1.3三角函数的诱导公式同步练习试题
三角函数的诱导公式
![三角函数的诱导公式](https://img.taocdn.com/s3/m/030759ee551810a6f5248608.png)
( 4 ) cos ( −2040
) = cos 2040
= cos ( 6 × 360 − 120
)
= cos1200 = cos(1800 − 600 ) 1 = − cos 60 = − 2
练习 将下列三角函数转化为锐角三角函数, 将下列三角函数转化为锐角三角函数,并 填在题中横线上 4 13 − cos π (1) cos π = ______; 9 9 ______; ( 2 ) sin (1 + π ) = − sin1
1.3 三角函数的诱导公式 三角函数的诱导公式(1)
双城市铁路中学: 双城市铁路中学:孔凡强
问题1:任意角 的正弦 余弦、正切是怎样定义的? 的正弦、 问题 :任意角α的正弦、余弦、正切是怎样定义的? 问题2:求下列三角函数值 借助单位圆 借助单位圆) 问题 :求下列三角函数值(借助单位圆
7π (1)sin 6 )
解:
2.典型例题 典型例题
11π π π 3 = sin π + = − sin = − ( 2 ) sin 3 3 3 2
2 (1) cos 225 = cos (180 + 45 ) = − cos 45 = − 2
16π ( 3) sin − 3
16π π = − sin 5π + = − sin 3 3 3 π = − − sin = 3 2
π +α O
α
x
P(-x,-y)
(2)与角 的终边关于 轴对称的角与 有什 与角α的终边关于 轴对称的角与α有什 与角 的终边关于x轴对称的角与 么关系?它们的三角函数之间有什么关系 么关系 它们的三角函数之间有什么关系? 它们的三角函数之间有什么关系 公式三 y
三角函数诱导公式练习题-带答案
![三角函数诱导公式练习题-带答案](https://img.taocdn.com/s3/m/5764389f10a6f524cdbf8510.png)
三角函数的诱导公式(1)一、选择题1.如果|cos x |=cos (x +π),则x 的取值集合是( )A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k π C . 2π+2k π≤x ≤2π3+2k π D .(2k +1)π≤x ≤2(k +1)π(以上k ∈Z ) 2.sin (-6π19)的值是( ) A . 21 B .-21 C .23 D .-23 3.下列三角函数:①sin (n π+3π4);②cos (2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6π]; ⑤sin [(2n +1)π-3π](n ∈Z ). 其中函数值与sin3π的值相同的是( ) A .①② B .①③④ C .②③⑤ D .①③⑤4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为( ) A .-36 B .36 C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( )A .cos (A +B )=cosC B .sin (A +B )=sin C C .tan (A +B )=tan CD .sin2A B +=sin 2C 6.函数f (x )=cos3πx (x ∈Z )的值域为( ) A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1} D .{-1,-23,23,1} 二、填空题7.若α.8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________.三、解答题9.求值:sin (-660°)cos420°-tan330°cot (-690°).11..12、求证:tan(2π)sin(2π)cos(6π)cos(π)sin(5π)q q qq q-----+=tanθ.三角函数的诱导公式(2)一、选择题:1.已知sin(4π+α)=23,则sin(43π-α)值为( ) A. 21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A. 23 B. 21 C. 23± D. —23 3.化简:)2cos()2sin(21-•-+ππ得( )A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2)4.已知α和β的终边关于x 轴对称,则下列各式中正确的是( )A.sinα=sinβB. sin(α-π2) =sinβC.cosα=cosβD. cos(π2-α) =-cosβ5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于( ), A. 51(4+5) B. 51(4-5) C. 51(4±5) D. 51(5-4) 二、填空题:6.cos(π-x)= 23,x ∈(-π,π),则x 的值为 . 7.tanα=m ,则=+-+++)cos(-sin()cos(3sin(απα)απ)απ . 8.|sinα|=sin (-π+α),则α的取值范围是 .三、解答题:9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos 2(65π-x )的值.11. 求下列三角函数值:(1)sin3π7;(2)cos 4π17;(3)tan (-6π23);12. 求下列三角函数值:(1)sin 3π4·cos 6π25·tan 4π5; (2)sin [(2n +1)π-3π2].13.设f (θ)=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f (3π)的值.。
三角函数的诱导公式的练习题及答案
![三角函数的诱导公式的练习题及答案](https://img.taocdn.com/s3/m/c3b2d11f0740be1e650e9ad4.png)
三角函数的诱导公式在ABC ∆中,若()()0sin sin =--+-+C A B C B A ,试判断ABC ∆的形状。
()()()[]()[]()()()CB C B B C B C B C B C B B C C C A B C B A ==+∴=-+-=∴=--∴=-+-∴=--+--∴=--+-+或或2222202sin 2sin 02sin 2sin 0sin sin 0sin sin πππππππππ ∴ABC ∆为直角三角形或等腰三角形。
2、设()()(),cos sin βπαπ+++=x b x a x f 其中βα,,,b a 都是非零实数,若(),12010-=f 则()=2011f 。
()()()()()()()()()()()[]()[]()()().1cos sin cos sin 2010cos 2010sin 2011cos 2011sin 20111cos sin 12010cos 2010sin 2010;12010,cos sin =+-=+++=+++++=+++=∴-=+∴-=+++=∴-=+++=βαβπαπβππαππβπαπβαβπαπβπαπb a b a b a b a f b a b a f f x b x a x f3、已知α是第三象限()()()()()αππαπααπαπ-+-+---=3sin tan )2tan(2cos sin x f (1)、化简();αf (2)、若;53sin -=α求();αf(3)、若,1860︒-=α();αf(1)、()()()()()αππαπααπαπ-+-+---=3sin tan )2tan(2cos sin x f()()ααααααsin sin tan tan cos sin =--= (2)、α是第三象限,;54cos ;53sin -=∴-=αα ()54-=∴αf(3)、()()()︒+︒⨯-=︒-=︒-3003606cos 1860cos 1860f().2160cos 60360cos 300cos =︒=︒-︒=︒=4.设()()()()()()⎪⎩⎪⎨⎧≥--<=⎩⎨⎧≥+-<=)21(11)21(cos 0110sin x x g x x x g x x f x x x f ππ 求)43()65()41()31(f g g f +++的值。
高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析
![高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析](https://img.taocdn.com/s3/m/6746bf5b31b765ce0508147c.png)
高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。
【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。
属于基础题型。
================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。
【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。
================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。
《任意角的三角函数、三角函数诱导公式》知识梳理与同步练习
![《任意角的三角函数、三角函数诱导公式》知识梳理与同步练习](https://img.taocdn.com/s3/m/92a63854a9114431b90d6c85ec3a87c240288aa8.png)
《任意角的三角函数、三角函数诱导公式》知识梳理与同步练习一、任意角的三角函数【知识梳理】1.设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0y x xα=≠.2.三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.3.三角函数线:sin α=MP ,cos α=OM ,tan α=AT .4.同角三角函数的基本关系式:(平方关系式)()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;(商数关系式)()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.【典型例题】1.三角函数的定义:例1、已知sinαtanα≥0,则α的取值集合为.例2、角α的终边上有一点P(m,5),且)0(,13cos ≠=m m α,则sinα+cosα=______.例3、已知角θ的终边在直线y =33x 上,则sin θ=;θtan =例4、设θ∈(0,2π),点P (sin θ,cos2θ)在第三象限,则角θ的范围是.例5、求43π角的正弦、余弦和正切值.例6、已知角α的终边经过点P(4,-3),求2sin α+cos α的值;2.三角函数线例1、sin(-1770°)·cos1500°+cos(-690°)·sin780°+tan405°=.例2、化简:ππππ37sin 3149cos 21613tan 3325cos 342222222m n n m --+=.例3、求下列三角函数值:(1)sin(-1080°)(2)tan 13π3(3)cos780°3、三角函数的基本关系一、选择题1、已知A 是三角形的一个内角,sin A +cos A =23,则这个三角形是()A.锐角三角形B.钝角三角形C.不等腰直角三角形D.等腰直角三角形2、若θθcos ,sin 是方程0242=++m mx x 的两根,则m 的值为A.51+B.51-C.51±D.51--3、已知sinαcosα=18,则cosα-sinα的值等于()A.±34B.±23C.23D.-234、已知θ是第三象限角,且95cos sin 44=+θθ,则=θθcos sin ()A.32B.32-C.31D.31-二、填空题1、若15tan =α,则=αcos ;=αsin .2、若3tan =α,则αααα3333cos 2sin cos 2sin -+的值为________________.3、已知2cos sin cos sin =-+αααα,则ααcos sin 的值为.4、已知524cos ,53sin +-=+-=m m m m θθ,则m=_________;=αtan .三、解答题1、已知51sin =α,求ααtan ,cos 的值.2、已知22cos sin =+αα,求αα22cos 1sin 1+的值.3、已知51cos sin =+ββ,且πβ<<0.(1)求ββcos sin 、ββcos sin -的值;(2)求βsin 、βcos 、βtan 的值.二、三角函数诱导公式:【基础知识】1、三角函数诱导公式(2k πα+)的本质是:奇变偶不变(对k 而言,指k 取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角).2、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z .()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名不变,符号看象限.()5sin cos 2παα⎛⎫-= ⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正余弦互换,符号看象限.3、诱导公式的应用是求任意角的三角函数值,其一般步骤:(1)负角变正角,再写成2k π+α,02απ≤<;(2)转化为锐角三角函数。
高一三角函数诱导公式练习题(带详解答案)
![高一三角函数诱导公式练习题(带详解答案)](https://img.taocdn.com/s3/m/4795987f02768e9951e738a0.png)
三角函数诱导公式(带答案)1.全国Ⅱ)若sinα<0且tanα>0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.(07·湖北)tan690°的值为()A.-33 B.33 C. 3D.- 33.f(sin x)=cos19x,则f(cos x)=()A.sin19x B.cos19x C.-sin19x D.-cos19x4.设f(x)=a sin(πx+α)+b cos(πx+β),其中a ,b ,α,β∈R ,且ab ≠0,α≠k π(k ∈Z).若f (2009)=5,则f (2010)等于( )A .4B .3C .-5D .55.(09·全国Ⅰ文)sin585°的值为( ) A .-22 B.22 C .-32D.326.函数y =5sin ⎝ ⎛⎭⎪⎫25x +π6的最小正周期是( )A.25πB.52πC.π3D .5π7.(2010·重庆文,6)下列函数中,周期为π,且在[π4,π2]上为减函数的是( )A .y =sin(2x +π2)B .y =cos (2x +π2)C .y =sin(x +π2)D .y =cos(x +π2)8.函数y =-2tan ⎝ ⎛⎭⎪⎫3x +π4的单调递减区间是________.三角函数诱导公式(答案) 1.[答案] C 2.[答案] A[ 解析] tan690°=tan(-30°+2×360°)=tan(-30°)=-tan30°=-33,选A.3.[答案] C[解析]f(cos x)=f(sin(90°-x))=cos19(90°-x)=cos(270°-19x)=-sin19x.4.[答案] C[解析]∵f(2009)=a sin(2009π+α)+b cos(2009π+β)=-a sinα-b cosβ=5,∴a sinα+b cosβ=-5.∴f(2010)=a sinα+b cosβ=-5.5.[答案] A[解析]sin585°=sin(360°+225°)=sin225°=sin(180°+45°)=-sin45°=-2 2.6.[答案]D[解析]T=2π25=5π.7.[答案] A[解析] 选项A :y =sin(2x +π2)=cos2x ,周期为π,在[π4,π2]上为减函数;选项B :y =cos(2x +π2)=-sin2x ,周期为π,在[π4,π2]上为增函数;选项C :y =sin(x +π2)=cos x ,周期为2π;选项D :y =cos(x +π2)=-sin x ,周期为2π.故选A.8. [答案]⎝ ⎛⎭⎪⎫k π3-π4,k π3+π12(k ∈Z)[解析] 求此函数的递减区间,也就是求y =2tan ⎝ ⎛⎭⎪⎫3x +π4的递增区间,由k π-π2<3x+π4<k π+π2,k ∈Z 得:k π3-π4<x <k π3+π12,∴减区间是⎝ ⎛⎭⎪⎫k π3-π4,k π3+π12,k ∈Z.。
1.3三角函数的诱导公式—1学练案及答案
![1.3三角函数的诱导公式—1学练案及答案](https://img.taocdn.com/s3/m/540cd7f5aef8941ea76e0513.png)
§1.3三角函数的诱导公式—1设计者:杨文锟学习目标1、掌握+πα、α-的三角函数与α的三角函数间的关系;. 学习过程 一、复习准备 复习1:写出2k πα+的三角函数与α的三角函数间的关系式:sin(2)k πα+=sin α;cos(2)k πα+=cos α; tan(2)k πα+=tan α.()k Z ∈结论:(1)终边相同的角的同名三角函数值 相等 ; (2)作用:将任意角的三角函数转化为0~2π(0~360) 间的角的三角函数.复习二:设角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,(,)P x y 为其终边上不同于顶点的任意一点,则sin α=yr;cos α=xr ;tan α=yx(其中22rx y=+.二、新课学习※学习探究一:在同一坐标系中,角πα+的终边与角α的终边有什么关系?(,)P x y α点,则点(,)P x y '--在角πα+的终边上.由此,试计算:sin()πα+=yr-、cos()πα+=x r -、tan()πα+=yx,并分别与sin α、cos α、tan α比较.结论(公式二):sin()πα+=sin α-、cos()πα+=cos α-、tan()πα+=tan α.※典例选析例1 求值:(1)sin 225; (2)16cos 3π;解:(1)sin 225sin(18045)=+2sin 452=-=-;(2)1644cos cos(4)cos 333ππππ=+=1cos()cos 332πππ=+=-=-变式练习1 将下列三角函数转化为锐角三角函数,并填在横线上(1)13cos9π=4cos 9π-; (2)sin(1)π+=sin1-.※学习探究二:仿照学习探究一的步骤,参照课本第23页图1.31-,推导出α-与α的三角函数间的关系式:sin()α-=sin α-、cos()α-=cos α、tan()α-=tan α-※典例选析例2 求值:(1)34sin()3π-; (2)13tan()4π- 解:(1)3434sin()sin33ππ-=- 44sin(10)sin33πππ=-+=- 3sin()sin 33πππ=-+==(2)1313tan()tan44ππ-=- 55tan(2)tan44πππ=-+=- tan()tan 144πππ=-+== 例3 化简 cos(180)sin(360)sin(180)cos(180)αααα+⋅+--⋅--解:原式化为cos sin cos sin 1sin(180)cos(180)sin cos αααααααα-⋅⋅==-+⋅+⋅o α πα+ xy (,)P x y变式练习2 填空 (1)cos(420)-=12; (2)7sin()6π-=12; (3)tan(1305)-=1-;(4)79cos()6π-=32-; (5)sin(180)cos()sin(180)ααα+--- 2sin cos αα=-;(6)3sin ()cos(2)tan()απααπ-+--=4sin α.小结:运用公式特别注意:(1)公式的格式;(2)三角函数值的符号. 三、总结提升※学习小结 化归思想:任意负角的三角函数−−−→公式三任意正角的三角函数−−−→公式一0~3600~2π ()间角的三角函数→0~900~2π()间角的三角函数. 当堂检测1、下列式子正确的是( C ).A sin()sin 55ππ-= .B 32coscos 55ππ= .C 6tan tan 55ππ= .D cos sin 155ππ+= 2、25tan()4π-=1-3、若1cos()2x π+=,则cos()x -=12-.课后预习1、观察课本第23页图1.31-,角πα-的终边与角α的终边有什么关系?关于y 轴对称.2、设(,)P x y 是角α终边上不同于顶点的一点,试计算:sin()πα-=y r、cos()πα-=x r-、tan()πα-=y x-,并分别与sin α、cos α、tan α比较.你能否得出结论:sin()πα-=sin α、cos()πα-=cos α-、tan()πα-=tan α-.。
1.3 三角函数的诱导公式
![1.3 三角函数的诱导公式](https://img.taocdn.com/s3/m/6a33177af242336c1eb95e21.png)
1.3 三角函数的诱导公式1.诱导公式(把角写成απ±2k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)⎪⎩⎪⎨⎧=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)⎪⎩⎪⎨⎧-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ⎪⎩⎪⎨⎧=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)⎪⎩⎪⎨⎧-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)⎪⎪⎩⎪⎪⎨⎧=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)⎪⎪⎩⎪⎪⎨⎧-=+=+ααπααπsin )2cos(cos )2sin(课堂训练 一.选择题1.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是 ( )(A)-53 (B)53 (C)±53 (D)54 2.若cos100°= k ,则tan ( -80°)的值为 ( )(A)(D)3.在△ABC,则△ABC 必是 ( ) (A)等边三角形 (B)直角三角形 (C)钝角三角形 (D)锐角三角形 4.已知角α终边上有一点P (3a ,4a )(a ≠0),则sin(450°-α)的值是 ( ) (A)-45(B)-35(C)±35(D)±455.设A ,B ,C 是三角形的三个内角,下列关系恒等成立的是 ( ) (A)cos(A +B )=cos C (B)sin(A +B )=sin C (C)tan(A +B )=tan C (D)sin2A B+=sin 2C *6.下列三角函数:①sin(n π+43π) ②cos(2n π+6π) ③sin(2n π+3π) ④cos[(2n +1)π-6π] ⑤sin[(2n +1)π-3π](n ∈Z)其中函数值与sin 3π的值相同的是 ( ) (A)①② (B)①③④ (C)②③⑤ (D)①③⑤ 二.填空题7.tan(150)cos(570)cos(1140)tan(210)sin(690)-︒⋅-︒⋅-︒-︒⋅-︒= .8.sin 2(3π-x )+sin 2(6π+x )= .9.= .*10.已知f (x )=a sin(πx +α)+b cos(πx +β),其中α、β、a 、b 均为非零常数,且列命题:f (2006) =1516-,则f (2007) = . 三.解答题11.化简23tan()sin ()cos(2)2cos ()tan(2)ππααπααπαπ-⋅+⋅---⋅-.12. 设f (θ)=3222cos sin (2)cos()322cos ()cos(2)θπθθπθπθ+-+--+++- , 求f (3π)的值.*14.是否存在角α、β,α∈(-2π,2π),β∈(0,π),使等式sin(3π-α2π-β), cos (-απ+β)同时成立?若存在,求出α、β的值;若不存在,请说明理由.同步提升一、选择题 1.已知sin()4πα+=,则3sin()4πα-值为( ) A.21 B. —21C. 23D. —232.cos (π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A.23 B. 21C. 23±D. —23 3.化简:)2cos()2sin(21-∙-+ππ得( ) A. sin 2cos2+ B. cos2sin 2- C. sin 2cos2- D.±cos2sin 2- 4.已知3tan =α,23παπ<<,那么ααsin cos -的值是( ) A 231+-B 231+-C 231-D 231+ 二、填空题5.如果,0sin tan <αα且,1cos sin 0<+<αα那么α的终边在第 象限6.求值:2sin(-1110º) -sin960º+)210cos()225cos(2︒-+︒-= . 三、解答题7.设()f θ=)cos()7(cos 221)cos(2)(sin cos 2223θθππθπθθ-++++---+-,求()3f π的值.8.已知方程sin(α - 3π) = 2cos(α - 4π),求)sin()23sin(2)2cos(5)sin(ααπαπαπ----+-的值。
人教a版必修4学案:1.3三角函数的诱导公式(1)(含答案)
![人教a版必修4学案:1.3三角函数的诱导公式(1)(含答案)](https://img.taocdn.com/s3/m/56d0f9fb83d049649a66583a.png)
1.3三角函数的诱导公式(一)自主学习知识梳理1.设α为任意角,则π+α,-α,π-α的终边与α的终边之间的对称关系.相关角终边之间的对称关系π+α与α关于____对称;-α与α关于____对称;π-α与α关于____对称.2.诱导公式一~四(1)公式一:sin(α+2kπ)=______,cos(α+2kπ)=______,tan(α+2kπ)=________,其中k∈Z.(2)公式二:sin(π+α)=________,cos(π+α)=__________,tan(π+α)=________.(3)公式三:sin(-α)=________,cos(-α)=__________,tan(-α)=________.(4)公式四:sin(π-α)=________,cos(π-α)=________,tan(π-α)=__________.自主探究你能否利用π+α与α终边之间的对称关系,从任意角三角函数的定义出发推导诱导公式二吗?对点讲练知识点一给角求值问题例1求下列各三角函数值.(1)sin(-1 200°);(2)cos 47π6;(3)tan 945°.回顾归纳此类问题是给角求值,主要是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解.如果是负角,一般先将负角的三角函数化为正角的三角函数,要记住一些特殊角的三角函数值.变式训练1求sin 1 200°·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan(-495°)的值.知识点二给值求值问题例2已知sin3π-αcos3π-α=2,求sinα-3π+cosπ-αsin-α-cosπ+α的值.回顾归纳(1)诱导公式的使用将三角函数式中的角都化为单角.(2)弦切互化是本题的一个重要技巧,值得关注.变式训练2已知cos π6-α=33,求cos 5π6+α-sin2α-π6的值.知识点三化简三角函数式例3化简:sin-2π-θcos6π-θtan2π-θcosθ-πsin5π+θ.回顾归纳解答此类题目的关键是正确运用诱导公式,如果含有参数k(k为整数)一般需按k的奇、偶性分类讨论.变式训练3化简:sin[k+1π+θ]·c os[k+1π-θ]sin kπ-θ·cos kπ+θ(其中k∈Z).1.明确各诱导公式的作用诱导公式作用公式一将角转化为0~2π求值公式二将0~2π内的角转化为0~π之间的角求值公式三将负角转化为正角求值公式四将角转化为0~π2求值2.诱导公式的记忆这组诱导公式的记忆口诀是“函数名不变,符号看象限”.其含义是诱导公式两边的函数名称一致,符号则是将α看成锐角时原角所在象限的三角函数值的符号.α看成锐角,只是公式记忆的方便,实际上α可以是任意角.课时作业一、选择题1.sin 585°的值为()A.-22B.22C.-32D.322.若n为整数,则代数式sin nπ+αcos nπ+α的化简结果是()A.tan nαB.-tan nαC.tan αD.-tan α3.记cos(-80°)=k,那么tan 100°等于()A.1-k2kB.-1-k2kC.k1-k2D.-k1-k24.tan(5π+α)=m,则sinα-5πcosπ+α的值为()A.m B.-m C.-1 D.15.若sin(π-α)=log814,且α∈-π2,0,则cos(π+α)的值为()A.53B.-53C.±53D.以上都不对二、填空题6.sin-π3+2sin5π3+3sin2π3=______.7.代数式1+2sin 290°cos 430°sin 250°+cos 790°的化简结果是________.8.设f(x)=asin(πx+α)+bcos(πx+β)+2,其中a、b、α、β为非零常数.若f(2 009)=1,则f(2 010)=________.三、解答题9.若cos(α-π)=-2 3,求sinα-2π+sin-α-3πcosα-3πcosπ-α-cos-π-αcosα-4π的值.10.已知sin(α+β)=1,求证:tan(2α+β)+tan β=0.§1.3三角函数的诱导公式(一)答案知识梳理1.相关角终边之间的对称关系π+α与α关于原点对称;-α与α关于x轴对称;π-α与α关于y轴对称.2.(1)sin αcos αtan α(2)-sin α-cos αtan α(3)-sin αcos α-tan α(4)sin α-cos α-tan α自主探究解设P(x,y)为角α终边上任一点,∵角α与π+α终边关于原点对称.∴P(x,y)关于原点的对称点P′(-x,-y)位于角π+α的终边上.∴|OP′|=|OP|=x2+y2=r.由任意角三角函数的定义知:sin(π+α)=-yr=-sin α,cos (π+α)=-xr=-cos α,tan(π+α)=-y-x=yx=tan α.借助任意角三角函数的定义同样可以推得公式三、公式四.对点讲练例1解(1)sin(-1 200°)=sin(-4×360°+240°) =sin 240°=sin(180°+60°)=-sin 60°=-3 2;(2)cos 47π6=cos(11π6+6π)=cos11π6=cos(2π-π6)=cosπ6=32;(3)tan 945°=tan(2×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1.变式训练1解原式=sin(3×360°+120°)·cos(3×360°+210°)-cos(2×360°+300°)·sin(2×360°+330°)-tan(360°+135°)=sin(180°-60°)·cos(180°+30°)-cos(360°-60°)·sin(360°-30°)-tan(180°-45°)=-sin 60°·cos 30°+cos 60°·sin 30°+tan 45°=-32×32+12×12+1=1 2 .例2解∵sin3π-αcos3π-α=2,∴tan(3π-α)=2,∴tan α=-2.∵sinα-3π+cosπ-αsin-α-cosπ+α=-sin α-cos α-sin α+cos α=sin α+cos αsin α-cos α=1+tan αtan α-1∴sinα-3π+cosπ-αsin-α-cosπ+α=1-2-2-1=13.变式训练2解cos 5π6+α-sin2α-π6=-cosπ-5π6+α-sin2π6-α=-cos π6-α-sin2π6-α=-33-1-332=-33-23=-2+33.例3解原式=-sin2π+θ·cos θ·-tan θcosπ-θ·sinπ+θ=sin θ·cos θ·tan θ-cos θ·-sin θ=sin θ·cos θ·tan θsin θ·cos θ=tan θ变式训练3解当k为偶数时,不妨设k=2n,n∈Z,则原式=sin[2n+1π+θ]·c os[2n+1π-θ] sin2nπ-θ·cos2nπ+θ=sinπ+θ·cosπ-θ-sin θ·cos θ=-sin θ·-cos θ-sin θ·cos θ=-1.当k为奇数时,设k=2n+1,n∈Z,则原式=sin[2n+2π+θ]·c os[2n+2π-θ] sin[2n+1π-θ]·c os[2n+1π+θ]=sin[2n+1π+θ]·c os[2n+1π-θ] sinπ-θ·cosπ+θ=sin θ·cos θsin θ·-cos θ=-1.∴上式的值为- 1. 课时作业1.A[sin 585°=sin(360°+225°)=sin(180°+45°)=-2 2 .]2.C[若n为偶数,则原式=sin αcos α=tan α;若n为奇数,则原式=sinπ+αcosπ+α=tan α.]3.B[∵cos(-80°)=k,∴cos 80°=k,∴sin 80°=1-k2.∴tan 80°=1-k2 k.∴tan 100°=-tan 80°=-1-k2 k.]4.A[∵tan(5π+α)=tan α=m,∴tan α=m.原式=-sin α-cos α=tan α=m.]5.B[∵sin(π-α)=sin α=log2 2-23=-23,∴cos(π+α)=-cos α=-1-sin2α=-1-49=-53.]6.0解析原式=-sin π3+2sin2π-π3+3sin2π3=-32-2×32+3×32=0.7.-1解析原式=1+2sin180°+110°·cos360°+70°sin180°+70°+cos2×360°+70°=1-2sin 110°cos 70°cos 70°-sin 70°=1-2sin 70°cos 70°cos 70°-sin 70°=|sin 70°-cos 70°| cos 70°-sin 70°=-1.8.3解析f(2 009)=asin(2 009π+α)+bcos(2 009π+β)+2 =asin(π+α)+bcos(π+β)+2=2-(asin α+bcos β)=1.∴asin α+bcos β=1.f(2 010)=asin(2 010π+α)+bcos(2 010π+β)+2 =asin α+bcos β+2=3.9.解原式=-sin2π-α-sin3π+αcos3π-α-cos α--cos αcos α=sin α-sin αcos α-cos α+cos2α=sin α1-cos α-cos α1-cos α=-tan α.∵cos(α-π)=cos(π-α)=-cos α=-2 3,∴cos α=23.∴α为第一象限角或第四象限角.当α为第一象限角时,cos α=2 3,sin α=1-cos2α=5 3,∴tan α=sin αcos α=52,则原式=-52.当α为第四象限角时,cos α=2 3,sin α=-1-cos2α=-5 3,∴tan α=sin αcos α=-52,则原式=52.10.证明∵sin(α+β)=1,∴α+β=2kπ+π2(k∈Z),∴α=2kπ+π2-β (k∈Z).tan(2α+β)+tan β=tan22kπ+π2-β+β+tan β=tan(4kπ+π-2β+β)+tan β=tan(4kπ+π-β)+tan β=tan(π-β)+tan β=-tan β+tan β=0,∴原式成立.。
(完整版)三角函数诱导公式练习题附答案(最新整理)
![(完整版)三角函数诱导公式练习题附答案(最新整理)](https://img.taocdn.com/s3/m/e6643d7d964bcf84b9d57b8a.png)
=sin,、已知,则=、、、、、、、、﹣(+﹣,则(﹣、﹣、、﹣、、函数的最小值等于( )、、本式的值是( )、、、已知且、、、、、、﹣a+)=,则﹣)的值是( )、、 C、﹣、﹣、若,,则的值为( )、、、、已知,则的值是、、、、﹣)﹣)、、tan tan;④,、、、、、设,则值是( )、、(+x(+x 角的、、﹣、、﹣则Z时,取得最大值,且这、化简:=、化简:=、已知,则,则(+)+)+)+)的值等于 =,,,=sin,=sin=cos,(﹣)=cos=f、已知,则=、、、、cosa=,利用诱导公式化简,再用两角差的余弦公式,求解即可.cosa=,(+a﹣+a﹣)=cosacos+sinasin=×+×=.、、、、﹣===,===.(+﹣,则(﹣、﹣、、﹣、(﹣(+(﹣=cos[﹣(﹣(+﹣.贵州)函数的最小值等于( )、﹣3、:运用诱导公式化简求值。
(﹣sin[﹣(+x(﹣(+x=2sin[﹣(+x(+x(+x(+x(做题时注意应用(﹣(+x=这个角度变换.、本式的值是( )、、:运用诱导公式化简求值。
﹣)﹣cos+)+tan+)sin﹣cos+tan=﹣+×+×=1、已知且、、、、由已知中且解:∵且∴,∴=、、﹣﹣,a+)=,则﹣)的值是( )、、、﹣、﹣a+)=sin[﹣(﹣(﹣﹣)=,﹣)=2﹣×﹣﹣、若,,则的值为( )、、、、角之间的关系:(﹣(+x=及﹣(﹣解:∵∴,(﹣(﹣===.∵(﹣(+x=,(+x(﹣(﹣(﹣(﹣(﹣将①②代入原式,∴===、已知,则的值是( )、、、、=>﹣=﹣,则=sin=×(﹣)﹣.﹣)﹣)、、﹣)﹣)﹣)=cosx+cosx+sinx=(cosx+sinx=cos﹣)=mtan tan;④,其中恒为定值的cot tan=1不是定值.tan tan=tan(﹣)tan=cot tan=1=sin sin=sin2不是定值.④不正确.、、、、====﹣本题考查的知识点是运用诱导公式化简求值,同角三角函数关系,其中由、设,则值是( )、、=,所以﹣,则===2×(﹣)(+x(+x(π(+x、设角的值等于( )、、﹣、、﹣解:因为,则======.()()()())是角终边上一点,则Z的值为 ﹣ .利用大公司化简,得到解:原式可化为,由条件(﹣)是角终边上一点,所以,故所求值为.故答案为:时,取得最大值,且这个最大值为 .得=﹣,然后把已知条件分别利用二倍角的余弦函数公式和诱导公式化为关于sin的sin的值,=12+2cos﹣)2+2sin= +,sin=,因为为锐角,所以=30时,原式的最大值为.,、化简:====、化简:====、已知,则sin开始每连续的四个正弦值相加为()解:由,=1+sin+1+sin+1+sin+1+sin2+1+sin++1+sinsin+sin+sin+sin2sin+sin3+sin+sin4sin+sin1003+sin1004+sin=2009+sin+sin+sin+sin2sin+sin+sin+sin2sin+sin+sin +sin+),则( .或,(,∴或,∴(θ﹣2sinθcos==.故答案为:.本题考查三角函数的诱导公式和化简求值,解题时要注意三角函数的符号和等价转化.+)+)+)+)的值等于 ﹣ .利用三角函数的诱导公式sin(2kπ+α)=sin(﹣)(﹣)…=﹣.故答案为﹣本题考查三角函数的诱导公式:=,则 .=,可得,从而首尾=,∴=.故答案为、若,且,则)的值是 .==﹣,而∈(﹣,==.故答案为:。
(完整版)三角函数诱导公式练习题附答案
![(完整版)三角函数诱导公式练习题附答案](https://img.taocdn.com/s3/m/8b3fdeafdd36a32d7275810b.png)
三角函数诱导公式练习题一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数2、点P(cos2009°,sin2009°)落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、B、C、D、4、若tan160°=a,则sin2000°等于()A、B、C、D、﹣5、已知cos(+α)=﹣,则sin(﹣α)=()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣3B、﹣2C、D、﹣17、本式的值是()A、1B、﹣1C、D、8、已知且α是第三象限的角,则cos(2π﹣α)的值是()A、B、C、D、9、已知f(cosx)=cos2x,则f(sin30°)的值等于()A、B、﹣C、0 D、110、已知sin(a+)=,则cos(2a﹣)的值是()A、B、C、﹣D、﹣11、若,,则的值为()A、B、C、D、12、已知,则的值是()A、B、C、D、13、已知cos(x﹣)=m,则cosx+cos(x﹣)=()A、2mB、±2mC、D、14、设a=sin(sin20080),b=sin(cos20080),c=cos(sin20080),d=cos(cos20080),则a,b,c,d的大小关系是()A、a<b<c<dB、b<a<d<cC、c<d<b<aD、d<c<a<b15、在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan tan;④,其中恒为定值的是()A、②③B、①②C、②④D、③④16、已知tan28°=a,则sin2008°=()A、B、C、D、17、设,则值是()A、﹣1B、1C、D、18、已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),f(2007)=5,则f(2008)=()A、3B、5C、1D、不能确定19、给定函数①y=xcos(+x),②y=1+sin2(π+x),③y=cos(cos(+x))中,偶函数的个数是()A、3B、2C、1D、020、设角的值等于()A、B、﹣C、D、﹣21、在程序框图中,输入f0(x)=cosx,则输出的是f4(x)=﹣csx()A、﹣sinxB、sinxC、cosxD、﹣cosx二、填空题(共9小题)22、若(﹣4,3)是角终边上一点,则Z的值为.23、△ABC的三个内角为A、B、C,当A为°时,取得最大值,且这个最大值为.24、化简:=25、化简:=.26、已知,则f(1)+f(2)+f(3)+…+f(2009)=.27、已知tanθ=3,则(π﹣θ)=.28、sin(π+)sin(2π+)sin(3π+)…sin(2010π+)的值等于.29、f(x)=,则f(1°)+f(2°)+…+f(58°)+f(59°)= .30、若,且,则cos(2π﹣α)的值是.答案与评分标准一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。
三角函数 诱导公式专项练习(含答案)
![三角函数 诱导公式专项练习(含答案)](https://img.taocdn.com/s3/m/246704c805a1b0717fd5360cba1aa81144318f93.png)
三角函数诱导公式专项练习(含答案) 三角函数诱导公式专项练一、单选题1.sin(-600°)的值为()A。
-√3/2B。
-1C。
1D。
√3/22.cos(11π/3)的值为()A。
-√3/2B。
-13/2C。
√2D。
23.已知sin(30°+α)=√3/2,则cos(60°-α)的值为A。
1/2B。
-1/2C。
√3/2D。
-√3/24.已知cos(π/3+α)=-5/2,且α∈(2π/5,π),则XXX(α-π)=()A。
-34/4B。
-3C。
4D。
35.已知sin(π-α)=-2/√3,且α∈(-2,0),则tan(2π-α)的值为A。
2√5/5B。
-2√5/2√5C。
±5D。
√5/26.已知cos(π/4-α)=√2/2,则sin(α+π/4)=()A。
-3B。
1C。
√2D。
√14/47.已知sinα=3/5,2<α<π/2,则sin(2-α)=()A。
3/5B。
-3/5C。
4/5D。
-4/58.已知tanx=-12/5π,x∈(π/2,π),则cos(-x+3π/2)=()A。
5/13B。
-5/12C。
13D。
-12/139.如果cos(π+A)=-1,那么sin(π/2+A)=A。
-1/2B。
2C。
1D。
-110.已知cos(π/2-α)-3cosα/(sinα-cos(π+α))=2,则tanα=()A。
12/5B。
-3C。
1/2D。
-511.化简cos480°的值是()A。
1B。
-1C。
√3/2D。
-√3/212.cos(-585°)的值是()A。
√2/2B。
√3/2C。
-√3/2D。
-√2/213.已知角α的终边经过点P(-5,-12),则sin(3π/2+α)的值等于()A。
-5B。
-12/13C。
13D。
12/1314.已知cos(π+α)=2/3,则tanα=()A。
√55/2B。
2√5/52.已知cosα=2/5,-2/5<α<0,则tan(α+α)cos(-α)tanα的值为()答案:D解析:由cosα=2/5可得sinα=-√(21)/5,代入公式可得tan(α+α)cos(-α)tanα=-1/√3=-√3/3,故选D。
高一三角函数诱导公式练习题
![高一三角函数诱导公式练习题](https://img.taocdn.com/s3/m/a9f6ab94998fcc22bdd10d57.png)
3
3
2
2
1. 同角三角函数基本关系式 sin2α + cos2α =1 sinα
=tan α cosα
tanα cotα =1
三角函数公式
2. 诱导公式 (奇变偶不变,符号看象限 )
(一) sin(π- α )= sinα sin(π +α )= -sinα
cos(π- α )= -cosα
cos(π +α )= -cosα
3
6
4
2
2
4
( 2) sin[(2n+1) π- 2 π ]=sin( π- 2 π ) =sin π =
3
.
3
3
32
13.解: f ( θ)= 2 cos 3
sin 2
2
cos
3
2 2 cos
cos
3
2
= 2 cos
1 cos
cos 3
2
2 2 cos
cos
3
2 cos
=
2
2
2 (cos
cos )
)
A.sin α =sin β B. sin( - 2α ) =sin β
C.cos α =cos β D. cos( 2 - α ) =-cos β
π
2
5.设 tan θ-=2,
<θ<0,那么 sin θ +cos(- θ2 ) 的值等于( ),
2
1
1
1
A. ( 4+ 5 ) B. ( 4- 5 ) C. ( 4± 5 )
5π
m1
6. ±
7.
8.[(2k-1)
6
m1
1.3三角函数的诱导公式(二)知识点归纳与练习(含详细答案)
![1.3三角函数的诱导公式(二)知识点归纳与练习(含详细答案)](https://img.taocdn.com/s3/m/d96ea4f6b14e852458fb57db.png)
第一章 三角函数§1.3 三角函数的诱导公式(二) 课时目标 1.借助单位圆及三角函数定义理解公式五、公式六的推导过程.2.运用公式五、公式六进行有关计算与证明.1.诱导公式五~六(1)公式五:sin ⎝⎛⎭⎫π2-α=________;cos ⎝⎛⎭⎫π2-α=________. 以-α替代公式五中的α,可得公式六.(2)公式六:sin ⎝⎛⎭⎫π2+α=________;cos ⎝⎛⎭⎫π2+α=________. 2.诱导公式五~六的记忆π2-α,π2+α的三角函数值,等于α的____________三角函数值,前面加上一个把α看成锐角时原函数值的________,记忆口诀为“函数名改变,符号看象限”.知识点归纳总结:1.学习了本节知识后,连同前面的诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.当k 为偶数时,得α的同名函数值;当k 为奇数时,得α的异名函数值,然后前面加一个把α看成锐角时原函数值的符号.2.诱导公式统一成“k ·π2±α(k ∈Z )”后,记忆口诀为“奇变偶不变,符号看象限”.一、选择题1.已知f (sin x )=cos 3x ,则f (cos 10°)的值为( )A .-12 B.12 C .-32 D.322.若sin(3π+α)=-12,则cos ⎝⎛⎭⎫72π-α等于( ) A .-12 B.12 C.32 D .-323.已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α的值等于( ) A .-13 B.13 C.-223 D.2234.若sin(π+α)+cos ⎝⎛⎭⎫π2+α=-m ,则cos ⎝⎛⎭⎫32π-α+2sin(2π-α)的值为( ) A .-2m 3 B.2m 3 C .-3m 2 D.3m 25.已知cos ⎝⎛⎭⎫π2+φ=32,且|φ|<π2,则tan φ等于( ) A .-33 B.33C .- 3 D. 3 6.已知cos(75°+α)=13,则sin(α-15°)+cos(105°-α)的值是( ) A.13 B.23 C .-13 D .-23二、填空题7.若sin ⎝⎛⎭⎫α+π12=13,则cos ⎝⎛⎭⎫α+7π12=________. 8.代数式sin 2(A +45°)+sin 2(A -45°)的化简结果是______.9.sin 21°+sin 22°+…+sin 288°+sin 289°=________.10.已知tan(3π+α)=2,则sin (α-3π)+cos (π-α)+sin ⎝⎛⎭⎫π2-α-2cos ⎝⎛⎭⎫π2+α-sin (-α)+cos (π+α)=________.三、解答题11.求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.12.已知sin ⎝⎛⎭⎫-π2-α·cos ⎝⎛⎭⎫-5π2-α=60169,且π4<α<π2,求sin α与cos α的值.能力提升13.化简:sin ⎝⎛⎭⎫4k -14π-α+cos ⎝⎛⎭⎫4k +14π-α (k ∈Z ).14.是否存在角α,β,α∈⎝⎛⎭⎫-π2,π2,β∈(0,π),使等式 ⎩⎪⎨⎪⎧sin (3π-α)=2cos ⎝⎛⎭⎫π2-β3cos (-α)=-2cos (π+β)同时成立. 若存在,求出α,β的值;若不存在,说明理由.§1.3 三角函数的诱导公式(二)答案知识梳理1.(1)cos α sin α (2)cos α -sin α2.异名 符号作业设计1.A [f (cos 10°)=f (sin 80°)=cos 240°=cos(180°+60°)=-cos 60°=-12.] 2.A [∵sin(3π+α)=-sin α=-12,∴sin α=12. ∴cos ⎝⎛⎭⎫7π2-α=cos ⎝⎛⎭⎫32π-α=-cos ⎝⎛⎭⎫π2-α=-sin α=-12.] 3.A [cos ⎝⎛⎭⎫π4+α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α=sin ⎝⎛⎭⎫π4-α=-sin ⎝⎛⎭⎫α-π4=-13.] 4.C [∵sin(π+α)+cos ⎝⎛⎭⎫π2+α=-sin α-sin α=-m ,∴sin α=m 2.cos ⎝⎛⎭⎫32π-α+2sin(2π-α)=-sin α-2sin α=-3sin α=-32m .] 5.C [由cos ⎝⎛⎭⎫π2+φ=-sin φ=32,得sin φ=-32, 又∵|φ|<π2,∴φ=-π3,∴tan φ=- 3.] 6.D [sin(α-15°)+cos(105°-α)=sin[(75°+α)-90°]+cos[180°-(75°+α)]=-sin[90°-(75°+α)]-cos(75°+α)=-cos(75°+α)-cos(75°+α)=-2cos(75°+α)=-23.] 7.-13解析 cos ⎝⎛⎭⎫α+7π12=cos ⎣⎡⎦⎤π2+⎝⎛⎭⎫α+π12=-sin ⎝⎛⎭⎫α+π12=-13. 8.1解析 原式=sin 2(A +45°)+sin 2(45°-A )=sin 2(A +45°)+cos 2(A +45°)=1. 9.892解析 原式=(sin 21°+sin 289°)+(sin 22°+sin 288°)+…+(sin 244°+sin 246°)+sin 245°=44+12=892. 10.2解析 原式=sin αsin α-cos α=tan αtan α-1=22-1=2. 11.证明 左边=tan (-α)·sin (-α)·cos (-α)sin ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α·cos ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α =(-tan α)·(-sin α)·cos αsin ⎣⎡⎦⎤-⎝⎛⎭⎫π2-αcos ⎣⎡⎦⎤-⎝⎛⎭⎫π2-α=sin 2α-sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α =sin 2α-cos α·sin α=-sin αcos α=-tan α=右边. ∴原等式成立.12.解 sin ⎝⎛⎭⎫-π2-α=-cos α, cos ⎝⎛⎭⎫-5π2-α=cos ⎝⎛⎭⎫2π+π2+α=-sin α. ∴sin α·cos α=60169,即2sin α·cos α=120169. ① 又∵sin 2α+cos 2α=1, ②①+②得(sin α+cos α)2=289169, ②-①得(sin α-cos α)2=49169, 又∵α∈⎝⎛⎭⎫π4,π2,∴sin α>cos α>0,即sin α+cos α>0,sin α-cos α>0,∴sin α+cos α=1713, ③ sin α-cos α=713, ④ ③+④得sin α=1213,③-④得cos α=513. 13.解 原式=sin ⎣⎡⎦⎤k π-⎝⎛⎭⎫π4+α+cos ⎣⎡⎦⎤k π+⎝⎛⎭⎫π4-α. 当k 为奇数时,设k =2n +1 (n ∈Z ),则原式=sin ⎣⎡⎦⎤(2n +1)π-⎝⎛⎭⎫π4+α+cos ⎣⎡⎦⎤(2n +1)π+⎝⎛⎭⎫π4-α =sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+α+cos ⎣⎡⎦⎤π+⎝⎛⎭⎫π4-α =sin ⎝⎛⎭⎫π4+α+⎣⎡⎦⎤-cos ⎝⎛⎭⎫π4-α =sin ⎝⎛⎭⎫π4+α-cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α =sin ⎝⎛⎭⎫π4+α-sin ⎝⎛⎭⎫π4+α=0; 当k 为偶数时,设k =2n (n ∈Z ),则原式=sin ⎣⎡⎦⎤2n π-⎝⎛⎭⎫π4+α+cos ⎣⎡⎦⎤2n π+⎝⎛⎭⎫π4-α =-sin ⎝⎛⎭⎫π4+α+cos ⎝⎛⎭⎫π4-α =-sin ⎝⎛⎭⎫π4+α+cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α =-sin ⎝⎛⎭⎫π4+α+sin ⎝⎛⎭⎫π4+α=0. 综上所述,原式=0.14.解 由条件,得⎩⎨⎧sin α=2sin β, ①3cos α=2cos β. ②①2+②2,得sin 2α+3cos 2α=2,③又因为sin 2α+sin 2α=1,④由③④得sin 2α=12,即sin α=±22, 因为α∈⎝⎛⎭⎫-π2,π2,所以α=π4或α=-π4. 当α=π4时,代入②得cos β=32,又β∈(0,π), 所以β=π6,代入①可知符合. 当α=-π4时,代入②得cos β=32,又β∈(0,π), 所以β=π6,代入①可知不符合.综上所述,存在α=π4,β=π6满足条件.。
(完整版)三角函数诱导公式专项练习(含答案)
![(完整版)三角函数诱导公式专项练习(含答案)](https://img.taocdn.com/s3/m/e73a04a65a8102d276a22ff7.png)
三角函数 诱导公式专项练习学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.sin (−600∘)=( ) A . −√32 B . −12C . 12D .√322.cos 11π3的值为( ) A . −√32B . −12 C .√32D . 123.已知sin(30°+α)=√32,则cos (60°–α)的值为A . 12 B . −12 C .√32 D . –√324.已知 cos (π2+α)=−35,且 α∈(π2,π),则tan (α−π)=( ) A . −34 B . −43 C . 34 D . 435.已知sin(π-α)=-23,且α∈(-π2,0),则tan(2π-α)的值为( )A .2√55B . -2√55C . ±2√55 D .√526.已知cos(π4−α)=√24,则sin(α+π4)=( )A . −34B . 14C . √24D .√1447.已知sinα=35,π2<α<3π2,则sin(7π2−α)=( ) A . 35B . −35C . 45D . −458.已知 tanx =−125, x ∈(π2,π),则cos(−x +3π2)=( )A .513B . -513C .1213D . -12139.如果cos(π+A)=−12,那么sin(π2+A)= A . -12 B . 12 C . 1 D . -1 10.已知cos(π2−α)−3cosαsinα−cos (π+α)=2,则tanα=( ) A . 15 B . −23 C . 12 D . −5 11.化简cos480∘的值是( )A.12B.−12C.√32D.−√3212.cos(−585°)的值是()A.√22B.√32C.−√32D.−√2213.已知角α的终边经过点P(−5,−12),则sin(3π2+α)的值等于()A.−513B.−1213C.513D.121314.已知cos(π+α)=23,则tanα=()A.√52B.2√55C.±√52D.±2√5515.已知cosα=15,−π2<α<0,则cos(π2+α)tan(α+π)cos(−α)tanα的值为()A.2√6B.−2√6C.−√612D.√61216.已知sinα=13,α∈(π2,π)则cos(−α)=()A.13B.−13C.2√23D.−2√2317.已知sin(π+α)=45,且α是第四象限角,则cos(α−2π)的值是( )A.−35B.35C.±35D.4518.已知sin=,则cos=( ) A.B.C.-D.-19.已知cos α=k,k∈R,α∈,则sin(π+α)=( ) A.-B.C.±D.-k20.=( )A.sin 2-cos 2B.sin 2+cos 2C.±(sin 2-cos 2)D.cos 2-sin 221.sin585∘的值为A.√22B.−√22C.√32D.−√3222.sin(−1020°)=()A.12B.−12C.√32D.−√3223.若α∈(0,π),sin(π−α)+cosα=√23,则sinα−cosα的值为( )A .√23B . −√23C . 43 D . −4324.已知α∈(π2,π)且sin (π+α)=−35,则tan α=( ) A . −34B . 43C . 34D . −4325.已知sin (π2+θ)+3cos (π−θ)=sin (−θ),则sinθcosθ+cos 2θ=( )A . 15B . 25C . 35 D .√5526.若sinθ−cosθ=43,且θ∈(34π,π),则sin(π−θ)−cos(π−θ)=( ) A . −√23B .√23C . −43D . 4327.已知sin (π2+θ)+3cos (π−θ)=sin (−θ),则sinθcosθ+cos 2θ=( ) A . 15 B . 25 C . 35 D . √5528.已知sin(2015π2+α)=13,则cos(π−2α)的值为( )A . 13 B . -13 C . 79 D . −79 29.若α∈(0,π),sin(π−α)+cosα=√23,则sinα−cosα的值为( )A .√23B . −√23C . 43 D . −4330.已知a =tan (−π6),b =cos (−23π4),c =sin25π3,则a,b,c 的大小关系是( )A . b >a >cB . a >b >cC . c >b >aD . a >c >b 31.cos7500= A .√32B . 12C . −√32D . −1232.sin (−236π)的值等于( )A .√32B . −12 C . 12 D . −√3233.sin300°+tan600°+cos (−210°)的值的( ) A . −√3 B . 0 C . −12+√32D . 12+√3234.已知α∈(π2,3π2),tan(α−π)=−34,则sinα+cosα等于( ). A . ±15 B . −15 C . 15 D . −75 35.已知sin1100=a ,则cos200的值为( )A . aB . −aC . √1−a 2D . −√1−a 2 36.点A (cos2018∘,tan2018∘)在直角坐标平面上位于( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限 37.如果sin (π−α)=13,那么sin (π+α)−cos (π2−α)等于( ) A . −23B . 23C .2√23 D . −2√2338.已知角α的终边过点(a,−2),若tan (π+α)=3,则实数a = A . 6 B . −23C . −6D . 2339.cos (2π+α)tan (π+α)sin (π−α)cos (π2−α)cos (−α)=A . 1B . −1C . tan αD . −tan α 40.已知sin (−α)=−√53,则cos (π2+α)的值为( )A . √53B . −√53C . 23 D . −23参考答案1.D【解析】【分析】直接运用诱导公式,转化为特殊角的三角函数值求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.3 三角函数的诱导公式
一.选择题
1.已知sin(π+α)=45
,且α是第四象限角,则cos(α-2π)的值是 ( ) (A)-53 (B)53 (C)±53 (D)5
4 2.若cos100°= k ,则tan ( -80°)的值为 ( )
(A)
(D)
3.在△ABC
ABC 必是 ( ) (A)等边三角形 (B)直角三角形 (C)钝角三角形
(D)锐角三角形 4.已知角α终边上有一点P (3a ,4a )(a ≠0),则sin(450°-α)的值是 ( )
(A)-45 (B)-35 (C)±35 (D)±45
5.设A ,B ,C 是三角形的三个内角,下列关系恒等成立的是 ( )
(A)cos(A +B )=cos C (B)sin(A +B )=sin C (C)tan(A +B )=tan C (D)sin
2A B +=sin 2C *6.下列三角函数:①sin(n π+43
π) ②cos(2n π+6π) ③sin(2n π+3π) ④cos[(2n +1)π-6π] ⑤sin[(2n +1)π-
3π](n ∈Z)其中函数值与sin 3π的值相同的是 ( ) (A)①②
(B)①③④ (C)②③⑤ (D)①③⑤ 二.填空题 7.tan(150)cos(570)cos(1140)tan(210)sin(690)
-︒⋅-︒⋅-︒-︒⋅-︒= . 8.sin 2(3π-x )+sin 2(6
π+x )= . 9.
= . *10.已知f (x )=a sin(πx +α)+b cos(πx +β),其中α、β、a 、b 均为非零常数,且列命题: f (2006) =1516
-
,则f (2007) = .
三.解答题 11.化简23tan()sin ()cos(2)2cos ()tan(2)π
πααπααπαπ-⋅+⋅---⋅-. 12. 设f (θ)=3222cos sin (2)cos()322cos ()cos(2)θπθθπθπθ+-+--+++- , 求f (3
π)的值.
13.已知cos α=
13,cos(α+β)=1求cos(2α+β)的值.
*14.是否存在角α、β,α∈(-2π,2π),β∈(0,π),使等式sin(3π-α2
π-β(-α)=
π+β)同时成立?若存在,求出α、β的值;若不存在,请说明理由.。