开环控制、半闭环控制、闭环控制
自动控制系统中的开环与闭环控制
自动控制系统中的开环与闭环控制自动控制系统是一个由传感器、控制器和执行器组成的系统,用于监测和调节特定过程的运行。
在自动控制系统中,开环控制和闭环控制是两种常见的控制策略。
本文将介绍开环控制和闭环控制的基本概念、原理和应用。
一、开环控制开环控制是一种基本的控制策略,它的原理是根据已知输入和系统的数学模型来预测输出,并通过适当的控制手段实现所需的输出。
在开环控制中,控制器不会根据实际输出对控制进行调整。
因此,开环控制对外部干扰和系统参数变化是非常敏感的。
开环控制适用于稳定过程和可预测的环境。
一些常见的开环控制的应用包括恒温控制器和定时器等。
例如,当我们使用微波炉加热食物时,设置加热时间和功率,微波炉会按照我们的设定进行加热,而不会根据食物的实际温度调整加热功率。
开环控制的主要优点是简单易实现,适用于某些特定的稳定过程。
然而,它的缺点是对于系统参数的变化和外部干扰非常敏感,容易导致输出偏差。
二、闭环控制闭环控制是一种根据实际输出调整控制的策略。
在闭环控制中,系统会通过传感器实时监测实际输出,并与期望输出进行比较。
根据比较结果,控制器会相应地调整控制信号,以实现期望输出。
闭环控制包括反馈环节和控制环节。
反馈环节负责收集实际输出信息,并将其与期望输出进行比较。
控制环节根据比较结果生成控制信号,并将其发送给执行器,以调整系统的行为。
闭环控制在很多自动控制系统中得到广泛应用。
例如,汽车的巡航控制系统利用车速传感器和目标速度设定来实现自动控制。
系统会不断监测车速,并根据设定目标速度调整油门位置,以使车辆保持稳定的速度。
闭环控制的优点是对于系统参数的变化和外部干扰具有一定的鲁棒性,可以实现更精确的控制。
然而,闭环控制系统的设计和调试相对较复杂,需要考虑传感器的准确性、控制器的稳定性等因素。
结论开环控制和闭环控制是自动控制系统中常见的两种控制策略。
开环控制简单易实现,但对于系统参数的变化和外部干扰非常敏感。
闭环控制可以根据实际输出进行调整,具有较好的鲁棒性和控制精度。
步进电机控制方法
步进电机控制方法步进电机是一种将电脉冲信号转换为角位移的执行器,广泛应用于打印机、数控机床、纺织机械、包装设备等自动控制系统中。
步进电机控制方法的选择对于系统的性能和稳定性具有重要影响,下面将介绍几种常见的步进电机控制方法。
1. 开环控制。
开环控制是最简单的步进电机控制方法之一,通过给步进电机施加一定的脉冲信号来控制其旋转角度。
这种方法简单直接,但无法对步进电机的运动状态进行实时监测和调整,容易出现失步现象,适用于对精度要求不高的场合。
2. 半闭环控制。
半闭环控制是在开环控制的基础上增加了位置传感器反馈的控制方法。
通过位置传感器实时监测步进电机的位置,将反馈信息与设定值进行比较,从而实现对步进电机位置的闭环控制。
这种方法相比于开环控制能够更好地提高系统的稳定性和精度,但仍然存在一定的失步风险。
3. 闭环控制。
闭环控制是最为精确的步进电机控制方法,通过在步进电机上增加编码器等位置传感器,实时反馈步进电机的位置信息,并对其进行精确控制。
闭环控制能够及时调整步进电机的运动状态,减小失步风险,提高系统的稳定性和精度,适用于对位置精度要求较高的场合。
4. 微步进控制。
微步进控制是一种通过改变步进电机相序激励方式,使步进电机在每个步距内分成多个微步距的控制方法。
微步进控制能够提高步进电机的分辨率,减小振动和噪音,提高系统的平稳性和精度,适用于对步进电机运动要求较高的场合。
总结。
在实际应用中,步进电机控制方法的选择应根据具体的控制要求和系统性能需求来确定。
不同的控制方法各有特点,开环控制简单直接,但精度较低;半闭环控制提高了系统的稳定性和精度,但仍存在失步风险;闭环控制精度最高,但成本较高。
微步进控制能够提高步进电机的平稳性和分辨率,但相应的控制电路较为复杂。
因此,在选择步进电机控制方法时,需要综合考虑系统的实际需求和成本因素,选择最合适的控制方法来实现系统的稳定运行和高精度控制。
机器人的运动控制
机器人的运动控制机器人一直以来都是技术领域的热门话题,它在工业生产、医疗护理、军事防务等领域发挥着重要的作用。
而机器人的运动控制是使机器人能够灵活、精准地进行各种动作的关键技术。
本文将介绍机器人的运动控制原理以及常见的运动控制方法。
一、机器人运动控制的原理机器人运动控制的核心在于通过控制机器人的关节或执行器的运动,实现机器人的姿态和位置控制。
机器人的运动可分为直线运动和旋转运动两个方面。
1. 直线运动直线运动是指机器人沿直线轨迹运动,例如机器人前进和后退。
直线运动的控制依赖于机器人的驱动装置。
在一般情况下,机器人的直线运动可以由电机、液压装置或气动装置来实现。
通过控制这些装置的运动,从而控制机器人的直线位移。
2. 旋转运动旋转运动是指机器人绕固定点或固定轴旋转的运动。
例如机器人的转体关节可以实现机器人的绕某个轴线旋转。
旋转运动的控制依赖于机器人的驱动器件,如电机、减速器等。
通过控制这些器件的运动,从而控制机器人的旋转角度。
二、机器人运动控制的方法机器人的运动控制有多种方法,下面主要介绍几种常见的运动控制方法。
1. 开环控制开环控制是指在执行动作前,通过预设参数直接控制机器人的运动。
这种方法的优点是简单直接,但精度较低,不能对外界干扰进行实时补偿。
因此,开环控制多用于一些对运动精度要求不高的应用,如简单加工、搬运等。
2. 闭环控制闭环控制是指通过传感器实时监测机器人的运动状态,并根据反馈信号对运动进行修正。
闭环控制的优点是能够及时响应外界干扰,提高运动的精度和稳定性。
它适用于对运动精度要求较高的应用,如自主导航、精密装配等。
3. 跟踪控制跟踪控制是指机器人通过跟踪预先设定好的轨迹,控制机器人沿轨迹运动。
跟踪控制通常需要借助视觉传感器或者激光雷达等设备来实时感知机器人与轨迹的位置关系,并通过控制算法来使机器人运动轨迹与预设轨迹保持一致。
跟踪控制广泛应用于机器人的路径规划、运动规划等领域。
4. 自适应控制自适应控制是指机器人根据不同工作环境和任务的需求,自动调整运动控制策略以达到最佳效果。
闭环控制系统名词解释
闭环控制系统名词解释1.闭环控制:闭环控制是控制论中的一个基本概念,它指的是控制系统的一种类型,其中控制器的输出会直接影响系统的输入,形成一个封闭的环路。
在闭环控制系统中,控制器的输出会通过执行器作用于被控对象,同时被控对象的输出会被检测器检测并反馈给控制器,形成一个闭环的反馈机制。
2.开环与闭环:开环控制系统指的是控制器的输出并不会直接作用于被控对象,而是通过其他方式影响被控对象的输入。
在开环控制系统中,控制器的输出和被控对象的输入之间并没有形成直接的反馈机制。
相比之下,闭环控制系统具有更好的稳定性和动态性能,因为它们可以通过负反馈来自动调节系统的输出。
3.负反馈:负反馈是闭环控制系统中常见的一种反馈机制,它指的是检测器的输出与控制器的输入反向变化的一种反馈方式。
在负反馈系统中,如果被控对象的输出偏离了预设值,检测器会检测到这个偏差并将其反馈给控制器,控制器会根据偏差的大小和方向调整其输出,使被控对象的输出回到预设值。
负反馈可以提高系统的稳定性和动态性能。
4.正反馈:正反馈是相对于负反馈而言的,它指的是检测器的输出与控制器的输入同向变化的一种反馈方式。
在正反馈系统中,如果被控对象的输出偏离了预设值,检测器会检测到这个偏差并将其反馈给控制器,控制器会根据偏差的大小和方向调整其输出,使被控对象的输出更加偏离预设值。
正反馈通常会导致系统的不稳定和振荡。
5.控制器:控制器是闭环控制系统中的一个关键组件,它根据预设的控制算法来调整执行器的输出,从而控制被控对象的输入。
控制器通常由微处理器、微控制器、DSP等数字计算器实现。
6.执行器:执行器是闭环控制系统中的另一个关键组件,它接受控制器的指令并驱动被控对象。
执行器通常由电动机、气动阀、液压马达等机械设备实现。
7.检测器:检测器是闭环控制系统中的另一个重要组件,它能够检测被控对象的输出并转换为电信号反馈给控制器。
检测器通常由各种传感器实现,例如温度传感器、压力传感器、位置传感器等。
伺服系统的开环控制与闭环控制
伺服系统的开环控制与闭环控制伺服系统是一种能够对输出进行精确控制的系统。
在伺服系统中,输出通常指的是某种物理量,例如位置、速度或者力。
开环控制和闭环控制是伺服系统两种主要的控制方式。
一、开环控制开环控制又称为非反馈控制。
在该模式下,控制器没有反馈被控制量的信息。
相反,控制器根据已知的输入信号和系统的静态和动态特性进行计算,输出控制信号。
由于开环控制没有考虑系统的实际输出值,所以结果可能会受到许多外部因素的影响而导致不稳定,例如系统的负载或环境温度变化。
开环控制通常应用于简单的系统或者那些对输出精确度要求不高的系统中。
二、闭环控制闭环控制又称为反馈控制。
在该模式下,控制器通过传感器获取被控制量的实际输出值,并将其返回至控制器,以便计算误差并相应地调整输出信号。
闭环控制通常比开环控制更加精确,因为它可以对实际输出值进行即时调整。
当然,在闭环控制模式下,系统所需的硬件和软件成本也更高。
闭环控制通常应用于对输出精度要求高且稳定性要求高的系统中。
三、开环控制和闭环控制的比较总的来说,开环控制和闭环控制各有优缺点。
开环控制通常比较简单,并且可以为系统提供基本的控制。
但是,由于其不考虑实际输出值的变化,所以其控制精度较低,对于环境变化比较敏感。
闭环控制虽然成本高,但其控制精度相对较高,可以从控制误差中学习并自我调节。
此外,由于它可以实施实时调整,所以闭环控制通常比开环控制更稳定。
四、结论在伺服系统中,开环控制和闭环控制是两种常见的控制模式。
适合哪种控制模式应该根据具体情况而定,包括对所需控制的输出精度要求、系统成本、环境条件等各种因素的影响。
“开环控制”与“闭环控制”的区别
开环控制与闭环控制的区别“开环控制”与“闭环控制”的区别就在于控制系统中有无反馈环节,所谓闭环控制就是存在反馈环节的控制。
这样的系统能够适时地检测控制的输出结果,并将检测到的信息通过反馈环节反映到输入端,调整输入量,达到修正控制误差、提高控制精确度的目的。
反馈技术被广泛应用在各种需要精确控制的系统中,尤其是电子控制系统,比如:各种放大电路中的增益控制;环境的温度、湿度、水位、压力的控制;机械结构的位置控制、速度控制等等。
因此常常使人觉得:闭环控制是复杂的、精确的、自动的控制方式,而开环控制相对的简单、粗糙和非自动。
这种感觉常常造成初学者在分析系统时的误判,需要特别注意。
以普通家用压力锅的温度控制过程为例,在密闭状态下,锅内的温度与压力呈对应关系。
加热锅体,锅内温度逐步升高,锅内压力也随之升高;当锅内的压力达到设定值时,高压将顶开压在排气阀上的重锤,排出蒸汽,使锅内压力降低,压力的降低又造成温度的降低。
由于重锤的重量是恒定,因此当温度达到设定值之后,加热量和排气量将呈动态平衡,锅内压力保持在高于大气压力的一个恒定值上,锅内温度也保持在高于常压水的沸点温度的一个恒定值上(一般为110℃左右),不再继续升高。
过程如下图所示:分析这样一个控制问题,首先要界定所考察的系统范围。
从整体效果上看,该控制过程的输入量是加热锅体,加热锅体导致的三个结果:锅体升温、锅内升压以及排气孔排气,都是输出量,而输出量并未反馈回来影响输入量,因此它是一个开环控制系统。
而更细致的分析,应该把升温过程与恒压/恒温过程分别进行分析。
分析时考察的系统范围不同,结论也不同。
①压力锅的加热、升温、升压过程把加热炉具与压力锅看成一个系统,压力锅体因外部加热而升温,分析加热的过程。
输入量——接通电源或点火,输出量——锅体升温、锅内升压以及排气孔排气。
控制过程如下图所示,与用炉火加热普通锅体的过程相同,属于开环自动控制。
②压力锅的恒压、恒温控制过程压力锅能够保持锅内压力与温度恒定,主要是依靠了压在排气阀上的重锤的作用,因此还可以分析重锤对锅内压力的控制过程。
控制系统的基本方式
控制系统的基本方式一、控制系统的概述控制系统是指通过一定的手段对被控对象进行调节、监测和控制的系统。
它由输入信号、处理器、输出信号和反馈组成,可以分为开环控制和闭环控制两种方式。
二、开环控制开环控制是指在没有反馈作用的情况下,通过输入信号来直接控制被控对象。
它具有简单、快速等优点,但缺乏稳定性和鲁棒性。
1. 常见的开环控制方式(1)脉冲宽度调制(PWM):通过改变脉冲宽度来调节被控对象;(2)频率调制(FM):通过改变频率来调节被控对象;(3)电压调节:通过改变电压大小来调节被控对象;(4)位置调节:通过改变位置来调节被控对象。
2. 开环控制的优缺点开环控制具有以下优点:(1)结构简单,实现容易;(2)响应速度快,适用于快速响应要求高的场合。
但是也存在以下缺点:(1)无法自动校正误差;(2)受到外部干扰影响大;(3)不具有稳定性和鲁棒性。
三、闭环控制闭环控制是指通过反馈作用,将被控对象的输出信号与输入信号进行比较,并对误差进行修正。
它具有稳定性和鲁棒性等优点,但响应速度相对较慢。
1. 常见的闭环控制方式(1)比例控制:根据误差大小进行比例调整;(2)积分控制:根据误差持续时间进行积分调整;(3)微分控制:根据误差变化率进行微分调整。
2. 闭环控制的优缺点闭环控制具有以下优点:(1)能够自动校正误差;(2)受到外部干扰影响小;(3)具有稳定性和鲁棒性。
但也存在以下缺点:(1)响应速度相对较慢;(2)结构复杂,实现难度大。
四、混合控制混合控制是指将开环控制和闭环控制结合起来使用。
通常采用开环快速响应、闭环精确调节的方式,以充分发挥两者的优点。
1. 常见的混合控制方式(1)先开环后闭环控制:先使用开环控制进行快速响应,再采用闭环控制进行精确调节;(2)并联控制:同时采用开环和闭环控制,以充分发挥两者的优点。
2. 混合控制的优缺点混合控制具有以下优点:(1)结构简单,实现容易;(2)响应速度快,精度高;(3)具有稳定性和鲁棒性。
开环控制和闭环控制的概念
开环控制和闭环控制的概念一、引言控制系统是指通过对被控对象施加某种干扰,使其在规定的时间内达到预定要求的系统。
控制系统主要分为开环控制和闭环控制两种。
二、开环控制1. 定义开环控制是指在不考虑被控对象反馈信号的情况下,根据输入信号直接输出干扰信号,从而使被控对象达到预期状态的一种控制方式。
2. 特点(1)简单易行:开环控制器结构简单,易于设计和实现。
(2)适用范围窄:由于不考虑被控对象反馈信号,因此只适用于对被控对象有足够了解且稳定性较高的场合。
(3)误差大:由于不考虑被控对象反馈信号,因此无法及时调整干扰信号,容易产生误差。
三、闭环控制1. 定义闭环控制是指通过对被控对象反馈信号进行测量和分析,并根据分析结果调整输出干扰信号,使其达到预期状态的一种控制方式。
2. 特点(1)精度高:由于能够及时调整干扰信号,因此能够减小误差,提高控制精度。
(2)适用范围广:由于能够根据被控对象反馈信号进行调整,因此适用范围较广。
(3)结构复杂:闭环控制器结构复杂,设计和实现难度较大。
四、开环控制与闭环控制的比较1. 总体比较开环控制器和闭环控制器都是常见的控制方式。
相对而言,开环控制器结构简单,易于设计和实现;而闭环控制器精度高、适用范围广,但结构复杂。
2. 误差比较由于开环控制器不考虑被控对象反馈信号,容易产生误差;而闭环控制器能够及时调整干扰信号,减小误差。
3. 适用范围比较由于开环控制器不考虑被控对象反馈信号,只适用于对被控对象有足够了解且稳定性较高的场合;而闭环控制器能够根据被控对象反馈信号进行调整,适用范围更广。
五、结论开环控制器和闭环控制器都有各自的优点和缺点,应根据具体情况选择合适的控制方式。
在实际应用中,一般采用闭环控制器,以提高控制精度和适用范围。
数控机床开环、闭环、半闭环系统的特点
精品文档
数控机床开环、闭环、半闭环系统的特点?
1、开环数控系统特点
没有位置测量装置,信号流是单向的(数控装置至进给系统),故系统稳定性好。
无位置反馈,精度相对闭环系统来讲不高,其精度主要取决于伺服驱动系统和机械传动机构的性能和精度。
一般以功率步进电动机作为伺服驱动元件。
这类系统具有结构简单、工作稳定、调试方便、维修简单、价格低廉等优点,在精度和速度要求不高、驱动力矩不大的场合得到广泛应用。
一般用于经济型数控机床。
2、半闭环数控系统特点
它是从驱动装置(常用伺服电动机)或丝杠引出,采样旋转角度进行检验,不是直接检测运动部件的实际位置。
半闭环环路内不包括或只包括少量机械传动环节,因此可获得稳定的控制性能,其系统的稳定性虽不如开环系统,但比闭环要好。
由于丝杠的螺距误差和齿轮间隙引起的运动误差难以消除。
因此,其精度较闭环差,较开环好。
但可对这类误差进行补偿,因而仍可获得满意的精度。
半闭环系统结构简单、测试方便、精度也较高,因而在现代CNC机床中得到了广泛的应用。
3、闭环数控系统特点
它是直接对运动部件的实际位置进行检测。
从理论上讲,可以消除整个驱动和传动环节的误差、间隙和失动量。
具有很高的位置控制精度。
由于位置环内许多机械传动环节的摩擦特性、刚性和间隙都是非线性的,故很容易造成系统的不稳定,使闭环系统的设计、安装和调试都相当困难。
该系统主要用于精度要求很高的镗床、超精车床、超精磨床以及较大型的数控机床等。
.。
自动控制的基本方式
自动控制的基本方式自动控制是指通过计算机、仪器仪表等自动设备对生产、制造、交通、通信等系统进行控制和调节的过程。
它是现代工业生产的重要组成部分,广泛应用于各个领域。
自动控制的基本方式有三种,分别是开环控制、闭环控制和模糊控制。
开环控制是指在控制过程中,控制器的输出不受被控对象的反馈信号影响。
控制器根据预先设定的控制信号,直接作用于被控对象。
开环控制具有简单、快速的特点,但缺乏对被控对象状态的实时监测和调整能力。
因此,在一些对控制精度要求较高的系统中,往往采用闭环控制。
闭环控制是指在控制过程中,控制器的输出受被控对象的反馈信号影响。
控制器不仅根据预先设定的控制信号,还会根据被控对象的反馈信号进行实时调整。
闭环控制能够实时监测被控对象的状态,并根据反馈信号进行调整,使系统能够更准确地达到预期的控制目标。
闭环控制通常具有较高的控制精度,但也存在对被控对象的反馈信号要求较高的问题。
模糊控制是一种基于模糊逻辑理论的控制方式。
模糊控制通过模糊化输入、输出和规则,以及模糊推理和解模糊化等过程,实现对复杂系统的控制。
与传统的精确控制方法相比,模糊控制能够更好地处理系统的非线性、不确定性和模糊性等问题。
模糊控制的优势在于其对于系统的模糊性和不确定性有较强的适应能力,但也存在计算复杂度较高和对专家知识的依赖性较强等问题。
除了上述基本方式外,自动控制还可以通过PID控制、逆向控制、预测控制等方式实现。
PID控制是一种基于比例、积分和微分的控制方法,通过调节这三个参数来实现对系统的控制。
逆向控制是指根据被控对象的反馈信号,通过反向控制的方式实现对系统的控制。
预测控制是一种基于系统模型的控制方法,通过对系统未来状态的预测来实现对系统的控制。
自动控制的基本方式在现代工业生产中起到了至关重要的作用。
它可以提高生产效率、降低生产成本,同时也可以提高产品的质量和稳定性。
随着科技的不断发展,自动控制技术也在不断进步,越来越多的新的控制方式被应用于实际生产中。
运动控制系统的概念
运动控制系统的概念
运动控制(Motion Control)是自动化技术中的部分内容,是指让系统中的可动部分以可控制的方式移动的系统或子系统。
运动控制系统包括运动控制器(Motion Controller)、驱动器(Driver)、电机(Motor),可以是没有反馈信号的开环控制,也可以带有反馈信号的闭环控制,闭环控制也分为全闭环和半闭环控制。
控制器是可以产生控制目标(理想的输出或运动曲线),或是闭环控制系统中需要根据反馈信号运算调整执行速度和位置的器件。
驱动器是可以将控制器的控制信号转换为提供给电机能量的器件。
电机是实际使物体移动的装置,是运动控制的执行端。
执行端还包含编码器、减速机、导轨丝杆等机械装置。
分类
1、开环控制系统
控制器传输信号给驱动器,驱动器驱动电机运动,驱动器和控制器都无法知道电机是否达到预期的动作,典型的步进电机和风扇控制系统,是属于开环控制。
2、半闭环控制系统
对控制要求更准确的系统,在电机侧增加测量器件(如旋转编码器),反馈信号进入驱动器和控制器中,让驱动器或控制器根据反馈调整电机的动作,使实际与命令的误差降到最小,如普通伺服电机控制系统。
3、全闭环控制系统
需要比半闭环更精准的运动系统,在执行端增加直线编码器,直接测量运动的实际位置,使执行更加准确,如直线电机控制系统。
“开环控制”与“闭环控制”的区别-
“开环控制”与“闭环控制”的区别-在控制系统中,最常见的控制方式包括开环控制和闭环控制。
开环控制和闭环控制最大的区别在于反馈信号的使用。
本文将介绍开环控制和闭环控制的差异。
开环控制开环控制是一种控制系统,这种系统在控制过程中不考虑实际反馈信号,而是通过参考输入信号直接控制输出信号的值。
因此,开环控制在控制系统中主要是通过精确地控制输入信号的值来控制输出信号。
开环控制系统可以简单地解释为一个预定的动作,它会对输入变量进行一个标准的操作,从而产生一个输出变量。
开环控制系统在生产过程中很常见,它形成了一个关于机器运动轨迹、温度和电流等参考变量的基础模型,通过这个模型预测出输出变量的值。
接下来控制设备就会开始依照模型执行它们的操作。
如果这个预测模型足够准确,并且外部因素与模型相同,那么这个控制系统就能够非常成功地控制输出信号。
然而问题在于,开环控制没有反馈,没有来自控制环的实际输出信息,因此开环控制系统容易受到外部因素的影响。
这些因素包括温度、风量、湿度和时间等。
开环控制系统往往无法很好地应对这些外部因素,因为它们缺乏控制过程中实际反馈信号的数据。
闭环控制是一种控制系统,它可以对实际输出执行一个反馈,通过比较实际输出信号和参考输入信号之间的差异实现控制过程。
这种控制系统通过使用传感器来获取实际输出信号,进行比较和计算,然后相应地调整参考输入信号的值,从而产生更准确的输出信号。
基于闭环控制器运作原理,这种控制系统可以稳定地对变化产生反应,使其在不断变化的环境中运行适应性更强。
闭环控制系统一般采用PID控制器,可以更快更准确地控制输出信号。
PID控制器通过调整比例、积分和微分系数优化反馈控制系统。
这种系统非常适用于工业控制、环境控制和机器人控制等应用领域。
结论开环控制和闭环控制是两种不同的控制系统,它们在运作、控制过程和外部环境适应性方面存在差异。
开环控制往往很适合对产生少量变化的控制应用进行控制,但是对于复杂的控制应用则不太适合。
数控机床按伺服控制方式分类
数控机床按伺服控制方式分类数控机床有很多分类方式,可以按工艺用途分类、机床运动控制轨迹分类、伺服控制方式分类、数控系统功能水平分类。
泊头巨人重工机械有限公司是一家专业生产、立车、数控立车、数控龙门铣床、龙门加工中心、数控落地镗铣床的生产厂家。
对数控机床分类很有心得,下面我们讲解一下按伺服控制方式分类。
(1)开环控制数控机床开环控制没有榆测反馈装置,数控系统发出的指令脉冲信号是单方向的,没有反馈信号,因此其加工精度主要取决于伺服系统的性能。
开环控制系统的驱动元件主要是步进电动机,控制电路每变换一次指令脉冲信号,电动机就转过一个步距角。
开环控制结构简单,造价低,调试维修方便,但控制精度一般不高,多应用于经济型数控机床或旧机床的数控化改造。
图1-10所示为开环控制系统框图。
(2)半闭环控制数控机床半闭环控制采用的是角位移检测装置,安装在伺服电动机或丝杠端部,通过检测伺服电机的转角或丝杠转角,间接测得工作台的实际位移值,与输入指令值比较后,用差值控制运动部件。
由于丝杠、工作台等惯性较大的运动部件不在控制环内,比较容易获得稳定的控制特性,角位移检测装置可与伺服电机设计成一个整体,使系统的结构简单,安装调试方便,但机械传动的误差无法得到校正和消除。
只要榆测装置的精度高,分辨率高,丝杠螺母机构的精度高。
具有可行的间隙消除措施,半闭环控制系统就能具有较高的控制精度,日前广泛应用于中小型数控机床上。
图1-1l所示为半闭环控制系统框图。
(3)闭环控制数控机床闭环控制采用的是直线位移检测装置,安装在机床工作台上,直接榆测工作台的实际位移值,与输入指令比较后,用差值控制运动部件。
闭环控制在位置环内还有一个速度环,其日的是减少因负载等因素而引起的进给速度的波动,改善位置环的控制品质。
由于将机械传动部分全部包括在闭环之内,从理论上讲,闭环控制的精度取决于检测装置的精度,而与机械传动的误差无关,因而定位精度高,速度快。
但闭环控制系统技术上要求高,成本较高,调试和维修比较复杂,此外机床的结构、传动装置及传动间隙等非线性因素都会影响其控制精度,严重时系统会产生振荡,降低系统稳定性,所以在设计时应对其给予足够的重视。
数控机床的分类及主要功能特点
数控机床的分类及主要功能特点数控机床是机械加工工业的重要设备,那么你想知道数控机床的分类是什么,还有各自的功能特点又是什么呢?以下是店铺为你整理推荐数控机床的分类及主要功能特点,希望你喜欢。
数控机床按加工工艺方法分类及特点1.金属切削类数控机床与传统的车、铣、钻、磨、齿轮加工相对应的数控机床有数控车床、数控铣床、数控钻床、数控磨床、数控齿轮加工机床等。
尽管这些数控机床在加工工艺方法上存在很大差别,具体的控制方式也各不相同,但机床的动作和运动都是数字化控制的,具有较高的生产率和自动化程度。
在普通数控机床加装一个刀库和换刀装置就成为数控加工中心机床。
加工中心机床进一步进步了普通数控机床的自动化程度和生产效率。
例如铣、镗、钻加工中心,它是在数控铣床基础上增加了一个容量较大的刀库和自动换刀装置形成的,工件一次装夹后,可以对箱体零件的四面甚至五面大部分加工工序进行铣、镗、钻、扩、铰以及攻螺纹等多工序加工,特别适合箱体类零件的加工。
加工中心机床可以有效地避免由于工件多次安装造成的定位误差,减少了机床的台数和占地面积,缩短了辅助时间,大大进步了生产效率和加工质量。
2.特种加工类数控机床除了切削加工数控机床以外,数控技术也大量用于数控电火花线切割机床、数控电火花成型机床、数控等离子弧切割机床、数控火焰切割机床以及数控激光加工机床等。
3.板材加工类数控机床常见的应用于金属板材加工的数控机床有数控压力机、数控剪板机和数控折弯机等。
近年来,其它机械设备中也大量采用了数控技术,如数控多坐标丈量机、自动绘图机及产业机器人等。
数控机床按控制运动轨迹分类及特点1. 点位控制数控机床点位控制数控机床的特点是机床移动部件只能实现由一个位置到另一个位置的精确定位,在移动和定位过程中不进行任何加工。
机床数控系统只控制行程终点的坐标值,不控制点与点之间的运动轨迹,因此几个坐标轴之间的运动无任何联系。
可以几个坐标同时向目标点运动,也可以各个坐标单独依次运动。
自动控制系统的概念及分类
自动控制系统是指能够对某一系统的运行状态进行监测、比较和修正,以维持系统在某种期望状态或性能指标下运行的系统。
它主要包括感知部分、决策部分和执行部分。
感知部分负责获取系统的状态信息,决策部分进行状态比较和决策,执行部分则执行相应的控制操作。
自动控制系统可以分为开环控制系统和闭环控制系统两大类。
开环控制系统(Open-Loop Control System):开环控制系统是指控制器输出不受系统当前状态影响,只由输入信号决定的控制系统。
在开环系统中,控制器向执行器发送命令,执行器按照命令执行动作,但系统的实际状态变化不会反馈给控制器。
这种系统不具备自我调整的能力,对外界扰动和系统参数变化不敏感。
闭环控制系统(Closed-Loop Control System):闭环控制系统是指控制器的输出受系统当前状态的反馈影响,通过不断调整输出来维持系统在期望状态。
在闭环系统中,感知部分负责获取系统状态信息,并将反馈信息传递给控制器,控制器根据反馈信息调整输出,实现对系统的动态调节。
这种系统能够更好地应对外界扰动和系统参数变化,具有自我调整的能力。
在闭环控制系统中,可以进一步根据控制器的结构和工作原理进行分类:比例-积分-微分(PID)控制系统:使用比例项、积分项和微分项来调节系统,以实现对系统的稳定性、精度和速度的控制。
状态空间控制系统:使用状态空间法描述系统,通过状态反馈或输出反馈来实现对系统的控制。
模糊控制系统:基于模糊逻辑的控制系统,适用于复杂、模糊和不确定的系统。
神经网络控制系统:利用神经网络模型进行控制,适用于非线性和复杂系统。
自适应控制系统:具有自适应性能,能够根据系统的变化实时调整控制策略。
总体而言,自动控制系统在工业、交通、航空航天、生活等领域有着广泛的应用,能够提高系统的稳定性、精度和鲁棒性。
自动控制原理 控制方式
自动控制原理控制方式
自动控制原理有许多不同的控制方式。
下面将介绍其中几种常见的控制方式。
1. 开环控制
开环控制是一种基本的控制方式。
在开环控制中,控制器没有对被控对象的输出进行测量和反馈,而是根据经验或理论设置一个预定的控制量来控制系统。
开环控制存在的问题是无法对被控对象的变化和干扰做出及时的调整。
2. 闭环控制
闭环控制是一种基于反馈的控制方式。
在闭环控制中,控制器通过测量被控对象的输出,并与预定的控制量进行比较,从而根据误差来调整控制量,使得输出能够尽量接近预定值。
闭环控制通过不断的调整,能够提高系统对外界变化和干扰的抑制能力。
3. 比例控制
比例控制是一种简单的闭环控制方式。
在比例控制中,控制量的调整与被控量和预定量之间的误差成比例。
通过增大或减小比例系数,可以对系统的响应速度和稳定性进行调节。
4. 积分控制
积分控制是一种能够消除稳态误差的闭环控制方式。
在积分控制中,控制器根据误差的累积值来调整控制量,从而消除系统的稳态误差。
积分控制可以提高系统的精度和稳定性,但过大的积分时间常数可能导致系统的超调和振荡。
5. 微分控制
微分控制是一种能够增强系统的动态响应的闭环控制方式。
在微分控制中,控制器根据误差的变化速率来调整控制量,从而改善系统的响应速度和稳定性。
微分控制可以减小系统的过渡过程,并减少超调和振荡。
这些控制方式可以根据实际需要进行选择和组合,以实现对系统的自动控制和调节。
开环控制系统和闭环控制系统的区别及相关
开环控制系统与闭环控制系统的区别及相关的实例开环控制系统:不将控制的结果反应回来影响当前控制的系统举例:翻开灯的开关——按下开关后的一瞬间,控制活动已经完毕,灯是否亮起以对按开关的这个活动没有影响;闭环控制系统:可以将控制的结果反应回来与希望值比拟,并根据它们的误差调整控制作用的系统举例:调节水龙头——首先在头脑中对水流有一个期望的流量,水龙头翻开后由眼睛观察现有的流量大小与期望值进展比拟,并不断的用手进展调节形成一个反应闭环控制;骑自行车——同理不断的修正行进的方向与速度形成闭环控制开环闭环的区别:1、有无反应;2、是否对当前控制起作用。
开环控制一般是在瞬间就完成的控制活动,闭环控制一定会持续一定的时间,可以借此判断。
手动控制系统:必须在人的直接干预下才能完成控制任务的系统自动控制系统:不需要有人干预就可按照期望规律或预定程序运行的控制系统判断:骑自行车——人工闭环系统,导弹——自动闭环系统,人翻开灯——人工开环系统,自动门、自动路灯——自动开环系统开环控制系统方框图19例开环控制系统的方框图:1、水泵抽水控制系统2、家用窗帘自动控制系统3、宾馆自动门控制系统4、楼道自动声控灯装置控制量控制量 控制量 控制量5、游泳池定时注水控制系统6、十字路口的红绿灯定时控制系统7、公园音乐喷泉自动控制系统8、自动升旗控制系统9、宾馆火灾自动报警系统10、宾馆自动叫醒效劳系统11、活动猴控制系统 控制量控制量控制量 控制量 控制量控制量 控制量12、公共汽车车门开关控制系统15、普通全自动洗衣机控制系统16、手电筒控制装置 17、宾馆自动门加装压力传感器防意外事故自动控制系统18、可调光台灯控制系统控制量 〔压缩空控制量 控制量控制量 控制量 输入量 〔压力传感器是否测到压力异常信号〕 控制量 控制量19、电吹风控制系统闭环控制系统方框图12例闭环控制系统的方框图:1、投篮2、供水水箱的水位自动控制系统控制量 控制量给定量 被控量给定量 被控量给定量3、加热炉的温度自动控制系统4、抽水马桶的自动控制系统5、花房温度控制系统67、家用电饭锅保温控制系统被控量给定量被控量给定量给定量 被控量房内实给定量 被控量控制量 给定量被控量—80℃〕 控制量8、家用电冰箱温度控制系统9、宾馆使用多台热水器串联电辅助加热自动控制系统10、粮库温、湿度自动控制系统11、自动电热水壶控制系统被控量给定量 控制量被控量 冰箱实给定量被控量 粮库内给定量〔设定控制量给定量控制量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开环控制、半闭环控制、闭环控制的区别
2011-11-2 10:31
提问者:升玩就走|浏览次数:485次
数控技术
推荐答案
2011-11-2 13:39
开环:没有测量回路。
半闭环:有一个测量回路(主要反馈控制转速:编码器)注意:编码器有绝对值和相对值之分
全闭环:有两个测量回路(反馈转速+位置:编码器+光栅尺或外置编码器)
|
其他回答共2条
2011-11-3 14:01Einstiphen|五级
以监测点的不同来区分三者。
开环控制就是系统按设定的参数来运转,不作监测,不反馈。
半闭环控制就是在系统的执行端之前(非最终端)设置监测,反馈回的信号可以对执行端之前的机构进行实时调整。
闭环控制是在系统的最终执行端设置监测,反馈回的信号直接用于系统整体调整。
开环系统最简单,成本低,但执行精度最差,基本无系统波动。
闭环系统最复杂,控制成本最高,但执行精度相当高,系统波动也最大。
半闭环系统介于以上两者之间。
|评论
2011-11-17 10:09wangpeng3219|二级
闭环
闭环也叫反馈控制系统,是将系统输出量的测量值与所期望的给定值相比较,由此产生一个偏差信号,
利用此偏差信号进行调节控制,使输出值尽量接近于期望值。
举例:调节水龙头——首先在大脑
中对水流有一个期望的流量,水龙头打开后由眼睛观察现有的流量大小与期望值进行比较,并不断的
用手进行调节形成一个反馈闭环控制;骑自行车——同理不断的修正行进的方向与速度形成闭环控制。
半闭环
半闭环控制系统:半闭环控制系统是在开环控制系统的伺服机构中装有角位移检测装置,通过检测
伺服机构的滚珠丝杠转角,半闭环控制系统图间接检测移动部件的位移,然后反馈到数控装置的
比较器中,与输入原指令位移值进行比较,用比较后的差值进行控制,使移动部件补充位移,直到
差值消除为止的控制系统。
由于半闭环控制系统将移动部件的传动丝杠螺母不包括在环内,所以传动
丝杠螺母机构的误差仍会影响移动部件的位移精度,由于半闭环控制系统调试维修方便,稳定性好,
目前应用比较广泛。
半闭环控制系统的伺服机构所能达到的精度、速度和动态特性优于开环伺服机构,
为大多数中小型数控机床所采用。
开环
相对闭环而言开环(kāi huán)英文名open-loop。
开环相对于闭环而言,也叫开环控制系统。
意思就是不将控制的结果反馈回来影响当前控制的系统。
举例:打开灯的开关——按下开关后的一瞬间,控制活动已经结束,灯是否亮起以对按开关的这个活动没有影响;投篮——篮球出手后就无法再继续对其控制,无论球进与否,球出手的一瞬间控制活动即结束。