高中数学必修一 函数与方程教学设计(3)
2018-2019学年人教A版高中数学必修1课件:3.1.1函数的应用
(6)在(k1,k2)内有且仅有一个实根的充要条件是
Δ=0, f(k1)f(k2)<0,或k1<-2ba<k2.
例3 方程x2-2ax+4=0的两根均大于1,求实数a的取值范 围.
【解析】 方法一:设f(x)=x2-2ax+4,由于方程x2-2ax
由于相邻两个零点之间的所有函数值保持同号,函数的图 像如图所示.
(2)不等式xf(x)<0同解于
x>0, f(x)<0
或xf(<0x,)>0,
结合函数图
像得不等式的解集为(0,2)∪(-2,0).
探究 根据函数的零点定义与性质,可以用来帮助画函数
的图像,结合函数图像不仅可以直观的研究函数的性质,而且
∴函数y=-x2-2x+3的零点为-3,1. y=-x2-2x+3=-(x+1)2+4. 画出这个函数的简图(如右图),从图像 上可以看出,当-3<x<1时,y>0.
当x<-3或x>1时,y<0. ∴函数y=-x2-2x+3的零点是-3,1. y>0时,x的取值范围是(-3,1); y<0时,x的取值范围是(-∞,-3)∪(1,+∞). 探究2 由于一元二次不等式在前面没有讲过,因此对本题 的解法要正确作出函数的简图,从而解决问题.
课时学案
题型一 求函数的零点 例1 求函数f(x)=(x2+x-2)(x2-2x-8)的零点,并指出使 y<0成立的x的取值范围.
【解析】 y=(x2+x-2)(x2-2x-8)=(x+2)(x-1)(x+2)(x -4)=(x+2)2(x-1)(x-4),
高中数学老教材教案
高中数学老教材教案
第一课:函数与方程
1.1 学习目标:了解函数的概念,掌握基本的函数图像与性质,能够解决简单的函数方程。
1.2 教学内容:
(1)函数的定义与符号表示
(2)函数的图像与性质
(3)函数方程的解法
1.3 教学重点与难点:
重点:函数的定义、函数图像与性质、函数方程的解法
难点:函数的概念理解、函数方程的解法
1.4 教学过程:
(1)引入:通过举例引入函数的概念,让学生了解什么是函数。
(2)讲解:介绍函数的定义和符号表示,然后讲解函数的图像与性质。
(3)练习:让学生进行简单的函数图像绘制和性质分析。
(4)总结:对函数的概念和性质进行总结,并让学生进行相关练习。
1.5 作业布置:
(1)课后完成相关练习题目
(2)预习下节课的内容
1.6 教学反思:
通过本节课的教学,学生理解了函数的概念和性质,掌握了相关的解题方法。
但在教学过
程中,应该注意让学生更加深入地理解函数的概念,加强与实际问题的联系,提高学生的
学习兴趣和主动性。
以上是一份高中数学教案范本,希望对您有所帮助。
高中数学第三章函数的应用章末复习课(三)学案(含解析)新人教版必修1
三章函数的应用章末复习课网络构建核心归纳1.函数的零点与方程的根的关系函数f(x)的零点就是方程f(x)=0的解,函数f(x)的零点的个数与方程f(x)=0的解的个数相等,也可以说方程f(x)=0的解就是函数f(x)的图象与x轴交点的横坐标,即函数f(x)的函数值等于0时自变量x的取值.因此方程的解的问题可以转化为函数问题来解决.讨论方程的解所在的大致区间可以转化为讨论函数的零点所在的大致区间,讨论方程的解的个数可以转化为讨论函数的零点的个数.2.函数零点存在性定理(1)该定理的条件是:①函数f(x)在区间[a,b]上的图象是连续不断的;②f(a)·f(b)<0,即f(a)和f(b)的符号相反.这两个条件缺一不可.(2)该定理的结论是“至少存在一个零点”,仅仅能确定函数零点是存在的,但是不能确定函数零点的个数.3.函数应用(1)要解决函数应用问题,首先要增强应用函数的意识.一般来说,解决函数应用问题可分三步:第一步,理解题意,弄清关系;第二步,抓住关键,建立模型;第三步,数学解决、检验模型.其中第二步尤为关键.(2)在解题中要充分运用数形结合、转化与化归、函数与方程等数学思想及策略,寻求解题途径.(3)根据已知条件建立函数解析式是函数应用的一个重要方面.一般分为两类:一类是借助于生活经验、函数知识等建立函数模型,以二次函数模型为主,一般是求二次函数的最值.另一类是根据几何、物理概念建立函数模型.要点一 函数的零点与方程的根 函数的零点与方程的根的关系及应用1.函数的零点与方程的根的关系:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.2.确定函数零点的个数有两个基本方法:利用图象研究与x 轴的交点个数或转化成两个函数图象的交点个数进行判断.【例1】 (1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________;(2)若函数f (x )=|2x-2|-b 有两个零点,则实数b 的取值范围是________.解析 (1)①当x ≤0时,由f (x )=0,即x 2-2=0,解得x =2或x =- 2.因为x ≤0,所以x =- 2.②法一 (函数单调性法)当x >0时,f (x )=2x -6+ln x .而f (1)=2×1-6+ln 1=-4<0,f (3)=2×3-6+ln 3=ln 3>0,所以f (1)·f (3)<0,又函数f (x )的图象是连续的,故由零点存在性定理,可得函数f (x )在(1,3)内至少有一个零点.而函数y =2x -6在(0,+∞)上单调递增,y =ln x 在(0,+∞)上单调递增,所以函数f (x )=2x -6+ln x 在(0,+∞)上单调递增.故函数f (x )=2x -6+ln x 在(0,+∞)内有且只有1个零点.综上,函数f (x )共有2个零点.法二 (数形结合法)当x >0时,由f (x )=0,得2x -6+ln x =0, 即ln x =6-2x .如图,分别作出函数y =ln x 和y =6-2x 的图象.显然,由图可知,两函数图象只有一个交点,且在y 轴的右侧,故当x >0时,f (x )=0只有一个解.综上,函数f (x )共有2个零点.(2)由f(x)=0得|2x-2|=b,在同一坐标系中作出函数y=|2x-2|和y=b的图象,如图所示,由图可知,若f(x)有两个零点,则b的取值范围是(0,2).答案(1)2 (2)(0,2)【训练1】已知关于x的方程a·4x+b·2x+c=0(a≠0),常数a,b同号,b,c异号,则下列结论中正确的是( )A.此方程无实根B.此方程有两个互异的负实根C.此方程有两个异号实根D.此方程仅有一个实根解析由常数a,b同号,b,c异号,可得a,c异号,令2x=t,则方程变为at2+bt+c=0,t>0,由于此方程的判别式Δ=b2-4ac>0,故此方程有2个不等实数根,且两根之积为c<0,故关于t的方程只有一个实数根,故关于x的方程只有一个实数根.a答案 D要点二二分法求方程的近似解(或函数的零点)1.二分法求方程的近似解的步骤(1)构造函数,转化为求函数的零点.(2)明确精确度和函数的零点所在的区间(最好区间左右端点相差1).(3)利用二分法求函数的零点.(4)归纳结论.2.使用二分法的注意事项(1)二分法的实质是通过“取中点”,不断缩小零点所在区间的范围,所以要选好计算的初始区间,保证所选区间既符合条件,又使区间长度尽量小.(2)计算时注意依据给定的精确度,及时检验计算所得的区间是否满足精确度的要求.(3)二分法在具体使用时有一定的局限性,首先二分法只能一次求得一个零点,其次f(x)在(a,b)内有不变号零点时,不能用二分法求得.【例2】设函数f(x)=x3+3x-5,其图象在(-∞,+∞)上是连续不断的.先求值:f(0)=________,f(1)=________,f(2)=________,f(3)=________.所以f(x)在区间________内存在一个零点x0,填下表,结论x0解f(0)=-5,f(1)=-1,f(2)=9,f(3)=31,所以初始区间为(1,2).因为所以x0≈1.125(不唯一).【训练2】若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下:f(1)=-2,f(1.5)=0.625;f(1.25)=-0.984,f(1.375)=-0.260;f(1.438)=0.165.那么方程x3+x2-2x-2=0的一个近似根可以为(精确度为0.1)( )A.1.2B.1.35C.1.43D.1.5解析∵f(1.438)=0.165>0,f(1.375)=-0.260<0,∴函数f(x)在(1.375,1.438)内存在零点,又1.438-1.375<0.1,结合选项知1.43为方程f(x)=0的一个近似根.答案 C要点三函数的实际应用1.建立恰当的函数模型解决实际问题的步骤(1)对实际问题进行抽象概括,确定变量之间的主被动关系,并用x,y分别表示.(2)建立函数模型,将变量y表示为x的函数,此时要注意函数的定义域.(3)求解函数模型,并还原为实际问题的解.2.建模的三个原则(1)简化原则:建立模型,要对原型进行一定的简化,抓主要因素、主变量,尽量建立较低阶、较简便的模型.(2)可推演原则:建立的模型一定要有意义,既能对其进行理论分析,又能计算和推理,且能推演出正确结果.(3)反映性原则:建立的模型必须真实地反映原型的特征和关系,即应与原型具有“相似性”,所得模型的解应具有说明现实问题的功能,能回到具体研究对象中去解决问题. 【例3】 某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为G (x )(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R (x )(万元)满足R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x (0≤x ≤5),11(x >5). 假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题: (1)写出利润函数y =f (x )的解析式(利润=销售收入-总成本); (2)要使工厂有盈利,求产量x 的取值范围; (3)工厂生产多少台产品时,可使盈利最多? 解 (1)由题意得G (x )=2.8+x . ∴f (x )=R (x )-G (x )=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8(0≤x ≤5),8.2-x (x >5). (2)①当0≤x ≤5时,由-0.4x 2+3.2x -2.8>0得x 2-8x +7<0,解得1<x <7,∴1<x ≤5. ②当x >5时,由8.2-x >0,得x <8.2, 所以5<x <8.2.综上,当1<x <8.2时,有y >0,即当产量x 大于100台,小于820台时,能使工厂有盈利. (3)当0≤x ≤5时,函数f (x )=-0.4(x -4)2+3.6, 当x =4时,f (x )有最大值为3.6; 当x >5时,∵函数f (x )单调递减, ∴f (x )<f (5)=3.2(万元).综上,当工厂生产4百台产品时,可使盈利最多,为3.6万元.【训练3】 《中华人民共和国个人所得税法》规定,个人所得税起征点为3 500元(即3 500元以下不必纳税,超过3 500元的部分为当月应纳税所得额),应缴纳的税款按下表分段累计计算:(1) (2)刘丽十二月份缴纳个人所得税款300元,那么她当月工资总额是多少?解 (1)依题意可得: ①当0<x ≤3 500时,y =0. ②当3 500<x ≤5 000时,y =(x -3 500)·3%=0.03x -105.③当5 000<x <8 000时,y =45+(x -5 000)·10%=0.1x -455.综上可得y =⎩⎪⎨⎪⎧0,0<x ≤3 500,0.03x -105,3 500<x ≤5 000,0.1x -455,5 000<x <8 000.(2)因为需交税300元, 故有5 000<x <8 000,所以300=0.1x -455,所以x =7 550. 答:刘丽十二月份工资总额为7 550元.基础过关1.函数f (x )=2x +ln 1x -1的零点所在的大致区间是( )A.(1,2)B.(2,3)C.(3,4)D.(1,2)与(2,3)解析 易知f (x )在(1,+∞)上单调递减,f (2)=1>0,f (3)=23+ln 12=23-ln 2<0,所以f (x )在(2,3)内只有一个零点.答案 B2.实数a ,b ,c 是图象连续不断的函数y =f (x )定义域中的三个数,且满足a <b <c ,f (a )·f (b )<0,f (c )·f (b )<0,则函数y =f (x )在区间(a ,c )上的零点个数为( )A.2B.奇数C.偶数D.至少是2解析 由零点存在性定理,f (a )f (b )<0,f (c )f (b )<0,则y =f (x )在区间(a ,b )上至少有一个零点,在(b ,c )上至少有一个零点,而f (b )≠0,所以y =f (x )在区间(a ,c )上的零点个数为至少2个.选D. 答案 D3.已知函数f (x )=⎩⎪⎨⎪⎧e x+a ,x ≤0,2x -1,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值范围是( ) A.(-∞,-1)B.(-∞,0)C.(-1,0)D.[-1,0)解析 易知当x >0时,2x -1=0有一个根,所以需使函数y =e x+a (x ≤0)有一个零点,即方程e x +a =0(x ≤0)有一个根,即a =-e x .由x ≤0,得-e x∈[-1,0),故a ∈[-1,0). 答案 D4.用二分法求方程x 2=2的正实根的近似解(精确度0.001)时,如果选取初始区间是[1.4,1.5],则要达到精确度要求至少需要计算________次.解析 设至少需要计算n 次,则n 满足0.12n <0.001,即2n >100,由于27=128,故要达到精确度要求至少需要计算7次. 答案 75.方程|x 2-2x |=a 2+1(a >0)的解的个数是________.解析 在同一个坐标系中作出函数y =|x 2-2x |和y =a 2+1的图象,如图所示,易知a 2+1>1,由图知方程有2个解.答案 26.方程x 2-1x=0在(-∞,0)内是否存在实数解?并说明理由.解 不存在.理由如下:因为当x <0时,-1x >0,所以x 2-1x>0恒成立,故不存在x ∈(-∞,0),使x 2-1x=0.7.某地的出租车价格规定:起步价为a 元,可行3公里,3公里以上按每公里b 元计算,可再行7公里;超过10公里按每公里c 元计算(这里a ,b ,c 规定为正的常数,且c >b ),假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)若取a =14,b =2.4,c =3.6,小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(2)求车费y (元)与行车里程x (公里)之间的函数解析式y =f (x ).解 (1)由题意可知,起步价(3公里以内)是14元,则这8公里内的前3公里的收费是14元,超过3公里而10公里以内每公里按2.4元计价,则8-3=5(公里)的收费是5×2.4=12(元),总共收费14+12=26(元),故他应付出租车费26元.(2)3公里以内,即起步价是a 元,即0<x ≤3时,y =a (元);大于3公里而不超过10公里时,即3<x ≤10时,收费y =a +(x -3)b =bx +a -3b (元);大于10公里时,即x >10时,收费y =a +7×b +(x -10)c =cx +a +7b -10c (元).所以y =⎩⎪⎨⎪⎧a ,0<x ≤3,bx +a -3b ,3<x ≤10,cx +a +7b -10c ,x >10.能力提升8.已知函数f (x )的图象如图所示,则它的一个可能的解析式为( )A.y =2xB.y =4-4x +1C.y =log 3(x +1)D.y =3x解析 由于图象过点(1,2),可排除C ,D ;由图象与直线y =4无限接近,但到达不了,即y <4,而y =2x 可无限大,排除A ,选B.答案 B9.若函数f (x )是定义在R 上的偶函数,在区间(-∞,0]上是减函数,且一个零点是2,则使得f (x )<0的x 的取值范围是( ) A.(-∞,-2] B.(-∞,-2]∪(2,+∞) C.(2,+∞)D.(-2,2)解析 ∵函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,∴函数f (x )在[0,+∞)上为增函数,且f (-2)=f (2)=0,作出函数f (x )的示意图,如图,则不等式f (x )<0的解为-2<x <2,故选D.答案 D10.已知函数f (x )=x 2+ax +a -1的两个零点一个大于2,一个小于2,则实数a 的取值范围是________.解析 ∵f (x )的两个零点一个大于2,一个小于2, ∴f (2)<0,∴22+2a +a -1<0,解得a <-1. 答案 (-∞,-1)11.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.解析 设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40),当x =20时,S max =400. 答案 2012.某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 解 (1)租金增加了600元,所以未租出的车有12辆,一共租出了88辆.(2)设每辆车的月租金为x 元(x ≥3 000),租赁公司的月收益为y 元,则y =x ⎝ ⎛⎭⎪⎫100-x -3 00050-x -3 00050×50-⎝⎛⎭⎪⎫100-x -3 00050×150=-x 250+162x -21 000=-150(x -4 050)2+307 050.当x =4 050时,y max =307 050.所以每辆车的月租金定为4 050元时,租赁公司的月收益最大,为307 050元.13.(选做题)设a ∈R ,试讨论关于x 的方程lg(x -1)+lg(3-x )=lg(a -x )的实根的个数.解 原方程等价于⎩⎪⎨⎪⎧x -1>0,3-x >0,a -x >0,(x -1)(3-x )=a -x ,⇒⎩⎪⎨⎪⎧x -1>0,3-x >0,(x -1)(3-x )=a -x ,整理得-x 2+5x -3=a (1<x <3).在同一平面直角坐标系中分别作出函数y =a , 及y =-x 2+5x -3,x ∈(1,3)的图象,如图所示.(1)当a >134或a ≤1时,两个函数的图象无交点,故原方程无实数根;(2)当a =134或1<a ≤3时,两个函数的图象有一个交点,故原方程有一个实数根;(3)当3<a <134时,两个函数的图象有两个交点,故原方程有两个实数根.章末检测(三)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)1.已知下列四个函数图象,其中能用“二分法”求出函数零点的是( )解析由二分法的定义可知选A.答案 A2.已知函数f(x)在区间[a,b]上单调,且f(a)·f(b)<0,则函数f(x)的图象与x轴在区间[a,b]内( )A.至多有一个交点B.必有唯一个交点C.至少有一个交点D.没有交点解析∵f(a)·f(b)<0,∴f(a)与f(b)异号,即:f(a)>0,f(b)<0或者f(a)<0,f(b)>0,显然,在[a,b]内,必有一点c,使得f(c)=0.又f(x)在区间[a,b]上单调,所以,这样的点只有一个,故选B.答案 B3.若方程f(x)-2=0在(-∞,0)内有解,则y=f(x)的图象是( )解析A:与直线y=2的交点是(0,2),不符合题意,故不正确;B:与直线y=2无交点,不符合题意,故不正确;C:与直线y=2只在区间(0,+∞)上有交点,不符合题意,故不正确;D :与直线y =2在(-∞,0)上有交点,故正确.故选D. 答案 D4.甲、乙两人在一次赛跑中,从同一地点出发,路程s 与时间t 的函数关系如图所示,则下列说法正确的是( )A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点解析 由题图可知,甲到达终点用时短,故选D. 答案 D5.据统计某地区1月、2月、3月的用工人数分别为0.2万,0.4万和0.76万,则该地区这三个月的用工人数y 万人关于月数x 的函数关系近似的是( ) A.y =0.2x B.y =110(x 2+2x )C.y =2x10D.y =0.2+log 16x解析 当x =1时,否定B ;当x =2时,否定D ;当x =3时,否定A ,故选C. 答案 C6.若函数f (x )=log 3x +x -3的一个零点附近的函数值用二分法逐次计算的参考数据如下:那么方程x -3+3A.2.1 B.2.2 C.2.3D.2.4解析 由参考数据可知f (2.25)·f (2.312 5)<0,且|2.312 5-2.25|=0.062 5<0.1,所以当精确度为0.1时,可以将2.3作为函数f (x )=log 3x +x -3零点的近似值,也即方程x -3+log 3x =0的根的近似值. 答案 C7.函数f (x )=(x -1)ln (-x )x -3的零点个数为( )C.3D.4解析 ∵函数f (x )=(x -1)ln (-x )x -3的零点个数,即为f (x )=0的根的个数,∴f (x )=(x -1)ln (-x )x -3=0,即(x -1)ln(-x )=0,∴x -1=0或ln(-x )=0,∴x =1或x =-1.∵⎩⎪⎨⎪⎧-x >0,x -3≠0,解得x <0,∴函数f (x )的定义域为{x |x <0},∴x =-1,即方程f (x )=0只有一个根,∴函数f (x )=(x -1)ln (-x )x -3的零点个数为1.故选A.答案 A8.函数f (x )=3x+12x -2的零点所在的一个区间是( )A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)解析 由已知可知,函数f (x )=3x+12x -2单调递增且连续,∵f (-2)=-269<0,f (-1)=-136<0,f (0)=-1<0,f (1)=32>0,∴f (0)·f (1)<0,由函数零点存在性定理可知,函数f (x )=3x +12x -2的一个零点所在的区间是(0,1),故选C.答案 C9.已知0<a <1,则方程a |x |=|log a x |的实根个数为( ) A.2 B.3C.4D.与a 的值有关解析 设y 1=a |x |,y 2=|log a x |,分别作出它们的图象如图所示.由图可知,有两个交点,故方程a |x |=|log a x |有两个根.故选A.答案 A10.某商店计划投入资金20万元经销甲或乙两种商品,已知经销甲商品与乙商品所获得的利润分别为P (万元)和Q (万元),且它们与投入资金x (万元)的关系是:P =x 4,Q =a2x(a >0);若不管资金如何投放,经销这两种商品或其中的一种商品所获得的纯利润总不少于5万元,则a 的最小值应为( )C.± 5D.- 5解析 设投放x (0≤x ≤20)万元经销甲商品,则投放(20-x )万元经销乙商品,总利润y =P +Q =x 4+a 2·20-x ,令y ≥5,则x 4+a2·20-x ≥5,∴a 20-x ≥10-x 2,即a ≥1220-x 对0≤x ≤20恒成立,而f (x )=1220-x 的最大值为5,且x =20时,a 20-x ≥10-x2也成立,∴a min = 5.答案 A11.已知函数f (x )=|lg x |-⎝ ⎛⎭⎪⎫12x有两个零点x 1,x 2,则有( ) A.x 1x 2<0 B.x 1x 2=1 C.x 1x 2>1D.0<x 1x 2<1解析 f (x )=|lg x |-⎝ ⎛⎭⎪⎫12x有两个零点x 1,x 2,即y =|lg x |与y =2-x有两个交点,由题意x >0,分别画y =2-x 和y =|lg x |的图象,发现在(0,1)和(1,+∞)上分别有一个交点,不妨设x 1∈(0,1),x 2∈(1,+∞),那么在(0,1)上有2-x 1=-lg x 1,即-2-x 1=lg x 1.①在(1,+∞)上有2-x 2=lg x 2.②①②相加有2-x 2-2-x 1=lg x 1x 2,∵x 2>x 1,∴2-x 2<2-x 1, 即2-x 2-2-x 1<0,∴lg x 1x 2<0, ∴0<x 1x 2<1,故选D. 答案 D12.某学校制定奖励条例,对在教育教学中取得优异成绩的教职工实行奖励,其中有一个奖励项目是针对学生高考成绩的高低对任课教师进行奖励的.奖励公式为f (n )=k (n )(n -10),n >10(其中n 是任课教师所在班级学生参加高考该任课教师所任学科的平均成绩与该科省平均分之差,f (n )的单位为元),而k (n )=⎩⎪⎨⎪⎧0,n ≤10,100,10<n ≤15,200,15<n ≤20,300,20<n ≤25,400,n >25.现有甲、乙两位数学任课教师,甲所教的学生高考数学平均分超出省平均分18分,而乙所教的学生高考数学平均分超出省平均分21分.则乙所得奖励比甲所得奖励多( )A.600元B.900元C.1 600元D.1 700元解析∵k(18)=200(元),∴f(18)=200×(18-10)=1 600(元).又∵k(21)=300(元),∴f(21)=300×(21-10)=3 300(元),∴f(21)-f(18)=3 300-1 600=1 700(元).故选D.答案 D二、填空题(本大题共4个小题,每小题5分,共20分)13.如果函数f(x)=x2+mx+m+3的一个零点为0,则另一个零点是________.解析函数f(x)=x2+mx+m+3的一个零点为0,则f(0)=0,∴m+3=0,∴m=-3,则f(x)=x2-3x,于是另一个零点是3.答案 314.若方程|x2-4x|-a=0有四个不相等的实根,则实数a的取值范围是________.解析由|x2-4x|-a=0得a=|x2-4x|,作出函数y=|x2-4x|的图象,则由图象可知,要使方程|x2-4x|-a=0有四个不相等的实根,则0<a<4,故答案为(0,4).答案(0,4)15.将进货单价为8元的商品按10元一个销售,每天可卖出100个.若每个涨价1元,则日销售量减少10个.为获得最大利润,则此商品销售价应定为每个________元.解析设每个涨价x元,则实际销售价为(10+x)元,销售的个数为100-10x.则利润为y =(10+x)(100-10x)-8(100-10x)=-10(x-4)2+360(0≤x<10,x∈N).因此,当x=4,即售价定为每个14元时,利润最大.答案1416.给出下列四个命题:①函数y=f(x),x∈R的图象与直线x=a可能有两个不同的交点;②函数y=log2x2与函数y=2log2x是相等函数;③对于指数函数y=2x与幂函数y=x2,总存在x0,当x>x0时,有2x>x2成立;④对于函数y=f(x),x∈[a,b],若有f(a)·f(b)<0,则f(x)在(a,b)内有零点.其中正确的序号是________.解析 对于①,函数表示每个输入值对应唯一输出值的一种对应关系,根据定义进行判定即可判断①错;对于②,函数y =log 2x 2与函数y =2log 2x 的定义域不相同,故不是相等函数,故②错;对于③,当x 0取大于等于4的值都可使当x >x 0时,有2x >x 2成立,故③正确;对于④,函数y =f (x )的图象在区间[a ,b ]上不连续时,既使有f (a )·f (b )<0,f (x )在(a ,b )内也不一定有零点.故④错. 答案 ③三、解答题(本大题共6个小题,共70分)17.(10分)判断下列函数是否存在零点,如果存在,请求出. (1)f (x )=-8x 2+7x +1; (2)f (x )=x 2+x +2; (3)f (x )=x 3+1.解 (1)因为f (x )=-8x 2+7x +1=-(8x +1)(x -1), 令f (x )=0,可解得x =-18,或x =1,所以函数f (x )的零点为-18和1.(2)因为f (x )=x 2+x +2,令x 2+x +2=0,Δ=12-4×1×2=-7<0,所以方程x 2+x +2=0无实数解.所以f (x )=x 2+x +2不存在零点. (3)因为f (x )=x 3+1=(x +1)(x 2-x +1), 令(x +1)(x 2-x +1)=0,解得x =-1. 所以函数f (x )的零点为-1.18.(12分)定义在R 上的偶函数y =f (x )在(-∞,0]上递增,函数f (x )的一个零点为-12,求满足f (log 14x )≥0的x 的取值集合.解 ∵-12是函数的一个零点,∴f ⎝ ⎛⎭⎪⎫-12=0.∵y =f (x )是偶函数且在(-∞,0]上递增,∴当log 14x ≤0,即x ≥1时,log 14x ≥-12,解得x ≤2,即1≤x ≤2.由对称性可知,当log14x >0,即0<x <1时,log 14x ≤12,解得12≤x <1.综上所述,x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.19.(12分)已知函数f (x )=x -1+12x 2-2,试利用基本初等函数的图象,判断f (x )有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).解 令y 1=x -1,y 2=-12x 2+2,在同一直角坐标系中分别画出它们的图象(如图所示),其中抛物线的顶点坐标为(0,2),与x 轴的交点分别为(-2,0),(2,0),y 1与y 2的图象有3个交点,从而函数f (x )有3个零点.由f (x )的解析式知x ≠0,f (x )的图象在(-∞,0)和(0,+∞)上分别是连续不断的曲线,且f (-3)=136>0,f (-2)=-12<0,f ⎝ ⎛⎭⎪⎫12=18>0,f (1)=-12<0,f (2)=12>0,即f (-3)·f (-2)<0,f ⎝ ⎛⎭⎪⎫12·f (1)<0,f (1)·f (2)<0,∴3个零点分别在区间(-3,-2),⎝ ⎛⎭⎪⎫12,1,(1,2)内.20.(12分)燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)求燕子静止时的耗氧量是多少个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?解 (1)由题知,当燕子静止时,它的速度v =0,代入题给公式可得:0=5log 2Q10,解得Q=10,即燕子静止时的耗氧量是10个单位.(2)将耗氧量Q =80代入题给公式得:v =5log 28010=5log 28=15(m/s),即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.21.(12分)如图,直角梯形OABC 位于直线x =t (t ≥0)右侧的图象的面积为f (t ).(1)试求函数f (t )的解析式; (2)画出函数y =f (t )的图象. 解 (1)当0≤t ≤2时,f (t )=S 梯形OABC -S △ODE =(3+5)×22-12t ·t =8-12t 2,当2<t ≤5时,f (t )=S 矩形DEBC =DE ·DC =2(5-t )=10-2t , 所以f (t )=⎩⎪⎨⎪⎧8-12t 2,0≤t ≤2,10-2t ,2<t ≤5.(2)函数f (t )的图象如图所示.22.(12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件. (1)设一次订购x 件,服装的实际出厂单价为p 元,写出函数p =f (x )的表达式; (2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少? 解 (1)当0<x ≤100时,p =60; 当100<x ≤600时,p =60-(x -100)×0.02=62-0.02x .∴p =⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x ≤600.(2)设利润为y 元,则当0<x ≤100时,y =60x -40x =20x ; 当100<x ≤600时,y =(62-0.02x )x -40x =22x -0.02x 2.∴y =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x ≤600. 当0<x ≤100时,y =20x 是单调增函数,当x =100时,y 最大,此时y =20×100=2 000;当100<x ≤600时,y =22x -0.02x 2=-0.02(x -550)2+6 050,∴当x =550时,y 最大,此时y =6 050. 显然6 050>2 000.∴当一次订购550件时,利润最大,最大利润为6 050元.模块检测(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)1.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ) A.{1,2,4} B.{2,3,4} C.{0,2,4}D.{0,2,3,4}解析 ∵全集U ={0,1,2,3,4},集合A ={1,2,3},∴∁U A ={0,4},又B ={2,4},则(∁U A )∪B ={0,2,4}.故选C. 答案 C2.可作为函数y =f (x )的图象的是( )解析 由函数的定义可知:每当给出x 的一个值,则f (x )有唯一确定的实数值与之对应,只有D 符合.故正确答案为D. 答案 D3.同时满足以下三个条件的函数是( )①图象过点(0,1);②在区间(0,+∞)上单调递减;③是偶函数 A.f (x )=-(x +1)2+2B.f (x )=3|x |C.f (x )=⎝ ⎛⎭⎪⎫12|x |D.f (x )=x -2解析 A.若f (x )=-(x +1)2+2,则函数图象关于x =-1对称,不是偶函数,不满足条件③.B.若f (x )=3|x |,则f (x )在区间(0,+∞)上单调递增,不满足条件②.C.若f (x )=⎝ ⎛⎭⎪⎫12|x |,则三个条件都满足.D.若f (x )=x -2,则f (0)无意义,不满足条件①.故选C. 答案 C4.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f (f (2))等于( ) A.0 B.1 C.2D.3 解析 f (2)=log 3(22-1)=1,f (1)=2e1-1=2,即f (f (2))=2. 答案 C5.函数f (x )=2x -1+log 2x 的零点所在区间是( )A ⎝ ⎛⎭⎪⎫18,14 B.⎝ ⎛⎭⎪⎫14,12 C.⎝ ⎛⎭⎪⎫12,1 D.(1,2)解析 ∵函数f (x )=2x -1+log 2x ,∴f ⎝ ⎛⎭⎪⎫12=-1,f (1)=1,∴f ⎝ ⎛⎭⎪⎫12·f (1)<0,故连续函数f (x )的零点所在区间是⎝ ⎛⎭⎪⎫12,1,故选C.答案 C6.幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是( ) A.13 B.-13C.3D.-3解析 设幂函数为y =x α,因为图象过点⎝ ⎛⎭⎪⎫-2,-18,所以有-18=(-2)α,解得:α=-3,所以幂函数解析式为y =x -3,由f (x )=27,得:x -3=27,所以x =13.答案 A7.函数f (x )=2-x +ln(3x +2)+12x-1的定义域为( ) A.⎝ ⎛⎭⎪⎫-23,0∪(0,2] B.⎝ ⎛⎦⎥⎤23,2 C.⎝ ⎛⎭⎪⎫-23,1∪(1,2] D.⎝ ⎛⎦⎥⎤-23,2 解析 由⎩⎪⎨⎪⎧2-x ≥0,3x +2>0,2x -1≠0,解得-23<x ≤2且x ≠0,故f (x )的定义域为⎝ ⎛⎭⎪⎫-23,0∪(0,2].答案 A8.设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是( ) A.c <a <b B.b <a <c C.c <b <aD.a <b <c解析 因为y =x 0.5在(0,+∞)上是增函数,且0.5>0.3,所以0.50.5>0.30.5,即a >b ,c =log 0.30.2>log 0.30.3=1,而1=0.50>0.50.5,所以b <a <c .故选B.答案 B9.若函数f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是( )解析 由f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上既是奇函数,又是减函数,所以k =2,0<a <1,再由对数的图象可知A 正确. 答案 A10.定义在R 上的函数f (x )满足f (-x )=f (x ),f (x -2)=f (x +2)且x ∈(-1,0)时,f (x )=2x+15,则f (log 220)等于( )A.1B.45C.-1D.-45解析 由f (x -2)=f (x +2)⇒f (x )=f (x +4), 因为4<log 220<5,所以0<log 220-4<1,-1<4-log 220<0, 所以f (log 220)=f (log 220-4)=f (4-log 220) =f ⎝ ⎛⎭⎪⎫log 245=2log 245+15=1.故选A. 答案 A11.若f (x )是奇函数,且在(0,+∞)上是增函数,又f (-3)=0,则(x -1)f (x )<0的解集是( )A.(-3,0)∪(1,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(1,3)解析 ∵f (x )是R 上的奇函数,且在(0,+∞)内是增函数,∴在(-∞,0)内f (x )也是增函数,又∵f (-3)=0,∴f (3)=0,∴当x ∈(-∞,-3)∪(0,3)时,f (x )<0;当x ∈(-3,0)∪(3,+∞)时,f (x )>0;∵(x -1)·f (x )<0,∴⎩⎪⎨⎪⎧x -1<0,f (x )>0或⎩⎪⎨⎪⎧x -1>0,f (x )<0,可解得-3<x <0或1<x <3,∴不等式的解集是(-3,0)∪(1,3),故选D. 答案 D12.已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( ) A.(0,1]∪[23,+∞) B.(0,1]∪[3,+∞) C.(0,2]∪[23,+∞)D.(0,2]∪[3,+∞)解析 y =(mx -1)2=m 2⎝ ⎛⎭⎪⎫x -1m 2,相当于y =x 2向右平移1m 个单位,再将函数值放大m 2倍得到的;y =x +m 相当于y =x 向上平移m 个单位.①若0<m ≤1,两函数的图象如图1所示,可知两函数图象在x ∈[0,1]上有且只有1个交点,恒成立;②若m >1,两函数的大致图象如图2所示,为使两函数在x ∈[0,1]上有且只有1个交点,需要(m -1)2≥1+m ,得m ≥3.综上,m ∈(0,1]∪[3,+∞). 答案 B二、填空题(本大题共4个小题,每小题5分,共20分) 13.当a >0且a ≠1时,函数f (x )=ax -2-3必过定点________.解析 因为a 0=1,故f (2)=a 0-3=-2,所以函数f (x )=a x -2-3必过定点(2,-2).答案 (2,-2)14.用二分法求函数y =f (x )在区间(2,4)上的近似解,验证f (2)f (4)<0,给定精确度ε=0.01,取区间(2,4)的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0∈________(填区间).解析 ∵f (2)·f (4)<0,f (2)·f (3)<0, ∴f (3)·f (4)>0,故x 0∈(2,3). 答案 (2,3)15.设U ={1,2,3,4,5,6,7,8,9},(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},(∁U A )∩(∁U B )={1,5,6},则集合A =________,B =________.解析 (∁U A )∩(∁U B )=∁U (A ∪B )={1,5,6}, 所以A ∪B ={2,3,4,7,8,9},又(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},所以A ∩B ={4,9},所以A ={2,4,8,9},B ={3,4,7,9}.答案 {2,4,8,9} {3,4,7,9}16.已知函数f (x )=⎩⎪⎨⎪⎧1+4x ,(x ≥4),log 2x ,(0<x <4),若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.解析 关于x 的方程f (x )=k 有两个不同的实根,等价于函数f (x )与函数y =k 的图象有两个不同的交点,作出函数的图象如图.由图可知实数k 的取值范围是(1,2). 答案 (1,2)三、解答题(本大题共6个小题,共70分) 17.(10分)计算下列各式的值: (1)1.5-13×⎝ ⎛⎭⎪⎫-760+80.25×42-;(2)(log 3312)2+log 0.2514+9log 55-log 31.解 (1)原式=⎝ ⎛⎭⎪⎫2313×1+23×14×214-⎝ ⎛⎭⎪⎫2313=2.(2)原式=⎝ ⎛⎭⎪⎫122+1+9×12-0=14+1+92=234.18.(12分)已知函数f (x )是R 上的奇函数,当x ∈(0,+∞)时,f (x )=2x+x ,求f (x )的解析式.解 由题意,当x =0时,f (x )=0.∵x >0时,f (x )=2x+x ,∴当x <0时,-x >0,f (-x )=2-x-x ,又∵函数y =f (x )是定义在R 上的奇函数, ∴x <0时,f (x )=-f (-x )=-2-x+x , 综上所述,f (x )=⎩⎪⎨⎪⎧-2-x+x ,x <0,0,x =0,2x +x ,x >0.19.(12分)已知集合A ={x |3≤3x≤27},B ={x |log 2x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. 解 (1)A ={x |3≤3x≤27}={x |1≤x ≤3},B ={x |log 2x >1}={x |x >2}. A ∩B ={x |2<x ≤3},(∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}. (2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3; 综合①②,可得a 的取值范围是(-∞,3].20.(12分)已知函数f (x )=log a (2x +1),g (x )=log a (1-2x )(a >0且a ≠1). (1)求函数F (x )=f (x )-g (x )的定义域;(2)判断F (x )=f (x )-g (x )的奇偶性,并说明理由; (3)确定x 为何值时,有f (x )-g (x )>0.解 (1)要使函数有意义,则有⎩⎪⎨⎪⎧2x +1>0,1-2x >0,∴-12<x <12.∴函数F (x )的定义域为⎩⎨⎧⎭⎬⎫x |-12<x <12.(2)由(1)知F (x )的定义域关于原点对称, 又F (-x )=f (-x )-g (-x )=log a (-2x +1)- log a (1+2x )=-F (x ), ∴F (x )为奇函数.(3)∵f (x )-g (x )>0,∴log a (2x +1)-log a (1-2x )>0, 即log a (2x +1)>log a (1-2x ).①当0<a <1时,0<2x +1<1-2x ,∴-12<x <0.②当a >1时,2x +1>1-2x >0,∴0<x <12.21.(12分)甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量直线上升,从第1年1万条鳗鱼上升到第6年2万条. 乙调查表明:全县鱼池总个数直线下降,由第1年30个减少到第6年10个. 请你根据提供的信息说明:(1)第2年全县鱼池的个数及全县出产的鳗鱼总数;(2)到第6年这个县的鳗鱼养殖业的规模比第1年扩大还是缩小了?说明理由; (3)哪一年的规模(即总产量)最大?说明理由.解 由题意可知,图甲图象经过(1,1)和(6,2)两点,从而求得其解析式为y甲=0.2x +0.8,图乙图象经过(1,30)和(6,10)两点.从而求得其解析式为y 乙=-4x +34.(1)当x =2时,y 甲=0.2×2+0.8=1.2,y 乙=-4×2+34=26,y 甲×y 乙=1.2×26=31.2. 所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万条.(2)第1年出产鳗鱼1×30=30(万条),第6年出产鳗鱼2×10=20(万条),可见第6年这个县的鳗鱼养殖业规模比第1年缩小了. (3)设当第m 年时的规模,即总出产量为n , 那么n =y 甲·y 乙=(0.2m +0.8)(-4m +34) =-0.8m 2+3.6m +27.2=-0.8(m 2-4.5m -34)=-0.8(m -2.25)2+31.25,因此,当m =2时,n 最大值为31.2, 即当第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万条. 22.(12分)已知函数f (x )=a ·2x -2+a2x+1(a ∈R ).(1)试判断f (x )的单调性,并证明你的结论; (2)若f (x )为定义域上的奇函数, ①求函数f (x )的值域;②求满足f (ax )<f (2a -x 2)的x 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),关于原点对称,且f (x )=a -22x +1.任取x 1,x 2∈(-∞,+∞),且x 1<x 2,则f (x 2)-f (x 1)=a -22x 2+1-a +22x 1+1=2(2x2-2x1)(2x 2+1)(2x1+1). ∵y =2x在R 上单调递增,且x 1<x 2, ∴0<2x1<2x2,2x2-2x1>0,2x1+1>0,2x2+1>0, ∴f (x 2)-f (x 1)>0,即f (x 2)>f (x 1), ∴f (x )是(-∞,+∞)上的单调增函数.(2)∵f (x )是定义域上的奇函数,∴f (-x )=-f (x ),即a -22-x +1+⎝ ⎛⎭⎪⎫a -22x +1=0对任意实数x 恒成立,化简得2a -⎝ ⎛⎭⎪⎫2·2x2x +1+22x +1=0,。
高中数学必修一 (教案)二次函数与一元二次方程、不等式
二次函数与一元二次方程、不等式【教材分析】三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。
【教学目标】课程目标1.通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。
2.使学生能够运用二次函数及其图像,性质解决实际问题。
3.渗透数形结合思想,进一步培养学生综合解题能力。
数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。
【教学重难点】重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用。
【教学准备】【教学方法】以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
【教学过程】一、情景导入在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题。
类似地,能否从二次函数的观点看一元二次方程和一元二次不等式,进而得到一元二次不等式的求解方法呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察。
研探。
二、预习课本,引入新课阅读课本,思考并完成以下问题1.二次函数与一元二次方程、不等式的解的对应关系。
2.解一元二次不等方的步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.一元二次不等式与相应的一元二次函数及一元二次方程的关系如下表:判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y=ax 2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2没有实数根ax2+bx+c>0(a>0)的解集{x|x>x2或x<x1}{x|x≠−2ba}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅ab2-=2.一元二次不等式ax2+bx+c>0(a>0)的求解的算法。
高中数学必修一《求函数解析式》优秀教学设计
求函数解析式教学设计一、教学内容教学重点:如何求函数解析式教学难点:换元法、待定系数法与方程法及适用条件二、教学目标1、理解掌握求函数解析式的方法2、培养学生分析归纳、类比推理判断能力三、教学过程1.引入函数解析式是函数与自变量之间建立联系的桥梁,许多和函数有关的问题都离不开函数解析式,因此准确理解函数解析式,掌握函数解析式所蕴含的式子特征及变形技巧尤其重要,下面对函数解析式的常用方法进行归类解析.一、换元法例3(1)().,lg 12x f x xf 求已知=⎪⎭⎫ ⎝⎛+ ()()()()112lg 112lg 12,10,12>-=∴>-=∴-=>∴>=+x x x f t t t f t x t x t x 且【解析】令 【点评】在换元时,需注意所换元的取值范围,并在最后注明所求函数的定义域.二、待定系数法例3(2)()()()()().,11,20x f x x f x f f x f 求是二次函数,且已知-=-+=()()()()()()()().223212321112,12,1111.2,20,02222+-=∴⎪⎩⎪⎨⎧-==⎩⎨⎧-=+=∴-=++-=--+++=-+==≠++=x x x f b a b a a x b a ax x bx ax x b x a x f x f c f a c bx ax x f 即即又得由【解析】设【点评】在已知函数具体类型时,大多采用待定系数法,其具体做法通常是根据条件列出以参数为未知数的方程或方程组求解.三、方程法例3(3)()()().,012x f x x x f x f 求已知≠=⎪⎭⎫ ⎝⎛+ ()()()()()().033212112.12112≠-=⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=+⎪⎭⎫ ⎝⎛∴=⎪⎭⎫ ⎝⎛+x x x x f x x f x f x x f x f x x f x f x x f x f 得解方程组【解析】 例3(4)()()()().,2R 2x f x x x f x f x f 求,且的定义域为已知函数-=-+()()()()().31,2,2222x x x f x x x f x f x x x f x f +=+=+--=-+解方程组得得【解析】由【点评】本题是利用方程的思想,将()()()x f x f x f x f -⎪⎭⎫ ⎝⎛与或与1看作两个未知数,通过解方程组求得.2总结【解题心得】函数解析式的求法:(1)换元法,已知复合函数()()x g f 的解析式,可用换元法,此时要注意新元的取值范围.(2)待定系数法,若已知函数的类型(如一次函数、二次函数),可用待定系数法.(3)方程法,已知关于()()x f x f x f -⎪⎭⎫ ⎝⎛或与1的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出()x f .【提醒】因为函数的解析式相同,定义域不同,则为不相同的函数,因此求函数解析式时,如果定义域不是R ,一定要注明函数的定义域.3练习【对点训练3】()()()11.D 11.C 11.B 1.A .10,111---≠≠-=⎪⎭⎫ ⎝⎛x x x x x f x x x x x f 等于时,,且则当若()()()()().,17212132=+=--+x f x x f x f x f 则是一次函数,且满足已知()()()().,3123==⎪⎭⎫ ⎝⎛+x f x x f x f x f 则满足已知 4教学反思方程法的掌握有一定困难,学生应加强练习;换元法的掌握为重中之重,应反复练习.。
高中数学人教A版必修1第三章3、1、1方程的根与函数的零点的近似值 - 教案
3.1.1 方程的根与函数的零点第二课一、教学目标:① 进一步巩固函数零点的概念,会求基本初等函数的零点;② 掌握方程的根与函数零点之间的等价关系,体会函数方程的转化思想; ③ 对函数零点,零点所在的区间及零点个数各题型有所思有所为。
二、课前预习:(务必课前总结)1、我们学习过的那些函数?它们的图像特点?①一次函数()0y kx b k =+≠:0k >时,是一条递增的直线;0k <时,是一条递减的直线。
b 是图像与y 轴交点的纵坐标,如0b =时,直线过原点。
②二次函数 ③指数函数 ④对数函数 ⑤幂函数2、默写函数零点定理与函数零点存在性定理三、教学过程探讨1:求函数()324f x x x =--+的零点。
探讨2:解决下列两个问题,并试图发现问题中的共性①确定正整数k 的值,使得函数()324f x x x =--+在区间(),1k k +上存在零点。
②试画出函数3y x =与24y x =-+的图像,并分析两个图像交点情况。
你所发现的共性:找出一个数0x 作为函数()324f x x x =--+零点的近似值。
(精度为0.1) 课堂练习:判断下列函数的零点个数①()22f x x x =-+②()lg 2f x x x =-+ ③()2log 2xf x x =+④()()2ln 23f x x x =-- ⑤()32221f x x x x =--+ 课后练习: 1.函数6)(2-+=x x x f 的零点为2.函数2)(+=ax x f 在区间)2,1(-上有零点,则a 的取值范围是3.函数11ln )(--=x x x f 的零点的个数是 ( )A .0个B .1个C .2个D .3个4.设函数3y x =与22xy -=的图象的交点为00()x y ,,则0x 所在的区间是 ( )A .(01),B .(12),C .(23),D .(34),5.根据表格中的数据,可以判定方程20x e x --=的一个零点所在的区间为))(1,(N k k k ∈+,则k 的值为 ;6、函数()11f x x =-的图像与函数()31y x =-的图像所有交点的横坐标之和等于 ( ) A. 2 B.4 C.6 D8.7、已知函数()21log 2xf x x ⎛⎫=- ⎪⎝⎭,且实数0a b c <<<满足()()()0f a f b f c <,若实数0x 是函数()y f x =的一个零点,那么下列不等式中不可能成立的是 ( ) A. 0x a < B. 0x c < C. 0x b > D. 0x c >8、确定正整数k 的值,使得函数()237xf x x =+-在区间(),1k k +上存在零点,并确定零点的一个近似值。
人教A版(2019)高中数学必修第一册第三章3.1函数的基本概念教案
函数的基本概念教学目标:1.理解函数的概念,掌握函数三要素及求法.2.掌握函数解析式的求法,以及同一函数的判断标准.3.学会转化与化归、数形结合思想.问题导入:1.函数的定义:一般地,设A,B 是非空的实数集,如果对于A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 与之对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作)(x f y =,A x ∈.注:判断对应关系是否为函数,主要从以下三个方面去判断:(1)A ,B 必须是非空实数集;(2)A 中任何一个元素在B 中必须有元素与其对应;(3)A 中任何一个元素在B 中的对应元素必须唯一.2.函数三要素:定义域、值域、对应关系 .定义域:x 叫做自变量,x 的取值范围A 叫做函数的定义域.值域:函数值的集合{}f (x )|x ∈A 叫做函数的值域同一函数:如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数是同一个函数. 注:函数定义域及值域的求法总结(1)常见函数求定义域:①分式函数中分母不为0;①偶次根式函数被开方式大于等于0;①对数函数的定义域大于0.(2)抽象函数求定义域:①已知原函数)(x f 的定义域为()b a ,,求复合函数()[]x g f 的定义域:只需解不等式b x g a <<)(,不等式的解集即为所求函数定义域.①已知复合函数()[]x g f 的定义域为()b a ,,求原函数)(x f 的定义域:只需根据b x a <<求出)(x g 的值域,即得原函数)(x f 的定义域.(3)求值域的常规方法ⓐ观察法:一些简单函数,通过观察法求值域.ⓑ配方法:“二次函数类”用配方法求值域.ⓒ换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且ac ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数也可以用换元法代换求值域.ⓓ分离常数法:形如y =cx +dax +b (a ≠0)的函数可用此法求值域.ⓔ单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.ⓕ数形结合法:画出函数的图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围. 3. 求函数解析式的方法(1)待定系数法:当函数的类型已知时,可设出函数解析式,根据条件列出方程(组),进而求得函数的解析式.(2)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.(3)换元法:已知)]([x g f y =,求)(x f 的解析式:令)(x g t =,并写出t 的取值范围,用t 表示x ,再将用t 表示的x 回代入原式,求出解析式.(4)方程组法:已知关于f (x )与)(xf 1或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).4.分段函数的概念:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数被称为分段函数. 分段函数虽由几个部分组成,但它表示的是同一个函数.注:(1)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集.(2) 分段函数是一个函数而不是几个函数,处理分段函数问题时,首先确定自变量的取值属于哪个区间,再选取相应的对应关系,离开定义域讨论分段函数是毫无意义的.知识点1:函数定义[例1] 下列图象中,可作为函数图象的是________.(填序号)[对点演练1]下列对应关系式中是A 到B 的函数的是( )A .A ⊆R ,B ⊆R ,x 2+y 2=1B .A ={-1,0,1},B ={1,2},f :x →y =|x |+1C .A =R ,B =R ,f :x →y =1x -2D .A =Z ,B =Z ,f :x →y =2x -1知识点2:求函数的定义域和值域[例2] 下列选项中能表示同一个函数的是( )A .y =x +1与y =x 2-1x -1B .y =x 2+1与s =t 2+1C .y =2x 与y =2x (x ≥0)D .y =(x +1)2与y =x 2[例3] 求下列函数的定义域.(1) y =2x -1-7x ;(2) y =(x +1)0x +2;(3) y =4-x 2+1x.[例4] 求下列函数的定义域:(1)已知函数的定义域为,求函数的定义域.(2)已知函数的定义域为,求函数的定义域. (3)已知函数的定义域为,求函数的定义域.[例5]求下列函数的值域.(1)y =x 2+2x (x ∈[0,3]);(2) y =1-x 21+x 2; (3)3254)(-+-=x x x f[对点演练2]1. 下列各组式子是否表示同一函数?为什么?(1) f (x )=|x |,φ(t )=t 2;(2) y =1+x ·1-x ,y =1-x 2;(3) y =(3-x )2,y =x -3.[2,2]-2(1)y f x =-(24)y f x =+[0,1]f (x)f (x)[1,2]-2(1)(1)y f x f x =+--2. 求下列函数的定义域.(1) y =(x +1)2x +1-1-x ;(2) y =2x 2-3x -2+14-x. 3.已知函数)(x f y =的定义域是]2,0[,那么)1lg(1)()(2++=x x f x g 的定义域是? 4. 求下列函数的值域(1)f(x)=x -3x +1;(2)f(x)=x 2-x x 2-x +1. (3)f(x)=x 2-1x 2+1;(4)f(x)=1x -x 2.知识点3:求函数解析式[例6]待定系数:若)(x f 是一次函数,[()]94f f x x =+,则)(x f = _________________.[例7].配凑:函数2(1)f x x -=,则函数()f x =[例8].换元:已知2(1)2f x x x +=+,求函数)(x f 的解析式为 .[例9] 方程组:已知函数()f x 满足()2()f x f x x --=-,则()f x =________.[对点演练3]1.若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为________.2.若,,则( )A .9B .17C .2D .3()43f x x =-()()21g x f x -=()2g =3.已知函数2)1(2-=x x f ,则f (x )=________. 4.已知函数f (x )的定义域为(0,+∞),且f (x )=2)1(xf ·x -1,则f (x )=________.知识点4:分段函数[例10]. 已知函数f (x )=-x 2+2,g (x )=x ,令φ(x )=min{f (x ),g (x )}(即f (x )和g (x )中的较小者). (1)分别用图象法和解析式表示φ(x );(2)求函数φ(x )的定义域,值域.[对点演练4]2. 已知函数f (x )=⎩⎪⎨⎪⎧ x +1,x ∈[-1,0],x 2+1,x ∈(0,1],则函数f (x )的图象是()习题演练:1.下列四种说法中,不正确的一个是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素2. 下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=(x -1)2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )23.下列函数中,与函数y =x 相等的是( )A .y =(x )2B .y =3x 3C .y =x 2D .y =x 2x3. 函数y =6-x|x |-4的定义域用区间表示为________.4. 若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是()5.已知函数f (x )=x +3+1x +2.(1)求函数的定义域;(2)求f (-3),)32(f 的值; (3)当a >0时,求f (a ),f (a -1)的值.6.函数y =x +1+12-x 的定义域为________.7.已知函数()2y f x =-定义域是[]0,4,则()11f x y x +=-的定义域是 .8. 求下列函数的值域:(1)y =3x +1x -2; (2)y =52x 2-4x +3; (3)y =x +41-x9.已知)(x f 是一次函数且满足()())(,1721213x f x x f x f 求+=--+.10. 若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( )A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x 11. 已知函数()f x 满足()2()f x f x x --=-,则()f x =________.12. 定义在)1,1(-内的函数)(x f 满足)1lg()()(2+=--x x f x f ,求函数)(x f 的解析式.13.已知f (x )满足2f (x )+)1(xf =3x ,则f (x )的解析式为 .14.已知1)f x =+,求函数)(x f 的解析式.15.已知f (2x +1)=3x -4,f (a )=4,则a =________.。
高中数学专题函数方程教案
高中数学专题函数方程教案
一、教学目标
1. 了解函数方程的定义和基本概念;
2. 掌握函数方程的解法和计算方法;
3. 提高学生对函数方程的理解和运用能力。
二、教学重点和难点
重点:函数方程的定义和基本概念;
难点:解决函数方程的方法及计算过程。
三、教学准备
1. 教材:高中数学教材;
2. 工具:黑板、彩色粉笔、教学PPT等。
四、教学过程
1. 引入:通过几个实际问题引导学生认识函数方程的概念,引出本节课的主题;
2. 学习:结合具体例题,介绍函数方程的定义和基本性质,讲解解决函数方程的常见方法;
3. 练习:组织学生进行练习,巩固所学知识,培养学生的解题能力;
4. 拓展:引导学生应用函数方程解决更复杂的问题;
5. 总结:对本节课的内容进行总结,强调重点和难点,梳理知识结构,加深学生印象。
五、课后作业
1. 完成课后习题,巩固所学知识;
2. 总结本节课的重点内容,准备下节课的学习。
六、教学反思
教师根据学生学习情况和反馈,及时调整教学方法和内容,确保教学效果。
《函数与方程、不等式之间的关系》第2课时示范课教学设计【高中数学人教B版必修第一册】
第三章函数《3.2函数与方程、不等式之间的关系》教学设计第2课时会用函数的性质判断对应方程是否有实根,理解函数零点存在定理,会利用“二分法”找到实根的近似值.教学重点:函数零点存在定理教学难点:用“二分法”求函数零点的近似值PPT课件.一、整体概览问题1:阅读课本第114~118,回答下列问题:(1)本节将要研究哪类问题?(2)本节研究的起点是什么?目标是什么?师生活动:学生带着问题阅读课本,在本节课的学习过程中回答问题预设的答案:(1)本节将要研究函数的零点存在定理及二分法求方程近似解.(2)起点是函数的零点,函数的零点与对应方程的根之间的关系,以及利用函数的图像求解对应不等式的解集.目标是理解函数零点存在定理,会用函数的性质判断对应方程是否有实根,会利用“二分法”找到实根的近似值等.重点是渗透数形结合的数学思想,二分法,提升学生直观想象、数学抽象、数据分析和逻辑推理等素养.设计意图:通过阅读课本,让学生明晰本节课的学习目标,初步搭建学习内容的框架.二、探索新知1.复习引入我们知道:一次函数、二次函数的零点是否存在,并不难判别,这是因为一元一次方程、一元二次方程实数解的情况,都可以根据它们的系数判别出来,而且有实数根的时候,都能够写出求根公式.问题1:关于x的一元一次方程k x+b=0(k≠0)的求根公式为________;一元二次方程的求根公式为________.师生活动:学生回答.预设的答案:bxk=-;242b b acxa-±-=(有实根时)问题2:对于次数大于或等于3的多项式函数(例如f(x)=ax3+bx2+cx+d,其中a≠0),以及其他表达式更复杂的函数来说,判断零点是否存在以及求零点,都不是容易的事(事实上,数学家们已经证明:次数大于4的多项式方程,不存在求根公式).那么,什么情况下一个函数一定存在零点呢?设计意图:通过问题引入新课,激发学生的求知欲.知识点1 零点的存在性问题3:如下图所示,已知A,B都是函数y=f(x)图像上的点,而且函数图像是连接A,B两点的连续不断的线,画出3种y=f(x)的可能的图像.判断f(x)是否一定存在零点,总结出一般规律.师生活动:让学生自己动手画,互相检查(如如下图是函数的图像吗?),教师与学生一起总结.可以看出,满足要求的函数f(x)在区间(a,b)中一定存在零点.零点存在定理:如果函数y=f(x)在区间[a,b]上的图像是连续不断的,并且f(a)f (b)<0(即在区间两个端点处的函数值异号),则函数y=f(x)在区间(a,b)中至少有一个零点,即∃x o∈(a,b),f(x o)=0.强调:一般地,解析式是多项式的函数的图像都是连续不断的.需要注意的是,反比例函数1yx=的图像不是连续不断的.设计意图:培养学生的抽象概括能力.知识点2 零点近似值的求法问题4:例1中的函数在区间(-2,0)中存在零点x o,但是不难看出,求出x o的精确值并不容易,那么,能不能想办法得到这个零点的近似值呢?比如,能否求出一个x1,使得|x1-x0|<18?【尝试与发现】如果在区间(一2,0)中任取一个数作为x o的近似值,那么误差小于多少?如果取区间(一2,0)的中点作为x o的近似值,那么误差小于多少?怎样才能不断缩小误差?师生活动:学生回答.预设的答案:如果在区间(一2,0)中任取一个数作为x o的近似值,误差小于2;如果取区间(一2,0)的中点作为x.的近似值,误差小于1.一般地,求x.的近似值,可以通过计算区间中点函数值,从而不断缩小零点所在的区间来实现,具体计算过程可用如下表格表示.其中第2行的区间是(-2,-1),这是因为f(-2)f(-1)<0,其他区间都是用类似方式得到的.最后一行的函数值没有计算,是因为不管15 (2,]8x∈--,还是157 [,)84x∈--,我们都可以将158-看成x o的近似值,而且误差小于18.当然,按照类似的方式继续算下去,可以得到精确度更高的近似值. 上述这种求函数零点近似值的方法称为二分法.教师总结:二分法的求解步骤:在函数零点存在定理的条件满足时(即f (x )在区间[a ,b ]上的图像是连续不断的,且f (a )f (b )<0),给定近似的精度ε,用二分法求零点x o 的近似值x 1,使得|x 1-x o |<ε的一般步骤如下:第一步 检查| b - a |<2ε是否成立,如果成立,取12a bx +=,计算结束;如果不成立,转到第二步.第二步 计算区间(a ,b )的中点2a b +对应的函数值,若()02a b f +=,取12a bx +=,计算结束;若()02a bf +≠,转到第三步. 第三步 若()()02a b f a f +<,将2a b +的值赋给b (用表示2a bb +→,下同),回到第一步;否则必有()()02a b f f b +<,将2a b+的值赋给a ,回到第一步. 这些步骤可用如图所示的框图表示三、初步应用例1 求证:函数f (x )=x 3-2x +2至少有一个零点. 师生活动:教师与学生一起分析,教师书写规范解答. 预设的答案:证明:因为f (0)=2>0,f (-2)=-8+4+2=-2<0,所以f (-2)f (0)<0,因此∃x o ∈(-2,0),f (x o )=0,即结论成立.设计意图:巩固函数的零点存在定理.例2 已知函数f (x )=x 2+ax +1有两个零点,在区间(-1,1)上是单调的,且在该区间中有且只有一个零点,求实数a 的取值范围.师生活动:教师与学生一起分析,教师书写规范解答.预设的答案:解:因为函数f (x )的图像是开口朝上的抛物线,因此满足条件的函数图像示意图如下图(1)(2)所示.不管哪种情况,都可以归结为f (-1)f (1)<0且||12a-≥,因此 (2-a )(a +2)<0且|a |≥2,解得a <-2或a >2.设计意图:进一步巩固函数的零点存在定理及二次函数的图像和性质.例3.用二分法求方程的近似解,求得f (x )=x 3+2x -9的部分函数值数据如表所示: x 121.51.625 1.75 1.875 1.812 5 f (x )-63 -2.625-1.459-0.141.341 80.579 3A .1.6B .1.7C .1.8D .1.9师生活动:学生思考后回答.预设的答案:解:由表格可得,函数f (x )=x 3+2x -9的零点在(1.75,1.875)之间, 结合选项可知,方程x 3+2x -9=0的近似解可取为1.8,故选C. 设计意图:巩固二分法求函数的零点. 例4已知函数321()13f x x x =-+. (1)证明方程f (x )=0在区间(0,2)内有实数解;(2)使用二分法,取区间的中点三次,指出方程f (x )=0(x ∈[0,2])的实数解x 0在哪个较小的区间内.师生活动:学生思考后回答,教师完善规范解题过程. 预设的答案:解: (1)证明:∵f (0)=1>0,1(2)3f =-,∴1 (0)(2)03f f=-<,由函数零点存在定理可得方程f(x)=0在区间(0,2)内有实数解.(2)取1021 2x+==,得1(1)3f=,由此可得1(1)(2)9f f=-,下一个有解区间为(1,2).再取2123 22x+==,得31()028f=-<,∴31(1)()0224f f=-<,下一个有解区间为3(1,)2.再取3135 (1) 224x=+=,得517()0 4192f=>,∴35()()024f f<,下一个有解区间为53(,)42.故f(x)=0的实数解x0在区间53 (,)42内.设计意图:巩固零点存在定理及二分法求函数的零点的解题步骤. 练习:教科书P119练习A 4~10四、归纳小结,布置作业1.板书设计:3.2函数与方程、不等式之间的关系1.函数的零点存在定理2.二分法及其求零点近似解例1 例2 例3 例42.总结概括:回顾本节课,你有什么收获?(1)函数的零点存在定理的内容是什么?有哪些注意点?(2)什么叫二分法?(3)二分法求函数零点近似解的求解步骤?师生活动:学生总结,老师适当补充.作业:教科书P120练习B 4~9,练习C1、3、4、5 【课外拓展】信息技术求函数零点。
高中数学必修一教案(优秀10篇)
高中数学必修一教案(优秀10篇)高中数学必修一教案篇一重点难点教学:1.正确理解映射的概念;2.函数相等的两个条件;3.求函数的定义域和值域。
一。
教学过程:1. 使学生熟练掌握函数的概念和映射的定义;2. 使学生能够根据已知条件求出函数的定义域和值域;3. 使学生掌握函数的三种表示方法。
二。
教学内容:1.函数的定义设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB为从集合A到集合B 的一个函数(function),记作:(),yfxxA其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}fxxA叫值域(range)。
显然,值域是集合B的子集。
注意:① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素定义域、对应关系和值域。
3.映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
4. 区间及写法:设a、b是两个实数,且a(1) 满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];(2) 满足不等式axb的实数x的集合叫做开区间,表示为(a,b);5.函数的三种表示方法①解析法②列表法③图像法高中数学教案必修一篇二1.通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进学生全面认识数学的科学价值、应用价值和文化价值。
2.通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。
如何建立实际问题的目标函数是教学的重点与难点。
一、问题情境问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?问题3做一个容积为256l的方底无盖水箱,它的高为多少时材料最省?二、新课引入导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。
高中数学必修第一册大单元整体教学设计
高中数学必修第一册大单元整体教学设计教学目标-熟悉高中数学必修第一册的大单元内容,包括集合与命题、不等式与绝对值、函数与方程等。
-掌握相关概念和定理,并能够运用所学知识解决实际问题。
-培养学生的逻辑思维能力、分析问题和解决问题的能力。
教学内容和安排大单元1:集合与命题课时安排:-第一课:集合的基本概念和表示方法(1课时)-第二课:集合间的关系和运算(2课时)-第三课:命题与联结词(2课时)-第四课:命题的简化与合取范式(2课时)教学重点:-理解集合的基本概念和表示方法。
-掌握集合间的关系和运算。
-理解命题的定义和联结词的含义。
-学会命题的简化和合取范式的求解。
教学活动:-利用示意图和具体例子介绍集合的基本概念和表示方法,引导学生理解并掌握。
-设计小组活动,让学生通过合作和讨论解决集合间的关系和运算问题。
-运用真值表和逻辑推理,帮助学生理解命题的定义和联结词的含义。
-通过练习和实例演练,引导学生掌握命题的简化和合取范式的求解方法。
大单元2:不等式与绝对值课时安排:-第五课:不等式及其性质(2课时)-第六课:一元一次不等式(2课时)-第七课:绝对值不等式(2课时)教学重点:-理解不等式的概念和性质。
-学会解一元一次不等式和绝对值不等式。
-掌握不等式的图像表示和应用。
教学活动:-利用实际生活中的例子,引导学生理解不等式的概念和性质,并运用图像表示法进行解释。
-设计个人和小组练习,帮助学生掌握解一元一次不等式和绝对值不等式的方法。
-引导学生思考不等式在实际问题中的应用,鼓励他们提出自己的解决方案并进行讨论。
大单元3:函数与方程课时安排:-第八课:函数的概念和表示(2课时)-第九课:一次函数及其图像(2课时)-第十课:二次函数及其图像(2课时)教学重点:-理解函数的概念和表示方法。
-学会分析和绘制一次函数和二次函数的图像。
-掌握函数与方程的关系和应用。
教学活动:-通过具体例子和实践操作,帮助学生理解函数的概念和表示方法,并鼓励他们举出更多的例子来说明。
函数概念教案
函数概念教案函数概念教案1教学目标:1.进一步理解用集合与对应的语言来刻画的函数的概念,进一步理解函数的本质是数集之间的对应;2.进一步熟悉与理解函数的定义域、值域的定义,会利用函数的定义域与对应法则判定有关函数是否为同一函数;3.通过教学,进一步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.教学重点:用对应来进一步刻画函数;求基本函数的定义域和值域.教学过程:一、问题情境1.情境.复述函数及函数的定义域的概念.2.问题.概念中集合A为函数的定义域,集合B的作用是什么呢?二、学生活动1.理解函数的值域的概念;2.能利用观察法求简单函数的值域;3.探求简单的复合函数f(f(x))的定义域与值域.三、数学建构1.函数的值域:(1)按照对应法则f,对于A中所有x的值的对应输出值组成的集合称之为函数的值域;(2)值域是集合B的子集.2.x g(x) f(x) f(g(x)),其中g(x)的值域即为f(g(x))的定义域;四、数学运用(一)例题.例1 已知函数f (x)=x2+2x,求 f (-2),f (-1),f (0),f (1).例2 根据不同条件,分别求函数f(x)=(x-1)2+1的值域.(1)x∈{-1,0,1,2,3};(2)x∈R;(3)x∈[-1,3];(4)x∈(-1,2];(5)x∈(-1,1).例3 求下列函数的值域:①=;②=.例4 已知函数f(x)与g(x)分别由下表给出:x1234x1234f(x)2341g(x)2143分别求f (f (1)),f (g (2)),g(f (3)),g (g (4))的值.(二)练习.(1)求下列函数的值域:①=2-x2;②=3-|x|.(2)已知函数f(x)=3x2-5x+2,求f(3)、f(-2)、f(a)、f(a+1).(3)已知函数f(x)=2x+1,g(x)=x2-2x+2,试分别求出g(f(x))和f(g(x))的值域,比较一下,看有什么发现.(4)已知函数=f(x)的定义域为[-1,2],求f(x)+f(-x)的定义域.(5)已知f(x)的定义域为[-2,2],求f(2x),f(x2+1)的定义域.五、回顾小结函数的对应本质,函数的定义域与值域;利用分解的思想研究复合函数.六、作业课本P31-5,8,9.函数概念教案2各位领导老师:大家好!今天我说课的内容是函数的近代定义也就是函数的第一课时内容。
高中必修一数学教案设计
高中必修一数学教案设计
学科:数学
年级:高中一年级
课时数:1课时
课题:函数及其性质
教学目标:
1. 理解函数的概念及其分类;
2. 掌握常见函数的图像和性质;
3. 能够运用函数的性质解决实际问题。
教学重点:
1. 函数的概念及其分类;
2. 常见函数的性质及图像。
教学难点:
1. 理解函数的定义和性质;
2. 掌握不同函数类型的性质和图像。
教学过程:
一、导入(5分钟)
教师引导学生回顾函数的概念,提问:什么是函数?函数的定义是什么?并简单介绍函数的分类。
二、讲解(15分钟)
1. 介绍常见函数类型:线性函数、二次函数、指数函数、对数函数等;
2. 分别讲解每种函数的性质和特点,以及对应的图像。
三、练习(20分钟)
1. 给学生一些练习题,让他们运用所学知识解决问题;
2. 学生可在小组内讨论,相互交流解题方法。
四、总结(5分钟)
教师对本节课的重点知识进行总结,并强调学生需要牢固掌握函数的定义和常见函数类型的性质。
五、作业布置(5分钟)
布置相关练习题作业,巩固本节课所学内容。
教学反思:
本节课通过引导学生回顾函数的概念,讲解常见函数的性质和图像,并进行实际练习,使学生更加深入地理解函数及其性质。
在教学过程中,需要借助图表等形式来展示函数的图像,帮助学生更好地理解函数的性质。
同时,要注意激发学生对数学的兴趣,引导他们主动参与讨论和学习,提高学习效果。
3.2函数与方程、不等式之间的关系-人教B版高中数学必修第一册(2019版)教案
3.2 函数与方程、不等式之间的关系-人教B版高中数学必修第一册(2019版)教案一、教学目标1.能够了解函数与方程、不等式之间的关系;2.能够掌握一次函数、二次函数的相关知识;3.能够熟练运用函数求解方程、不等式。
二、教学内容1.函数与方程–函数在坐标系中的表示方法–函数方程的两种形式:显式解和隐式解–利用函数求解方程2.函数与不等式–一次函数的性质–二次函数的图像与性质–利用函数求解不等式三、教学重点和难点1.教学重点:函数方程的两种形式,利用函数求解方程和不等式;2.教学难点:二次函数的图像及其性质。
四、教学策略1.教师讲授与学生自主学习相结合;2.通过图像和实例进行教学;3.激发学生的兴趣,提高课堂参与度。
五、教学过程第一步:引入新知识教师通过讲解实例引发学生对函数与方程、不等式之间的关系的兴趣,为接下来的学习铺垫。
第二步:授课1.函数与方程–函数在坐标系中的表示方法函数在坐标系中的表示方法有图形、表格和公式三种。
其中,图形最容易理解,表格便于计算,公式最具普适性。
–函数方程的两种形式:显式解和隐式解函数方程的显式解指的是“y=函数表达式”,隐式解是除y之外的变量和常量所组成的方程式。
–利用函数求解方程利用函数求解方程,可以将需要求解的方程式代入函数表达式中,求出变量值,即为方程的解。
2.函数与不等式–一次函数的性质一次函数对应的图像是一条直线,其性质包括:斜率决定了直线的倾斜方向和大小,截距决定了直线与y轴的交点。
–二次函数的图像与性质二次函数对应的图像是抛物线,其性质包括:开口方向由二次项系数的正负决定,开口朝上的抛物线最小值为D,对称轴方程为x=-b/2a。
–利用函数求解不等式利用函数局部区间的正负性和函数性质,将不等式转化为相等式或函数的零点问题,从而求解不等式。
第三步:练习通过例题进行练习,加深学生对知识点的理解和掌握程度。
第四步:分组讨论将学生分成小组,进行讨论和分享,培养学生彼此之间的合作精神和交流能力。
人教版高中数学必修一第三章函数的应用3.1函数与方程(教师版)【个性化辅导含答案】
函数与方程__________________________________________________________________________________ __________________________________________________________________________________1、 掌握函数的零点和二分法的定义.2、 会用二分法求函数零点的近似值。
一、函数的零点:定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。
对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。
特别提醒:函数零点个数的确定方法:1、判断二次函数的零点个数一般由判别式的情况完成;2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行;3、对于一般函数零点的个数的判断问题不仅要在闭区间[],a b 上是连续不间断的,且f(a)∙f (b )<0,还必须结合函数的图像和性质才能确定。
函数有多少个零点就是其对应的方程有多少个实数解。
二、二分法:定义:对于区间[],a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。
特别提醒:用二分法求函数零点的近似值第一步:确定区间[],a b ,验证:f(a)∙f (b )<0,给定精确度;第二步:求区间[],a b 得中点1x ;第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a)∙f (x 1)<0,则令1b x =;若f(x 1)∙f (b )<0,则令1a x =第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则重复第二、三、四步。
高中数学必修一《方程的根与函数的零点》优秀教学设计
如果再上这节课,我会将第一个探究环节完全放手学生,因为通过前面两章知识的学习,学生已经掌握了大部分二次函数相关知识,对于“三个二次”关系有了较完整的认识,只需要老师给出零点的概念并加以推广就可以了。而第二个探究环节,问题设计上指向更明确些,要求学生连线成函数图象,再进行后续探究,这样整节课会更加精炼、流畅。
教学设计
基本信息
名称
3.1.1方程的根与函数的零点
所属教材目录
人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时
教材分析
本节课主要内容是函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理,是一节概念课.本节课不仅为二分法的学习做准备,也为方程与函数提供了零点这个连接点,从而揭示两者之间的本质联系,这种联系正是“函数与方程思想”的理论基础.为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础.
难点
在合情推理中让学生体会到判定定理的充分非必要性,准确理解零点存在性定理.
教学策略与设计说明
为使学生体验发现的快乐,本节采用:创设情境——自主探究——辨析研讨——反思评价的四环节教学法。由于学生数形结合与抽象思维能力还有欠缺,因此本节先从学生较为熟悉的二次函数入手,在充分体会了二次函数零点相关知识的发现后,再推向一般,形成零点概念,这样由特殊到一般、由具体到抽象的体验过程,符合高一学生的认知特点。而对于零点存在性定理的探究,由学生所画不同函数图象,既能激发学生的学习热情,也能帮助学生建立一种发现新知的思想。
创设情境,产生疑问,引起兴趣,引出课题。比赛模式引入,充分调动学生积极性和主动性。
《函数的概念》教学设计
《函数的概念》教学设计第一篇:《函数的概念》教学设计《函数的概念》教学设计教材分析:函数作为初等数学的核心内容,贯穿于整个初等数学体系之中函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。
在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段对函数的概念加入“对应”,这一章内容渗透了函数的思想、特殊到一般,数形结合思想,从感性到理性,数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响教学目标:知识与技能:(1)理解函数的概念,;(2)能够正确使用“区间”的符号表示某些集合。
2过程与方法:通过学生自身对实际问题分析、抽象与概括,培养了抽象、概括、归纳知识以及建模等方面的能力;3情感与价值观:以熟知的生活实例引入,激发了学习数学的兴趣,增强其数学应用意识、创新意识。
相互合作学习,增强其合作意识体会合作学习的重要性。
教法:启发探究为主,讨论法为辅学法:观察分析、自主探究、合作交流教学重点:理解函数的实际背景,用集合与对应的语言来刻画函数教学难点:理解函数的实际背景,用集合与对应的语言来刻画函数教学过程:一、复习引入:.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x和,对于x的每一个值,都有唯一确定的值与之对应,此时是x的函数,x是自变量,是因变量。
表示方法有:解析法、列表法、图象法二、概念情景引入:思考1:(本P1)给出三个实例:A.一枚炮弹发射,经26秒后落地击中目标,射高为84米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是。
B.近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。
(见本P1图).国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。
“八五”计划以来我们城镇居民的恩格尔系数如下表。
高中数学必修第一册大单元整体教学教学设计
高中数学必修第一册大单元整体教学教学设计一、教学目标本教学设计旨在帮助学生全面掌握高中数学必修第一册的大单元内容,包括函数、方程与不等式、三角函数等知识点。
通过本次教学,学生应能够:1. 理解函数的概念,能够分析函数的性质和图像;2. 掌握一元一次方程、一元二次方程和一元一次不等式的解法;3. 熟练运用三角函数的定义和性质,解决与三角函数相关的问题;4. 培养学生的数学思维和解决问题的能力。
二、教学内容本次教学设计将按照教材的大纲要求,分为以下几个部分进行教学:1. 函数与方程a. 函数的概念与性质b. 一元一次方程的解法c. 一元二次方程的解法d. 一元一次不等式的解法2. 三角函数a. 三角函数的定义与性质b. 三角函数的图像与变换c. 三角函数的应用三、教学步骤1. 函数与方程a. 函数的概念与性质- 通过实际生活中的例子引入函数的概念,让学生理解函数的定义;- 介绍函数的性质,如奇偶性、单调性等,并通过例题进行讲解。
b. 一元一次方程的解法- 介绍一元一次方程的基本概念和解题方法,包括等式的性质和方程的变形;- 给出一些实际问题,引导学生运用一元一次方程解决问题。
c. 一元二次方程的解法- 介绍一元二次方程的基本概念和解题方法,包括配方法、公式法等;- 给出一些实际问题,引导学生运用一元二次方程解决问题。
d. 一元一次不等式的解法- 介绍一元一次不等式的基本概念和解题方法,包括等式的性质和不等式的变形;- 给出一些实际问题,引导学生运用一元一次不等式解决问题。
2. 三角函数a. 三角函数的定义与性质- 介绍三角函数的基本定义和性质,包括正弦函数、余弦函数和正切函数;- 通过图像和实例讲解三角函数的周期性和对称性。
b. 三角函数的图像与变换- 通过变量的变化,讲解三角函数图像的平移、伸缩和翻转等变换;- 给出一些实际问题,引导学生分析三角函数图像的变化规律。
c. 三角函数的应用- 介绍三角函数在实际问题中的应用,如测量、建模等;- 给出一些实际问题,引导学生运用三角函数解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与方程教学设计(3)
一、教学内容解析
本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。
函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图形表示看,函数的零点就是函数f(x)与x轴交点的横坐标.函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。
函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。
定理不需证明,关键在于让学生通过感知体验并加以确认,由些需要结合具体的实例,加强对定理进行全面的认识,比如
对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。
函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”。
用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。
本节是函数应用的第一课,因此教学时应当站在函数应用的高度,从函数与其他知识的联系的角度来引入较为适宜。
二、教学目标解析
1.结合具体的问题,并从特殊推广到一般,使学生领会函数与方程之间的内在联系,从而了解函数的零点与方程根的联系。
2.在学习过程中,体验函数与方程思想及数形结合思想。
三、教学问题诊断分析
1.通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。
对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。
由此作为函数应用的第一课时,有必要点明函数的核心地位,即说明函数与其他知识的联系及其在生活中的应用,初步树立起函数应用的意识。
并从此出发,通过问题的设置,引导学生思考,再通过实例的确认与体验,从直观到抽象,从特殊到一般的学习方式,捅破学生认识上的这层“窗户纸”。
2.对于零点存在的判定定理,教材不要求给予其证明,这需要教师提供一定量的具体案例让学生操作感知,同时鼓励学生举例来验证,最终能自主地获得并确认该定理的结论。
对于定理的条件和结论,学生往往考虑不够深入,需要教师通过具体的问题,引导学生从正面、反面、侧面等不同的角度重新进行审视。
3.函数的零点,体现了函数与方程之间的密切联系,教学中应遵循高中数学以函数为主线的这一原则进行联结,侧重在从函数的角度看方程,同时为二分法求方程的近似解作知识和思想上的准备。
四、教学过程设计
(一)创设情景,揭示课题
函数是中学数学的核心内容,它不仅在生活中有着大量的应用,与其他数学知识有着千丝万缕的联系,若能抓住这一联系,你就拥有了一把解决问题的金钥匙。
案例1:周长为定值的矩形
不妨取l=12
问题1:求其面积的值:,
显然面积是一个关于x的一个二次多项式,
用几何画板演示矩形的变化:
问题2:求矩形面积的最大值?
当x取不同值时,代数式的值也相应随之变化,你能从函数的角度审视其中的关系吗?问题3:能否使得矩形的面积为8?你是如何分析的?
(1)实验演示的角度进行估计,拖动时难以恰好出现面积为8的情况;
(2)解方程:x(6-x)=8
(3)方程x(6-x)=8能否从函数的角度来进行描述?
问题4:
一般地,对于一般的二次三项式,二次方程与二次函数,它们之间有何联系?
结论:
代数式的值就是相应的函数值;
方程的根就是使相应函数值为0的x的值。
更一般地
方程f(x)=0的根,就是使函数值y=f(x)的函数值为0的x值,从函数的角度我们称之为零点。
设计意图:本节课是函数应用的第一课,有必要让学生对函数的应用有所了解。
从具体的问题出发,揭示函数与代数式、方程之间的内在联系,并从学生所熟悉的具体的二次函数,推广到一般的二次函数,再进一步推广到一般的函数。
(二)互动交流研讨新知
1.函数零点的概念:
对于函数y=f(x)(x )D ∈,把使f(x)=0成立的实数x 叫做函数y=f(x)(x )D ∈的零点.
2.对零点概念的理解
案例2:观察图象
问题1:此图象是否能表示函数?
问题2:你能从中分析函数有哪些零点吗?
问题3:从函数图象的角度,你能对函数的零点换一种说法吗?
结论:函数y=f(x)(x )D ∈的零点就是方程f(x)=0实数根,亦即函数y=f(x)(x )D ∈的图象与x 轴交点的横坐标.即:
方程f(x)=0有实数根⇔函数y=f(x)的图象与x 轴有交点⇔函数y=f(x)有零点.
设计意图:进一步掌握函数的核心概念,同时通过图象进行一步完善对函数零点的全面理解,为下面借助图象探究零点存在性定理作好一定的铺垫。
2.零点存在定理的探究
案例3:下表是三次函数322y x x x =+-的部分对应值表:
问题1:你能从表中找出函数的零点吗?
问题2:结合图象与表格,你能发现此函数零点的附近函数值有何特点?
生:两边的函数值异号!
问题3:如果一个函数f (x )满足f (a )f (b )<0,在区间(a,b)上是否一定存在着函数的零点?
注意:函数在区间上必须是连续的(图象能一笔画),从而引出零点存在性定理.
问题4: 有位同学画了一个图,认为定理不一定成立,你的看法呢?
问题5:你能改变定理的条件或结论,得到一些新的命题吗?
如1:加强定理的结论:若在区间[a ,b]上连续函数f (x )满足f(a)f(b)<0,是否意味着函数f(x)在[a,b]上恰有一个零点?
如2.将定理反过来:若连续函数f(x)在[a,b]上有一个零点,是否一定有f(a)f(b)<0?
如3:一般化:一个函数的零点是否都可由上述的定理进行判断?(反例:同号零点,如案例2中的零点-2)
设计意图:通过表格,是为了进一步巩固对函数这一概念的全面认识,并为观察零点存在性定理中函数值的异号埋下伏笔。
通过教师的设问让学生进一步全面深入地领悟定理的内容,而鼓励学生提问,是培养学生学习主动性和创造能力必要的过程。
(三)巩固深化,发展思维
例1、求函数f(x)=㏑x+2x -6的零点个数。
设计问题:
(1)你可以想到什么方法来判断函数零点?
(2)你是如何来确定零点所在的区间的?请各自选择。
(3)零点是唯一的吗?为什么?
设计意图:对所学内容巩固,可以借助<几何画板>画出函数f(x)的图象观察,也可借助<EXCEl>列出函数值表观察。
本题可以使学生意识对零点的区间是不唯一的,为下一节二分法求方程的近似解奠定基础。
让学生进一步领悟,零点的唯一性需要借助函数的单调性。
(四)归纳整理,整体认识
请回顾本节课所学知识内容有哪些?
所涉及到的主要数学思想又有哪些?
你还获得了什么?
(五)作业(略)。