常微分方程的积分因子法

合集下载

常微分方程§2.3恰当方程与积分因子

常微分方程§2.3恰当方程与积分因子
在解决某些数学问题时,恰当方程和积分因子可以提供有效的解题思路和 方法。
在某些复杂系统中,恰当方程和积分因子可以用来描述系统的动态行为, 并预测未来的发展趋势。
05 实例分析
实例一:简单的一阶恰当方程与积分因子
总结词
通过简单的一阶恰当方程,理解积分因子的概念和作用。
详细描述
一阶恰当方程的形式为dy/dx=f(x,y),其中f(x,y)是x和y的有理函数。求解这类方程时,可以 通过引入积分因子M(x,y)的方法,将方程转化为一个全微分方程,从而简化求解过程。
形式简单
恰当方程的形式相对简单,未知函数的各阶导数都包 含在方程的右边。
可解性
由于最高阶导数的系数不为零,恰当方程可以通过解 代数方程来求解。
应用广泛
恰当方程在数学、物理、工程等领域有广泛的应用。
恰当方的判别方法
导数项系数不为零
在微分方程中,如果最高阶导数 的系数不为零,则该微分方程可 能是恰当方程。
实例三:实际问题的恰当方程与积分因子应用
总结词
通过实际问题的恰当方程,了解 积分因子的实际应用价值和意义。
详细描述
在实际问题中,许多物理、工程 和经济领域的问题都可以转化为 恰当方程的形式。通过引入积分 因子,可以简化问题求解过程, 提高求解效率。
实例展示
例如,在经济学中研究商品价格的变化时, 经常会遇到类似“商品的需求量D与价格p和 消费者的收入I有关,需求量D对价格的导数 Ddp与需求弹性有关”的问题。通过引入积 分因子并转化为全微分方程,可以更方便地 研究商品价格的变化规律和趋势。
02
[2] 丁同仁, 李承治. 常微分方程教程(第二版)[M]. 北京: 高 等教育出版社, 2004.
03

常微分方程的解

常微分方程的解

常微分方程的解是千儿的首篇笔记啦(^_−)☆这一系列笔记大概是来梳理一下各种常微分方程的解法。

证明部分暂时不会作为重点。

这篇笔记将梳理常微分方程的基本解法。

笔记主要采用的教材是丁同仁老师的《常微分方程教程》。

〇、一些名词1、常微分方程凡是联系自变量 x ,这个自变量的未知函数 y = y(x)及其直到 n 阶导数在内的函数方程f(x,y,y',y'',...,y^{(n)}) = 0 叫做常微分方程,并称 n为常微分方程的阶。

如果在上式中, f 对 y,y',...,y^{(n)} 而言都是一次的,那么我们称该方程为线性常微分方程,否则称其为非线性的。

如果未知函数是多元的,那么称之为偏微分方程。

在学习常微分方程的过程中,需要辩证地看待常微分方程和偏微分方程的关系,并及时进行转换。

这样就可以灵活地求解常微分方程。

2、解和通解若函数 y = \varphi (x) 在区间 j 内连续,且存在直到n 阶的导数。

若把 \varphi (x) 及其对应的各阶导数代入原方程,得到关于 x 的恒等式,那么我们称 y = \varphi(x)是原方程在区间 j 上的一个解。

如果解 y = \varphi(x, c_1,c_2,...,c_n) 中包含 n 个独立的任意常数c_1,c_2,...,c_n ,那么我们称其为通解。

若解中不包含任意常数,那么我们称其为特解。

3、初等积分法初等积分法是用一些初等函数或它们的积分来表示微分方程的解的方法。

这也是我们在本节中讨论的方法。

一、恰当方程对于形如 p(x,y)\text dx + q(x,y)\text dy = 0 的方程,如果存在一个可微函数 \phi (x,y) 使得 \text d \phi (x,y) = p(x,y)\text dx = q(x,y) \text dy,那么我们称其为一个恰当方程,或全微分方程。

恰当方程有解的充要条件是 \frac {\partial p(x,y)} {\partial y} = \frac{ \partial q(x,y)}{\partial x} 。

常微分方程小结

常微分方程小结

常微分方程小结姓名:邱俊铭学号:2010104506姓名:李林学号:2010104404姓名:曾治云学号: 2010104509初等积分法:变量分离形式一、一阶微分程:dy/dx=h(x)g(y) ,其中函数h(x)在区间(a,b)上连续,g(y)在区间(c,d)上连续且不等于0.经过分离变量得: dy/g(y)=h(x)dx 两端积分得:G(y)=H(x)+c ,其中c任意的常数且G(y)= ∧dy/g(y),H(x)= ∧h(x)®x,所以G’(y)=1/g(y)不为0,故G存在逆函数,从而得到:y= (H(x)+c).例1. dy /dx=2xy解:当y ≠0时,分离变量后得:dy/ y =2xdx ,两边积分得:ln|y|=x^2+c1 ,此外y=0也是方程的解,从而方程的解为y=Ce^(x^2),g(y)=0,则y=是方程的解,其中C为任意的常数。

初值问题的解,即y取任意一个数得到的结果,代入通解中,求出具体y 值。

例2.y(1+x^2)dy=x(1+y^2)dx,y(0)=1;解:这是变量分离的方程,分离变量后得:y/(1+y^2)dy=x/(1+x^2),两边积分得其通解为:1+y^2=C(1+x^2),其中C为任意常数,代入初值条件得:C=2.。

故所给的初值问题的解为y=.二、常数变易法一阶非线性方程:dy/dx=a(x)y+f(x).(1)当f(x)=0时,方程为齐次线性方程,解法和上述的一样,通解为y=C ,C为任意的常数。

现在求齐次线性方程的通解,常数C换成x的函数c(x),得到:y= c(x),对x 求导,然后代入(1)中化简,两端积分,得:y=C +f x e ..例3. dy/dx-2xy=x.解:dy/dx=2xy+x ,这里a(x)=2x,f(x).从而可求出原方程的通解为: Y=exp(2 ∧x ®x)(c+ ∧xexp(-2∧x ®x)®x)=-1/2+ce^(x^2),即-1/2+ce^(x^2),其中c 为任意的常数。

一阶常微分方程解法总结

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结⑴、可分离变量的方程: ①、形如)()(y g x f dxdy= 当0)(≠y g 时,取得dx x f y g dy)()(=,两边积分即可取得结果; 当0)(0=ηg 时,那么0)(η=x y 也是方程的解。

例1.1、xy dxdy= 解:当0≠y 时,有xdx ydy=,两边积分取得)(2ln 2为常数C C x y +=因此)(11212C x e C C eC y ±==为非零常数且0=y 显然是原方程的解;综上所述,原方程的解为)(1212为常数C eC y x =②、形如0)()()()(=+dy y Q x P dx y N x M当0)()(≠y N x P 时,可有dy y N y Q dx x P x M )()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=)x P 时,0x x =为原方程的解。

例1.二、0)1()1(22=-+-dy x y dx y x 解:当0)1)(1(22≠--y x 时,有dx x xdy y y 1122-=-两边积分取得 )0(ln 1ln 1ln 22≠=-+-C C y x ,因此有)0()1)(1(22≠=--C C y x ;当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。

⑵可化为变量可分离方程的方程:①、形如)(xyg dx dy = 解法:令x y u =,那么udx xdu dy +=,代入取得)(u g u dxdux=+为变量可分离方程,取得)(0),,(为常数C C x u f =再把u 代入取得)(0),,(为常数C C x xyf =。

②、形如)0(),(≠+=ab by ax G dxdy解法:令by ax u +=,那么b du adx dy +=,代入取得)(1u G badx du b =+为变量可分离方程,取得)(0),,(为常数C C x u f =再把u 代入取得)(0),,(为常数C C x by ax f =+。

高中数学中的常微分方程知识点

高中数学中的常微分方程知识点

高中数学中的常微分方程知识点一、引言常微分方程是数学中的一个重要分支,它在自然科学、社会科学和工程技术等领域有着广泛的应用。

高中数学中的常微分方程知识点主要包括一阶微分方程、二阶微分方程和常微分方程的解法等内容。

二、一阶微分方程1. 概念一阶微分方程是指形如dy/dx + P(x)y = Q(x)的方程,其中P(x)和Q(x)是关于自变量x的已知函数。

2. 解法(1)分离变量法:将方程中的y和x分离,化为y = f(x)的形式,然后对两边进行积分。

(2)积分因子法:找出一个函数μ(x),使得原方程两边乘以μ(x)后,可以化为dy/dx + μP(x)y = μQ(x)的形式,然后利用积分因子公式求解。

(3)变量替换法:选择一个合适的变量替换,将原方程化为简单的一阶微分方程,然后求解。

3. 例子求解方程dy/dx + 2y = e^x。

(1)分离变量法:dy/y = e^x dx∫ dy = ∫ e^x dxy = e^x + C其中C是积分常数。

(2)积分因子法:μ(x) = e^(-∫ 2dx) = e^(-2x)μ(dy/dx + 2y) = μQ(x)e^(-2x)dy/dx + 2e^(-2x)y = e(-2x)e x(-dy/dx + 2y)e^(2x) = 1-dy/dx + 2y = e^(-2x)利用积分因子公式求解,得到:y * e^(2x) = -∫ e^(-2x) dx + Cy = (-1/2)e^(-2x) + C/e^(2x)三、二阶微分方程1. 概念二阶微分方程是指形如d²y/dx² + P(x)dy/dx + Q(x)y = R(x)的方程,其中P(x)、Q(x)和R(x)是关于自变量x的已知函数。

2. 解法(1)常数变易法:假设y = e^(αx),代入原方程,得到关于α的二次方程,求解得到α的值,进而求出y的解。

(2)待定系数法:假设y = e^(αx)的系数为待定系数,代入原方程,得到关于待定系数的方程,求解得到待定系数的值,进而求出y的解。

一阶常微分方程解法总结

一阶常微分方程解法总结

v 2dv 2u - v u ,令 t = v ,有 dv = tdu + udt ,代入得到 t + u dt = 2 - t ,化简 = = du u - 2v 1 - 2 v u du 1 - 2t u
得到,
du 1 - 2t d (1 - t + t 2 ) ln(1 - t + t 2 ) = dt = ln u = +C , 有 u 2 - 2t + 2t 2 2(1 - t + t 2 ) 2
2 2
y x dy = 2 dx 两边积分得到 2 1- y x -1
ln x 2 - 1 + ln y 2 - 1 = ln C
2 2
(C ¹ 0) ,所以有 ( x 2 - 1)( y 2 - 1) = C
(C ¹ 0) ;
当 ( x - 1)( y - 1) = 0 时,也是原方程的解; 综上所述,原方程的解为 ( x - 1)( y - 1) = C
¶M ¶N j ( x ) dx ¶y ¶x = j ( x) ,原方程有只与 x 有关的积分因子,且为 µ ( x, y ) = e ò ①当且仅当 , N
两边同乘以 µ ( x, y ) ,化为恰当方程,下同(4)。
¶M ¶N f ( y ) dy ¶y ¶x = f ( y ) ,原方程有只与 y 有关的积分因子,且为 µ ( x, y ) = e ò ②当且仅当 , -M
-n
du + (1 - n) P( x)u = (1 - n)Q( x) ,下 dx
dy y = 6 - xy 2 dx x
-1 -2
解:令 u = y ,有 du = - y dy ,代入得到 有 µ ( x) = e ò

常微分方程积分因子法的求解

常微分方程积分因子法的求解

用积分因子法解常微分方程摘要:每一个微分方程通过转化为恰当方程之后,可以运用恰当方程的公式进行求解,因此非恰当微分方程转化成恰当方程是求解微分方程的重要步骤,转化成恰当方程需要求解出积分因子,因此积分因子的求解变得非常重要.此论文主要研究几类微分方程积分因子,从而使微分方程的求解变得较简便.关键词:微分方程恰当微分方程积分因子通解Abstract:After each differential equation through into the appropriate equation, can use the appropriate equations for solving non appropriate formula, the differential equation is transformed into an appropriate equation is an important step in solving differential equations, into the appropriate equation requires the solution of the integral factor, thus solving the integral factor becomes very important. This paper mainly research for several kinds of differential equation of integral factor, to make it easy for solving differential equations.Key Words:Differential equation Exact differential equation Integrating factor General solution自变量只有一个的微分方程称为常微分方程.常微分方程是数学分析或基础数学的一个组成部分,在整个数学大厦中占据着重要位置.本文通过运用求微分方程的积分因子来将微分方程转化为恰当微分方程求解.常微分方程是解决实际问题的重要工具[1].1 恰当微分方程1.1 常微分方程联系自变量、未知函数以及未知函数的某些导数(或微分)之间的关系式称为微分方程. 未知函数是一元函数的微分方程称为常微分方程,未知函数是多元函数的微分方程称为偏微分方程.方程2(),2d y dy b cy f t dt dt++= (1.1) 20dy dy t y dt dt ⎛⎫ ⎪⎝⎭++= (1.2) 就是常微分方程的例子,这里y 是未知数,t 是自变量. 1.2 恰当微分方程考虑一阶方程(,)(,)0M x y dx N x y dy += (1.3) 这里假设(,)M x y dx ,(,)N x y dy 在某矩形区域内是x ,y 的连续函数且具有连续的一阶偏导数.若方程(1.3)的左端恰好是某个二元函数(,)u x y 的全微分,即(,)(,)(,)M x y dx N x y dy du x y += (1.4) 则称(1.3)为恰当微分方程(全微分方程).恰当微分方程(1.3)的通解就是(,),u x y c = (1.5) 这里c 是任意常数.定理1[2] 设函数(,)M x y dx 和(,)N x y dy 在一个矩形区域R 中连续且有连续的一阶偏导数,则称(2.1)为恰当微分方程的充要条件是(,)(,).M x y N x y x y∂∂=∂∂ (1.6) 1.3 恰当微分方程的解法方法1 凑微分法:利用熟知的二元函数微分公式,重新分组组合,分块凑成全微分式 方法2 不定积分法:利用关系式:(,)(,)(,)M x y dx N x y dy du x y +=由此,函数(,)u x y 应适合方程组(,),(,)u u M x y N x y x y∂∂==∂∂对(,)u M x y x∂=∂关于x 积分得 (,)()u M x y dx y ϕ=+⎰两端关于y 求导数,并利用恰当微分方程的充要条件,得''()()(,)u M N dx y dx y N x y y y xϕϕ∂∂∂=+=+=∂∂∂⎰⎰ 通过对方程'()(,)N dx y N x y xϕ∂+=∂⎰ 关于y 积分,解出()y ϕ,从而可得(,)()u M x y dx y ϕ=+⎰的表达式,令 (,)()M x y dx y c ϕ+=⎰即得方程的通解. 如果对(,)u N x y x∂=∂关于y 积分,同理可得方程的通解为 (,)()N x y dx x c ψ+=⎰其中()x ψ可类似于()y ϕ求解的方法得到.方法3 公式法:方程的通解为000(,)(,)x y x y M x y dx N x y dy c +=⎰⎰ 或 000(,)(,)x y x y M x y dx N x y dy c +=⎰⎰ 其中c 是任意常数[3].例1 求2()(2)0x y dx x y dy ++-=的通解解 这里2,2M x y N x y =+=-,在xy 平面上有连续偏导数,这时 1,1,M N yx∂∂==∂∂ 因此方程为恰当微分方程. 方法1(不定积分法) 现在求u ,使它同时满足如下两个方程:2u x y x∂=+∂, (1)2u x y y ∂=-∂. (2) 由(1)对x 积分,得到31()3u x xy y ϕ=++, (3) 将(3)对y 求导数,并使它满足(2),即得()2ud y x x y y dy ϕ∂=+=-∂,于是()2,d y y dy ϕ=-积分后得2(),y y ϕ=-将()y ϕ代入(3),得到321.3u x xy y =+-因此,方程的通解为321,3x xy y c +-=这里c 是任意常数.方法2 (公式法) 取00(,)(0,0)x y =因此00(,)(,)(,)xy u x y M x y dx N x y dy=+⎰⎰200()(2)x yx y dx x y dy =++-⎰⎰321()003x y x xy y =+- 3213x xy y =+- 因此,方程的通解为321,3x xy y c +-= 这里c 是任意常数.方法3(凑微分法) 将方程重新“分项组合”,得到220x dx ydx xdy ydy ++-=即32103d x dxy dy +-= 或者写成321()03d x xy y +-= 因此,方程的通解为321,3x xy y c +-= 这里c 是任意常数.2 用积分因子法解常微分方程恰当微分方程可通过积分求出它的通解,但并非所有的微分方程均为恰当微分方程。

常微分方程积分因子

常微分方程积分因子

常微分方程积分因子
微分方程积分因子是指给定方程,采用特定的积分因子来解决的偏
微分方程的解。

它是一种有效的数学モーメント,用于解决非线性对
偶变换以及求解偏微分方程等问题。

一般来说,存在许多的不同的微分方程积分因子,包括补充积分因子、延伸积分因子、反射积分因子以及旋转积分因子等。

局部补充积分因
子又分为独立积分因子和共用积分因子。

独立积分因子指的是某一种
方程,不受其它方程影响,在求解改方程时直接用于求解。

而共用积
分因子则指一种方程与另一种方程时有关联,求解某一方程时也得考
虑到另一方程,才能有效利用积分因子求解。

另外,两种方程可以相
互关联来求解,也称作相互补充的积分因子。

常微分方程的分类及其解法

常微分方程的分类及其解法

常微分方程的分类及其解法常微分方程是数学中非常重要的一门学科,它涉及到的领域很广,如物理学、工程学、经济学等等都有很多应用。

常微分方程的分类及其解法,是常微分方程学习的重要内容,下面本文将就此做出一定的阐述。

一、常微分方程的分类常微分方程按照阶数,可以分为一阶常微分方程、二阶常微分方程、三阶常微分方程以及高阶常微分方程。

按照变量的个数,可以分为一元常微分方程和多元常微分方程。

按照系数的定性,可以分为常系数微分方程和变系数微分方程。

二、常微分方程的解法1. 一阶常微分方程的解法(1)可分离变量方程法对于形如$y^{'}=f(x)g(y)$的方程,如果能将变量x和y分离到等式两端,即$$\frac{1}{g(y)}dy=f(x)dx$$两端对x积分,得到$$\int \frac{1}{g(y)}dy=\int f(x)dx+C$$式中C为常数。

这里需要注意的是,$g(y)$不能为0,如果出现$g(y)$为0的情况,需要特别处理。

(2)积分因子法对于形如$y^{'}+P(x)y=Q(x)$的方程,如果能找到一个函数$\mu(x)$,使得方程两端同时乘上$\mu(x)$得到的新方程,可以写成$$\mu(x)y^{'}+\mu(x)P(x)y=\mu(x)Q(x)$$其中左边一项可以通过链式法则写成$(\mu(x)y)^{'}$的形式,于是方程可以转化为$$ (\mu(x)y)^{'}=\mu(x)Q(x)$$这是一个可积的方程,可以积分得到原方程的解。

(3)直接积分法对于形如$y^{'}=f(x)$的方程,可以直接对方程两边积分得到$$y=\int f(x)dx+C$$式中C为常数。

2. 二阶常微分方程的解法(1)常系数齐次线性方程法形如$y^{''}+py^{'}+qy=0$的方程称为齐次线性方程,如果其系数不随自变量x的变化而变化,即p、q为常数,那么称为常系数齐次线性方程。

解常微分方程初值问题

解常微分方程初值问题

解常微分方程初值问题常微分方程初值问题是求解一个确定初始值条件下的常微分方程的解。

解常微分方程的方法有很多种,下面将介绍几种常用的方法和相关参考内容。

1. 变量分离法:将微分方程中的变量分离,然后进行分离变量的积分。

这是解常微分方程最常用的方法之一。

相关参考内容:《普通微分方程教程》(陈英席著)、《普通微分方程》(王永乐著)2. 齐次方程法:对于齐次方程 dy/dx = f(x,y)(其中 f(x,y) 是关于 x 和 y 的函数),通过引入新的变量 u = y/x,将其转化为一个关于 u 的单变量方程。

然后再解这个方程。

相关参考内容:《普通微分方程与应用》(杨万明、杨卓玲著)、《数学物理方程》(尤伯杯著)3. 线性方程法:对于形如 dy/dx + P(x)y = Q(x) 的线性方程,可以使用积分因子法将其转化为一个可解的方程。

相关参考内容:《普通微分方程讲义》(陈方正、李学勤著)、《分析数学基础讲义》(包维楷等著)4. 变换法:通过进行适当的变量变换,将原方程转化为易于求解的形式。

相关参考内容:《常微分方程讲义》(李鼎立著)、《常微分方程教程》(张世忠、赵寿明著)5. 解特殊的微分方程:一些特殊的微分方程有相应的解法,例如 Bernoulli 方程、Riccati 方程等。

相关参考内容:《常微分方程教程》(孙士焜著)、《微分方程教程》(刘川著)此外,常微分方程的初值问题可以利用数值方法进行求解,例如 Euler 方法、Runge-Kutta 方法等。

相关参考内容:《数值分析》(李庆扬、褚国新著)、《常微分方程数值解法》(赵义、余长星著)解常微分方程初值问题需要动用到微积分、线性代数等数学知识,因此具备扎实的数学基础是解题的前提。

上述参考内容对于理解和掌握常微分方程的解法都具有很好的帮助,读者可以根据自己的实际情况选择适合的参考教材进行学习。

此外,还可以通过参考数学相关的学术论文和网络资源来进一步深入了解常微分方程的解法。

常微分方程的格式

常微分方程的格式

常微分方程的格式随着科学技术的不断发展,微分方程在各个领域中得到了广泛应用。

微分方程是一种描述自然现象的数学模型,它可以用来描述物理、化学、生物等领域中的很多现象。

其中,常微分方程是一种最为基本和重要的微分方程,它的解法和应用都十分广泛。

在本文中,我们将介绍常微分方程的格式及其相关知识。

一、常微分方程的定义常微分方程是指只包含一个自变量和其导数的一阶或高阶微分方程,即形如y' = f(x,y) 或y'' = f(x,y,y')的微分方程。

其中,y表示未知函数,x表示自变量,f(x,y)表示已知函数。

常微分方程是一种描述自然现象的数学模型,它可以用来描述很多物理、化学、生物等领域中的现象。

二、常微分方程的基本形式常微分方程可以写成一般形式y^(n) =f(x,y,y',y'',...,y^(n-1)),其中y^(n)表示y的n阶导数。

根据方程的阶数,可以将常微分方程分为一阶和高阶两类。

1、一阶常微分方程一阶常微分方程的一般形式为y' = f(x,y),其中y'表示y对x 的一阶导数,f(x,y)表示已知函数。

一阶常微分方程可以进一步分类为可分离变量方程、齐次方程、一阶线性方程等几种类型。

(1)可分离变量方程可分离变量方程的一般形式为dy/dx = f(x)g(y),其中f(x)和g(y)是已知函数。

这种类型的方程可以通过分离变量的方法解出。

(2)齐次方程齐次方程的一般形式为dy/dx = f(y/x),其中f(y/x)是已知函数。

这种类型的方程可以通过变量代换的方法解出。

(3)一阶线性方程一阶线性方程的一般形式为dy/dx + p(x)y = q(x),其中p(x)和q(x)是已知函数。

这种类型的方程可以通过积分因子的方法解出。

2、高阶常微分方程高阶常微分方程的一般形式为y^(n) =f(x,y,y',y'',...,y^(n-1)),其中y^(n)表示y的n阶导数。

常微分方程常见形式及解法

常微分方程常见形式及解法

常微分方程常见形式及解法在数学的广袤领域中,常微分方程是一个极其重要的分支,它在物理学、工程学、经济学等众多领域都有着广泛的应用。

简单来说,常微分方程就是含有一个自变量和未知函数及其导数的方程。

接下来,让我们一起深入探讨常微分方程的常见形式以及相应的解法。

一、常微分方程的常见形式1、一阶常微分方程可分离变量方程:形如$dy/dx = f(x)g(y)$的方程,通过将变量分离,将其化为$\frac{dy}{g(y)}=f(x)dx$,然后两边分别积分求解。

齐次方程:形如$dy/dx = F(y/x)$的方程,通过令$u = y/x$,将其转化为可分离变量的方程进行求解。

一阶线性方程:形如$dy/dx + P(x)y = Q(x)$的方程,使用积分因子法求解。

2、二阶常微分方程二阶线性常微分方程:形如$y''+ p(x)y' + q(x)y = f(x)$的方程。

当$f(x) = 0$时,称为二阶线性齐次方程;当$f(x) ≠ 0$时,称为二阶线性非齐次方程。

常系数线性方程:当$p(x)$和$q(x)$都是常数时,即$y''+ py'+ qy = f(x)$,这种方程的解法相对较为固定。

二、常微分方程的解法1、变量分离法这是求解一阶常微分方程的一种基本方法。

对于可分离变量的方程,我们将变量分别放在等式的两边,然后对两边进行积分。

例如,对于方程$dy/dx = x/y$,可以变形为$ydy = xdx$,然后积分得到$\frac{1}{2}y^2 =\frac{1}{2}x^2 + C$,从而解得$y =\pm \sqrt{x^2 +2C}$。

2、齐次方程的解法对于齐次方程$dy/dx = F(y/x)$,令$u = y/x$,则$y = ux$,$dy/dx = u + x(du/dx)$。

原方程可化为$u + x(du/dx) = F(u)$,这就变成了一个可分离变量的方程,从而可以求解。

一阶常微分方程积分因子解法

一阶常微分方程积分因子解法

井冈山大学学报(自然科学版) 6 文章编号:1674-8085(2019)06-0006-05一阶常微分方程积分因子解法胡彦霞(华北电力大学数理学院,北京 102206)摘 要:利用积分因子求解常微分方程是解方程常用的有效方法,在理论和实践中有着重要地位。

惯常的积分因子解法主要讨论两种特殊情况,一种是求只显含自变量的积分因子,另一种是求只显含未知变量的积分因子。

本文在未限定变量的条件下,探讨并总结了常微分方程积分因子解法,文中结果拓展总结了求常微分方程积分因子的相关结论与方法。

关键词:一阶常微分方程;积分因子;微分算子;一阶拟齐次方程中图分类号:O172.1 文献标识码:A DOI:10.3969/j.issn.1674-8085.2019.06.002FURTHER DISCUSSION ON THE METHODS FOR OBTAINING INTEGRATING FACTORS OF THE FIRST ORDER ORDINARYDIFFERENTIAL EQUATIONSHU Yan-xia(School of Mathematics and Physics ,North China Electric Power University ,Beijing 102206, China)Abstract: Using integrating factors to solve ordinary differential equations is an effective method used to solve equations, which plays an important role in theory and practice. Usually, there are two cases of considering to obtain integrating factors of ordinary differential equations. In one case, integrating factors with the independent variable are considered. In the other case, integrating factors with the dependent variable are considered. In the paper, the method to obtain integrating factors of the first order ordinary differential equations is considered in the case of unqualified variables. The sufficient conditions of the existence of integrating factors of the equations are shown, and the methods for obtaining the integrating factors are given. The results in this paper extend and summarize the relevant conclusions and methods of obtaining integrating factors of ordinary differential equations.Key words: first order ordinary differential equation; integrating factor; differential operator; first order quasi-homogeneous equation0 引言在求解一阶常微分方程时,积分因子方法是一种常用的有效方法,思路简单且计算量较小。

关于一阶常微分方程积分因子的求法

关于一阶常微分方程积分因子的求法

关于一阶常微分方程积分因子的求法摘要目前关于一阶常微分方程积分因子的求解方法介绍比较零散,一般的教科书中大都局限在一些简单的情况,如公式法一般只给出含有x或y的一元函数的积分因子的情形,很少涉及到二元的情况,对积分因子的求法并没有一个系统全面的总结,故积分因子的求法有广阔的研究空间.一阶常微分方程灵活多变,有多种不同的方程类型,因而可针对不同类型的方程,研究与其适应的求解方法. 本课题将根据积分因子的定义及性质,通过不同的分类方法,在原有求积分因子方法的基础上,对多种求法进行加深和扩充,系统地总结出一些较为规律的求解方法:观察法、公式法和分组法,给出这些方法的使用条件,并对方法的可行性进行证明,结合具体问题进行分析讨论,通过对这三种方法的研究,解决了某些一阶常微分方程的求解问题.关键词一阶,积分因子,全微分方程,观察,公式,分组,通解The Solution about First Order DifferentialEquation of Intergral FactorABSTRACTAt present about first order differential equations solving method of integral factor is introduced, the comparison scattered in general mostly confined to a textbook, such as some simple formula general give only contain x or y unary function of integral factor of the situation, rarely involve the condition of dual integral factor of sapce and no system, so overall summary of integral factor of sapce has broad research space. A flexible and order ordinary differential equations, and there are many different types of the equation, thus the equation of different types, with the solving method to study. This topic will be based on the definition and properties of integral factor, through different classification method andway of integrating factors in original for the foundation, on the various sapce for deepening and expanded, systematically summarizes some relatively regular solution: observation, formula and grouping law, given these methods using conditions, and feasibility of the method is proved that combined with concrete problems are discussed, based on the three methods to study and resolve some of the first order differential equation problem solving.KEYWORDS first-order,Integral factor, observation,formula,grouping,general solution.目录1 引言 (1)2 几种变系数齐次线性方程的求解方法 (1)2.1 降阶法 (1)2.2 常系数化法 (8)2.3 幂级数法 (17)2.4 恰当方程法 (20)3 结束语 (23)4 致谢语 (23)参考文献 (24)1 引 言常微分方程是数学科学联系实际的主要桥梁之一。

积分因子法在常微分方程中的应用 开题报告

积分因子法在常微分方程中的应用  开题报告

积分因子法在常微分方程中的应用开题报告开题报告积分因子法在常微分方程中的应用一、选题的背景、意义在许多科学领域中,常常需要研究常微分方程的理论和其解是否存在.常微分方程的理论包括解的存在性和唯一性、奇解、定性理论等等.其中解的讨论也尤为重要,求解方法有很多种,例如,常数变易法、叠加法、积分因子法.求得常微分方程的解能使常微分方程在其他的科学领域有更好的应用.常微分方程在微积分概念出现后即已出现,对常微分方程的研究可分为以下几个阶段.发展初期是针对具体的常微分方程,希望能用初等函数或超越函数表示其解,属于“求通解”的时代.刘维尔在1841年证明了里卡蒂方程不存在一般的初等解,同时柯西又提出了初值问题.因此,早期的常微分方程的求解热潮中断了,而常微分方程从“求通解”时代转向“求定解”时代.19世纪末,常微分方程的研究从“求定解”时代转向“求所有解”的新时代.那是由天体力学中的太阳系稳定性问题需要研究常微分方程解的大范围性态引起的.20世纪末六七十年代以后,常微分方程在计算机技术发展的促进下,从“求所有解”时代转入“求特殊解”时代.求常微分方程的通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就能容易地求出问题所需要的特解;根据通解的表达式可以了解其对某些参数的依赖情况,便于参数取值,使它对应的解具有所需要的性能,也有助于解的其他研究.虽然通过求通解的方法可以求出方程的解,但是有些时候会比较复杂.因此,我们要寻找更为简便的求解方法.对常微分方程的求解.积分因子法是一种很好的求解方法,它能将复杂的计算简单化.二、研究的基本内容与拟解决的主要问题本课题主要对积分因子法进行归纳总结,旨在应用积分因子法来求解常微分方程.本课题的主要目的是通过查阅各种相关文献,寻找各种相关信息,来得到并了解用积分因子法求解常微分方程的一些计算技巧,达到化难为易的目的.先从定义出发,介绍相关的一些基本概念,如微分方程、常微分方程、全微分方程、解、积分因子等以及一些相关的定理和充要条件.接着归纳总结积分因子法:积分因子的求法在求积分因子之前,要对常用的一些简单函数的全微分形式比较熟悉,这样能更快地求出积分因子.(1)观察法求积分因子对于一些形式比较简单的微分方程,可以直接观察出方程的积分因子.如:方程,根据,可以直接观察出它的积分因子为.(2)分组凑微分法对于一些相对复杂的微分方程,可以对其进行分组,然后根据一些简单函数的全微分形式对其进行凑微分,得到其积分因子.(3)重新组合法对于一些相对复杂,不易观察出其积分因子的微分方程,可以将其各项重新组合,再根据一些简单函数的全微分形式通过观察来求得其积分因子.(4)指数待定法求积分因子如果微分方程中是的多项式,则可以找到形式的积分因子.(5)公式法求积分因子对一些非全微分方程可以用上面提到的四种方法求得它们的积分因子,但还有一些非全微分方程用上述四种方法不太容易得到它们的积分因子,这时就可以用一些公式来求解.不同的公式都有其相对应的条件需要满足.积分因子巧解常微分方程(1)观察法对于简单形式的微分方程,可以根据一些简单函数的全微分形式直接观察出方程的积分因子,再将积分因子乘到原方程的两边形成全微分方程进行求解.(2)分组凑微分法将微分方程重新分组,化成易求得积分因子的形式,求得其积分因子,再将积分因子乘到原方程的两边形成全微分方程进行求解.(3)重新组合法将微分方程进行重新组合,化成易求得积分因子的形式,求得其积分因子,再将积分因子乘到原方程的两边形成全微分方程进行求解.(4)指数待定法对符合特定条件的微分方程,用指数待定的方法求得其积分因子,再将积分因子乘到原方程的两边形成全微分方程进行求解.(5)公式法针对不同的微分方程,运用相对应的公式求得其积分因子,再将积分因子乘到原方程的两边形成全微分方程进行求解.积分因子法在一阶常微分方程中的应用(1)在可分离变量微分方程中的应用如果一阶微分方程可变化为的形式,则称这个方程为可分离变量方程.运用积分因子法求得这类方程的积分因子,将方程转化为全微分方程进行求解.(2)在齐次微分方程中的应用方程是齐次方程.运用积分因子法求得这类方程的积分因子,将方程转化为全微分方程进行求解.(3)在一阶线性微分方程中的应用设一阶线性微分方程为将其成对称的形式若方程有一个仅依赖于的积分因子,则,其中;反之,若仅依赖于,则是方程的一个积分因子.(4)在贝努力方程中的应用将贝努力方程令,可以将方程化为一阶线性微分方程然后用积分因子求解此方程积分因子法在二阶常微分方程中的应用二阶线性微分方程,当时,此方程为齐次方程;而当时,此方程为非齐次方程.运用积分因子法对二阶线性微分方程进行求解.积分因子法的其他应用证明一些初等公式或一些命题.三、研究的方法与技术路线、研究难点,预期达到的目标本课题归纳总结的主要内容是积分因子法在常微分方程中的应用.利用积分因子法来解决常微分方程的一些复杂的计算问题,使计算过程更加简单易理解.并且积分因子是不唯一,有简单也有复杂.不管它如何,它在常微分方程的计算中都有着不简单的力量.通过参考一些文献资料,以及自己对文献资料的理解和自己掌握的知识,并经过自己的努力,在最后可以用积分因子法解决一些常微分方程的计算.常微分方程的解本来就是一个难点,又由于对积分因子的了解不是很深,在之前学习的只是最基础的.因此,对于它的应用还是有一定的难度的.尽管这个课题有一定的难度,但是我相信不管困难是什么,总能找出方法来解决的.应用积分因子法可以使很多常微分方程的计算得到简化,能够达到化难为易的目的.常微分方程的研究与其他学科领域的结合,使得各种新的研究分支出现.相信常微分方程会在更多的科学领域有更好的应用,并会有更好的发展,做出更大的贡献.四、论文详细工作进度和安排2011-02-21至2011-03-20完成初稿;2011-03-21至2011-04-20在导师的指导下完成第一次修改;2011-04-21至2011-05-20在导师的指导下完成第二次修改并定稿;2011-05-21至2011-05-23准备论文答辩.五、主要参考文献:[1]时宝,黄朝炎.微分方程基础及其应用[M].北京:科学出版社.2007:2-3.[2]丁同仁,李承治.常微分方程教程[M].北京:高等教育出版社.2004,19:32-33,46-47.[3]试析一阶微分方程的积分因子[J].许昌师专学报.1993,312:9,35-39.[4]杨雨民.积分因子咋一阶线性微分方程中的应用[J]. 辽宁省交通高等专科学校学报.1997,51:30-33.[5]James?Stewart?Calculus:Early?Transcendentals5thed?[M].北京:高等教育出版社.2004:598-601,641-643.[6]张奕河,郭文川.关于一阶常微分方程的积分因子求解问题[J].四川理工学院学报(自然科学版).2009,226:11-13.[7]Ma?Yuan-jing.Runge-Kutta?type?iterative?method?for?nonlinear?e quations[J]JOUJOURNAL?OF?NATURAL?SCIENCE?OF?HEI?LONG?JIANG?UNIVERSITY.2009,264:431-435[8]潘鹤鸣.几种特殊类型积分因子的求法及在解微分方程中的应用[J].巢湖学院学报.2003,53:18-22.[9]徐安农,段复建.全微分方程与积分因子法[J].桂林电子工业学院学报.2002,222:10-12.[10]温启军,张丽静.关于积分因子的讨论[J]长春大学学报.2006,165:17-20.[11]龚雅玲.求解微分方程的积分因子法[J].黔南昌教育学院学报.2007,221:32-35.[12]张凤然,马金江.二阶变系数线性微分方程的积分因子解法[J].2008,628:13-15.。

常微分方程的基本概念与解法

常微分方程的基本概念与解法

常微分方程的基本概念与解法常微分方程是数学中的一门重要分支,用于描述自然界中的各种变化规律。

本文将介绍常微分方程的基本概念和常见的解法。

一、常微分方程的概念常微分方程是关于未知函数的导数和自变量之间的关系式,其中自变量通常表示时间。

一般形式为dy/dx = f(x, y),其中y是未知函数,f(x, y)是已知函数。

常微分方程可分为一阶常微分方程和高阶常微分方程两种。

1. 一阶常微分方程一阶常微分方程是指未知函数的导数只涉及到一阶导数的方程。

一阶常微分方程的一般形式为dy/dx = f(x, y),也可以写成f(x, y)dx - dy = 0。

其中f(x, y)是已知函数,x是自变量,y是未知函数。

2. 高阶常微分方程高阶常微分方程是指未知函数的导数涉及到高阶导数的方程。

高阶常微分方程的一般形式为d^n y/dx^n = f(x, y, dy/dx, d^2 y/dx^2, ..., d^(n-1) y/dx^(n-1)),其中n为正整数,f是已知函数,x是自变量,y是未知函数。

二、常微分方程的解法解常微分方程的方法多种多样,根据方程的类型和特点选择不同的解法。

1. 可分离变量法当方程可以写成dy/dx = g(x)h(y)的形式时,可以使用可分离变量法解方程。

这种方法的关键是将变量分离,即将含有y的项移到方程的一边,含有x的项移到方程的另一边,然后分别积分得到x和y的表达式。

2. 线性常微分方程的求解线性常微分方程是指方程可以写成dy/dx + P(x)y = Q(x)的形式。

对于线性常微分方程,可以使用积分因子法求解。

首先找到一个函数u(x),使得dy/dx + P(x)y = Q(x)乘以u(x)后变为全导数,则原方程可以写成d(uy)/dx = Q(x)u(x)的形式。

然后对等式两边进行积分并解得y的表达式。

3. 齐次线性常微分方程的求解齐次线性常微分方程是指方程可以写成dy/dx = f(y/x)的形式。

微分方程积分因子的求法

微分方程积分因子的求法

微分方程积分因子的求法罗伟东【摘要】利用积分因子,可以对一个一阶微分方程的求解进行统一处理。

因此,如何求解积分因子就成为解一阶微分方程的一个重点了。

但对于一个具体的方程,如何求出它的积分因子呢,一般的方法是解一个一阶偏微分方程,不过那是比较不容易的。

但是,对于某些特殊的情况,却可以简单地得出积分因子。

通过查找我们发现,在大多数《常微分方程》的教材中都只给出了只与x 或y 有关的积分因子的求法,但这是不够的。

所以我们在这里来讨论一下关于求解()x y αβμ和()m n ax by μ+这两类积分因子的充要条件及部分例题,由此我们就可以得到形式相近的积分因子。

如:通过x y μ=+,可以得到x y μ=-的积分因子。

如此举一反三,力求使得求积分因子的问题变的简便易行。

同时,还对积分因子的求法进行了推广,总结出几类方程积分因子的求法。

【关键字】微分方程 , 积分因子 , 求解方法【目录】引言 (1)目录 (2)一、()x y αβμ和()m n ax by μ+两类积分因子§ 1、 与()x y αβμ有关的积分因子 (3)§ 2、 与()m n ax by μ+有关的积分因子 (4)二、微分方程积分因子求法的推广§ 1、 满足条件()P Q P Qf x y x y∂∂-=-∂∂的积分因子求法 (7)§ 2、 方程1123422(3)36330m m m m x mx y xy dx y x y x y dy +-⎡⎤⎡⎤++++++=⎣⎦⎣⎦积分因子 (10)§ 3、 方程13()30m m m x m x y x dx x dy -⎡⎤+++=⎣⎦积分因子 (12)§ 4、 方程1(4)4450m m m m x mx y y dx x x y dy -⎡⎤⎡⎤++++++=⎣⎦⎣⎦积分因子 (13)参考文献 (15)一、()x y αβμ和()m n axby μ+两类积分因子引言: 微分方程是表达自然规律的一种自然的数学语言。

积分因子法在求解常微分方程中的应用

积分因子法在求解常微分方程中的应用

积分因子法在求解常微分方程中的应用常微分方程作为现代数学的重要分支,其应用范围广泛,涉及到物理、计算机科学等领域。

求解常微分方程是常微分方程理论的核心,而积分因子法作为其中的重要方法之一,常常被应用于常微分方程的求解中。

1. 什么是积分因子法?积分因子法是利用一个与方程解相关的因子来将常微分方程转化为可积的形式的一种方法。

在求解常微分方程时,为了保证方程解的双曲性或椭圆性,我们可能需要乘上一个符合要求的函数因子使其可以进行精确积分,这个函数因子就被称为积分因子。

2. 如何应用积分因子法?应用积分因子法的关键是需要找到符合要求的积分因子。

一般来说,积分因子需要满足以下条件:(1)积分因子最好能够求得,即它可以具体的表达式表示出来。

(2)积分因子必须非零。

(3)积分因子的乘积与微分方程的系数的组合必须是可积的。

(4)积分因子在微分方程所考虑的区域上必须是连续的。

(5)积分因子应该是一种容易求得的函数形式。

找到符合要求的积分因子后,我们就可以将常微分方程乘上这个因子,从而将其转化为一个可积的形式。

通过对等式两边的乘积进行积分,最终获得方程的解析解。

3. 积分因子法在求解实际问题时的应用积分因子法在求解实际问题时的应用有很多。

例如在物理学中,通过应用积分因子法可以求解出多个物理系统的行为规律。

在这种情况下,微分方程主要描述物理量的变化,而积分因子则为了提高求解的准确度和精度。

在计算机科学领域,积分因子法的应用同样非常广泛。

在进行数值计算时,我们经常需要通过微分方程来描述系统的行为规律。

但由于数值方法的固有误差,我们得出的解往往不够精确。

而在这种情况下,我们可以通过引入一个积分因子来提高求解的精度。

总的来说,积分因子法在求解常微分方程中起着重要的作用。

它可以帮助我们获得更加精确和准确的解析解,而这些解析解在现代数学和其它学科领域中有着广泛的应用。

常微分方程积分因子法-推荐下载

常微分方程积分因子法-推荐下载

( x)
1 x2
x 2 y 2 x 2 y 2 xy
是两组的公共的积分因子,从而是方程 (5.8) 的积分因子.
为了使这种分组求积分因子的方法一般化,给出下面的有关积分因子的一个性质定理.
定理 6 若 (x, y) 是方程 (5.1) 的一个积分因子,使得
(x, y)P(x, y)dx (x, y)Q(x, y)dy d(x, y)
y
d (ln x ) ydx xdy .
y
xy
x2 y2
11 1 1 于是 x 2 , y 2 , x 2 y 2 , xy 等都是这个微分方程的积分因子.由此再来看上面的例 1,将 (5.8) 式的左端分
成两组:
(3x3dx 2x2 ydy) ( ydx xdy) 0 .
11 其中第二组由上述讨论知,有积分因子 , ,
§5 积分因子法 本节再来讨论§1 剩下的没有解决的第三个问题.即当方程
P(x, y)dx Q(x, y)dy 0
不满足条件 P Q 时,有什么办法能把它变为恰当方程呢?由一阶微分的形式不变性,易见变量代 y x
换发在这里是无能为力的.但在§2 对变量分离方程
X (x)Y1 ( y)dx X1 (x)Y ( y)dy 0 ,
成为恰当方程,亦即
(x, y)P(x, y)dx (x, y)Q(x, y)dy 0
(P) (Q)
y
满足这一条件的 (x, y) 称为方程 (5.1) 的一个积分因子.
由条件 (5.3) ,可以看出 (x, y) 应满足方程
x
P Q (Q P )
y x x y
(5.4) 是一阶线性偏微分方程.对于一般的一次连续可微函数 P(x, y),Q(x, y) ,虽然可证 (5.4) 的解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常微分方程的积分因子法
在数学中,常微分方程是一种描述动态系统的重要工具。

在实际应用中,常微分方程模型广泛应用于物理、化学、生物学等领域,用于研究自然界中各种现象的演化规律。

常微分方程除了数值解法外,还有一种有力的解法——积分因子法。

积分因子法是通过引入一个特殊的乘数,将常微分方程转化为可积分的形式,从而求出它的通解。

1. 常微分方程与积分因子
首先,我们需要了解什么是常微分方程。

简单来说,常微分方程是描述一个未知函数与其导数之间关系的方程。

比如,一阶常微分方程可以写成:
$$\frac{dy}{dx}=f(x,y)$$
其中,$y=y(x)$ 是未知函数,$f(x,y)$ 是已知函数。

解此方程的一般方法是使用分离变量法或者变量代换法,但是有些方程并不方便通过这些方法求解。

这时候,就需要借助积分因子法。

积分因子法是常微分方程中的一种特殊解法,通过引入一个特殊的函数,将原方程乘上这个函数,使它变为可积分的形式。

其必要条件是,乘上这个函数后,原方程满足以下形式:
$$\mu(x,y,z)\frac{\partial f(x,y,z)}{\partial
x}+\mu(x,y,z)\frac{\partial g(x,y,z)}{\partial
y}+\mu(x,y,z)\frac{\partial h(x,y,z)}{\partial
z}+\mu(x,y,z)P(x,y,z)=0$$
其中,$\mu(x,y,z)$ 是引入的积分因子。

这时,我们可以通过将这个新方程改写成完全微分形式来求解,从而得到原方程的通解。

2. 积分因子法的应用举例
下面,我们来看一个实际的例子,说明积分因子法的应用。

考虑以下常微分方程:
$$\frac{dy}{dx}+2y=xe^{-x}$$
这是一个一阶线性非齐次微分方程,我们可以使用常见的解法——待定系数法或变量分离法,但这里我们要演示积分因子法的应用。

首先,我们需要找到这个方程的积分因子。

根据前面的公式,我们可以设
$$\mu(x)=e^{2x}$$
然后,将原方程两边同时乘上积分因子:
$$e^{2x}\frac{dy}{dx}+2e^{2x}y=xe^{-x}e^{2x}$$
这时,我们发现左边的式子可以改写为:
$$\frac{d}{dx}\left(e^{2x}y\right)=xe^x$$
进一步地,我们可以将右边的式子积分一次:
$$\int xe^xdx=x e^x-\int e^xdx=x e^x-e^x+C$$
其中,$C$ 为常数。

将上面的结果带入最开始的方程,我们得到:
$$e^{2x}y=\frac{1}{2}(x-1)e^x+C$$
化简后,就可以得到方程的通解:
$$y=\frac{1}{2}(x-1)+Ce^{-2x}$$
在这个例子中,我们使用积分因子法解决了一个一阶线性非齐
次微分方程,结果比待定系数法或变量分离法更加直接,清晰。

3. 总结
积分因子法是常微分方程中一个非常实用的解法。

通过引入积
分因子,我们可以把原微分方程转化为完全微分形式,从而更快、更直接地求解。

当然,对于某些特定的常微分方程,积分因子法
可能没有其他方法更好,但这种方法仍然是求解微分方程的重要
工具之一。

相关文档
最新文档