试卷分类汇编_ 代数几何综合

合集下载

代数几何综合(含答案)

代数几何综合(含答案)

23.(本小题7分)如图,在平面直角坐标系中,A(-3,0),点C 在y 轴的正半轴上,BC ∥x 轴,且BC=5,AB 交y 轴于点D ,OD=23. (1)求出点C 的坐标; (2)过A 、C 、B 三点的抛物线与x 轴交于点E ,连接BE .若动点M 从点A 出发沿x 轴向x 轴正方向运动,同时动点N 从点E 出发,在直线EB 上作匀速运动,两个动点的运动速度均为每秒1个单位长度,请问当运动时间t 为多少秒时,△MON 为直角三角形? 23.解:(1)∵ BC ∥x 轴, ∴ △BCD ∽△AOD .∴ CD BC OD AO=. ∴ 535322CD =⨯=.∴ 53422CO =+=. ∴ C 点的坐标为 (0,4) . ……………………… 1分 (2)如图1,作BF ⊥x 轴于点F ,则BF= 4. 由抛物线的对称性知EF=3.∴BE=5,OE=8,AE=11. ………………………… 2分 根据点N 运动方向,分以下两种情况讨论: ① 点N 在射线EB 上.若∠NMO=90°,如图1,则cos ∠BEF=ME FENE BE=, ∴1135t t -=,解得558t =.……………… 3分 若∠NOM=90°,如图2,则点N 与点G 重合.∵ cos ∠BEF=OE FEGE BE=, ∴ 835t =,解得403t =. …………………… 4分∠ONM=90°的情况不存在. ………………………………………………………… 5分 ② 点N 在射线EB 的反向延长线上.若∠NMO=90°,如图3,则cos ∠NEM= cos ∠BEF ,∴ME FENE BE =. ∴ 1135t t -=,解得552t =. …………………… 6分 而∠NOM=90°和∠ONM=90°的情况不存在.…… 7分 综上,当558t =、403t =或552t =时,△MON 为直角三角形.(第23题图2)D(N)(第23题图3)D(第23题)25.(7分)已知,抛物线22y ax bx =+-与x 轴的两个交点分别为A (1,0),B (4,0),与y 轴的交点为C . (1)求出抛物线的解析式及点C 的坐标;(2)点P 是在直线x=4右侧的抛物线上的一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OCB 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由. 25.(7分)解:(1)据题意,有0164202a b a b =+-⎧⎨=+-⎩, . 解得 1252a b ⎧=-⎪⎪⎨⎪=⎪⎩, . ∴抛物线的解析式为:215222y x x =-+-.点C 的坐标为:(0,-2). ………………………(2)答:存在点P (x ,215222x x -+-),使以A ,P ,M ∵∠COB =∠AMP =90°,∴①当OC OBMP MA =时,△OCB ∽△MAP . ②当OC OB MA MP=时,△OCB ∽△MP A . ①OC MP OB MA =,∴215222241x x x -+=-. 解得:x 1=8,x 2=1(舍). ②OC MA OB MP =,∴221154222x x x -=-+. 解得:x 3=5,x 4=1(舍).综合①,②知,满足条件的点P 为:P 1(8,-14),P 2(5,-2). ……………………… 7分24. 在△ABC 中,∠A =∠B =30°,AB=.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.(1) 当点BB 的横坐标;(2) 如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你探究:当a =,12b =-,c =A ,B 两点是否都在这条抛物线上?并说明理由。

中考压轴题目归类总结代数几何综合板块

中考压轴题目归类总结代数几何综合板块

中考压轴题目归类总结代数几何综合板块.doc 中考压轴题目归类总结:代数几何综合板块引言介绍中考压轴题目的重要性代数几何综合板块在中考中的地位归类总结的目的和意义代数几何综合板块概述代数几何综合板块的定义该板块涵盖的主要内容代数方程几何图形函数与图形几何证明代数几何综合题目特点结合代数和几何的解题思路需要综合运用多种数学知识题目通常具有较高的难度和综合性代数几何综合题目解题策略分析题目要求,确定解题方向利用代数方法解决几何问题利用几何直观辅助代数计算综合运用函数、方程、不等式等数学工具代数几何综合板块常见题型题型一:代数方程与几何图形结合例题分析解题步骤易错点提示题型二:几何图形中的代数问题例题分析解题步骤易错点提示题型三:函数与几何图形的结合例题分析解题步骤易错点提示题型四:几何证明中的代数应用例题分析解题步骤易错点提示代数几何综合题目解题技巧转化思想:将几何问题转化为代数问题建模思想:建立数学模型解决实际问题归纳推理:通过已知条件推导未知结论逆向思维:从结论出发,逆向求解代数几何综合板块备考建议系统复习代数和几何基础知识多做综合题目,提高解题能力总结解题规律,形成自己的解题方法培养空间想象能力和逻辑推理能力经典例题解析选取几道历年中考中的代数几何综合题目分步骤解析解题过程总结解题思路和技巧结语强调代数几何综合板块在中考中的重要性鼓励学生通过不断练习提高解题能力表达对学生中考取得优异成绩的祝愿。

初中数学代数与几何综合题

初中数学代数与几何综合题

初中数学代数与⼏何综合题初中数学代数与⼏何综合题代数与⼏何综合题从内容上来说,是把代数中的数与式、⽅程与不等式、函数,⼏何中的三⾓形、四边形、圆等图形的性质,以及解直⾓三⾓形的⽅法、图形的变换、相似等内容有机地结合在⼀起,同时也融⼊了开放性、探究性等问题,如探究条件、探究结论、探究存在性等。

经常考察的题⽬类型主要有坐标系中的⼏何问题(简称坐标⼏何问题),以及图形运动过程中求函数解析式问题等。

解决代数与⼏何综合题,第⼀,需要认真审题,分析、挖掘题⽬的隐含条件,翻译并转化为显性条件;第⼆,要善于将复杂问题分解为基本问题,逐个击破;第三,要善于联想和转化,将以上得到的显性条件进⾏恰当地组合,进⼀步得到新的结论,尤其要注意的是,恰当地使⽤分析综合法及⽅程与函数的思想、转化思想、数⾏结合思想、分类与整合思想等数学思想⽅法,能更有效地解决问题。

第⼀类:与反⽐例函数相关1. (09北京)如图,点 C 为O O 直径AB 上⼀点,过点 C 的直线交O O 于点D 、E 两点,且/ ACD=45°,DF _AB 于点 F ,EG _ AB 于点G .当点C 在AB 上运动时,设 AF =x , DE = y ,下列-a -2、、ab b > 0, a b > 2、、ab ,只有当 a = b 时,等号成⽴.图象中,能表⽰ y 与x 的函数关系的图象⼤致是(经过正⽅形 ABOC 的三个顶点 A 、B 、C3. (09延庆)阅读理解:对于任意正实数 a ,2.如图,在平⾯直⾓坐标系中y结论:在a b > 2 ab ( a , b 均为正实数)中,若 ab 为定值p ,则a b > 2 p ,12(2)探索应⽤:已知A(-3,0) , B(0,_4),点P 为双曲线y (x ■ 0)上的任意⼀点,过点P 作PC _ x 轴于点C , PD _ y 轴于D . 求四边形ABCD ⾯积的最⼩值,并说明此时四边形ABCD 的形状.1 、y x 相交4(m , n )(在A 点左侧)是双曲线y =上的动点.过点B 作xBD // y 轴交x 轴于点D.过N(0, - n)作NC // x 轴交双曲线y ⼆⾊于点E ,交BD 于点C .x(1) 若点D 坐标是(―坐标及k 的值. (2) 若B 是CD 的中点,为4,求直线CM(3) 设直线 AM 、BM 分别与y 轴相交于 P 、Q 两点,且 MA=pMP , MB=qMQ ,求p - q 的值.285. (09.5西城)已知:反⽐例函数y 和y在平⾯直⾓坐标系 xOy 第⼀象限中的图 xx82只有当a =b 时,a - b 有最⼩值2 p .根据上述内容,回答下列问题:(1)若m ,只有当m ⼯时,m ?丄有最⼩值mk4. (08南通)已知双曲线 y 与直线x于A 、B 两点.第⼀象限上的点 Mk 8,0),求A 、B 两点四边形OBCE 的⾯积的解析式?象如图所⽰,点A在y 的图象上,AB // y轴,与y 的图象交于点B, AC、BDx x与x轴平⾏,分别与y=2、y=8的图象交于点C、D.x x(1) 若点A的横坐标为2,求梯形ACBD的对⾓线的交点F的坐标;(2) 若点A的横坐标为m,⽐较△ OBC与⼛ABC的⾯积的⼤⼩;(3) 若⼛ABC与以A、B、D为顶点的三⾓形相似,请直接写出点A的坐标.点F 的坐标为(2,17).5-S ABC . (3)点A 的坐标为(2,4)函数y = m ( x - 0 , m 是常数)的图象经过 A(1,4),xB(a ,b),其中a 1 .过点A 作x 轴垂线,垂⾜为C ,连结 AD ,DC ,CB .(1) 若△ ABD 的⾯积为4,求点B 的坐标; (2) 求证:DC // AB ;(3) 当AD =BC 时,求直线 AB 的函数解析式. 答案: (3)所求直线 AB 的函数解析式是 y = -2x ? 6或y = -x 5⼆、与三⾓形相关7. (07北京)在平⾯直⾓坐标系 xOy 中,抛物线y = mx 2 + 2 .3 mx + n 经过P 「3, 5),A(0, 2)两点.(1)求此抛物线的解析式;(2) 设抛物线的顶点为 B,将直线AB 沿y 轴向下平移两个单位得到直线 I,直线I 与抛物线的对称轴交于C 点,求直线l 的解析式;⑶在⑵的条件下,求到直线OB, OC, BC 距离相等的点的坐标.答案:(1)抛物线的解析式为:y = ^x 2- 3x+ 2 3 3(2) 直线I 的解析式为y =守x(3) ⾄煩线OB 、OC 、BC 距离相等的点的坐标分别为:M 1(-"^, 0)、 M 2 (0, 2)、 M 3(0, -2)、M 4 (-2.3, 0).36.( 07上海)如图,在直⾓坐标平⾯内,(1)点B 的坐标为3,; .3⑺.DC // AB .过点2&(08北京)平⾯直⾓坐标系 xOy 中,抛物线y = x + bx + c 与x 轴交于A, B 两点(点A 在点B 的左侧),与y 轴交于点C,点B 的坐标为(3, 0),将直线y = kx 沿y 轴向上平移3个单位长度后恰好经过 B, C 两点.(1) 求直线BC 及抛物线的解析式;(2) 设抛物线的顶点为 D,点P 在抛物线的对称轴上,且⼄APD =WACB,求点P 的坐标;⑶连结CD,求£OCA 与MOCD 两⾓和的度数.答案:(1)直线BC 的解析式为y = -x + 3.抛物线的解析式为y = x 2 - 4x + 3.(2) 点P 的坐标为(2, 2)或(2, -2). (3) . OCA 与.OCD 两⾓和的度数为 45 ... 2 29. (10.6密云) 已知:如图,抛物线 y = -X mx 2m (m 0)与x 轴交于A 、B 两点,点A 在点B 的左边,C 是抛物线上⼀动点(点C 与点A 、B 不重合),D 是OC 中点,连结BD 并延长,交AC 于点E .(1) 求A 、B 两点的坐标(⽤含 m 的代数式表⽰);CE(2 )求的值;AE物线和直线BE 的解析式.且OB = OC ⼆3OA . (I )求抛物线的解析式;(II) 探究坐标轴上是否存在点 P ,使得以点P,代C 为顶点的三⾓形为直⾓三⾓形?若存在,求出P 点坐标,若不存在,请说明理由;1(III) 直线y x 1交y 轴于D 点,E 为抛物线顶(3)当C 、A 两点到y 轴的距离相等,且SCED答案: (1) A (-m , 0), B ( 2m , 0).(2) CEAE(3) 抛物线的解析式为 y = -X 22x 8 .直线BE 的解析式为4丄16 y x3310.(崇⽂ 09)如图,抛物线y =ax 2bx - 3与x 轴交于A, B 两点,与y 轴交于点C ,求抛3点?若.DBC ⼆:…CBE = ■-,求爲「?的值. 答案:(I )y = x 2-2x-3(II )R(0,1)P 2(9,0) , P 3(0,0)3(IIIDBO EOBC =45 .11. (11.6东城)如图,已知在平⾯直⾓坐标系xOy 中,直⾓梯形 OABC 的边0A 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA = AB = 2, OC = 3,过点B 作BD 丄BC ,交OA于点D .将/ DBC 绕点B 按顺时针⽅向旋转,⾓的两边分别交正半轴于点E 和F .(1) 求经过A 、B 、C 三点的抛物线的解析式; (2) 当BE 经过(1)中抛物线的顶点时,求 CF 的长;(3) 在抛物线的对称轴上取两点 P 、Q (点Q 在点P 的上⽅),且PQ = 1,要使四边形 BCPQ 的周长最⼩,求出 P 、Q 两点的坐标.答案:(1) y - -2x 24x 2 .333⼀ 2(3)点P 的坐标为(1,3、与⾯积有相关12. ( 11.6通县)已知如图, AABC 中,AC =BC , BC 与x 轴平⾏,点 A 在x 轴上,点 C 在y 轴上,抛物线y =ax 2 -5ax - 4经过:ABC 的三个顶点,(1) 求出该抛物线的解析式;(2) 若直线y ⼆kx 7将四边形 ACBD ⾯积平分,求此直线的解析式 .(3) 若直线y =kx b 将四边形ACBD 的周长和⾯积同时分成相等的两部分,请你确定y = kx ? b 中k 的取值范围.2 2 4⑵由 y 「2x 3x 2 =- 2(x-1)2 8 3 3CF = FM + CM y 轴的正半轴、x 轴的。

代数、几何综合题

代数、几何综合题

代数、几何综合题1、(2005年)已知:OE 是⊙E 的半径,以OE 为直径的⊙D 与⊙E 的弦OA 相交于点B ,在如图9所示的直角坐标系中,⊙E 交y 轴于点C ,连结BE AC 、.(至少写出四种不同类型的结论);(2若线段BE OB 、的长是关于x 的方程2(1)0x m x m -++=的两根,且OB BE <,2OE =,求以E 点为顶点且经过点B 的抛物线的解析式;(3)该抛物线上是否存有点P ,使得PBE △是以BE 为直角边的直角三角形?若存有,求出点P 的坐标;若不存有,说明其理由.E2、(2006年)已知:AC 是⊙O ’的直径,点A 、B 、C 、O 在⊙O ’上OA =2。

建立如图所示的直角坐标系。

∠ACO =∠ACB =60°。

(1)求点B 关于x 轴对称的点D 的坐标; (2)求经过三点A 、B 、O 的二次函数的解析式;(3)该抛物线上是否存有在点P ,使四边形P ABO 为梯形?若存有,请求出P 点的坐标;若不存有,请说明理由。

3、(2007年)如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y 轴正半轴于点A ,AB 是⊙C 的切线.动点P 从点A 开始沿AB 方向以每秒1个单位长度的速度运动,点Q 从O点开(第26题图) 图9始沿x 轴正方向以每秒4个单位长度的速度运动,且动点P 、Q 从点A 和点O 同时出发,设运动时间为t (秒).(1)当t =1时,得到P 1、Q 1两点,求经过A 、P 1、Q 1三点的抛物线解析式及对称轴l ;(2)当t 为何值时,直线PQ 与⊙C 相切?并写出此时点P 和点Q 的坐标;(3)在(2)的条件下,抛物线对称轴l 上存有一点N ,使NP +NQ 最小,求出点N 的坐标并说明理由.4、(2008年)如图15,四边形OABC 是矩形,4OA =,8OC =,将矩形OABC 沿直线AC 折叠,使点B 落在D 处,AD 交OC 于E .(1)求OE 的长;(2)求过O D C ,,三点抛物线的解析式;(3)若F 为过O D C ,,三点抛物线的顶点,一动点P 从点A 出发,沿射线AB 以每秒1个单位长度的速度匀速运动,当运动时间t (秒)为何值时,直线PF 把FAC △分成面积之比为1:3的两部分?5、(2009年)如图13,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(第26题图) A B Cx O y lP P 1 Q Q 1(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式;(3)在(2)中:①当动点P 、Q 运动到何处时,以点P 、M 和点A 、B 、C 、D 中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y 取最小值时,判断PQC △的形状,并说明理由.6、(2010年)(本小题满分12分)如图,四边形ABCO 是平行四边形,AB=4,OB=2,抛物线过A 、B 、C 三点,与x 轴交于另一点D .一动点P 以每秒1个单位长度的速度从B 点出发沿BA 向点A 运动,运动到点A 停止,同时一动点Q 从点D 出发,以每秒3个单位长度的速度沿DC 向点C 运动,与点P 同时停止.(1)求抛物线的解析式;(2)若抛物线的对称轴与AB 交于点E ,与x 轴交于点F ,当点P 运动时间t 为何值时,四边形POQE 是等腰梯形?(3)当t 为何值时,以P 、B 、O 为顶点的三角形与以点Q 、B 、O 为顶点的三角形相似?7、(2011年)如图10,在平面直角坐标系xoy 中,AB 在x 轴上,AB =10,以AB 为直径的⊙O ′与y轴正半轴交于点C ,连接BC ,AC . CD 是⊙O ′的切线,AD ⊥CD 于点D ,tan ∠CAD =12,抛物线 A D C B P M Q 60图13y=ax2+bx+c过A,B,C三点.(1) 求证:∠CAD=∠CAB;(2) ①求抛物线的解析式;②判断抛物线的顶点E是否在直线CD上,并说明理由;(3) 在抛物线上是否存有一点P,使四边形PBCA是直角梯形. 若存有,直接写出点P的坐标(不写求解过程);若不存有,请说明理由.8、(2012年)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线2y ax bx c=++经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存有这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存有,请直接写出点M与点N的坐标(不写求解过程);若不存有,请说明理由.。

2021年全国中考数学真题分类汇编:代数几何综合压轴题(含答案)

2021年全国中考数学真题分类汇编:代数几何综合压轴题(含答案)

2021年全国中考数学真题分类汇编:代数几何综合压轴题(含答案)2019年中考数学真题分类汇编:代数几何综合压轴题一、选择题1.矩形OABC在平面直角坐标系中的位置如图所示,已知B(2,2),点A在x轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作PD⊥PC,交x轴于点D.下列结论:①OA=BC=2;②当点D运动到OA的中点处时,PC2+PD2=7;③在运动过程中,∠CDP是一个定值;④当△ODP为等腰三角形时,点D的坐标为(,0 ).其中正确结论的个数是()A.1个B.2个C.3个D.4个二、解答题1.已知抛物线的对称轴为直线x=1,其图像与轴相交于、两点,与轴交于点。

(1)求,的值;(2)直线l与轴交于点。

①如图1,若l∥轴,且与线段及抛物线分别相交于点、,点关于直线的对称点为,求四边形面积的最大值;②如图2,若直线l与线段相交于点,当△PCQ∽△CAP时,求直线l的表达式。

2.如图①,抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于点B,C,将直线AB绕点A逆时针旋转90°,所得直线与x轴交于点D.(1)求直线AD的函数解析式;(2)如图②,若点P是直线AD上方抛物线上的一个动点①当点P到直线AD的距离最大时,求点P的坐标和最大距离;②当点P到直线AD的距离为时,求sin∠PAD的值.3.如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P 为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC 于点E,抛物线的对称轴是直线x=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.4.已知抛物线y=ax2+x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)如图1,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC 面积的最大值;若不存在,请说明理由;(3)如图2,若点M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求点M的坐标.5.如图1,已知抛物线y=﹣x2+bx+c过点A(1,0),B(﹣3,0).(1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D 的坐标;(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段PA交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m﹣n的最大值.6.如图,抛物线y=﹣x2+bx+c过点A(3,2),且与直线y=﹣x+交于B、C两点,点B的坐标为(4,m).(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+PA的最小值;(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使∠AQM=45°?若存在,求点Q的坐标;若不存在,请说明理由.7.如图①,抛物线与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知的面积为6.(1)求的值;(2)求外接圆圆心的坐标;(3)如图②,P是抛物线上一点,点Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,的面积为,且,求点Q的坐标.(图①)(图②)8.已知抛物线y=a (x﹣2)2+c经过点A(2,0)和C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠A,则△DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)若点P在抛物线上,且=m,试确定满足条件的点P的个数.9.如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0)、B(9,0)和C(0,4),CD垂直于y轴,交抛物线于点D,DE垂直于x轴,垂足为E,直线l是该抛物线的对称轴,点F 是抛物线的顶点.(1)求出该二次函数的表达式及点D的坐标;(2)若Rt△AOC沿x轴向右平移,使其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1 O1F与矩形OCDE重叠部分图形的面积;(3)若Rt△AOC沿x 轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分图形的面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.10.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y 轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.11.如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,AB=4,交y轴于点C,对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)连接BC,E是线段OC上一点,E关于直线x=1的对称点F正好落在BC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t >0)秒.①若△AO C与△BMN相似,请直接写出t的值;②△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.12.如图,在平面直角坐标系中,平行四边形OABC的顶点A,C的坐标分别为(6,0),(4,3),经过B,C两点的抛物线与x轴的一个交点D的坐标为(1,0).(1)求该抛物线的解析式;(2)若∠AOC的平分线交BC于点E,交抛物线的对称轴于点F,点P是x轴上一动点,当PE+PF的值最小时,求点P的坐标;(3)在(2)的条件下,过点A作OE的垂线交BC于点H,点M,N分别为抛物线及其对称轴上的动点,是否存在这样的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.13.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与y轴交于点A(0,6),与x轴交于点B(-2,0),C(6,0).(1)直接写出抛物线的解析式及其对称轴;(2)如图2,连接AB,AC,设点P(m,n)是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点P作PD⊥AC于点E,交x轴于点D,过点P 作PG∥AB交AC于点F,交x轴于点G.设线段DG的长为d,求d与m的函数关系式,并注明m的取值范围;(3)在(2)的条件下,若△PDG的面积为,①求点P的坐标;②设M为直线AP上一动点,连接OM交直线AC于点S,则点M在运动过程中,在抛物线上是否存在点R,使得△ARS为等腰直角三角形?若存在,请直接写出点M及其对应的点R 的坐标;若不存在,请说明理由.14.如图,在直角坐标系中,直线y =﹣x+3与x轴,y轴分别交于点B,点C,对称轴为x=1的抛物线过B,C两点,且交x轴于另一点A,连接AC.(1)直接写出点A,点B,点C的坐标和抛物线的解析式;(2)已知点P为第一象限内抛物线上一点,当点P到直线BC的距离最大时,求点P的坐标;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.15.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y 轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P 作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?16.抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.17.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,连接BC.(1)求该抛物线的解析式,并写出它的对称轴;(2)点D为抛物线对称轴上一点,连接CD、BD,若∠DCB=∠CBD,求点D的坐标;(3)已知F(1,1),若E(x,y)是抛物线上一个动点(其中1<x<2 ),连接CE、CF、EF,求△CEF面积的最大值及此时点E的坐标.(4)若点N为抛物线对称轴上一点,抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.18.已知,如图,抛物线y=ax2+bx+c(a≠0)的顶点为M(1,9),经过抛物线上的两点A(﹣3,﹣7)和B(3,m)的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB的解析式.(2)在抛物线上A、M两点之间的部分(不包含A、M两点),是否存在点D,使得S△DAC=2S△DCM?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点A,M,P,Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P的坐标.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,4)三点.(1)求抛物线的解析式及顶点D 的坐标;(2)将(1)中的抛物线向下平移个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线.若新抛物线的顶点D′在△ABC 内,求h的取值范围;(3)点P为线段BC上一动点(点P不与点B,C重合),过点P作x轴的垂线交(1)中的抛物线于点Q,当△PQC 与△ABC相似时,求△PQC的面积.20.如图,已知抛物线y=ax2 +bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.21.已知:如图,抛物线y=ax2+bx +3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.答案1.【考点】矩形的性质、锐角三角函数、相似三角形的判定和性质、勾股定理、等腰三角形的性质【解答】解:①∵四边形OABC是矩形,B(2,2),∴OA=BC=2;故①正确;②∵点D为OA的中点,∴OD=OA=,∴PC2+PD2=CD2=OC2+OD2=22+()2=7,故②正确;③如图,过点P作PF⊥OA 于F,FP的延长线交BC于E,∴PE⊥BC,四边形OFEC是矩形,∴EF=OC=2,设PE=a,则PF=EF﹣PE=2﹣a,在Rt△BEP中,tan∠CBO===,∴BE=PE=a,∴CE=BC﹣BE=2﹣a=(2﹣a),∵PD⊥PC,∴∠CPE+∠FPD=90°,∵∠CPE+∠PCE=90°,∴∠FPD=∠ECP,∵∠CEP=∠PFD=90°,∴△CEP∽△PFD,∴=,∴=,∴FD=,∴tan∠PDC===,∴∠PDC=60°,故③正确;④∵B(2,2),四边形OABC是矩形,∴OA=2,AB=2,∵tan∠AOB==,∴∠AOB=30°,当△ODP为等腰三角形时,Ⅰ、OD=PD,∴∠DOP=∠DPO=30°,∴∠ODP=60°,∴∠ODC=60°,∴OD=OC=,Ⅱ、OP=OD,∴∠ODP=∠OPD=75°,∵∠COD=∠CPD=90°,∴∠OCP=105°>90°,故不合题意舍去;Ⅲ、OP=PD,∴∠POD=∠PDO=30°,∴∠OCP=150°>90°故不合题意舍去,∴当△ODP为等腰三角形时,点D的坐标为(,0).故④正确,故选:D.2.【考点】二次函数极值问题、三角函数、相似三角形【解答】解:(1)由题可知解得(2)①由题可知,∴由(1)可知,∴:设,则∴∴∴当时,四边形的面积最大,最大值为②由(1)可知由∽可得∴∴由,可得∴作于点,设,则∴,∴即解得∴∴l:3.【考点】待定系数法、二次函数极值问题、三角函数、分类讨论思想【解答】解:(1)当x=0时,y=4,则点A的坐标为(0,4),当y=0时,0=﹣x2+x+4,解得,x1=﹣4,x2=8,则点B的坐标为(﹣4,0),点C的坐标为(8,0),∴OA=OB=4,∴∠OBA=∠OAB=45°,∵将直线AB绕点A逆时针旋转90°得到直线AD,∴∠BAD=90°,∴OAD=45°,∴∠ODA=45°,∴OA=OD,∴点D的坐标为(4,0),设直线AD的函数解析式为y=kx+b,,得,即直线AD的函数解析式为y=﹣x+4;(2)作PN⊥x轴交直线AD于点N,如右图①所示,设点P的坐标为(t,﹣t2+t+4),则点N的坐标为(t,﹣t+4),∴PN=(﹣t2+t+4)﹣(﹣t+4)=﹣t2+t,∴PN⊥x轴,∴PN∥y轴,∴∠OAD=∠PNH=45°,作PH⊥AD于点H,则∠PHN=90°,∴PH==(﹣t2+t)=t=﹣(t﹣6)2+,∴当t=6时,PH取得最大值,此时点P的坐标为(6,),即当点P到直线AD的距离最大时,点P的坐标是(6,),最大距离是;②当点P到直线AD的距离为时,如右图②所示,则t=,解得,t1=2,t2=10,则P1的坐标为(2,),P2的坐标为(10,﹣),当P1的坐标为(2,),则P1A==,∴sin∠P1AD==;当P2的坐标为(10,﹣),则P2A==,∴sin∠P2AD==;由上可得,sin∠PAD的值是或.4.【考点】待定系数法、面积问题、三角函数、探究等腰三角形问题【解答】解:(1)点A的坐标是(2,0),抛物线的对称轴是直线x =﹣1,则点B(﹣4,0),则函数的表达式为:y=a(x﹣2)(x+4)=a (x2+2x﹣8),即:﹣8a=﹣2,解得:a=,故抛物线的表达式为:y=x2+x﹣2;(2)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x﹣2,则tan∠ABC=,则sin∠ABC=,设点D(x,0),则点P(x,x2+x﹣2),点E(x,x﹣2),∵PE=OD,∴PE=(x2+x﹣2﹣x+2)=(﹣x),解得:x=0或﹣5(舍去x=0),即点D (﹣5,0)S△PBE=×PE×BD=(x2+x﹣2﹣x+2)(﹣4﹣x)=;(3)由题意得:△BDM是以BD为腰的等腰三角形,只存在:BD=BM的情况,BD=1=BM,则yM=﹣BMsin∠AB C=﹣1×=﹣,则xM=﹣,故点M(﹣,﹣).5.【考点】待定系数法、二次函数极值问题、点的存在性问题、一元二次方程、分类讨论【解答】解:(1)∵抛物线的对称轴是直线x=3,∴﹣=3,解得a =﹣,∴抛物线的解析式为:y=﹣x2+x+4.当y=0时,﹣x2+x +4=0,解得x1=﹣2,x2=8,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).答:抛物线的解析式为:y=﹣x2+x+4;点A的坐标为(﹣2,0),点B的坐标为(8,0).(2)当x=0时,y=﹣x2+x+4=4,∴点C的坐标为(0,4).设直线BC的解析式为y=kx+b(k≠0),将B(8,0),C(0,4)代入y=kx+b得,解得,∴直线BC的解析式为y=﹣x+4.假设存在点P,使四边形PBOC的面积最大,设点P的坐标为(x,﹣x2+x+4),如图所示,过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),则PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴S四边形PBOC=S△BOC+S△PBC=×8×4+PDOB=16+×8(﹣x2+2x)=﹣x2+8x+16=﹣(x﹣4)2+32∴当x=4时,四边形PBOC的面积最大,最大值是32∵0<x<8,∴存在点P(4,6),使得四边形PBOC的面积最大.答:存在点P,使四边形PBOC的面积最大;点P的坐标为(4,6),四边形PBOC面积的最大值为32.(3)设点M的坐标为(m,﹣++4)则点N的坐标为(m,﹣),∴MN=|﹣++4﹣(﹣)|=|﹣+2m|,又∵MN=3,∴|﹣+2m|=3,当0<m<8时,﹣+2m﹣3=0,解得m1=2,m2=6,∴点M的坐标为(2,6)或(6,4);当m<0或m>8时,﹣+2m+3=0,解得m3=4﹣2,m4=4+2,∴点M的坐标为(4﹣2,﹣1)或(4+2,﹣﹣1).答:点M的坐标为(2,6)、(6,4)、(4﹣2,﹣1)或(4+2,﹣﹣1).6.【考点】待定系数法、二次函数极值问题、相似三角形、分类讨论【解答】解:(1)由题意把点(1,0),(﹣3,0)代入y=﹣x2+bx+c,得,,解得b=﹣2,c=3,∴y=﹣x 2﹣2x+3=﹣(x+1)2+4,∴此抛物线解析式为:y=﹣x2﹣2x+3,顶点C的坐标为(﹣1,4);(2)∵抛物线顶点C(﹣1 ,4),∴抛物线对称轴为直线x=﹣1,设抛物线对称轴与x轴交于点H,则H(﹣1,0),在Rt△CHO中,CH=4,OH=1,∴tan∠COH==4,∵∠COH=∠CAO+∠ACO,∴当∠ACO=∠CDO 时,tan(∠CAO+∠CDO)=tan∠COH=4,如图1,当点D在对称轴左侧时,∵∠ACO=∠CDO,∠CAO=∠CAO,∴△AOC∽△ACD,∴=,∵AC==2,AO=1,∴=,∴AD=20,∴OD=19,∴D(﹣19,0);当点D在对称轴右侧时,点D关于直线x=1的对称点D''的坐标为(17,0),∴点D的坐标为(﹣19,0)或(17,0);(3)设P(a,﹣a2﹣2a+3),将P(a,﹣a2﹣2a+3),A(1,0)代入y=kx+b,得,,解得,k=﹣a﹣3,b=a+3,∴yPA=(﹣a﹣3)x+a+3,当x=0时,y=a+3,∴N(0,a+3),如图2,∵S△BPM=S△BPA﹣S四边形BMNO﹣S△AON,S△EMN=S△EBO﹣S 四边形BMNO,∴S△BPM﹣S△EMN=S△BPA﹣S△EBO﹣S△AON=×4×(﹣a2﹣2a+3)﹣×3×3﹣×1×(a+3)=﹣2a2﹣a=﹣2(a+)2+,由二次函数的性质知,当a=﹣时,S△BPM﹣S△EMN有最大值,∵△BMP和△EMN的面积分别为m、n,∴m﹣n的最大值为.7.【考点】待定系数法、二次函数极值问题、距离和最短问题、探究特殊角问题【解答】解:(1)将点B的坐标为(4,m)代入y=﹣x+,m=﹣4+=﹣,∴B的坐标为(4,﹣),将A(3,2),B(4,﹣)代入y=﹣x2+bx+c,解得b=1,c=,∴抛物线的解析式y=;(2)设D(m,),则E(m,﹣m+),DE=()﹣(﹣m+)==﹣(m﹣2)2+2,∴当m=2时,DE有最大值为2,此时D(2,),作点A关于对称轴的对称点A'',连接A''D,与对称轴交于点P.PD+PA=PD+PA''=A''D,此时PD+PA最小,∵A(3,2),∴A''(﹣1,2),A''D==,即PD+PA的最小值为;(3)作AH⊥y轴于点H,连接AM、AQ、MQ、HA、HQ,∵抛物线的解析式y=,∴M(1 ,4),∵A(3,2),∴AH=MH=2,H(1,2)∵∠AQM=45°,∠AHM=90°,∴∠AQM=∠AHM,可知△AQM外接圆的圆心为H,∴QH=HA=HM=2设Q(0,t),则=2,t=2+或2﹣∴符合题意的点Q的坐标:Q1(0,2﹣)、Q2(0,2).8.【考点】待定系数法、二次函数嵌圆类问题【解答】(1)解:由题意得由图知:所以A(),,=6∴(2)由(1)得A(),,∴直线AC得解析式为:AC中点坐标为∴AC的垂直平分线为:又∵AB的垂直平分线为:∴得外接圆圆心的坐标(-1,1).(3)解:过点P做PD⊥x轴由题意得:PD=d,∴=2d∵的面积为∴,即A、D两点到PB得距离相等∴设PB直线解析式为;过点∴∴易得所以P(-4,-5),由题意及易得:∴BQ=AP=设Q(m,-1)()∴∴Q9.【考点】待定系数法、全等三角形的判定和性质、相似三角形的判定和性质、等腰三角形的判定和性质、分类讨论思想【解答】解:(1)由题意:,解得,∴抛物线的解析式为y=﹣(x﹣2)2+3,∴顶点D坐标(2,3).(2)可能.如图1,∵A(﹣2,0),D(2,3),B(6,0),∴AB=8,AD=BD=5,①当D E=DF时,∠DFE=∠DEF=∠ABD,∴EF∥AB,此时E与B重合,与条件矛盾,不成立.②当DE=EF时,又∵△BEF∽△AED,∴△BEF≌△AED,∴BE=AD=5③当DF=EF时,∠EDF=∠DEF =∠DAB=∠DBA,△FDE∽△DAB,∴=,∴==,∵△AEF∽△BCE∴==,∴EB=AD=,答:当BE的长为5或时,△CFE为等腰三角形.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设P[n,﹣(n﹣2)2+3],则S△PBD=S△PBH+S△PDH﹣S△BDH=×4×[﹣(n﹣2)2+3]+×3×(n﹣2)﹣×4×3=﹣(n﹣4)2+,∵﹣<0,∴n=4时,△PBD的面积的最大值为,∵=m,∴当点P在BD的右侧时,m的最大值==,观察图象可知:当0<m<时,满足条件的点P的个数有4个,当m=时,满足条件的点P的个数有3个,当m>时,满足条件的点P的个数有2个(此时点P在BD的左侧).10.【考点】待定系数法、相似三角形的判定和性质、探究面积问题、分类讨论思想【解答】解:(1)∵抛抛线y=ax2+bx+c经过点A(﹣3,0)、B(9,0)和C(0,4),∴抛物线的解析式为y=a(x+3)(x﹣9),∵点C(0,4)在抛物线上,∴4=﹣27a,∴a=﹣,∴抛物线的解析式为:y=﹣(x+3)(x﹣9)=﹣x2+x+4,∵CD垂直于y轴,C(0,4),令﹣x2+x+4=4,解得,x=0或x=6,∴点D的坐标为(6,4);(2)如图1所示,设A1F交CD于点G,O1F交CD于点H,∵点F是抛物线y=﹣x2+x+4的顶点,∴F(3,),∴FH=﹣4=,∵GH∥A1O1,∴△FGH∽△FA1O1,∴,∴,解得,GH=1,∵Rt△A1O1F与矩形OCDE重叠部分的图形是梯形A1O1HG ,∴S重叠部分=﹣S△FGH=A1O1?O1F﹣GH?FH==;(3)①当0<t≤3时,如图2所示,设O2C2交OD于点M,∵C2 O2∥DE,∴△OO2M∽△OED,∴,∴,∴O2M=t,∴S==OO2×O2M=t×t=t2;②当3<t≤6时,如图3所示,设A 2C2交OD于点M,O2C2交OD于点N,将点D(6,4)代入y=kx,得,k=,∴yOD=x,将点(t﹣3,0),(t,4)代入y=kx+b,得,,解得,k=,b=﹣t+4,∴直线A2C2的解析式为:y=x﹣t+4,联立yOD=x与y=x﹣t+4,得,x=x﹣t+4,解得,x=﹣6+2t,∴两直线交点M坐标为(﹣6+2t,﹣4+t),故点M到O2C2的距离为6﹣t,∵C2N∥OC,∴△DC2N∽△DCO,∴,∴,∴C2N=(6﹣t),∴S==﹣=OA?OC ﹣C2N(6﹣t)=×3×4﹣×(6﹣t)(6﹣t)=﹣t2+4t﹣6;∴S与t的函数关系式为:S=.11.【考点】待定系数法、探究特殊四边形问题、分类讨论思想、二次函数极值问题【解答】解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PE=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点横坐标为,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3 )直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S四边形AEBD=AB(yD﹣yE )=﹣x+3﹣x2+4x﹣3=﹣x2+3x,∵﹣1<0,故四边形AEBD 面积有最大值,当x=,其最大值为,此时点E(,﹣).12.【考点】待定系数法、探究相似三角形问题、分类讨论思想、探究等腰三角形问题【解答】解:(1))∵点A、B关于直线x=1对称,AB=4,∴A(﹣1,0),B(3,0),代入y=﹣x2+bx+c中,得:,解得,∴抛物线的解析式为y=﹣x2+2x+3,∴C点坐标为(0,3);(2)设直线BC的解析式为y=mx+n,则有:,解得,∴直线BC的解析式为y=﹣x+3,∵点E、F关于直线x=1对称,又E到对称轴的距离为1,∴EF=2,∴F点的横坐标为2,将x=2代入y=﹣x+3中,得:y=﹣2+3=1,∴F(2,1);(3)①如下图,MN=﹣4t2+4t+3,MB=3﹣2t,△AOC与△BMN相似,则,即:,解得:t=或﹣或3或1(舍去、﹣、3),故:t=1;②∵M(2t,0),MN⊥x轴,∴Q(2t,3﹣2t),∵△BOQ 为等腰三角形,∴分三种情况讨论,第一种,当OQ=BQ时,∵Q M⊥OB∴OM=MB∴2t=3﹣2t∴t=;第二种,当BO=BQ时,在Rt△BMQ中∵∠OBQ=45°,∴BQ=,∴BO=,即3=,∴t=;第三种,当OQ=OB时,则点Q、C重合,此时t=0而t>0,故不符合题意综上述,当t=或秒时,△BOQ为等腰三角形.13 .【考点】待定系数法、探究矩离和最短问题、分类讨论思想、探究特殊四边形问题【解答】解:(1)∵平行四边形OABC中,A(6,0),C(4,3)∴BC=OA=6,BC∥x轴∴xB=xC+6=10,yB=yC =3,即B(10,3)设抛物线y=ax2+bx+c经过点B、C、D(1,0)∴解得:∴抛物线解析式为y=﹣x2+x﹣(2)如图1,作点E关于x轴的对称点E'',连接E''F交x轴于点P∵C(4,3)∴OC=∵BC∥OA∴∠OEC=∠AOE∵OE平分∠AOC∴∠AOE=∠COE∴∠OEC=∠COE∴CE=OC=5∴xE=xC+5=9,即E(9,3)∴直线OE解析式为y=x∵直线OE交抛物线对称轴于点F,对称轴为直线:x=﹣7∴F(7,)∵点E与点E''关于x轴对称,点P在x轴上∴E''(9,﹣3),PE=PE''∴当点F、P、E''在同一直线上时,PE+PF=PE''+PF=FE''最小设直线E''F解析式为y=kx+h∴解得:∴直线E''F:y=﹣x+21当﹣x+21=0时,解得:x=∴当PE+PF的值最小时,点P坐标为(,0).(3)存在满足条件的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形.设AH与OE相交于点G(t,t),如图2∵AH⊥OE于点G,A(6,0)∴∠AGO=90°∴AG2+OG2=OA2∴(6﹣t)2+(t)2+t2+(t)2=62 ∴解得:t1=0(舍去),t2=∴G(,)设直线AG解析式为y=dx+e∴解得:∴直线AG:y=﹣3x+18当y=3时,﹣3x+ 18=3,解得:x=5∴H(5,3)∴HE=9﹣5=4,点H、E关于直线x=7对称①当HE为以点M,N,H,E为顶点的平行四边形的边时,如图2则HE∥MN,MN=HE=4∵点N在抛物线对称轴:直线x=7上∴xM=7+4或7﹣4,即xM=11或3当x=3时,yM =﹣×9+×9﹣=∴M(3,)或(11,)②当HE为以点M,N,H,E为顶点的平行四边形的对角线时,如图3则HE、MN互相平分∵直线x=7平分HE,点F在直线x=7上∴点M在直线x=7上,即M为抛物线顶点∴yM=﹣×49+×7﹣=4∴M(7,4)综上所述,点M坐标为(3,)、(11,)或(7,4).14.【考点】二次函数的图象与性质,等腰直角三角形的性质,相似三角形的判定和性质,一元二次方程的解法,一次函数的图象与性质,二元一次方程组的解法【解答】解:(1)∵抛物线与x轴交于点B(-2,0),C(6,0)∴设交点式y=a(x+2)(x-6)∵抛物线过点A(0,6)∴-12a=6∴a=-∴抛物线解析式为y=-(x+2)(x-6)=-x2+2x+6=-(x-2)2+8∴抛物线对称轴为直线x=2.(2)过点P作PH⊥x轴于点H,如图1∴∠PHD=90°∵点P(m,n)是抛物线上位于第一象限内的一动点且在对称轴右侧∴2<m<6,PH=n=-m2+2m+6,n>0∵OA=OC=6,∠AOC=90°∴∠AC O=45°∵PD⊥AC于点E∴∠CED=90°∴∠CDE=90°-∠ACO=45°∴DH=PH=n∵PG∥AB∴∠PGH=∠ABO∴△PGH∽△ABO∴∴GH=n∴d=DH-GH=n-n=n=(-m2+2m+6)=-m2+m+4(2<m<6)(3)①∵S△PDG=DG?PH=∴n?n=解得:n1=,n2=-(舍去)∴-m2+2m+6=解得:m1=-1(舍去),m2=5∴点P坐标为(5,)②在抛物线上存在点R,使得△ARS为等腰直角三角形.设直线AP解析式为y=kx+6把点P代入得:5k+6=∴k=-∴直线AP:y= -x+6i)若∠RAS=90°,如图2∵直线AC解析式为y=-x+6∴直线AR解析式为y=x+6?解得:(即点A)∴R(2,8)∵∠ASR=∠OAC=45°∴RS∥y轴∴xS=xR=2∴S(2,4)∴直线OM:y=2x∵?解得:∴M(,)ii)若∠ASR=90°,如图3∴∠SAR=∠ACO=45°∴AR∥x轴∴R(4,6)∵S在AR的垂直平分线上∴S(2,4)∴M(,)iii)若∠ARS=90°,如图4,∴∠SAR=∠ACO=45°,RS∥y轴∴AR∥x轴∴R(4,6)∴S(4,2)∴直线OM:y=x∵?解得:∴M(6,3)综上所述,M1(,),R1(2,8);M2(,),R2(4,6);M3(6,3),R3(4,6).15.【考点】二次函数的图象与性质、二次函数极值问题、探究等腰三角形问题、分类讨论与数形结合思想【解答】解:(1)由二次函数交点式表达式得:y=a(x+3)(x﹣4)=a(x2﹣x﹣12),即:﹣12a=4,解得:a=﹣,则抛物线的表达式为y=﹣x2+x+4;(2)存在,理由:点A、B、C的坐标分别为(﹣3,0)、(4,0)、(0,4),则AC=5,AB=7,BC=4,∠OAB=∠OBA=45°,将点B、C 的坐标代入一次函数表达式:y=kx+b并解得:y=﹣x+4…①,同理可得直线AC的表达式为:y=x+4,设直线AC的中点为M(﹣,4),过点M与CA垂直直线的表达式中的k值为﹣,同理可得过点M与直线AC垂直直线的表达式为:y=﹣x+…②,①当AC=AQ 时,如图1,则AC=AQ=5,设:QM=MB=n,则AM=7﹣n,由勾股定理得:(7﹣n)2+n2=25,解得:n=3或4(舍去4),故点Q(1,3);②当AC=CQ时,如图1,CQ=5,则BQ=BC﹣CQ=4﹣5,则QM=MB=,故点Q(,);③当CQ=AQ时,联立①②并解得:x=(舍去);故点Q的坐标为:Q(1,3)或(,);(3)设点P(m,﹣m2+m+4),则点Q(m,﹣m+4),∵OB=OC,∴∠ABC=∠OCB=45°=∠PQN,PN=PQsin∠PQN=(﹣m2+m+4+m﹣4)=﹣m2+m,∵﹣<0,∴PN有最大值,当m=时,PN的最大值为:.17.【考点】二次函数的图象与性质、二次函面积问题、探究等腰三角形问题、分类讨论与数形结合思想【解答】解:(1)函数的表达式为:y=(x+1)(x﹣5)=﹣x2+x+;(2)抛物线的对称轴为x=1,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=﹣mx+…①,∵CE⊥PE,故直线C E表达式中的k值为,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=…②,联立①②并解得:x=2﹣,故点F (2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,解得:m =5或﹣3(舍去5),故点P(2,﹣3);(3)由(2)确定的点F的坐标得:CP2=(2﹣m)2,CF2=()2+4,PF2=()2+m2,①当CP=CF时,即:(2﹣m)=()2+4,解得:m=0或(均舍去),②当CP=PF时,(2﹣m)2=()2+m2,解得:m=或3(舍去3),③当CF=PF时,同理可得:m=±2(舍去2),故点P(2,)或(2,﹣2).18.【考点】二次函数的图象与性质、二次函极值问题、探究平行四边形问题、分类讨论与数形结合思想【解答】解:(1)将点A(﹣1,0),B(3,0)代入y =ax2+bx+2,可得a=﹣,b=,∴y=﹣x2+x+2;∴对称轴x=1;(2)如图1:过点D作DG⊥y轴于G,作DH⊥x轴于H,设点D(1,y),∵C(0,2),B(3,0),∴在R t△CGD中,CD2=CG2+GD2=(2﹣y)2+1,∴在Rt△BHD中,BD2=BH2+HD2=4+y2,在△BCD中,∵∠DCB=∠CBD,∴CD=BD,∴CD2=BD2,∴(2﹣y)2+1=4+y2,∴y=,∴D(1,);(3)如图2:过点E作EQ⊥y轴于点Q,过点F作直线FR⊥y轴于R,过点E作FP⊥FR于P,∴∠EQR=∠QRP=∠RPE=90°,∴四边形QRPE是矩形,∵S△CEF=S 矩形QRPE﹣S△CRF﹣S△EFP,∵E(x,y),C(0,2),F(1,1),∴S△CEF=EQ?QR﹣×EQ?QC﹣CR?RF﹣FP?EP,∴S△CEF=x(y﹣1)﹣x(y﹣2)﹣×1×1﹣(x﹣1)(y﹣1),∵y=﹣x2+x+2,∴S△CEF=﹣x2+x,∴当x=时,面积有最大值是,此时E(,);(4)存在点M使得以B,C,M,N为顶点的四边形是平行四边形,设N(1,n),M(x,y),①四边形CMNB是平行四边形时,=,∴x=﹣2,∴M(﹣2,﹣);②四边形CNBM时平行四边形时,=,∴x=2,∴M(2,2);③四边形CNNB时平行四边形时,=,∴x=4,∴M(4,﹣);综上所述:M(2,2)或M(4,﹣)或M(﹣2,﹣);19 .【考点】二次函数的图象与性质、探究面积问题、探究平行四边形问题、分类讨论与数形结合思想【解答】解:(1)二次函数表达式为:y=a(x﹣1)2+9,将点A的坐标代入上式并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+8…①,则点B(3,5),将点A、B的坐标代入一次函数表达式并解得:直线AB的表达式为:y=2x﹣1;(2)存在,理由:二次函数对称轴为:x=1,则点C(1,1),过点D作y轴的平行线交AB于点H,设点D(x,﹣x2+2x+8),点H(x,2x﹣1),∵S△DAC=2S△DCM,则S△DAC=DH(xC﹣xA)=(﹣x2+2x+8﹣2x+1)(1+3)=(9﹣1)(1﹣x)×2,解得:x=﹣1或5(舍去5),故点D(﹣1 ,5);(3)设点Q(m,0)、点P(s,t),t=﹣s2+2s+8,①当AM是平行四边形的一条边时,点M向左平移4个单位向下平移16个单位得到A,同理,点Q(m,0)向左平移4个单位向下平移16个单位为(m﹣4,﹣16),即为点P,即:m﹣4=s,﹣6=t,而t=﹣s2+2s+8,解得:s=6或﹣4,故点P(6,﹣16)或(﹣4,﹣16);②当AM是平行四边形的对角线时,由中点公式得:m+s=﹣2,t=2,而t=﹣s2+2s+8,解得:s=1,故点P(1,2)或(1﹣,2);综上,点P(6,﹣16)或(﹣4,﹣1 6)或(1,2)或(1﹣,2).20.【考点】二次函数的图象与性质、探究相似三角形问题、分类讨论与数形结合思想【解答】解:(1)函数表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+3x +4,函数顶点D(,);(2)物线向下平移个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线的顶点D′(﹣h,1),将点AC的坐标代入一次函数表达式并解得:直线AC的表达式为:y=4x+4,将点D′坐标代入直线AC的表达式得:1=4(﹣h)+4,解得:h=,故:0<h;(3)过点P作y轴的平行线交抛物线和x轴于点Q、H∵OB=OC=4,∴∠PBA=∠OCB=45°=∠QPC,直线BC的表达式为:y=﹣x+4,则AB=5,BC=4,AC=,S△ABC =×5×4=10,设点Q(m,﹣m2+3m+4),点P(m,﹣m+4),CP=m,PQ=﹣m2+3m+4+m﹣4=﹣m2+4m,①当△CPQ∽△CBA,,即,解得:m=,相似比为:,②当△CPQ∽△ABC,同理可得:相似比为:,利用面积比等于相似比的平方可得:S△PQC=10×()2=或S△PQC=10×()2=.21 .【考点】二次函数的图象与性质、二次函数极值问题、分类讨论与数形结合思想【解答】解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x =﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P (t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵<0,∴S△PBC有最大值,当t=﹣时,其最大值为;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立①⑤并解得:x=﹣或﹣4(舍去﹣4),故点P(﹣,﹣);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P (﹣,﹣)或(0,5).22.【考点】待定系数法、二次函数的图象与性质、二次函数极值问题、探究特殊三角形问题、分类讨论与数形结合思想【解答】解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P (t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∴S△PAB=S△PAF+S△PBF=PF?OH+PF?BH=PF?OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△PAB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴yE=yP,即点E、P关于对称轴对称∴=﹣1∴xE=﹣2﹣xP=﹣2﹣t∴PE=|xE﹣xP|=|﹣2﹣2t|∵△P DE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.。

2014中考数学代数几何综合试卷分类汇编

2014中考数学代数几何综合试卷分类汇编

2014中考数学代数几何综合试卷分类汇编
中考数学代数几何综合试卷分类汇编,主要是汇总了2013年中考数学试题中关于代数几何的综合题型,这类题型主要考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大。

1、(2013年潍坊市压轴题)如图,抛物线y=ax2+bx+cy关于直线x=1对称,与坐标轴交于A、
B、C三点,且AB=4,点D
在抛物线上,直线是一次函数y=kx-2(k 0)的图象,点O是坐标原点。

&nbsp;
(1)求抛物线的解析式;
(2)若直线平分四边形OBDC的面积,求K的值;
(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于M、N两点,问在y轴正半轴上是否存在一定点P,使得不论K取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由。

相关推荐
2013年中考数学关于函数与四边形的模拟汇编&nbsp;&nbsp;
2013年中考模拟数学关于实数运算的试卷分类汇编&nbsp;&nbsp;
&nbsp;
标签:模拟题汇编。

2013中考试卷分类汇编代数几何综合

2013中考试卷分类汇编代数几何综合

2013中考试卷分类汇编代数几何综合1、(2013年潍坊市压轴题)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.(1)求抛物线的解析式;(2)若直线平分四边形OBDC 的面积,求k 的值.(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0), 由点D(2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a+3b=1.5,即a+b=0.5,又12=-a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以23212++-=x x y . (2)由(1)知23212++-=x x y ,令x=0,得c(0,1.5),所以CD//AB,令kx -2=1.5,得l 与CD 的交点F(23,27k ),令kx -2=0,得l 与x 轴的交点E(0,2k),根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE,即:,511),272()23(272=-+-=+k k k k k 解得 (3)由(1)知,2)1(21232122+--=++-=x x x y所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为221x y -= 假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO,所以Rt △MPM 1∽Rt △NPN 1,所以1111PN PM NN MM =,………………(1) 不妨设M(x M ,y M )在点N(x N ,y N )的左侧,因为P 点在y 轴正半轴上, 则(1)式变为NMN M y t y t x x --=-,又y M =k x M -2, y N =k x N -2, 所以(t+2)(x M +x N )=2k x M x N,……(2) 把y=kx-2(k ≠0)代入221x y -=中,整理得x 2+2kx-4=0, 所以x M +x N =-2k, x M x N =-4,代入(2)得t=2,符合条件,故在y 轴上存在一点P (0,2),使直线PM 与PN 总是关于y 轴对称.考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。

7代数几何综合题(含答案)

7代数几何综合题(含答案)

代数几何综合题Ⅰ、综合问题精讲:代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题.Ⅱ、典型例题剖析【例1】(2005,温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是 BD C 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且 BF AD =,EM 切⊙O 于M 。

⑴ △ADC∽△EBA ;⑵ AC2=12 BC·CE;⑶如果AB =2,EM =3,求cot∠CAD 的值。

解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE, ∵ BF AD =,∴∠DCA=∠BAE,∴△CAD∽△AEB⑵ 过A 作AH⊥BC 于H(如图)∵A 是 BD C 中点,∴HC=HB =12BC , ∵∠CAE=900,∴AC 2=CH·CE=12BC·CE⑶∵A 是 BD C 中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2 ① ∵AC 2=12 BC·CE,BC·CE=8 ②①+②得:EC(EB +BC)=17,∴EC 2=17 ∵EC 2=AC 2+AE 2,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC, ∴cot∠CAD=cot∠AEC=AE AC =132点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的非常突出.如,将∠CAD 转化为∠AEC 就非常关键.【例2】(2005,自贡)如图 2-5-2所示,已知直线y=2x+2分别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC ,∠BAC=90○。

过C 作CD ⊥x 轴,D 为垂足. (1)求点 A 、B 的坐标和AD 的长;(2)求过B 、A 、C 三点的抛物线的解析式。

代数几何综合题(含答案)

代数几何综合题(含答案)

代数几何综合题1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。

2.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)若AO +CD =11,求AB 的长.3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2+2x+m -3=O 的两根,且x 1<0<x 2. (1)求m 的取值范围;(2)设点C 在y 轴的正半轴上,∠ACB=90°,∠CAB=30°,求m 的值;(3)在上述条件下,若点D 在第二象限,△DAB ≌△CBA ,求出直线AD 的函数解析式.4.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。

①求直线AC 的解析式;②若M 为AC 与BO 的交点,点M 在抛物线285y x kx=-+上,求k 的值;③将纸片沿CE 对折,点B 落在x 轴上的点D 处,试判断点D 是否在②的抛物线上,并说明理由。

1、已知抛物线)0(22>--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。

(1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示);(2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。

中考数学试卷分类汇编 代数几何综合

中考数学试卷分类汇编 代数几何综合

代数几何综合1、(2013年潍坊市压轴题)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.(1)求抛物线的解析式;(2)若直线平分四边形OBDC 的面积,求k 的值.(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0), 由点D(2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a+3b=1.5,即a+b=0.5,又12=-a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以23212++-=x x y . (2)由(1)知23212++-=x x y ,令x=0,得c(0,1.5),所以CD//AB,令kx -2=1.5,得l 与CD 的交点F(23,27k ),令kx -2=0,得l 与x 轴的交点E(0,2k),根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE,即:,511),272()23(272=-+-=+k k k k k 解得 (3)由(1)知,2)1(21232122+--=++-=x x x y所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为221x y -= 假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO,所以Rt △MPM 1∽Rt △NPN 1,所以1111PN PM NN MM =,………………(1) 不妨设M(x M ,y M )在点N(x N ,y N )的左侧,因为P 点在y 轴正半轴上, 则(1)式变为NMN M y t y t x x --=-,又y M =k x M -2, y N =k x N -2, 所以(t+2)(x M +x N )=2k x M x N,……(2) 把y=kx-2(k ≠0)代入221x y -=中,整理得x 2+2kx-4=0, 所以x M +x N =-2k, x M x N =-4,代入(2)得t=2,符合条件,故在y 轴上存在一点P (0,2),使直线PM 与PN 总是关于y 轴对称.考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。

中考代数几何-综合题

中考代数几何-综合题

中考代数几何综合题代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化,从函数关系中点与线的位置、方程根的情况得出图形中的几何关系.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.方法点拨方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x 轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.类型一、方程与几何综合的问题1.如图,在梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3.问:线段AB上是否存在点P,使得以P、A、D为顶点的三角形与以P、B、C为顶点的三角形相似?若存在,这样的总共有几个?并求出AP的长;若不存在,请说明理由.【思路点拨】由于以P、A、D为顶点的三角形与以P、B、C为顶点的三角形相似时的对应点不能确定,故应分两种情况讨论.【答案与解析】解:存在.∵AD∥BC,∠A=90°,∴∠B=90°,当△PAD∽△PBC时,∵AD=2,BC=3,设AP=x,PB=7-x,则∴.①当△ADP∽△BPC时,AD=2,BC=3,设设AP=x,PB=7-x,则∴AP=1或AP=6.②由①②可知,P点距离A点有三个位置:,AP=1,AP=6.【总结升华】本题考查的是相似三角形的判定,解答此题时要注意分类讨论,不要漏解.【变式】有一张矩形纸片ABCD,已知AB=2,AD=5.把这张纸片折叠,使点A落在边BC上的点E处,折痕为MN,MN交AB于M,交AD于N.(1)若BE=,试画出折痕MN的位置,并求这时AM的长;(2)点E在BC上运动时,设BE=x,AN=y,试求y关于x的函数解析式,并写出x 的取值范围;(3)连接DE,是否存在这样的点E,使得△AME与△DNE相似?若存在,请求出这时BE的长;若不存在,请说明理由.【答案】(1)画出正确的图形.(折痕MN必须与AB、AD相交).设AM=t,则ME=t,MB=2-t,由BM2+BE2=ME2,得t=,即AM=.(2)如图(a),∵BE=x,设BM=a,则a2+x2=(2-a)2,a2+x2=4-4a+a2,∴a=,AM=2-BM=2-=.由△AMN∽△BEA,得,∴y=,∵0<x≤2,0<y≤5,x的取值范围为:,故x=1.(3)如图(b),若△AME与△DNE相似,不难得∠DNE=∠AME.又∵AM=ME,∴DN=NE=NA=,∴=解得:x=1或x=4.又∵,故x=1.或者由∠DEN=∠AEM,得∠AED=90°,推出△ABE∽△ECD,从而得BE=1类型二、函数与几何综合问题2.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A (1,0)、B(1,-5)、D(4,0).⑴求c、b(可以用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.答案与解析【思路点拨】(1)由抛物线y=x2+bx+c经过点O和点P,将点O与P的坐标代入方程即可求得c,b;(2)当x=1时,y=1-t,求得M的坐标,则可求得∠AMP的度数;(3)根据图形,可直接求得答案.【答案与解析】解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t>0,∴b=-t;(2)不变.∵抛物线的解析式为:y=x2-tx,且M的横坐标为1,∴当x=1时,y=1-t,∴M(1,1-t),∴AM=|1-t|=t-1,∵OP=t,∴AP=t-1,∴AM=AP,∵∠PAM=90°,∴∠AMP=45°;(3)<t<.①左边4个好点在抛物线上方,右边4个好点在抛物线下方:无解;②左边3个好点在抛物线上方,右边3个好点在抛物线下方:则有 -4<y2<-3,-2<y3<-1,即-4<4-2t<-3,-2<9-3t<-1,∴<t<4且<t<,解得<t<;③左边2个好点在抛物线上方,右边2个好点在抛物线下方:无解;④左边1个好点在抛物线上方,右边1个好点在抛物线下方:无解;⑤左边0个好点在抛物线上方,右边0个好点在抛物线下方:无解;综上所述, t的取值范围是:<t<.【总结升华】此题考查了二次函数与点的关系.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应用类型三、动态几何中的函数问题3. 如图,在平面直角坐标系中,已知二次函数的图像与轴交于,与轴交于A、B两点,点B的坐标为(1)求二次函数的解析式及顶点D的坐标;(2)点M是第二象限内抛物线上的一动点,若直线OM把四边形ACDB分成面积为1:2的两部分,求出此时点的坐标;(3)点P是第二象限内抛物线上的一动点,问:点P在何处时△的面积最大?最大面积是多少?并求出此时点P的坐标.答案与解析举一反三【思路点拨】(1)抛物线的解析式中只有两个待定系数,因此只需将点B、C的坐标代入其中求解即可.(2)先画出相关图示,连接OD后发现:S△OBD:S四边形ACDB=2:3,因此直线OM必须经过线段BD才有可能符合题干的要求;设直线OM与线段BD的交点为E,根据题干可知:△OBE、多边形OEDCA的面积比应该是1:2或2:1,即△OBE的面积是四边形ACDB面积的,所以先求出四边形ABDC的面积,进而得到△OBE的面积后,可确定点E的坐标,首先求出直线OE(即直线OM)的解析式,联立抛物线的解析式后即可确定点M的坐标(注意点M的位置).(3)此题必须先得到关于△CPB面积的函数表达式,然后根据函数的性质来求出△CPB 的面积最大值以及对应的点P坐标;通过图示可发现,△CPB的面积可由四边形OCPB的面积减去△OCB的面积求得,首先设出点P的坐标,四边形OCPB的面积可由△OCP、△OPB的面积和得出.【答案与解析】解:(1)由题意,得:解得:所以,二次函数的解析式为:,顶点D的坐标为(-1,4).(2)画图由A、B、C、D四点的坐标,易求四边形ACDB的面积为9.直线BD的解析式为y=2x+6.设直线OM与直线BD 交于点E,则△OBE的面积可以为3或6.①当时,如图,易得E点坐标(-2,-2),直线OE的解析式为y=-x.设M 点坐标(x,-x),∴②当时,同理可得M点坐标.∴ M 点坐标为(-1,4).(3)如图,连接,设P点的坐标为,∵点P在抛物线上,∴,∴∵,∴当时,. △的面积有最大值∴当点P的坐标为时,△的面积有最大值,且最大值为【总结升华】此题主要考查了二次函数解析式的确定、图形面积的解法以及二次函数的应用等知识;(2)问中,一定先要探究一下点M的位置,以免出现漏解的情况.【变式】如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-+交折线OAB 于点E.(1)记△ODE的面积为S,求S与的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.【答案】(1)由题意得B(3,1).若直线经过点A(3,0)时,则b=若直线经过点B(3,1)时,则b=若直线经过点C(0,1)时,则b=1.①若直线与折线OAB的交点在OA上时,即1<b≤,如图1,此时点E(2b,0).∴S=OE·CO=×2b×1=b.②若直线与折线OAB的交点在BA上时,即<b<,如图2,此时点E(3,),D(2b-2,1).∴S=S矩-(S△OCD+S△OAE +S△DBE )=3-[(2b-1)×1+×(5-2b)•()+×3()](2)如图3,设O1A1与CB相交于点M,C1B1与OA相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM为平行四边形,根据轴对称知,∠MED=∠NED,又∠MDE=∠NED,∴∠MED=∠MDE,MD=ME,∴平行四边形DNEM为菱形.过点D作DH⊥OA,垂足为H,设菱形DNEM的边长为a,由题可知,D(2b-2,1),E(2b,0),∴DH=1,HE=2b-(2b-2)=2,∴HN=HE-NE=2-a,则在Rt△DHM中,由勾股定理知:,∴a=.∴S四边形DNEM=NE·DH=.∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为.类型四、直角坐标系中的几何问题4. 如图所示,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.答案与解析【思路点拨】(1)由轴对称的性质,可知∠FBD=∠ABD,FB=AB,可得四边形ABFD是正方形,则可求点E、F的坐标;(2)已知抛物线的顶点,则可用顶点式设抛物线的解析式. 因为以点E、F、P为顶点的等腰三角形没有给明顶角的顶点,而顶角和底边都是唯一的,所以要抓住谁是顶角的顶点进行分类,可分别以E、F、P为顶角顶点;(3)求周长的最小值需转化为利用轴对称的性质求解.【答案与解析】解:(1)E(3,1);F(1,2);(2)连结EF,在Rt△EBF中,∠B=90°,∴EF=.设点P的坐标为(0,n),n>0,∵顶点F(1,2), ∴设抛物线的解析式为y=a(x-1)2+2,(a≠0).①如图1,当EF=PF时,EF2=PF2,∴12+(n-2)2=5,解得n1=0(舍去),n2=4.∴P(0,4),∴4=a(0-1)2+2,解得a=2,∴抛物线的解析式为y=2(x-1)2+2.②如图2,当EP=FP时,EP2=FP2,∴(2-n)2+1=(1-n)2+9,解得n=-(舍去)③当EF=EP时,EP=<3,这种情况不存在.综上所述,符合条件的抛物线为y=2(x-1)2+2.(3)存在点M、N,使得四边形MNFE的周长最小.如图3,作点E关于x轴的对称点E′,作点F关于y轴的对称点F′,连结E′F′,分别与x轴、y轴交于点M、N,则点M、N就是所求. 连结NF、ME.∴E′(3,-1)、F′(-1,2),NF=NF′,ME=ME′. ∴BF′=4,BE′=3.∴FN+NM+ME=F′N+NM+ME′=F′E′==5.又∵EF=,∴FN+MN+ME+EF=5+,此时四边形MNFE的周长最小值为5+.【总结升华】本题考查了平面直角坐标系、等腰直角三角形、抛物线解析式的求法、利用轴对称求最短距离以及数形结合、分类讨论等数学思想. 分类讨论的思想要依据一定的标准,对问题分类、求解,要特别注意分类原则是不重不漏,最简分类常见的依据是:一是依据概念分类,如判断直角三角形时明确哪个角可以是直角,两个三角形相似时分清哪两条边是对应边;二是依运动变化的图形中的分界点进行分类,如一个图形在运动过程中,与另一个图形重合部分可以是三角形,也可以是四边形、五边形等. 几何与函数的综合题是中考常见的压轴题型,解决这类问题主要分为两步:一是利用线段的长确定出几何图形中各点的坐标;二是用待定系数法求函数关系式.类型五、几何图形中的探究、归纳、猜想与证明问题5. 如图所示,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA,再以等腰直角三角形ABA的斜边为直角边向外作第3个等腰直角三角形A BB,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S= ________(n为正整数).答案与解析举一反三【思路点拨】本题要先根据已知的条件求出S1、S2的值,然后通过这两个面积的求解过程得出一般性的规律,进而可得出S n的表达式.【答案与解析】根据直角三角形的面积公式,得S1=;根据勾股定理,得:AB=,则S2=1=20;A1B=2,则S3=21,依此类推,发现:=.【总结升华】本题要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.【变式】阅读下面的文字,回答后面的问题.求 3+32+33+…+3100的值.解:令 S=3+32+33+…+3100(1),将等式两边提示乘以3得到:3S=32+33+34+…+3101(2),(2)-(1)得到:2S=3101-3∴S=∴3+32+33+ (3100)问题:(1)2+22+…+22011的值为__________________;(直接写出结果)(2)求4+12+36+…+4×350的值;(3)如图,在等腰Rt△OAB中,OA=AB=1,以斜边OB为腰作第二个等腰Rt△OBC,再以斜边OC为腰作第三个等腰Rt△OCD,如此下去…一直作图到第8个图形为止.求所有的等腰直角三角形的所有斜边之和.(直接写出结果).答案与解析【答案】解:(1)22012-2.(2)令S=4+12+36+…+4×350①,将等式两边提示乘以3得到:3S=12+36+108+…+4×351②,②-①得到:2S=4×341-4∴S=2×351-2∴4+12+36+…+4×350=2×351-2.(3).一、选择题1. 如图,正方形ABCD的边长为2, 将长为2的线段QF的两端放在正方形相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按滑动到点A为止,同时点F从点B出发,沿图中所示方向按滑动到点B为止那么在这个过程中线段QF的中点M所经过的路线围成的图形的面积为()A. 2B. 4-C.D.2. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为()二、填空题3. 在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC是直角三角形,则满足条件的C点的坐标为______________.4. 如图,(n+1)个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△B n+1D n C n的面积为S n,则S2=______________;S n=__________________(用含的式子表示).三、解答题5. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?(3)当t为何值时,△EDQ为直角三角形.6.如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒)(1)求线段AB的长;当t为何值时,MN∥OC?(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?7. 条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.8. 如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x 轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.(1)求N点、M点的坐标;(2)将抛物线y=x2﹣36向右平移a(0<a<10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;(3)①抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P 点的坐标;②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.9. 如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.10. 如图,已知抛物线y=ax2+bx+3经过点B(-1,0)、C(3,0),交y轴于点A,将线段OB绕点O顺时针旋转90°,点B的对应点为点M,过点A的直线与x轴交于点D(4,0).直角梯形EFGH的上底EF与线段CD重合∠FEH=90°,EF∥HG,EF=EH=1.直角梯形EFGH从点D开始,沿射线DA方向匀速运动,运动的速度为1个长度单位/秒,在运动过程中腰FG与直线AD始终重合,设运动时间为t秒.(1)求此抛物线的解析式;(2)当t为何值时,以M、O、H、E为顶点的四边形是特殊的平行四边形;(3)作点A关于抛物线对称轴的对称点A′,直线HG与对称轴交于点K,当t为何值时,以A、A′、G、K为顶点的四边形为平行四边形?请直接写出符合条件的t值.11. 如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M 为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?请直接写出结论,不必证明或说明理由;(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN 与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.【答案与解析】一、选择题1.【答案】B.2.【答案】A.三、填空题3.【答案】(0,0),(0,10),(0,2),(0,8)4.【答案】;;【解析】由于各三角形为等边三角形,且各边长为2,过各三角形的顶点B1、B2、B3…向对边作垂线,垂足为M1、M2、M3∵△AB1C1是等边三角形,∴AD1=AC1.sin60°=2×=,∵△B1C1B2也是等边三角形,∴C1B1是∠AC1B2的角平分线,∴AD1=B2D1=,故S1=S△B2C1A﹣S△AC1D1=×2×﹣×2×=;S2=S△B3C2A﹣S△AC2D2=×4×﹣×4×=;作AB∥B1C1,使AB=AB1,连接BB1,则B2,B3,…B n在一条直线上.∵B n C n∥AB,∴==,∴B n D n=.AD=,则D n C n=2﹣B n D n=2﹣=.△B n C n B n+1是边长是2的等边三角形,因而面积是:.△B n+1D n C n面积为S n=.=.=.即第n个图形的面积S n=.三、解答题5.【答案与解析】解:(1)能,如图1,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,t=1秒∴AP=1,BQ=1.25,∵AC=4,BC=5,点D在BC上,CD=3,∴PC=AC-AP=4-1=3,QD=BC-BQ-CD=5-1.25-3=0.75,∵PE∥BC,解得PE=0.75,∵PE∥BC,PE=QD,∴四边形EQDP是平行四边形;(2)如图2,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,∴PC=AC-AP=4-t,QC=BC-BQ=5-1.25t,∴∴PQ∥AB;(3)分两种情况讨论:①如图3,当∠EQD=90°时,显然有EQ=PC=4-t,又∵EQ∥AC,∴△EDQ∽△ADC∴,∵BC=5,CD=3,∴BD=2,∴DQ=1.25t-2,∴解得t=2.5(秒);②如图4,当∠QED=90°时,作EM⊥BC于M,CN⊥AD于N,则EM=PC=4-t,在Rt△ACD中,∵AC=4,CD=3,∴AD=,∵∠CDA=∠EDQ,∠QED=∠C=90°,∴△EDQ∽△CDA,∴t=3.1(秒).综上所述,当t=2.5秒或t=3.1秒时,△EDQ为直角三角形.6.【答案与解析】解:(1)过点B作BD⊥OA于点D,则四边形CODB是矩形,BD=CO=4,OD=CB=3,DA=3在Rt△ABD中,.当时,,,.∵,,∴,即(秒).(2)过点作轴于点,交的延长线于点,∵,∴,.即,.,.,∴.即().由,得.∴当时,S有最小值,且7.【答案与解析】解:(1)∵四边形ABCD是正方形,∴AC垂直平分BD,∴PB=PD,由题意易得:PB+PE=PD+PE=DE,在△ADE中,根据勾股定理得,DE=;(2)作A关于OB的对称点A′,连接A′C,交OB于P,PA+PC的最小值即为A′C的长,∵∠AOC=60°∴∠A′OC=120°作OD⊥A′C于D,则∠A′OD=60°∵OA′=OA=2∴A′D=∴;(3)分别作点P关于OA、OB的对称点M、N,连接OM、ON、MN,MN交OA、OB于点Q、R,连接PR、PQ,此时△PQR周长的最小值等于MN.由轴对称性质可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=2∠AOB=2×45°=90°,在Rt△MON中,MN===10.即△PQR周长的最小值等于10.8.【答案与解析】解:(1)∵CN=CB=15,OC=9,∴ON==12,∴N(12,0);又∵AN=OA﹣ON=15﹣12=3,设AM=x∴32+x2=(9﹣x)2,∴x=4,M(15,4);(2)解法一:设抛物线l为y=(x﹣a)2﹣36则(12﹣a)2=36∴a1=6或a2=18(舍去)∴抛物线l:y=(x﹣6)2﹣36解法二:∵x2﹣36=0,∴x1=﹣6,x2=6;∴y=x2﹣36与x轴的交点为(﹣6,0)或(6,0)由题意知,交点(6,0)向右平移6个单位到N点,所以y=x2﹣36向右平移6个单位得到抛物线l:y=(x﹣6)2﹣36;(3)①由“三角形任意两边的差小于第三边”知:P点是直线MN与对称轴x=6的交点,设直线MN的解析式为y=kx+b,则,解得,∴y=x﹣16,∴P(6,﹣8);②∵DE∥OA,∴△CDE∽△CON,∴;∴S=∵a=﹣<0,开口向下,又m=﹣∴S有最大值,且S最大=﹣.9.【答案与解析】解:(1)∵y=kx﹣1与y轴相交于点C,∴OC=1;∵tan∠OCB=,∴OB=;∴B点坐标为:;把B点坐标为:代入y=kx﹣1得:k=2;(2)∵S=,y=kx﹣1,∴S=×|2x﹣1|;∴S=|x﹣|;(3)①当S=时,x﹣=,∴x=1,y=2x﹣1=1;∴A点坐标为(1,1)时,△AOB的面积为;②存在.满足条件的所有P点坐标为:P1(1,0),P2(2,0),P3(,0),P4(,0).10.【答案与解析】解:(1)∵抛物线y=ax2+bx+3经过点B(﹣1,0)、C(3,0),∴,解得a=﹣1,b=2,∴抛物线的解析式为:y=﹣x2+2x+3.(2)在直角梯形EFGH运动的过程中:①四边形MOHE构成矩形的情形,如图1所示:此时边GH落在x轴上时,点G与点D重合.由题意可知,EH,MO均与x轴垂直,且EH=MO=1,则此时四边形MOHE构成矩形.此时直角梯形EFGH平移的距离即为线段DF的长度.过点F作FN⊥x轴于点N,则有FN=EH=1,FN∥y轴,∴,即,解得DN=.在Rt△DFN中,由勾股定理得:DF===,∴t=;②四边形MOHE构成正方形的情形.由图1可知,OH=OD﹣DN﹣HN=4﹣﹣1=,即OH≠MO,所以此种情形不存在;③四边形MOHE构成菱形的情形,如图2所示:过点F作FN⊥x轴于点N,交GH于点T,过点H作HR⊥x轴于点R.易知FN ∥y轴,RN=EF=FT=1,HR=TN.设HR=x,则FN=FT+TN=FT+HR=1+x;∵FN∥y轴,∴,即,解得DN=(1+x).∴OR=OD﹣RN﹣DN=4﹣1﹣(1+x)=﹣x.若四边形MOHE构成菱形,则OH=EH=1,在Rt△ORH中,由勾股定理得:OR2+HR2=OH2,即:(﹣x)2+x2=12,解得x=,∴FN=1+x=,DN=(1+x)=.在Rt△DFN中,由勾股定理得:DF===3.由此可见,四边形MOHE构成菱形的情形存在,此时直角梯形EFGH平移的距离即为线段DF的长度,∴t=3.综上所述,当t=s时,四边形MOHE构成矩形;当t=3s时,四边形MOHE构成菱形.(3)当t=s或t=s时,以A、A′、G、K为顶点的四边形为平行四边形.简答如下:(注:本题并无要求写出解题过程,以下仅作参考)由题意可知,AA′=2.以A、A′、G、K为顶点的四边形为平行四边形,则GK ∥AA′,且GK=AA′=2.①当直角梯形位于△OAD内部时,如图3所示:过点H作HS⊥y轴于点S,由对称轴为x=1可得KS=1,∴SG=KS+GK=3.由SG∥x轴,得,求得AS=,∴OS=OA﹣AS=,∴FN=FT+TN=FT+OS=,易知DN=FN=,在Rt△FND中,由勾股定理求得DF=;②当直角梯形位于△OAD外部时,如图4所示:设GK与y轴交于点S,则GS=SK=1,AS=,OS=OA+AS=.过点F作FN⊥x轴,交GH于点T,则FN=FT+NT=FT+OS=.在Rt△FGT中,FT=1,则TG=,FG=.由TG∥x轴,∴,解得DF=.由于在以上两种情形中,直角梯形EFGH平移的距离均为线段DF的长度,则综上所述,当t=s或t=s时以A、A′、G、K为顶点的四边形为平行四边形.11.【答案与解析】解:(1)判断:EN与MF相等(或EN=MF),点F在直线NE上.(2)成立.证明:连结DE,DF.∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是三边的中点,∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,∴∠MDF=∠NDE.在△DMF和△DNE中,DF=DE,DM=DN,∠MDF=∠NDE,∴△DMF≌△DNE.∴MF=NE.(3)画出图形(连出线段NE),MF与EN相等的结论仍然成立(或MF=NE成立).。

全国中考数学试题分类解析汇编159套63专题专题60代数几何综合

全国中考数学试题分类解析汇编159套63专题专题60代数几何综合

2012年全国中考数学试题分类解析汇编(159套63专题)专题60:代数几何综合一、选择题1. (2012浙江义乌3分)一个正方形的面积是15,估计它的边长大小在【 】A .2与3之间B .3与4之间C .4与5之间D .5与6之间【答案】B 。

【考点】算术平方根,估算无理数的大小。

【分析】∵一个正方形的面积是15,∵9<15<164。

故选B 。

2. (2012浙江杭州3分)已知抛物线()3y k x 1x k ⎛⎫=+ ⎪⎝⎭-与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的抛物线的条数是【 】A .2B .3C .4D .5【答案】B 。

【考点】抛物线与x 轴的交点。

【分析】根据抛物线的解析式可得C (0,﹣3),再表示出抛物线与x 轴的两个交点的横坐标,再根据ABC 是等腰三角形分三种情况讨论,求得k 的值,即可求出答案:根据题意,得C (0,﹣3).令y=0,则()3k x 1x 0k ⎛⎫+= ⎪⎝⎭-,解得x=﹣1或x=3k。

设A 点的坐标为(﹣1,0),则B (3k,0), ①当AC=BC 时,OA=OB=1,B 点的坐标为(1,0),∴3k =1,k=3; ②当AC=AB 时,点B 在点A 的右面时,∵AC B 1,0),∴31,k k ==③当AC=AB 时,点B 在点A 的左面时,B 0),∴331010,kk10==。

∴能使△ABC为等腰三角形的抛物线的条数是3条。

故选B。

3. (2012浙江湖州3分)如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于【】A.5 B.453C.3 D.4【答案】A。

【考点】二次函数的性质,等腰三角形的性质,勾股定理,相似三角形的判定和性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数几何综合1、(2013年潍坊市压轴题)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.(1)求抛物线的解析式;(2)若直线平分四边形OBDC 的面积,求k 的值.(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0), 由点D(2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a+3b=1.5,即a+b=0.5,又12=-a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以23212++-=x x y . (2)由(1)知23212++-=x x y ,令x=0,得c(0,1.5),所以CD//AB,令kx -2=1.5,得l 与CD 的交点F(23,27k ),令kx -2=0,得l 与x 轴的交点E(0,2k),根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE,即:,511),272()23(272=-+-=+k k k k k 解得 (3)由(1)知,2)1(21232122+--=++-=x x x y所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为221x y -= 假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO,所以Rt △MPM 1∽Rt △NPN 1,所以1111PN PM NN MM =,………………(1) 不妨设M(x M ,y M )在点N(x N ,y N )的左侧,因为P 点在y 轴正半轴上, 则(1)式变为NMN M y t y t x x --=-,又y M =k x M -2, y N =k x N -2, 所以(t+2)(x M +x N )=2k x M x N,……(2) 把y=kx-2(k ≠0)代入221x y -=中,整理得x 2+2kx-4=0, 所以x M +x N =-2k, x M x N =-4,代入(2)得t=2,符合条件,故在y 轴上存在一点P (0,2),使直线PM 与PN 总是关于y 轴对称.考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。

问题设计富有梯度、由易到难层层推进,既考查了知识掌握,也考查了方法的灵活应用和数学思想的形成。

2、(绵阳市2013年)如图,二次函数y =ax 2+bx +c 的图象的顶点C 的坐标为(0,-2),交x 轴于A 、B 两点,其中A (-1,0),直线l :x =m (m >1)与x 轴交于D 。

(1)求二次函数的解析式和B 的坐标;(2)在直线l 上找点P (P 在第一象限),使得以P 、D 、B 为顶点的三角形与以B 、C 、O 为顶点的三角形相似,求点P 的坐标(用含m 的代数式表示); (3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q ,使△BP Q 是以P 为直角顶点的等腰直角三角形?如果存在,请求出点Q 的坐标;如果不存在,请说明理由。

解:(1)①二次函数y=ax 2+bx+c 图象的顶点C 的坐标为(0,-2),c = -2 , - b 2a = 0 , b=0 ,点A(-1,0)、点B 是二次函数y=ax 2-2 的图象与x 轴的交点,a-2=0,a=2. 二次函数的解析式为y=2x 2-2;②点B 与点A(-1,0)关于直线x=0对称,点B 的坐标为(1,0); (2)∠BOC=∠PDB=90º,点P 在直线x=m 上,设点P 的坐标为(m,p ), OB=1, OC=2, DB= m-1 , DP=|p| ,①当△BOC ∽△PDB 时,OB OC = DP DB ,12= |p|m-1 ,p= m-12 或p = 1- m2 ,点P 的坐标为(m ,m-12 )或(m ,1- m2);②当△BOC ∽△BDP 时,OB OC = DB DP ,12= m-1|p|,p=2m-2或p=2-2m, 点P 的坐标为(m ,2m-2)或(m ,2-2m );综上所述点P 的坐标为(m ,m-12 )、(m ,1- m2 )、(m ,2m-2)或(m ,2-2m );(3)不存在满足条件的点Q 。

点Q 在第一象限内的抛物线y=2x 2-2上,令点Q 的坐标为(x, 2x 2-2),x>1, 过点Q 作QE ⊥直线l , 垂足为E ,△BPQ 为等腰直角三角形,PB=PQ ,∠PEQ=∠PDB , ∠EPQ=∠DBP ,△PEQ ≌△BDP ,QE=PD ,PE=BD ,① 当P 的坐标为(m ,m-12 )时,m-x = m-12 , m=0 m=12x 2-2- m-12 = m-1, x= 12 x=1与x>1矛盾,此时点Q 不满足题设条件;② 当P 的坐标为(m ,1- m2)时,x-m= m-12 m=- 29 m=12x 2-2- 1- m 2 = m-1, x=- 56 x=1与x>1矛盾,此时点Q 不满足题设条件;③ 当P 的坐标为(m ,2m-2)时,m-x =2m-2 m= 92 m=12x 2-2-(2m-2) = m-1, x=- 52 x=1与x>1矛盾,此时点Q 不满足题设条件; ④当P 的坐标为(m ,2-2m )时,x- m = 2m-2 m= 518 m=12x 2-2-(2-2m) = m-1 x=- 76 x=1与x>1矛盾,此时点Q 不满足题设条件; 综上所述,不存在满足条件的点Q 。

(2013•昆明压轴题)如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.,),代入得:﹣﹣﹣(﹣)代入得:,,x+3,或)),代入抛物线解析式得:﹣=x 或,﹣或(﹣﹣(﹣(4、(2013陕西)0)两点.(1)写出这个二次函数的对称轴;(2)设这个二次函数的顶点为D ,与y 轴交于点C ,它的对称轴与x 轴交于点E ,连接AD 、DE 和DB ,当△AOC 与△DEB 相似时,求这个二次函数的表达式。

[提示:如果一个二次函数的图象与x 轴的交点 为)0,(),0,(21x B x A A ,那么它的表达式可表示 为:))((21x x x x a y --=]考点:此题在陕西的中考中也较固定,第(1)问主要考查待定系数法求二次函数的解析式,二次函数与坐标轴的交点坐标,抛物线的对称性等简单问题。

第二问主要考查二次函数综合应用之点的存在性问题;包括最短距离与面积的最值等(等腰三角形,平行四边形,正方形,相似三角形,相似,全等等问题。

考查问题的综合能力要求较高,基本上都是转化为求点的坐标的过程。

(第24题图)解析:本题中(1)由抛物线的轴对称性可知,与x 轴的两个交点关于对称轴对称,易求出对称轴;(2)由提示中可以设出函数的解析式,将顶点D 与E 的坐标表示出来,从而将两个三角形的边长表示出来,而相似的确定过程中充分考虑到分类即可解决此题; 解:(1)对称轴为直线:x=2。

(2)∵A (1,0)、B (3,0),所以设)3)(1(--=x x a y 即a ax ax y 342+-=当x=0时,y=3a ,当x=2时,y=a - ∴C (0,3a ),D(2,-a) ∴OC=|3a|, ∵A (1,0)、E (2,0), ∴OA=1,EB=1,DE=}-a|=|a| 在△AOC 与△DEB 中, ∵∠AOC=∠DEB=90° ∴当EBDEOC AO =时,△AOC ∽△DEB ∴1|||3|1a a =时,解得33=a 或33-=a 当DEEBOC AO =时,△AOC ∽△BED ∴||1|3|1a a =时,此方程无解, 综上所得:所求二次函数的表达式为:3334332+-=x x y 或3334332-+-=x x y5、(2013成都市压轴题)在平面直角坐标系中,已知抛物线21y 2x bx c =-++(b,c 为常数)的顶点为P,等腰直角三角形ABC 的顶点A 的坐标为(0,-1),C 的坐标为(4,3),直角顶点B 在第四象限。

(1)如图,若该抛物线过A,B 两点,求抛物线的函数表达式; (2)平(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q. i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上点,当以M,P,Q 三点为顶点的三角形是等腰三角形时,求出所有符合条件的M 的坐标;ii )取BC 的中点N,连接NP,BQ 。

试探究PQNP BQ+是否存在最大值?若存在,求出该最大值;所不存在,请说明理由。

解析:(1)A(0,-1) C(4,3)则|AC |=ABC 为等腰直角三角形 ∴AB=BC=4 ∴B 点(4,-1)将A,B 代入抛物线方程有1116412c b c =-⎧⎪⎨-⨯++=-⎪⎩⇒12c b =-⎧⎨=⎩ ∴21212y x x =-+- (2)当顶点P 在直线AC 上滑动时,平移后抛物线与AC 另一交点Q 就是A 点沿直线AC 滑动同样的单位。

下面给予证明:原抛物线2211(44)1(2)122y x x x =--++=--+ 顶点P 为(2,1) 设平移后顶点P 为(a,a-1),则平移后抛物线21()12y x a a '=--+- 联立y=x-1(直线AC 方程)得Q 点为(a-2,a-3)∴|PQ |=即实际上是线段AP 在直线AC 上的滑动.ⅰ)点M 在直线AC 下方,且M,P,Q 构成等腰直角三角形,那么先考虑使MP,Q 构成等腰直角三角形的M 点的轨迹,再求其轨迹与抛物线的交点以确定M 点.①若∠M 为直角,则M 点轨迹即为AC 下方距AC 为MH 且与AC 平行的直线l 又知|PQ |=,则|MH ||PM |=2直线l 即为AC 向下平移|PM |=2个单位 L:y=x-3 联立21212y x x =-+- 得x=1M 点为()或()②若∠P=或∠Q 为直角,即PQ 为直角边,MQ ⊥PQ 且,MQ=PQ=或MP ⊥PQ,且MP=PQ=∴M 点轨迹是AC 下方距AC 为AC 平行直线L 直线L 即为AC 向下平移|MP |=4个单位 L:y=x-5 联立21212y x x =-+-得x=4或x=-2 ∴M 点为(4,-1)或(-2,-7)综上所有符合条件的点M 为()(4,-1);(),(-2,-7)ⅱ)知PQ=PQMP BQ+有最大值,即NP+BQ 有最小值如下图,取AB 中点M ,连结QM,NM,知N 为中点∴MN 为AC 边中位线,∴MN ∥AC 且MN=12AC=∴MN PQ ∴MNPQ 为平行四边形 即PN=QM ∴QB+PN=BQ+MQ此时,作B 点关于AC 对称的点B ′,连B Q ',B M 'B M '交AC 于点H ,易知B Q '=BQ∴BQ+PN=B Q '+MQ ≥B M '(三角形两边之和大于第三边) 仅当Q 与H 重合时,取等号即BQ+PN 最小值存在 且最小值为B M ' 连结A B '知ABB '∆为等腰直角三角形。

相关文档
最新文档