数值分析经典例题
数值分析试题集
..数值分析试题集(试卷一)一( 10 分)已知 x 1* 1.3409 ,x 2* 1.0125 都是由四舍五入产生的近似值, 判断 x 1*x 2* 及 x 1* x 2*有几位有效数字。
二( 10 分)由下表求插值多项式x 01 2 y2 34 y1- 1三( 15 分)设 f ( x)C 4 [a,b] , H ( x )是满足下列条件的三次多项式H (a) f (a) , H (b) f (b) , H (c)f (c) , H (c) f (c)( a c b )求 f (x)H ( x) ,并证明之。
12四( 15 分)计算13 dx ,10 2。
x五( 15 分)在 [0,2]上取 x 0 0 , x 1 1 , x 22 ,用二种方法构造求积公式,并给出其公式的代数精度。
六( 10 分)证明改进的尢拉法的精度是 2 阶的。
七( 10 分)对模型 yy , 0 ,讨论改进的尢拉法的稳定性。
八( 15分)求方程 x 34x 2 7x 1 0 在 -1.2 附近的近似值,10 3。
-----------------------------------------------------------------------------------------------------------------------------(试卷二)一填空( 4*2 分)1 {k ( x) } k 0 是区间 [0, 1]上的权函数为( x) x 2 的最高项系数为 1 的正交多项式族,其中10 (x)1,则x0 ( x) dx ------------------- , 1 ( x) ------------------。
2 12 A,则 A1 4----------- ,( A) ----------------- 。
a 1 2 时, A 可作 LU 分解。
3 设 A,当 a 满足条件 ---------------- 14..4 设非线性方程 f ( x) (x33x23x1)( x 3) 0 ,其根 x1* 3 , x2*1,则求 x1* 的近似值时,二阶局部收敛的牛顿迭代公式是--------------------------- 。
数值分析典型例题
1数值分析典型例题例1 对下列各数写出具有5位有效数字的近似值。
236.478, 0.00234711,9.000024, 9.000034310⨯.解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310⨯。
注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9是1位有效数字。
例2 指出下列各数具有几位有效数字。
2.0004, -0.00200, -9000, 9310⨯,2310-⨯。
解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程*s 的近似值s=800m ,所需时间*s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。
解:因为t s v /=,所以)()(1)()()(2t e tss e t t e t v s e s v v e -=∂∂+∂∂≈ 从而05.00469.0358005.0351|)(||||)(|1|)(|22≤≈+⨯≤+≤t e t s s e t v e同样v v e v e r )()(≈)()()()(t e s e t e vtt v s e v s s v r r r -=∂∂+∂∂=所以00205.03505.08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r因此绝对误差限和相对误差限分别为0.05和0.00205。
例4试建立积分20,,1,05=+=n dx x x I nn 的递推关系,并研究它的误差传递。
解:151--=n n I nI ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。
但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可知近似值之间的递推关系为151--=n n I nI ……………………………………………….…..(2) (1)-(2)可得01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。
(完整版)数值分析整理版试题及答案,推荐文档
9
1
xdx T4
h[ 2
f
1
3
2 k 1
f
xk
f
9]
2[ 1 2 3 5 7 9] 2
17.2277
(2)用 n 4 的复合辛普森公式
由于 h 2 , f x
x
,
xk
1
2k k
1, 2,3,
x
k
1
2
2k k
0,1, 2,3,所以,有
2
3
9
1
xdx S4
h[ 6
f
1
若 span1, x,则0 (x) 1 ,1(x) x ,这样,有
2
1
0 ,0 1dx 1
0
1,1
1 0
x2dx
1 3
0
,1
1,0
1
0
xdx
1 2
1
f ,0 exdx 1.7183
0
1
f ,1 xexdx 1
0
所以,法方程为
1
1
1
2 1
a0
a1
1.7183 1
1 0
1
23
2 1
a0
a1
6 1
12
3
再回代解该方程,得到
a1
4
,
a0
11 6
故,所求最佳平方逼近多项式为
S1*
(
x)
11 6
4x
例 3、 设 f (x) ex , x [0,1] ,试求 f (x) 在[0, 1]上关于 (x) 1 , span1, x的最
佳平方逼近多项式。 解:
1
4
x1
1 5
典型例题与习题
a
2
b f ( x)dx (b a) f ( a b ) f () (b a)3
a
2
24
9/16
Ex2.复合左矩形求积公式旳求积误差
b a
n1
f ( x)dx h
j0
f (a
h2 jh)
2
n j1
f ( j )
设被积函数在积分区间上旳一阶导数连续,由连续函数
介值定理
1
n
n j 1
N 1
[
n0
f
(
xn
)
4
f
(
xn1/
2
)
f ( xn1 )]
其中, h = (b – a )/N, xn= a + n h ( n = 0,1,2,···, N)
13/16
Ex8.将线性常系数非齐次高阶常微分方程初值问题:
y(n) + a1 y(n-1) + a2 y(n-2) +·······+ an y = f( x, y, ····, y(n-1))
Gm
(h)
4m
Gm
1
(
h 2
)
Gm
1
(h)
4m 1
f ( x) Gm (h) O(h2(m1) )
练习:二阶中心差商旳外推公式?
6/16
常微分方程初值问题 1. Euler措施
y f ( x, y) x x0
y(
x0
)
y0
y0 yn1
y( x0 ), yn
xn1 xn h hf ( xn , yn ),(n
16/16
N 1
试证明用Euler公式计算成果为 y(b) f (tn )h
数值分析练习题加答案(一)
数值分析期末考试一、 设80~=x ,若要确保其近似数的相对误差限为0.1%,则它的近似数x 至少取几位有效数字?(4分)解:设x 有n 位有效数字。
因为98180648=<<=,所以可得x 的第一位有效数字为8(1分) 又因为21101011000110821--⨯=<⨯⨯≤n ε,令321=⇒-=-n n ,可知x 至少具有3位有效数字(3分)。
二、求矩阵A 的条件数1)(A Cond (4分)。
其中⎥⎦⎤⎢⎣⎡=4231A 解:⎥⎦⎤⎢⎣⎡--=-5.05.1121A (1分) 1A =7(1分) 2711=-A (1分)249)(1=A Cond (1分)三、用列主元Gauss 消元法法求解以下方程组(6分)942822032321321321=++-=++--=+-x x x x x x x x x解:→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5.245.2405.35.230914220321821191429142821120321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---8175835005,245.24091425.33.2305.245.2409142(4分) 等价三角方程组为:⎪⎪⎩⎪⎪⎨⎧-=-=+-=++,8175835,5.245.24,942332321x x x x x x (1分)回代得1,3,5123==-=x x x (1分)四、设.0,2,3,1,103)(3210234=-===-+-=x x x x x x x x f 1)求以3210,,,x x x x 为节3次Lagrange 多项式;(6分) 2)求以3210,,,x x x x 为节3次Newton 多项式;(6分)3)给出以上插值多项式的插值余项的表达式(3分)解:由0,2,3,13210=-===x x x x 可得10)(,34)(,1)(,11)(3210-==-=-=x f x f x f x f即得: +------+------=))()(())()(()())()(())()(()()(312101320130201032103x x x x x x x x x x x x x f x x x x x x x x x x x x x f x L=------+------))()(())()(()())()(())()(()(23130321033212023102x x x x x x x x x x x x x f x x x x x x x x x x x x x f+-+--+-⨯-+-+--+-⨯-)03)(23)(13()0)(2)(1()1()01)(21)(31()0)(2)(3(11x x x x x x326610.)20)(30)(10()2)(3)(1()10()02)(32)(12()0)(3)(1(34x x x x x x x x x -+--=+--+--⨯-+---------⨯2)计算差商表如下:i x )(i x f 一阶差商 二阶差商 三阶差商1 -11 3 -1 5 -2 34 -7 4 0-10-225-1则=+-----+-+-=)2)(3)(1()3)(1(4)1(511)(3x x x x x x x N326610x x x -+--3))2)(3)(1())()()((!4)()(3210)4(3+--=----=x x x x x x x x x x x x f x R ξ五、给定方程组b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100131w w w w A 。
数值分析例题1-9
)
1.675 0.3271y 0.03125y 2 0.01302y3
于是有
例2-4 x0 , x1 ,
x* f 1 (0) L3 (0) 1.675
5
证明 (xi x)2 li(x) 0,其中li(x)是关于点 i0
, x5 的插值基函数。
证明
5
5
(xi x)2li(x) (xi2 2xi x x2 )li(x)
设待求插值函数为
H3 ( x) N2 ( x) k( x 0)( x 1)( x 2)
令
H
3
(1)
f (1) 3, 即 4 k 3, 求得 k 1。进而有
H3 ( x) N2 ( x) ( x 0)( x 1)( x 2)
x3 1
例如 设 f(x) 为定义在 [ 27.7,30] 上的函数,在节点 xi(i 1,2,3 ) 上的值如下
En nEn1
(n 1,2,),易得 En (1)n n!E0 ,这说明
I 0 有误差 E0 , I n 就是 E0 的 n! 倍误差。它表明计算公式(A)是数
值不稳定的。
当初值取为I9 0.0684 I 9 (计算方法见书式(3.2))时
法二: (B)
I9
0.0684
I
n1
1 n
(1
xdx 88 135
解:设s1(x) a0 a1x,,0 (x) =1,1(x) =x,故
4
(0 (x),0 (x) ) = i 8 i0
4
(0 (x),1(x) ) =(1(x),0 (x) ) = i xi =22 i0
4
(1(x),1(x) ) = i xi2 =74 i0
4
数值分析课堂例题
Ch1.引论例1分析用Cramer 法则解一个n 阶线性方程组的计算量。
解计算机的计算量主要取决于乘除法的次数。
用Cramer 法则解一个n 阶线性方程组需计算n 1个n 阶行列式,而用定义 计算n 阶行列式需n! n -1次乘法,故总计共需 n • 1 n! n -1[=[n • 1 ! n -1 。
此外,还需n 次除法。
当n =20时,计算量约为n ,1 ! n-1 = 9.7 1020次乘法。
即使用每秒百亿次乘法的计算机,也需计算3000多年才能完成。
可见,Cramer 法则仅仅是理论上的,不是面向计算机的。
111 1_ _- -(截断误差):"0.3667 (舍入误差)。
2 6 24 1201x n例3计算I n = [丁dx (n = 0,1,2…,6),并做误差分析 x 十5n n _1 n _1解I n =t 1x +5x -5x亠1dx6 *-dx_—5l n 「, I0==ln —肚 0.1823=x +5nx + 5 5r- *I0 :0.1823算法1」 * * 1 , 结果见下表。
I n :-5I d + —-nn n▼ x xnx1 1111 、 又 < 才A - < I n 兰 ----- ,I 6+ 1 = 0.02619=6 x +5 5 '6(n+1)5(n +1) 2>x7 5汉7丿16 =0.02619算法2」*n ;2 例2根据Taylor展式宀1*;! nX H- *八+ n!R n (x )计算e'(误差小于0.01) 解e 12! 3! 4! 5!R 5(X )0 0.1823 0.1823 0.1823 1 0.0885 0.0884 0.0884 2 0.0575 0.0580 0.0580 3 0.0458 0.0431 0.0431 4 0.0208 0.0344 0.0343 5 0.0958 0.0281 0.0285 6 -0.3125 0.0262 0.0243误差分析:= 5nE °,即在计算过程中误差放大了 5n倍。
《数值分析》练习题及答案解析
《数值分析》练习题及答案解析第一章 绪论主要考查点:有效数字,相对误差、绝对误差定义及关系;误差分类;误差控制的基本原则;。
1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和4 答案:A2. 设 2.3149541...x *=,取5位有效数字,则所得的近似值x=___________ .答案:2.31503.若近似数2*103400.0-⨯=x 的绝对误差限为5105.0-⨯,那么近似数有几位有效数字 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
4 . 14159.3=π具有4位有效数字的近似值是多少?解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。
第二章 非线性方程求根 主要考查点:二分法N 步后根所在的区间,及给定精度下二分的次数计算;非线性方程一般迭代格式的构造,(局部)收敛性的判断,迭代次数计算; 牛顿迭代格式构造;求收敛阶;1.用二分法求方程012=--x x 的正根,要求误差小于0.05。
(二分法)解:1)(2--=x x x f ,01)0(<-=f ,01)2(>=f ,)(x f 在[0,2]连续,故[0,2]为函数的有根区间。
"(1)计算01)1(<-=f ,故有根区间为[1,2]。
(2)计算041123)23()23(2<-=--=f ,故有根区间为]2,23[。
(3)计算0165147)47()47(2>=--=f ,故有根区间为]47,23[。
(4)计算06411813)813()813(2>=--=f ,故有根区间为]813,23[。
数值分析典型习题
题型一:有效数字1,的首位数字x 1,x *的相对误差不超过0.5×10-5,至少要保留几位有效数字.(2010-2011)1*1151211||10100.5102226n n r x n e x n ---=≤⨯=⨯≤⨯⨯≥=解答:设至少要保留位有效数字,则有解得, n 5.7取位有效数字.2,0.5×10-4,至少要保留几位有效数字?(2009-2010)3,已知21.787654为有效数,确定其绝对误差界与相对误差界.(2007-2008)*6*118711||102111||1010102224n r e e x ----=⨯=⨯=⨯=⨯⨯解答:4,已知30.49876为有效数,确定其绝对误差界.(2006-2007B) 5,设有效数x=12.4567,确定x 的绝对误差界.(2004-2005)题型二:插值多项式1,已知f(x)的函数值:f(0)=-2, f(1)=1, f(2)=5, 用反插值法求f(x)=0在[0,2]内的近似根x *.(2010-2011)11111202012012010210122021()()()()()()()()()()()()()()()()()(2)(5)(2)(1)012(12)(15)(52)(51)2991422884y y y y y y y y y y y y y L y f y f y f y y y y y y y y y y y y y y y y y y ----------=⋅+⋅+⋅------+-+-=+⨯+⨯+-+-=+-解答:对y=f(x)的反函数x=f 进行二次插值2*229(0)42y x L ≈=故,2,已知f(x)的如下函数值及导数值:f(-1)=1, f(0)=2, f ’(0)=3, f(1)=7; (1),建立不超过3次的埃尔米特插值多项式H 3(x);(2),x ∈[-1,1], 确定用H 3(x)代替f(x)的误差界(已知|f (4)(x)|≤M 4,x ∈[-1,1]).(2010-2011)32001001201232233)),(0,1,2)()()[,]()[,,]()()1(1)2(1)(0)232()()(1)(0)(1)232()'(i i H x f x i N x f x f x x x x f x x x x x x x x x x x x H x N x k x x x x x k x x H ===+-+--=++++-=++=++--=+++-解答:(1),满足插值条件((的二次插值多项式为:也可用拉格朗日插值法满足题设插值条件的插值多项式为:2323(4)23443)43(31)'(0)'(0)3()232()(2),(1)(0)(1),(1,1)4!1||=4!496x x k x H f H x x x f R x x x M M R ζζ=++-===+++--∈-≤⨯由得:k=0故:误差(x)=则误差界(x)3,已知f(x)的函数值:f(0)=2, f(1)=4, f(2)=9, 写出二次拉格朗日插值多项式及余项.(2009-2010)4,已知f(x)的如下函数值及导数值:f(1)=1, f(2)=2, f ’(1)=3, f(3)=9; (1),建立不超过3次的埃尔米特插值多项式;(2)计算f(1.6)的近似值;若M 4=0.5,估计f(1.6)的误差界.(已知|f (4)(x)|≤M 4).(2009-2010)5,写出满足条件H(0)=1, H(1)=0, H ’(1)=1, H(2)=1的三次插值多项式,并给出误差估计式.(2008-2009B)6,已知一组数据,求函数f(x)=0的根.(2008-2009B)7,已知f(x)的如下函数值及导数值:f(0)=1, f(1)=3, f ’(1)=1, f(2)=9, (1),建立不超过3次的埃尔米特插值多项式,写出误差估计式;(2),计算f(1.8)的近似值:若M 4=1,估计f(1.8)的误差界.(已知|f (4)(x)|≤M 4).(2007-2008)8,已知f(x)的如下函数值及导数值:f(1)=2, f(2)=4, f ’(2)=5, f(3)=8, (1),建立不超过3次的埃尔米特插值多项式;(2),计算f(2.5)的近似值:若M 4=0.5,估计f(2.5)的误差界.(已知|f (4)(x)|≤M 4).(2006-2007)9,已知f(x)的如下函数值表选取合适的插值节点,用二次插值多项式计算f(0.35)的近似值.(2005-2006) 10,已知f(x)=sinx 的如下函数值表用插值多项式计算sin1.8, 并估计误差界.(2004-2005)11,用f(x)的关于互异节点集112{}{}n ni i i i x x -==和的插值多项式g(x)和h(x)构造出关于节点集1{}ni i x =的插值多项式.(2005-2006)(课后习题)-11111121111{}(),()(){}(),()()()()))()())]()n n i i i i n n n n n n n n n n n n n n q x q x g x x x x x x x x x g A x x g x ==------=----=-解答:法一:设关于节点集x 的插值多项式为则与有共同插值节点x ,则设:q(x)=g(x)+Aw w f(x (x )由q(x )=f(x 得,w w 故:q(x)=g(x)+[f(x (x )w 法二:设q(x)=g(x)+1-122311111()()(){}()()()()(),01()=()[()()]()[()()]()()()()()()[()()]=-n n i i n n n n n n n n n n x g x h x B g x h x B x x x x x x B x x x g x h x BAx x g x h x Bq x f x h x Ah x g x x x g x h x BA B -=---=---≠----===+--Aw 由于和有共同插值节点x ,则存在常数,使得则,w 故:q(x)=g(x)+由得得1111()[()()]()n n x x x x h x g x x x ----则:q(x)=g(x)+12,(1),已知f(x)的如下函数值:f(0)=1,f(1)=3,f(3)=5,写出二次拉格朗日插值多项式L 2(x);(2),若同时已知:f ’(1)=1,用待定系数法求埃尔米特插值多项式H 3(x);(3),当(3)(4)1|()|2|()|4,[0,3]f x f x x ≤≤≤≤∈及3时,x 不取节点,[0,3]x ∈,求32()()||()()f x H x f x L x --的上界.(2011-2012)题型三:最佳平方逼近多项式及最小二乘法1,已知函数值表:用二次多项式y=C 0+C 1X+C 2X 2按最小二乘法拟合改组数据,并求平方逼近误差.(2010-2011)(2005-2006)()000102030410111213142021222324012()()()()()11111()()()()()21012()()()()()4101401210,5010010010034T T T T x x x x x A x x x x x x x x x x y A AC A y c c c ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ⎛⎫⎛⎫ ⎪ ⎪==-- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭==⎛⎫⎛ ⎪ ⎪ ⎪⎝⎭⎝解答:法一:线性拟合的法方程组为:即()()01222*20000100011402583,0,3575833570581358||||=(y,y)-Y 01210402023531701(,)0,(,)(T c c y x C x xx δϕϕϕαϕαϕϕϕα⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎭⎝⎭===-=-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭====解得:c 则平方逼近误差:法二:构造首项系数为的正交多项式:(x)=1(x)=x-111211021100002*22022220,)0(,)(,)2,()()2(,)(,)46583()()0(2)(,)514357(,)8||||=(y,y)-(,)35i i i i i i i i ix x y x x x x y ϕϕϕϕϕβααϕβϕϕϕϕϕϕϕϕϕδϕϕ======----==++-=-=∑∑(x)(x)=x 则,平方逼近误差:2,求21()1f x x =+在区间[0,1]上的一次最佳平方逼近多项式及平方逼近误差(去权函数ρ(x)=x).(2009-2010) 3,通过实验获得以下数据:请用最小二乘法求形如y=a+bx 2的经验公式.(2008-2009)T T A AC A y =解析:4,利用正交多项式的性质构造首项系数为1的正交多项式1{()}i i g x ∞=,有下列公式:010111()1()()()()(),(1,2,...)k k k k k g x g x x g x x g x g x k ααβ+--==-=--=其中:111(,),(0,1,2...)(,)(,),(1,2...)(,)k k k k k k k k k k xg g k g g g g k g g αβ---==== (1),求[0,1]上首项系数为1的正交多项式(权函数ρ(x)=1),g 0(x),g 1(x),g 2(x) (2),以上述正交多项式为基,求sinx 在区间[0,1]上的二次最佳平方逼近多项式,并求平方逼近误差.(2008-2009B)(2004-2005)010000110001201111211021102110000*010001(1),()1(,)11,()(,)221()(,)121(,)2()2(,)11,()()()()(,)126(,)(,)(2),()(,)(g x xdx xg g g x x x g g dx x x dx xg g g g x dx g g g x x g x g x x x g g g f g f x g g g g αααβαβϕ=====-=--===-===--=-+=+⎰⎰⎰⎰解答:21212211120020111222000222*220(,),)(,)11()sin ()sin sin 11621()()1126()()260.00746 1.09130.23546(,)||||(,)0.000623.(,)i i i ig f g g g g g x x xdx x xdx xdx x x x dx x dx x x dx x x f g f f f g g ϕ=+-+-=⋅+⋅-+⋅-+--+=-+--=-=⎰⎰⎰⎰⎰⎰∑平方逼近误差:5,以正交多项式为基,求函数21()1f x x =+在区间[0,1]上的二次最佳平方逼近多项式,并求平方逼近误差.(2007-2008)(权函数ρ(x)=x,(2011-2012))20120122201201()1,(),(),111()2,()1,()2242211112234211113454111112224561.0656,0.503x x x x x f In f f In C F In c c c In ϕϕϕπϕϕϕπ=====-=-=⎛⎫⎛⎫⎪ ⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⋅=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭==-解答:法一:取解得,,,正规方程组为:H 即:解得:c c 2*222*00001000111110110002,0.07423() 1.06560.503020.07423=(f,f)-F 0.000029041()11(,)223,()1(,)332(,)8(,)1,(,)15(,)T n p x x x C g x xg g g x x x g g xg g g g g g g g δαααβ=-=--======-=-====c 故二次最佳平方逼近多项式:平方逼近误差:法二:构造首项系数为的正交多项式:221100*201220120011222*1882163()()()()()()15318510(,)(,)(,)()()()() 1.06560.503020.07423(,)(,)(,)=(f,f)-F 0.00002904T n g x x g x g x x x x x f g f g f g p x g x g x g x x x g g g g g g C αβδ=--=---=-+=++=--=则:平方逼近误差:6,通过实验获得以下数据:请用最小二乘法求形如v =的经验公式,并求平方误差.(2006-2007)01:c c v=+解答转化题型四:代数精确度1,确定参数α,使求积公式20()[(0)()]['(0)'()]2hhf x dx f f h h f f h α≈++-⎰的代数精确度尽可能高,并求其代数精确度.(2010-2011)23322442320()1,,()1(),=121()()(0)(03)2121()()0+)(04)212()[(0)()]['(0)'()]2h h h f x x f x f x x h f x x f x dx h h h h f x x f x dx h h h hf x dx f f h h f f h αα====++-=≠+-≈++-⎰⎰⎰解答:令显然成立令得又时:时:(故具有三次代数精确度.2,确定参数A 1,A 2,使求积公式12()()(0)()3hh hf x dx A f h A f f h -≈-++⎰的代数精确度尽可能高,并求其代数精确度.(2009-2010)3,建立高斯型求积公式1211221()()()x f x dx A f x A f x -≈+⎰.(2009-2010)23121211311221122411221133511221121200010001,232513()1(,)0,()(,)xA A x dxA x A x x dxA x A x x dxA x A x x dxx A Ag xxg gg x x xg gααα----+==+==+==+===-=======-=⎰⎰⎰⎰解答:法一:已知求积公式有3次代数精确度,令f(x)=1,x,x得解上述方程组得:x法二:构造二次正交多项式1111110022110021211222112111221121(,)(,)30,(,)(,)53()()()()5()0,11,331()[(3xg g g gg g g gg x x g x g x xg x xx x x xA x dx A x dxx x x xx f x dx f fβαβρ---=====--=-==-=--=⋅==⋅=--≈+⎰⎰⎰令得高斯点: x故高斯型求积公式为:方法三:设[-1,1]上权(x)2221221122122121122221122331122212121().223()0,+0,5352()0,0,053().52:325()()(),(g x x ax bbx g x dx bax xg x dx ag x xA AA x A xA x A xA x A xx x x x x x c x c xϕϕ--=++===-⋅====-+=+=+=+==--=++⎰⎰=x,首项系数为1的二次正交多项式为则有:即即所以剩下步骤同法二.法四显然222221122111122212211221112221222332211122211221112221122112)()0()()()()()()()2230,535()()()()()20,053(),5xA x A x A x c x c A x c x c A x A x c A x A x c A AccA x x A x x A x A x c A x A x c A x A xccx xϕϕϕϕϕϕ==+=+++++=+++++=+==-+=+++++====-剩下步骤同法二.4,确定求积公式()()(0)()hh f x dx Af h Bf Cf h -≈-++⎰中的参数A,B,C ,使其代数精度尽量高,并指出其代数精确度.(2008-2009B) 5,确定求积公式10211123()()()()343234f x dx f f f ≈-+⎰的代数精确度.(2006-2007B) 6,确定下列求积公式中的参数,使求积公式的代数精确度尽可能高,并求出代数精确度10120113()()()()424f x dx A f A f A f ≈++⎰.(2005-2006) 7,确定下列求积公式中的参数,使求积公式的代数精确度尽可能高,并求出代数精确度101()()(0)()hh f x dx A f h A f A f h --≈-++⎰.(2004-2005) 8,已知h>0,建立高斯型求积公式:21122()()()hhx f x dx A f x A f x -≈+⎰.(2011-2012)题型五:求积公式的最少节点数1,设定积分320x e dx -⎰,问用复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数为多少?(2010-2011)(4)2244(4)461(),()16301[]||()|101801801696017.0519.x xS f x e f x e b a h f h f h b ahη---==--=-≤⋅=<-=解答:复化辛普森公式截断误差:|R 解得:h<0.176,n>故应取个节点 2,设定积分130x e dx -⎰,问用复化梯形求积公式进行计算,要求误差小于10-6,所需要的最少节点数为多少?(2009-2010)(2)3322(2)261(),()9101[]||()|10121891622.8.x x T f x e fx eb a h f h f h b ahη---==--=-≤⋅=<-=解答:复化梯形公式截断误差:|R 解得:h<0.357,n>故应取4个节点3,给定积分20cos2xdx ⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少? (注:2(2)4(4)[](),[](),[,]122880T S b a b a R f h f R f h f a b ηηη--=-=-∈)(2008-2009B) 4,给定积分140x e dx -⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少?(2007-2008) 5,给定积分21Inxdx ⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少? (已知:2(2)4(4)1212[](),[](),,(,)12180T S b a b a R f h f R f h f a b ηηηη--=-=-∈)(2006-2007) 6,用积分82122dx In x=⎰计算In2,要使所得近似值具有7位有效数字,问用复化辛普森求积公式至少需要取多少个节点?(2005-2006)4(4)8(4)52(4)-744(4)4-7[](),[2,8]18011122,(),()223|()|,[2,8]817[]102631[]||()|101801808802820.04472,S S S b a R f h f In dx f x f x x x xf x x R f b a h R f h f h h n hηηη-=-∈===≤∈≤⨯-=-≤⋅=≤⨯-≤≥=⎰解答:复化辛普森公式截断误差公式:则使所得的近似值具有位有效数字,即令:|134.2137故至少需要取个节点.7,用积分6213dx In x=⎰计算In3,要使所得近似值具有5位有效数字,问用复化梯形求积公式至少需要取多少个节点?(2004-2005)8,对于定积分10()I f x dx =⎰,当M 2=1/8,M 4=1/32,用11点的复化辛普森(Simpson)求积公式求I 的截断误差为R s [f],用n 个节点的复化梯形求积公式求I 的截断误差为R T [f],要使R T [f]≤R s [f],n 至少是多少?(M 2=max|f ”(x)|,M 4=max|f (4)(x)|,[0,1]x ∈).(2011-2012)题型六:Doolittle 分解及方程组求解1,求矩阵212454635⎛⎫⎪ ⎪⎪-⎝⎭的Doolittle 分解.(2010-2011)212100212454210030635321001LU ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪== ⎪ ⎪⎪ ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭解答:A=2,求矩阵114103241⎛⎫⎪- ⎪⎪⎝⎭的Doolittle 分解.(2009-2010)3,设线性方程组123410135114152410162116x x x x ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪⎪ ⎪⋅= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (1),对方程组的系数矩阵A 作Doolittle 分解;(2),用所得的Doolittle 分解求该线性方程组的解.(2007-2008&2005-2006)12341234101013101311000132114124100013224101119162116210001313191,,,)(5,0,11,)13,,,)(1,1,1,1).T TT T A LU LY b y y y UX Y x x x --⎛⎫⎛⎫--⎛⎫ ⎪⎪- ⎪ ⎪⎪-⎪=== ⎪⎪--- ⎪ ⎪⎪ ⎪ ⎪⎪-- ⎪⎪⎝⎭⎝⎭⎝⎭==---==--解答:由得:(y 由得:(x4,设线性方程组123411415101312410762118x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪⎪ ⎪⋅=⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (1),对方程组的系数矩阵A 作Doolittle 分解;(2),用所得的Doolittle 分解求该线性方程组的解.(2006-2007)5,设线性方程组:12312312323153478113x x x x x x x x x ++=+-=-++=-(1),对方程组的系数矩阵A 作Doolittle 分解; (2),利用上述分解结果求解该线性方程组.(2004-2005)6,用高斯顺序消去法求解线性方程组:13241234242532431737x x x x x x x x x x +=+=+++=+=.(2010-2011)4321102051020510205010130101301013=124317022312002160103701037000242,2,1, 1.x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭====解答:增广矩阵回代求解:x7,用高斯顺序消去法求解线性方程组:1231231233472212320x x x x x x x x x -+=-+-=---=.(2009-2010)题型七:条件数及范数1,求线性方程组1212391078981510x x x x x --=+==的系数矩阵A 的条件数cond 1(A),并说明其含义.(2010-2011)1111191008900015910089010015()||||||||19193611A A cond A A A A b ----⎛⎫ ⎪= ⎪⎪⎝⎭⎛⎫ ⎪-- ⎪= ⎪⎪⎪⎝⎭==⨯=解答:系数矩阵条件数远大于,这说明当和有小扰动时会引起解的较大误差,即该方程组是病态的.2,设矩阵15000910089A ⎛⎫ ⎪=-- ⎪⎪⎝⎭,求cond ∞(A).(2009-2010)3,设三阶对称矩阵A 的特征值分别为:-2,1,3,求||A||2及cond 2(A).(2007-2008)2121222||||3||||()|||||||| 3.A A cond A A A --========解答:则:4,若n 元线性方程组Ax=b 为病态的,可以得到关于系数矩阵A 的什么性质.(2006-2007)5,若111123124A ⎛⎫⎪= ⎪⎪⎝⎭,求cond 1(A).(2005-2006)求cond ∞(A).(2004-2005)6,设1231032475A -⎛⎫⎪=-- ⎪⎪-⎝⎭,求1||||||||A A ∞与.(2007-2008)7,若1234A ⎛⎫= ⎪⎝⎭,求谱半径()A ρ.(2005-2006) 52ρ解答:最大特征值:(A)=题型八:雅可比迭代与高斯-赛德尔迭代1,写出求解方程组1231231237321241021534818x x x x x x x x x -+=--=--=的雅可比迭代公式,并说明其收敛性.(2010-2011)(1)()()123(1)()()213(1)()()312(0)1(3212)71(4215)101(3418)87324102348.k k k k k k k k k J x x x x x x x x +++=-+=--++=--++-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭解答:雅可比迭代公式为:x 雅可比迭代法迭代矩阵:B 严格对角占优,故求解该方程组的雅可比迭代法关于任意初始向量x 收敛 2,设有方程组:132********2112212x x x x x x x -=+=-++=,讨论用雅可比迭代法和高斯-赛德尔迭代法解此方程组的收敛性.(2010-2011)112330200030000202100002000121221000200020031()0021102||0,=0=-J J J L D U B D L U E B B λλλλρ---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=++=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫ ⎪ ⎪⎪=-+=- ⎪ ⎪⎪- ⎪⎝⎭-=解答:A=雅可比迭代矩阵:得,()<1,故用雅可比迭代法解答此方程组对任意(0)1123(0)20031-()00211001211||0,=012-S S S B D L U E B B λλλλρ-⎛⎫ ⎪ ⎪⎪=-+=- ⎪ ⎪⎪ ⎪⎝⎭-===初始向量x 都收敛.高斯赛德尔迭代矩阵:得,()<1,故用高斯赛格尔迭代法解答此方程组对任意初始向量x 都收敛.3,写出求解方程组:123123123532124721535818x x x x x x x x x -+=--=--=的高斯-赛德尔迭代公式,并说明收敛性.(2009-2010)4,用雅可比迭代法求解以313132323A ⎛⎫⎪= ⎪ ⎪-⎝⎭为系数矩阵的线性方程组时,确定其收敛性.(2009-2010)5,设线性方程组123123123221162222x x x x x x x x x -+=-+-=--+=-,讨论分别用雅可比迭代法和高斯-赛德尔迭代法解此线性方程组的收敛性,若收敛,请给出迭代格式.(2008-2009B)6,设线性方程组:1231231232215202225x x x x x x x x x +-=-++=++=-(1),证明求解该方程组的雅可比迭代法关于任意初始向量收敛;相应的高斯-赛德尔迭代法不是关于任意初始向量收敛; (2),取(0)(0,0,0)T x=,用雅可比迭代法进行求解,要求(1)()5||||10k k x x +--<.(2007-2008)11231123022()101220||0,===0)1022()023002||0,0,2,)1-J J J S S S D L U E B D L U E λλλλρλλλλρ---⎛⎫ ⎪=-+=-- ⎪⎪--⎝⎭-=<-⎛⎫⎪=-+=- ⎪⎪⎝⎭-====>解答:(1):B B 解得:,(B B 解得:(B 所以用雅可比迭代法解此方程组对任意初始向量都收敛,而用高斯赛德尔迭代法解此方程组不是对任意初始向量都收敛.(2):(1)()()123(1)()()213(1)()()312(0)(1)(2)(3)(4)2215202225(0,0,0)(15,20,25)(105,60,35)(205,160,65)(205,160,65)k k k k k k k k k T T T TTx x x xx x x x x x x x x +++=-+-=--+=---==--=--=-=-雅可比迭代公式:x 当时,计算得:(精确解).7,设线性方程组:123123123821027325431111x x x x x x x x x ++=--++=-+=-(1),写出求解该方程组的雅可比迭代法的迭代公式和高斯-赛德尔迭代法的迭代公式,并确定其收敛性; (2),取(0)(0,0,0)T x=,用高斯-赛德尔迭代法计算x (3).(2006-2007)8,设线性方程组Ax=b 的系数矩阵232131t A t t ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,其中t<0,问t 取何值时雅可比迭代法关于任意初始向量都收敛.(2006-2007)12122223021()0310422||()0=0=-,=)12||<1,t<-2,or t>20, 2.J J J t t D L U t t t t E B t t ttt t λλλλλλρ-⎛⎫-- ⎪ ⎪ ⎪=-+=-- ⎪ ⎪ ⎪- ⎪⎝⎭-=-=<<<-解答:雅可比迭代矩阵B 得,,雅可比迭代法对于任意初始向量都收敛,则(B 即:得又故9,1),设线性方程组:121232343243430424x x x x x x x +=+-=-+=-写出求解该方程组的雅可比迭代法的迭代公式,并确定该迭代法的收敛性;2),设线性方程组:123123123104413410811481025x x x x x x x x x ++=++=++=写出求解该方程组的高斯-赛德尔迭代法的迭代公式,并确定该迭代法的收敛性.(2004-2005)10,给定方程组:1231231232251223x x x x x x x x x +-=++=++=(1),用三角分解法解此方程组;(2),写出解此方程组的雅可比迭代公式,说明收敛性;取初始向量x 0=(0,0,0)T,当21||||10k k x x -+-<时,求其解.(2011-2012)11,设()21253sin 3421sincos 43tan 5k k k k k k k Ak k k kk⎛⎫- ⎪+ ⎪ ⎪= ⎪+⎪⎪⎪⎭,求()lim k k A →∞.(2007-2008)()020lim 021205K k A →∞⎛⎫⎪= ⎪ ⎪⎝⎭解答: 12,若()()11,lim 1sin sin k k k k k k AA k k k k →∞⎛⎫⎪+=⎪ ⎪⎪⎝⎭求.(2004-2005) ()01lim 10K k A →∞⎛⎫= ⎪⎝⎭解答: 题型九:非线性迭代1,设计一个算法求.(2008-2009B)101125(),0.2k k kx x x +=+>解答:牛顿迭代公式:x2,给出用牛顿法求围.(2010-2011)661556'5"4"*00001050517001701170[5]66()170,()60,()300()()0,.1170(5)61170()(5)6k k k k k kx x x x x x x x f x x f x x f x x x f x f x x x x x x g x x x +=-=-=-=+=-=>=>>⋅><=+=+解答:的正根.由牛顿迭代法得迭代公式:当故此时收敛到当0<设'611*01850()(5)0,()0,6:0,.0.x g x x g x g xx x x x x ∈=-<∈>=>>∈>故故回到前段.所以当迭代公式也收敛到综上:3,给出用牛顿法求近似值的迭代公式,并给出初值的取值范围.(2009-2010) 解答:方法同上.4,设φ(x)=x+c(x 2-5),当c 为何值时,x k+1=φ(x k ),(k=0,1,2…)产生的序列{x k }收敛于c 为何值时收敛最快?(2010-2011)2''**1**'*5),||<1,||<110,0;.k k cx x c ϕϕϕϕϕ+-=-<<<<解答:(x)=x+c(x (x)=1+2cxx (x )收敛,则有(x )即1+2cx 又当(x )=0,即5,设2()(3)x x c x ϕ=+-,应如何选取常数c 才能使迭代1(),(0,1,2)k k x xk ϕ+==具有局部收敛性?C 取何值时,这个迭代收敛最快?取x 0=2,c =计算()x ϕ的不动点,要求当61||10k k x x -+-<时结束迭代.(2004-2005)****21*2'****'**1(),(3)()(3)()|1|12|1,11,0,,033(2),()0+0,6(3),k kkx x x x c xx x x c x xcx cx x c or cxxϕϕϕϕ++==+-==+-<+<-<<=<<<<==±±解答:(1),令x收敛于则故要局部收敛,即|又得根据收敛阶定理,当时,迭代至少二阶收敛,即12cx得c=故c=.迭代公式为:212346*433)21.7113248651.7319268031.7320508041.732050808|10,: 1.732050808.k kx xxxxxxx x x-=-=====-<=又因为|故6,方程x3-3x-1=0在x=2附近有一根,构造一个局部收敛的不动点迭代法,并说明收敛的理由.(2009-2010)'2(1.5) 1.765174168,(2.5) 2.040827551[1.5,2.5]()[1.5,2.5]()|0.33,xx xxϕϕϕϕϕ===∈∈=≤<解答:取的邻域[1.5,2.5]当时,又因为|故迭代在[1.5,2.5]上整体收敛.7,已知方程42()440f x x x=-+=有一个两重根0x=,请以初值x0=1.5,用m重根的牛顿迭代法计算其近似值,要求51||10k kx x-+-<.(2008-2009B)(P204例7.7)8,(1),已知方程240xe x+-=在0.6附近有一根x,迭代法214,0,1,2kxkx e k+=-=是否局部收敛?如果不收敛,试构造一个局部收敛的不动点迭代法,并说明收敛的理由.(2),取x 0=0.6,用你所构造的不动点迭代法求解该方程,迭代至x 5. (3),给出牛顿法求围.(2007-2008)2'2'**1'''1(1):()4,()2|()|1,(0),1(4)211(4),()22(4)1(0)2,(1)3()[0,1]21()||(1)|161(4)2x xk k k k x e x e x x x In x In x x x In In x x x In x ϕϕϕϕϕϕϕϕϕϕ++=-=->>=---=-==∈≤=<=-解答:故该迭代公式不是局部收敛的.构造:理由:取邻域[0,1](x)=故又|故迭代式在[0,1]上整体收敛11021324354101(2),(4),21(4)0.61188771521(4)0.61013645921(4)0.61039483321(4)0.61035672221(4)0.61036234421120(3),(),0.2k k k k kx In x x In x x In x x In x x In x x In x x x x x ++=-=-==-==-==-==-==+>.则9,给定方程x 2+x-2=0,[0,2]x ∈,采用迭代公式x k+1=x k +c(x k 2+x k -2),(k=0,1,2…)求其根,问当c 为何值时,迭代法收敛?又当c 为何值时,迭代法收敛最快?(2011-2012)*2'''1,()(2)()1(21)2(1)||1(21)|1,-0.31(1)=03x x x c x x x c x c c ϕϕϕϕ==++-=++=++<<<解答:当|即时,线性收敛当,即c=-时收敛最快.10,给定方程230xx e -=,[3,4]x ∈(1),构造一种线性收敛的不动点迭代公式求该方程的根(含迭代公式,初值取何值或何区间,迭代法收敛的原因);(2),构造一种二次收敛的不动点迭代公式求该方程的根(含迭代公式,初值取何值或何区间,迭代法收敛的原因).(2011-2012)21111'12102'"0(1),()(3),3.29(3)()(4) 3.8712(),[3,4]23(3),(0,1,2,)[3,4].(2),()3,[3,4](3)0,(4)0()60,()60,[3,4]3k k x x x x In x x x x In x k x f x x e x f f f x x e f x e x x ϕϕϕϕϕ+==≤≤=≤≤∈==∈=-∈><=-<=-<∈=解答:故不动点迭代公式:x 对于任意初值收敛取初值时,牛顿213.6kkx kk k x k x ex x x e +-=--迭代法:收敛,且二次收敛11,方程x 3-x 2-1=0在x=1.5附近有根,建立一个收敛的迭代公式,并证明其收敛性.(2004-2005)122''33312111.51()1(1.3) 1.591715976,(1.6) 1.390625[1.3,1.6]()[1.3,1.6]222(),|()|||0.921.311k k k kx x x x x x x x x x x x x ϕϕϕϕϕϕ++=+==+==∈∈=-=-≤<=+解答:取的邻域[1.3,1.6]故当时,又故迭代公式:在[1.3,1.5]上整体收敛.12,(1),已知方程1020xex +-=在0.09附近有一根x,迭代法1(210),(0,1,2)k k x In x k +=-=是否局部收敛?如果不收敛,请构造一个局部收敛的不动点迭代法,并说明收敛的理由; (2),取x 0=0.09,用局部收敛的迭代法计算x 5;(3),用牛顿法求的近似值,并给出初值的取值.(2006-2007)'''*1''5(1),()(210),()15|()|1,[0,1],|()|>1.11510111(),()51010(0)0.1,(0.12)0.087250323[0,0.12]()[0,0.12]()|kx k x xx In x x xx x x x e x e x e x x x ϕϕϕϕϕϕϕϕϕϕ+-=-=->∈=-=-=-==∈∈≤解答:显然故该迭代公式不是局部收敛的构造:因为取[0,0.12]邻域考察故当时,又|'0.12110.09010.09058257820.09051881530.0905241|(0.12)|||0.1131101151011(2),510110.09,0.090582578510110.090518815510110.09052579651011510k kx k x k e x e x e x x e x e x e x e ϕ++=-<<=-=-==-==-==-==-故迭代公式:在[0,0.12]上整体收敛.57960.09052503151200.090525031110.0905251155102117(3),()30.k k k x e x x x +==-==+>使用迭代公式:进行求解.初值:x13,设方程x 3-3x-1=0在x=2附近有根;1),证明该方程在区间[1.5,2.5]内有唯一根x *;2),确定迭代函数φ(x).当初始值x 0在何区间取值时,迭代公式x k+1=φ(x k ),(k=0,1,2…)收敛到x *,并说明理由.3),写出求解该方程组的牛顿法迭代公式,当初始值x 0在何区间取值时,牛顿法迭代公式收敛到x,并说明理由.取x 0=1.8,用牛顿法迭代公式计算x,要求(1)()4||||10k k x x +--<.4),写出求解该方程的弦截法迭代公式,当初始值在何区间取值时,弦截法迭代公式收敛到x,并说明理由.(2005-2006)3'2'331223(1),()31,()33(1.5) 2.125,(2.5)7.125(1.5)(2.5)0,()0()0,[1.5,2.5][1.5,2.5].(2),3121(3),,3333()3k k k k k k k f x x x f x x f f f f f x f x x x x x x x x x f x x +=--=-=-=⋅<=>∈--+=-=--=-解答:证明:故在[1.5,2.5]内有根.又故方程在区间内有唯一根牛顿法迭代公式:'2"1,()33,()6x f x x f x x-=-=题型十:稳定算法1,对给定的x ,下列两式能否直接计算,说明理由;如果不能,请给出变换算式:(1x ,x 很大;(21,|x|很小.(2010-2011)3(1)x =解答:不能直接计算,因为两个相近的数相减,会产生较大的误差:2,为了提高计算精度,当正数x.(2005-2006)3,给出计算积分10,(0,1,2,10)10nn x I dx n x ==+⎰的递推稳定算法和初值.(2010-2011)1111111000-11110002010101101010101=101011111)11101010(1)11121[].2111)101)220(1)n n n n n n n n n n x x dx x dx x dx I I x x nn n x x x dx dx dx n x n n n n ----+-===-=-++-=<<=+++=+=+++⎰⎰⎰⎰⎰⎰解:I 该算法不稳定,变形得:I 因为(取初值I ((4,设计一种求10x nn I e x dx =⎰(n 为非负整数)稳定的递推算法,包括递推公式,初值的确定;当初值201221e I =⋅时,利用上述稳定的递推公式计算三个连续的积分值.(2011-2012)题型十一:部分证明题1,利用差分的性质证明:12+22+…n 2=n(n+1)(2n+1)/6222()12,g n n n =++证明:设函数对任意的建立差分表:函数g(n)的三阶差分是与n 无关的非零常数,故g(n)是n 的三次多项式:3(1)1,(2)5,(3)14,(4)30111()()14521231(1)(2)(1)(2)(3)(1)(21)14521!2!3!6g g g g n n n g n N n n n n n n n n n n ====---⎛⎫⎛⎫⎛⎫==+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭------++=+⋅+⋅+⋅=按等距节点牛顿向前插值公式建立三次插值多项式,则2,证明:n+1个互异节点的插值型求积公式的代数精确度至少为n.(2010-2011)(1)0()(),.(1)!n nb i ai f x x dx n ζ+=-+∏⎰证明:截断误差R[f]=易证 3,若0{()}ni i l x =是关于互异节点0{}ni i x =的拉格朗日插值基函数组,函数0011()()()(),(1)n n f x x l x x l x x l x n =++≥,证明:f(x)≡x.(2009-2010)00110()()()()()()()()n n i i n n i f x L x f x l x x l x x l x x l x f x x=≈==+++≡∑证明:故:4,证明:0101'()[()()]"()2hf x f x f x f h ζ=--,其中h=x 1-x 0,01(,)x x ζ∈.(2009-2010)"'20000"'211001010'"010())()()()2!(),())()()()2!1()[()()]()2f f x x x x x f x x f x f x x x x x hf x f x f x f h ζζζ+-+-==+-+-=--证明:由泰勒公式得f(x)=f(x 令则f(x 整理得: 5,证明:关于互异节点0{}ni i x =的拉格朗日插值基函数0{()}ni i l x =满足恒等式012()()()()1n l x l x l x l x +++≡.(2008-2009B)(2006-2007B)(2004-2005)120(1)(1)1010()1,(),,1=L ()()()()()()()1,()0,()()0(1)!()()()()1n nn n i n i n n n n ni n i f x f x x x x x R x l x f x R x f f x fx R x W x n l x l x l x l x ζ=+++==+=+=≡==+=+++≡∑∑证明:令对在上进行拉格朗日插值,有因故故:6,证明求积公式()[()()]2ba b af x dx f a f b -≈+⎰的截断误差:3"()[](),12f R f b a ηη=--∈其中:(a,b).(2007-2008) (1)001(2)(2)(2)33()()(1)!1,,()()()1"()()()()()()()2!2!2!612n nb i ai b b aa f x x dx n n x a xb f f f f x a x b dx x a x b dx a b b a ζζηηη+=-+===--=--=⋅-=--∏⎰⎰⎰证明:插值型求积公式截断误差R[f]=R[f]=7,设矩阵A 为可逆上三角阵,证明A -1仍为上三角阵,并导出求逆算法.(2006-2007B)8,设x k =a+kh(k=0,1,2;h>0),f(x)的三阶导数连续,证明:2(3)102021'()[()()](),(,)26h f x f x f x f x x h ζζ=-+-∈其中为中值.(2011-2012)001122120201201201021012202112020101222,),,),,)()()()()()()()()()()()()()()()()()()()()()()()()(22x y x y x y x x x x x x x x x x x x x f x f x f x x x x x x x x x x x x x x x x x x x x x x x x x f x f x f x h h h ------=++------------=-+证明:过(((的拉格朗日插值多项式为:L 12'2102(3)201202(3)'''1210122'(3)10202)1()[()()]2()()()()()(),(,)3!()()()[()()()]3!1()[()()](),(,)26x x L x f x f x hf f x L x x x x x x x x x f f x L x x x x x x x h f x f x f x f x x h ηηηζζ==-+-=---∈-=---=-+-∈又故:。
数值分析练习题附答案
目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。
数值分析例题
绪论:例 已知142.31=x ,141.32=x 作为π=…的近似值,试别离求出它们有效数字的位数及相对误差限解:(1)π-1x <-=<×10-3=×101 ,1-n =-3,∴n =4 ∴有4位有效数字%013.0142.300041.0111===x rx εε(2)π-2x <<×10-2∴1-n=-2 ∴n=3 ∴有3位有效数字∴看成为π的近似数时有3位有效数字,不具有4位有效数字,有效,千分位1不是有效数字。
练习 已知x 1=,x 2=,x 3=作为e =…的近似值,求这3个近似数的有效数字的位数。
(n =2, 3, 4 )推论1 关于给出的一个有效数,其绝对误差限不大于其末位数字的半个单位。
推论2 假设近似值x=± 1a …a n *10m (其中a 1≠0) 具有n 位有效数字,那么其相对误差*re ≤)1(2110*1--n a 。
证明:∵x=±0. a 1…a n *10m ∴| x |≥a 1*10m-1 又x 具有n 位有效数字,那么| x- x *|≤n m -10*21| e * r |=)1(11121**10*2110*10*----=≤-n m n m a a x x x ∴n 越大,|e * r |就越小,一样应用中取r ε=)1(110*21--n α 例1:求6的近似值,使其相对误差不超过310*21-。
解:6=……取1α=2,设x *=6有n 位有效数字,由推论2,%019.0141.3000593.0222===x rx εεr ε=)1(110*21--n α≤310*21-,∴n=4,取x *= 练习:要使20的近似值相对误差不超过%,那么至少要求几位有效数字? 解:设x *=20,其近似数x 具有n 位有效数字,其相对误差限知足r ε=)1(110*21--n α≤%⇒n ≥ ∴n=4 例1 求有效数,, , 之和。
数值分析最佳习题(含答案)
第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。
4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
(误差限的计算) 解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ绝对误差限为πππ252.051.02052)5,20(),(2=⨯⋅+⨯⋅⋅⋅≤-v r h v相对误差限为%420120525)5,20()5,20(),(2==⋅⋅≤-ππv v r h v 6 设x 的相对误差为%a ,求nx y =的相对误差。
数值分析版试题及答案
由于h2,f xx,xk12k k1,2,3,x12 2kk 0,1,2,3,所以,有
k一
2
例5、用列主元消去法求解下列线性方程组的解。
解:先消元
再回代,得到x33,x22,1
所以,线性方程组的解为X11,X22,X33
例6、用直接三角分解法求下列线性方程组的解。
解:
则由A LU的对应元素相等,有
10、已知f⑴=2,f(2)=3,f(4)=5.9,则二次Newton插值多项式中x系数为
(0.15);
度为(5 )
5、设f (x)可微,求方程x f(x)的牛顿迭代格式是();
Xnf(Xn)
xn1xn~~~
答案1 f(xn)
6、 对f(x) x3x 1,差商f[0,1,2,3]( 1 ),f[0,1,2,3,4]( 0 )
7、计算方法主要研究(截断)误差和(舍入)误差;
8、用二分法求非线性方程f(x)=0在区间(a,b)内的根时,二分n次后的误差限为
9、数值计算中的总误差如果只考虑截断误差和舍入误差,
截 断 误 差 = 舍入 误 差
(?)
10、插值计算中避免外插是为了减少舍入误差
(
1000彳
1.用计算机求 爲时,应按照n从小到大的顺序相加n1n
()
(对)
3.用数值微分公式中求导数值时,步长越小计算就越精确。
()
4.用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变
11
u1ห้องสมุดไป่ตู้,u13
56
l21u11
l21
1
l31u11-
1312,
121u12
u22
数值分析典型例题
第一章典型例题 例3 ln2=0.69314718…,精确到10-3的近似值是多少?解 精确到10-3=0.001,即绝对误差限是ε=0.0005, 故至少要保留小数点后三位才可以。
ln2≈0.693 第二章典型例题例1 用顺序消去法解线性方程组⎪⎩⎪⎨⎧1-=4+2+4=+2+31-=4++2321321321x x x x x x x x x 解 顺序消元⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-⋅+-⋅+-⋅+1717005.555.0014125.025.105.555.001412142141231412]b A [)3()2/1()2/3(231312r r r r r r 于是有同解方程组⎪⎩⎪⎨⎧-==--=++17175.555.0142332321x x x x x x 回代得解x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组⎪⎩⎪⎨⎧5=+2+23=++1=2-2+321321321x x x x x x x x x 解 建立迭代格式⎪⎪⎩⎪⎪⎨⎧+--=+--=++-=+++5223122)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…)第1次迭代,k =0X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1⎪⎪⎩⎪⎪⎨⎧-=+⨯-⨯-=-=+--==+⨯+⨯-=3532123351515232)2(3)2(2)2(1x x x X (2)=(5,-3,-3)T第3次迭代,k =2⎪⎪⎩⎪⎪⎨⎧=+-⨯-⨯-==+---==+-⨯+-⨯-=15)3(25213)3(511)3(2)3(2)2(3)3(2)3(1x x x X (3)=(1,1,1)T第4次迭代,k =3⎪⎪⎩⎪⎪⎨⎧=+⨯-⨯-==+--==+⨯+⨯-=1512121311111212)2(3)2(2)2(1x x x X (4)=(1,1,1)T例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭代法发散。
数值分析应用例题和知识点总结
数值分析应用例题和知识点总结数值分析是数学的一个重要分支,它主要研究如何用数值方法求解数学问题,包括数值逼近、数值微分和积分、线性方程组的求解、非线性方程的求解、插值与拟合等。
以下将通过一些具体的例题来展示数值分析的应用,并对相关知识点进行总结。
一、数值逼近数值逼近是用简单的函数(如多项式、分段多项式等)来近似地表示复杂的函数。
例题:给定函数$f(x) =\sin(x)$,在区间$0, \pi$ 上,用一次多项式(直线)来逼近它。
解:设逼近的一次多项式为$p(x) = ax + b$。
在区间两端点,即$x = 0$ 时,$p(0) = b$,且$f(0) = 0$;$x =\pi$ 时,$p(\pi) = a\pi + b$,$f(\pi) = 0$。
由此可得到方程组:\\begin{cases}b = 0 \\a\pi + b = 0\end{cases}\解得$a = 0$,$b = 0$,所以逼近的一次多项式为$p(x) = 0$,显然这个结果不太理想。
知识点总结:1、数值逼近的方法有很多,如泰勒展开、拉格朗日插值、牛顿插值等。
2、误差是衡量逼近效果的重要指标,包括截断误差和舍入误差。
二、数值微分数值微分是通过已知的函数值来近似计算函数的导数。
例题:已知函数$f(x) = x^2$ 在$x = 1$ 附近的三个点$x_0 =09$,$x_1 = 1$,$x_2 = 11$ 处的函数值分别为$081$,$1$,$121$,用中心差分公式求$f'(1)$的近似值。
解:中心差分公式为$f'(x) \approx \frac{f(x + h) f(x h)}{2h}$,取$h = 01$,则:\f'(1) \approx \frac{f(11) f(09)}{02} =\frac{121 081}{02}= 2\而$f'(x) = 2x$,$f'(1) = 2$,可见近似效果较好。
数值分析习题与答案
第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知的相对误差满足,而,故即2.有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
1. 给定的数值表解:计(误差限,因误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知由式由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里8.使,显然,再令由9. 令称为第二类的表达式,并证明是[]上带权解:因10. 用最小二乘法求一个形如的经验公式,使它拟合下列数据,并计算均方误差.解:本题给出拟合曲线,即,故法方程系数解得最小二乘拟合曲线为11.满足条件的插值多项式(2) ,).设为互异节点,=( ),=( ).(4) 设是区间[0,1]上权函数为ρ(x)=x的最高项系数为1的正交多项式序列,其中,则=( ),=( )答:(1)(2)(3)(4)习题1.解 6.13)对)求出,按式()求得2. 用由(6.8)式估计误差,因,故3. 确定下列求积公式中的待定参数,使其代数精确度尽量高,并指明求积公式所具有的代数精确度.(1)(2)(3)解:本题直接利用求积公式精确度定义,则可突出求积公式的参数。
数值分析练习题
数值分析练习题一、数值逼近1.1 利用泰勒公式求函数f(x) = e^x在x=0处的二阶近似表达式。
1.2 给定函数f(x) = sin(x),在区间[0, π]上,用插值法求三次多项式插值函数。
1.3 设已知点(0, 1),(1, 2),(2, 5),(3, 10),求通过这四个点的拉格朗日插值多项式。
x: 0, 1, 2, 3, 4y: 1, 3, 7, 11, 171.5 对于函数f(x) = e^(x^2),在区间[1, 1]上,求最佳平方逼近多项式。
二、数值积分与数值微分2.1 利用梯形公式计算定积分I = ∫(0, 1) e^x dx。
2.2 给定函数f(x) = x^3 3x,使用辛普森公式计算定积分I =∫(0, 2) f(x) dx。
2.3 对函数f(x) = 1/(1+x^2),在区间[5, 5]上,使用高斯勒让德求积公式计算定积分。
2.4 利用数值微分公式求函数f(x) = sin(x)在x=π/4处的导数。
2.5 给定数据点(x, y),其中x = 0, 1, 2, 3, 4, y = 1, 3, 7, 11, 17,求y在x=2处的导数。
三、常微分方程数值解法3.1 用欧拉法求解初值问题y' = x + y,y(0) = 1,步长h=0.1,计算y(0.5)的近似值。
3.2 对于初值问题y' = y + x^2,y(0) = 1,使用改进的欧拉法(梯形法)求解y(1)。
3.3 利用龙格库塔方法求解初值问题y' = 2xy,y(0) = 1,计算y(0.5)的近似值。
3.4 给定边值问题y'' + 4y = 0,y(0) = 0,y(π) = 1,使用有限差分法求解。
四、线性方程组数值解法4.1 利用高斯消元法求解线性方程组:3x + 4y z = 72x 3y + 5z = 8x + 2y + 3z = 35x + 2y z = 102x 6y + 3z = 4x + 0.5y + 4z = 74.3 给定矩阵A,使用共轭梯度法求解线性方程组Ax = b,其中:A = [[4, 1, 0], [1, 4, 1], [0, 1, 4]]b = [12, 9, 3]A = [[2, 1, 0], [1, 2, 1], [0, 1, 2]]b = [1, 0, 1]五、非线性方程数值解法5.1 使用二分法求解方程f(x) = x^3 2x 5 = 0在区间[2, 3]内的根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析经典例题1.y' = y , x [0,1] ,y (0) =1 , h = 0.1。
1求解析解。
2 Eular法3 R-K法○1解析法在MATLAB命令窗口执行clear>> x=0:0.1:1;>> y=exp(x);>> c=[y]'c =1.0000000000000001.1051709180756481.2214027581601701.3498588075760031.4918246976412701.6487212707001281.8221188003905092.0137527074704772.2255409284924682.4596031111569502.718281828459046○2Euler法在Matlab中建立M文件如下:function [x,y]=euler1(dyfun,xspan,y0,h)x=xspan(1):h:xspan(2);y(1)=y0;for n=1:length(x)-1y(n+1)=y(n)+h*feval(dyfun,x(n),y(n));endx=x';y=y'在MATLAB命令窗口执行clear>> dyfun=inline('y+0*x');>> [x,y]=euler1(dyfun,[0,1],1,0.1);>> [x,y]得到ans =0 1.0000000000000000.100000000000000 1.1000000000000000.200000000000000 1.2100000000000000.300000000000000 1.3310000000000000.400000000000000 1.4641000000000000.500000000000000 1.6105100000000000.600000000000000 1.7715610000000000.700000000000000 1.9487171000000000.800000000000000 2.1435888100000000.900000000000000 2.3579476910000001.0000000000000002.593742460100000○3R-K法(龙格-库塔法)在本题求解中,采用经典4阶龙格-库塔法首先在Matlab的M文件窗口对4阶龙格-库塔算法进行编程:function [x,y]=RungKutta41(dyfun,x0,y0,h,N)x=zeros(1,N+1);y=zeros(1,N+1);x(1)=x0;y(1)=y0;for n=1:Nx(n+1)=x(n)+h;k1=h*feval(dyfun,x(n),y(n));k2=h*feval(dyfun,x(n)+h/2,y(n)+1/2*k1);k3=h*feval(dyfun,x(n)+h/2,y(n)+1/2*k2);k4=h*feval(dyfun,x(n+1)+h,y(n)+k3);y(n+1)=y(n)+(k1+2*k2+2*k3+k4)/6;end在MATLAB命令窗口执行clear>> dyfun=inline('y','x','y');>> [x,y]=RungKutta41(dyfun,0,1,0.1,10);>> c=[x;y]'得到c =0 1.0000000000000000.100000000000000 1.1051708333333330.200000000000000 1.2214025708506950.300000000000000 1.3498584970625380.400000000000000 1.4918242400806860.500000000000000 1.6487206385968380.600000000000000 1.8221179620919330.700000000000000 2.0137516265967770.800000000000000 2.2255395632923150.900000000000000 2.4596014137800711.0000000000000002.718279744135166 ○4绘图'解析法','Euler法','R-K法' 绘制如下在MATLAB命令窗口执行clear>> x=0:0.1:1;>> y1=exp(x);>> dyfun=inline('y+0*x');>> [x,y2]=euler1(dyfun,[0,1],1,0.1);>> dyfun=inline('y','x','y');>> [x,y3]=RungKutta41(dyfun,0,1,0.1,10);>> plot(x,y1,'*')hold onplot(x,y2,'g','LineWidth',2)plot(x,y3,'b','LineWidth',2)legend('解析法','Euler法','R-K法')2.一个具有1400kg初始重量的小火箭,带有1040kg的燃料,点燃后垂直向上运动,火箭内的燃料以18kg/s的速率燃烧,提供31000N的推力。
试求燃料燃尽之前火箭的运动规律。
(高度h,速度v,加速度a随时间变化的情况)假定空气阻力D ∝v2, D=k*v2, k=0.3822 N*S2/m2。
解:本题利用Matlab求解过程如下:在MATLAB命令窗口执行>> clear>> a=0;>> v=0;>> h=0;>> aa(1:59)=0;>> vv(1:59)=0;>> hh(1:59)=0;>> for t=0:58aa(t+1)=a;vv(t+1)=v;hh(t+1)=h;l1=(9.8*18*t-0.3822*v^2+31000-1400*9.8)/( 1400-18*t);l2=(9.8*18*(t+0.5)-0.3822*(v+0.5*l1)^2+31000-1400*9.8)/(1400-18*(t+0.5)); l3=(9.8*18*(t+0.5)-0.3822*(v+0.5*l2)^2+31000-1400*9.8)/(1400-18*(t+0.5)); l4=(9.8*18*(t+1)-0.3822*(v+l3)^2+31000-1400*9.8)/( 1400-18*(t+1));h=h+v+(l1+l2+l3)/6;v=v+(l1+2*l2+2*l3+l4)/6;a=l1;end>> t=0:1:58;○1输入命令>> plot(t, aa,'r','LineWidth',2)得燃料燃尽前火箭飞行加速度变化曲线运行>> [t;aa]'得火箭飞行中加速度具体数据ans =0 01.000000000000000 12.3428571428571432.000000000000000 12.5882391353900853.000000000000000 12.7500563343637684.000000000000000 12.8224167027991375.000000000000000 12.8017614062130046.000000000000000 12.6871474793833887.000000000000000 12.4803824997476558.000000000000000 12.1859927919667659.000000000000000 11.81102349364022110.000000000000000 11.36468637522382411.000000000000000 10.85788687081145212.000000000000000 10.30267294687005013.000000000000000 9.71165369600690214.000000000000000 9.09743453012283315.000000000000000 8.47210933379155216.000000000000000 7.84683954413271617.000000000000000 7.23153787358350718.000000000000000 6.63466226065696419.000000000000000 6.06311518646046620.000000000000000 5.52223569746864621.000000000000000 5.01586667252432222.000000000000000 4.54647789380093923.000000000000000 4.11532581499936424.000000000000000 3.72263289340209025.000000000000000 3.36777228575659226.000000000000000 3.04944701534642927.000000000000000 2.76585595755594228.000000000000000 2.51484187625120129.000000000000000 2.29401912245700430.000000000000000 2.10088043498854631.000000000000000 1.93288358686951732.000000000000000 1.78751947040075033.000000000000000 1.66236369478680034.000000000000000 1.55511397232646135.000000000000000 1.46361557331463936.000000000000000 1.38587700395899337.000000000000000 1.32007785928313838.000000000000000 1.26457056388743739.000000000000000 1.21787746534880840.000000000000000 1.17868450607912341.000000000000000 1.14583248035056042.000000000000000 1.11830668929079343.000000000000000 1.09522563961762444.000000000000000 1.07582929101099345.000000000000000 1.05946724020834746.000000000000000 1.04558713435446347.000000000000000 1.03372352881725748.000000000000000 1.02348734264703549.000000000000000 1.01455601541566350.000000000000000 1.00666442996568051.000000000000000 0.99959663463942352.000000000000000 0.99317837421125853.000000000000000 0.98727041970092754.000000000000000 0.98176267247720355.000000000000000 0.97656900677018056.000000000000000 0.97162280629547257.000000000000000 0.96687314469179458.000000000000000 0.962281555544803 ○2输入命令plot(t, vv,'g','LineWidth',2)得燃料燃尽前火箭飞行速度变化曲线运行>> [t;vv]'得火箭飞行中速度具体数据ans =0 01 12.47221033291382 25.14859865803973 37.94247477466464 50.76239405614845 63.51464315701586 76.10593656299687 88.44616545539628 100.451030111789 112.04439422860810 123.16022350210111 133.7440082908212 143.75361596642313 153.15956644632514 161.94476842077215 170.10378919257316 177.64175495809617 184.57298992609918 190.91950284240219 196.70942048350120 201.97545237231521 206.75345230015122 211.0811********23 214.99689048355324 218.53896445078725 221.74457738991926 224.64939977519627 227.28711136337228 229.68911067400429 231.88434170507530 233.89921726903931 235.75761953723932 237.48096024095133 239.08828517202934 240.59640991767735 242.020*********36 243.37211856489437 244.66363889223138 245.90417600157539 247.10187370470240 248.26363998409441 249.39529677733742 250.50171889061843 251.58696134821244 252.65437492945345 253.70670998331346 254.74620886322247 255.77468750774548 256.79360682026449 257.80413458414750 258.80719869830651 259.80353253892152 260.79371325234953 261.7781937666954 262.75732927884255 263.73139893347756 264.70062336266657 265.66517870215258 266.625207644371 ○3输入命令>> plot(t, hh,'b','LineWidth',2)得燃料燃尽前火箭飞行高度时间变化曲线运行>> [t;hh]'得火箭飞行过程中高度具体数据ans =0 01 6.215658520407712 25.01258223286623 56.55209543058494 100.9062607015555 158.0543438047046 227.8818819853917 310.182********8 404.66236384119710 628.59189496914611 757.0903********12 895.88845811881713 1044.3963050495414 1202.0006618702415 1368.0771*******16 1542.0012728424917 1723.158482871218 1910.9524599680419 2104.8120991452720 2304.1968382571821 2508.6005113101622 2717.5538316988823 2930.6256637048224 3147.4232604062425 3367.5916517920926 3590.8123616153527 3816.8016185809628 4045.3082097125229 4276.1111035555730 4509.0169500850931 4743.8575440999832 4980.4873203651333 5218.7809322900334 5458.6309517211735 5699.9457154829236 5942.6473345075837 6186.6698735498838 6431.9577033482939 6678.4640224283240 6926.1495423027741 7174.9813273933742 7424.9317793819743 7675.9777547316244 7928.0998*******45 8181.2815187518346 8435.50898170547 8690.7702969745248 8947.0552*******49 9204.3547433037750 9462.6610118392951 9721.9669252538552 9982.266053650854 10505.820688321655 10769.065479724356 11033.281902896557 11298.465204156458 11564.6107884638。