0r/min、300r/min、600r/min、900r/min、1200r/min。

(3)电流:0A、1A、2A、3A、4A。

2. 实验结果分析(1)电机转速与输入电压的关系:随着输入电压的增加,电机转速逐渐升高。

(2)电流与输入电压的关系:随着输入电压的增加,电流逐渐增大。

(3)电机转速与电流的关系:电机转速与电流成正比。

六、结论1. 通过本次实训,我们掌握了直流电机调速原理和实现方法。

2. 通过搭建直流电机调速电路,实现了对电机转速的调节。

3. 通过使用示波器和万用表等仪器,我们对电路进行了测试和分析,验证了实验结果的准确性。

变频调速系统设计与调试实验报告

变频调速系统设计与调试实验报告

变频调速系统设计与调试实验报告实验报告:变频调速系统设计与调试一、实验目的本实验的目的是设计和调试一个变频调速系统,通过对电机的变频调速实现电机的恒定转速控制,提高电机的运行效率和稳定性。

二、实验原理1.变频调速系统2.变频器变频器是变频调速系统的核心设备,它通过采用先进的PWM调制技术,将直流电转换成可调频率和可调幅值的交流电输出给电机,从而实现对电机的调速控制。

3.整流器整流器是变频器的关键组成部分,它将市电的交流电转换成可供变频器使用的直流电。

4.逆变器逆变器将直流电转换成供电机使用的可调频率和可调幅值的交流电。

三、实验步骤1.搭建变频调速系统实验平台,包括电机、变频器、整流器和逆变器等设备。

2.进行连接调试,保证系统各部件正常工作。

3.设计一个恒定转速控制的闭环调速系统,确定合适的PID控制器参数。

4.进行系统参数整定和闭环调速实验,记录实验数据。

5.分析实验结果,评估系统性能并提出改进建议。

四、实验结果与分析在实验中,我们成功搭建了一个变频调速系统,并进行了恒定转速控制的闭环调速实验。

通过对系统的参数整定和实验调试,我们得到了合适的PID控制器参数,并实现了电机的恒定转速控制。

实验结果显示,通过变频调速系统的控制,电机的转速可以在一定误差范围内保持恒定,具有较好的稳定性和控制精度。

同时,电机的运行效率得到了提高,电机的起动转矩和运行电流得到了控制,从而减少了能耗和损耗。

根据实验结果分析,我们可以进一步优化调速系统的设计和调试,提高系统的控制精度和稳定性。

例如,可以引入模糊控制、神经网络控制等先进的控制算法,以进一步提高系统的性能。

五、结论通过本次实验,我们成功设计并调试了一个变频调速系统,并实现了对电机的恒定转速控制。

实验结果表明,变频调速系统具有较好的稳定性和控制精度,能有效提高电机的运行效率和稳定性。

在今后的工程应用中,变频调速系统将发挥重要作用,提高电机控制的性能和效益。

同时,在实验过程中,我们还发现了系统设计和调试中存在的问题,并提出了改进建议。

直流脉宽调速实验报告

直流脉宽调速实验报告

直流脉宽调速实验报告1.任务和意义:生产实习的主要任务是设计一个直流电动机的脉宽调速(直流PWM)驱动电源。

纵观运动控制的发展历史,交、直流两大电气传动并存于各个应用领域。

由于直流电机的调速性能和转矩控制性能好,20世纪30年代起就开始使用直流调速系统。

直流调速系统由最早的旋转变流机组控制,发展为用静止的晶闸管变流装置和模拟控制器实现调速,到现在由大功率开关器件组成的PWM电路实现数字化的调速,系统的快速性、可靠性、经济性不断提高,应用领域不断扩展。

尽管目前对交流系统的研究比较“热门”,但是其控制性能在某些方面还达不到直流PWM系统的水平。

直流PWM控制技术作为一门新型的控制技术,其发展潜力还是相当大的。

而且,直流PWM技术是电力电子领域广泛采用的各种PWM技术的典型应用和重要基础,掌握直流PWM技术对于学习和运用交流变频调速中SPWM技术有很大的帮助和借鉴作用。

2.设计内容:1)主电路的设计,器件的选型。

包括含整流变压器在内的整流电路设计和H桥可逆斩波电路的设计(要求采用IPM作为DC/DC变换的主电路,型号为PS21564)。

2)PWM控制电路的设计(指以SG3525为核心的脉宽调节电路)。

3)IPM接口电路设计(包括上下桥臂元件的开通延迟,及上桥臂驱动电源的自举电路)。

4)DC15V 控制电源的设计(采用LM2575系列开关稳压集成电路,直接从主电路的直流母线电压经稳压获得)。

2 主电路设计说明1.概述可逆PWM 变换器主电路的结构型式有H 型、T 型等类, H 型变换器,它是由四个功率场效应管和四个续流二极管组成的桥式电路。

H 型变换器在控制方式上分双极式、单极式和受限单极式三种,在此使用双极式H 型PWM 变换器。

二极管整流桥把输入的交流电变为直流电。

四只功率器件构成H 桥,根据脉冲占空比的不同,在直流电机上可得到+或-的直流电压。

2.设计说明1)由于电源部分是交流电源,所以需要对电源进行整流,整流部分采用4个二极管集成在一起的整流桥模块,在电源交流的正负半周轮流导通,以达到整流的目的。

实验(1)PWM电机调速实验报告

实验(1)PWM电机调速实验报告

PWN fe机调速班级:09 应电(5)班姓名:学号:0906020122指导老师时间:2011 年10月20 日目录一、实验名称 (2)二、实验设计的目的和要求 (2)三、预习要求 (2)四、电路原理图 (4)五、电路工作原理 (4)六、PCB图 (5)七、实验结果 (6)八、实验中出现的问题以及解决方法 (13)九、实验心得 (13)十、参考文献 (14)十一、元件清单 (14)、实验名称:PWN fe机调速、实验设计的目的和要求1)学习用LM339内部四个电压比较器产生锯齿波、直流电压、PWM脉宽;2)掌握脉宽调制PWM控制模式;3)掌握电子系统的一般设计方法;4)培养综合应用所学知识来指导实践的能力;5)掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法进一步掌握制版、电路调试等技能。

、预习要求3.1关于LM339器件的特点和一些参数1)电压失调小,一般是2mV2)共模范围非常大,为0v到电源电压减1.5v ;3)他对比较信号源的内阻限制很宽;4) LM339 vcc电压范围宽,单电源为2-36V,双电源电压为土1V - ± 18V;5)输出端电位可灵活方便地选用;6)差动输入电压范围很大,甚至能等于vcc。

3.2分析PWM电机调速电路的系统组成原理,画出每一级电路输出的波形1) 由1、6、7管脚构成的电压比较器,通过RC积分电路调节可调变阻器R5(203),产生锯齿波2) 由8、9、14管脚构成的比较器,通过8管脚接入前一个比较器1管脚产生的锯齿波信号与调节R7(103)取样得到的9管脚电压做比较通过比较器14管脚输出的是PWM脉宽3) PWM电机调速电路中有两个三极管,是具有耦合放大作用的4) 另外电路中的输入4、5管脚和10、11管脚的两个电压比较器在整个电路中具有欠压保护和过流保护四、电路原理图图4-1 PWM电机调速原理图五、电路工作原理直流电机的PW碉速原理是通过调节驱动电压脉冲宽度的方式,并与电路中一些相应的储能元件配合,改变了输送到电枢电压的幅值,从而达到改变直流电机转速的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PWM电机调速
班级:09应电(5)班
姓名:
学号:0906020122
指导老师
时间:2011年10月20日
目录
一、实验名称 (2)
二、实验设计的目的和要求 (2)
三、预习要求 (2)
四、电路原理图 (4)
五、电路工作原理 (4)
六、 PCB图 (5)
七、实验结果 (6)
·
八、实验中出现的问题以及解决方法 (13)
九、实验心得 (13)
十、参考文献 (14)
十一、元件清单 (14)
一、实验名称:PWM电机调速
二、实验设计的目的和要求
1)学习用LM339内部四个电压比较器产生锯齿波、直流电压、PWM脉宽;
2)掌握脉宽调制PWM控制模式;
3)掌握电子系统的一般设计方法;
4)培养综合应用所学知识来指导实践的能力;
5)掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法进一步掌握制版、电路调试等技能。

三、预习要求
3.1关于LM339器件的特点和一些参数
图3-1 LM339管脚分配图
1)电压失调小,一般是2mV;
2)共模范围非常大,为0v到电源电压减1.5v;
3)他对比较信号源的内阻限制很宽;
4)LM339 vcc电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;
5)输出端电位可灵活方便地选用;
6)差动输入电压范围很大,甚至能等于vcc。

3.2 分析PWM电机调速电路的系统组成原理,画出每一级电路输出的波形
1)由1、6、7管脚构成的电压比较器,通过RC积分电路调节可调变阻器R5(203),产生锯齿波
图3-2 锯齿波
2) 由8、9、14管脚构成的比较器,通过8管脚接入前一个比较器1管脚产生的锯齿波信号与调节R7(103)取样得到的9管脚电压做比较通过比较器14管脚输出的是PWM脉宽
图3-3 脉冲波(pwm)
3)PWM电机调速电路中有两个三极管,是具有耦合放大作用的
4)另外电路中的输入4、5管脚和10、11管脚的两个电压比较器在整个电路中具有欠压保护和过流保护
四、电路原理图
图4-1 PWM电机调速原理图
五、电路工作原理
直流电机的PWM调速原理是通过调节驱动电压脉冲宽度的方式,并与电路中一些相应的储能元件配合,改变了输送到电枢电压的幅值,从而达到改变直流电机转速的目的。

它的调制方式是调幅。

PWM的占空比决定输出到直流电机的平均电压,PWM的意思是脉宽调节;也就是调节方波高电平和低电平的时间比,一个20%占空比波形,会有20%的高电平时间和80%的低电平时间,而一个60%占空比的波形则具有60%的高电平时间和40%的低电平时间,占空比越大,高电平时间越长,则输出的脉冲幅度越高,即电压越高;如果占空比为0%,那么高电平时间为0,则没有电压输出.如果占空比为100%;那么输出全部电压,所以通过调节占空比,可以实现调节输出电压的目的,而且输出电压可以无级连续调节。

.
1)锯齿波脉冲形成
参见图3-2和图4-1,该控制器的锯齿波脉冲由内的比较器A,定时元件R1~R5,以及C1等组成的施密特振荡器产生。

2)PWM脉冲形成
参见图3-3和图4-1,PWM脉冲形成电路以LM339内的比较器U2C为核心构成。

由锯齿波形成电路输出的锯齿波脉冲加到比较器的反相输入端8脚,与同相输入端9脚输入的直流电压比较后,就可在它的输出端14脚输出矩形的调宽脉冲电压。

3)信号放大
参见图,4-1,矩形脉冲信号放大电路由驱动电路和功率放大电路两部分构成。

驱动电路采用了9012和9013三极管组成的推挽放大电路;功率放大电路采用了大功率场效应管以获得足够大的电流和功率。

当矩形脉冲为高电平时,9012(Q2)截止、9013(Q1)导通,经9013(Q1)射随放大后从E极输出,再经电阻R18驱动效应管TRF530导通,此时电源提供的电压通过电机、效应管TRF530的G/S极、R17到地构成回路,回路中的电流驱动电机旋转。

当矩形脉冲为低电平时,9013(Q1)截止、9012(Q2)导通,将效应管TRF530栅极存储的电压迅速对地释放,以免效应管TRF530因存储效应不能及时关断而产生过大的功耗。

效应管TRF530截止后,流过电机绕组的导通电流消失,使绕组产生反相的电动势。

为了防止这个电动势导致效应管TRF530过压损坏,在效应管TRF530的G极与供电之间设置了泄放二极管D4。

R14是驱动电路的上拉电阻。

4)保护电路
为了防止场效应管IRF640过流损坏,该电路设置了过流保护电路。

该保护电路由内的比较器U1D和取样电路构成。

比较器U1D的同相输入端11管脚通过R11和R12采样得到正电压。

,而它的反相输入端通过脚接R13反馈电阻取得取样电阻R17的取样电压,当电机运转正常,流过效应管IRF640的S极电流正常时,R17产生的上正下负的压降较小,5V电压,于是13脚输出高电平控制电压,不影响PWM调制器的工作,控制器正常工作。

一旦电机运转不正常等原因导致效应管IRF640过流,使R17两端的压降增大,通过R13使脚电位变为低电平后,13脚输出低电平电压,使电位变为低电平,于是14脚输出低电平电压,致使9013截止、9012导通,于是效应管IRF640截止,电机停转,实现了过流保护。

六、PCB图
图6-1 PWM电机调速PCB图
七、实验结果
1) 电源端分别接15V和24V和5V
2) 当可调电阻R7(103)电阻和R5(203)电阻都不动的时候,电机两端的输出电压
Uo=9V;LM339芯片6、9、14管脚输出波形分别如下所示
图7-1 管脚6波形
图7-2 9管脚电压值
图7-3 管脚14波形
3) 当可调电阻R5(203)不动;R7(103)调大的时候,电机两端的输出电压Uo=10V;LM339
芯片管脚6、9、14输出波形分别如下图所示
图7-4 管脚6波形
图7-5 管脚9波形图7-6 管脚14的波形
4)当可调电阻R5(203)不动;R7(103)调小的时候,电机两端的输出电压Uo=9V;LM339芯
片管脚6、9、14输出波形分别如下图所示
图7-7 管脚6波形
图7-8 管脚9波形
图7-9 管脚14波形
5)当可调电阻R7(103)不动;R5(203)调大的时候,电机两端的输出电压Uo=9V;LM339芯
片管脚6、9、14输出波形分别如下图所示
图7-10 管脚6波形
图7-11 管脚9波形图7-12 管脚14波形
6)当可调电阻R7(103)不动;R5(203)调大的时候,电机两端的输出电压Uo=9V;LM339芯
片管脚6、9、14输出波形分别如下图所示
图7-13 管脚6波形
图1-14 管脚9波形
图7-15 管脚14波形
八、实验中出现的问题以及解决方法
在制作PCB电路板时,由于三极管封装有误,导致Q2(9013)损坏,后经改造电路连接,把三极管接正,电路得以正常
在调试电路板的时候,当我把可调电阻103和203调到最下或最大的时候,14管脚波形和输出Uo波形出现一条直线,当时我以为是电路是不是电路出错,就开始调可调电阻103或203,结果波行发生了变化,于是就想也许是由于我把可调电阻调的太小或太大了,所以才会出现这样的波形,现象出现后老师得知就是因为我把电阻调到了最大或最小,所以才出现波形式一条直线的现象
九、实验心得
通过这次试验我学会了LM339,IRF530,三极管,可调电阻等元器件的应用,当电路发下时,通过分析电路图、画板、做板、焊板、调试更加熟悉的学会电路的设计和制作,在画PCB时候由于对三极管管脚的连接不熟悉,导致电路出现问题,所以以后我会更加认真画图,在焊接电路板时要仔细放置元件,做调试时候会注意接线安全。

在调试过程中也得到一些同学和老师的帮助,学会互相帮助,为此感谢!
十、参考文献
王川主编/实用电源技术-重庆大学出版社2000.8 十一、元件清单(单位都是一个)
插槽DIP40
芯片A1D LM339D
电容C1 33nF
C2 4.7uF
C3 100nF
二极管D1 1N4148
D4 DIODE
电机J111 CON2
三极管Q1 2N222A
Q2 2N2907
场效应管Q3 IRF530
电阻R1 22k
R2 3.0k
R3 10k
R4 20k
R5 20k
R6 4.7k
R7 10k
R8 4.7k
R9 10k
R10 10k
R11 500k
R12 3.9k
R13 10k
R14 10k
R17 0.33
R18 150
R19 4.7k。

相关文档
最新文档