介孔二氧化硅的制备及其表面吸附性质研究(2)
介孔二氧化硅纳米材料的制备及在药物递送方面的应用研究
介孔二氧化硅纳米材料的制备及在药物递送方面的应用研究摘要:一、引言1.介孔二氧化硅纳米材料的基本概念2.介孔二氧化硅纳米材料的研究背景和重要性二、介孔二氧化硅纳米材料的制备方法1.液相沉淀法2.溶胶-凝胶法3.模板法4.表面活性剂诱导法三、介孔二氧化硅纳米材料在药物递送中的应用1.作为药物载体2.改善药物生物利用度3.实现药物缓释和靶向给药4.提高药物稳定性和降低药物毒性四、介孔二氧化硅纳米材料在药物递送方面的优势1.比表面积大、孔隙率高2.稳定的骨架结构3.易于表面修饰4.无生理毒性五、研究进展与展望1.制备方法的创新2.药物递送系统的优化3.临床应用的拓展正文:随着科技的不断发展,新型纳米材料在各个领域的研究日益深入。
其中,介孔二氧化硅纳米材料因其独特的物理和化学性质,在药物递送方面具有广泛的应用前景。
本文将探讨介孔二氧化硅纳米材料的制备方法以及在药物递送领域的应用,旨在为相关研究提供有益的参考。
一、引言1.介孔二氧化硅纳米材料的基本概念介孔二氧化硅纳米材料(Mesoporous Silica Nanoparticles,简称MSN)是一种具有有序介孔结构的无机纳米材料。
其特点在于孔径尺寸在2-50nm范围内,具有较大的比表面积、高的孔隙率以及稳定的骨架结构。
由于这些特性,介孔二氧化硅纳米材料在药物递送领域具有显著的优势。
2.介孔二氧化硅纳米材料的研究背景和重要性近年来,随着药物递送技术的发展,介孔二氧化硅纳米材料作为一种新型药物载体,逐渐成为研究的热点。
与传统药物载体相比,介孔二氧化硅纳米材料具有更好的生物相容性和低毒性,可实现药物的高效递送和靶向给药。
因此,研究介孔二氧化硅纳米材料在药物递送方面的应用具有重要意义。
二、介孔二氧化硅纳米材料的制备方法1.液相沉淀法液相沉淀法是一种常见的介孔二氧化硅纳米材料的制备方法。
该方法通过将硅酸盐前驱体与有机模板一起溶解在有机溶剂中,然后通过调节溶液pH 值,使硅酸盐沉淀并形成介孔结构。
介孔二氧化硅及其制备方法
介孔二氧化硅及其制备方法1. 导言介孔二氧化硅是一种具有高度有序的孔道结构的无机材料,具有较大的比表面积和孔容,是一种理想的催化剂和吸附剂。
本文将介绍介孔二氧化硅的基本概念、结构特征以及常见的制备方法。
2. 介孔二氧化硅的基本概念及结构特征介孔二氧化硅是一种由二氧化硅分子组成的材料,具有高度有序的孔道结构。
其孔道结构通常分为微孔和介孔两种类型,其中微孔的孔径范围在2纳米以下,而介孔的孔径范围在2-50纳米之间。
介孔二氧化硅的结构特征主要包括孔径分布、比表面积和孔容。
孔径分布是指孔道的尺寸范围和分布情况,比表面积则是指单位质量或单位体积的材料所具有的表面积,而孔容则是指孔道所占据的体积比例。
3. 制备方法3.1 模板法模板法是最常用的制备介孔二氧化硅的方法之一。
其基本原理是在溶液中加入一种模板剂,通过模板与硅源反应生成介孔二氧化硅的前体,然后经过模板的去除得到最终产物。
常见的模板剂包括有机物和无机盐,如十六烷基三甲基溴化铵(CTAB)、正丁基三甲基氯化铵(BTMA)和硫酸镁(MgSO4)等。
其中,CTAB是最常用的模板剂之一,可以形成尺寸均匀的介孔结构。
3.2 偶联剂法偶联剂法是一种利用偶联剂在溶液中形成胶体稳定体系的方法,如聚乙烯醇(PVA)和聚合物胶体微球等。
该方法的优点是可以通过调节偶联剂的性质和浓度来控制介孔二氧化硅的孔径和比表面积。
3.3 溶胶-凝胶法溶胶-凝胶法是一种通过水解和缩合反应制备介孔二氧化硅的方法。
该方法的基本步骤包括:将硅源与溶剂混合形成溶胶,通过水解和缩合反应使溶胶凝胶化,最后经过干燥和煅烧得到介孔二氧化硅产物。
3.4 喷雾干燥法喷雾干燥法是一种将溶胶喷雾成微粒,并在热气流中干燥得到介孔二氧化硅的方法。
该方法的优点是操作简单,可以快速制备高质量的介孔二氧化硅颗粒。
4. 应用领域介孔二氧化硅的高比表面积和孔容使其在催化剂、吸附剂、分离材料等领域有着广泛的应用。
在催化剂领域,介孔二氧化硅可以作为载体提供高度分散的金属催化剂,提高反应活性和选择性。
介孔 二氧化硅
介孔二氧化硅简介介孔二氧化硅是一种具有特殊结构的材料,具有大量的微孔和介孔结构。
它在吸附、催化、分离等领域具有广泛的应用。
本文将对介孔二氧化硅的制备方法、性质以及应用进行详细介绍。
制备方法模板法模板法是制备介孔二氧化硅最常用的方法之一。
通过选择合适的模板剂,可以控制所得材料的孔径和孔壁厚度。
常用的模板剂包括阴离子型表面活性剂(如十六烷基三甲基溴化铵)和聚合物(如聚苯乙烯)等。
制备步骤如下:1.将模板剂与硅源(如正硅酸乙酯)混合。
2.在适当条件下,进行水解缩聚反应,形成胶体。
3.将胶体进行热处理或冷冻干燥,去除模板剂。
4.得到介孔二氧化硅。
溶胶-凝胶法溶胶-凝胶法是另一种常用的制备介孔二氧化硅的方法。
该方法通过溶解硅源(如正硅酸乙酯)在溶剂中,形成胶体,然后通过凝胶化和热处理得到介孔二氧化硅。
制备步骤如下:1.将硅源与溶剂混合。
2.在适当条件下,形成胶体。
3.将胶体进行凝胶化处理。
4.进行热处理,得到介孔二氧化硅。
性质孔径和比表面积介孔二氧化硅具有丰富的微孔和介孔结构。
其孔径通常在2-50纳米之间,比表面积可以达到几百平方米/克以上。
这种特殊的结构赋予了介孔二氧化硅优异的吸附性能和催化活性。
热稳定性介孔二氧化硅具有较好的热稳定性,在高温下仍能保持其结构和性质不变。
这使得它在高温催化反应中具有广泛的应用前景。
表面修饰由于介孔二氧化硅表面含有丰富的羟基(Si-OH)官能团,可以通过表面修饰来改变其物化性质。
常用的表面修饰方法包括硅烷偶联剂修饰、金属离子掺杂等。
应用吸附材料由于介孔二氧化硅具有大量的微孔和介孔结构,具有较大的比表面积和吸附容量,因此在吸附材料方面具有广泛应用。
它可以用于废水处理、气体分离、催化剂载体等领域。
催化剂介孔二氧化硅作为催化剂载体具有优异的性能。
通过调控其孔径和孔壁厚度,可以控制催化反应的活性和选择性。
此外,介孔二氧化硅还可以通过掺杂金属离子或负载金属纳米颗粒来提高催化活性。
药物缓释系统由于介孔二氧化硅具有较大的比表面积和可调控的孔径结构,可以作为药物缓释系统的载体。
介孔二氧化硅纳米粒子的制备研究
介孔二氧化硅纳米粒子的制备研究摘要:介孔材料由于其具有较大的比表面积和吸附容量,因此在吸附、分离、催化等领域都具有广泛的应用。
该文采用十六烷基三甲基溴化铵(CTAB)为模版,溶胶凝胶法合成了介孔二氧化硅纳米粒子,通过透射电镜(TEM)和低温氮吸附等表征方法对合成介孔二氧化硅的结构和性能进行了分析,讨论了不同四甲氧基硅烷(TMOS)、CTAB量对介孔二氧化硅纳米粒子的粒径、比表面积及孔径的影响。
关键词:介孔二氧化硅溶胶凝胶法介孔材料是多孔材料中的重要组成部分,由于具有较大的比表面积和吸附容量,因此在吸附、分离、催化等领域都具有广泛的应用。
根据微观结构的区别,介孔二氧化硅可分为两大类型:一类则是以二氧化硅干凝胶和气凝胶为代表的无序介孔固体,其中介孔的形状不规则但是相互连通。
孔形常用墨水瓶形状来近似描述,细颈处相当于不同孔之间的通道。
另一类是Back等人[1-2] 于1992年首次报道的M41S(MCM-41,MCM-48,MCM-50)系列的介孔二氧化硅,其结构特点是孔径大小均匀,按六方有序排列,在不同制备条件下,孔径在1.5~10 nm范围内可连续调节。
孔形可分三类:定向排列的柱形孔;平行排列的层状孔;三维规则排列的多面体孔。
这种合成方法可以得到均一的多孔结构,引起了在多相催化、吸附分离以及高等无机材料等学科领域研究人员的浓厚兴趣[3-6]。
介孔材料在种类及应用上都得到了蓬勃的发展。
目前合成介孔材料主要采用水热合成法、室温合成、微波合成、湿胶合成法以及相转移法等。
介孔材料的合成涉及到诸多的影响因素。
比如说,一种模板剂可以合成出多种介孔材料,这就显示了合成过程中胶凝条件所起的重要作用:OH-浓度、投料比、各种原料的溶解度、凝胶老化时间、晶化时间、晶化温度、升温速度以及搅拌速度等都可能成为影响合成结果的因素。
而有的合成方法是利用几种模板剂合成出同一种介孔材料。
对于这种情况,模板剂相当于体积填充物,对分子筛结构的形成并无至关重要的贡献。
二氧化硅的多孔材料及其在吸附和分离中的应用
二氧化硅的多孔材料及其在吸附和分离中的应用二氧化硅是一种重要的材料,在科学研究和工业生产中得到广泛应用。
其中,多孔二氧化硅是一种特殊形态的材料,它拥有许多独特的性质和应用。
本文将介绍多孔二氧化硅的制备、性质以及在吸附和分离方面的应用。
一、多孔二氧化硅的制备1. 溶剂蒸发法溶剂蒸发法是一种制备多孔二氧化硅的常用方法。
这种方法的具体步骤如下:首先,在有机溶剂中加入二氧化硅前驱体,加热搅拌使其充分溶解;然后使其自然蒸发,直到产生固体。
在这个过程中,由于有机溶剂的挥发,产生了很多小孔和大孔,形成了多孔结构。
最后将产生的物质高温煅烧,从而得到纯净的多孔二氧化硅。
2. 模板法模板法是一种将有机物作为模板来制备多孔二氧化硅的方法。
具体步骤为:首先将有机物与二氧化硅前驱体混合;然后通过一系列的化学反应使有机物自身蒸发或氧化分解,在这个过程中,有机物模板留下了一系列的空隙,形成了多孔结构;最后通过高温煅烧将有机物模板去除,得到纯净的多孔二氧化硅。
二、多孔二氧化硅的性质1. 多孔结构多孔二氧化硅的最显著的性质就是它的多孔结构。
这种多孔结构可分为两种类型:介孔和微孔。
介孔的孔径在2-50纳米之间,微孔的孔径小于2纳米。
这些孔隙在多孔二氧化硅中分布均匀,数量众多,能够提供大量的吸附活性位点,从而使得多孔二氧化硅具有很强的吸附能力。
2. 高比表面积多孔二氧化硅的多孔结构使得它的比表面积非常大,通常在100-1000平方米/克之间。
这种巨大的比表面积为多孔二氧化硅带来了许多独特的性质,例如高度的吸附能力和分离效率。
3. 活性位点多孔二氧化硅的多孔结构是由一系列的空隙组成的,这些空隙通常被认为是其活性位点。
这些活性位点能够提供大量的表面反应机会,增强多孔二氧化硅的吸附、吸附分离等性质。
三、多孔二氧化硅在吸附和分离中的应用1. 吸附分离多孔二氧化硅在吸附分离中得到了广泛应用。
它能够选择性地吸附某些分子和离子,从而达到分离和富集的目的。
介孔二氧化硅纳米材料的合成与催化性能
介孔二氧化硅纳米材料的合成与催化性能介孔二氧化硅纳米材料是一种具有广泛应用前景的新材料。
它不仅具有高度的孔隙度和可调节的孔径大小,而且还具有良好的化学稳定性和催化性能,因此被广泛应用于分子筛、催化剂、药物缓释等领域。
本文将介绍介孔二氧化硅纳米材料的制备方法、结构特点以及在催化领域的应用情况。
一、介孔二氧化硅纳米材料的合成介孔二氧化硅纳米材料的合成方法主要有两类:基于硅烷前体的凝胶法和基于表面模板法。
1. 凝胶法凝胶法是目前常用的一种制备介孔二氧化硅纳米材料的方法,其主要步骤包括硅烷前体的水解、缩合、有机模板剂的加入、凝胶形成和模板剂的去除等。
具体而言,硅烷前体首先通过水解缩合反应形成均匀的硅氧网格,然后有机模板剂通过氢键、范德华力等相互作用进入硅氧网格中,最后在适当的条件下,硅氧网格聚合形成介孔二氧化硅纳米材料。
2. 表面模板法表面模板法是一种使用有机小分子作为模板剂形成介孔二氧化硅纳米材料的方法。
具体而言,有机小分子首先在硅烷前体表面吸附,然后硅烷前体发生水解缩合反应形成硅氧网格,同时有机小分子也进入硅氧网格中并形成介孔结构。
最后通过退火等方式去除有机小分子,得到介孔二氧化硅纳米材料。
二、介孔二氧化硅纳米材料的结构特点介孔二氧化硅纳米材料具有高度的孔隙度和可调节的孔径大小,其孔径大小通常在2-50 nm之间。
与孔径大小有关的是模板剂的大小,因为模板剂对介孔结构的形成起着重要的作用。
介孔二氧化硅纳米材料的孔道壁厚度通常在10-20 nm之间,同时具有较大的内表面积和孔体积。
内表面积和孔体积的大小可以通过改变硅烷前体的结构、溶剂的种类和条件等来调节,从而制备出具有不同结构和性质的介孔二氧化硅纳米材料。
三、介孔二氧化硅纳米材料的催化性能介孔二氧化硅纳米材料具有良好的催化性能,主要体现在以下几个方面。
1. 选择性催化由于介孔二氧化硅纳米材料具有可调节的孔径大小和孔道壁厚度,因此可以针对不同的反应分子选择合适的孔径大小和孔道壁厚度,在催化反应中实现选择性催化。
介孔有机二氧化硅
介孔有机二氧化硅(Mesoporous Organosilica,简称MOS)是一种新型的纳米多孔材料,具有介孔结构和有机功能团的特点,具有较大的比表面积和较好的热稳定性,广泛应用于催化、吸附和生物医药等领域。
本文将详细介绍介孔有机二氧化硅的制备方法、结构特点、应用领域和研究进展。
一、介孔有机二氧化硅的制备方法介孔有机二氧化硅的制备方法主要包括溶胶凝胶法、硬模板法、软模板法和微乳液法等。
其中,溶胶凝胶法是最常见的制备方法之一。
其制备步骤如下:1. 选择合适的硅源和有机硅源,如正硅酸乙酯(TEOS)和三甲基乙氧基硅烷(MTES)等。
2. 将硅源和有机硅源混合,并加入溶剂和催化剂,在搅拌条件下形成溶胶。
3. 将得到的溶胶加入模板剂,在适当的条件下进行充分混合和水解凝胶。
4. 将凝胶进行干燥和煅烧,去除模板剂得到介孔有机二氧化硅。
通过控制反应条件和模板剂的类型,可以调控介孔有机二氧化硅的孔径大小、孔道结构和有机功能团的分布等性质。
二、介孔有机二氧化硅的结构特点介孔有机二氧化硅具有独特的介孔结构和有机功能团的特点,其主要结构特点包括:1. 介孔结构:介孔有机二氧化硅具有较大的孔径范围(2-50 nm)和高度有序的孔道结构,表面积大、孔容大,适合吸附分子和催化反应。
2. 有机功能团:通过引入不同类型的有机功能团(如氨基、羟基、羧基等),可以调控介孔有机二氧化硅的表面性质和化学反应活性,拓展其应用领域。
3. 稳定性:介孔有机二氧化硅具有较好的热稳定性和化学稳定性,能够在高温和酸碱环境下保持稳定性。
通过调控介孔结构和有机功能团的种类和分布,可以实现对介孔有机二氧化硅性能的定制化设计,实现多种应用需求。
三、介孔有机二氧化硅的应用领域介孔有机二氧化硅具有丰富的应用潜力,在催化、吸附、分离、传感和生物医药等领域有着广泛的应用。
主要应用包括:1. 催化:介孔有机二氧化硅作为催化剂载体,在催化反应中起到支撑和传质的作用,提高催化剂的催化活性和选择性。
介孔二氧化硅材料的合成、形貌控制、组装及其性能研究
介孔二氧化硅材料的合成、形貌控制、组装及其性能研究一、本文概述Overview of this article随着纳米科学技术的快速发展,介孔二氧化硅材料(Mesoporous Silica Materials,简称MSMs)作为一种重要的无机纳米材料,因其独特的介孔结构、大的比表面积和良好的生物相容性等优势,在催化、吸附、分离、药物传输、生物传感器等领域展现出广阔的应用前景。
本文旨在全面综述介孔二氧化硅材料的合成方法、形貌控制技术、组装策略及其性能研究,以期为相关领域的研究者提供参考和借鉴。
With the rapid development of nanoscience and technology, mesoporous silica materials (MSMs), as an important inorganic nanomaterial, have shown broad application prospects in catalysis, adsorption, separation, drug delivery, biosensors and other fields due to their unique mesoporous structure, large specific surface area, and good biocompatibility. This article aims to comprehensively review the synthesis methods, morphology control techniques, assembly strategies, andperformance research of mesoporous silica materials, in order to provide reference and inspiration for researchers in related fields.本文将概述介孔二氧化硅材料的合成方法,包括模板法、溶胶-凝胶法、水热法等,并探讨各种方法的优缺点及适用范围。
疏水介孔二氧化硅膜的制备与表征
疏水介孔二氧化硅膜的制备与表征
**疏水介孔二氧化硅膜的制备及表征**
(一)疏水介孔二氧化硅膜的制备
1. 制备方法
制备疏水介孔二氧化硅膜首先需要准备苯甲酸甲酯(TMCS)及N-烷基甲基三氯化硅(KH570)作为基底和铵培养层溶液,利用电子放大器涂布薄膜,通过高温沉积成形,然后再烧结六氟化铝Green's凝胶,利用双层X射线衍射(XRD)分析技术,测定薄膜的晶格结构和表面性质,获得疏水介孔二氧化硅膜。
2. 表层模板的微观结构
模板有着独特的物理性质,如体积内能、抗拉强度和耐冲击强度等。
XRD的结果表明,表层模板集中在X = 0.37和X = 0.75,这是因为二氧化硅原子沉积在烧结层和底层微结构之间,从而形成介孔结构。
(二)疏水介孔二氧化硅膜的表征
1. 粗糙度
探针电阻膜厚度测量技术是获得疏水介孔二氧化硅膜表面粗糙度参数的主要方法,采用测试仪测量膜层的厚度,然后对其形状和纹路进行分析来确定膜层的粗糙度。
2. 相对湿度
疏水介孔二氧化硅膜的相对湿度可以通过改变溶液的湿度,加入不同
物质的浓度,并用热学法(DSC)分析和改变表面粗糙度来提高膜层的疏水性能。
3. 盐类的吸附性
可通过溶有盐类的溶液对疏水介孔二氧化硅膜进行扫描电镜(SEM)测试,来衡量盐类的吸附情况以及疏水性能。
三维有序大孔-介孔二氧化硅的可控制备及表征
三维有序大孔-介孔二氧化硅的可控制备及表征王有和;寇龙;孙洪满;历阳;邢伟;阎子峰【摘要】以聚甲基丙烯酸甲酯(PMMA)胶晶为大孔模板、嵌段共聚物P123为介孔模板,利用双模板剂法进行了三维有序大孔-介孔二氧化硅材料的制备研究.采用SEM、TEM、低角XRD以及N2吸脱附技术对样品进行了表征.结果表明,通过简单的调控PMMA胶晶模板的组装过程,就可以调变合成材料中的大孔结构,从而轻松地实现可控的制备出具有网状或者层状结构的三维有序大孔-介孔二氧化硅材料,并提出了其可能的形成机理.此外,所制备的三维有序大孔-介孔二氧化硅样品均具有较大的BET比表面积(>550 m2· g-1),大孔孔径200 nm左右,介孔孔径分布集中于3.5 nm左右.【期刊名称】《无机化学学报》【年(卷),期】2015(031)005【总页数】7页(P947-953)【关键词】层状;双模板剂;有序大孔-介孔结构;二氧化硅【作者】王有和;寇龙;孙洪满;历阳;邢伟;阎子峰【作者单位】中国石油大学(华东)理学院,青岛 266580;中国石油大学(华东)重质油国家重点实验室,青岛 266580;中国石油大学(华东)重质油国家重点实验室,青岛266580;中国石油大学(华东)理学院,青岛 266580;中国石油大学(华东)重质油国家重点实验室,青岛 266580;中国石油大学(华东)重质油国家重点实验室,青岛266580;中国石油大学(华东)理学院,青岛 266580;中国石油大学(华东)重质油国家重点实验室,青岛 266580;中国石油大学(华东)重质油国家重点实验室,青岛266580【正文语种】中文【中图分类】O611.4当前多孔材料一直是全世界科研工作者关注和研究的重点,根据国际纯粹和应用化学联合会(IUPAC)的定义,多孔材料按其孔径大小可分为微孔(<2 nm)、介孔(2~50 nm)和大孔(>50 nm)材料3类。
氨基改性介孔二氧化硅的制备及其吸附性能研究
氨基改性介孔二氧化硅的制备及其吸附性能研究
氨基改性介孔二氧化硅(Aerogels Modified by Amines)是一种吸附行为活跃的多晶硅材料,由低比表面积硅框架和多种改性表面单体组成,具有轻质、高绝热性、大的比表面积、表面羟基性等优异性能,在环境科学领域拥有广泛的应用潜力。
本文主要研究了以氨基酸和砜为改性剂,合成氨基改性介孔二氧化硅(Aerogels Modified by Amines)的制备方法及其吸附性能。
首先,通过加入氨基酸和砜,在合成气凝胶液中形成氨基改性剂基团,以获得氨基改性二氧化硅,随后,在条件下对其进行壳固化反应,使氟化钙微晶重新以溶体的形式释放,表面活性剂的自由缓冲空间因表面上的反应减少,最终得到氨基改性介孔二氧化硅。
然后,以铵态铁离子为模型考察该材料的吸附性能,结果表明,该材料的最大吸附量约为94.01 mg/g,当pH值从3.0升至9.0时,氨基改性介孔二氧化硅的吸附量基本不发生变化,表明其有较高的稳定性。
实验证明,氨基改性介孔二氧化硅具有较好的吸附性能,较硅胶强烈吸附力和大的化学耐久性。
本研究结果表明,氨基改性介孔二氧化硅具有较好的吸附性能,为进一步的研究和应用提供了一种新型的有机-无机复合材料。
氨基改性介孔二氧化硅的制备及其吸附性能研究_杨娜
别 将 20 mg 的 m-MCF 和 m-SBA-15 与 20 mL 铜 离 子浓度为 95.7 mg·L-1 的硝酸铜溶液混合, 室温下搅 拌 24 h, 离 心 , 上 层 清 液 取 出 用 原 子 吸 收 光 谱 仪 检 测其铜离子浓度。
本工作将扩孔与功能基团改性相结合, 制备得 到具有特殊三维较大孔道、表面氨基改性的介孔二
收稿日期: 2007-06-05。收修改稿日期: 2007-07-30。 国 家 自 然 科 学 基 金(No.50573013)和 上 海 市 科 委(No.05ZR14077)资 助 项 目 。 * 通讯联系人。E-mail: smzhu@sjtu.edu.cn 第一作者: 杨 娜, 女, 23, 硕士研究生; 研究方向: 纳米复合材料。
图 2 m-MCF 与 MCF 样品的红外谱图 Fig.2 FTIR spectra of m-MCF and MCF samples
改性材料中 APTES 的含量, 由样品的热失重曲 线估算。温度由室温升至 150 ℃, m-MCF 孔道中自 由吸附的水分子逐渐脱出,对应的 TG 曲线上出现一 个约 5%的失重。温度达到 200 ℃时,APTES 中的有 机基团开始分解。当温度继续升至 800 ℃时,样品质 量基本趋于稳定。计算得到 m-MCF 中 APTES 的含 量约为总质量的 14%。 2.3 氮气吸附分析
摘要: 合成了一种具有较大孔径的氨基改性介孔二氧化硅材料(m-MCF)。通过 XRD、TEM、低温氮吸附、TGA、FTIR 以及原子吸 收光谱(AAS)等表征方法对产物的结构和性能进行的分析表明: 利用三甲基苯为扩孔剂制备得到的介孔材料具有较 大 的 孔 径 , 有利于功能基团对孔内表面 的 改 性 。 当 氨 基 改 性 介 孔 材 料 后 , 该 材 料 仍 然 保 留 较 大 的 孔 径(22 nm)和 较 高 的 比 表 面 积(444 m2· g-1)。研究发现:与改性而未扩孔的介孔二氧化硅 SBA-15 相比, 该材料对铜离子的吸附能力提高了 2 倍。
介孔 二氧化硅
介孔二氧化硅是一种具有独特孔道结构的新型材料,其孔径在2-50纳米之间,具有较高的比表面积和良好的吸附性能。
下面从制备方法、性质、应用和前景等方面进行介绍。
一、制备方法介孔二氧化硅的制备方法主要有两种:软模板法和硬模板法。
软模板法是利用表面活性剂作为模板,通过溶胶-凝胶法制备出介孔二氧化硅。
硬模板法则是利用具有介孔结构的硬模板(如分子筛)作为模板,通过浸渍、涂布等方法将硅源引入模板中,再经过热处理等步骤制备出介孔二氧化硅。
二、性质介孔二氧化硅具有较高的比表面积和良好的吸附性能,其孔道结构可以调控制备,孔径大小和分布可以通过合成条件进行调控。
此外,介孔二氧化硅还具有良好的热稳定性和化学稳定性,可以在多种环境下使用。
三、应用介孔二氧化硅在多个领域都有广泛的应用,如催化剂载体、吸附剂、药物载体等。
在催化剂领域,介孔二氧化硅可以作为载体材料,提高催化剂的活性和稳定性。
在吸附剂领域,介孔二氧化硅可以用于吸附气体和液体中的有害物质,如甲醛、重金属离子等。
在药物载体领域,介孔二氧化硅可以作为药物载体,通过控制药物释放速度和靶向作用,提高药物的治疗效果和降低副作用。
四、前景介孔二氧化硅作为一种新型材料,具有广泛的应用前景。
未来随着制备技术的不断提高和新材料的发展,介孔二氧化硅将会在更多领域得到应用。
例如,在能源领域,介孔二氧化硅可以作为电池的电极材料,提高电池的能量密度和充放电效率;在生物医学领域,介孔二氧化硅可以作为生物材料的表面涂层,提高材料的生物相容性和抗腐蚀性。
总之,介孔二氧化硅作为一种具有独特孔道结构的新型材料,具有广泛的应用前景。
未来随着制备技术的不断提高和新材料的发展,介孔二氧化硅将会在更多领域得到应用。
APTES改性介孔二氧化硅的制备及其对重金属离子的吸附
称取一定量 APTES 改性介孔硅,置于一定浓度
铅离子溶液中,以保鲜膜封口,然后将混合溶液放
入恒温振荡器中震荡。待溶液达到吸附平衡后,将
其高速离心分离(转速为 10 000 r/min);吸取上清液,
在原子吸收分光光度计上测量吸附后溶液的铅离子
浓度,计算其吸附量。吸附量 Qe 可用下式表示:
Qe = (c0-ce) V/m。
(Key Laboratory of Green Packaging and Application of Biological Nanotechnology of Hunan Province, Hunan University of Technology,Zhuzhou Hunan 412007, China)
较高,但接枝过程繁琐,影响因素众多。因,本
文拟直接将 3- 氨基丙基三乙氧基硅烷((3-amin o-
propyl)triethoxysilane,APTES)改性接枝到介孔硅表
面。由于介孔硅强大的比表面积和 APTES 中具吸附
重金属功能的氨基,使得改性介孔硅具有较强吸附
重金属离子的功能。该试验为一步改性,过程简单,
(1)
式中:Qe 为吸附量;c0 为初始铅离子的浓度;ce 为吸
附平衡时的铅离子浓度;V 为溶液的体积;m 为吸附
剂复合粒子的质量。
2 结果与讨论
2.1 改性介孔硅的表征 图 1 是红外光谱仪测定的介孔硅和 APTE 改性介
孔硅的红外吸收光谱。
图 1 介孔硅及 APTES 改性介孔硅红外光谱图 Fig. 1 FI-IR spectra of mesoporous silica and modified mesoporous silicon
氨基功能化介孔二氧化硅的一步合成及吸附性能研究
氨基功能化介孔二氧化硅的一步合成及吸附性能研究侯清麟;李露【摘要】用一步合成法合成了一种具有较大孔径的介孔二氧化硅材料;通过透射电镜对样品的结构和性能进行分析;分析比较了氨基化二氧化硅和普通二氧化硅对铜离子的吸附性能.实验结果表明:介孔二氧化硅的粒径为100 nm左右,介孔在10 nm左右,介孔排列有序且规整;介孔材料对铜离子的吸附率比普通纳米二氧化硅高出一倍多.【期刊名称】《湖南工业大学学报》【年(卷),期】2012(026)006【总页数】4页(P1-3,12)【关键词】介孔二氧化硅;吸附性能;重金属【作者】侯清麟;李露【作者单位】湖南工业大学包装与材料工程学院,湖南株洲412007;湖南工业大学包装与材料工程学院,湖南株洲412007【正文语种】中文【中图分类】O6470 引言随着城市化进程的不断加快和工业化水平的迅速提高,大量的有害金属及其化合物随工业和生活废弃物被排放到大气和水体中,直接威胁着生态环境及人类健康。
目前研制高效重金属离子吸附剂是人们孜孜以求的目标[1]。
介孔材料因其有比表面积大、孔隙率大、机械稳定性强以及应用性能可随结构控制而呈现连续调变的特点,使其在分离领域具有广阔的应用前景[2]。
通过引入特定功能组分构建选择性吸附体系是介孔硅材料在重金属废水处理领域的一个重要研究方向[3-5]。
由于高度有序介孔二氧化硅具有规整的孔结构等优点,使其在大分子催化、吸附分离以及在化学组装制备先进功能材料和光学器件等方面具有较大的潜在应用价值[6-11]。
然而,现在合成氨基化硅烷的主要方法是共组装或者后处理嫁接,这2种途径均存在环节繁多的不利因素,从而制约了规模化生产,因此,寻求高效路线研制氨基化二氧化硅是实际生产应用中有待解决的问题之一。
基于前人的工作基础,本试验通过一步合成法,合成氨基功能化介孔二氧化硅,并考察其对铜离子的吸附性能。
1 试验部分1.1 试验仪器与试剂1)实验仪器:恒温数显搅拌器(DF-101S,湖南凯达科学仪器有限公司),增力电动搅拌器(D-840WZ,江苏恒丰仪器厂),真空干燥箱(DP201,重庆万达仪器有限公司),比表面和孔径分布测定仪(Micromeritics ASAP 2010),透射电子显微镜(JEOL 2010,日本JEOL公司,transmission electron microscope,TEM),等。
介孔二氧化硅的制备工艺调研
介孔二氧化硅的制备工艺调研一、介孔二氧化硅的基本概括近年来,随着纳米技术的迅速发展,基于纳米制备技术发展的功能化纳米材料在新型药物载体以及药物剂型开发方面的应用也越来越广泛。
有序的介孔材料的合成早在1971年就已开始,日本的科学家们在1990年也开始了它的合成工作,只是在1992年Mboli公司的科学家Kresge和Beck等[1,2]提出了M41S系列介孔材料的报道才引起了人们的广泛关注,并被认为是有序介孔材料的真正开始。
介孔二氧化硅材料具有包裹量大、比表面积大(>900 m2/g)、内外表面易修饰、孔道有序、孔径可调(2-10 nm)、无毒、生物相容性好及热力学稳定性高等特点[3,4],已经成为一种理想的纳米容器储存及释放载体,被广泛用于新型药物载体的研究和开发等生物医学领域中。
在实际应用,如:吸附、分离与催化、光导纤维、色谱以及新型生物功能材料的开发等等,介孔材料的有效应用不仅与其内在的孔道结构相关,更与其宏观形态、微观形貌密切联系。
介孔材料中,二维六方相,直孔道是最为常见的,典型的代表有:MCM-41、SBA-3、SBA-15等。
MCM-41是第一个介孔材料的实例,其重要地位是可想而知的。
更由于其合成容易、结构简单易于进行化学改性,为制备具有特定性能的复合材料提供可能等,被广泛研究。
SBA-3是强酸体系中合成的第一个介孔材料,它突破了微孔材料和介孔材料从碱性体系中合成的传统,将介孔材料合成推向一般化,随之而产生的一般性合成途径(无机一有机相互作用方式),对整个介孔材料研究领域起到很大的推动作用。
SBA-15可以称之为后起之秀,虽然具有与MCM-41相似的结构,但其将孔径扩展至更大的范围,并且克服了MCM-41水热稳定性差、模板剂昂贵等缺点,为介孔材料的改性和应用提供了更广泛的空间,又因为SBA-15具有可控制量的微孔,使之具有一般材料所不能取代的地位,可谓是介孔材料合成的一个里程碑。
介孔二氧化硅材料的制备
介孔二氧化硅材料的制备介孔二氧化硅材料是一种具有特殊孔结构和多功能性能的纳米材料,具有广泛的应用前景。
本文将介绍介孔二氧化硅材料制备的几种主要方法。
一、模板法模板法是制备介孔二氧化硅材料的一种常用方法。
其基本原理是用介孔结构的模板作为模板,通过溶胶-凝胶法或溶剂挥发法沉积硅源形成介孔二氧化硅材料,最后去除模板获得介孔结构。
具体的制备步骤如下:1.选择合适的模板,如硅胶和有机高分子等。
2.将模板浸入硅源溶液中,使其吸附硅源。
3.将模板取出放置在空气中干燥或烘干。
4.将硅源溶液在模板表面形成凝胶。
5.将凝胶在高温下焙烧,以去除模板获得介孔二氧化硅材料。
采用模板法制备介孔二氧化硅材料的优点是可以控制孔径和孔分布等结构特征,但是模板的选择和去除会影响制备的效果和成本。
软模板法是一种利用有机高分子作为软模板,控制硅源形态和分子聚集行为,制备介孔二氧化硅材料的方法。
1.将有机高分子和硅源溶液混合,形成胶体混合物。
软模板法制备介孔二氧化硅材料的优点是可控性强,制备出的材料孔径大小均匀,但是材料中可能残留有机物,影响应用性能。
三、溶胶-凝胶法溶胶-凝胶法是一种将不溶于水的硅酸盐水解成水溶性硅化物,随后进行缓慢的水解、聚合和魔捏成凝胶的反应。
1.将硅酸盐和水混合形成水解产物。
2.将水解产物连续过滤形成凝胶。
3.将凝胶干燥和焙烧即可制备介孔二氧化硅材料。
溶胶-凝胶法制备介孔二氧化硅材料的优点是简单易行,成本低,但是孔径分布范围比较宽,难以控制。
四、溶液中自组装法溶液中自组装法是利用硅烷官能化化合物自聚组合成为介孔二氧化硅材料的方法。
1.将硅烷官能化化合物在有机溶剂中形成聚合物体。
2.将聚合物体在水相中进行混合和剪切,实现自组装形成介孔结构。
溶液中自组装法制备介孔二氧化硅材料的优点是简单易行,无须模板,可以实现孔径组分的均匀分布,但是需要采用对称性分子结构,否则不能形成有序排列的介孔结构。
总之,介孔二氧化硅材料的制备方法众多,各有优缺点,科学家们可以根据自身实验需要选择合适的方法进行制备,以获得适合具体应用的介孔二氧化硅材料。
介孔二氧化硅材料的合成及应用研究
介孔二氧化硅材料的合成及应用研究下载温馨提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
本文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注。
Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、介孔二氧化硅材料的背景与意义近年来,随着纳米技术和材料科学的快速发展,介孔材料作为一种重要的纳米材料,在多个领域展示了广阔的应用前景。
APTES改性介孔二氧化硅的制备及其对重金属离子的吸附
2 0 1 3年 3 月
湖
南 ] 业
大
学
学
报
VO1 . 27 NO. 2
J o ur na l o f Hun a n Un i v e r s i t y o f Te c hn ol og y
Ma r .ቤተ መጻሕፍቲ ባይዱ 0 1 3
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 6 7 3 — 9 8 3 3 . 2 0 1 3 . 0 2 . 0 0 4
AP TES — Mo d i ie f d Me s o p o r o u s S i l i c a P r e p a r a t i o n a n d
I t s Ad s o r p t i o n o n He a v y Me t a l I o n s
A P T E S改性 介孔二氧化硅 的制备及其 对重金 属离子的吸附
孙静静 ,许利剑 ,李 文 ,汤建新
( 湖 南T业大学 绿色包装 与生物纳米技术应用湖 南省重点实验室 ,湖南 株洲 4 1 2 0 0 7)
摘
要 :以介孔二氧化硅 为载体 ,3 一氨基 丙基三 乙氧基硅 烷 ( A P T E S)为改性 剂 ,成功制备 了氨 基硅 烷
S a s mo d i ie f r . t h e mod i ie f d me s o p o r o u s s i l i c a s p h e r e
wa s s u c c e s s f u l l y p r e p a r e d . I t s mi c r o s t r u c t u r e s we r e c h a r a c t e r i z e d b y t r a n s mi s s i o n e l e c t r o n mi c r o s c o p e ( T E M) , e n e r g y d i s p e r s i v e X - r a y De t e c t o r ( E DX) a n d F o u r i e r t r a n s f o r m i n ra f r e d s p e c t r u m( F I — T R) , a n d i t s a d s o r p t i o n o n t h e h e a v y me t a l P b
介孔二氧化硅的合成与表征
介孔二氧化硅的合成与表征摘要:采用溶胶凝胶法,在酸性条件下用na2sio3作为硅源,在碱性条件下用teos作为硅源,合成了介孔二氧化硅。
小角x衍射表明在酸性条件下,十六烷基三甲基溴化铵(ctab)的浓度为0.01mol/l,na2sio3的浓度为0.1mol/l时,合成二氧化硅的介孔结构明显。
碱性条件下,teos浓度为5%~10%(体积比)时,得到明显介孔结构的二氧化硅。
关键词:介孔二氧化硅硅酸钠正硅酸乙酯一、前言无机多孔材料,因为具有较大的比表面积和吸附容量,而被广泛应用于催化剂和吸附载体中。
按照孔径大小,多孔材料可分为:微孔(microporous)、介孔(mesoporous)和大孔(macroporous)材料。
无机微孔材料孔径一般50nm,包括多孔陶瓷、水泥、气凝胶等,其特点是孔径尺寸大,但分布范围宽。
介于二者之间的称为介孔(中孔)材料,其孔径在2~50nm范围,如一些气凝胶、微晶玻璃等,它们具有比微孔材料大得多的孔径,但这类材料同样存在孔道形状不规则、尺寸分布范围广等缺点。
1992年,kresge,etal首次在nature杂志上报道了一类以硅铝酸盐为基的新颖的介孔氧化硅材料m41s,[1、2]其中以命名为mcm-41的材料最引人注目。
其特点是孔道大小均匀、六方有序排列、孔径在1.5一l0nm范围可以连续调节,具有高的比表面积和较好的热稳定及水热稳定性,从而将分子筛的规则孔径从微孔范围拓展到介孔领域。
这对于在沸石分子筛中难以完成的大分子催化、吸附与分离等过程,无疑展示了广阔的应用前景。
同时,由于介孔氧化硅材料所具有的规则可调节的纳米级孔道结构,可以作为纳米粒子的“微型反应器”,从而为人们从微观角度研究纳米材料的小尺寸效应、表面效应及量子效应等奇特性能提供了重要的物质基础。
这一发现突破了沸石分子筛材料孔径范围的限制,使得很多在沸石分子筛中难以完成的大体积分子的吸附、分离,尤其是催化反应的进行成为可能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有序多孔材料具有大量纳米孔道,结构空旷,表面积巨大,在光、电、磁、催化、生物医药、传感和纳米工程等方面都有巨大潜在应用价值,已成为一个新兴的蓬勃发展的跨学科研究领域。经过15多年的研究,一大批孔径可调,组成可变、形貌多样、孔道形状不一,且孔道排列方式多样化的新型介孔材料被不断的合成出来。从起初的纯二氧化硅介孔分子筛到各种非硅骨架的介孔材料,从无机介孔骨架到无机.有机介孔骨架,再到纯有机骨架的介孔材料:从具有单一功能的介孔材料,到具有各种复合功能的介孔材料;从有机模板自组装合成法到无机模板浇铸法,另外到已开始出现的无机.有机混合模板法等,人们已经取得了很多突出的成绩。然而,介孔材料的研究中仍然存在许多未知和不足需要我们探索和寻求解决之法。开发简单、快速、经济、普适、易重复、能大规模生产高质量介孔材料的新方法,探索介孔材料本身的新功能,并不断推进介孔材料在各领域中的新应用,逐步实现介孔材料的实用化仍有大量的工作需要我们去做。这个征途中充满了众多挑战和机遇。
5.学位论文杨隋全氟羧酸诱导下新型多孔二氧化硅材料的合成与表征2007
近年来,随着纳米技术的迅速发展,多孔材料以其种种特异的性能,在科学研究与技术应用上都引起了人们极大的兴趣。1992年Mobil公司首次发明了以超分子模板法合成介孔氧化硅分子筛M41S(MCM-41、MCM-48、MCM-50),从而将多孔材料从微孔扩展到介孔,在微孔材料与大孔材料之间架起了一座桥梁。之后,越来越多的研究者以超分子模板法合成出具有不同特定形貌和新型孔道结构等具有特殊性质的介孔材料。在某种程度上,人们已经可以对不同尺度上的微孔、介孔和大孔材料进行控制合成。其中,螺旋介孔材料以其特殊的形貌和新颖的手性孔道成为最近科学研究的热点。这种孔道的非对称空间为多种非对称应用提供了合适的场所,如在手性合成、手性分离以及手性催化等方向有潜在的应用价值。同时,在最近的研究中,为了实现对客体分子的高储藏量及其释放行为的控制,一类具有规则孔道的介孔SiO2空心球材料也使许多科研工作者投入到这一领域。目前已经合成出许多具有不同尺寸大小,墙壁厚度以及不同的壳层孔道结构的介孔二氧化硅空心球材料。在本论文中,我们主要就从以上两个方面开展研究工作。
我们以廉价环保的工业级烷基糖苷为结构导向剂,在水溶液中获得了一种具有蠕虫状结构的介孔二氧化硅材料。合成方法简单,原料便宜,表面活性剂具有环境友好特性。而且烷基糖苷表面活性剂具有较高含碳量,通过原位碳化,可以得到一种具有良好吸附性能的介孔碳材料。
运用“酸碱对理论”,我们通过在二氧化钛挥发诱发自组装过程中加入少量Ce元素,优化合成条件后,可以快速得到一种具有晶化孔壁的介孔二氧化钛材料。其在甲基苯乙烯光氧化制备苯乙酮过程中显示出优良的催化性能。
济南大学
硕士学位论文
介孔二氧化硅的制备及其表面吸附性质研究
姓名:范宝强
申请学位级别:硕士
专业:应用化学
指导教师:孙中溪
20080526
介孔二氧化硅的制备及其表面吸附性质研究
3.会议论文高川波.车顺爱以阴离子表面活性剂为模板的二氧化硅介孔材料(AMS)2006
本文对以阴离子表面活性剂为模板的二氧化硅介孔材料合成进行了研究。文章合成出了各种不同的介观结构,包括三维六方、四方、立方、二维六方、双连续立方以及层状相等。另外,采用手性阴离子表面活性剂作为模板剂首次合成出具有二维六方晶系结构排列、不同曲率、有序螺旋状孔道绕着六角柱的中心旋转的氧化硅介孔材料。
球形颗粒,但是浓度过大时,样品变得无规则。
3.介孔材料的合成是分步进行的,不同的反应过程能量差别较大,随时间的增加,样品的形貌变化不大,但是比表面积,壁厚,孔径有相应的变化。根据p-t曲线及中间产物的SXRD、N2吸附-脱附、SEM、TEM和TG结果的分析,我们认为介孔二氧化硅的合成过程不能用统一的机理来简单概括,不同的反应体系中由于具体的反应条件不同,反应的机理也不尽相同。但是在介孔材料的形成过程中至少包含2个过程,一是表面活性剂与加入的无机离子自组装过程,无机离子和有机表面活性剂之间的主要相互作用力为静电作用。二是硅酸盐的进一步水解和缩合。在界面区域硅酸盐阴离子聚合改变了无机层的电荷密度,使表面活性剂之间的相互作用大小发生变化,该变化有可能导致新的液相的产生。但是新液相的产生不是必然的,它受无机层的电荷密度,无机物种和有机表面活性剂之间的电荷匹配的控制。
(2)以SBA-15为模板,通过双溶剂法,将硝酸铁和硝酸钴引入到介孔SBA-15的孔道中,经过800℃下煅烧5 h得到了CoFe2O4/SBA-15纳米复合材料。利用XRD、TEM和N2吸附-脱附分析了CoFe2O4/SBA-15纳米复合材料的结构。结果表明:复合材料在介观尺度具有二维六方介孔结构,CoFe2O4以尖晶石相分布在介孔SBA-15的孔道内。同时研究了不同CoFe2O4含量的CoFe2O4/SBA-15纳米复合材料不同于钴铁氧体块体材料的磁性,具有较小的矫顽力,其自发磁化强度随着含量的增加而增大。
目前介孔γ-Fe2O3材料报到较少,获得的材料比表面积较低。我们以硬模板复制介孔CMK-3的方法,通过两次纳米浇铸,得到了具有一定有序介孔结构的超顺磁性γ-Fe2O3材料。由于介孔CMK-3提供的原位还原作用和碱催化低温去除模板的方法,有效避免了介观骨架的塌陷,使这种材料具有相对较高的比表面积(187m2/g)。
1.用PAM和CTAB组成的超分子为模板,在65℃下,水浴4 h的条件下制备介孔二氧化硅。发现加入少量PAM,样品的有序性变好,孔道中心之间的距离a0增加。棒状颗粒随PAM浓度增加长度和直径都变小。当PAM浓度增加至一定浓度时,出现团聚现象。
2.分别用DTAB、TTAB和β-CD组成的超分子结构为模板,65℃下,水浴4 h的条件下制备介孔二氧化硅材料。结合师姐研究结果研究不同长度的烷基链和β-CD的包和情况,得出了如下结论:DTAB能与β-CD形成1:1的包合物;而TTAB与β-CD能形成1:1和1:2两种包合物。且β-CD的加入有利于生成
4.学位论文王美云介孔二氧化硅的制备及机理的原位热化学研究2008
有序介孔材料是指孔径在2 nm-50 nm之间(通常指1.5 nm-50 nm),孔道在空间排列有序的多孔材料,它的制备是以表面活性剂的自组装体系为模板来完成的。介孔材料因具有大而均一的孔道、高比表面积及相对良好的稳定性而在许多领域,如催化剂与催化剂载体、吸附与分离、环境保护、主客体化学、仿生和其它功能材料领域得到广泛应用。
针对硬模板法合成中填充过程复杂,填充有效性低和前驱物难以控制等问题,我们开发了一种新颖的一次真空纳米浇铸新方法。在前驱物进入介孔模板前,通过人工造成的模板孔内外的超高压力,从而实现定向推动大量前驱物进入介孔孔道,实现模板孔道的一次有效填充。通过这种方法,我们已经合成了一系列具有较高比表面和具有狭窄孔径分布的介孔过渡金属氧化物,并将该方法成功拓展到稀土氧化物材料合成领域,获得了一系列含少量硅的介孔稀土氧化物材料。铜硅复合介孔材料是一种非常有效的氧化还原催化剂,常通过直接合成方法或后处理方法获得。目前,直接合成方法存在氧化铜含量低,特别是酸性条件下,高氧化铜的直接负载一直是个难题,而后处理方法获得的负载铜物种很难控制等。基于此,利用嵌段共聚物在无机盐体系中特殊原位氧化作用,我们开发了一种直接合成具有高氧化铜含量的介孔二氧化硅的新方法,解决了在酸性条件下氧化铜负载量低的问题。直接得到了37.5wt%氧化铜负载的六方介孔SBA-15分子筛;通过调节此体系的无机盐含量,也能直接得到含有45.3wt%氧化铜的立方KIT-6介孔材料。相对于浸渍合成的材料,这些材料在苯羟基化反应中表现出更好的催化性能。另外,在无机盐.水体系中后处理嵌段共聚物杂化的介孔SBA-15材料,我们在介孔孔道内首次获得了草酸铜配合物纳米线物质。通过简单焙烧,大面积的CuO和Cu2O纳米线可在介孔二氧化硅孔道内生成。这种方法适用于几乎所有嵌段共聚物的原位氧化,可以获得多种铜物种修饰的复合材料,甚至能够被用来完全去处介孔酚醛树脂高分子材料中的模板,首次在介孔高分子孔道内实现了草酸铜配合物和金属铜的定向组装,获得了多种新颖材料。
有序介孔金属氧化物是目前广受关注的一大类新型介孔材料。相对于二氧化硅材料,过渡金属氧化物常常是半导体材料,骨架组成中多存在多种变价的金属元素,许多金属氧化物本身既是很好的催化或光、电、磁等方面的优异材料。合成大比面积,具有有序纳米孔道的介孔过渡金属氧化物材料可为介孔材料开辟新的应用领域,已经展示出硅基介孔材料所不能及的应用前景。然而,金属氧化物的溶胶-凝胶过程难以控制,而且不同金属氧化物,其溶胶-凝胶过程千差万别。采用合成介孔二氧化硅的策略来制备介孔金属氧化物,常常得到的是具有较低结晶度的孔壁,热稳定性和水热稳定性较差的介孔金属氧化物。利用硬模板法可以成功获得多种介孔金属氧化物,然而现有的前驱物填充过程常常较为复杂或者使用大量有机溶剂,而且主要依靠模板的毛细管作用力,不能很好控制前驱物在的诸多问题,制备具有新颖特点的介孔金属氧化物或复合物材料,并探讨其相关功能性质仍然是介孔材料研究中的主题之一。
主要创新之处:利用微量量热法原位跟踪合成过程,测定反应过程的热量变化,绘制相应的功率-时间曲线(p-t曲线)。根据曲线上能量变化的转折点,确定材料制备过程中反应体系的变化情况。并根据p-t曲线的变化,制备中间产物,对其进行了表征。探讨SiO2介孔材料的生成机理。这种方法的特点就是可以在不影响反应体系的前提下,原位跟踪合成过程,测量反应过程中的能量变化,确定反应机理。
作者:范宝强
学位授予单位:济南大学
1.学位论文叶夏雷二氧化硅介孔材料以及CoFe<,2>O<,4>/SBA-15纳米复合材料的制备、结构与磁性2009
介孔材料由于具有较大的比表面积、规整有序的孔道结构,在催化、吸附/分离、以及生物等领域具有很好的应用前景。目前介孔材料主要是由无机前驱体和有机模板剂之间的界面定向引导作用,通过超分子自组装作用而制备的。近年来由非磁性的氧化物基体和镶嵌在其中的磁性纳米颗粒组成的磁性纳米复合材料引起了材料研究者的广泛关注。而SBA-15介孔材料由于具有极高的比表面积、规则有序的孔道排列以及良好的热稳定性,成为了理想的模板材料,是多种纳米材料的优良载体,其多孔特性可为磁性纳米粒子提供成核位置,将颗粒间的团聚降低并能控制颗粒尺寸大小。因此可以利用SBA-15介孔材料的有序阵列结构作为模板,来合成基于SBA-15的磁性纳米复合材料。而介孔薄膜材料可以说是介孔材料的发展,具有某些特定的性质,因而具有潜在的应用价值。