七年级奥数题1
初一数学奥数竞赛题
初一数学奥数竞赛题近年来,数学奥数竞赛在中小学生中越来越受欢迎。
这些竞赛要求学生具备扎实的数学基础知识和灵活的解题能力,提高他们的逻辑思维和问题解决能力。
今天,我们来看几个适合初一学生的数学奥数竞赛题。
题目1:小美在她家门口卖冰淇淋,一支冰淇淋卖5元,两支冰淇淋卖9元。
小美今天一共卖出了30支冰淇淋,她一共赚了多少钱?解析:我们可以设冰淇淋的单价为x元,因为一支冰淇淋卖5元,所以我们可以得到一个方程:5 = x。
两支冰淇淋卖9元,所以我们可以得到另一个方程:9 = 2x。
解这个方程组,我们可以得到x = 4.5。
小美一共卖出30支冰淇淋,所以她赚的总钱数为30 * 4.5 = 135元。
题目2:小明的爸爸今年40岁,小明今年12岁。
假设小明的爸爸每年的年龄都是相同的增长,他几年后的年龄和小明的年龄之和是100岁。
请问那时小明的年龄是多少岁?解析:设小明的爸爸从现在开始每年的年龄增长为x岁。
那么,小明几年后的年龄就是12 + x岁,小明的爸爸几年后的年龄就是40 + x岁。
根据题意,小明几年后的年龄和小明的爸爸几年后的年龄之和是100岁,所以我们可以得到一个方程:(12 + x)+(40 + x)= 100。
解这个方程,我们可以得到x = 18。
所以,几年后小明的年龄就是12 + 18 = 30岁。
题目3:一个长方形花坛周长是20米,其中一条边的长度是4米。
我们要在长方形花坛的周围建一道宽度相等的砖墙,这道砖墙的长度是花坛周长的一半。
问这道砖墙的长度是多少米?解析:设砖墙的宽度为x米,花坛的长度为L米,宽度为W米。
花坛周长是20米,所以我们可以得到一个方程:2L + 2W = 20。
其中一条边的长度是4米,所以我们可以得到另一个方程:2L + W = 4。
将两个方程联立,我们可以解得L = 4,W = 6。
砖墙的长度是花坛周长的一半,所以砖墙的长度是20 / 2 = 10米。
通过解这些数学奥数竞赛题,可以让初一学生锻炼他们的数学思维和解题能力。
七年级数学奥数题[五篇模版]
七年级数学奥数题[五篇模版]第一篇:七年级数学奥数题数学奥数1.下列判断正确的是()A.平角是一条直线 B.凡是直角都相等C.两个锐角的和一定是锐角D.角的大小与两条边的长短有关3.下列哪个角不能由一副三角板作出()A.105° B.12° C.175°D.135°4.若∠a=90°-m°,∠B=90°+m°,则∠a与∠B的关系是()A.互补B.互余 C.和为钝角 D.和为周角5.如图所示,∠AOC=90°∠COB=a,0D平分∠AOB则∠CD的度数为()6.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的()A.南偏西50°方向 B.南偏西40°方向 C.北偏东50°方向 D.北偏东40°方向7.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是()A.1/2∠1B.1/2∠2C.1/2(∠1-∠2)D.1/2(∠1+∠2)8.将两块直角三角板的直角顶点重合,如图所示,若∠AOD=128,则∠BOC的度数是9.如图,B,C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长是10.把一张长方形纸条按图中那样折叠后,若得到∠AOB=70°则∠BOG= 11.已知线段AB=8cm,延长AB至C,使AC=2AB,D是AB中点,则线段CD= 12.已知线段AB=acm,点A1平分AB,A2平分AA1,A3平分AA2,…,An平分AAn-1则AAn= 14.小明每天下午5:46回家,这时分针与时针所成的角的度数为度15.如果∠a=26°,那么∠a余角的补角等于16.已知∠AOB=30°,又自∠AOB的顶点0引射线0C.若∠AOC:∠AOB=43,那么∠BOC=17.已知线段AB=6cm,在直线AB上画线段AC=2cm,则BC的长是 cm 18.火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票(1)在A,B两站之间最多共有种不同的票价;共有种不同的车票(2)如果共有n(n≥3)个站点,则需要种不同的车票19.若∠A=20°18,∠B=20°1530°,∠C=2025°,则()A.∠A>∠B>∠CB.∠B>∠A>∠CC.∠A>∠C>∠BD.∠C>∠A>∠B 20.如图,直线AB、CD交于0点,且∠BOC=80°°,OE平分∠BOC,OF为OE 的反向延长线(1)求∠2和∠3的度数:(2)0F平分∠AOD吗?为什么?21.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE。
七年级数学奥数题
七年级数学奥数题七年级数学奥数题一、问题类型1、一元二次不等式给定一元二次不等式,求不等式的解的个数及其解的集合。
例:求解不等式x²-2x+2>0的解集合。
解:设ax²+bx+c>0,其中a≠0。
不等式的解的个数:对不等式ax²+bx+c>0的两端取对数,得ln(ax²+bx+c)>0,因lnx>0(x>0),得ax²+bx+c>0。
解的集合:利用二次不等式ax²+bx+c>0的一般形式x=(-b±√(b²-4ac))/2a,求得x=(-2±2√2)/2,即x=-1±√2,故解集合为x=-1±√2。
2、概率给出概率问题,求出概率大小及对应情况。
例:一个骰子投掷两次,求出和为六的概率。
解:由于一个骰子投掷两次,求和为六的概率,因此投掷一次的点数分别是(1,5)、(2,4)、(3,3)、(4,2)、(5,1),每种组合概率都为1/36,由此得出和为六的概率为1/36+1/36=2/36=1/18。
3、函数求解给出函数,利用函数的定义域求出函数的值。
例:求函数y=|x|+2x+3的定义域及其在定义域上的值。
解:函数y=|x|+2x+3在x>=0时,y=x+2x+3=3x+3;在x<0时,y=-x+2x+3=x+3,故定义域为R及(3x+3,x+3),在定义域上的值为3x+3或x+3。
二、应用题1、已知函数f(x)={2x-1,x<-1;3x+2,-1≤x≤2;x²+3,x>2,求函数f(x)的反函数。
解:设y=f(x),当y>=0,则x>2,即x=√(y-3);当y<0,则-1≤x≤2,即x=-(y-2)/3;当y=-1,即x=-1。
故反函数为x=√y+3(y>=-1)或x=-(y-2)/3(y<-1)。
7年级奥数题及答案数学奥数题七年级
7年级奥数题及答案数学奥数题七年级7年级奥数题及答案7年级奥数题及答案刚步入7年级的学生对于自己的基础知识要求扎实之外,也要多做奥数题为自己铺一个垫脚石,下面是WTT为你们准备的7年级的相关奥数题目以及相关的奥数答案,希望能帮助你们。
7年级奥数题1:把1至205这205个自然数依次写下来得到一个多位数 123456789..205,这个多位数除以9余数是多少解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9 整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:1~1999这些数的个位上的数字之和可以被9整除 10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除同样的道理,100~900 百位上的数字之和为4500 同样被9整除也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;同样的道理:1000~1999这些连续的自然数中百位、十位、个位上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少2021__022******** 从1000~1999千位上一共999个“1”的和是999,也能整除;2021__022********的各位数字之和是27,也刚好整除。
最后答案为余数为0。
7年级奥数题2:A和B是小于100的两个非零的不同自然数。
求A+B分之A-B的最小值解:(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2B/(A+B) 前面的 1 不会变了,只需求后面的最小值,此时 (A-B)/(A+B) 最大。
对于 B / (A+B) 取最小时,(A+B)/B 取最大,问题转化为求 (A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1 (A+B)/B = 100 (A-B)/(A+B) 的最大值是:98 / 100 7年级奥数题3:已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少答案为6.375或6.4375 因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。
初一奥数测试题及答案
初一奥数测试题及答案一、选择题(每题5分,共20分)1. 一个数的平方等于它本身,这个数是()。
A. 0B. 1C. 0和1D. 以上都不是2. 已知一个等差数列的首项是2,公差是3,那么这个数列的第5项是()。
A. 17B. 14C. 11D. 83. 一个三位数,百位上的数字是十位上的数字的两倍,个位上的数字是十位上的数字的三倍,这个三位数是()。
A. 123B. 234C. 456D. 6784. 一个长方体的长、宽、高分别为3cm、4cm、5cm,那么这个长方体的表面积是()。
A. 94cm²B. 62cm²C. 74cm²D. 84cm²二、填空题(每题5分,共20分)5. 一个数的立方等于它本身,这个数是______。
6. 一个等比数列的首项是1,公比是2,那么这个数列的第4项是______。
7. 一个两位数,十位上的数字比个位上的数字大3,且这个两位数的数字之和为9,这个两位数是______。
8. 一个正方体的棱长为a,那么这个正方体的体积是______。
三、解答题(每题15分,共60分)9. 已知一个等差数列的首项是5,公差是2,求这个数列的前10项的和。
10. 一个长方体的长、宽、高分别为6cm、8cm、10cm,求这个长方体的体积。
11. 一个三位数,百位上的数字是十位上的数字的两倍,个位上的数字是百位上的数字的三倍,求这个三位数。
12. 一个等比数列的首项是3,公比是4,求这个数列的前5项的和。
答案:一、选择题1. C2. A3. B4. C二、填空题5. 0、1、-16. 167. 458. a³三、解答题9. 解:等差数列的前n项和公式为S_n = n/2 * (2a_1 + (n-1)d),其中a_1为首项,d为公差,n为项数。
将已知条件代入公式,得S_10 = 10/2 * (2*5 + (10-1)*2) = 5 * (10 + 18) = 5 * 28 = 140。
七年级经典的奥数题三篇
七年级经典的奥数题三篇七年级经典的奥数题篇一1、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?2、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?3、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?4、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?5、甲每小时行驶9千米,乙每小时行驶7千米。
两者在相距6千米的两地同时向背而行,几小时后相距150千米?七年级经典的奥数题篇二1、甲、乙两队挖一条水渠,甲队单独挖要8天完成,乙队单独挖要12天完成,现在两队同时挖了几天后,乙队调走,余下的甲队在3天内完成,乙队挖了多少天?2、某工程队预计30天修完一条水渠,先由18人修12天后完成工程的1/3,如果要提前6天完成,还要增加多少人?3、一项工程,甲2小时完成了1/5,乙5小时完成了剩下的1/4,余下的部分由甲、乙合作完成,甲共工作了多少小时?4、一个水池,甲、乙两管同时打开,5小时灌满,乙、丙两管同时开,4小时灌满,如果乙管先开6小时,还需要甲、丙两管同时开2小时才能灌满(这时乙管关闭),那么乙管单独开灌满水池需多少小时?5、师、徒两人共同加工一批零件,师傅每小时加工9个,徒弟每小时加工个,完成任务时,徒弟比师傅少加工120个,这批零件共有多少个?七年级经典的奥数题篇三1、甲、乙两人同时分别从两地骑车相向而行。
甲每小时行20千米,乙每小时行18千米。
两人相遇时距全程中点3千米。
问全程长多少米?2、两地相距900千米,甲走需15天,乙走需12天。
精选初一奥数题五篇
精选初一奥数题五篇1.精选初一奥数题篇一1.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.2.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?3.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).4.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?5.求不定方程49x-56y+14z=35的整数解.6.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?2.精选初一奥数题篇二1.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?2.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.3.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?4.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.5.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?3.精选初一奥数题篇三1.一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,则剩余1只船,求有多少只船?2.学校举办的美术展览中,有50幅水彩画、80画幅蜡笔画。
初一奥数竞赛试题及答案
初一奥数竞赛试题及答案试题一:数字逻辑问题题目:有一个数字序列,前三个数字是5,7,9。
从第四个数字开始,每个数字都是前三个数字的和。
请问这个序列的第10个数字是多少?答案:首先,我们可以计算出第四个数字是5+7+9=21。
然后依次计算后面的数字:- 第五个数字是7+9+21=37- 第六个数字是9+21+37=67- 第七个数字是21+37+67=125- 第八个数字是37+67+125=229- 第九个数字是67+125+229=421- 第十个数字是125+229+421=775所以,这个序列的第10个数字是775。
试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为3厘米和4厘米,求斜边的长度。
答案:根据勾股定理,直角三角形的斜边长度可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \],其中a和b是直角边的长度。
将题目中给出的数值代入公式中,我们得到:\[ c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \]厘米。
所以,斜边的长度是5厘米。
试题三:组合问题题目:有5个不同的球和3个不同的盒子,每个盒子至少放一个球。
问有多少种不同的放球方法?答案:首先,我们需要将5个球分成3组,其中至少有1个球。
我们可以将这个问题看作是将5个球中的4个球分配到3个盒子中,剩下的一个球可以放在任意一个盒子中。
这相当于在4个球之间插入2个隔板来形成3个部分。
我们有4个空位可以放置隔板,所以总共有\[ C(4,2) \]种方法,即\[ \frac{4!}{2!(4-2)!} = 6 \]种方法。
但是,我们需要排除所有球都在一个盒子里的情况,这种情况有3种。
因此,最终的放球方法有\[ 6 - 3 = 3 \]种。
试题四:数列问题题目:一个数列的前两项是1和2,从第三项开始,每一项都是前两项的差。
求这个数列的第10项。
答案:我们可以列出数列的前几项来找出规律:1, 2, 1, 1, 0, 1, 1, 2, 3, 5, ...数列的规律是斐波那契数列,但是从第三项开始,每一项是前两项的差。
初一奥数题(附答案
初一奥数题(附答案)【1 】1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值规模.3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.4.解方程2|x+1|+|x-3|=6.5.解不等式||x+3|-|x-1||>2.6.x,y,z均长短负实数,且知足: x+3y+2z=3,3x+3y+z=4,求u=3x-2y+4z的最大值与最小值.7.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.12.如图1-88所示.小柱住在甲村,奶奶住在乙村,礼拜日小柱去探望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应当选择如何的路线才干使旅程最短?13.如图1-89所示.AOB是一条直线,OC,OE分离是∠AOD和∠DOB的等分线,∠COD=55°.求∠DOE的补角.14.如图1-90所示.BE等分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延伸订交于K及L,对角线AC‖KL,BD延伸线交KL于F.求证:KF=FL.19.随意率性转变某三位数数码次序所得之数与原数之和可否为999?解释来由.20.设有一张8行.8列的方格纸,随意把个中32个方格涂上黑色,剩下的32个方格涂上白色.下面临涂了色的方格纸施行“操纵”,每次操纵是把随意率性横行或者竖列上的各个方格同时转变色彩.问可否最终得到恰有一个黑色方格的方格纸?21.假如正整数p和p+2都是大于3的素数,求证:6|(p+1).22.设n是知足下列前提的最小正整数,它们是75的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包含每小我的两条腿),问房间里有几小我?24.求不定方程49x-56y+14z=35的整数解.25.男.女各8人跳集体舞.(1)假如男女分站两列;(2)假如男女分站两列,不斟酌先后次序,只斟酌男女若何结成舞伴.问各有若干种不合情形?26.由1,2,3,4,5这5个数字构成的没有反复数字的五位数中,有若干个大于34152?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经由1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两临盆小队配合种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全体义务快3天.求甲乙单独完成各用若干天?29.一船向相距240海里的某港动身,到达目标地前48海里处,速度每小时削减10海里,到达后所用的全体时光与原速度每小时削减4海里航行全程所用的时光相等,求本来的速度.30.某工场甲乙两个车间,客岁筹划完成税利750万元,成果甲车间超额15%完成筹划,乙车间超额10%完成筹划,两车间配合完成税利845万元,求客岁这两个车间分离完成税利若干万元?甲:460万乙:290万31.已知甲乙两种商品的原价之和为150元.因市场变更,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和下降了1%,求甲乙两种商品原单价各是若干?甲:105 乙:4532.小红客岁暑假在市肆买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,本年暑假她又带同样的钱去该市肆买同样的牙刷和牙膏,因为本年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,成果找回4角钱.试问客岁暑假每把牙刷若干钱?每支牙膏若干钱?33.某商场假如将进货单价为8元的商品,按每件12元卖出,天天可售出400件,据经验,若每件少卖1元,则天天可多卖出200件,问每件应减价若干元才可获得最好的效益?11元34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇动身驶向B镇,25分钟今后,乙骑自行车,用0.6千米/分钟的速度追甲,试问若干分钟后追上甲?50分钟后35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜2 0%,含锰50%,含镍30%.现各取恰当重量的这三种合金,构成一块含镍45%的新合金,重量为1千克.(1)试用新合金中第一种合金的重量暗示第二种合金的重量;0.9+0.25x(2)求新合金中含第二种合金的重量规模;最大:1.035 最小:0.905(3)求新合金中含锰的重量规模.参考答案2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变成m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分离令x=1,x=-1,代入已知等式中,得a0+a2+a4+a6=-8128.10.由已知可解出y和z因为y,z为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段构成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡算作一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,衔接甲′乙′,设甲′乙′所连得的线段分离与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)显然,路线甲→A→B→乙的长度正好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,应用上面的对称办法,都可以化成一条衔接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的旅程最短.13.如图1-98所示.因为OC,OE分离是∠AOD,∠DOB的角等分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.是以,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE等分∠ABC,所以∠CBF=∠ABF,又因为∠CBF=∠CFB,所以∠ABF=∠CF B.从而AB‖CD(内错角相等,两直线平行).由∠CBF=55°及BE等分∠ABC,所以∠ABC=2×55°=110°.①由上证知AB‖CD,所以∠EDF=∠A=70°,②由①,②知BC‖AE(同侧内角互补,两直线平行).15.如图1-100所示.EF⊥AB,CD⊥AB,所以∠EFB=∠CDB=90°,所以EF‖CD(同位角相等,两直线平行).所以∠BEF=∠BCD(两直线平行,同位角相等).①又由已知∠CDG=∠BEF.②由①,②∠BCD=∠CDG.所以BC‖DG(内错角相等,两直线平行).所以∠AGD=∠ACB(两直线平行,同位角相等).16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),①又在△ABC中,∠B=∠C,所以∠A+∠B+∠C=∠A+2∠C=180°,所以由①,②17.如图1-101,设DC的中点为G,衔接GE.在△ADC中,G,E分离是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.贯穿连接FG.所以又S△EFD=S△BFG-SEFDG=4S△BFD-SEF DG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCEE,从而所以SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC‖KL,所以S△ACK=S△ACL,所以即KF=FL.+b1=9,a+a1=9,于是a+b +c+a1+b1+c1=9+9+9,即2(a十b+c)=27,抵触!20.答案是否认的.设横行或竖列上包含k个黑色方格及8-k个白色方格,个中0≤k≤8.当转变方格的色彩时,得到8-k个黑色方格及k个白色方格.是以,操纵一次后,黑色方格的数量“增长了”(8-k)-k=8-2k个,即增长了一个偶数.于是无论若何操纵,方格纸上黑色方格数量标奇偶性不变.所以,从原有的32个黑色方格(偶数个),经由操纵,最后老是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的情势.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以, p=6 k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.由题设前提知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有(α+1)(β+1)(γ+1)=75.于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时(α+1)(β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4, 4),即n=20•324•5223.设凳子有x只,椅子有y只,由题意得3x+4y+2(x+y)=43,即5x+6y=43.所以x=5,y=3是独一的非负整数解.从而房间里有8小我.24.原方程可化为7x-8y+2z=5.令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全体整数解是而t= 1,z=2是t+2z=5的一组整数解.它的全体整数解是把t的表达式代到x,y的表达式中,得到原方程的全体整数解是25.(1)第一个地位有8种选择办法,第二个地位只有7种选择办法,…,由乘法道理,男.女各有8×7×6×5×4×3×2×1=40320种不合分列.又两列间有一相对地位关系,所以共有2×403202种不合情形.(2)逐个斟酌结对问题.与男甲结对有8种可能情形,与男乙结对有7种不合情形,…,且两列可对调,所以共有2×8×7×6×5×4×3×2×1=80640 种不合情形.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y 米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3= 12(天).解之得x=16(海里/小时).经磨练,x=16海里/小时为所求之原速.30.设甲乙两车间客岁筹划完成税利分离为x万元和y万元.依题意得解之得故甲车间超额完成税利乙车间超额完成税利所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).31.设甲乙两种商品的原单价分离为x元和y元,依题意可得由②有0.9x+1.2y=148.5,③由①得x=150-y,代入③有0. 9(150-y)+1.2y=148. 5,解之得y=45(元),因而,x=105(元).32.设客岁每把牙刷x元,依题意得2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,即2×1.68+2×1.3+2×1.3x=5x+2.6,即2.4x=2×1.68,所以x=1.4 (元).若y为客岁每支牙膏价钱,则y=1.4+1=2.4(元).33.本来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,个中0<x<4.因为减价后,天天可卖出(400+200x)件,若设天天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比本来多卖出200件,是以多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的旅程分离是0.4(25+ x)千米和0.6x千米.因为两人走的旅程相等,所以0.4(25+x)=0.6x,解之得x=50分钟.于是左边=0.4(25+50)=30(千米),右边= 0.6×50=30(千米),即乙用50分钟走了30千米才干追上甲.但A,B两镇之间只有28千米.是以,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:x•40%+y•10%+z•50%=400-0.3x,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的规模是:最小250克,最而0≤x≤500,所以新合金中锰的重量规模是:最小250克,最大400克.。
数学初一奥数题及答案
数学初一奥数题及答案题目一:数列问题题目描述:有一个数列:2, 4, 7, 11, ... 这个数列的第10项是多少?解题思路:观察数列可以发现,每一项与前一项的差值依次为2, 3, 4, 5, ... 这是一个等差数列,差值的公差为1。
因此,第n项与第1项的差值是1+2+3+...+(n-1)。
答案:首先计算第10项与第1项的差值,即1+2+3+...+9,这是一个等差数列求和问题,公式为\( S = \frac{n(n+1)}{2} \),代入n=9得到\( S = \frac{9 \times 10}{2} = 45 \)。
所以第10项是2 + 45 = 47。
题目二:几何问题题目描述:在一个直角三角形ABC中,∠C是直角,AC=6,BC=8,求斜边AB的长度。
解题思路:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
答案:根据勾股定理,\( AB^2 = AC^2 + BC^2 \),代入AC=6,BC=8,得到\( AB^2 = 6^2 + 8^2 = 36 + 64 = 100 \),所以AB = √100 = 10。
题目三:逻辑推理问题题目描述:有5个盒子,每个盒子里装有不同数量的球,分别是1, 2, 3, 4, 5个。
现在将这5个盒子重新排列,使得每个盒子里的球数都比前一个盒子多1个。
问:重新排列后的盒子里球的数量分别是多少?解题思路:由于每个盒子里的球数都比前一个盒子多1个,我们可以从最小的数开始排列,即5, 4, 3, 2, 1。
答案:重新排列后的盒子里球的数量分别是5, 4, 3, 2, 1。
题目四:组合问题题目描述:有红、黄、蓝三种颜色的球各10个,现在要从中选出5个球,求有多少种不同的选法?解题思路:这是一个组合问题,可以使用组合公式\( C(n, k) =\frac{n!}{k!(n-k)!} \)来计算,其中n是总数,k是选出的数量。
答案:首先考虑不考虑颜色的情况下,从30个球中选出5个球的组合数为\( C(30, 5) \)。
初一奥数竞赛试题及答案
初一奥数竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是质数?A. 45B. 47C. 49D. 51答案:B2. 一个数的平方是36,这个数是多少?A. 6B. -6C. 6或-6D. 以上都不是答案:C3. 计算下列表达式的结果:(2+3) × (2-3) = ?A. -1B. 1C. 5D. -5答案:A4. 一个等差数列的首项是3,公差是2,那么第5项是多少?A. 13B. 11C. 9D. 7答案:A二、填空题(每题5分,共30分)5. 一个圆的半径是5厘米,那么它的周长是______厘米。
答案:31.46. 如果一个数的3倍加上4等于22,那么这个数是______。
答案:67. 一个数的相反数是-8,那么这个数是______。
答案:88. 计算下列表达式的结果:(-2) × (-3) ÷ (-1) = ______。
答案:-69. 一个等比数列的首项是2,公比是3,那么第4项是多少?答案:5410. 一个长方体的长是8厘米,宽是5厘米,高是3厘米,那么它的体积是______立方厘米。
答案:120三、解答题(每题10分,共50分)11. 一个数列的前三项是2,5,8,求这个数列的第10项。
答案:这个数列是一个等差数列,首项a1=2,公差d=5-2=3。
根据等差数列的通项公式an=a1+(n-1)d,我们可以求出第10项的值:a10 = 2 + (10-1) × 3 = 2 + 27 = 29。
12. 一个水池有甲、乙两个进水管,甲管每小时进水20立方米,乙管每小时进水15立方米。
如果同时打开两个水管,需要多少小时才能将水池注满?答案:设需要x小时才能将水池注满。
根据题意,甲管和乙管每小时共进水20+15=35立方米。
那么x小时内共进水35x立方米。
假设水池的容量为V立方米,我们可以得到方程:35x = V由于题目没有给出水池的具体容量,我们无法求出具体的小时数。
简单初一奥数题(10篇)
简单初一奥数题(10篇)1.简单初一奥数题篇一1、兄妹二人同时从家上学,哥哥每分钟走90米,妹妹每分钟走60米。
哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离学校180米处和妹妹相遇。
他们家离学校有多远?2、甲、乙两人骑自行车分别从A,B两地同时相向而行。
第一次两车在距B地7千米处相遇。
相遇后,两车继续向前行驶,当两车分别到达B,A两地后立即返回,返回时在距A地4千米处相遇。
A,B两地相距多少千米?3、龟兔赛跑,同时同地出发,全程20000米,乌龟每分钟爬行80米,兔子每分钟跑800米,兔子跑了一会儿就在途中睡觉,醒来后立刻以原速向前跑。
(1)若兔子不想输给乌龟,则它在途中多只能睡多少分钟?(2)如果兔子在途中要睡1.5小时(乌龟和兔子的速度保持不变),且兔子不输给乌龟,则路程至少为多少米?4、甲、乙、丙三个小分队都从A地到B地进行野外训练,上午6时,甲、乙两个小队一起从A地出发,甲队每小时走5千米,乙队每小时走4千米,丙队上午8时才从A地出发,傍晚6时,甲、丙两队同时到达B地。
那么丙队追上乙队的时间是什么时候?5、王明从A城步行到B城,同时刘洋从B城骑车到A城,1.2小时后两人相遇。
相遇后继续前进,刘洋到A城立即返回,在第一次相遇后45分钟又追上了王明,两人再继续前进,当刘洋到达B城后立即折回。
刘洋追上王明后两人多长时间再次相遇?2.简单初一奥数题篇二1.在上、下行轨道上,两列火车相对开来,一列火车长182米,每秒行18米,另一列火车每秒行17米,两列火车错车而过用了10秒钟,求另一列火车长多少米?2.有两列火车,一列长140米,每秒行24米,另一列长230米,每秒行13米,现在两车相向而行,求这两列火车错车时从相遇到离开需几秒钟?3.快车长80米,慢车长70米,如果同向而行,快车车头接住慢车车尾后,又经过15秒才穿过;如果相向而行,两个车头相接后,又经过6秒可以相离,问两车每秒各行多少米?4.某列车通过360米长的第一个隧道用了24秒,接着通过216米长的隧道用了16秒,(1)求列车的长度和速度。
初一上册奥数试题及答案
初一上册奥数试题及答案【试题一:数学逻辑推理】题目:在一个班级中,有学生喜欢数学,有学生喜欢英语,有学生两者都喜欢。
如果班级中有20个学生,其中有10个学生喜欢数学,12个学生喜欢英语,那么至少有多少个学生两者都喜欢?【答案】设喜欢数学和英语的学生数量分别为M和E,两者都喜欢的学生数量为B。
根据题目,我们知道M=10,E=12。
班级总人数为N=20。
根据集合的包含关系,我们有以下公式:\[ M + E - B = N \]\[ 10 + 12 - B = 20 \]\[ 22 - B = 20 \]\[ B = 2 \]所以,至少有2个学生两者都喜欢。
【试题二:数列问题】题目:给定数列1, 3, 5, 7, ...,这个数列的第10项是多少?【答案】这是一个等差数列,首项为1,公差为2。
第n项的通项公式为:\[ a_n = a_1 + (n - 1)d \]将n=10代入公式,我们得到:\[ a_{10} = 1 + (10 - 1) * 2 \]\[ a_{10} = 1 + 9 * 2 \]\[ a_{10} = 1 + 18 \]\[ a_{10} = 19 \]所以,这个数列的第10项是19。
【试题三:几何问题】题目:一个正方形的边长为10厘米,求其内接圆的面积。
【答案】正方形的内接圆的直径等于正方形的边长。
因此,内接圆的半径r为5厘米。
圆的面积公式为:\[ A = \pi r^2 \]将r=5代入公式,我们得到:\[ A = \pi * 5^2 \]\[ A = 25\pi \]所以,正方形内接圆的面积是25π平方厘米。
【试题四:代数问题】题目:解方程 \( x^2 - 5x + 6 = 0 \)。
【答案】这是一个二次方程,我们可以通过因式分解来解它。
将方程写成:\[ x^2 - 5x + 6 = (x - 2)(x - 3) = 0 \]所以,x的解为:\[ x = 2 \quad \text{或} \quad x = 3 \]【结束语】以上就是初一上册奥数试题及答案的示例。
七年级奥数竞赛试卷
七年级奥数竞赛试卷一、选择题(每题3分,共30分)1. 若a + b = 5,ab = 3,则a^2+b^2的值为()A. 19.B. 25.C. 8.D. 6.【分析】我们知道(a + b)^2=a^2+2ab + b^2,那么a^2+b^2=(a + b)^2-2ab。
因为a + b = 5,ab = 3,所以a^2+b^2=5^2-2×3 = 25 - 6 = 19,答案是A。
2. 一个数的绝对值等于它的相反数,这个数是()A. 正数。
B. 负数。
C. 非正数。
D. 非负数。
【分析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
所以绝对值等于它的相反数的数是非正数,答案是C。
3. 下列运算正确的是()A. a^3+a^3=a^6B. (a^2)^3=a^5C. a^3×a^3=a^6D. (3a)^3=9a^3【分析】a^3+a^3=2a^3,A选项错误;(a^2)^3=a^2×3=a^6,B选项错误;a^3×a^3=a^3 + 3=a^6,C选项正确;(3a)^3=3^3×a^3=27a^3,D选项错误。
所以答案是C。
二、填空题(每题3分,共30分)1. 若x = 2是方程3x - 4=(x)/(2)+a的解,则a=______。
【分析】把x = 2代入方程3x-4=(x)/(2)+a,得到3×2 - 4=(2)/(2)+a,即6 - 4 = 1 + a,2=1 + a,解得a = 1。
2. 若2x - 3y = 5,则4x - 6y=______。
【分析】因为4x-6y = 2(2x - 3y),已知2x - 3y = 5,所以4x - 6y=2×5 = 10。
三、解答题(每题10分,共40分)1. 先化简,再求值:(2x + 3y)^2-(2x - y)(2x + y),其中x=(1)/(2),y = - 1。
初一奥数考试题型及答案
初一奥数考试题型及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 32. 如果一个数的立方等于它本身,那么这个数是:A. 0B. 1C. -1D. 以上都是3. 一个数的相反数是它自身的数是:A. 0B. 1C. -1D. 以上都是4. 一个数的绝对值是它自身的数是:A. 正数B. 负数C. 0D. 正数和05. 一个数的平方是它自身的数是:A. 0C. -1D. 以上都是6. 一个数的立方是它自身的数是:A. 0B. 1C. -1D. 以上都是7. 如果a + b = 10,那么a - b的可能值是:A. 0B. 2C. 10D. 208. 一个数的倒数是它自身的数是:A. 0B. 1C. -1D. 以上都不是9. 一个数的平方根是它自身的数是:A. 0B. 1C. -1D. 以上都是10. 一个数的立方根是它自身的数是:A. 0B. 1D. 以上都是二、填空题(每题4分,共40分)1. 一个数的平方等于它本身,这个数是______。
2. 一个数的立方等于它本身,这个数是______。
3. 一个数的相反数是它自身,这个数是______。
4. 一个数的绝对值是它自身,这个数是______。
5. 如果a + b = 10,那么a - b的可能值是______。
6. 一个数的倒数是它自身,这个数是______。
7. 一个数的平方根是它自身,这个数是______。
8. 一个数的立方根是它自身,这个数是______。
9. 一个数的平方等于它的立方,这个数是______。
10. 一个数的平方等于它的立方根,这个数是______。
三、解答题(每题10分,共30分)1. 证明:对于任意正整数n,n的平方和n的立方之间存在一个正整数。
2. 找出所有满足条件的整数a和b,使得a + b = 10且a - b = 2。
3. 证明:对于任意实数x,x的平方和x的立方之间不存在一个固定的正整数。
初一数学奥林匹克竞赛题(含答案)
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP +S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
数学七年级奥数题
以下是一些适合七年级学生的奥数题目:
1.甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有40米,丙
离终点还有50米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?
2.甲、乙、丙三人进行200米赛跑,当乙到终点时,甲离终点还有20米,丙
离终点还有25米,如果甲、丙赛跑的速度都不变,那么乙到达终点时,丙离终点还有多少米?
3.甲、乙、丙三人进行200米赛跑,当甲到终点时,乙跑了192米,丙跑了
187米,如果丙跑得速度不变,那么乙到达终点时,丙离终点还有多少米?
4.小明从家到学校,前一半路程步行,后一半路程乘车;他从学校到家时,
前1/3时间乘车,后2/3时间步行。
如果他去学校的全程步行,那么他会
比回家多用30分钟。
已知小明乘车速度是步行速度的7倍。
那么小明从家到学校的路程是多少千米?
5.甲、乙、丙三人都要从A地到B地。
A、B两地相距31千米。
没有现代化
的交通工具,只能步行或骑马。
马每次只能驮一个人。
三人共用一匹马。
马每小时可行14千米。
步行每小时可行5千米。
现在要选一个人骑马往返于A、B两地运送另外两人。
最快需要几小时?。
奥数题及答案-(1)
初一奥数题及答案1、若a 0,则a+ =2、绝对值最小的数是3、一个有理数的绝对值等于其本身,这个数是()A、正数B、非负数C、零D、负数4、已知x与1互为相反数,且| a+x |与 x 互倒数,求 x 2000—a x2001的值。
5、一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2,若将个位与百位上的数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数。
6、设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,化简代数式|b|-|a+b|-|c-b|+|a-c|7、已知(m+n)*(m+n)+|m|=m,|2m-n-2|=0,求mn的值8、现有4个有理数3,4,-6,10运用24点游戏规则,使其结果得24.(写4种不同的)9、由于-(-6)=6,所以1小题中给出的四个有理数与3,4,6,10,本质相同,请运用加,减,乘,除以及括号,写出结果不大于24的算式10、任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.1、02、03、B4、5、法一:设这个三位数是xyz,则x=y+1,z=3y-2,所以y=x-1,z=3x-5。
这个三位数是100×x+10×y+z=100×x+10×(x-1)+3x-5=113x-15若将个位与百位上的数字顺序颠倒后,新的三位数是zyx,即100×z+10×y+x=100×(3x-5)+10×(x-1)+x=311x-510两个三位数的和是1171,所以,113x-15+311x-510=1171。
解得x=4。
所以,y=x-1=3,z=3x-5=7。
所以这个三位数是437.法二:解:设百位是100(X+1) , 十位是 10X , 个位是3X-2100(X+1)+10X+(3X-2)+100(3X-2)+10X+(X+1)=1171 X=3百位:100(X+1)=100(3+1)=400 十位:10X=3 x 10=30 个位:3X-2=3 x 3 -2=7 三位数:400+30+7=437 6、因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.7、解答:有(m+n)*(m+n)+|m|=m推出m〉0所以|m|=m 所以(m+n)*(m+n)=0,m=-n,n<0由|2m-n-2|=0 3n=-2 n=-2/3 m=2/38、(10-6+4)*3=24 (10-4)*3-(-6)=24(10-4)-(-6)*3=24 4-10*(-6)/3=243*[4+(10-6)]=24 (10-4)*3+6=246/3*10+4=24 6*3+10-4=249、3+4+6+10=23<24 (10-6)*4+3=19<2410*3-4*6=6<24 (10-6+4)*3=24二1,一个多边形的内角和是15840度,这个多边形是几边形?多边形的内角和=(n-2)乘180 n-2乘180=15840 n-2=88 n=90 所以是90边形2.有甲,乙两个多边形,甲多边形的边数及内角和分别是乙多边形的边数及内角和的2倍和4倍,能确定它们各是几边形吗?设甲为2x边形,乙为x边形(2x-2)*180=4(x-2)*180解得x=3所以甲为六边形,乙为三角形3.两个正多边形边数为1:2内角度数比为2:3求这两个多边形设少的那多边形个边数为x,则另一个为2x,由多边形内角和公式得两个多边形的内角和分别为:(x-2)180和(2x-2)180.则各内角度数为:a:(x-2)180/x 和b:(2x-2)180/2x,由a:b=2:3,可解得:x=4。
七年级数学奥数题八套(附答案)
七年级数学奥数试题(一)一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内)1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是().(A)-|-3|3(B)-(-3)3(C)(-3)3(D)-332.“a的2倍与b的一半之和的平方,减去a、b两数平方和的4倍”用代数式表示应为()(A)2a+(1b2)-4(a+b)2(B)(2a+1b)2-a+4b222(c)(2a+1b)2-4(a2+b2)(D)(2a+1b)2-4(a2+b2)2223.若a是负数,则a+|-a|(),(A)是负数(B)是正数(C)是零(D)可能是正数,也可能是负数4.如果n是正整数,那么表示“任意负奇数”的代数式是().(A)2n+l(B)2n-l(C)-2n+l(D)-2n-l5.已知数轴上的三点A、B、C分别表示有理数a、1、-l,那么|a+1|表示().(A)A、B两点的距离(B)A、C两点的距离(C)A、B两点到原点的距离之和(D)A、C两点到原点的距离之和6.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对应的数分别是整数a、b、c、d,且d-2a=10,那么数轴的原点应是().(A)A点(B)B点(C)C点(D)D点7.已知a+b=0,a≠b,则化简b(a+1)+a(b+1)得().a b(A)2a(B)2b(C)+2(D)-28.已知m<0,-l<n<0,则m,mn,mn2由小到大排列的顺序是().(A)m,mn,mn2(B)mn,mn2,m(C)mn2,mn,m(D)m,mn2,mn二、填空题(每小题?分,共84分)9.计算:1a-(1a-4b-6c)+3(-2c+2b)=3210.分解因式=ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号“?”表示的数是梨梨梨型苹果苹果梨梨3028荔枝香蕉苹果梨20香蕉19香蕉荔枝苹果202530?14.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是.15.在数轴上,点A、B分别表示-1和1,则线段AB的中点所表示的数35是.16.已知2a x b n-1与-3a2b2m(m是正整数)是同类项,那么(2m-n)x=17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2088,则王恒出生在年月.18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入 1 000 元,2000 年 12 月 3 日支取时本息和是 元,国家利息税税率是 20%,交纳利息税后还有元.19.有一列数 a ,a ,a ,a ,…,a ,其中1 234na =6×2+l;a =6×3+2;a =6×4+3;a =6×5+4;1 234则第 n 个数 a =;当 a =2001 时,n =.n n20.已知三角形的三个内角的和是 180°,如果一个三角形的三个内角的度数都 是小于 120 的质数,则这个三角形三个内角的度数分别是七年级奥数试题(一)答案一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D二、9.一 a6+1 06,10.一 43.6,11.男生比女生多的人数,1 2.90,13.1 6,14.0.1 2 5,15.-115,16.1,17.1988;1.18.1022.5;101 8,,19.7n+6;2 8 520.2,8 9,8 9 或 2,7 1,1 07(每填错一组另扣 2 分).七年级奥数试题(二)一、选择题1.已知 x=2 是关于 x 的方程 3x-2m=4 的根,则 m 的值是()(A)5(B)-5(C)1 (D)-12.已知 a+2=b-2= c =2001,且 a+b+c=2001k ,那么 k 的值为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥林匹克数学
考考你:
1、2002)1(-的值 ( ) A. 2000 B.1 C.-1 D.-2000
2、a 为有理数,则2000
11
+a 的值不能是 ( )
A.1
B.-1 C .0 D.-2000 3、()[]}{20072006200720062007----的值等于 ( ) A.-2007 B.2009
C.-2009
D.2007 4、)1()1()1()1()1(-÷-⨯---+-的结果是 ( ) A.-1 B.1 C.0 D.2 5、2008
200720061
)1()1(-÷-+-的结果是 ( )
A.0
B.1
C.-1
D.2
6、计算)2()2
1
(22-+-÷-的结果是 ( )
A.2
B.1
C.-1
D.0
7、计算:.2
1
825.3825.325.0825.141825.3⨯+⨯+-⨯
8、计算:.3
1
1212311999212000212001212002-++-+-
9、计算:).13
8
(113)521()75.0(5.2117-⨯÷-÷-⨯÷-
11、计算:.363531998199992000⨯+⨯-
练习:.22222222221098765432+--------.2)12(2221n n n n =-=-+ 6
12、计算: )98
97983981()656361()4341(21++++++++++ 13、计算:.2007
20061
431321211⨯++⨯+⨯+⨯ 应用:
)111(1)1(+-=+n n d n n d 练习:.105
1011
171311391951⨯++⨯+⨯+⨯
13、计算: 35
217106253121
147642321⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯.
14、求21-++x x 的最小值及取最小值时x 的取值范围.
练习:已知实数c b a ,,满足,01b a c <<<<-且,a c b >>求b a c a c ---+-1的值.
练习:
1、计算2007200619991998)1()1()1()1(-+-++-+- 的值为 ( ) A.1 B.-1 C.0 D.10
2、若m 为正整数,那么()[]
)1(114
12---m m
的值 ( )
A.一定是零
B.一定是偶数
C.是整数但不一定是偶数
D.不能确定
3、若n 是大于1的整数,则2
)(12
)
1(n n n p ---+=的值是 ( )
A.一定是偶数
B.一定是奇数
C.是偶数但不是2
D.可以是奇数或偶数
4、观察以下数表,第10行的各数之和为 ( ) 1 4 3 6 7 8
13 12 11 10
15 16 17 18 19
26 25 24 23 22 21 …
A.980
B.1190
C.595
D.490
5、已知,200220012002200120022001200220012⨯++⨯+⨯+= a 20022002=b ,则a 与b 满足的关系是 ( C ) A.2001+=b a B.2002+=b a C.b a = D.2002-=b a
6、计算: .35217201241062531211471284642321⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯5
2
7、计算:.561742163015201412136121++++++8
3
28
8、计算:.100
321132112111+++++++++++
9、计算: .999999999999999999999+++++ 10、计算
)
1000
11)(99911)(99811()411)(311)(211(10
201970198019992000-------++-+- .610
11、已知,911,999909
999==Q p 比较Q P ,的大小.
Q p ==⨯⨯=⨯⨯=90
9
9909999099119991199)911(
12、设n 为正整数,计算:4
3424131323332312122211+++++++++++
.1112141424344n
n n n n n n n n ++-++-+++++++++ 2
)
1(21+=
+++n n n
13、2007加上它的21得到一个数,再加上所得的数的3
1
又得到一个数,再加上这
次得到的41又得到一个数,… ,依次类推,一直加到上一次得数的2007
1
,最后得
到的数是多少?
2005003)2002
1
1()311()211(2002=+⨯⨯+⨯+⨯
14、有一种“二十四点”的 游戏,其游戏规则是这样的:任取四个1至13之间
的 自然数,将这四个(每个数用且只用一次)进行加减四则运算与)321(4++⨯应视作相同方法的运算,现有四个有理数3,4,-6,10.运用上述规则写出三种不同方法的运算,使其结果等于24,运算式: (1)_______________________; (2)________________________; (3)________________________;
15.黑板上写有1,2,3,…,1997,1998这1998个自然数,对它们进行操作,每次操作规则如下:擦掉写在黑板上的三个数后,再添写上所擦掉三个数之和的个位数字,例如:擦掉5,13和1998后,添加上6;若再擦掉6,6,38,添上0,等等。
如果经过998次操作后,发现黑板上剩下两个数,一个是25,求另一个数.
奥数探究。