材料力学第三章扭转
材料力学 第三章 扭转
d T dx GI p
d t r Gr dx
Tr tr Ip
Tr tr Ip
上式为等直圆杆在扭转时横截面上任一点处切 应力的计算公式。
Tr tr Ip
2
b z
t'
dx
c c'
3.4 圆轴扭转时的应力 3.4.1 横截面上的应力 1) 变形几何关系 在小变形条件下, 等直圆杆在扭转时横截面上也 只有切应力。为求得此应力, 需从几何关系、物 理关系和静力关系三个方面着手。 为研究横截面上任一点处切应变随点的位臵而 变化的规律, 先观察一个实验。
3.4 圆轴扭转时的应力 实验:预先在等截面圆杆的表面画上任意两个相 邻的圆周线和纵向线。在杆的两端施加外 力偶矩Me。
3.3 薄壁圆筒的扭转
薄壁圆筒扭转时, 横截面上 任一点处的切应力t都是相 等的, 而其方向与圆周相切。 横截面上的内力与应力间 的静力关系为:
n
r0 x
t dA
Me
n
t dA r
A
0
t r0 dA t r0 2 r d T
A
对于薄壁圆筒, r可由平均半径r0代替。
M x 0, T M e 0
T Me
取右侧为研究对象其扭矩与取左侧为研究对象 数值相同但转向相反。
3.2.2 扭矩及扭矩图 扭矩的符号规定如下: 采用右手螺旋法则, 如果 以右手四指表示扭矩的转向, 则姆指的指向离 开截面时的扭矩为正。
反之, 姆指指向截面时则扭矩为负。
3.2.2 扭矩及扭矩图
M2
M3
M1 n
A
M4
B
C
D
M2
M3
M1
材料力学 第03章 扭转
sin 2 , cos 2
由此可知:
sin 2 , cos 2
(1) 单元体的四个侧面( = 0°和 = 90°)上切 应力的绝对值最大; (2) =-45°和 =+45°截面上切应力为零,而 正应力的绝对值最大;
[例5-1]图示传动轴,主动轮A输入功率NA=50 马力,从 动轮B、C、D输出功率分别为 NB=NC=15马力 ,ND=20马 力,轴的转速为n=300转/分。作轴的扭矩图。
解:
NA 50 M A 7024 7024 1170 N m n 300 NB 15 M B M C 7024 7024 351 m N n 300 NC 20 M D 7024 7024 468N m n 300
第3章
扭
转
§3.1
一、定义 二、工程实例 三、两个名词
概
述
一、定义
Me Me
扭转变形 ——在一对大小相等、转向相反的外力偶矩
作用下,杆的各横截面产生相对转动的
变形形式,简称扭转。
二、工程实例
1、螺丝刀杆工作时受扭。
Me
主动力偶
阻抗力偶
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
公式的使用条件:
1、等直的圆轴, 2、弹性范围内工作。
圆截面的极惯性矩 Ip 和抗扭截面系数Wp
实心圆截面:
2 A
I p d A (2π d )
2
d 2 0
O
2 π(
4
d /2
4
)
0
πd 4 32
d
d A 2π d
材料力学第三章 扭转
n
250
横截面上的最大切应力为
max
T Wt
T (D4 d 4)
16D
16 0.55573000 Pa 19.2MPa [ ] 50MPa (0.554 0.34 )
满足强度要求。
跟踪训练 7.机车变速箱第II轴如图所示,轴所传递的功率为
p 5.5KW,转速n 200r / min,材料为45钢,
(3)主动轮放在两从动轮之间可使最大扭矩取最小值
B
A
C
Me2
Nm
M e1
Me3
4220
2810
本章小结
1.外力偶矩的计算 内力的计算——扭矩图
P M e 9549 n (N m)
2.圆轴扭转切应力公式的建立
τρ
Tρ Ip
强度条件的应用
max
Tmax Wt
[ ]
刚度条件的应用
' max
T
180 [']
(3)主动轮和从动轮应如何安排才比较合理。
再根据平衡条件,可得 Me1 Me2 Me3 (2810 4220)N m 7030N m
所作扭矩图如右图
(1)试确定AB段的直径d1和BC段的直径d2。
根据强度条件确定AB直径d1
AB
TAB Wt
16TAB
d12
[ ]
根据刚度条件确定AB直径d1
mB
(a)
1
350 2
C
1
2
T1
11463
446
A
D
3
mB
(b)
(c) mB
mC
T2
mC
mA T3
mD
T1 350N m 350 1 350 2
材料力学:第三章扭转强度
解:
A
TA
Ip
1000 0.015 0.044 (1 0.54 )
63.66MPa32max来自T Wt1000
0.043 (1 0.54 )
84.88MPa
16
min
max
10 20
42.44 MPa
例:一直径为D1的实心轴,另一内外径之 比α=d2/D2=0.8的空心轴,若两轴横截面上 的扭矩相同,且最大剪应力相等。求两轴外直
NA=50 马力,从动轮B、C、D输出功率分 别为 NB=NC=15马力 ,ND=20马力,轴的 转速为n=300转/分。作轴的扭矩图。
解:
mA
7024
NA n
7024 50 300
1170 N m
mB
mC
7024
NB n
7024 15 300
351 N m
mD
7024 NC n
/m
例:实心圆轴受扭,若将轴的直径减小一半
时,横截面的最大剪应力是原来的 8 倍?
圆轴的扭转角是原来的 16 倍?
max
T Wt
T
d3
16
Tl Tl
GIp
d4
G
32
例:图示铸铁圆轴受扭时,在_45_ 螺_旋_ 面上 发生断裂,其破坏是由 最大拉 应力引起的。 在图上画出破坏的截面。
例:内外径分别为20mm和40mm的空心圆截 面轴,受扭矩T=1kN·m作用,计算横截面上A 点的切应力及横截面上的最大和最小切应力。
7024 20 468 N m 300
N A 50 PS N B N C 15 PS N D 20 PS n = 300 rpm
mA 1170 N m mB mC 351 N m mD 468 N m
材料力学力S03扭转
4M
2M
第三章
扭转
8
受扭杆件内力计算的例题
例1: : 解: T1=M T2=2M T3=-2M 绘出扭矩图 最后总结规律: 最后总结规律: 左上右下” “左上右下” 自己证明。 自己证明。
M M 4M 2M
M
1 T1 1 M
M
2 T2
2
T3 3
2M
M
2M
3
T
第三章 扭转
−2 M
9
受扭杆件内力计算的例题
1.1 变形几何关系
通过实验知,圆截面杆发生扭转变形后: 通过实验知,圆截面杆发生扭转变形后:横截面仍 为平面,仍垂直于轴线,绕圆心刚体旋转; 为平面,仍垂直于轴线,绕圆心刚体旋转;横截面绕圆 心的角位移为扭转角;半径仍为直线段且长度不变。 心的角位移为扭转角;半径仍为直线段且长度不变。 这一规律称为圆截面杆扭转变形的平面假设。 这一规律称为圆截面杆扭转变形的平面假设。 平面假设
例2: : 如图杆件,已知m,试绘制扭矩图。 如图杆件,已知 ,试绘制扭矩图。
Me
m
Me
l
第三章
扭转
10
受扭杆件内力计算的例题
例2: : 解: 轴所受力系是连续分布的, 轴所受力系是连续分布的, 无须分段。默认坐标x轴起 无须分段。默认坐标 轴起 点左端,沿轴线向右。 点左端,沿轴线向右。 Me=ml/2 T=Me-mx=m(l/2-x) 该杆上的载荷力系关于杆中 截面对称 可以发现, 的 对称。 截面对称。可以发现,T的 分布关于杆中截面是反对称 分布关于杆中截面是反对称 的。
第三章
扭转
21
习题
• P84, 3-2 • P85, 3-5
第三章
材料力学-第三章扭转
3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件
0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析
圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16
强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3
4
3
d 0.886 d
2
Mn
a
2
Mn 0.208 0.886 d
b
6.913
材料力学第3章扭转
τ ρ = Gγ ρ
=G
ρdϕ
dx
22
C)静力平衡关系 C)静力平衡关系
T = ∫ A dA ⋅ τ ρ ⋅ ρ
2 dϕ = ∫ A Gρ dA dx
τ ρ = Gγ ρ
=G
dA
ρdϕ
dx
ρ
O
=G
dϕ ∫ A ρ 2dA dx
令
dϕ T = GI p dx
dϕ T = dx GIp
I p = ∫ A ρ 2dA
由公式
Pk/n
11
§3-2、外力偶矩 扭矩和扭矩图
(2)计算扭矩 (2)计算扭矩
(3) 扭矩图
12
§3-3、纯剪切
1、薄壁圆筒扭转:壁厚 、薄壁圆筒扭转:
t≤
1 r0 10
为平均半径) (r0:为平均半径)
A)观察实验: )观察实验:
实验前: 实验前: ①绘纵向线,圆周线; 绘纵向线,圆周线; ②施加一对外力偶 m。 。
16
纯剪切的概念: 纯剪切的概念:
当单元体的侧面上只有剪应力而无正应力时, 当单元体的侧面上只有剪应力而无正应力时, 就称为纯剪切。 就称为纯剪切。
3、剪应变与扭转角
设轴长为L,半径为R 设轴长为L 半径为R Φ称为扭转角,是用来表示轴变形的量; 称为扭转角,是用来表示轴变形的量; 且的剪应变 γ Φ的关系如下: 与 的关系如下:
∑ mz = 0
a dy
γ τ´
dx
τ´
b
τ ⋅ t ⋅ dxdy = τ ′ ⋅ t ⋅ dxdy
故
τ
c z
τ
d t
τ =τ′
上式称为剪应力互等定理。 上式称为剪应力互等定理。 为剪应力互等定理
第三章扭转
T=Fs×r
材料力学
0
Fs=2 r
0
扭转/圆轴扭转时的应力
一.圆轴扭转时的应力分布规律
T
T
材料力学
扭转/圆轴扭转时的应力
1. 单元格的变化
A
B
C
A B
C
D
D
现象一: 方格的左右两边发生相对错动
横截面上存在切应力
方格的左右两边距离没有发生改变 现象二:
材料力学
横截面上没有正应力
2. 半径的变化
材料力学
扭转/纯剪切
§3.3 纯剪切
材料力学
相关概念
纯剪切:单元体各个面上只承受切应力而没有正应力。
单元体:是指围绕受力物体内一点截取一边长为无限小 的正立方体,以表示几何上的一点。
材料力学
扭转/纯剪切
一.薄壁圆筒扭转时的切应力
纯剪切的变形规律通过薄壁圆筒的纯扭转进 行研究。 受扭前,在薄壁圆筒的表面上用圆周线和 纵向线画成方格。
扭转/圆轴扭转时的变形
两横截面间相对扭转角的计算:
=TL/GIP
T:扭矩;
L:两横截面间的距离; G:切变模量; IP:极惯性矩。
材料力学
扭转/圆轴扭转时的变形
=TL/GIP
GIP越大,则越小。 GIP称为抗扭刚度。
材料力学
扭转/圆轴扭转时的变形
`=/L
`:单位长度扭转角(rad/m)。
思路:
最大扭矩
最大切应力
max
校核强度
相等
强度相同,则两轴的最大切应力 求出实心轴直径
材料力学
两轴面积比即为重量比
扭转/圆轴扭转时的应力
计算Wt:
3 Wt=D
材料力学第三章扭转
传动轮的转速n 、功率P 及其上的外力偶矩Me之
间的关系:
Me
=
P ×103 × 60 2πn
=
9.549 ×103
P n
(N • m)
Me2
Me1nMe3Fra bibliotek从动轮
主动轮 从动轮
主动轮上的外力偶矩转向与传动轴的转向相同, 从动轮上的外力偶矩转向与传动轴的转向相反。
12
二、扭矩及扭矩图
圆轴受扭时其横截面上的内力偶矩称为扭矩, 用符号T表示。
τ dA r0 x
∫ T = τr0 A d A = τr0 A
n δ
A = 2πr0δ
A:平均半径所作圆的面积。
r0
得
τ
=
T r0 A
=
T
2πr02δ
28
思考:竹竿扭转破坏沿纵向还是沿横向开 裂?纵向截面上是否存在应力?
微体互垂面 上切应力的 关系?
dx
τ1
τ2,
τ1,dy
τ2 dz
x
z
29
二、单元体·切应力互等定理
得 τ′=τ
30
切应力互等定理
y
dz
τ'
dy
z
aτ
b
O τ'
dx
d c
τ
该定理表明:在单元体
相互垂直的两个平面上,剪 应力必然成对出现,且数值 相等,两者都垂直于两平面 的交线,其方向则共同指向 x 或共同背离该交线。
τ =τ′
τ'
a
d
单元体在其两对互相 垂直的平面上只有切应力
τ
而无正应力的状态称为纯
4.78
T 图(kN·m)
材料力学第3章 扭转
第一节 概 述 扭转是杆件变形的基本形式之一。在日常生活 和工程中,以扭转变形为主的杆件比较常见,如钥 匙、汽车转向轴、螺丝刀、钻头、皮带传动轴或齿 轮传动轴、门洞上方的雨篷梁、主梁等。
1
图3.1
图3.2
2
图3.3
3
第二节 外力偶矩计算 扭矩与扭矩图 一、外力偶矩计算 作用在扭转杆件上的外力偶矩Me,常可以由 外力向杆的轴线简化而得。但是,对于传动轴,通 常知道它所传递的功率P(常用单位为kW)和转 速n(常用单位为r/min)。由理论力学知识
11
图3.9
图3.10
12
三、剪切胡克定律 对于线弹性材料,试验表明,当切应力不超过 材料的剪切比例极限τp时,切应力τ与切应变γ保持 线性关系。如图3.10所示为低碳钢试件测得的τγ图, 可得
13
第四节 圆轴扭转时横截面上的切应力 对于实心圆轴和空心圆轴(非薄壁圆筒),扭 转时不能再假设切应力沿半径方向为均匀分布。这 时需要从圆轴的变形入手,综合考虑几何、物理、 静力学3个方面,推导圆轴扭转时横截面上切应力 的计算公式。
14
一、扭转试验及假设 取一等截面圆轴,在其表面等间距地画上纵向 线和圆周线,形成大小相同的矩形网格,如图3.11 (a)所示。在两端施加力偶Me后,从试验中观察到 的现象与薄壁圆筒相同。根据这些试验现象,由表 及里,可以推断:横截面上无正应力;横截面上必 有切应力存在,其方向垂直于半径。
15
图3.11
若圆轴的扭矩和抗扭刚度分段为常数,则
27
二、刚度条件 机械工程中某些受力较大的主轴,除了满足扭 转强度条件以外,还需要对其扭转变形加以限制, 这就是扭转刚度条件。工程中常限制轴的单位长度 扭转角θ不超过其许用值,刚度条件表述为
材料力学-第三章
21
第三章 扭转
3.5 圆轴扭转强度计算
22
扭转失效与扭转极限应力
扭转屈服应力:s 扭转强度极限:b 扭转强度极限:b 扭转屈服应力(s )和扭转强度极限(b ),统 称为材料的扭转极限应力u。
23
圆轴扭转强度条件
材料的扭转许用应力为:
u
n
n为安全系数。
强度条件为:
max
(2) 若将轮1与轮2的位置对调,试求轴内的最大扭矩。
(3) 若将轮1与轮3的位置对调,试求轴内的最大扭矩。
33
提高圆轴扭转时强度和刚度的措施
• 提高轴的转速 • 合理布局主动轮和被动轮的位置 • 采用空心轴 • 选用优质材料,提高剪切模量
34
例3-8:图示圆柱形密圈螺旋弹簧,承受轴向载荷F作用。 所谓密圈螺旋弹簧,是指螺旋升角α很小(例如小于5º )的 弹簧。设弹簧的平均直径D,弹簧丝的直径d,试分析弹簧 丝横截面上的应力并建立相应的强度条件。
第三章 扭转
3.1 扭转的概念
1
扭转的概念
以横截面绕轴 线作相对旋转为 主要特征的变形 形式,称为扭转。
2
受力特点: 变形特点:
受到垂直于构件轴线的外力偶 矩的作用。
构件的轴线保持不变,各横截面绕 轴线相对转动 截面间绕轴线的相对角位移,称为扭转角
使杆发生扭转变形的外力偶,称为扭力偶,其矩 称为扭力偶矩。 凡是以扭转为主要变形的直杆,称为轴。
公式的适用条件:以平面假设为基础;适用胡克定律。
18
圆轴截面的极惯性矩和抗扭截面模量
IP
d4
32
WP
d3
16
19
空心圆截面的极惯性矩和抗扭截面模量
材料力学——第三章 扭转
33
材 料 力 学
表明: 当薄壁圆筒扭转时,其横截面和包含轴线的纵向截
面上都没有正应力; 横截面上便只有切于截面的切应力;
34
材 料 力 学
4、切应力分布规律假设
因为筒壁的厚度很小,可以认为沿筒壁厚度切应力均匀分布;
35
材 料 力 学
5、薄壁圆筒的扭转切应力
T
rm
2 rm t T
m1
m4
15.9(kN m)
A
P2 m2 m3 9.549 4.78 (kN m) n P4 m4 9.549 6.37 (kN m) n
17
B
C
D
材 料 力 学
2、求扭矩
m2
T1 m2 0
T1 4.78kN m
T2 m2 m3 0
材 料 力 学
三、切应变
纯剪切单元体的相对两侧面 发生微小的相对错动, a
´
c
´
b
d
t
使原来互相垂直的两个棱边 的夹角改变了一个微量γ;
圆筒两端的相对扭转角为υ,圆筒 的长度为L,则切应变为
L r
r L
39
材 料 力 学
四、剪切虎克定律:
当剪应力不超过材料的剪切比例
齿轮轴
9
材 料 力 学
§3-2、外力偶矩的计算 扭矩和扭矩图
一.外力偶矩的计算 ——直接计算
M=Fd
10
材 料 力 学
按输入功率和转速计算
已知 轴转速-n 转/分钟 输出功率-P 千瓦 计算:力偶矩M
电机每秒输入功: 外力偶作功:
W P 1000(N.m)
材料力学第3章 扭转
2π
ρ2 ⋅ ρdρdθ ∫0
R
π
2
R4 =
π
32
4
D4
4
I 空心圆轴: 空心圆轴: p = (R − r ) =
π
π
32
薄壁杆: 薄壁杆:I p =
π
2
(D + d )(D+ d)(D− d) = D3t 32 4
2 2 3
π
2
(D4 − d4 )
π
W 圆轴: 圆轴: t = R =
π
16
D3
π (D4 − d4 ) = πD3 (1−α4 ) Wt = π (D3 − d3 ) 空心圆轴: 空心圆轴: Wt =16D 16
弹簧丝横截面上的应力(α<5º) 一、 弹簧丝横截面上的应力
F F
内力: 内力: FS=F T=FD/2 = 应力: 应力:
FS
8FD d 8FD τmax = 3 ( +1) ≈ 3 πd 2D πd
FS 4F τ1 = = 2 A πd T 8FD τ 2max = = 3 Wt πd
8FD d 8FD τmax = 3 ( +1) ≈ 3 πd 2D πd
3) 矩形截面杆的扭转
切应力与截面边界相切
b
角点切 角点切应力为零 中点切 中点切应力最大
h
τmax
T τmax = 2 αhb
τ1 =ντmax
τ1
Tl Tl 中: = 其 :t = βhb3 中 I φ= 3 Gβhb GIt
α、β与h/b有关 、 与 有关 当h>>b时, α=β=1/3 时
钻头横截面直径为20mm, , 钻头横截面直径为 在顶部受均匀的阻抗扭矩 (Nm/m)的作用,许用切 的作用, m 的作用 应力[τ]=70MPa,(1)求许可 应力 , 求许可 的m。(2)若G=80GPa,求 。 若 = , 上端对下端的相对扭转角。 上端对下端的相对扭转角。 mmax= [τ]Wt=110Nm
材料力学 第三章 扭转
为一很小的量,所以
tan 1.0103rad
G
(80 109 Pa)(1.0 103rad) 80 MPa
注意: 虽很小,但 G 很大,切应力 不小
例 3-3 一薄壁圆管,平均半径为R0,壁厚为,长度为l, 横截面上的扭矩为T,切变模量为G,试求扭转角。
解:
T
2πR02
G
T
2πGR02
塑性材料:[] =(0.5~0.6)[s] 脆性材料:[] = (0.8~1.0)[st]
例 3-1 已知 T=1.5 kN . m,[τ] = 50 MPa,试根据强度条 件设计实心圆轴与 a = 0.9 的空心圆轴,并进行比较。 解:1. 确定实心圆轴直径
max [ ]
max
T Wp
T πd 3
表示扭矩沿杆件轴线变化的图线(T-x曲线)-扭矩图
Tmax ml
[例3-1]已知:一传动轴, n =300r/min,主动轮输入 P1=500kW, 从动轮输出 P2=150kW,P3=150kW,P4=200kW,试绘制扭矩图。
解:1、计算外力偶矩
m2
m3
m1
m4
m1
9.55
P1 n
9.55
一、薄壁圆筒扭转时的应力
t
1、试验现象
壁厚
t
1 10
r0(r0:平均半径)
rO
各圆周线的形状不变,仅绕轴线作相对转动,距离不变。 当变形很小时,各纵向平行线仍然平行,倾斜一定的角度。
由于管壁薄,可近似认 为管内变形与管表面相 同,均仅存在切应变γ 。
2、应力公式 微小矩形单元体如图所示:
´
①无正应力
d T
dx GI p
材料力学 第 三 章 扭转
以及间距不变,半径仍为直线。
定性分析横截面上的应力
(1)∵ε = 0∴σ = 0
(2)∵ γ ≠ 0∴τ ≠ 0
因为同一圆周上切应变相同,所以同 一圆周上切应力大小相等,并且方向 垂直于其半径方向。
切应变的变化规律:
D’
取楔形体
O1O2ABCD 为 研究对象
γ ≈ tgγ = DD' = Rdϕ
dx dx
微段扭转
变形 dϕ
γ ρ ≈ tgγ ρ = dd′ = ρ ⋅ dϕ
dx dx
γ
ρ
=
ρ
dϕ
dx
dϕ / dx-扭转角变化率
圆轴横截面上任一点的切应变γρ
与该点到圆心的距离ρ成正比。
(二)物理关系:由应变的变化规律→应力的分布规律
弹性范围内 τ max ≤ τ P
τ max
=
T
2π r 2t
=
180 ×103
2π × 0.132× 0.03
= 56.5MPa
(2) 利用精确的扭转理论可求得
τ max
=
π D3
T
(1−α 4 )
16
=
180 ×103
π×
0.293
⎡ ⎢1 −
⎜⎛
230
⎟⎞
4
⎤ ⎥
16 ⎢⎣ ⎝ 290 ⎠ ⎥⎦
= 62.2MPa
思考题
由两种不同材料组成的圆轴,里层和外层材料的 切变模量分别为G1和G2,且G1=2G2。圆轴尺寸如 图所示。圆轴受扭时,里、外层之间无相对滑动。 关于横截面上的切应力分布,有图中(A)、(B)、 (C)、(D)所示的四种结论,请判断哪一种是正 确的。
材料力学第三章扭转
材料力学
中南大学土木工程学院
三、扭 矩
x 扭矩的矢量表示
Me
Me
Me
T
定义:扭转内力偶矩, 1、定义:扭转内力偶矩,用T表示 大小: 2、大小:可用截面法取局部平衡求出 扭矩大小= 截面一侧所有外扭转力偶矩之代数和 T =ΣMe 正负号: 3、正负号:扭矩矢与截面外法线一致为正 (图中T为正,必须按“设正法”画扭矩) 为正,必须按“设正法”画扭矩) 单位: 4、单位:N·m 或 kN·m
τ =τ′
切应力互等定理
在单元体相互垂直的两个平面上, 在单元体相互垂直的两个平面上,切应力必然成对出 且数值相等,两者都垂直于两平面的交线, 现,且数值相等,两者都垂直于两平面的交线,其方 向则共同指向或共同背离该交线。 向则共同指向或共同背离该交线。
材料力学
中南大学土木工程学院
单元体的四个侧面上只有切应力而无正应 纯剪切应力状态。 力作用,这种应力状态称为纯剪切应力状态 力作用,这种应力状态称为纯剪切应力状态。
O
定义内径与 外径的比值
d α= D
D d
πD πD 4 Ip = (1 − α 4 ) 32
I p π(D 4 − d 4 ) πD 3 Wp = = = (1 − α 4 ) D 16 D 16 2
特别注意:抗扭截面系数不满足叠加法的计算,括号里的仍是四次方。 特别注意:抗扭截面系数不满足叠加法的计算,括号里的仍是四次方。
材料力学 中南大学土木工程学院
分布如图所示。 横截面上各点处的切应力τ 分布如图所示 取微面积dA,则横截面上的分布 的合成其主矢为零, 力系τ dA的合成其主矢为零,主矩就 是扭矩T。
δ
r0
O
τ
∫
材料力学第三章
等直圆杆扭转时的应力·强度条件 §3-4 等直圆杆扭转时的应力 强度条件
3.理论分析 3.理论分析 变形几何关系: (1) 变形几何关系: G1G′ ρ ⋅ dϕ γ ρ ≈ tanγ ρ = =
dϕ γρ = ρ dx dϕ :扭转角 沿x轴的变化 轴的变化 ϕ dx 率。对给定截面上的各 它是常量。 点,它是常量。
28
等直圆杆扭转时的应力·强度条件 §3-4 等直圆杆扭转时的应力 强度条件
5
§3-2 薄壁圆筒的扭转
1 为平均半径) 薄壁圆筒: 薄壁圆筒:壁厚 δ ≤ r0 (r0:为平均半径) 10
实验: 实验:
实验前:绘纵向线,圆周线; 实验前:绘纵向线,圆周线;
然后施加一对外力偶 Me。
6
§3-2 薄壁圆筒的扭转
当其两端面上作用有外力 偶矩时,任一横截面上的 内力偶矩——扭矩(torque) T = Me
4
§3.1 概述
工程实际中,有很多构件,如车床的光杆、 工程实际中,有很多构件,如车床的光杆、搅拌机 轴、汽车传动轴等,都是受扭构件。 汽车传动轴等,都是受扭构件。 还有一些轴类零件,如电动机主轴、水轮机主轴、 还有一些轴类零件,如电动机主轴、水轮机主轴、 机床传动轴等,除扭转变形外还有弯曲变形, 机床传动轴等,除扭转变形外还有弯曲变形,属于组合 变形。 变形。 本章研究杆件发生除扭转变形外,其它变形可忽略 的情况,并且以圆截面(实心圆截面或空心圆截面)杆为 主要研究对象。此外,所研究的问题限于杆在线弹性范 围内工作的情况。
Ⅰ. 横截面上的应力 表面 变形 情况 横截面 上应力 变化规 律 内力与应力的关系 横截面上应 力的计算公 式
23
横截 推断 面的 变形 情况
横截面 上应变 应力-应变关系 的变化 规律
材料力学第3章-扭转
第3章 扭转1、扭转的概念:杆件的两端个作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动,即为扭转变形。
2、外力偶矩的计算{}{}{}min /95491000602r KW m N e e n P M P M n=⇒⨯=⨯⨯⋅π 式中,e M 为外力偶矩。
又由截面法:e e M T M T =⇒=-0 T 称为n n -截面上的扭矩。
规定:若按右手螺旋法则把T 表示为矢量,当矢量方向与研究部分中截面的外法线的方向一致时,T 为正;反之为负。
3、纯剪切(1)薄壁圆筒扭转时的切应力 δπττδπ222r M r r M ee =⇒••=(2)切应力互等定理:在单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于平面的交线,方向则共同指向或背离这一交线。
(3)切应变 剪切胡克定律:当切应力不超过材料的剪切比例极限时,切应变γ与切应力τ成正比。
γτG = G 为比例常数,称为材料的切变模量。
弹性模量E 、泊松比μ和切变模量G 存在关系:)1(2μ+=EG 4、圆轴扭转时的应力(1)变形几何关系:距圆心为ρ处的切应变为dxd ϕργρ=(2)物理关系:ρτ为横截面上距圆心为ρ处的切应力。
dxd G G ϕρτγτρρρ=⇒= (3)静力关系:内力系对圆心的力矩就是横截面的扭矩:dA d d GdA T AxA⎰⎰==2ρρτϕρ 以p I 表示上式右端的积分式:dA I Ap ⎰=2ρ p I 称为横截面对圆心O 点的极惯性矩(截面二次极矩)横截面上距圆心为ρ的任意点的切应力:pI T ρτρ=ρ最大时为R ,得最大切应力:pI TR =max τ引用记号RI W p t =t W 称为抗扭截面系数。
则tW T =max τp I 和t W 的计算(1)实心轴:3224420032D R d d dA I RAp ππθρρρπ====⎰⎰⎰16233D R RI W p t ππ===(2)空心轴:)1(32)(324444202/2/32αππθρρρπ-=-===⎰⎰⎰D d D d d dA I D d Ap)1(16)(164344αππ-=-==D d D DRI W p t5、圆轴扭转时的变形pGI Tl =ϕ ϕ为扭转角,l 为两横截面间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
max
T Wt
T
d3
16
6.一直径为D1的实心轴,另一内外径之比α=d2/D2=0.8的空 心轴,若两轴横截面上的扭矩相同,且最大切应力相等。求两 轴外直径之比D2/D1。 解:
由
得:
7.在强度相同的条件下,用d/D=0.5的空心圆轴取代实心圆轴 ,可节省材料的百分比为多少? 解: 设实心轴的直径为 d1 ,由
第三章 扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
例题3.1 传动轴,已知转速 n=300r/min,主动轮A输入功率
PA=45kW,三个从动轮输出功率分别为 PB=10kW,PC=15kW, PD=20kW.试绘轴的扭矩图.
解: (1)计算外力偶矩 由公式 M e 9549P / n
§3.2 外力偶矩的计算 扭矩和扭矩图
4、圆轴扭转时的变形及刚度计算
Tl
GI P
T 180
GIP
4.图示等截面圆轴上装有四个皮带轮,如何合理安排,现有四种答
案: (A) 将轮C与轮D对调;
1.0
0.2
0.2
0.6
(B) 将轮B与轮D对调;
(C) 将轮B与轮C对调;
(D) 将轮B与轮D对调,然后再将
A
B
C
轮B与轮C对调。
(单位 : kN m) D
5.实心圆轴受扭,若将轴的直径减小一半时,横截面的最大切
500
AB
T1l1 GIP1
2.5103 750103 80109 π 754 1012
7.55 103
rad
32
BC
T2l2 GIP2
1.5103 500103 80109 π 504 1012
15.28103 rad
40MPa
D2
3
π
16 716.2
1- 4 40106
0.046m=46mm
d2=0.5D2=23 mm
确定实心轴与空心轴的重量之比
实心轴
空心轴
d1=45 mm
D2=46 mm d2=23 mm
长度相同的情形下,二轴的重量之比即为横截面面积之比:
A1
d2 1
32
AC AB BC 7.55103 15.28103 7.73103 rad
§3.5 圆=200Nm,轴的直径d=40mm,材
料的[τ]=40MPa,剪切弹性模量G=80GPa,许可单位长度转 角[φ/]=1 ⁰/m。试校核轴的强度和刚度。
解:1.外力
2.扭矩图
3.直径d1的选取
按强度条件
按刚度条件
4.直径d2的选取
按强度条件
按刚度条件
5.选同一直径时
6.将主动轮按装在两从 动轮之间
受力合理
小结
1、受扭物体的受力和变形特点 2、扭矩计算,扭矩图绘制
3、圆轴扭转时横截面上的应力计算及强度计算
T
IP
max
T Wt
得:
§3.4 圆轴扭转时的应力
例题3.4
已知:P=7.5kW, n=100r/min,最
大切应力不得超过40MPa,空心圆轴
的内外直径之比 = 0.5。二轴长
度相同。
求: 实心轴的直径d1和空心轴的外 直径D2;确定二轴的重量之比。
解: 首先由轴所传递的功率计算作用在轴上的扭矩
P
7.5
Mx
T
(2)计算扭矩 (3) 扭矩图
§3.2 外力偶矩的计算 扭矩和扭矩图
传动轴上主、 从动轮安装的位 置不同,轴所承 受的最大扭矩也 不同。
MB
MC
B
C
MD
MA
D
A
T3
MA
A
T3 M A 1432N m
Tmax 1432N m
318N.m
795N.m
1432N.m
§3.2 外力偶矩的计算 扭矩和扭矩图
9549
n
9549 100
716.2N m
实心轴
max1
T
WP1
16T πd13
40MPa
d1
3
16 716.2 π 40 106
0.045m=45mm
§3.4 圆轴扭转时的应力
空心轴
max2
T
WP 2
16T
πD23 1 4
45 103
2
1
=1.28
A2
D2 2
12
46103 1 0.52
传动轴的转速为n=500r/min,主动轮A 输入功率
P1=400kW,从动轮C,B 分别输出功率P2=160kW,
P3=240kW。已知[τ]=70MPa,[θ]=1°/m,G=80GPa。 (1)试确定AC 段的直径d1 和BC 段的直径d2; (2)若AC 和BC 两段选同一直径,试确定直径d; (3)主动轮和从动轮应如何安排才比较合理?
max
T Wt
1.分别画出图示三种截面上扭转切应力沿半径各点处的分布规律。
T
T
T
(a) 圆截面
(b) 空心圆截面 (c) 薄壁圆截面
T Ip
2. 切应力互等定理是由单元体:
(A) 静力平衡关系导出的; (B) 几何关系导出的;
(C) 物理关系导出的;
(D) 强度条件导出的。
3.切应力互等定理适用情况有下列四种答案: (A)纯剪切应力状态; (B)平面应力状态,而不论有无正应力作用; (C)弹性范围; (D)空间任意应力状态。
例题3.6 已知:传动轴m1=2.5kNm, m2=4kNm, m3=1.5kNm, G=80GPa
求:截面A相对截面C的扭转角 AC
75
解:(1)计算扭矩
50
T1 m1 2.5k N m
T2 m3 1.5kN m
A
(2)计算A、C两截面间的相对扭转角
750
B
C