初三数学概率初步单元测试题学生

合集下载

数学九年级上册《概率初步》单元测试题附答案

数学九年级上册《概率初步》单元测试题附答案
摸球的次数n
100
150
200
500
800
1 000
摸到白球 次数m
28
34
48
130
197
251
摸到白球的频率
0.28
0.23
0.24
0.26
0.246
0.251
(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.01);
(2)试估算口袋中白种颜色的球有多少只?
(3)请根据估算的结果思考从口袋中先摸出一球,不放回,再摸出一球,这两只球颜色不同的概率是多少?画出树状图(或列表)表示所有可能的结果,并计算概率.
【答案】A
【解析】
试题解析:红红和娜娜玩”石头、剪刀、布”游戏,所有可能出现的结果列表如下:
红红
娜娜
石头
剪刀

石头
(石头,石头)
(石头,剪刀)
(石头,布)
剪刀
(剪刀,石头)
(剪刀,剪刀)
(剪刀,布)

(布,石头)
(布,剪刀)
(布,布)
由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).
16.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,视为无效,重新转动一次转盘),此过程称为一次操作.请用树状图或列表法,求事件”两次操作过程中,第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.
3.某电视台举行的歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手已分别抽走了2号,7号题,第3位选手抽中8号题的概率是( )

第25章 概率初步单元测试

第25章 概率初步单元测试

第二十五章概率初步单元测试一、单选题(共10题;共30分)1、一个暗箱里装有10个黑球,6个白球,14个红球,搅匀后随机摸出一个球,则摸到白球的概率是A、 B、C、D、2、书包里有数学书3本,英语书2本,语文书5本,从中任意抽取一本,是数学书的概率是()A、 B、C、D、3、如图,一个圆形转盘被等分成八个扇形区域,上面分别标上1,3,4,5,6,7,8,9,转盘可以自由转动,转动转盘一次,指针指向的数字为偶数所在区域的概率是()A、 B、C、D、4、在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是()A、 B、C、D、5、下列模拟掷硬币的实验不正确的是()A、用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B、袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C、在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D、将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上6、明明的相册里放了大小相同的照片共32张,其中与同学合影8张、与父母合影10张、个人照片14张,她随机地从相册里摸出1张,摸出的恰好是与同学合影的照片的可能性是()A、B、C、D、7、历史上,雅各布.伯努利等人通过大量投掷硬币的实验,验证了“正面向上的频率在0.5左右摆动,那么投掷一枚硬币10次,下列说法正确的是()A、“正面向上”必会出现5次B、“反面向上”必会出现5次C、“正面向上”可能不出现D、“正面向上”与“反面向上”出现的次数必定一样,但不一定是5次8、一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有125次摸到白球,因此小亮估计口袋中的红球大约有()个.A、100个B、90个C、80个D、70个9、小茜课间活动中,上午大课间活动时可以先从跳绳、乒乓球、健美操中随机选择一项运动,下午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上、下午都选中球类运动的概率是()A、 B、C、D、10、一个不透明的布袋里装有6个黑球和3个白球,它们除颜色外其余都相同,从中任意摸出一个球,是白球的概率为()A、B、C、D、11、把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是________ .12、在一个不透明的口袋中,装有4个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,从口袋中任意摸出一个球,估计它是红球的概率是________ .13、布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是________.14、有四张扑克牌,分别为红桃3,红桃4,红桃5,黑桃6,背面朝上洗匀后放在桌面上,从中任取一张后记下数字和颜色,再背面朝上洗匀,然后再从中随机取一张,两次都为红桃,并且数字之和不小于8的概率为________ .15、一个布袋中装有只有颜色不同的a(a>12)个小球,分别是2个白球、4个黑球,6个红球和b个黄球,从中任意摸出一个球,记下颜色后放回,经过多次重复实验,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).根据题中给出的信息,布袋中黄球的个数为________16、在一个不透明的袋子中有四个完全相同的小球,分别标号为1,2,3,4.随机摸取一个小球不放回,再随机摸取一个小球,两次摸出的小球的标号的和等于4的概率是________ 17、流传的游戏,游戏时,双方每次任意出“石头”,“剪刀”,“布”这三种手势中的一种,那么双方出现相同手势的概率为________.18、一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为________.19、在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个. 现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.20、不透明的盒中装有红、黄、蓝三种颜色的小球若干个(除颜色外均相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,是蓝球的概率为.(1)求盒中黄球的个数;(2)第一次任意摸出一个球放回后,第二次再任意摸一个球,请用列表或树状图,求两次都摸出红球的概率.21、如果手头没有硬币,但想知道掷一次这种均匀的硬币正面朝上的概率是多少,请问你能用三种不同的方法进行模拟试验吗?请写出试验过程.22、如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?23、一不透明的袋子中装有4个球,它们除了上面分别标有的号码1、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.若把两次号码之和作为一个两位数的十位上的数字,两次号码之差的绝对值作为这个两位数的个位上的数字,请用“画树状图”或“列表”的方法求所组成的两位数是奇数的概率.24、有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为.(Ⅰ)用列表或画树状图的方法写出点Q的所有可能坐标;(Ⅱ)求点Q落在抛物线y=x2-2x-1上的概率.答案解析一、单选题1、【答案】 D【考点】概率公式【解析】【分析】概率的求法:概率=所求情况数与所有情况数的比.由题意得摸到白球的概率是,故选D.【点评】本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.2、【答案】 B【考点】概率公式【解析】【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,∵书包里有数学书3本,英语书2本,语文书5本,共10本书,∴从中任意抽取一本,是数学书的概率是.故选B.3、【答案】 B【考点】概率公式【解析】【分析】先求出转盘上所有的偶数,再根据概率公式解答即可.∵在1,3,4,5,6,7,8,9中,偶数有4,6,8,∴转动转盘一次,指针指向的数字为偶数所在区域的概率=.故选B.4、【答案】 B【考点】概率公式【解析】【解答】∵在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,∴从中任意摸出一个球,则摸出白球的概率是:=.故选B.【分析】由在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,直接利用概率公式求解即可求得答案.5、【答案】 D【考点】模拟实验【解析】【解答】A、用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下,正确,不合题意;B、袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上,正确,不合题意;C、在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上,正确,不合题意;D、将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上,由于奇数与偶数个数不相同,故不能模拟掷硬币的实验,故符合题意.故选:D.【分析】利用模拟实验只能用更简便方法完成,验证实验目的,但不能改变实验目的,进而分析得出即可.6、【答案】C【考点】可能性的大小【解析】【解答】解:∵明明的相册里放了大小相同的照片共32张,其中与同学合影8张,∴她随机地从相册里摸出1张,摸出的恰好是与同学合影的照片的可能性是:=.故选;C.【分析】利用与同学合影的照片数量除以相片总数,即可得出答案.7、【答案】C【考点】利用频率估计概率【解析】【解答】解:A、“正面向上”不一定会出现5次,故本选项错误;B、“反面向上”不一定会出现5次,故本选项错误;C、“正面向上”可能不出现,只是几率不太大,故本选项正确;D、“正面向上”与“反面向上”出现的次数可能不一样,故本选项错误;故选C.【分析】利用频率估计概率时,只有做大量试验,才能用频率会计概率,但少数实验不能确定一定会出现和概率相符的结果.8、【答案】 D【考点】利用频率估计概率【解析】【解答】解:球的总数是:10÷=80(个),则红球的个数是:80﹣10=70(个).故选D.【分析】小亮共摸了1000次,其中有125次摸到白球,则白球所占的比例是,据此即可求得球的总数,进而求解.9、【答案】 A【考点】列表法与树状图法【解析】【解答】解:画树状图为:共有9种等可能的结果数,其中小茜上、下午都选中球类运动的结果数为1,所以小茜上、下午都选中球类运动的概率= .故选A.【分析】画树状图展示所有9种等可能的结果数,再找出小茜上、下午都选中球类运动的结果数,然后根据概率公式计算.10、【答案】B【考点】概率公式【解析】【解答】解:∵个不透明的布袋里装有6个黑球和3个白球,∴中任意摸出一个球,是白球的概率= = .故选B.【分析】直接根据概率公式即可得出结论.二、填空题11、【答案】【考点】列表法与树状图法【解析】【解答】设三张风景图片分别剪成相同的两片为:A1, A2, B1, B2, C1, C2;如图所示:,所有的情况有30种,符合题意的有6种,故这两张图片恰好能组成一张原风景图片的概率是:.故答案为:.【分析】把三张风景图片剪成相同的两片后用A1, A2, B1, B2, C1, C2来表示,根据题意画树形图,数出可能出现的结果利用概率公式即可得出答案.12、【答案】【考点】利用频率估计概率【解析】【解答】解:∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,即.故答案为:.【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率即可.13、【答案】【考点】概率公式【解析】【解答】∵一个布袋里装有3个红球和6个白球,∴摸出一个球摸到红球的概率为:.【分析】求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.14、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图为:共有12种等可能的结果数,其中两次都为红桃,并且数字之和不小于8的结果数为4,所以两次都为红桃,并且数字之和不小于8的概率==.故答案为.【分析】先画树状图展示所有12种等可能的结果数,再找出两次都为红桃,并且数字之和不小于8的结果数,然后根据概率公式求解.15、【答案】 8【考点】利用频率估计概率【解析】【解答】解:球的总数:4÷0.2=20(个),2+4+6+b=20,解得:b=8,故答案为:8.【分析】首先根据黑球数÷总数=摸出黑球的概率,再计算出摸出白球,黑球,红球的概率可得答案.16、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率==,故答案为:.【分析】先画树状图展示所有12种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.17、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图得:∵共有9种等可能的结果,双方出现相同手势的有3种情况,∴双方出现相同手势的概率P= .故答案为:.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与双方出现相同手势的情况,再利用概率公式即可求得答案.18、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况,∴两次摸出的小球上两个数字乘积是负数的概率为:= .故答案为:.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及两次摸出的小球上两个数字乘积是负数的情况,再利用概率公式即可求得答案.三、解答题19、【答案】此游戏不公平.理由如下:列树状图如下,列表如下,<img style="vertical-align:middle;"src=/97/21/97721dbd27213200cd2440eb37ed9372.pngcolor:blue;">【考点】列表法与树状图法,游戏公平性【解析】【解答】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等。

人教版九年级数学《概率初步》单元测试题(含答案)

人教版九年级数学《概率初步》单元测试题(含答案)

人教版九年级数学《概率初步》单元测试题一、选择题(每题3分,共18分):1.已知事件A :小明刚到教室,上课铃就响了;事件B :掷一枚质地均匀的骰子(骰子的六个面上分别刻有1到6的点数),向上一面的点数不大于6.下列说法正确的是( )A.只有事件A 是随机事件B.只有事件B 是随机事件C.都是随机事件D.都是确定性事件2.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个黄球,4个蓝球.若随机摸出一个球是蓝球的概率为13,则随机摸出一个球是红球的概率是( )A.14B.13C.512D.123.下列说法正确的是( )A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天降雨的概率为40%”,表示明天有40%的时间都在下雨C.“篮球队队员在罚球线上投篮一次,投中”为随机事件D.“0a a ³是实数,”是不可能事件4.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率是( )A.310B.110C.19D.185.一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1、2、3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是( )A.13B.49C.12D.596.如图,ABC 是一块绿化带,将阴影部分修建为花圃.已知15,9,12,AB AC BC ===阴影部分是ABC 的内切圆.一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.6p C.8pD.5p二、填空题(每题3分,共18分):7.“任意画一个四边形,其内角和是360度”是 事件(填随机、必然或不可能).8.投掷一个骰子(六个面上分别标有数字1、2、3、4、5、6)一次,得到正面向上的数字为奇数的概率是 .9.同时抛掷两枚质地均匀的硬币,一枚硬币正面向上,一枚硬币反面向上的概率是 . 10.在一个不透明的盒子中装有n 个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有球摇匀,然后随机摸出一个球后放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n 的值大约是 .11.020192,(1)---.把卡片背面朝上洗匀后,先随机抽取一张记下数字后放回,洗匀后再抽取一张,则两次抽到的数字互为相反数的概率是 .12.如图,随机地闭合开关12345S S S S S 、、、、中的三个,能够使21L 、L 两个小灯泡同时发光的概率是 .三、解答题(每题10分,共60分):13. 九(1)班从三名男生(含小明)和五名女生中选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n 名.(1)当n 为何值时,男生小明被选中参加比赛是必然事件? (2)当n 为何值时,男生小明被选中参加比赛是不可能事件? (3)当n 为何值时,男生小明被选中参加比赛是随机事件?14.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.15.某市今年中考的理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A 、B 、C 表示)和三个化学实验(用纸签D 、E 、F 表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用“列表法”或“树状图法”表示所有可能出现的结果;(2)小刚抽到物理实验B 和化学实验F (记作事件m )的概率是多少?16.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球.将“摸出黑球”记为事件A .(2)先从袋子中取出m 个红球,再放入个一样的黑球并摇匀,随机摸出1个球是黑球的概率等于45,求m 的值.17.如图,有大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A 1,A 2),(B 1,B 2)].(1)若先从两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机地取出两只,利用树形(状)图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.18.一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同.(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;(2)甲、乙两人用这六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字,若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢,请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.五、解答题(每题12分,共24分):19.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.20.甲、乙两人利用扑克牌玩“10点”游戏.游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现....甲、乙的“最终点数”,并求乙获胜的概率.人教版九年级数学《概率初步》单元测试题(参考答案)一、选择题(每题3分,共18分):1.A2.A3.C4.B5.D6.B二、填空题(每题3分,共18分):7. 必然8.12 9.12 10. 10011. 1412. 15三、解答题(每题10分,共60分)13. (1)当n 为1时,男生小强参加是必然事件.(2)当n 为4时,男生小强参加是不可能事件.(3)当n 为2或3时,男生小强参加是随机事件.14. 1. 解:(1)解法一:画树状图如下:所有出现的等可能结果共有12种,其中满足条件的结果有2种. ∴P(恰好选中甲、乙两位同学)=212=16.(2)P(恰好选中乙同学)=13.15.解:(1)将100米、50米、引体向上、立定跳远分别用A ,B ,C ,D 表示,画树状图如解图:可得所有等可能选择的结果有四种,分别为:AC ,AD ,BC ,BD ;∴两人所选项目完全相同的概率为:P =416=14.16. 解:(1)(2)依题意,得6+m 10=45,解得m =2.17.(1)若先从两只左脚拖鞋中取出一只,再从两只右脚拖鞋任取出一只,有A 1A 2,A 1B 2,B 1B 2,B 1A 2四种情况,恰好匹配的有A 1A 2,B 1B 2两种情况,∴P(恰好匹配)=24=12;(2)画树状图如下:所有可能的结果:A 1A 2,A 1B 1,A 1B 2;A 2A 1,A 2B 1,A 2B 2;B 1A 1,B 1A 2,B 1B 2;B 2A 1,B 2A 2,B 2B 1, 可见,从这四只拖鞋中随机地取出两只,共有12种等可能的情况,其中恰好匹配的有4种,分别是A 1A 2,A 2A 1,B 1B 2,B 2B 1,∴P(恰好匹配)=412=13.18.解:(1)∵在标号为1,2,3,4,5,6的六个小球中,标号数字为奇数的球有3个,∴摸到标号数字为奇数的小球的概率为:36=12;(2)画树状图如解图:如图,共有36种等可能的情况,两次摸到小球的标号数字同为奇数或同为偶数的有18种,摸到小球的标号数字为一奇一偶的结果有18种,∴P(甲赢)=1836=12,P (乙赢)=1836=12,∴这个游戏对甲、乙两人是公平的.三、解答题(每题12分,共24分)19.(1)所有可能的两位数用列表法列举如下表:(2)由(1)知,所有可能的两位数共有16个,即16种等可能结果,其中算术平方根大于4且小于7,即大于16且小于49的两位数共6种等可能结果:17,18,41,44,47,48,则所求概率P =616=38.20.(1)12;(2)解法一:(3)由树状图可以得出,所有可能出现的结果共有12种,他们的“最终点数”如下表所示:(6分)比较甲、乙两人的“最终点数”,可得P(乙获胜)=512.解法二:比较甲、乙两人的“最终点数”,可得P(乙获胜)=512.。

单元测试(六) 概率初步

单元测试(六) 概率初步

单元测试(六) 概率初步一、选择题(每小题3分,共24分)1.(盐城中考)下列事件中,是必然事件的为(C)A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩2.掷一枚质地均匀的硬币10次,下列说法正确的是(A)A .可能有5次正面朝上B .必有5次正面朝上C .掷2次必有1次正面朝上D .不可能10次正面朝上3.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是(D)A .3个B .不足3个C .4个D .5个或5个以上4.(贵阳中考)有5张大小、背面都相同的扑克牌,正面上的数字分别是4,5,6,7,8.若将这5张牌背面朝上洗匀后,从中任意抽取1张,那么这张牌正面上的数字为偶数的概率是(B)A.45B.35C.25D.155.小狗在如图所示的方砖上走来走去,最终停在黑色方砖上的概率为(C)A.18B.79C.29D.7166.一次抽奖活动中,印发奖券1 000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的机会是(D)A.150B.225C.15D.3107.图中有四个可以自由转动的转盘,每个转盘被分成若干等份,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是(D)A .转盘2与转盘3B .转盘2与转盘4C .转盘3与转盘4D .转盘1与转盘48.(湖州中考)已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于(A)A .1B .2C .3D .4 二、填空题(每小题4分,共16分)9.抛掷一枚质地均匀的硬币15次,有6次出现正面朝上,则出现正面朝上的频率是0.4.10.把标有号码1,2,3,…,10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是310.11.在一个暗箱里放有a 个除颜色外其他完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是12.12.小兰设计了一个转盘游戏:随意转动转盘,使指针最后落在红色区域的概率为13,如果她将转盘等分成12份,则红色区域应占的份数是4. 三、解答题(共60分) 13.(8分)下列事件中,哪些是确定事件?哪些是不确定事件?确定事件中,哪些是必然事件?哪些是不可能事件?(1)打开电视机,正在播动画片;(2)任意掷一枚质地均匀的骰子,朝上的点数是6; (3)在一个平面内,三角形三个内角的和是190度; (4)线段垂直平分线上的点到线段两端的距离相等.解:(1)(2)是不确定事件;(3)是确定事件,也是不可能事件; (4)是确定事件,也是必然事件.14.(10分)如图,某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据.(1)计算并完成表格;(2)请估计,当n 很大时,频率将会接近多少?(3)假如你去转动转盘一次,你获得铅笔的概率是多少? 解:(1)如表. (2)接近0.7. (3)0.7.15.(10分)如图所示,三个相同的盒子里各放有一个塑料制成的圆环,这三个大小不同的圆环恰好可以按如图所示那样较紧密地套在一起,我们随意从三个盒子中拿出两个,则这两个圆环可以比较紧密地套在一起的概率有多大?解:根据题意分析可得:从三个盒子中拿出两个共3种情况,即(1,2;2,3;1,3),其中有2种情况即(1,2;2,3)可使这两个圆环可以比较紧密地套在一起,故其概率是23.16.(10分)米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P(在客厅捉到小猫);。

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)一、选择题(共8小题,4*8=32) 1. 下列事件中,是必然事件的为( ) A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩2. 对“某市明天下雨的概率是75%”这句话,理解正确的是( ) A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大3. 甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中( ) A .甲获胜的可能更大 B .甲、乙获胜的可能一样大 C .乙获胜的可能更大D .由于是随机事件,因此无法估计4. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19 B .16 C .13 D .235. 从长度分别为1 cm ,3 cm ,5 cm ,6 cm 四条线段中随机取出三条,则能够组成三角形的概率为( )A .14B .13C .12D .346. 已知在一个不透明的口袋中有4个只有颜色不相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A.34B.23C.916D.127. 从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.158. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916 二.填空题(共6小题,4*6=24)9.在5张卡片上各写0,2,4,6,8中的一个数,从中抽出一张为偶数是_____事件; 10. 下表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次投中的概率约为________(精确到0.1).投篮次数n 50 100 150 200 250 300 500 投中次数m 28 60 78 104 123 152 251 投中频率mn0.560.600.520.520.490.510.5011. 某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是________.12. 一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个正方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__________.13. 一个盒子里有完全相同的三个小球,球上分别标上数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是_______.14. 现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 .三.解答题(共5小题,44分)15.(6分) 请指出在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件.(1)a2+b2=-1(其中a,b都是实数);(2)篮球队员在罚球线上投篮一次,未投中;(3)掷一次骰子,向上一面的点数是6;(4)任意画一个三角形,其内角和是360°;(5)水往低处流;(6)射击运动员射击一次,命中靶心.16.(8分) 有一组卡片,制作的颜色、大小相同,分别标有1~11这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任意抽取一张,求下列事件的概率.(1)抽到两位数;(2)抽到的数是2的倍数;(3)抽到的数大于10.17.(8分) 某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是__ __;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.18.(10分) 在四张编号为A、B、C、D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A、B、C、D 表示);(2)我们知道,满足a2+b2=c2的三个正整数a、b、c称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(12分) 为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务活动,班长为了解志愿服务活动的情况,收集整理数据后,绘制成以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.参考答案1-4CDCC 5-8ADCB 9.必然 10.0.5 11.1612.2313.1214.2515.解:随机事件:(2)(3)(6);必然事件:(5);不可能事件:(1)(4) 16.解:(1)P(抽到两位数)=211(2)P(抽到的数是2的倍数)=511(3)P(抽到的数大于10)=11117.解:(1)P(小文诵读《长征》)=13 ;故答案为:13 (2)记《红星照耀中国》、《红岩》、《长征》分别为A ,B ,C ,列表如下:A B C A (A ,A) (A ,B) (A ,C) B (B ,A) (B ,B) (B ,C) C(C ,A)(C ,B)(C ,C)由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为39 =1318.解:(1)画树状图如下:共有12种等可能的结果数.(2)由题意,易知卡片B 、C 、D 中的三个数,是勾股数则抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率=612=12.19.解:(1)该班全部人数:12÷25%=48.(2)48×50%=24,补全折线统计图如图所示:(3)648×360°=45°. (4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:小明 小丽 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)务活动的概率为416=14.。

数学九年级上册《概率初步》单元测试题(附答案)

数学九年级上册《概率初步》单元测试题(附答案)
A. B. C. D.
二、填空题(每题3分,共24分)
11.从分别标有1,2,3,…,50的50张卡片中抽出2的倍数的卡片的可能性________抽出4的倍数的卡片的可能性(填”大于”“小于”或”等于”).
12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为______(精确到0.1).
(5,4)
(5,5)
(5,6)
6
(6,1)
(6,2)
(6,3)
(6,4)
(6,5)
(6,6)
6.如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是( )
A. B. C. D.
【答案】C
20.如图所示的转盘,分成三个相同的扇形,指针位置固定转动转到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).
(1)求事件”转动一次,得到的数恰好是0”发生的概率;
(2)写出此情景下一个不可能发生的事件.
(3)用树状图或列表法,求事件”转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.
【详解】设需要在这个口袋中再放入x个绿球,得: ,
解得:x=2.
所以需要在这个口袋中再放入2个绿球.故选C.
【点睛】本题考查了概率的知识点,解题的关键是熟练掌握求概率的公式:概率=所求情况数与总情况是之比.
9.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )
15.经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是.

人教版数学九年级上学期《概率初步》单元检测附答案

人教版数学九年级上学期《概率初步》单元检测附答案
故选择7获胜的可能性大.
故选A.
[点睛]本题考查用列表法或画树状图求概率,解此题的关键在于熟练掌握其知识点.
3.在–1,1,2这三个数中任意抽取两个数 , ,则一次函数 的图象不经过第二象限的概率为( )
A. B. C. D.
[答案]B
[解析]
分析:
详解:根据题意可得共有6种情况:①k=-1,m=1;②k=1,m=-1;③k=-1,m=2;④k=2,m=-1;⑤k=1,m=2;⑥k=2,m=1;符合题意的有①和③,则P(不经过第二象限)= ,故选B.
A. B. C. D.
[答案]D
[解析]
试题分析:好人牌有六张,共有9张牌,所以抽到好人牌的概率是 ,故选D.
5.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( )
A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大
C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大
A.7B.6C.5D.4
3.在–1,1,2这三个数中任意抽取两个数 , ,则一次函数 的图象不经过第二象限的概率为( )
A. B. C. D.
4.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小明参与游戏,如果只随机抽取1张,那么小明抽到好人牌的概率是( )
A. B. C. D.
5.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( )
A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大
C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大
6.如图的四个转盘中,转盘3,4被分成8等分,若让转盘自由转动一次停止后,指针落在阴影区域内可能性从大到小排列为( )

人教版数学九年级上册《概率初步》单元综合检测题含答案

人教版数学九年级上册《概率初步》单元综合检测题含答案

人教版数学九年级上学期《概率初步》单元测试(满分120分,考试用时120分钟)一、选择题(共10 小题,每小题 3 分,共30 分)1.甲乙两人下棋,甲获胜的概率为,和棋的概率为,那么乙不输的概率为()A. B. C. D.2. 一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A. B. C. D.3.下列说法正确的有()①一事件发生的概率不可能大于;②大量试验中事件发生的频率就是事件发生的概率;③若一堆产品的合格率为,则从中任取件就一定有件合格品,件次品;④用列举法求概率时列举出来的所有可能的结果应该是等可能的A. 个B. 个C. 个D. 个4. 一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的概率是()A. B. C. D.5.有,两只不透明口袋,每只品袋里装有两只相同的球,袋中的两只球上分别写了“细”、“致”的字样,袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A. B. C. D.6.小明有四双样式相同、大小相同的袜子,其中两双为蓝色,两双为白色.这八只袜子散放在一起,小明不看而取,一次取出一只,问至多取几次就能保证取得同样颜色的一双袜子()A. 次B. 次C. 次D. 次7.利用计算机产生的随机数(整数),连续两次随机数相同的概率是()A. B. C. D. 不能确定8.甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少()A. B. C. D.9. 小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是()A. 游戏对小明有利B. 游戏对小白有利C. 这是一个公平游戏D. 不能判断对谁有利10.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在和,则口袋中白色球的个数可能是()A. B. C. D.二、填空题(共10 小题,每小题 3 分,共30 分)11.在一个不透明的布带中装有黄色、白色乒乓球共个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在左右,则口袋中白色球可能有________个.12.在抛掷一个图钉的试验中,着地时钉尖触地的概率约为.如果抛掷一个图钉次,则着地时钉尖没有触地约为________次.13.事件A发生的概率为0.05,大量重复做这种试验,事件A平均每100次发生的次数是.14.某同学期中考试数学考了100分,则他期末考试数学考100分.(选填“不可能”“可能"或“必然”)15.盒子中装有个红球,个黄球和个蓝球,每个球除颜色外没有其它的区别,从中任意摸出一个球,这个球不是红球的概率为________.16.小明和小颖按如下规则做游戏:桌面上放有粒豆子,每次取粒或粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为,那么小明第一次应该取走________粒.17.袋中有个红球,个白球,现从袋中任意摸出球,摸出白球的概率是________.18.有三张正面分别标有数字,,的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后从中再任取一张,则两次抽得卡片上数字的差的绝对值大于的概率是________.19.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有个选项,第二道单选题有个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第________题使用“求助”.20.在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:实验种子(粒)发芽频数(粒)估计该麦种的发芽概率是________.三、解答题(共6 小题,每小题10 分,共60 分)21.桌面上放有张卡片,正面分别标有数字,,,.这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍反面朝上放回洗匀,乙也从中任意抽出一张,记下卡片上的数字,然后将这两数相加.请用列表或画树状图的方法求两数之和为的概率;若甲与乙按上述方式做游戏,当两数之和为时,甲胜;当两数之和不为时,则乙胜.若甲胜一次得分,谁先达到分为胜.那么乙胜一次得多少分,这个游戏对双方公平?22.甲、乙两人用如图的两个分格均匀的转盘、做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:用列表格或画树状图的方法表示游戏所有可能出现的结果.求甲、乙两人获胜的概率.学|科|网...学|科|网...学|科|网...23.某儿童娱乐场有一种游戏,规则是:在一个装有个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为人次,公园游戏场发放的福娃玩具为个.求参加一次这种游戏活动得到福娃玩具的概率;请你估计袋中白球接近的概率.24.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有个,黄球有个,现从中任意摸出一个是白球的概率为.试求袋中蓝球的个数;第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.25.,两个口袋中,都装有三个相同的小球,分别标有数字,,,小刚、小丽两人进行摸球游戏.游戏规则是:小刚从袋中随机摸一个球,同时小丽从袋中随机摸一个球,当两个球上所标数字之和为奇数时小刚赢,否则小丽赢.这个游戏对双方公平吗?通过列表或画树状图加以说明.26.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共个,某学习小组做摸球试验,将球搅匀后,从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:请估计:当很大时,摸到白球的频率将会接近于多少?摸球的次数摸到白球的次数摸到白球的概率假如你去摸一次,你摸到白球的可能性为多大?这时摸到黑球的可能性为多大?试估算口袋中黑、白两种颜色的球各有多少个?参考答案一、选择题(共10 小题,每小题 3 分,共30 分)1.甲乙两人下棋,甲获胜的概率为,和棋的概率为,那么乙不输的概率为()A. B. C. D.【答案】D【解析】【分析】根据甲获胜的概率+和棋的概率+乙获胜的概率=1,求得乙获胜的概率,即可求得乙不输的概率.【详解】根据题意,乙获胜的概率是1-20%-40%=40%,∴乙不输的概率为::40%+40%=80%.故选D.【点睛】本题主要考查了概率的意义,根据“甲获胜的概率+和棋的概率+乙获胜的概率=1” 求得乙获胜的概率,是解决问题的关键.2. 一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A. B. C. D.【答案】D【解析】试题分析:∵布袋里装有5个球,其中3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是:.故选D.考点:概率公式.视频3.下列说法正确的有()①一事件发生的概率不可能大于;②大量试验中事件发生的频率就是事件发生的概率;③若一堆产品的合格率为,则从中任取件就一定有件合格品,件次品;④用列举法求概率时列举出来的所有可能的结果应该是等可能的A. 个B. 个C. 个D. 个【答案】B【解析】【分析】根据概率的意义依次判断后即可解答.【详解】①一事件发生的概率不可能大于1,正确,②大量试验中事件发生的频率就是事件发生的概率;不正确,概率是多次实验数据下的结果,频率只可近似的看作概率;③若一堆产品的合格率为95%,则从中任取100件就一定有95件合格品,5件次品,③错误,④用列举法求概率时列举出来的所有可能的结果应该是等可能的,正确.正确的有2个,故选B.【点睛】概率是反映事件的可能性大小的量.概率是大量实验数据下的结果,在小数据条件下,概率就失去意义了.必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.4. 一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的概率是()A. B. C. D.【答案】B【解析】试题分析:偶数有2、4、6,则P(向上的一面的点数为偶数)=.考点:概率的计算5.有,两只不透明口袋,每只品袋里装有两只相同的球,袋中的两只球上分别写了“细”、“致”的字样,袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A. B. C. D.【答案】B【解析】【分析】列举出所有情况,看刚好能组成“细心”的情况占总情况的多少即可.【详解】画树状图:学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...共有4种情况,刚好能组成“细心”字样的情况有一种,所以概率是,故选B.【点睛】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是不放回实验.6.小明有四双样式相同、大小相同的袜子,其中两双为蓝色,两双为白色.这八只袜子散放在一起,小明不看而取,一次取出一只,问至多取几次就能保证取得同样颜色的一双袜子()A. 次B. 次C. 次D. 次【答案】B【解析】【分析】因为只有两种颜色,所以如果前两次取出的颜色不同,则第三次取出的一定与前两次中的某一次的颜色相同.【详解】若第一次取出的是蓝色,第二次取出的若与第一次的颜色不同,是白色,则第三次取出的若是蓝色,就与第一次取出的颜色相同,若是白色就与第二次取出的颜色相同.所以最多取3次就能保证取得同样颜色的一双袜子.故选B.【点睛】本题考查了概率的意义,利用只有蓝、白两种颜色,取出的两种颜色各占一半是解题的关键.7.利用计算机产生的随机数(整数),连续两次随机数相同的概率是()A. B. C. D. 不能确定【答案】A【解析】【分析】列出图表,然后根据概率公式列式进行计算即可得解.【详解】列表如下:共有100种情况,连续两次随机数相同的有10种情况,所以,P(连续两次随机数相同)=.故选A.【点睛】本题考查概率的求法,熟知概率公式(概率=所求情况数与总情况数之比)是解决问题的关键.8.甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少()A. B. C. D.【答案】C【解析】【分析】列举出所有情况,让甲的点数大于乙的情况数除以总情况数即为所求的概率.【详解】列表得:由表格可知,共有36种等可能的情况,甲的点数大于乙时,共有5+4+3+2+1=15种情况,甲获胜的机率是=.故选C.【点睛】本题考查了用列表法(或树状图法)求概率,列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果;当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法;当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.9. 小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是()A. 游戏对小明有利B. 游戏对小白有利C. 这是一个公平游戏D. 不能判断对谁有利【答案】C【解析】试题分析:根据游戏规则:总共结果有4种,分别是奇偶,偶奇,偶偶,奇奇,它们的和为奇,奇,偶,偶;由此可得:两人获胜的概率,进而得出答案.解:两人写得数字共有奇偶、偶奇、偶偶、奇奇四种情况,因此和为奇数或为偶数概率都为;所以这是一个公平游戏.故选:C.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.视频10.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在和,则口袋中白色球的个数可能是()A. B. C. D.【答案】C【解析】【分析】由频率之和为1计算出白球的频率,再由数据总数×频率=频数,计算白球的个数即可.【详解】∵摸到红色球、黑色球的频率稳定在0.15和0.45,∴摸到白球的频率为1-0.15-0.45=0.40,∴口袋中白色球的个数可能是40×0.40=16个.故选C.【点睛】本题考查了由频率估计概率,大量反复试验下频率稳定值即概率.解决本题的关键是根据频率之和为1计算出摸到白球的频率.二、填空题(共10 小题,每小题 3 分,共30 分)11.在一个不透明的布带中装有黄色、白色乒乓球共个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在左右,则口袋中白色球可能有________个.【答案】32【解析】【分析】已知小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在20%左右,可得黄色球有40×20%=8个,而布袋中装有黄色、白色乒乓球共40个,所以口袋中白色球有40-8=32个.【详解】∵小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在20%左右,∴黄色球有40×20%=8个,∵布袋中装有黄色、白色乒乓球共40个,∴口袋中白色球可能有40-8=32个.故答案为:32.【点睛】本题考查了利用频率估计概率.大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.12.在抛掷一个图钉的试验中,着地时钉尖触地的概率约为.如果抛掷一个图钉次,则着地时钉尖没有触地约为________次.【答案】54【解析】【分析】利用大量反复试验下频率稳定值即概率,由估计出部分数目=总体数目乘以相应概率求出即可.【详解】∵在抛掷一个图钉的试验中,着地时钉尖触地的概率约为0.46,∴没有触地的概率是1-0.46=0.54.∴如果抛掷一个图钉100次,则着地时钉尖没有触地约为:100×0.54=54次.故答案为:54.【点睛】本题主要考查了利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.事件A发生的概率为0.05,大量重复做这种试验,事件A平均每100次发生的次数是.【答案】5.【解析】试题解析:事件A发生的概率为0.05,大量重复做这种试验,则事件A平均每100次发生的次数为:100×0.05=5.考点:概率的意义.14.某同学期中考试数学考了100分,则他期末考试数学考100分.(选填“不可能”“可能"或“必然”)【答案】可能.【解析】试题解析:某同学期中考试数学考了100分,是随机事件,则他期末考试数学可能考100分,考点:随机事件.15.盒子中装有个红球,个黄球和个蓝球,每个球除颜色外没有其它的区别,从中任意摸出一个球,这个球不是红球的概率为________.【答案】【解析】【分析】从袋子中随机摸出一个球,共有10种情况,而摸到的球不是红球的情况有3种,根据概率公式求解即可.【详解】∵从袋子中随机摸出一个球,共有10种情况,而摸到的球不是红球的情况有3种,∴摸到的球不是红球的概率为.故答案为:.【点睛】本题考查了简单事件的概率:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.16.小明和小颖按如下规则做游戏:桌面上放有粒豆子,每次取粒或粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为,那么小明第一次应该取走________粒.【答案】2【解析】【分析】根据概率的意义考虑出取得最后1粒的方法即可得解.【详解】根据游戏规则,先取的人第一次取2粒,然后保证第二次所取的粒数与另一人所取粒数之和为3即可取到最后1粒,从而使获胜的概率为1,所以,小明先取,要使小明获胜的概率为1,小明第一次应该取走2粒.故答案为:2.【点睛】本题考查了概率的意义,理解题目信息,判断出使两人所取的粒数之和是3是解题的关键.17.袋中有个红球,个白球,现从袋中任意摸出球,摸出白球的概率是________.【答案】【解析】【分析】根据概率的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率.【详解】根据题意分析可得:箱子里共有5个球,从箱子中任意摸出一个球是白球的概率是.故答案为:.【点睛】本题考查了简单事件概率的求法:①找出符合条件的情况数目;②找出全部情况的总数;二者的比值就是其发生的概率.18.有三张正面分别标有数字,,的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后从中再任取一张,则两次抽得卡片上数字的差的绝对值大于的概率是________.【答案】【解析】【分析】根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽得卡片上数字的差的绝对值大于1的情况,再利用概率公式求解即可.【详解】画树状图得:∵共有9种等可能的结果,两次抽得卡片上数字的差的绝对值大于1的有2种情况,∴两次抽得卡片上数字的差的绝对值大于1的概率是:.故答案为:.【点睛】本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.19.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有个选项,第二道单选题有个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第________题使用“求助”.【答案】一【解析】【分析】根据概率的求法,求出第一题使用“求助”小明顺利通关的概率及在第二题使用“求助”小明顺利通关的概率,再比较大小,即可判断出小明在第几题使用“求助”.【详解】第一题使用“求助”小明顺利通关的概率是:;第二题使用“求助”小明顺利通关的概率是:;∵,∴建议小明在第一题使用“求助”.故答案为:一.【点睛】本题主要考查了概率的意义和应用,解答本题的关键是分别求出第一题使用“求助”和第二题使用“求助”使小明顺利通关的概率.20.在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:实验种子(粒)发芽频数(粒)估计该麦种的发芽概率是________.【答案】【解析】【分析】根据7批次种子粒数从1粒增加到3000粒时,种子发芽的频率趋近于0.95,所以估计种子发芽的概率为0.95.【详解】∵种子粒数3000粒时,种子发芽的频率趋近于0.95,∴估计种子发芽的概率为0.95.故答案为:0.95.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共6 小题,每小题10 分,共60 分)21.桌面上放有张卡片,正面分别标有数字,,,.这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍反面朝上放回洗匀,乙也从中任意抽出一张,记下卡片上的数字,然后将这两数相加.请用列表或画树状图的方法求两数之和为的概率;若甲与乙按上述方式做游戏,当两数之和为时,甲胜;当两数之和不为时,则乙胜.若甲胜一次得分,谁先达到分为胜.那么乙胜一次得多少分,这个游戏对双方公平?【答案】(数字之和为);要使这个游戏对双方公平,乙胜一次得分应为分.【解析】【分析】(1)用树状图法求得所以等可能的结果,再求得两个数字和为5的结果,利用概率公式求解即可;(2)分别计算甲、乙二人获胜的概率,由此即可求解.【详解】共有种等可能的情况,和为的有,,共种情况,可得:(数字之和为);因为(甲胜),(乙胜),故甲胜一次得分,要使这个游戏对双方公平,乙胜一次得分应为:(分).【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.甲、乙两人用如图的两个分格均匀的转盘、做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:用列表格或画树状图的方法表示游戏所有可能出现的结果.求甲、乙两人获胜的概率.【答案】所有可能出现的结果见表格;(甲获胜),(乙获胜).【解析】【分析】(1)根据题意列出表格,即可求得所有可能出现的结果;(2)根据表格可知:积是奇数的结果有种,即、、、,积是偶数的结果有种,即、、、、、、、,根据概率公式求解即可.【详解】所有可能出现的结果如图:从上面的表格(或树状图)可以看出,所有可能出现的结果共有种,且每种结果出现的可能性相同,其中积是奇数的结果有种,即、、、,积是偶数的结果有种,即、、、、、、、,∴甲、乙两人获胜的概率分别为:(甲获胜),(乙获胜).【点睛】本题考查了用列表法(或树状图法)求概率:当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法;当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.23.某儿童娱乐场有一种游戏,规则是:在一个装有个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为人次,公园游戏场发放的福娃玩具为个.求参加一次这种游戏活动得到福娃玩具的概率;请你估计袋中白球接近的概率.【答案】参加一次这种游戏活动得到福娃玩具的概率是;估计袋中白球接近的概率为.【解析】【分析】(1)根据概率的频率定义进行计算即可;(2)设袋中共有x个球,根据摸到红球的概率列出方程,解方程求的x的值,再求袋中白球接近的概率即可.【详解】根据题意可得:参加这种游戏活动为人次,公园游戏场发放的福娃玩具为;故参加一次这种游戏活动得到福娃玩具的概率为,∴参加一次这种游戏活动得到福娃玩具的概率是;∵实验系数很大,大数次实验时,频率接近与理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率是,设袋中白球有个,根据题意得:,解得:,经检验,是方程的解.∴估计袋中白球接近个,。

人教版九年级上册数学《第25章概率初步》单元测试题(解析版)

人教版九年级上册数学《第25章概率初步》单元测试题(解析版)

人教版九年级上册数学《第25章概率初步》单元测试题(解析版)1.下列事件中,是随机事件的是()a.通常温度降到0℃以下,纯净水结冰b.随意翻到一本书的某页,这页的页码是偶数c.我们班里有46个人,必有两个人是同月生的d、在一个不透明的袋子里有两个红色的球和一个白色的球。

除了颜色外,它们都一样。

如果你随意触摸一个球,你更可能触摸到白色的球而不是红色的球2.从甲、乙、丙、丁四人中任选1名代表,甲被选中的可能性是()a.b。

c.d、一,3.甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中()a.甲获胜的可能更大b、 A和b同样有可能赢C。

b更有可能赢d.由于是随机事件,因此无法估计以下习语中描述的事件是随机事件b.水中捞月c、等兔子d.缘木求鱼5.在下列事件中,这是不可避免的:(a)买电影票,座位号必须是偶数。

B.随时打开电视,播放新闻c.将△acb绕点c旋转50°得到△a′c′b′,这两个三角形全等d.阴天就一定会下雨6.下列事件是不可能发生的:(a)地球的体积大于太阳的体积;(c)在降雨期间,湖的水位上升b.第一个来学校的是女生d.体育运动中肌肉拉伤7.如图所示,在游戏转盘中,红色、黄色和蓝色扇区的中心角分别为60°、90°和210°。

转盘自由旋转后指针落在黄色区域的概率为()a.b.c.d.8.小王连续四次投掷质地均匀的硬币,硬币都朝上落下。

如果他第五次扔硬币,硬币朝上的概率是()a.1b.c。

d.9.如图所示,在3×3的正方形网格中,a点和B点位于网格点(网格线的交点)上,并且△ ABC轴对称图形是()a.b.c、 d。

10.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()a.b。

c.d。

人教版九年级上册数学《概率初步》单元测试卷(含答案)

人教版九年级上册数学《概率初步》单元测试卷(含答案)

人教版九年级上册数学《概率初步》单元测试卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,从中任意取1只,是二等品的概率等于()A.112 B.16C.14D.7122.学校从5位骨干教师中(含有甲)抽调3人组成,则甲一定抽调到的概率是()A.35 B.25C.45D.153.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。

其中必测项目为耐力类,抽测项目为:速度类有50米、100米、50米×2往返跑三项,力量类有原地掷实心球、立定跳远,引体向上(男)或仰卧起坐(女)三项。

市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()A.13B.23C.16D.194.6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、直角梯形、正方形、正五边形、圆.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是()A.16 B.13C.12D.235.下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上6.如下图,大厅中铺了3种地砖(除了颜色外无其他差别),一种宠物在地板上自由地走来走去,它最后停留在哪种地砖上的概率较大?()A、砖 B 、砖 C 砖 D 、砖或砖. 7.下列成语所描述的事件是必然发生的是 ( )A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖 8.下列事件是必然事件的是( )A .抛掷一枚硬币,四次中有两次正面朝上 B.打开电视体育频道,正在播放NBA 球赛 C.射击运动员射击一次,命中十环 D.若a 是实数,则0a 9.下列说法正确的是( )A .“明天降雨的概率是80%”表示明天有80%的时间降雨B .“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C .“彩票中奖的概率是1%”表示买100张彩票一定会中奖D .“抛一枚正方体骰子朝正面的数为奇数的概率是0.5”表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数10.如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是( )A .425 B .525 C .625 D .925二 、填空题(本大题共5小题,每小题3分,共15分)11.为迎接2024年奥运会,小甜同学设计了两种乒乓球,一种印有奥运五环图案,另一种印有奥运福娃图案.若将8个印有奥运五环图案和12个印有奥运福娃图案的乒乓球放入一个空袋中,且每个球的大小相同,搅匀后在口袋中随机摸出一个球,则摸到印有奥运五环图案的球的概率是 .987655432112.在3 □ 2 □(-2)的两个空格□中,任意填上“+”或“-”,则运算结果为3的概率是.13.从1-,1,2三个数中任取一个,作为一次函数3=+的k值,则所得一次函数y kx中y随x的增大而增大的概率是。

新人教版九年级数学上册《概率初步》单元测试卷及答案

新人教版九年级数学上册《概率初步》单元测试卷及答案

新人教版九年级数学上册《概率初步》单元测试卷及答案一、选择题1、“抛一枚均匀硬币,落地后正面朝上”这一事件是( )A.必然事件 B.随机事件 C.确定事件 D.不可能事件2、下列四种说法中不正确的是()A.为了解一种灯泡的使用寿命,宜采用普查的方法;B.“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;C.“打开电视机,正在播放少儿节目”是随机事件;D.如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.3、小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A. B. C. D.4、一个事件的概率不可能是()A.0 B. C.1 D.5、下列事件是必然事件的是()A.通常加热100℃时,水沸腾 B.篮球队员在罚球线上投篮一次,未投中C.任意画一个三角形,其内角和为360° D.经过信号灯时,遇到红灯6、一只不透明的口袋中原来装有1个白球、2个红球,每个球除颜色外完全相同.则下列将袋中球增减的办法中,使得将球摇匀,从中任意摸出一个球,摸到白球与摸到红球的概率不相等为()A.在袋中放入1个白球 B.在袋中放入1个白球、2个红球C.在袋中取出1个红球 D.在袋中放入2个白球、1个红球7、在下列事件中,是必然事件的是()A.买一张电影票,座位号一定是偶数 B.随时打开电视机,正在播新闻C.通常情况下,抛出的篮球会下落 D.阴天就一定会下雨8、读大学的小慧准备网购一双鞋子,在登录支付宝的时候忘记了自己的密码,她只记得密码的前五位,后三位由5,1,2这三个数字组成,但具体顺序忘记了,她第一次就输入正确密码的概率是( )A. B. C. D.9、九(1)班男生参加体育加试,经抽签分为①②③三个小组,已知小明不在①组,小华不在③组,那么小明与小华分在同一组的概率是()A. B. C. D.10、从-3,1,-2这三个数中,任选两个数的积作为k的值,则使正比例函数y=kx 的图象经过第二、四象限的概率是( )A. B. C. D.二、填空题11、给出四个事件:①连续2次抛掷1枚质地均匀的硬币,2次都出现“正面朝上”;②发射一颗炮弹,命中目标;③在标准大气压下,水在1℃时结冰;④一个实心铁块丢入水中,铁块浮起,其中随机事件有_________.12、从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是____.13、学校要从小明、小红与小华三人中随机选取两人作为升旗手,则小明和小红同时入选的概率是_________.14、在-1,0,,,π,0.10110中任取一个数,取到无理数的概率是__________.15、甲、乙、丙三人随意排成一列拍照,甲恰好排在中间的概率是_________.16、一个不透明口袋里有黑球、白球各一个,除颜色外均相同,每次取出一个球,然后放回口袋里,小亮取了5次都是白球,当他第6次取时,取到白球的概率是______.17、如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是______.18、有5张看上去无差别的卡片,上面分别写着0,π,,,1.333,随机抽取1张,则取出的数是无理数的概率是_______.19、某班甲、乙、丙三位同学被选中参加即将举行的学校运动会100米比赛,预赛分为A、B、两组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是______.20、如图,在4×4的方格中,A、B、C、D、E、F分别位于格点上,以点A、点B为顶点,再从C、D、E、F四点中任取一点作为第三个顶点画三角形,则所画三角形为等腰三角形的概率是________.三、解答题21、一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球;(2)搅匀后从中任意摸出2个球,2个都是白球.22、八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.23、一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为.()请直接写出袋子中白球的个数.()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)24、一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.25、一只不透明的袋子中装有1个白球,2个黄球和3个红球,这些球除颜色外都相同,将球摇匀,从中任意摸出1个球,(1)会出现哪些可能的结果?(2)事先能确定摸出的一定是红球吗?(3)你认为摸到哪种颜色的球的概率最大?(4)怎样改变袋子中白球、黄球、红球的个数,使摸到这些颜色的球的概率相等?26、为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图和条形统计图(如图所示).(1)体育所占的百分比是_______,选择其他的人数是________(2)在问卷调查中,小丁和小李分别选择了音乐类和美术类,校学生会要从选择音乐类和美术类的学生中分别抽取一名学生参加活动,用列表或画树状图的方法求小丁和小李恰好都被选中的概率;(3)如果该学校有500名学生,请你估计该学校中最喜欢体育运动的学生约有多少名?27、我县实施新课程改革后,学生的自主学习、合作交流能力有很大提高,胡老师为了了解班级学生自主学习、合作交流的具体情况,对某班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,胡老师一共调查了名同学,其中女生共有 ___名;(2)将上面的条形统计图补充完整;(3)为了共同进步,胡老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.参考答案1、B2、A3、A4、D5、A6、B7、C8、C9、C10、D11、①②12、.13、14、.15、16、17、18、0.419、0.520、.21、(1);(2).22、(1)40(2)15%(3)23、(1)袋子中白球有2个;(2).24、(1);(2)从袋中取出黑球的个数为2个.25、(1)白、黄、红三种;(2)不能;(3)红球;(4)袋子中白球、黄球、红球的个数相同26、 40 8人(2);(3)200名27、(1)20,11;(2)补图见解析;(3)【解析】1、根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.点睛:本题比较简单,主要考查了随机事件,解决此类题目,要学会关注身边的事物,并用数学的方法和思想去分析、看待、解决问题.2、分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据随机事件、必然事件、不可能事件,可得答案.详解:A.为了解一种灯泡的使用寿命,调查具有破坏性,宜采用抽样调查的方法,A错误;B.“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件,故B正确;C.“打开电视机,正在播放少儿节目”是随机事件,故C正确;D.如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件,故D正确;故选:A.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查;随机事件是可能发生也可能不发生的事件,必然事件是一定发生的事件,不可能事件是一定不发生的事件.3、试题解析:分别记小明、小华选择“打扫社区卫生”为事件,小明、小华选择“参加社会调查”为事件,则两人的选择结果共有这四种等可能的情况,其中符合条件的只有这一种情况,故两人同时选择“参加社会调查”的概率为 .所以本题应选A.4、一个事件的概率不可能是.故选D.点睛:事件A 发生的概率0≤P(A)≤1.5、A选项:通常加热到100℃时,水沸腾是必然事件,故本选项正确;B选项:篮球队员在罚球线上投篮一次,未投中是随机事件,故本选项错误;C选项:度量三角形内角和,结果是360°是不可能事件,故本选项错误;D选项:经过信号灯时,遇到红灯是随机事件,故本选项错误.故选A.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、分析:根据概率公式,分别求出各选项中摸到白球与摸到红球的概率即可求解.详解:A、在袋中放入1个白球,则摸到白球的概率为:,摸到红球的概率为:,故本选项不符合题意;B、在袋中放入1个白球、2个红球,则摸到白球的概率为:,摸到红球的概率为:,故本选项符合题意;C、在袋中取出1个红球,则摸到白球的概率为:,摸到红球的概率为:,故本选项不符合题意;D、在袋中放入2个白球、1个红球,则摸到白球的概率为:,摸到红球的概率为:,故本选项不符合题意;故选B.点睛:本题考查了概率公式:概率=所求情况数与总情况数之比,熟练掌握概率的计算公式是解答本题的关键.7、根据必然事件指在一定条件下一定发生的事件,利用这个定义即可判定.解:A. 买一张电影票,座位号一定是偶数,是随机事件;B. 随时打开电视机,正在播新闻,是随机事件;C. 通常情况下,抛出的篮球会下落,是必然事件;D. 阴天就一定会下雨,是随机事件.故选C.8、排列这三个数字为:512,521,251,215,125,152,共6种可能,符合条件可能只有1种,因此第一次就输入正确密码的概率为:.故选C.9、分析:画出树状图得出所有等可能结果,再根据概率公式计算可得.详解:画树状图如下:由树状图可知,共有4种等可能结果,其中小明与小华分在同一组的只有1种,所以小明与小华分在同一组的概率为,故选:C.点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.10、根据题意画树状图为:共有6种可能的情况,而正比例函数的图像经过二、四象限的条件是k<0,因此符合的有4种可能,因此符合条件的概率为:.故选D.点睛:此题主要考查了树状图或列表法求概率,解题时根据抽取两数求积k的值,然后根据正比例函数图像经过的象限判断出k的范围,然后求符合条件的概率即可.11、分析:根据随机事件是可能发生也可能不发生的事件,然后根据事件发生的可能性判断即可.详解:①连续2次抛掷1枚质地均匀的硬币,2次都出现“正面朝上”,有可能发生,也可能不发生,是随机事件;②发射一颗炮弹,命中目标,有可能发生,也可能不发生,是随机事件;③在标准大气压下,水在1℃时结冰,一定不发生,是不可能事件;④一个实心铁块丢入水中,铁块浮起,是不可能事件.故答案为:①②.点睛:此题主要考查了随机事件的辨别,关键是利用自己对生活实际问题的认识.12、试题分析:画树状图得:∵共有12种等可能的结果,点(m,n)恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数图象上的概率是:=.故答案为:.13、试题分析:根据题意可得所有可能出现的情况有:小明,小红;小明,小华;小红,小华三种情况,则符合题意的只有1种,故概率为.14、共有6个实数,其中无理数有2个,所以取到无理数的概率是.故本题应填.15、试题分析:甲、乙、丙三人随意排成一列拍照,共6种情况,即甲、乙、丙;乙、甲、丙;甲、丙、乙;乙、丙、甲;丙、甲、乙;丙、乙、甲;甲排在中间的有2种情况,故其概率是=,故答案为:.点睛:本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16、分析:根据题意,明确袋子中始终有两个小球,当摸任何一次白球和黑球出现的概率都一样,求解即可.详解:根据题意,明确袋子中始终有两个小球,第6次摸到白球的概率为.故答案为:.点睛:此题考查了概率.用到的知识点为:概率=所求情况数与总情况数之比.17、根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有12个,而能构成一个轴对称图形的有2个情况(如图所示)∴使图中黑色部分的图形构成一个轴对称图形的概率是.18、解:一共有5个数,无理数有π,共2个,∴抽到写有无理数的卡片的概率是2÷5=0.4.故答案为:0.4.点睛:考查概率公式的应用;判断出无理数的个数是解决本题的易错点.19、画树形图如下:甲、乙二人分组情况共有4种等可能结果,其中两人在一组的有2种,∴P(甲、乙二人在一组)=.20、由勾股定理知,AD=BD=,ABD为等腰三角形;AB=BF,ABF为等腰三角;而AB=AC=,ABC为等腰三角形; BE=,AE=,AB,ADE不是等腰三角形,所以所画三角形为等腰三角形的概率是.21、试题分析:列举出所有的可能情况,计算概率即可;列举得出所有等可能的情况数,找出两次都是红球的情况数,即可求出所求的概率.试题解析:搅匀后从中任意摸出1个球,所有可能出现的结果共有4种,它们出现的可能性相同.所有的结果中,满足“恰好是白球”(记为事件A)的结果有2种,所以把2个白球分别记为白1,白2,搅匀后从中任意摸出2个球,所有可能出现的结果有:(白1,白2)、(白1,红)、(白2,红)、(白1,黄)、(白2,黄)、(红,黄),共有6种,它们出现的可能性相同.所有的结果中,满足“2个都是白球”(记为事件B)的结果只有1种,所以22、试题分析:(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.试题解析:解:(1)∵喜欢散文的有10人,频率为0.25,∴m=10÷0.25=40;(2)在扇形统计图中,“其他”类所占的百分比为 ×100%=15%,故答案为:15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.考点:1.列表法与树状图法;2.频数(率)分布表;3.扇形统计图.23、试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.试题解析:(1)设袋子中白球有x个,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:.考点:列表法与树状图法;概率公式.24、试题分析:(1)由一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,直接利用概率公式求解即可求得答案;(2)首先设从袋中取出x个黑球,根据题意得:,继而求得答案.试题解析:(1)∵一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,∴从袋中摸出一个球是黄球的概率为:;(2)设从袋中取出x个黑球,根据题意得:,解得:x=2,经检验,x=2是原分式方程的解,所以从袋中取出黑球的个数为2个.【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.25、分析:(1)根据事情发生的可能性,注意判断即可;(2)根据红球的多少判断,只能确定出现的可能性较大;(3)根据红球的数量多,抽出的可能性就大;(4)根据概率相等就是出现的可能性一样大,可让数量相等即可.详解:(1)会出现:白、黄、红三种(2)不能确定摸出的球一定是红球;(3)由于红球数量最多,所以红球出现的概率最大;(4)袋子中白球、黄球、红球的个数相同时,三者的概率相等.点睛:此题主要考查了事件发生的可能性,关键是根据事件发生的可能大小和概率判断即可,比较简单的中考常考题.26、分析:(1)用单位“1”减去美术、音乐、其它所占的百分比即得体育所占的百分比;用喜欢音乐的人数4除以喜欢音乐的人数所占百分比即抽取学生总数,然后用所求总数乘以32%即可求喜欢其它的人数;(2)树状图和列表法均可,列出所有可能发生的情况数,用小丁和小李恰好都被选中的情况数除以总数即可;(3)利用样本估计总体的方法,用500×调查的25名学生中最喜欢体育运动的学生所占的百分比即可.详解:(1)如图,(2)易知选择音乐类的有4人,选择美术类的有3人.记选择音乐类的4人分别是小丁;选择美术类的3人分别是小李.小丁,,,小丁,,,,小丁,,小李,小李,小李小丁,小李由表可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是.(3)由(1)可知问卷中最喜欢体育运动的的学生占40%,得(名)所以该年级中最喜欢体育运动的学生约有200名.点睛:此题主要考查了条形统计图、扇形统计图、概率、样本估计总体思想,读懂统计图,从统计图中得到必要的信息是解决问题的关键.27、试题分析:(1)用A类学生的人数除以所占的百分比求出总人数,再根据C类学生所占百分比求出C类学生人数,减去男生人数即可得C类的女生人数,将A、B、C、D类的女生人数相加即可得;(2)根据(1)中求得的相关数据求出D类的男生数即可补全条形图;(3)用A表示男生,B表示女生,列表格,即可求出所选两位同学恰好是一位男同学和一位女同学的概率.试题解析:(1)总人数为:(1+2)÷15%=20(名),20×25%-3=2,所以女生共有:2+6+2+1=11(名),故答案为:20,11;(2)D类男生:20-11-1-4-3=1,补充条形统计图如图所示;(3)根据胡老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将A类与D类学生分为以下几种情况:由上表可知所选两位同学恰好是一位男同学和一位女同学的概率为.。

九年级上期末复习《第25章概率初步》单元评估测试题(有答案)

九年级上期末复习《第25章概率初步》单元评估测试题(有答案)

期末专题复习:人教版九年级数学上册_第25章_ 概率初步 _单元评估测试题一、单选题(共10题;共30分)1.下列说法正确的是( )A. “明天的降水概率为 80%”,意味着明天有 80%的时间降雨B. 掷一枚质地均匀的骰子,“点数为奇数”与“点数为偶数”的可能性相等C. “某彩票中奖概率是 1%”,表示买 100 张这种彩票一定会中奖D. 小明上次的体育测试成绩是“优秀”,这次测试成绩一定也是“优秀”2.有3个整式x ,x+1,2,先随机取一个整式作为分子,再在余下的整式中随机取一个作为分母,恰能组成成分式的概率是( )A. 13 B. 12 C. 23 D. 563.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( ) A. 28 B. 24 C. 16 D. 64.某校有一个两层楼的餐厅,甲、乙、丙三名学生各自随机选择其中的某个楼层的餐厅用餐,则甲、乙、丙三名学生在同一个楼层餐厅用餐的概率为() A.B.C.D.5.有5张形状、大小、质地等均完全相同的卡片,正面分别印有等边三角形、平行四边形、正方形、菱形、圆,背面也完全相同.现将这5张卡片洗匀后正面向下放在桌上,从中随机抽出一张,抽出的卡片正面图案既是中心对称图形,又是轴对称图形的概率是( ) A. 15 B. 25 C. 35 D. 456.甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所掷骰子的点数和大于6,则甲胜;反之,乙胜.则甲、乙两人中( )A. 甲获胜的可能最大B. 乙获胜的可能最大C. 甲、乙获胜的可能一样大D. 由于是随机事件,因此无法估计 7.下列事件是必然事件的是( )A. 打开电视机,任选一个频道,屏幕上正在播放天气预报B. 到电影院任意买一张电影票,座位号是奇数C. 在地球上,抛出去的篮球会下落D. 掷一枚均匀的骰子,骰子停止转动后偶数点朝上8.从2,2,3,4四个数中随机取两个数,第一个作为个位上的数字,第二个作为十位上的数字,组成一个两位数,则这个两位数是2的倍数的概率是( )A. 1B. 45 C. 34 D. 129.小杰想用6个球设计一个摸球游戏,下面是他的4个方案.不成功的是( ) A. 摸到黄球的概率为12 , 红球为12B. 摸到黄、红、白球的概率都为13C. 摸到黄球的概率为12,红球的概率为13,白球为16D. 摸到黄球的概率为23,摸到红球、白球的概率都是1310.在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是(),A. B. C. D. 1二、填空题(共10题;共33分)11. 在一块试验田抽取1000个麦穗考察它的长度(单位:cm)对数据适当分组后看到落在5.75~6.05之间的频率为0.36,于是可以估计出这块田里长度为5.75~6.05cm之间的麦穗约占________%.12.袋子里装有两个红球,它们除颜色外完全相同.从袋中任意摸出一球,摸出一个为红球,称为________事件;摸出一个为白球,称为________事件;(选填“必然”“不确定”“不可能”)13.一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是________.14.浙江省委作出“五水共治”决策.某广告公司用形状大小完全相同的材料分别制作了“治污水”、“防洪水”、“排涝水”、“保供水”、“抓节水”5块广告牌,从中随机抽取一块恰好是“治污水”广告牌的概率是 ________.15.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1000 2000 5000发芽种子粒数 85 318 652 793 1604 4005发芽频率0.850 0.795 0.815 0.793 0.802 0.801根据以上数据可以估计,该玉米种子发芽的概率约为________(精确到0.10).16.在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在0.15左右,则口袋中红色球可能有________ 个.17.(•绍兴)箱子中装有4个只有颜色不同的球,其中2个白球,2个红球,4个人依次从箱子中任意摸出一个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是________.18.在一只不透明的袋中装有红球、白球若干个,这些球除颜色外形状大小均相同.八(2)班同学进行了“探究从袋中摸出红球的概率”的数学活动,下表是同学们收集整理的试验结果:试验次数n 100 150 200 500 800 1000摸到红球的次数m 68 111 136 345 564 701mn0.68 0.74 0.68 0.69 0.705 0.701根据表格,假如你去摸球一次,摸得红球的概率大约是________ (结果精确到0.1).19.除颜色外完全相同的五个球上分别标有1,2,3,4,5五个数字,装入一个不透明的口袋内搅匀.从口袋内任摸一球记下数字后放回.搅匀后再从中任摸一球,则摸到的两个球上数字和为5的概率是________.20.小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方________.(填“公平”或“不公平”).三、解答题(共9题;共57分)21.某鞋店有A、B、C、D四款运动鞋,元旦期间搞“买一送一”促销活动,用树状图或表格求随机选取两款不同的运动鞋,恰好选中A、C两款的概率.22.甲班56人,其中身高在160厘米以上的男同学10人,身高在160厘米以上的女同学3人,乙班80人,其中身高在160厘米以上的男同学20人,身高在160厘米以上的女同学8人.如果想在两个班的160厘米以上的女生中抽出一个作为旗手,在哪个班成功的机会大?为什么?23.小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.24.体育课上,老师为了解女学生定点投篮的情况,随机抽取8名女生进行每人4次定点投篮的测试,进球数的统计如图所示.(1)求女生进球数的平均数、中位数;(2)投球4次,进球3个以上(含3个)为优秀,全校有女生1200人,估计为“优秀”等级的女生约为多少人?25.小颖和小明用如图所示的两个转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小颖得2分,否则小明得1分.这个游戏对双方公平吗?若你认为不公平,如何修改规则才能使游戏对双方公平?26.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 65 124 178 302 481 599 18030.65 0.62 0.593 0.604 0.601 0.599 0.601摸到白球的频率mn(1)请估计:当很大时,摸到白球的频率将会接近.(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)= .(3)试估算盒子里黑、白两种颜色的球各有多少只?27.学校新年联欢会上某班矩形有奖竞猜活动,猜对问题的同学即可获得一次机会,机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为台灯、笔记本、签字笔.请问:(1)一次,获得笔记本的概率是多少?(2)小明答对了问题,可以获得一次机会,请问小明能获得奖品的概率有多大?请你帮他算算.28.为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:甲 63 66 63 61 64 61乙 63 65 60 63 64 63(Ⅰ)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(Ⅱ)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.29.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】C4.【答案】A5.【答案】C6.【答案】A7.【答案】C8.【答案】C9.【答案】D10.【答案】B二、填空题11.【答案】3612.【答案】必然;不可能13.【答案】1514.【答案】1515.【答案】0.8016.【答案】917.【答案】1318.【答案】0.719.【答案】42520.【答案】公平三、解答题21.【答案】解:画树状图得:∵共有12种等可能的结果,恰好选中A、C两款的有2种情况,∴恰好选中A、C两款的概率为:212= 16.22.【答案】解:∵已经限定在身高160厘米以上的女生中抽选旗手,甲班身高在160厘米以上的女同学3人,乙班身高在160厘米以上的女同学8人,∴在甲班被抽到的概率为13,在乙甲班被抽到的概率为18,∵13>18,∴在甲班被抽到的机会大23.【答案】解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果,∴两次摸到卡片字母相同的概率为:59;∴小明胜的概率为59,小明胜的概率为49,∵59≠ 49,∴这个游戏对双方不公平24.【答案】(1)解:由条形统计图可得,女生进球数的平均数为:(1×1+2×4+1×3+4×2)÷8=2.5(个);∵第4,5个数据都是2,则其平均数为:2;∴女生进球数的中位数为:2(2)解:样本中优秀率为:38,故全校有女生1200人,“优秀”等级的女生为:1200× 38=450(人),答:“优秀”等级的女生约为450人25.【答案】解:画树状图得:故一共有6种情况,配成紫色的有1种情况,相同颜色的有1种情况,∴配成紫色的概率是,则得出其他概率的可能是:,∵×2<,∴这个游戏对双方不公平,若配成紫色,此时小颖得2分,配成相同颜色小明得2分,∵配成相同颜色的概率是,∴此时游戏公平26.【答案】解:(1)摸到白球的频率=(0.63+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,∴当实验次数为5000次时,摸到白球的频率将会接近0.6.(2)摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P (白球)=0.6. (3)∵白球的频率=0.6,∴白球个数=40×0.6=24,黑球=40-24=16.答:不透明的盒子里黑球有16个,白球有24个.27.【答案】解:(1)如图所示:黄色的有2个,则一次,获得笔记本的概率是:216=18; (2)如图所示:获奖的机会有7个,故一次,能获得奖品的概率为:716. 28.【答案】解:(Ⅰ)∵= =63, ∴s 甲2= ×[(63﹣63)2×2+(66﹣63)2+2×(61﹣63)2+(64﹣63)2]=3;∵==63,∴s 乙2=×[(63﹣63)2×3+(65﹣63)2+(60﹣63)2+(64﹣63)2]=,∵s 乙2<s 甲2 ,∴乙种小麦的株高长势比较整齐; (Ⅱ)列表如下: 63 66 63 61 64 61 63 63、63 66、63 63、63 61、63 64、63 61、63 65 63、65 66、65 63、65 61、65 64、65 61、65 60 63、60 66、60 63、60 61、60 64、60 61、60 63 63、63 66、63 63、63 61、63 64、63 61、63 64 63、64 66、64 63、64 61、64 64、64 61、64 6363、6366、6363、6361、6364、6361、63由表格可知,共有36种等可能结果,其中两株配对小麦株高恰好都等于各自平均株高的有6种, ∴所抽取的两株配对小麦株高恰好都等于各自平均株高的概率为 =.29.【答案】解:根据题意列树状图如下:由树状图可知,游戏结果有12中情况,其中两数之积为非负有7种,则两数之积为非负的概率为712,两数之积为负的情况有5种,则两数之积为为负的概率为512.512≠712,因此该游戏不公平。

单元测试(六)_概率初步

单元测试(六)_概率初步

单元测试(六) 概率初步一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.下列事件中,是必然事件的为( ) A.3天内会下雨B.打开电视,正在播放广告C.367人中至少有2人公历生日相同D.某妇产医院里,下一个出生的婴儿是女孩2.掷一枚质地均匀的硬币10次,下列说法正确的是( ) A.可能有5次正面朝上 B.必有5次正面朝上 C.掷2次必有1次正面朝上 D.不可能10次正面朝上3.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( ) A.3个 B.不足3个 C.4个 D.5个或5个以上4.对“某市明天下雨的概率是75%”这句话,理解正确的是( ) A.某市明天将有75%的时间下雨 B.某市明天将有75%的地区下雨 C.某市明天一定下雨D.某市明天下雨的可能性较大5.有5张大小、背面都相同的扑克牌,正面上的数字分別是4,5,6,7,8.若将这5张牌背面朝上洗匀后,从中任意抽取1张,那么这张牌正面上的数字为偶数的概率是( )A.15B.25C.35D.456.在如图中任意画一个点,落在黑色区域的概率是( )A.1π B 12C.πD.507.一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的机会是( )A.150B.225C.15D3108.如图,有四个可以自由转动的转盘,每个转盘被分成若干等份,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是( )A.转盘1与转盘4B.转盘2与转盘4C.转盘3与转盘4D.转盘2与转盘39.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是( )A.59B.13C.19D.3810.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是( )A.①B.②C.①②D.①③二、填空题(每小题3分,共15分)11.如图是可以自由转动的一个转盘,转动这个转盘,当它停下时,指针落在标有号码5上的扇形区域的可能性最大.12.把标有号码1,2,3,…,10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是______.13.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是______.14.小兰设计了一个转盘游戏:随意转动转盘,使指针最后落在红色区域的概率为13,如果她将转盘等分成12份,那么红色区域应占的份数是______.15.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是______.三、解答题(本大题共8个小题,满分75分)16.(8分)下列事件中,哪些是随机事件?哪些是必然事件?哪些是不可能事件?(1)打开电视机,正在播动画片;(2)任意掷一枚质地均匀的骰子,朝上的点数是6;(3)在一个平面内,三角形三个内角的和是190度;(4)线段垂直平分线上的点到线段两端的距离相等.17.(9分)一只不透明的袋子中装有1个红球、2个绿球和3个白球,每个球除颜色外都相同.将球搅匀后,从中任意摸出一球.(1)会有哪些等可能的结果;(2)你认为摸到哪种颜色的球可能性最大?摸到哪种颜色的球可能性最小?18.(9分)一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷试验,试验数据如表:(1)请直接写出a,b的值;(2)如果试验继续进行下去,根据上表的数据,这个试验的频率将稳定在它的概率附近,请你估计这个概率是多少;(3)如果做这种试验2000次,那么“兵”字面朝上的次数大约是多少?19.(9分)米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P(在客厅捉到小猫);(2)P(在小卧室捉到小猫);(3)P(在卫生间捉到小猫);(4)P(不在卧室捉到小猫).20.(9分)一个正方体骰子,其中一个面上标有“1”,两个面上标有“2”,三个面上标有“3”,求这个骰子掷出后:(1)“2”朝上的概率;(2)朝上概率最大的数;(3)如果规定出现朝上的数为1或2时,甲胜;出现朝上的数为3时乙胜,那么甲、乙谁获胜的机会大些?21.(10分)一个不透明的袋子装有仅颜色不同的5个小球,其中红球3个,黑球2个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A.请完成下面表格:(2)当(1)中的m=2时,请直接写出事件A发生的概率.22.(10分)(1)如图1是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?(2)请在图2中设计一个转盘:自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为38,落在白色区域的概率为38,落在黄色区域的概率为14.23.(11分)超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60元,50元,40元.一次性购物满300元者,如果不摇奖可返还现金15元.(1)摇奖一次,获一等奖的概率是多少?(2)老李一次性购物满了300元,他是参与摇奖划算还是领15元现金划算,请你帮他算算.参考答案1.C2.A3.D4.D5.C6.B7.D8.A9.B 10.B 11.512.31013.12 14.4 15.1416.解:(1)是随机事件;(2)是随机事件;(3)是不可能事件;(4)是必然事件.17.解:(1)一共有6种等可能的结果,其中摸到红球1种,摸到绿球2种,摸到白球3种.(2)摸到白球的可能性最大,摸到红球的可能性最小.18.解:(l)a=40×0.45=18;b=66÷120=0.55.(2)0.55.(3)2000×0.55=1100(次).19.解:(1)P(在客厅捉到小猫)=3090=13.(2)P(在小卧室捉到小猫)=1590=16.(3)P(在卫生间捉到小猫)=9+490=1390.(4)P(不在卧室捉到小猫)=90189015--=1930.20.解:(1)P(“2”朝上)=26=13.(2)P(“1”朝上)=16,P(“3”朝上)=36=12.因为12>13>16,所以朝上概率最大的数是3.(3)P(“1”或“2”朝上)=36=12,因为12=12,甲、乙获胜的机会一样大.21.解:(1)3 2 (2)当m=2时,P(A)=23.22.解:(1)P(红色)=150360=512;P(白色)=210360=712.(2)图略.23.解:(1)P(获一等奖)=116.(2)60×116+50×216|+40×416=20(元),因为20元>15元,所以参与摇奖划算.。

人教版九年级上学期数学《概率初步》单元综合检测题(附答案)

人教版九年级上学期数学《概率初步》单元综合检测题(附答案)
7.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩”抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在 的()
A.三边中垂线的交点B.三边中线的交点
C.三条角平分线的交点D.三边上高的交点
[答案]A
[解析]
[分析]
为使游戏公平,则凳子到三个人的距离相等,根据线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.
25.一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另外有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图所示).
(1)从口袋中摸出一个小球,所摸球上的数字大于2的概率为;
(2)小龙和小东想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于5,那么小龙去;否则小东去.你认为游戏公平吗?请用树状图或列表法说明理由.
16. 现有2类商品,每类商品各2件,现有2件商品被损坏,则损坏的是不同类商品的概率为_________;
17.甲、乙二人玩掷骰子游戏,规定同时掷出两枚骰子,点数和为奇数,甲得1分,点数和为偶数,乙得1分,谁先积满20分为胜,你认为这个游戏_____(填”公平”或”不公平”).
18.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____.
[详解]事件A:小明刚到教室,上课铃声就响了属于随机事件,事件B:掷一枚质地均匀的骰子(骰子的六个面上分别刻有1到6的点数),向上一面的点数不大于6都属于必然事件,

初三数学概率初步单元测试题及答案

初三数学概率初步单元测试题及答案

概率初步单元测评(时间:100分钟,满分:120分)班级: 姓名: 学号: 得分:一、选择题(每题3分,共36分)1.下列事件中是必然事件的是( )A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为1%,买10000张该种票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2.下列说法中正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定会发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列模拟掷硬币的实验不正确的是( )A.用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B.袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C.在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D.将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上4.在10000张奖券中,有200张中奖,如果购买1张奖券中奖的概率是( )A. B. C. D.5.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )A. B. C. D.6.一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是( )A. B. C. D.7.连掷两次骰子,它们的点数都是4的概率是( ) A.61 B.41 C.161 D.3618.如图4,一小鸟受伤后,落在阴影部分的概率为( ) A .21 B .31 C .41 D .1 图49.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( )A. B. C. D.10.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )A. B. C. D.11.如果小明将飞镖随意投中如图所示的圆形木板,那么镖落在小圆内的概率为( )A. B. C. D.12.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是( )A. B. C. D.二、填空题(每题4分,共24分)13.“抛出的蓝球会下落”,这个事件是事件.(填“确定”或“不确定”)14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)=______,P(摸到奇数)=_______.15.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_______.16.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为_______的概率最大,抽到和大于8的概率为_______.17.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.18.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是,则摸出一个黄球的概率是_______.三、解答题(共60分)19.(8分)一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数,从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,实验中共摸200次,其中50次摸到红球.20.(8分)一张椭圆形桌旁有六个座位,A、E、F先坐在如图所示的座位上,B、C、D三人随机坐到其他三个座位,求A与B不相邻而座的概率.21.(10分)你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等,现同时自由转动甲乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.请你:⑴列举(用列表或画树状图)所有可能得到的数字之积⑵求出数字之积为奇数的概率.22. (10分)23、在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复。

人教版数学九年级上学期《概率初步》单元测试含答案

人教版数学九年级上学期《概率初步》单元测试含答案

九年级上册数学《概率初步》单元测试卷(满分120分,考试用时120分钟)一、单选题1.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A .310B .15C .12D .7102.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC的()A .三边中垂线的交点B .三边中线的交点C .三条角平分线的交点D .三边上高的交点3.投掷硬币m次,正面向上n次,其频率p=nm,则下列说法正确的是()A .p一定等于1 2B .p一定不等于1 2C .多投一次,p更接近1 2D .投掷次数逐步增加,p稳定在12附近4.在一个袋子中装有4个黑球和若干个白球,每个球除颜色外都相同,摇匀后从中随机摸出一个球记下颜色,再把它放回袋子中,不断重复上述过程.一共摸了40次,其中有10次摸到黑球,则估计袋子中白球的个数大约是()A .12B .16C .20D .305.某商店举办有奖储蓄活动,购货满100元者发兑奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人购物满100元,那么他中一等奖的概率是()A .1100B .11000C .110000D .111100006.做重复试验:抛掷一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为()A .0.22B .0.42C .0.50D .0.587.任意掷一枚骰子,下列情况出现的可能性比较大的是( )A .面朝上的点数是3B .面朝上的点数是奇数C .面朝上的点数小于2D .面朝上的点数不小于38.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,并且选择每条路径的可能性相等,则它获得食物的概率是()A .13B .14C .27D .239.有一则笑话:妈妈正在给一对双胞胎洗澡,先洗哥哥,再洗弟弟.刚把两人洗完,就听到两个小家伙在床上笑.“你们笑什么?”妈妈问.“妈妈!”老大回答,“您给弟弟洗了两回,可是还没给我洗呢!”此事件发生的概率为( )A .14B .13C .12D .110.下列事件中,必然事件是()A .任意掷一枚均匀的硬币,正面朝上B .打开电视正在播放甲型H1N1流感的相关知识C .某射击运动员射击一次,命中靶心D .在只装有5个红球的袋中摸出1球,是红球11.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是()A .116B .316C .14D .51612.在一个不透明的盒子中,红色、白色、黑色的球共有40个,除颜色外其他完全相同,老师在课堂上组织同学通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,则盒子中黑色球的个数可能是()A .16B .18C .20D .22二、填空题13.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有A 个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则A 的值约为_____.14.已知长度为2?3?4?5?㎝,㎝,㎝,㎝的四条线段,从中任取三条线段能组成三角形的概率是________. 15.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为____.16.一只不透明的袋子中装有1个白球,2个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录下颜色后放回到袋中并搅匀,再从中任意摸出1个球,两次都摸出红球的概率是__.三、解答题17.现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.18.学生甲与乙学习概率初步知识后设计了如下游戏:甲手中有6、8、10三张扑克牌,乙手中有5、8、9三张扑克牌,每局比赛时,两人从各自手中随机取一张牌进行比较,数字大的则本局获胜.(1)若每人随机取出手中的一张牌进行比较,请列举出所有情况;(2)求学生乙一局比赛获胜的概率.19.口袋A 中有2个相同的小球,分别写有数字3,6,口袋B 中有4个相同的小球,分别写有数字3,4,5,6,在口袋B 中随机地抽出一个小球放入口袋A 中.求以口袋A 中的3个小球上的数字为边能构成等腰三角形的可能性大小.20.盒子里放着一个黑球和一个红球,它们除了颜色外,其余都相同.甲、乙两人规定每人摸出一球,摸出后再放回,摸到红球甲赢,摸到黑球乙赢,如果甲先摸,乙后摸,那么这个游戏?(“公平”或“不公平”).21.2018年9月,振华中学举行了迎国庆中华传统文化节活动.本次文化节共有五个活动:A ﹣书法比赛;B ﹣国画竞技;C ﹣诗歌朗诵;D ﹣汉字大赛;E﹣古典乐器演奏.活动结束后,某班数学兴趣小组开展了“我最喜爱的活动”的抽样调查(每人只选一项),根据收集的数据绘制了两幅不完整的统计图,请根据图中信息,解答下列问题:(1)此次随机抽取的初三学生共人,m=,并补全条形统计图;(2)初三年级准备在五名优秀的书法比赛选手中任意选择两人参加学校的最终决赛,这五名选手中有三名男生和两名女生,用树状图或列表法求选出的两名选手正好是一男一女的概率是多少.22.如图,均匀的正四面体的各面依次标有1,2,3,4四个数.(1)同时抛掷两个这样的四面体,它们着地一面的数字相同的概率是多少?(2)现在有一张周杰伦演唱会的门票,小敏和小亮用抛掷这两个四面体的方式来决定谁获得门票,规则是:同时抛掷这两个四面体,如果着地一面的数字之积为奇数小敏胜;如果着地一面的数字之积为偶数小亮胜(胜方获得门票),如果是你,你愿意充当小敏还是小亮,说明理由.23.在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近______;(精确到0.1)(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为______;(3)试估算盒子里黑、白两种颜色的球各有多少只?24.判断下列事件为必然事件,随机事件,还是不可能事件?一个昏庸的国王,总是用抽卡片的方式决定他的臣民的生与死.如果抽到卡片上写着生,国王就让臣民活下去,如果抽到卡片上写着死,国王就杀死臣民,每次国王都准备两张卡片.()1若两张卡片均为死,该臣民最终活着;()2若两张卡片均为死,该臣民被杀死;()3若两张卡片上分别写着一“生”一“死”,该臣民最终活着.25.一个盒子中装有两个红色球,两个白色和一个蓝色球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.()1利用画树状图或列表的方法求摸到的两个球的颜色能配成紫色的概率(红色和蓝色可以配成紫色);()2若将题干中的“记下颜色后放回”改为“记下颜色后不放回”,请直接写出摸到的两个球的颜色能配成紫色的概率.26.如图,假设可以随机在图中取点.(1)这个点取在阴影部分的概率是.(2)在保留原阴影部分情况下,请你重新设计图案(直接在图上涂阴影),使得这个点取在阴影部分的概率为37.参考答案一、单选题1.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A .B .C .D . [答案]A[解析][分析]让黄球的个数除以球的总个数即为所求的概率.[详解]解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是. 故选:A .[点评]本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比. 2.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在的( )A .三边中垂线的交点B .三边中线的交点C .三条角平分线的交点D .三边上高的交点[答案]A[解析][分析]为使游戏公平,则凳子到三个人的距离相等,根据线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.[详解]解:∵三角形的三条边的垂直平分线的交点到三角形三个顶点距离相等, 3101512710310ABC∴凳子应放在△A B C 的三边中垂线的交点.故选:A .[点评]本题主要考查了线段垂直平分线的性质的应用,利用所学的数学知识解决实际问题是一种能力,要注意培养.3.投掷硬币m 次,正面向上n 次,其频率p =,则下列说法正确的是( ) A .p 一定等于 B .p 一定不等于 C .多投一次,p 更接近 D .投掷次数逐步增加,p 稳定在附近 [答案]D[解析][分析]大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.[详解]投掷硬币m 次,正面向上n 次,投掷次数逐步增加,p 稳定在附近. 故选:D .[点评]考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意随机事件可能发生,也可能不发生. 4.在一个袋子中装有4个黑球和若干个白球,每个球除颜色外都相同,摇匀后从中随机摸出一个球记下颜色,再把它放回袋子中,不断重复上述过程.一共摸了40次,其中有10次摸到黑球,则估计袋子中白球的个数大约是( )A .12B .16C .20D .30n m1212121212[答案]A[解析][分析]一共摸了40次,其中有10次摸到黑球,由此可估计口袋中黑球和白球个数之比为1:3;即可计算出白球数.[详解]∵共摸了40次,其中10次摸到黑球,∴有30次摸到白球,∴摸到黑球与摸到白球的次数之比为1:3,∴口袋中黑球和白球个数之比为1:3,4÷=12(个),故选A .[点评]本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.某商店举办有奖储蓄活动,购货满100元者发兑奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人购物满100元,那么他中一等奖的概率是( )A .B .C .D . [答案]B[解析][分析]抽一张奖券总共有10000种可能,其中中一等奖有10种可能.利用概率公式进行求解即可.[详解]共10000张奖券,其中一等奖10个,所以中一等奖的概率是, 故选B .1311001100011000011110000101100001000[点评]本题考查了简单的概率计算,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=. 6.做重复试验:抛掷一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为( )A .0.22B .0.42C .0.50D .0.58[答案]B[解析][分析]在试验次数不多的情况下,“凸面向上”出现的频率约等于概率.[详解]∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次, ∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为=0.42, 故选:B .[点评]本题考察概率的相关知识.在试验次数不多的情况下,“凸面向上”出现的频率约等于概率. 7.任意掷一枚骰子,下列情况出现的可能性比较大的是( )A .面朝上的点数是3B .面朝上的点数是奇数C .面朝上的点数小于2D .面朝上的点数不小于3 [答案]D[解析][分析]分别求出各选项的事件的概率,再比较各个概率的大小,就可得出可能性较大的事件的概率.[详解]A .掷一枚骰子面朝上的点数是3的概率为;B .掷一枚骰子面朝上的点数是奇数有1,3,5三个数,此事件的概率为:; m n4201000163162C .掷一枚骰子面朝上的点数小于2的只有1,此事件的概率为:;D .掷一枚骰子面朝上的点数不小于3数有3、4、5、6,此事件的概率为:; ∴. 故选D .[点评]本题考查了概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=. 8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,并且选择每条路径的可能性相等,则它获得食物的概率是( )A .B .C .D . [答案]A[解析][分析]由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有6种路径,且获得食物的有2种路径,然后利用概率公式求解即可求得答案.[详解]解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径, ∴它有6种路径,∵获得食物的有2种路径,∴获得食物的概率是: 164263=11126623=<<mn131427232163=故选A .[点评]此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 9.有一则笑话:妈妈正在给一对双胞胎洗澡,先洗哥哥,再洗弟弟.刚把两人洗完,就听到两个小家伙在床上笑.“你们笑什么?”妈妈问.“妈妈!”老大回答,“您给弟弟洗了两回,可是还没给我洗呢!”此事件发生的概率为( )A .B .C .D .1[答案]A[解析][分析]根据概率是指某件事发生的可能性为多少解答即可.[详解]解:此事件发生的概率 故选A .[点评]本题考查了概率的意义,正确理解概率的含义是解决本题的关键.10.下列事件中,必然事件是( )A .任意掷一枚均匀的硬币,正面朝上B .打开电视正在播放甲型H1N1流感的相关知识C .某射击运动员射击一次,命中靶心D .在只装有5个红球的袋中摸出1球,是红球[答案]D[解析]分析:找到一定会发生的事件的选项即可.解答:解:A 、任意掷一枚均匀的硬币,可能正面朝上,也可能反面朝上,是随机事件;B 、打开电视,可能正在播放甲型H1N1流感的相关知识,也可能正在播放其它内容,是随机事件; 14131214C 、某射击运动员射击一次,可能命中靶心,也可能脱靶,是随机事件;D 、在只装有5个红球的袋中摸出1球,是红球,是必然事件.故选D .11.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )A .B .C .D . [答案]C[解析]画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号相同的有4种情况,∴两次摸出的小球的标号相同的概率是:. 12.在一个不透明的盒子中,红色、白色、黑色的球共有40个,除颜色外其他完全相同,老师在课堂上组织同学通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,则盒子中黑色球的个数可能是( )A .16B .18C .20D .22[答案]A[解析]根据题意,通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,可知摸到盒子中黑色球的概率为1-45%-15%=40%,由此可求得盒子中黑色球的个数为40×40%=16. 故选A . 1163161451641=164点睛:此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.由于通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,由此可以确定摸到盒子中黑色球的概率,然后就可以求出盒子中黑色球的个数.二、填空题13.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有A 个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则A 的值约为_____.[答案]12[解析][分析]在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到红球的频率稳定在20%左右得到比例关系,列出方程求解即可.[详解]由题意可得,×100%=20%, 解得A =12.经检验:A =12是原分式方程的解,所以A 的值约为12,故答案为:12.[点评]本题考查用大量试验得到的频率可以估计事件的概率,关键是根据红球的频率得到相应的等量关系. 14.已知长度为的四条线段,从中任取三条线段能组成三角形的概率是________. [答案] [解析]四条线段组成三角形三边有四种情况: (2㎝,3㎝,4㎝),(2㎝,3㎝,5㎝),(2㎝,4㎝,5㎝),(3㎝,4㎝,5㎝).其中不能组成三角形,所以从中任取三条线段能组成三角形的概率是. 33a +2? 3? 4? 5?㎝,㎝,㎝,㎝342? 3? 4? 5?㎝,㎝,㎝,㎝()235㎝,㎝,㎝3415.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为____.[答案] [解析][分析]根据题意画出树状图,然后由树状图求得所有等可能的结果与两球恰好是一个黄球和一个红球的情况,再利用概率公式即可求得答案.[详解]画树状图得:∵共有12种等可能的结果,两球恰好是一个黄球和一个红球的有6种情况,∴两球恰好是一个黄球和一个红球的为:. 故答案为:. [点评]此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比 16.一只不透明的袋子中装有1个白球,2个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录下颜色后放回到袋中并搅匀,再从中任意摸出1个球,两次都摸出红球的概率是__.[答案] [解析][分析]根据题意画出树状图,得到所有9种等可能的结果数,再找出两次都摸出红球的结果数,然后根据概率公式求解即可.[详解]画树状图为:1261122 1249共有9种等可能的结果数,其中两次都摸出红球的结果数为4,∴两次都摸出红球的概率是. 故答案为 [点评]本题考查了列表法与树状图法求概率,利用列表法或树状图法展示所有等可能的结果数n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算出事件A 或B 的概率.三、解答题17.现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.[答案](1) ;(2) . [解析][分析](1)共四种垃圾,厨余垃圾一种,所以甲拿了一袋垃圾恰好厨余垃圾的概率为:;(2)直接画出树状图,利用树状图解题即可[详解]解:(1)记可回收物、厨余垃圾、有害垃圾、其它垃圾分别为A ,B ,C ,D ,∵垃圾要按A ,B ,C 、D 类分别装袋,甲拿了一袋垃圾,∴甲拿的垃圾恰好是B 类:厨余垃圾的概率为:; (2)画树状图如下:494914341414由树状图知,乙拿的垃圾共有16种等可能结果,其中乙拿的两袋垃圾不同类的有12种结果,所以乙拿的两袋垃圾不同类的概率为 [点评]本题考查概率的计算以及树状图算概率,掌握树状图法是解题关键18.学生甲与乙学习概率初步知识后设计了如下游戏:甲手中有 、、 三张扑克牌,乙手中有 、、 三张扑克牌,每局比赛时,两人从各自手中随机取一张牌进行比较,数字大的则本局获胜. (1)若每人随机取出手中的一张牌进行比较,请列举出所有情况;(2)求学生乙一局比赛获胜的概率.[答案](1)详见解析;(2). [解析][分析](1)根据题意可以写出所有的可能性;(2)根据(1)中的结果可以得到乙本局获胜的可能性,从而可以解答本题.[详解]解:(1)由题意可得,每人随机取出手中的一张牌进行比较的所有情况是:,,,,,,,,.(2)由()知共有9种等可能的情况,学生乙获胜的情况有:,,,所以学生乙一局比赛获胜的概率是:. 故答案为(1)见解析;(2). [点评]本题考查了列表法与树状图法,概率=所求情况数与总情况数之比.123164=681058913()6,5()6,8()6,9()8,5()8,8()8,9()10,5()10,8()10,91()6,8()6,9()8,93193=1319.口袋A 中有2个相同的小球,分别写有数字3,6,口袋B 中有4个相同的小球,分别写有数字3,4,5,6,在口袋B 中随机地抽出一个小球放入口袋A 中.求以口袋A 中的3个小球上的数字为边能构成等腰三角形的可能性大小.[答案] [解析][分析]根据题意得出所有的可能,进而求出答案.[详解]由题意可得:3,3,6无法构成三角形,3,6,4不是等腰三角形;3,6,5不是等腰三角形;3,6,6是等腰三角形,故能构成等腰三角形的概率为: . [点评]此题主要考查了可能性大小,正确求出事件发生的概率是解题关键.20.盒子里放着一个黑球和一个红球,它们除了颜色外,其余都相同.甲、乙两人规定每人摸出一球,摸出后再放回,摸到红球甲赢,摸到黑球乙赢,如果甲先摸,乙后摸,那么这个游戏?(“公平”或“不公平”).[答案]公平[解析][分析]分别求出摸到红球的概率,摸到黑球的概率即可解决问题.[详解]解:∵摸到红球的概率=,摸到黑球的概率= ∴摸到红球的概率=摸到黑球的概率,∴摸到红球甲赢,摸到黑球乙赢这个游戏公平.故答案为公平.14141212[点评]本题考查游戏的公平性、概率等知识,解题的关键是求出概率判断公平性,概率相同游戏是公平的,属于中考常考题型.21.2018年9月,振华中学举行了迎国庆中华传统文化节活动.本次文化节共有五个活动:A ﹣书法比赛;B ﹣国画竞技;C ﹣诗歌朗诵;D ﹣汉字大赛;E ﹣古典乐器演奏.活动结束后,某班数学兴趣小组开展了“我最喜爱的活动”的抽样调查(每人只选一项),根据收集的数据绘制了两幅不完整的统计图,请根据图中信息,解答下列问题:(1)此次随机抽取的初三学生共 人,m = ,并补全条形统计图;(2)初三年级准备在五名优秀的书法比赛选手中任意选择两人参加学校的最终决赛,这五名选手中有三名男生和两名女生,用树状图或列表法求选出的两名选手正好是一男一女的概率是多少.[答案](1)100,10,图形见解析;(2). [解析][分析](1)根据A 的人数与所占百分比即可得到抽取总人数,用选择E 类的人数除以总人数求得m 的值,再用总人数减去选择A 、C 、D 、E 的人数得到选择B 类的学生人数,然后补全条形图即可; (2)根据题意画出树状图,然后利用概率公式求解即可.[详解]解:(1)根据扇形统计图可知,选A 的学生所占百分比为:, 则抽取的学生总数为:25÷25%=100人, 选择E 的学生所占百分比为:, 选择B 的学生人数为:100﹣25﹣30﹣20﹣10=15人,3590100%25%360︒⨯=︒10100%10%100⨯=故答案为100,10;条形图如下:(2)树状图如下:∵有20种可能等结果,其中符合条件的有12种,∴选出的两名选手正好是一男一女的概率是:. [点评]本题主要考查条形统计图,扇形统计图,利用树状图或列表法求概率,熟练掌握其知识点是解此题的关键.22.如图,均匀的正四面体的各面依次标有1,2,3,4四个数.(1)同时抛掷两个这样的四面体,它们着地一面的数字相同的概率是多少?(2)现在有一张周杰伦演唱会的门票,小敏和小亮用抛掷这两个四面体的方式来决定 谁获得门票,规则是:同时抛掷这两个四面体,如果着地一面的数字之积为奇数小敏胜;如果着地一面的数字之积为偶数小亮胜(胜方获得门票),如果是你, 你愿意充当小敏还是小亮,说明理由.123205。

概率初步单元测试

概率初步单元测试

概率初步 单元测试(一)一、选择题(每题2分,满分12分)1.以下事件中属于不可能事件的是( )(A )从分数中任意取一个数平方后比该数小;(B )6名初中学生中,至少有2名学生在同一年级;(C )在实数中任意取一个数,这个数的平方小于零;(D )上海地区明天要下雨了.2.下列说法中,正确的是( )(A )买一张电影票,座位号一定是奇数;(B )三条任意长的线段可以组成一个三角形;(C )随意掷一枚质地均匀的硬币,正面一定朝上;(D )在1、2、3、4、5中任取一个数,取得的奇数的概率大于取到偶数的概率3.一个事件发生的概率不可能是( )(A) 1.5; (B) 0.5; (C) 1; (D) 04.从一付扑克牌中任意抽出一张牌,抽得下列牌中概率最大的是( )(A )小王 (B )大王 (C )10 (D )黑桃5.元旦游园晚会上,有一个闯关活动:将20个大小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的。

如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为( )(A )32 ; (B ) 41 ; (C ) 51 ; (D ) 101; 6.从0、1、2、3这四个数中任取两个数组成没有重复数字的两位数,其中组成的两位数是奇数的概率是( )(A ) 21 ; (B )31 ; (C )41 ; (D ) 94 二、填空题(每空2分,满分24分)7.在一定条件下,必定出现的现象叫做_____________.8. 在一定条件下,必定不出现的现象叫做_____________.9.随机事件的可能性的大小P 的取值范围为_____________.10.掷大小相同的两枚均匀硬币,出现一正一反的概率是_____.11.在1、2、3、4、5这五个数字中,任意取两个相乘,结果是奇数的概率是 .12.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概 率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .13. 从长度2、3、5、7的四条线段中任意选取三条,这三条线段能够构成三角形的概率 是 .14. 某火车站的显示屏,每隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某 人到达该车站时,显示屏上正好显示火车班次信息的概率是 .15. 一个人做抛硬币实验,连续9次都得到正面朝上,则第10次得到正面朝上的概率是 .16.抛掷两枚四个面分别标有1、2、3、4的四面体,写出这个试验中的一个随机事件_______________________,写出这个试验中的一个必然事件_______________.17.单项选择题是数学试题的重要组成部分,当你遇到不会做的习题时,如果你随意选一个答案(假设每个题目有4个选项),那么你答对的概率是______.18.在某班级的元旦联欢会上,设有一个节目,奖品为圆珠笔、笔记本和水果,标在一个转盘的相应区域上(如图所示转盘被均匀等分为四个扇形区域),转盘绕着圆心可以自由转动,参与者转动转盘,当转盘停止时,指针落在那一区域,就得哪种奖品,则获得圆珠笔的概率是______.(如果指针恰好落在等分线上,那么重转一次,直到指针落在某一区域为止)三、简答题(每题10分,满分40分19.从1、2、5这三个数中任选两个组成两位数,在组成的所有两位数中任意取出一个数,这个数正好能被25整除的概率是多少?20.有两个不透明的布袋,其中一个布袋中有一个红球和两个白球,另一个布袋中有一个红球和三个白球,它们除了颜色外其他都相同.在两个布袋中分别摸出一个球,求摸到一个红球和一个白球的概率.21.在一只不透明的箱子里放了三个相同的小球,球上分别标有数字“1”、“2”、“3”.从箱子中摸球二次,并规定:①每次摸出一球,②每次摸出小球看过后仍然放回箱内搅匀.求两次摸出的球上数字之和恰好为5的概率,并画出树形图.22.小王有5件衬衫,其中3件是白衬衫,有4条长裤,其中2条是黑色的,一天晚上灯坏了,他顺手拿了衬衫和长裤穿上出门了,他走到路灯下发现自己穿白衬衫、黑长裤的概率为多少?四、解答题(每题8分,满分24分)23.小明从点数为1到4的四张牌中任意抽取一张牌的点数作为分子;小杰从点数4到7的四张牌中任意抽取一张牌作为分母,求所得的分数是最简分数的概率24.在一个用白色橡皮泥做成的正方体的表面上涂上红色,将这个正方体切成27个除表面颜色外其它都相同的小正方体,将这些小正方体均匀地混在一起,然后从中任意取出一个小正方体,求出以下各事件的概率:(1) 取到的小正方体有三面是涂红色的;(2) 取到的小正方体有且仅有二面是涂红色的;(3) 取到的小正方体各面没有涂红色或有且仅有一面是涂红色的;25 一枚质量均匀的正方体骰子,六个面上分别标有1、2、3、4、5、6,连续抛掷两次.(1)用列表法或树形图表示出两次朝上的面上的数字所有可能出现的结果;(2)记两次朝上的面上的数字为p 、q ,如果把p 、q 分别作为点A 的横坐标和纵坐标,求A ( p 、q )在函数x y 12的图像上的概率.概率初步 单元测验(一)1.C2.D3.A 4.D 5.D 6.D 7.必然事件 8.不可能事件9.0<P<1 10.0.25 11.310; 12.0.3;13.41;14.15;15.12; 16.两枚四面体朝下都是偶数;两枚四面体朝下都是整数(答案不唯一) 17.0.25 18.0,25 19. 61 20.共有12种等可能的情况,其中摸到一个红球和一个白球的可能情况有5种,所以摸到一个红球和一个白球的概率P =125.21.树形图略,两次摸奖摸出小球上的数字共有9种情况,其中两次数字之和为5的有2种情况,故所求概率为29.22.310. 23. 1611 24.(1) 278; (2) 2712 ;(3) 277 25.(1)略;(2) 91.。

人教版九年级数学上第25章概率初步单元测试题含答案

人教版九年级数学上第25章概率初步单元测试题含答案

人教版九年级数学上册第25章概率初步单元测试题(含答案)一.选择题(共10小题)1.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零2.在一个不透明的盒子里装有3个黑球和1个白球,每个球除颜色外都相同,从中任意摸出2个球,下列事件中,不可能事件是()A.摸出的2个球都是白球B.摸出的2个球有一个是白球C.摸出的2个球都是黑球D.摸出的2个球有一个黑球3.必然事件的概率是()A.﹣1 B.0C.0.5 D.14.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.(4题图)(10题图)5.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是()A.B.C.D.6.小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是()A.此规则有利于小玲B.此规则有利于小丽C.此规则对两人是公平的D.无法判断7.在一个不透明的袋子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球的个数约为()A.4 B.6C.8D.128.一只不透明的袋子中装有1个白球,2个黄球和3个红球,每个球除颜色外都相同,将球搅匀,从中任意摸出一个球.如果想使摸到这三种颜色的球的概率相等,下列做法正确的是()A.向袋子里分别投放1个白球,1个黄球,1个红球B.向袋子里分别投放3个白球,2个黄球,1个红球C.向袋子里分别投放2个白球,1个黄球D.向袋子里投放2个白球9.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A.B.C.D.10.如图是两个完全相同的转盘,每个转盘被分成了面积相等的四个区域,每个区域内分别填上数字“1”“2”“3”“4”.甲、乙两学生玩转盘游戏,规则如下:固定指针,同时转动两个转盘,任其自由转动,当转盘停止时,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜.那么在该游戏中乙获胜的概率是()A.B.C.D.二.填空题(共10小题)11.小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为事件(填“必然”或“不可能”或“随机”).12.“打开电视机,它正在播广告”这个事件是事件(填“确定”或“随机”).13.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为.14.从2,3,4这三个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是.15.甲乙两人用2两张红心和1两张黑桃做游戏,规则是:甲乙各抽取一张,如果两张同一花色,甲胜;若两张花色不同,乙胜;请问:这个游戏是否公平?答:.16.一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是的.(填“公平”或“不公平”)17.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有颗.18.一个口袋有3个黑球和若干个白球,在不允许将球倒出来的前提下,小明为估计其中的白秋数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回口袋中,…,不断重复上述过程,小明共摸了100次,其中20次摸到黑球.根据上述数据,小明正估计口袋中的白球的个数是.19.设计一个摸球游戏,在一个袋子里装有一些颜色的球,使得摸到红球的机会为0.4,摸到黄球的机会为0.2,摸到白球的机会为0.4,则至少要有个黄球.20.同时掷二枚普通的骰子,数字和为1的概率为,数字和为7的概率为,数字和为2的概率为.三.解答题(共5小题)21.在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.22.某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.23.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.24.甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲乙双方是否公平?并说明理由.25.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n 100 150 200 500 800 1000摸到黑球的次数m 23 31 60 130 203 2510.23 0.21 0.30 0.26 0.253摸到黑球的频率(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树形图或列表的方法计算他两次都摸出白球的概率.人教版九年级数学上册第25章概率初步单元测试题参考答案一.选择题(共10小题)1.D 2.A 3.D 4.C 5.C 6.C 7.C 8.B 9.B 10.A二.填空题(共10小题)11.随机 12.随机13.14.15.不公平16.公平17.1418.12 19.1 20.0三.解答题(共5小题)21.解:(1)∵共10个球,有2个黄球,∴P(黄球)==;(2)设有x个红球,根据题意得:=,解得:x=5.故后来放入袋中的红球有5个.22.解:(1)∵整个圆被分成了12个扇形,其中有6个扇形能享受折扣,∴P(得到优惠)==;(2)转盘1能获得的优惠为:=25元,转盘2能获得的优惠为:40×=20元,所以选择转动转盘1更优惠.23.解:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是;故答案为:;(2)列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.24.解:(1)列表如下:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)所有等可能的情况有9种,分别为(1,1);(1,2);(1,3);(2,1);(2,2);(2,3);(3,1);(3,2);(3,3),则甲乙两人抽得的数字之积所有可能出现的情况有1,2,3,2,4,6,3,6,9,共9种;(2)该游戏对甲乙双方不公平,理由为:其中积为奇数的情况有4种,偶数有5种,∴P(甲)<P(乙),则该游戏对甲乙双方不公平.25.解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,=0.25,x=3.答:估计袋中有3个白球.(3)用B代表一个黑球,W1、W2、W3 代表白球,将摸球情况列表如下:总共有16种等可能的结果,其中两个球都是白球的结果有9种,所以摸到两个球都是白球的概率为.。

人教版数学九年级上学期《概率初步》单元综合测试题(附答案)

人教版数学九年级上学期《概率初步》单元综合测试题(附答案)
[详解]画树状图为:
共有12种等可能的结果数,其中两次摸出的小球的标号的和为奇数的结果数为8,
所以两次摸出的小球的标号的和为奇数的概率为 ,
故选B.
[点睛]本题考查了列表法与树状图法求概率:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
B. 任意抛掷一枚均匀的骰子,骰子停止转动后,朝上的一面的点数为1
C. 在只装着白球和黑球的袋中摸球,摸出红球
D. 在一张纸上随意画两个直角三角形,这两个直角三角形相似
9.桌面上有A,B两球及5个指定的点,若将B球分别射向这5个点,则B球一次反弹后击中A球的概率为( )
A. B. C. D.
10.现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜甲获胜的概率是( )
23.张华和李明两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.
(1)请用列表法或树状图表示出所有可能出现的游戏结果;
(2)求张华胜出的概率.
参考答案
一、选择题
1.下列事件是必然事件的为( )
A.明天早上会下雨
B.任意一个三角形,它的内角和等于180°
C.掷一枚硬币,正面朝上
17.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率记为P1,指针指向的数为偶数的概率记为P2,请比较P1、P2的大小:P1_______P2(填“>”、“<”或者“=”)
三、解答题
18.如图,将圆形转盘三等分,分别标上1、2、3三个数字,代表鸡、猴、鼠三种生肖邮票(每种邮票各两枚,鸡年邮票面值“0.80元”,其它邮票都是面值“1.20元”),转动转盘后,指针每落在某个数字所在扇形一次就表示获得该种邮票一枚.

九年级上册数学《概率初步》单元检测卷(附答案)

九年级上册数学《概率初步》单元检测卷(附答案)
[答案]A
[解析]
试题解析:根据题意,知最后冠军一定是中国选手.故为必然事件的是冠军属于中国选手.
故选A.
考点:随机事件.
2.随机闭合开关 中的两个,能让灯泡发光的概率是()
A. B. C. D.
[答案]B
[解析]
[分析]
分析题意,回想一下利用列表法求概率的一般步骤;首先根据题意列出表格,再由表格求得所有可能的结果与小灯泡发光的情况,即可解答.
A.1B. C. D.
[答案]C
[解析]
[分析]
先根据轴对称图形和中心对称图形的定义得到圆和菱形既是轴对称图形又是中心对称图形,然后根据概率公式求解.
[详解]解:投掷一次,向下一面有四种可能,其中圆、菱形既是轴对称图形又是中心对称图形,有两种可能,故概率为 ;
故选C.
[点睛]本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了轴对称图形和中心对称图形.
九年级上册数学《概率初步》单元测试卷
(满分120分,考试用时120分钟)
一、选择题(每小题3分,共30分)
1.在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是()
A.冠军属于中国选手B.冠军属于外国选手
C 冠军属于中国选手甲D.冠军属于中国选手乙
2.随机闭合开关 中的两个,能让灯泡发光的概率是()
[详解]根据题意列出所有可能的情况,如下:
共有6种情况,必须闭合开关 灯炮才发光,即能让灯泡发光的概率是 .
故选B.
[点睛]此题考查列表法与树状图法,解题关键在于列出所有结果的表格.
3.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率初步单元测评
一、选择题(每题4分,共48分)
1.下列事件是必然事件的是( )
A.明天天气是多云转晴
B.农历十五的晚上一定能看到圆月
C.打开电视机,正在播放广告
D.在同一月出生的32名学生,至少有两人的生日是同一天
2.下列说法中正确的是( )
A.可能性很小的事件在一次实验中一定不会发生
B.可能性很小的事件在一次实验中一定会发生
C.可能性很小的事件在一次实验中有可能发生
D.不可能事件在一次实验中也可能发生
3.下列模拟掷硬币的实验不正确的是( )
A.用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下
B.袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上
C.在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上
D.将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上
4.在10000张奖券中,有200张中奖,如果购买1张奖券中奖的概率是( )
A. B. C. D.
5.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )
A. B. C. D.
6.一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是( )
A. B. C. D.
7.有5条线段的长分别为2、4、6、8、10,从中任取三条能构成三角形的概率是( )
A. B. C. D.
8.一个均匀的立方体六个面上分别标有1,2,3,4,5,6,下图是这个立方体表面的
展开图,抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的的概率是( )
A. B.
C. D.
9.四张完全相同的卡片上,分别画有圆、矩形、等边三
角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( )
A. B. C. D.
10.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )
A. B.
C. D.
11.如果小明将飞镖随意投中如图所示的圆形木板,那么镖落在小圆内的概率为( )
A. B.
C. D.
12.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是
一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是( )
A. B. C. D.
二、填空题(每题4分,共24分)
13.“抛出的蓝球会下落”,这个事件是事件.(填“确定”或“不确定”)
14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到
数字2)=______,P(摸到奇数)=_______.
15.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_______.
16.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为_______的概率最大,抽到和大于8的概率为_______.
17.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.
18.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是,则摸出一个黄球的概率是_______.
三、解答题(每题7分,共28分)
19.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数,从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,实验中共摸200次,其中50次摸到红球.
20.一张椭圆形桌旁有六个座位,A、E、F先坐在如图所示的座位上,B、C、D三人随机坐到其他三个座位,求A与B不相邻而座的概率.
21.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等,现同时自由转动甲乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.
请你:⑴列举(用列表或画树状图)所有可能得到的数字之积
⑵求出数字之积为奇数的概率.
22.请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:
⑴用树状图表示出所有可能的寻宝情况;
⑵求在寻宝游戏中胜出的概率.。

相关文档
最新文档