九年级数学统计与概率单元测试
初三数学《统计与概率》单元测试卷及答案
初三数学《统计与概率》单元测试卷及答案《统计与概率》单元测试卷及答案一、选择题(每小题3分,共30分)1.以下调查中,适宜全面调查的是( ).调查某批次汽车的抗撞击能力B .调查某班学生的身高情况C .调查春节联欢晚会的收视率D .调查沈阳市居民日平均用水量2.下列事件中,属于必定事件的是().三角形的外心到三边的距离相等B .三角形的内心到三边的距离相等C .任意画一个三角形,其外角和是180°D .三角形三条高交点一定在形内3.下列事件是随机事件的是( ).2022年2月,ZG将首次承办冬奥会B .正八边形的每个外角的度数等于45°C .明年清明节会下雨D .在只装了白球的盒子中,摸出黑色的球4.某校为了解全校1000名学生的视力情况,从中随机抽取了100名学生进行视力测查,在这个问题中,下列说法错误的是().样本是100名学生的视力情况B. 总体是1000名学生的视力情况C. 个体是每名学生的视力情况D. 样本容量是100名5.小明同学制作了5张材质和外观完全一样的卡片,每张卡片正面写着一位数学家的名字,分别是祖冲之、刘徽、张衡、杨辉、徐光启.将这5张卡片背面朝上洗匀后随机抽取一张,则抽到祖冲之的概率是().51B.52C.53D.546.某校七年级某同学6次数学小测验的成绩分别为80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( ) .95分,95分B .95分,90分C .90分,95分D .95分,85分7.在△BC 和△′B ′C ′中,有下列条件:①B ′B ′=BC B ′C ′;②BC B ′C ′=C′C ′;③∠=∠′;④∠C =∠C ′.从四个中任取两个条件组成一组,能推断△BC ∽△′B ′C ′的概率是( ).21 B .31C .41D .以上都不对8.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm) 185 180 185 180 方差3.6 3.6 7.4 8.1应该选择( ).甲B .乙C .丙D .丁9.某班在一次课外小组活动中,抽测了五个课外活动小组活动的时间,得到五个各不相同的数据.在统计时,出现了一处错误:将最低的时间写得更低了,则计算结果不受影响的是( ) .平均数B .中位数C .方差D .极差10.如图,抛物线y =x 2+bx +c (≠0)的对称轴为x =﹣1,与x 轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:①b 2﹣4c >0;②2 =b ;③点(﹣27,y 1)、(﹣23,y 2)、(45,y 3)是该抛物线上的点,则y 1<y 2<y 3;④3b +2c <0;⑤t (t +b )≤﹣b (t 为任意实数).从五个结论中任取一个,则正确结论的概率是().51B.52C.53D.54二、填空题(每小题4分,共24分)11.在一次招聘考试中,其中某位考生笔试、口试、面试三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,口试占40%,面试占20%,则该考生的综合成绩为分.第10题第16题EB12.小华同学用0-9中的数字给门锁设置了六位开门密码,但他把最后一位数字忘记了,小明只输入一次密码就能打开门的概率是 .若出现次品数量的唯一众数为1,则数据1,0,2,的方差等于 .14.若等腰△BC 的边长为一元二次方程x 2﹣7x +10=0的根,则△BC 为等腰三角形的概率为 .15.某中学随机调查了部分九年级学生的年龄,并画出了这些学生的年龄分布统计图(如图),那么,从该校九年级中任抽一名学生,抽到学生的年龄所占比例最大的概率是 .16.如图,在四边形BCD 中,D ∥BC ,∠BC =90°.若沿对角线C 折叠四边形BCD ,点D 恰与B 边上的点E 重合,且∠BCE =15°,连结DE ,交C 于H ,连接BH .下列结论:①△CDE 为等边三角形;②△BHE ∽△DC ;③∠BHC =∠BCD ;④EH =2BE ;⑤四边形BCHE的面积=△DC 的面积,从这5个结论中任取一个,正确结论的概率是 .三、解答下列各题(17题8分,18题10分,共18分)17.下图中形状、大小和质地都相同的四张卡片,正面分别写有、B 、C 、D和一个式子,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.请用树状图或列表的方法求出抽取的两张卡片组成的是二元一次方程组的概率是多少.第15题18.小华参加社会实践活动. 对行人是否走斑马线作了调查,上周末,小华对1000名过往行人作了问卷调查,问题是:你是否自觉走斑马线. 供选择的答案是:、是;B 、否;C 、有时. 他将得到的数据通过处理后,画出了扇形统计图,请你根据这个扇形图回答下列问题:(1)不走斑马线的人被调查者有多少人;(2)哪种情况最为普遍;它的百分比是多少;(3)根据这个调查结果,请简要的写出你的感想或建议.四、(每题10分,共20分)19.在3×3的方格纸中,点B C D E F 、、、、、分别位于如图所示的小正方形的顶点上.(1)从D E F 、、、四点中任意取一点,以所取的这一点及点B C 、为顶点画三角形,求所画三角形是直角三角形的概率;(2)从D E F 、、、四点中先后任意取两个不同一的点,所取的这两点及B C 、为顶点画四边形,求所画四边形是平行四边形的概率.(用树状图或列表法求解).C 28% B 11.2%第18题第19题20.某校课外活动小组的小华想了解全校同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱情况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,回答下列问题:(1)小华共抽取了多少名同学;(2)求出图中的和b的值;(3)并求出条形统计图中新闻、娱乐的人数.五、(每题10分,共20分)21.小华参加答题通关活动,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小华都不会,不过小华还有一个“求助”没有用(使用“求助”可以去掉其中一题的一个错误选项).(1)如果小华第一题不使用“求助”,那么小华答对第一道题的概率是;(2)如果小华将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率;(3)从概率的角度分析,你认为小华在第几题使用“求助”.第20题22.为开展学校的体育活动,某校八年级一班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与,各活动小组人数分布情况的扇形图和条形图如下:(1)求该班学生人数;(2)请你补上条形图的空缺部分;(3)求跳绳人数所占扇形圆心角的大小.六、(每题12分,共24分)23.小华、小明两人用如图所示的两个分格均匀的转盘、B 做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相加,如果和是奇数,则小华获胜;如果和是偶数,则小明获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果;(2)求小华、小明两人获胜的概率,你认为是否公平.篮球足球25% 跳绳乒乓球90°16 12 8 4足球篮球乒乓球跳绳项目 B4564 57 6第22题第23题24.某市教育局为了解该市学生对待学习的态度情况,对该市部分学校的七年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1) 此次抽样调查中,共调查了多少名学生;(2)此次抽查中,对学习感兴趣有多少名;(3)将图①补充完整;(4)根据抽样调查结果,请你估量该区近2000名初中生中大约有多少名学生对学习不感兴趣;对这些学生,说说你的观点.第24题七、(本题满分14分)25.某校举办数学闯关比赛,经选拔后有50名学生参加决赛,这50名学生同时作答50道选择题,若每答对一题得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组50≤x<60 6第2组60≤x<70 8第3组70≤x<80 14第4组80≤x<90第5组90≤x<100 10请结合图表完成下列各题:(1)求出表中的值,并指出条形统计图没画出的两组人数;(2)若测试成绩不低于90分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名女同学,现将这10名同学平均分成两组进行对抗练习,且4名女同学每组分两人,求小丽与小华两名女同学能分在同一组的概率.参考答案一、1.B 2.B 3.C 4.D 5. 6. 7. 8. 9.B 10.D 二、11.88.8 12.10113.21 14.43 15.45% 16.53三、17.解:列表共有12种可能性,每一种出现的可能性都是相同的,满足题意得有8种则组成的是二元一次方程组的概率是P=2118.解:(1)1000×11.2%=112答:不走斑马线的人被调查者有112人(2)走斑马线的人最普遍1-11.2%-28%=60.8%则走斑马线的人最普遍,为60.8%. (3)略四、19.解:(1)、D 、E 和BC 都能组成直角三角形共有四种可能.则组成直角三角形的概率为:P=43(2)列表共有12种等可能情况,分别是:DBC EBC FBC DBC DEBC DFBC EBC EDBC EFBC FBC FDBC FEBC ,每一种都是等可能的其中能画出平行四边形有4种则P (组成平行四边形)=3120.解:(1)45÷30%=150则小华共抽取了150名同学(2)30÷150=20% b=201-6%-8%-30%-20%=36% =36(3)新闻:150×8%=12 150×36%=54则条形统计图中新闻、娱乐的人数分别为12人和54人五、21.解:(1)31(2)设,B,C表示第一道单选题的3个选项,,b,c表示剩下的第二道单选题的3个选项,画树状图得:即共有9种等可能的结果,小明顺利通关的只有1种情况,则小明顺利通关的概率为:91;(3)P(第一题有求助,并通关)=21×41=81由(2)知P(第二题有求助,并通关)= 91则建议小明在第一题使用“求助”.22.解:(1)12÷36090=48则该班学生48人(2)48-16-12-8=12(人)如图所示(3)488×360=60则跳绳人数所占扇形圆心角的大小为60°161284足球篮球乒乓球跳绳项目(2)由(1)知共有12种可能性奇数有6种,偶数也有6种70到80的有14人;80到90的有12人(2)5010×100%=20%则优秀率为20%(3)设小丽为,小华为B ,另两位女同学为C 和D 则所有可能性为:B(CD) C(BD) D(BC)3种可能性都是等可能出现的,其中只有1种,小丽和小华为同一组即:P (小丽和小华在同一组)=31.。
初中数学统计与概率测试题(含答案)
初中数学统计与概率测试题(含答案)初中数学统计与概率测试题(含答案)题目1. 某班级中共有32名学生,其中有20名男生和12名女生。
请回答以下问题:a) 男生的比例是多少?b) 女生的比例是多少?答案:a) 男生的比例 = (男生人数 / 总人数) × 100% = (20 / 32) × 100% =62.5%b) 女生的比例 = (女生人数 / 总人数) × 100% = (12 / 32) × 100% =37.5%题目2. 某小组有8名成员,其中有3名男生和5名女生。
请回答以下问题:a) 随机选择一个成员,男生的概率是多少?b) 随机选择一个成员,女生的概率是多少?答案:a) 男生的概率 = 男生人数 / 总人数 = 3 / 8 = 0.375b) 女生的概率 = 女生人数 / 总人数 = 5 / 8 = 0.625题目3. 根据某城市的气象数据,统计了过去一周的天气情况,得到如下表格:| 天气 | 晴天 | 雨天 | 多云 || ------- | ---- | ---- | ---- || 出现次数 | 3次 | 2次 | 2次 |请回答以下问题:a) 晴天的概率是多少?b) 下雨的概率是多少?c) 多云的概率是多少?答案:a) 晴天的概率 = 晴天出现次数 / 总天数= 3 / 7 ≈ 0.429b) 下雨的概率 = 雨天出现次数 / 总天数= 2 / 7 ≈ 0.286c) 多云的概率 = 多云出现次数 / 总天数= 2 / 7 ≈ 0.286题目4. 某班级有35名学生,其中10名学生喜欢阅读科幻小说,15名学生喜欢阅读推理小说,其中有5名学生两者都喜欢,问:a) 喜欢阅读科幻小说或者推理小说的学生有多少人?b) 不喜欢阅读科幻小说和推理小说的学生有多少人?答案:a) 喜欢阅读科幻小说或者推理小说的学生 = 喜欢阅读科幻小说的学生 + 喜欢阅读推理小说的学生 - 两者都喜欢的学生 = 10 + 15 - 5 = 20人b) 不喜欢阅读科幻小说和推理小说的学生 = 总人数 - 喜欢阅读科幻小说或者推理小说的学生 = 35 - 20 = 15人题目5. 某次抽奖活动中,共有100人参与抽奖,其中只有5名幸运儿中奖。
人教版九年级数学上册《统计与概率》单元检测卷含答案
《统计与概率》单元检测卷含答案一、选择题(每小题3分,共30分)1.下列调查中,适合采用全面调查方式的是( )A.了解“辽宁教育·青少”电视台栏目的收视率B.了解青海湖斑头雁种群数量C.了解全国快递包裹产生包装垃圾的数量D.了解某班同学“跳绳”的成绩 2.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.通常温度降到0℃以下,纯净的水结冰C.明天一定是晴天D.经过有交通信号灯的路口,遇到红灯 3.空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是( ) A .折线图 B .条形图 C .直方图 D .扇形图4.统计得到的一组数据有80个,其中最大值为139,最小值为48,取组距为10,可分成( ) A .10组 B .9组 C .8组 D .7组5.某校开展了主题为“青春·梦想”的艺术作品征集互动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50则这组数据的中位数是() A.42件 B.45件 C.46件 D.50件 6.某校学生到校方式情况的统计图如图所示,若该校步 行到校的学生有100人,则乘公共汽车到校的学生有( ) A .75人B .100人C .125人D .200人7.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数 B .平均数 C .中位数 D .方差 8.某中学随机地调查了50名学生,了解他们一周在校的 体育锻炼时间,结果如右表所示: 则这50名学生这 一周在校的平均体育锻炼时间是( ) A. 6.2 hB. 6.4 hC. 6.5 hD. 7 h9.抽样调查某班10名同学身高(单位:厘米)如下:160,152,165,152,160,160,170,160,165,159.则这组数据的众数是( ) A .152B .160C .165D .17010.甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红的概率为( )骑自行车25%其他15%步行20%乘公共汽车40%第6题图A .61 B .31 C .21 D .65二、填空题(每小题4分,共24分)11.同时掷两枚质地均匀的骰子,两枚骰子点数和为6的概率是______.12.某校学生来自甲、乙、丙三个地区,其人数比为2:8:5,如图所示的扇形图表示上述分布情况,则甲地区所在扇形图的圆心角度数为_______.13.某住宅小区十月份1日至5日每天用水量变化情况如图所示,那么这5天中用水量最多的一天比最少的一天多________吨.14.记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如图,根据图中信息,该足球队全年比赛胜了________场.15.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,则摸出黑球的概率是( )16.在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数 100 1000 5000 10000 50000 100000 “摸出黑球”的次数 36387201940091997040008“摸出黑球”的频率(结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是 .(结果保留小数点后一位)三、解答题(第17小题8分,第18~20小题各10分,共38分)17.《中学生体质健康标准》规定的体质健康检测等级标准为:90分及以上为优秀,80~89负20%26%平胜3020100胜负平比赛结果比赛场次(场)0/日第14题图第13题图甲乙丙第12题图分为良好,60~79分为及格,59分及以下为不及格.某校目前七年级有200人,八年级有300人,为了解七、八年级学生的体质健康情况,该校现从两年级中各随机抽取10名同学进行体质健康检测,成绩如下:七年级(分) 80 74 83 63 90 91 74 61 82 62 八年级(分) 74 61 83 91 60 85 46 84 74 82 (1)求八年级学生体质健康成绩的平均数和中位数;(2)估计两个年级等级达到优秀的学生共有多少人?18.如下表是某市连续5天的天气温度情况:请利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大.19.八年级一班开展了“读一本好书”的 活动,班委会对学生阅读书籍的情况进 行了问卷调查,问卷设置了“小说”“戏 剧”“散文”“其他”四个类型,每位同 学仅选一项,根据调查结果绘制了不完 整的频数分布表.根据图表提供的信息,解答下列问题: (1)求八年级一班学生人数;(2)求出频数分布表中“其他”类的频率;20.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)求此次调查学生的总人数;(2)求图2中“小说类”所在扇形的圆心角的度数.604020080人数社科类文史类生活类小说类类别2476图1图2小说类生活类文史类15%38%社科类第20题图四、解答题(每小题10分,共20分)21.某文具商店共有单价分别为10元、15元和20元的3种文具盒出售,该商店统计了2019年3月份这3种文具盒的销售情况,并绘制统计图如图所示.(1)请把条形统计图补充完整;(2)小亮认为该商店3月份这3种文具盒总的平均销售价格为(10+15+20)÷3=15 (元),你认为小亮的计算方法正确吗?如果不正确,请计算总的平均销售价格.20元15%15元60%10元25%文具商店2019年3月份3种文具盒销售情况扇形统计图3002001000400个数36010元15元20元文具商店2019年3月份3种文具盒销售情况条形统计图90单价第21题图22.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,求两次摸出的小球标号的积小于4的概率.五、解答题(每小题12分,共24分)23.为了了解学生最喜欢的一种球类运动情况,以便合理安排活动场地,在全校1300名学生中,随机抽取了若干名学生进行调查(每人只能在这乒乓球、羽毛球、排球、篮球、足球五种球类运动中选择一种).调查结果统计如下:解答下列问题:(1)这次抽样调查中的样本是______________________________________________;(2)统计表中,a=______,b=______;(3)试估计上述1300名学生中最喜欢乒乓球运动的人数.乒乓球篮球22%排球羽毛球26%足球24.为了增强学生的安全意识,某校组织了一次全校2500名学生都参加的“安全知识”考试.阅卷后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(x 分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.请根据图表提供的信息,解答下列问题:分数段(分) 频数(人)频率 51≤x <61 a 0.1 61≤x <71 18 0.18 71≤x <81 b n 81≤x <91 35 0.35 91≤x <10112 0.12 合计1001(1)填空:a = ,b = ,n = ; (2)将频数分布直方图补充完整;(3)该校对考试成绩为91≤x ≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.51015202530355161718191101频数(人)分数(分)183512六、解答题(本题14分)25.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.CB 10%AD 40%统计与概率单元检测卷参考答案11.365;12.48°; 13.8 ; 14.27 ; 15. 73;16.0.4;三、解答题17. 解:(1)八年级学生体质健康检测成绩为平均数=1082728446856091836174+++++++++ =74(分),中位数=28274+ =78(分).答:八年级学生体质健康检测成绩平均分为74分,中位数为78分.(2)两个年级体质健康等级达到优秀的学生共有101300102200⨯+⨯=40+30=70(人).答:两个年级体质健康等级达到优秀的学生共有70人. 18. 解:这5天的日最高气温和日最低气温的平均数分别是x 高=52425232523++++=24,x 低=51715152221++++=18,方差分别是S 高2=5)2424()2425()2423()2425()2423(22222 -+-+-+-+-=0.8,S 低2=5)1817()1815()1815()1822()1821(22222 -+-+-+-+-=8.8,∴S 高2<S 低2,∴该市这5天的日最低气温波动大.19. 解:(1)∵喜欢散文的有10人,频率为0.25, ∴总人数=10÷0.25=40(人); (2) “其他”类频率为406=0.15. 答:“其他”类频率0.15.20. 解:(1)∵喜欢文史类的人数为76人,占总人数的38%, ∴此次调查的总人数为:76÷38%=200(人), (2)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:20024×100%=12%, ∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%, ∴小说类所在圆心角为:360°×35%=126°. 四、解答题21. 解:(1)由题意知,单价 为10元的文具盒的销售数量 为90÷15%×25%=150(个), 补全条形统计图,如图所示. (2)小亮的计算方法不正确. 法一 总的平均销售价格为20×15%+10×25%+15×60%=14.5(元). 法二 总的平均销售价格为(10×150+15×360+20×90)÷(150+360+90) =8700÷600=14.5(元). 22. 解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号的积小于4的有4种情况,∴两次摸出的小球标号的积小于4的概率是:31124 .五、解答题23. (1) 随机抽取的150名学生对五种球类运动的喜爱情况(2) a =__39__ b =__21__(3) ∵喜欢篮球运动的人数为33名,所占的百分比为22%, ∴样本容量为33÷22%=150(名), ∵喜欢乒乓球人数为42名,∴样本中喜欢乒乓球运动的学生所占的百分比为42150×100%=28%,∴这1300名学生中最喜欢乒乓球运动的人数所占的百分比约为28%,3002001000400个数36010元15元20元文具商店2019年3月份3种文具盒销售情况条形统计图90单价150开始1234234134124123积23426836124812第一次第二次11∴上述1300名学生中最喜欢乒乓球运动的人数约为1300×28%=364(人). 答: 1300名学生中最喜欢乒乓球运动的人数约为364人. 24.解:(1)a=10,b=25,n=0.25;(2)补全频数分布直方图如图所示; (3)2500×10310012 =90(人), 答:全校获得二等奖的学生人数为90人.六、解答题25.解:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2)喜爱C 粽的人数:600-180-60-240=120,频率:120÷600=20%; 喜爱A 粽的频率:180÷600=30%. 据此补充两幅统计图如图:(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D 粽的人有3200人. (4)画树状图如下:∵共有12种等可能结果,第二个吃到的恰好是C 粽的情况有3种, ∴第二个吃到的恰好是C 粽的概率是31=124。
第8章 统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)
第8章统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,有甲、乙、丙3个转盘,这3个转盘在转动过程中指针停在黑色区域的可能性()A.甲转盘最大B.乙转盘最大C.丙转盘最大D.甲、乙、丙转盘一样大2、如图是某手机店今年1~5月份音乐手机销售额统计图,根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是( )A.1月至2月B.2月至3月C.3月至4月D.4月至5月3、下列调查方式中,应采用“普查”方式的是()A.调查某品牌手机的市场占有率B.调查我市市民实施低碳生活的情况 C.对我国首架歼15战机各个零部件的调查 D.调查某型号炮弹的射程4、一个不透明的布袋中装着只有颜色不同的红、黄两种小球,其中红色小球有8个,为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,然后放回袋中,再次搅匀……多次试验发现摸到红球的频率是,则估计黄色小球的数目是()A.2个B.20个C.40个D.48个5、盒子中有白色兵乓球8个和黄色乒乓球若干个,为求得黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为()A.24个B.32个C.48个D.72个6、记录一天中气温的变化情况,选用比较合适的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.以上三种都可以7、下列说法正确的是()A.为了审核书稿中的错别字,选择抽样调查B.为了了解春节联欢晚会的收视率,选择全面调查C.“射击运动员射击一次,命中靶心”是随机事件D.“经过有交通信号灯的路口,遇到红灯”是必然事件8、如图,在3×3的方格中,点A、B、C、D、E、F都是格点,从A、D、E、F四点中任意取一点,以所取点及B、C为顶点画三角形,所画三角形是直角三角形的概率是()A. B. C. D.9、根据电视台天气预报:某市明天降雨的概率为80%,对此信息,下列几种说法中正确的是()A.该市明天一定会下雨B.该市明天有80%地区会降雨C.该市明天有80%的时间会降雨D.该市明天下雨的可能性很大10、甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环)及方差(单位:环)如下表所示:甲乙丙丁9 8 9 91.6 0.8 3 0.8根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁11、对下列问题进行调查时采用的方式适合普查的是()A.工厂对准备出厂的一批轿车的刹车系统进行测试B.对某市九年级学生的视力调查C.某质检部门调查某罐头厂生产的一批罐头的质量D.对某厂生产的摩托车头盔进行防撞击性能测试12、甲、乙两布袋装有红、白两种小球,两袋装球总数量相同,两种小球仅颜色不同.甲袋中,红球个数是白球个数的2倍;乙袋中,红球个数是白球个数的3倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是()A. B. C. D.13、为了了解某县八年级学生的体重情况,从中抽取了200名学生进行体重测试.在这个问题中,下列说法错误的是()A.200名学生的体重是总体B.200名学生的体重是一个样本C.每个学生的体重是一个个体D.全县八年级学生的体重是总体。
第8章 统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)
第8章统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、准备两张大小一样,分别画有不同图案的正方形纸片,把每张纸都对折、剪开,将四张纸片放在盒子里,然后混合,随意抽出两张正好能拼成原图的概率是( ).A. B. C. D.2、为了解中学生获取资讯的主要渠道,设置“A.报纸.B.电视.C.网络,D.身边的人.E.其他”五个选项(五项中必选且只能选一项)的调查问卷.先随机抽取50名中学生进行该问卷调查.根据调查的结果绘制条形图如图.该调查的方式是(),图中的a的值是()A.全面调查,26B.全面调查,24C.抽样调查,26D.抽样调查,243、一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担当组长,则女生当组长的概率是()A. B. C. D.4、从一个袋中摸出一个球(袋中每一个球被摸到的可能性相等),恰为红球的概率为,若袋中原有红球4个,则袋中球的总数大约是()A.32个B.24个C.16个D.12个5、一个均匀的立方体六个面上分别标有数字1,2,3,4,5,6,如图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面数字的的概率是()A. B. C. D.6、今年的“六•一”儿童节是个星期五,某校学生会在初一年级进行了学生对学校作息安排的三种期望(全天休息、半天休息、全天上课)的抽样调查,并把调查结果绘成了下面两个统计图,已知此次被调查的男、女学生人数相同.根据图中信息,下列判断:①在被调查的学生中,期望全天休息的人数占53%;②本次调查了200名学生;③在被调查的学生中,有30%的女生期望休息半天;④若该校现有初一学生900人,根据调查结果估计期望至少休息半天的学生超过了720人.其中正确的判断有()A.4个B.3个C.2个D.1个7、为了解某校学生每周课外阅读时间的情况,随机抽取该校a名学生进行调查,获得的数据整理后绘制成统计表如下:每周课外阅读时间x0≤x<2 2≤x<4 4≤x<6 6≤x<8 x≥8 合计(小时)频数8 17 b15 a频率0.08 0.17 c0.15 1 表中4≤x<6组的频数b满足25≤b≤35.下面有四个推断:①表中a的值为100;②表中c的值可以为0.31;③这a名学生每周课外阅读时间的中位数一定不在6~8之间;④这a名学生每周课外阅读时间的平均数不会超过6.所有合理推断的序号是()A.①②B.③④C.①②③D.②③④8、如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为2的线段的概率为()A. B. C. D.9、一个布袋里装有5个红球、3个黄球和2个白球,除颜色外其他都相同,搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.10、在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总数为()A.12个B.9个C.6个D.3个11、掷两枚质地均匀的硬币,则两枚硬币全部正面朝上的概率等于()A.1B.0.5C.0D.0.2512、一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是()A.第一次摸出的球是红球,第二次摸出的球一定是绿球B.第一次摸出的球是红球,第二次摸出的不一定是红球C.第一次摸出的球是红球的概率是D.两次摸出的球都是红球的概率是13、某校为了了解九年级学生的体能情况,随机抽查了其中30名学生,测试了他们做1min仰卧起坐的次数,并制成了如图所示的频数分布直方图,根据图示计算仰卧起坐次数在25~30次的频率是().A.0.1B.0.2C.0.3D.0.414、某校七年级共有1000人,为了了解这些学生的视力情况,抽查了20名学生的视力,对所得数据进行整理.若数据在0.95~1.15这一小组的频率为0.3,则可估计该校七年级学生视力在0.95~1.15范围内的人数有().A.600B.300C.150D.3015、从长度分别为3、5、7、9的4条线段中任取3条作边,能组成三角形的概率为()A. B. C. D.二、填空题(共10题,共计30分)16、一个不透明的口袋中装有个白色球,个红色球,个黄色球,这些球除颜色外均相同,搅匀后随机从袋中摸出个球是白色球的概率是________.17、从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a,则使关于x的不等式组有解,且使关于x的一元一次方程+1=的解为负数的概率为________ .18、某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况,如表:节水金港国际/m30.2 0.25 0.3 0.4 0.5家庭数/个 2 4 6 7 1请你估计这400名同学的家庭一个月节约用水的总量大约是 ________m3。
第8章 统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)
第8章统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、某市有5500名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下述4种说法:(1)1000名考生是总体的一个样本(2)1000名学生的平均成绩可估计总体平均成绩(3)5500名考生是总体(1)样本容量是1000其中正确的说法有()A.1种B.2种C.3种D.4种2、10月16日是第40个世界粮食日,某校学生会开展了“光盘行动,从我做起”的活动,对随机抽取的100名学生的在校午餐剩余量进行调查,结果有86名学生做到“光盘”,那么下列说法不合理的是()A.个体是每一名学生的午餐剩余量B.样本容量是100C.全校只有14名学生没有做到“光盘” D.全校约有的学生做到“光盘”3、如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为()A. B. C. D.4、一天晚上,小丽在清洗两只颜色分别是粉色和白色的有盖茶杯时,突然停电了,小丽只好将杯盖和茶杯随机地搭配在一起,则其颜色搭配一致的概率是()A.1B.C.D.5、如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A. B. C. D.6、为了考察某市初中3500名毕业生的数学成绩,从中抽取20本试卷,每本30份,在这个问题中,样本容量是()A.3500B.20C.30D.6007、某学校七年级1班统计了全班同学在1~8月份的课外阅读数量(单位:本),绘制了右边的折线统计图,下列说法正确的是()A.极差是47B.中位数是58C.众数是42D.极差大于平均数8、要了解全校2000名学生课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查各年级中的部分学生9、如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是()A. B. C. D.10、下列调查中,适合采用抽样调查的是()A.调查本班同学的视力B.调查一批节能灯管的使用寿命C.学校招聘教师,对应聘人员面试D.对乘坐某班客车的乘客进行安检11、下列游戏公平的是()A.掷一个硬币两次,出现两次正面甲胜,出现两次反面乙胜B.掷一个硬币两次,出现一次正面甲胜,出现两次反面乙胜C.掷一个硬币两次,至少出现一次正面甲胜,出现一次反面一次正面乙胜D.掷一个硬币两次,出现相同面甲胜,至少出现一次正面乙胜12、对50个数据进行统计,频率分布表中,54.5~57.5这一组的频率为0.12.那么估计总体数据落在54.5~57.5之间的约有()A.12个B.30个C.24个D.6个13、如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A. B. C. D.14、如图的四个转盘中,转盘3,4被分成8等分,若让转盘自由转动一次停止后,指针落在阴影区域内可能性从大到小排列为()A.①②④③B.③②④①C.③④②①D.④③②①15、如图,是一个正在绘制的扇形统计图,整个圆表示某班参加体育活动的总人数,那么表示参加立定跳远训练的人数占总人数的35%的扇形是()A.MB.NC.PD.Q二、填空题(共10题,共计30分)16、教育部规定,初中生每天的睡眠时间应为9个小时,皓皓记录了他一周的睡眠时间,并将统计结果绘制成如图所示的折线统计图,则皓皓这一周的睡眠够9个小时的有________天.17、我县某初中举行“中学生与社会”作文大赛,七年级、八年级根据初赛成绩,各选出5名选手组成七年级代表队和八年级代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)七年级83 85 ________八年级________ ________ 95(2)结合两队成绩的平均数和中位数,分析________队的决赛成绩较好;18、袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是白球的概率为”,则这个袋中白球大约有________个.19、要考察某运动员罚篮命中率,下表是在多次测试中的统计数据罚进个数80 140 293 523 613 823罚球总数110 182 396 701 820 1098估计该运动员罚篮命中的概率是________。
九年级数学统计与概率单元测试(含答案)
九年级数学统计与概率单元测试(含答案)北师版九下《第4章统计与概率》单元测试一、选择题:(每小题3分,共18分) 1.将100个数据分成8个组,如下表:组号 1 2 3 4] 5 6] 7 8 频数 11 14 12 13 13 x 12 10] 则第六组的频数为() A.12 B.13 C.14 D.15 2.10位评委给一名歌手打分如下:9.73,9.66,9.83,9.89,9.76,9.86,9.79,9.85,9.68,9.74,若去掉一个最高分和一个最低分,这名歌手的最后得分是() A.9.79 B.9.78 C.9.77 D.9.76 3.某班50名学生期末考试数学成绩(单位:分)的频率分布条形图如图所示,其中数据不在分点上,对图中提供的信息作出如下的判断:(1)成绩在49.5分~59.5分段的人数与89.5分~100分段的人数相等;(2)成绩在79.5~89.5分段的人数占30%;(3)成绩在79.5分以上的学生有20人;(4)本次考试成绩的中位数落在69.5~79.5分段内,其中正确的判断有() A.4个 B.3个 C.2个 D.1个 (第3题) (第4题) 4.如图是九年级(2)班同学的一次体检中每分钟心跳次数的频数分布条形图(次数均为整数).已知该班只有5位同学的心跳每分钟75次,请观察图,指出下列说法中错误的是() A.数据75落在第2小组 B.第4小组的频率为0.1 C.心跳为每分钟75次的人数占该班体检人数的 ; D.数据75一定是中位数[来 5.在转盘游戏的活动中,小颖根据试验数据绘制出如图所示的扇形统计图,则每转动一次转盘所获购物券金额的平均数是() A.22.5元 B.42.5元 C.元 D.以上都不对 (第5题) (第9题) 6.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是() A. B. C. D.二、填空题(每小题4分,共24分) 7.某鞋厂为了了解初中学生穿鞋的鞋号情况,对某中学九(1)班的20名男生所穿鞋号统计如下:鞋号 23.5 24 24.5 25 25.5 26 人数 3 4 4 7 1 1 那么这20名男生鞋号数据的平均数是,中位数是,在平均数、中位数和众数中,鞋厂最感兴趣的是. 8.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有人. 9.某班联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果,标于一个转盘的相应区域上(转盘被均匀等分为四个区域,如图所示),转盘可以自由转动.参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品,则获得钢笔的概率为. 10.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命跟踪调查,结果如下(单位:年):甲:3,4,5,6,8,8,8,10 乙:4,6,6,6,8,9,12,13 丙:3,3,4,8,8,10,11,12 三个厂家在广告中都称自己产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一个:甲:,乙:,丙. 11.一个质地均匀的六面体骰子,六个面上的数字分别为1,2,3,3,4,5,投掷一次,向上的面出现数字3的概率是. 12.有四张不透明的卡片分别为,除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为.三、解答题(本大题共58分) 13.(本题14分)2003年我国遭受到非典型肺炎传染性疾病(SARS)的巨大灾难,全国人民万众一心,众志成城,抗击“非典”,如图5是根据某校七、八、九年级学生“献爱心,抗非典”自愿捐款活动学生捐款情况制成的条形图和七、八、九年级学生人数扇形分布图.(1)该校七、八、九年级平均每人捐款多少元?(2)若该校共有1 450名学生,试问九年级学生共捐款多少元? 14.(本题14分)改革开放以来,我国国民经济保持良好发展势头,国民生产总值持续较快增长,下表是1998年~2002年国民生产总值统计表.年份 1998[ 1999 2000 2001 2002 国民生产总值/亿元 78345 82067 89442 95933 102398 小明根据上表绘制出条形统计图如图:你认为小明绘制的这个统计图会引起人们错误的感觉吗?如果会,你认为应该怎样改?15.(本题15分)改革开放以来,我国国民经济保持良好发展势头,国民生产总值持续较快增长,如图是1998年~2002年国民生产总值统计图.(1)从图中可看出1999年国民生产总值是多少?(2)已知2002年国内生产总值比2000年增加12 956亿元,2001 年比2000 年增加6 491亿元,求2002年国民生产总值比2001年增长的百分率(结果保留两个有效数字).16.(本题15分)如图a,某同学用仪器测量校园内的一棵树AB的高度,测得了三组数据,制成了仪器到树的距离BD,测量仪器的高CD的数据情况的条形统计图(如图b(1)所示)和仰角情况的折线统计图(如图b(2)所示). (a) (b) 请你利用两个统计图提供的信息,完成以下任务:(1)把统计图中的相关数据填入相应的表中;仪器与树之间距离BD的长测量仪器的高CD 仰角的度数(2)根据测得的样本平均数计算出树高AB(精确到0.1m).17.(做对可得附加分20分)(1)设计一个用样本估计总体的实际问题并解答.(2)利用扑克牌设计一个对双方都公平的游戏并解释公平理由.参考答案一、1~6.DBADAA 二、7. 24.55,24.5,众数 8. 5 9.25% 10.众数,平均数,中位数 11. 12.三、13.(1)6.45元;(2)2 192.4元. 14.会引起人们错误的感觉,为了更直观、清楚地反映国民生产总值的增长情况,纵轴上的数值应从0开始. 15.(1)82 067亿元;(2)2002年国民生产总值比2001年增长6.7%. 16.(1)第一行依次填:19.97,19.70,20.51;第二行依次填:1.21,1.23,1.22;第三行依次填:29°40′,30°,30°20′;(2)由(1)可得,.在Rt△AEC中,tan30°=,CE=BD,所以 AE=×20.06≈11.57,即AB=AE+CD=11.57+1.22≈12.8m.。
人教版九年级数学上册《统计与概率》单元测试卷含答案
人教版九年级上册《统计与概率》单元测试卷含答案一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列调查中最适合采用全面调查的是( ) A .调查某批次汽车的抗撞击能力B .端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况C .调查某班40名同学的视力情况D .调查某池塘中现有鱼的数量 2.下列事件为必然事件的是( )A .小王参加本次数学考试,成绩是150分B .某射击运动员射靶一次,正中靶心C .打开电视机,CCTV 第一套节目正在播放新闻D .口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球3.某班为了解学生“多读书、读好书”活动的开展情况,对该班50名学生一周A .19,13B .19,19C .2,3D .2,24.有5张形状、大小、质地均相同的卡片,背面完全相同,正面分别印有等边三角形、平行四边形、菱形、等腰梯形和圆五种不同的图案.将这5张卡片洗匀后正面朝下放在桌面上,从中随机抽出一张,抽出的卡片正面图案是中心对称图形的概率为( )A .15B .25C .35D .455.为了了解某区初中中考数学成绩情况,从中抽查了1000名学生的数学成绩,在这里样本是( ) A .全区所有参加中考的学生 B .被抽查的1000名学生C .全区所有参加中考的学生的数学成绩D .被抽查的1000名学生的中考数学成绩 6.下列说法中正确的有( )①描述一组数据的平均数只有一个; ②描述一组数据的中位数只有一个; ③描述一组数据的众数只有一个;④描述一组数据的平均数、中位数和众数都一定是这组数据里的数;⑤一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数和中位数.A .1个B .2个C .3个D .4个7.某校对1200名女生的身高进行了测量,身高在1.58~1.63(单位:m )这一小组的频率为0.25,则该组的人数为( ) A .150人B .300人C .600人D .900人8.如图,小明向正方形ABCD 区域内投掷飞镖,点E 是以AB 为直径的半圆与对角线AC 的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为( ) A.12B .14C .13D .189.从2,3,4,5中任意选两个数,记作a 和b ,那么点(a ,b )在函数xy 12=图象上的概率是( )A .12B .13C .14D .10.希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是( )A .被调查的学生有200人B .被调查的学生中喜欢教师职业的有40人C .被调查的学生中喜欢其他职业的占40%D .扇形图中公务员部分所对应的圆心角为72°二、填空题(本题共6小题,每小题4分,共24分)11.为了估算湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间待标记的鱼全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,我们可以估算湖里有鱼条.12.从-2,2,3这三个数中任取两个不同的数相乘,积为负数的概率是. 13.某校九年二班在体育加试中全班所有学生的得分情况如表所示:分数段(分) 15~19 20~24 25~29 30人数 1 5 9 2516从九年二班的学生中随机抽取一人,恰好是获得30分的学生的概率为.14.在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有个.15.甲,乙,丙,丁四名跳高运动员赛前几次选拔赛成绩如表所示,根据表中的信息,如果要从中,选择一名成绩好又发挥稳定的运动员参加比赛,那么应甲乙丙丁平均数(cm)185 180 185 180 方差 3.6 3.6 7.9 8.216学,现从上下层随机各取1本,则抽到的2本都是数学书的概率为________.三、解答题(第17题8分,第18题10分,共18分)17数与代数空间与图形统计与概率综合与实践学生甲90 93 89 90学生乙94 92 94 86(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3:3:2:2计算,那么甲、乙的数学综合素质成绩分别为多少分?18.某数学兴趣小组在本校九年级学生中以你“最喜欢的一项体育运动”为主题进行了抽样调查,并将调查结果绘制成两幅不完整的统计图:项目篮球乒乓球羽毛球跳绳其他人数 a 12 10 5 8请根据图表中的信息完成下列各题: (1)本次共调查学生________名;(2)a=________,表格中五个数据的中位数是________; (3)在扇形图中,“跳绳”对应的扇形圆心角是________;(4)如果该年级有450名学生,那么据此估计大约有________人最喜欢“乒乓球”.四、解答题(第19题10分,第20题10分,共20分)19.在“5·12防灾减灾日”之际,某校随机抽取部分学生进行“安全逃生知识”测验根据这部分学生的测验成绩(单位:分)绘制成如下统计图(不完整): 频数分布表请根据上述图表提供的信息,完成下列问题: (1)分别补全频数分布表和频数分布直方图; (2)若从该校随机抽取1名学生进行这项测验,估计其成绩不低于80分的概率 约为.20.已知甲同学手中藏有三张分别标有数字12,14,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a ,b. (1)请你用树状图或列表法列出所有可能的结果;分组 频数 频率 60≤x <70 2 0.05 70≤x <80 1080≤x <90 0.40 90≤x ≤100 12 0.30 合计 1.00(2)现制定这样一个游戏规则:若所选出的a ,b 能使得方程012=++bx ax 有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.五、解答题(第21题10分,第22题10分,共20分)21.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;请根据上述统计表和扇形提供的信息,完成下列问题: (1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童车的合格率为90%、85%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少?22.在一个口袋中有4个完全相同的小球,把它们分别标号l 、2、3、4.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x ,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y 时小明获胜,否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;类别 儿童玩具 童车 童装 抽查件数 90(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.六、解答题(满分12分)23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.七、解答题(满分12分)24.李老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图.请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有________名,D类男生有________名,将条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.八、解答题(满分14分)25.某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的学生人数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18《统计与概率》参考答案一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项12345678910C D D C D B B B D C11.80012.3213.8514.815.甲16.61 三、解答题(第17题8分,第18题10分,共18分)17.解:(1)甲的成绩从小到大的顺序排列为:89,90,90,93,中位数为90; 乙的成绩从小到大的顺序排列为:86,92,94,94,中位数为(92+94)÷2=93. 答:甲成绩的中位数是90分,乙成绩的中位数是93分.2332210332290938990101010102727.917.81890.7+++=⨯+⨯+⨯+⨯=+++=()甲:(分)答:甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分 18.【答案】(1)50(2)15;10(3)36°(4)108 解:(1)本次共调查的学生总数为10÷20%=50(人);(2)喜欢篮球的人数为50×30%=15(人);这五个数据的中位数是:10;(3)5“”36036.3650⨯︒=︒︒跳绳对应的扇形圆心角的度数故答案为;(4)12“”45010850⨯=最喜欢乒乓球的人数大约有:(人).故答案为108人.四、解答题(第19题10分,第20题10分,共20分)719.10【答案】(1)0.25;16;40(2)解:(1)调查的总人数:2÷0.05=40(人);70~80组的频率:10÷40=0.25; 80~90组的频数:40×0.4=16.据此补全频数分布表和频数分布直方图: 分组 频数 频率3322949294861010101028.227.618.817.291.8⨯+⨯+⨯+⨯=+++=乙:(分)60≤x<7020.0570≤x<80100.2580≤x<90160.4090≤x≤100120.30合计40 1.00(2)成绩不低于80分的概率70.400.300.70.10=+==20.解:(1)画树状图:1111,22241111144a b由图可知()的所有结果为:(,1)、(,3)、(,2)、(,1)、(,3)、(,2)、(,1)、(,3)、(,2);(以上解法仅供参考,其他方法答对可酌情得分)(2)游戏不公平由(1)可知(a,b)取值共有9种等可能结果.∵Δ=b2-4a与对应(1)中的结果为:-1,7,2,0,8,3,-3,5,05540=9()()(99)P P P=∆==∴甲获胜>,乙获胜1-∴P(甲获胜)>P(乙获胜).∴这样的游戏规则对甲有利,不公平.五、解答题(第21题10分,第22题10分,共20分)21.解:(1)童车的数量是300×25%=75(件),童装的数量是300-75-90=135(件);儿童玩具占得百分比是(90÷300)×100%=30%;童装占得百分比1-30%-25%=45%.补全统计表和统计图如下:9090%7585%13580%8163.5108337(2)300300400⨯+⨯+⨯++==337.400答:估计购买到合格品的概率是22.解:(1)画树状图得:类别儿童玩具童车童装抽查件数9075135126∵共有种等可能的结果,其中小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共种情况61=.122P ∴(小明获胜)= (以上解法仅供参考,其他方法答对可酌情得分)(4,1),(4,2),(4,3)6335 1=.16888P P ===-∴(小明获胜),(小强获胜) ∵P (小明获胜)≠P (小强获胜)∴他们制定的游戏规则不公平。
北师大版九年级数学下册《统计与概率》单元测试卷及答案解析
北师大版九年级数学下册《统计与概率》单元测试卷一、选择题1、下列事件是随机事件的是()A.明天太阳从东方升起 B.任意画一个三角形,其内角和是360°C.通常温度降到0℃以下,纯净的水结冰 D.射击运动员射击一次,命中靶心2、足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是()A.让比赛更富有情趣B.让比赛更具有神秘色彩C.体现比赛的公平性D.让比赛更有挑战性3、如图的四个转盘中,C.D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A. B. C. D.4、在□□的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是()A.1 B.C.D.5、在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他均相同.若通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球的个数可能是()A.16 B.15 C.13 D.126、李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是()A.6 B.5 C.4 D.37、如图所示,小明、小刚利用两个转盘进行游戏;规则为小明将两个转盘各转一次,如配成紫色(红与蓝)得5分,否则小刚得3分,此规则对小明和小刚()A.公平B.对小明有利C.对小刚有利 D.不可预测二、填空题8、给出下列函数:①y=2x-1;②y=;③y=-x2.从中任取一个函数,取出的函数符合条件“当x>1时,函数值y随x增大而减小”的概率是.9、四张完全相同的卡片上分别画有平行四边形、等边三角形、线段、圆,背面朝上洗匀后,放在桌面上,从中随机抽取两张,抽的两张卡片上的图形都是中心对称图形的概率是.10、任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数大于4的概率为.11、在一个不透明的袋子中,装有大小、形状、质地等都相同的红色、黄色、白色小球各1个,从袋子中随机摸出一个小球,之后把小球放回袋子中并摇匀,再随机摸出一个小球,则两次摸出的小球颜色相同的概率是12、在平面直角坐标系中横、纵坐标均是整数的点称为整点,例如点(-1,4)是一个整点.直线y=-x+4与两坐标轴围成△AOB,点P是△AOB的边及其内部的整点,则点P落在以O为圆心,3为半径的圆内的概率为.13、在平面直角坐标系中横、纵坐标均是整数的点称为整点,例如点(-1,4)是一个整点.直线y=-x+4与两坐标轴围成△AOB,点P是△AOB的边及其内部的整点,则点P落在以O为圆心,3为半径的圆内的概率为.14、在一个袋子中装有除颜色外其它均相同的2个黑球、3个红球和5个白球,从中任意摸出一个球,则摸到红球的概率是.15、明“六•一”去公园玩儿投掷飞镖的游戏,投中图中阴影部分有奖(飞镖盘被平均分成8份),小明能获得奖品的概率是.16、甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏.(填“公平”或“不公平”)三、解答题17、甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.(1)用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?18、在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)19、A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外没有任何区别.(1)随机地从A中抽取一张,求抽到数字为2的概率;(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?20、小红与小刚姐弟俩做掷硬币游戏,他们两人同时各掷一枚壹元硬币.(1)若游戏规则为:当两枚硬币落地后正面朝上时,小红赢,否则小刚赢.请用画树状图或列表的方法,求小刚赢的概率;(2)小红认为上面的游戏规则不公平,于是把规则改为:当两枚硬币正面都朝上时,小红得8分,否则小刚得4分.那么,修改后的游戏规则公平吗?请说明理由;若不公平,请你帮他们再修改游戏规则,使游戏规则公平(不必说明理由).21、一只不透明的袋子中装有“G20,峰,会”3个球,这些球除标注外都相同,搅匀后从中任意摸出1个球,不放回,搅匀后再从中任意摸出1个球,不放回,再从中摸出最后1个球.(1)请画树状图分析两次摸球情况;(2)小明和小亮玩这个摸球游戏,小明摸到三个球的顺序依次为“G20、峰、会”,或“峰、会、G20”,小明胜,否则小亮胜.请判断该游戏对双方是否公平?说明理由.22、一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同.(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;(2)甲、乙两人用着六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.参考答案1、D.2、C3、A.4、B.5、D.6、D7、A8、.9、10、11、.12、13、.14、15、.16、不公平.17、(1)P(两个球上的数字之和为6)=;(2)不公平,理由见解析.18、(1)、答案见解析;(2)、不公平19、(1);(2)游戏规则对甲乙双方不公平,理由见解析.20、(1)小红赢的概率是,小刚赢的概率为;(2)不公平.21、(1)图见解析;(2)不公平,理由见解析.22、(1);(2)游戏对甲、乙两人是公平的,理由见解析.【解析】1、试题解析:A、明天太阳从东方升起是必然事件,故A错误;B、任意画一个三角形,其内角和是360°是不可能事件,故B错误;C、通常温度降到0℃以下,纯净的水结冰是必然事件,故C错误;D、射击运动员射击一次,命中靶心是随机事件,故D正确;故选D.考点:随机事件.2、试题分析:抛硬币正反两面的概率是相同的,则用抛硬币决定比赛双方的场地与首先发球者就是为了体现比赛的公平性.考点:概率的应用3、试题分析:A.如图所示:指针落在阴影区域内的概率为:;B.如图所示:指针落在阴影区域内的概率为:;C.如图所示:指针落在阴影区域内的概率为:;D.如图所示:指针落在阴影区域内的概率为:,∵,∴指针落在阴影区域内的概率最大的转盘是:.故选A.考点:几何概率.4、试题分析:能够凑成完全平方公式,则2xy前可是“﹣”,也可以是“+”,但y2前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选B.考点:1.概率公式;2.完全平方式.5、试题分析:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴,解得:x=12,故白球的个数为12个.故选:D.考点:利用频率估计概率.6、试题分析:据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解:根据题意列表可得当第2颗骰子上蓝色的面数是3时,两人获胜的机会相等.故选D.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.7、试题分析:游戏是否公平,关键要看游戏双方取胜的机会是否相等,计算配成紫色和不是紫色的概率,比较概率就可以得出答案.解:两个转盘各转一次,配成颜色所有的情况如下:(红1,红3)(红1,蓝2)(红2,蓝2)(红2,红3)(蓝1,红3)(蓝1,蓝2)(绿,红3)(绿,蓝2)共8种情况.所以P(紫色)=,P(其他颜色)=,而5×=3×;因此规则对小明和小刚公平.故选A.点评:判断游戏公平性就要计算每个人取胜的概率,概率相等就公平,否则就不公平.8、试题分析:首先利用一次函数、反比例函数及二次函数的性质确定当x>1时,函数值y随x增大而减小的个数,然后利用概率公式求解即可.试题解析:∵函数:①y=2x-1;②y=;③y=-x2中当x>1时,函数值y随x增大而减小的有y=、y=-x2,∴从中任取一个函数,取出的函数符合条件“当x>1时,函数值y随x增大而减小”的概率是.考点:1.概率公式;2.一次函数的性质;3.反比例函数的性质;4.二次函数的性质.9、试题分析:用A表示平行四边形,B表示等边三角形,C表示线段,D表示圆,列表如所以共有所有等可能情况数为12种,其中两张卡片上图形都是中心对称图形的有6种,则P(两个都为中心对称图形)=.考点:简单事件的概率.10、试题分析:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是:.考点:概率11、试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球颜色相同的情况,再利用概率公式即可求得答案.试题解析:画树状图得:∵共有9种等可能的结果,两次摸出的小球颜色相同的有3种情况,∴两次摸出的小球颜色相同的概率是:.【考点】列表法与树状图法.12、试题分析:由点P是△AOB的边及其内部的整点,通过分析可知,则点P为(0,0),(1,0),(2,0),(3,0),(4,0),(0,1),(1,1),(2,1),(3,1),(0,2),(1,2),(2,2),(0,3),(1,3),(0,4)共15个整点. 又点P落在以O为圆心,3为半径的圆内的点为(0,0),(1,0),(2,0),(0,1),(1,1),(2,1),(0,2),(1,2),(2,2)共9个整点.∴概率为即考点:1.函数的性质;2.概率.13、试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,因此,如图,点P是△AOB的边及其内部的整点共有15个,落在以O为圆心,3为半径的圆内的点有9个,所以所求概率为.考点:1.概率;2.点的坐标;3.直线上点的坐标与方程的关系.14、试题分析:由在一个袋子中装有除颜色外其它均相同的2个黑球、3个红球和5个白球,直接利用概率公式求解即可求得答案.试题解析:∵在一个袋子中装有除颜色外其它均相同的2个黑球、3个红球和5个白球,∴摸到红球的概率是:.考点:概率公式.15、试题分析:∵飞镖盘被平均分成8分,阴影部分占3块,∴小明能获得奖品的概率是.考点:几何概率.16、试题分析:根据游戏规则可知:牌面数字分别为5,6,7的三张扑克牌中,随意抽取2张,积有9种情况,其中5种是偶数,4种是奇数.那么甲、乙两人取胜的概率不相等;故这个游戏不公平.试题解析:从5、6、7中任意找两个数,积有35、30、42、25、36、49,其中30、35、42都是两次,即共9种情况,其中奇数的有4种,偶数的有5种,显然是不公平的.考点:游戏公平性.17、试题分析:游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.试题解析:(1)解法一:树状图(3分)∴P(两个球上的数字之和为6)=.(2分)∴P(两个球上的数字之和为6)=.(2)不公平.=,P(小刚胜)=.≠P(小刚胜).∴这个游戏不公平.(2分)考点:游戏公平性的判断;概率,.18、试题分析:(1)、依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可.(2)、解题思路同上.试题解析:(1)、甲同学的方案不公平.理由如下:获胜的概率为: =,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平;获胜的概率为: =,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.考点:(1)、游戏公平性;(2)、列表法与树状图法.19、试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析: (1)P=;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=,乙获胜的情况有2种,P=,所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.20、试题分析:列举出符合题意的各种情况的个数,再根据概率公式解答,比较即可.试题解析:(1)由树状图可知共有2×2=4种可能,两枚硬币落地后正面朝上的有1种,所以概率是,所以小红赢的概率是,小刚赢的概率为;(2)每次游戏小红平均得到的分数为:8×=2,小刚得到的分数为:4×=3,修改后游戏也不公平.应该修改为:当两枚硬币正面都朝上时,小红得3分,否则小刚得1分.考点:1.游戏公平性;2.列表法与树状图法.21、试题分析:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可.试题解析:(1);(2)P(小明胜)=,P(小亮胜)=,不公平.考点:1.游戏公平性;2.列表法与树状图法.22、试题分析:(1)根据概率公式直接求得答案;(2)画出树状图,得出所有等可能的情况数,找出两次摸到小球的标号数字同为奇数或同为偶数的情况数,即可求出所求的概率.试题解析:(1)∵1,2,3,4,5,6六个小球,∴摸到标号数字为奇数的小球的概率为:=;(2)画树状图:如图所示,共有36种等可能的情况,两次摸到小球的标号数字同为奇数或同为偶数的有18种,摸到小球的标号数字为一奇一偶的结果有18种,∴P(甲)==,P(乙)==,∴这个游戏对甲、乙两人是公平的.考点:概率公式;游戏的公平性.。
第8章 统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)
第8章统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,所以第六组的频率是()A.0.1B.0.2C.0.3D.0.42、在一个不透明的口袋中放着红色、黑色、黄色的橡皮球共有30个,它们除颜色外其它全相同.小刚通过多次摸球试验后发现从中摸到红色球或黄色球的频率稳定在0.15和0.45之间,则口袋中黑色球的个数可能是()A.14B.20C.9D.63、小芳给校方提供学生体育锻炼的情况报告,在校内对全校学生进行了抽样调查,每位学生只选择一项自己最喜欢的体育运动.其中,a代表最喜欢参加兵乒球运动;b代表最喜欢参加羽毛球运动;c代表最喜欢气排球运动;d代表最喜欢篮球运动,下图是她还未完成的条形统计图与扇形统计图,根据统计图所给出的信息,这个样本中最喜欢篮球运动(即d)的百分率与人数是( )A.24,26%B.33,26.4%C.28,22.4%D.25,23.6%4、在1000个数据中,用适当的方法抽取50个作为样本进行统计,频数分布表中54.5~57.5这一组的频率是0.12,那么个体数据落在54.5~57.5之间的约有().A.120个B.60个C.12个D.6个5、将分别标有“海”、“口”、“美”、“丽”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回,再随机接出一球.两次摸出的球上的汉字能组成“海口”的概率是()A. B. C. D.6、甲、乙两盒中各放入分别写有数字1,2,3的三张卡片,每张卡片除数字外其他完全相同.从甲盒中随机抽出一张卡片,再从乙盒中随机摸出一张卡片,摸出的两张卡片上的数字之和是3的概率是()A. B. C. D.7、某校学生会准备调查七年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数,他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图请你根据以上图表提供的信息判断下列说法正确的有()①a=100,b=0.15;②在扇形统计图中器乐类所对应扇形的圆心角的度数是144°;③若该校七年级有学生1120人,大约有280名学生参加武术类校本课程.A.①②B.②③C.①③D.①②③8、做重复实验同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率0.48,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.24B.0.48C.0.50D.0.529、将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差1的概率是()A. B. C. D.10、某口袋里现有8个红球和若干个绿球(两种球除颜色外,其余完全相同),某同学随机的从该口袋里摸出一球,记下颜色后放回,共试验50次,其中有20个红球,估计绿球个数为( )A.6B.12C.13D.2511、经过某十字路口的汽车,可能直行,也可能左转或者右转,若这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆直行,一辆右转的概率是()A. B. C. D.12、一个布袋中有4个除颜色外其余都相同的小球,其中3个白球,1个红球.从袋中任意摸出1个球是白球的概率是()A. B. C. D.13、从标有−5a2b , 2a2b2,ab2,−5ab的四张同样大小的卡片中,任意抽出两张,“抽出的两张是同类项”这一事件是()A.不可能事件B.不确定事件C.必然事件D.确定事件14、下列调查中,适合用抽样调查的是()①市场上某种食品的某种添加剂的含量是否符合国家标准;②检测某地区空气的质量;③调查全省中学生一天的学习时间.A.①②B.①③C.②③D.①②③15、在“世界无烟日”这天,小明和他的同学为了解某街道大约有多少成年人吸烟,于是随机调查了该街道1000个成年人,结果有100个成年人吸烟.对于这个数据的收集与处理过程,下列说法正确的是()A.调查的方式是普查B.样本是100个吸烟的成年人C.该街道只有900个成年人不吸烟D.该街道约有的成年人吸烟二、填空题(共10题,共计30分)16、甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a+b=9的概率为________.17、某市举办“体彩杯”中学生篮球赛,初中男子组有市直学校的A、B、C三个队和县区学校的D,E,F,G,H五个队,如果从A,B,D,E四个队与C,F,G,H四个队中个抽取一个队进行首场比赛,那么首场比赛出场的两个队都是县区学校队的概率是________.18、30张牌,牌面朝下,每次抽出一张记下花色后再放回,洗牌后再抽,抽到红心、黑桃、草花、方块的频率依次为20%,32%,44%,4%,则四种花色的牌各约有________ .(按红心、黑桃、草皮、方块的顺序填写)19、一个不透明的口袋中有红球和黑球共25个,这些球除颜色外都相同.进行大量的摸球试验(每次摸出1个球)后,发现摸到黑球的频率在0.6附近摆动,据此可以估计黑球为________个.20、当实验次数很大时,同一事件发生的频率稳定在相应的________附近,所以我们可以通过多次实验,用同一个事件发生的________来估计这事件发生的概率.(填“频率”或“概率”)21、新学期开学,刚刚组建的七年级(1)班有男生30人,女生24人,欲从该班级中选出一名值日班长,任何人都有同样的机会,则这班选中一名男生当值日班长的概率是________.22、在一个不透明的盒子中装有个黑球,n个红球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黑球的概率为,则________.23、若要制作统计图来反映某品牌奶粉中蛋白质、钙、维生素糖和其他物质含量的百分比,最适当的统计图是________统计图.(填“折线”、“条形”或“扇形”)24、将容量为50的样本分成6组,其中,第1、2、3、4、5组的频率之和是0.96,那么第6组的频数是________ .25、林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:移植的棵数n 1000 1500 2500 4000 8000 15000 20000 30000 成活的棵数m 865 1356 2220 3500 7056 13170 17580 26430 成活的频率 0.865 0.904 0.888 0.875 0.882 0.878 0.879 0.881估计该种幼树在此条件下移植成活的概率为________.(精确到0.01)三、解答题(共5题,共计25分)26、篮球课上,朱老师向学生详细地讲解传球的要领时,叫甲、乙、丙、丁四位同学配合朱老师进行传球训练,朱老师把球传给甲同学后,让四位同学相互传球,其他人观看体会,当甲同学第一个传球时,求甲同学传给下一个同学后,这个同学再传给甲同学的概率27、为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:甲63 66 63 61 64 61乙63 65 60 63 64 63(Ⅰ)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(Ⅱ)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.28、清明节扫墓是中华民族的传统习俗,为适应需求,某商店决定销售甲厂家的高、中、低档三个品种盆花和乙厂家的精装、简装两个品种盆花.现需要在甲乙两个厂家中各选一个品种.(1)写出所有选购方案(利用树状图或列表法求选购方案)(2)若(1)中各选购方案被选中的可能性相同,则甲厂家高档盆花被选中的概率是多少?(3)某中学组织学生到烈士陵园扫墓,欲购买两个品种共32盆花(价格如下表),其中指定一个品种是甲厂家的高档盆花,再从乙厂家挑选一个品种,若恰好用1000元.请问购买了甲厂家几盆高档盆花?品种高档中档低档精装简装价格(元/盆)60 40 25 50 2029、小明是一名健步走运动的爱好者,他用手机软件记录了他近期健步走的步数(单位:万步),绘制出如下的统计图①和统计图②,请根据相关信息,解答下列问题:(Ⅰ)本次记录的总天数为▲,图①中m的值为▲;(Ⅱ)求小名近期健步走步数的平均数、众数和中位数;(Ⅲ)根据样本数据,若小明坚持健步走一年(记为365天),试估计步数为1.1万步的天数.30、某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A区域30名爱好者完成时间统计图,求:①A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).②若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的人数.③若3×3阶魔方赛A区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱好者的概率(结果用最简分数表示).参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、A6、B7、D8、D9、D10、B11、C12、A13、A14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
九年级初中数学《统计与概率》单元考试卷含答案
单元检测卷《统计与概率》含答案试卷满分150分一、选择题(每小题3分,共10小题,共30分)1.下列说法正确的是()A.若甲、乙两组数据的平均数相同,20.1S=甲,20.04S=乙,则乙组数据较稳定B.如果明天降水的概率是50%,那么明天有半天都在降雨C.了解全国中学生的节水意识应选用普查方式D.早上的太阳从西方升起是必然事件2.一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为() A.12 B.10 C.8 D.63.某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分),规定笔试成绩占40%,面试成绩占60%.应聘者蕾蕾的笔试成绩和面试成绩分别为95分和90分,她的最终得分是()A.92.5分B.90分C.92分D.95分4.积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行节水量(单位:吨)0.5 1 1.5 2 家庭数(户) 2 3 4 1()A.240吨B.360吨C.180吨D.200吨5.某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图.根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是() A.800 B.600 C.400 D.200第5题图第6题图第7题图6.随着长株潭一体化进程不断推进,湘潭在交通方面越来越让人期待.将要实施的“两干一轨”项目中的“一轨”,是将长沙市地铁3号线南延至湘潭北站,往返长潭两地又将多“地铁”这一选择.为了解人们选择交通工具的意愿,随机抽取了部分市民进行调查,并根据调查结果绘制如下统计图,关于交通工具选择的人数数据,以下结论正确的是()A.平均数是8 B.众数是11 C.中位数是2 D.极差是10 7.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是()A.14B.34C.12D.388.某小组做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )A .抛一枚硬币,出现正面朝上B .掷一个正六面体的骰子,出现3点朝上C .从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球D .一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃第8题图 第9题图9.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( )A .12B .14C .18 D .11610.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n .如果m ,n 满足||1m n -…,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( )A .38 B .58 C .14 D .12二、填空题(每小题4分,共6小题,共24分)11.从2,0,π,227,6这五个数中随机抽取一个数,抽到无理数的概率是 . 12.一组数据4,5,6,x 的众数与中位数相等,则这组数据的方差是 .13.如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作2s 甲,2s 乙,则2s 甲 2s 乙.(填“>”,“ =”或“<”)第13题图 第14题图14.在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数是 .15.一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中有个白球.16.如图,正六边形内接于Oe,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是.第16题图三、解答题(共9小题,共96分)17.(10度);度数8 9 10 13 14 15天数 1 1 2 3 1 2(1)这10天用电量的众数是,中位数是,极差是;(2)求这个班级平均每天的用电量;(3)已知该校共有20个班级,该月共计30天,试估计该校该月总的用电量.18.(10分)某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,三人得票率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票记1分.(1)分别计算三人民主评议的得分;(2)根据实际需要,学校将笔试、面试、民主评议三项得分按4:3:3的比例确定个人成绩,三人中谁的得分最高?第18题图19.(10分)如图,把可以自由转动的圆形转盘A,B分别分成3等份的扇形区域,并在每一个小区域内标上数字.小明和小颖两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针两区域的数字均为奇数,则小明胜;若指针两区域的数字均为偶数,则小颖胜;若有指针落在分割线上,则无效,需重新转动转盘.这个游戏规则对双方公平吗?请说明理由.第19题图20.(10分)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的类别A B C D E F类型足球羽毛球乒乓球篮球排球其他人数10 4 6 2(1)被调查的学生中,最喜欢乒乓球的有人,最喜欢篮球的学生数占被调查总人数的百分比为%;(2)被调查学生的总数为人,其中,最喜欢篮球的有人,最喜欢足球的学生数占被调查总人数的百分比为%;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.第20题图21.(10分)小石和小丁利用盒子里的三张卡片做游戏,卡片上分别写有A,A,B,这些卡片除了字母外完全相同.从中随机摸出一张卡片记下字母,放回盒子后充分搅匀,再从中随机摸出一张卡片记下字母.如果两次摸到的卡片字母相同则小石获胜,否则小丁获胜,这个游戏公平吗?请用画树状图或列表的方法说明理由.22.(10分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.23.(12分)随着我市社会经济的发展和交通状况的改善, 我市的旅游业得到了高速发展, 某旅游公司对我市一企业旅游年消费情况进行了问卷调查, 随机抽取部分员工, 记录每个人消费金额, 并将调查数据适当调整, 绘制成如图组别 个人年消费金额x (元)频数 (人 数) 频率A2000x „ 18 0.15 B20004000x <„ a b C40006000x <„ D 60008000x <„ 240.20 E 8000x >12 0.10 合计 c1.00 (1)a = ,b = ,c = . 并将条形统计图补充完整;(2) 这次调查中, 个人年消费金额的中位数出现在 组;(3) 若这个企业有 3000 多名员工, 请你估计个人旅游年消费金额在 6000 元以上的人数 .24.(12分)随着互联网的不断发展,移动支付的普及率越来越高,人们在购物时可选择的付款方式越来越多样化.为了解人们购物时常用付款方式,在某步行街进行了随机抽样调查,根据调查结果绘制以下两幅不完整统计图,请结合图中所给信息解答下列问题:(1)此次共调查了人,表示常用“微信”付款方式的扇形圆心角度数为,并补全条形统计图;(2)该步行街某天的人流量约为2.4万人,其中约有50%的人参与购物,根据调查获得的信息,估计在这一天购物时用“微信”付款方式的人数为多少万人?(3)若甲、乙两人在购物时,选择“现金”、“刷卡”、“支付宝”、“微信”(分别用A、B、C、D表示)付款的可能性相同.请通过列表或画树形图的方法,求两人在购物时,用同一种付款方式的概率.25.(14分)为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调査结果绘制成如下不完整的统计表和统计图.课程人数所占百分比声乐14 %b舞蹈8 16%书法16 32%摄影a24%合计m100%(1)m=,b=;(2)求出a的值并补全条形统计图;(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名;(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.单元检测卷-统计与概率参考答案一、选择题(每小题3分,共10小题,共30分)1.A .2.D .3.C .4.A .5.A .6.A .7.D .8.C .9.D .10.B .二、填空题(每小题4分,共6小题,共24分)11.25 12.12 13.< 14.520 15.3 16.16三、解答题(共9小题,共96分)17.(8分)解:(1)13;13;7;(2)平均用电量为:(8910213314152)1012++⨯+⨯++⨯÷=(度);(3)总用电量为2012307200⨯⨯=(度).18.(10分)解:(1)甲民主评议的得分是:20025%50⨯=(分);乙民主评议的得分是:20040%80⨯=(分);丙民主评议的得分是:20035%70⨯=(分).(2)甲的成绩是:(754933503)(433)⨯+⨯+⨯÷++72910=÷72.9=(分) 乙的成绩是:(804703803)(433)⨯+⨯+⨯÷++77010=÷77=(分)丙的成绩是:(904683703)(433)⨯+⨯+⨯÷++77410=÷77.4=(分)77.47772.9>>Q ,∴丙的得分最高.19.(10分)解:这个游戏规则对双方公平,如图所示:共9种情况,其中均为偶数的有2种结果,均为奇数的情况数有2种, 所以小明获胜的概率为29,小颖获胜的概率为29,Q 2299=,∴这个游戏规则对双方公平. 20.(10分)解:(1)4;32;(2)50;16;24;(3)根据调查结果,估计该校最喜欢排球的学生数为64505450⨯=人. 21.(10分)解:这个游戏不公平,理由如下:第二次 第一次A AB A(,)A A (,)A A (,)A B A(,)A A (,)A A (,)A B B (,)B A (,)B A (,)B B其中出现“两次摸到的卡片字母相同”的结果有5个,“两次摸到的卡片字母不相同”的结果有4个,(5)9P ∴=小石获胜,(4)9P =小丁获胜, ()()P P ∴>小石获胜小丁获胜,∴这个游戏不公平.22.(10分)解:(1)14.(2)画树状图为:共有12种等可能的结果数,其中甲组抽到A 小区,同时乙组抽到C 小区的结果数为1,∴甲组抽到A 小区,同时乙组抽到C 小区的概率为112. 23.(12分)解:(1) 36 , 0.30 , 120 ;补全统计图为:(2)C ;(3)个人旅游年消费金额在 6000 元以上的人数3000(0.100.20)900⨯+=(人) .24.(12分)解:100,144︒;补全条形统计图为:(2)402.450%0.48100⨯⨯=, 所以估计在这一天购物时用“微信”付款方式的人数为0.48万人;(3)画树状图为:共有16种等可能的结果数,其中两人在购物时,用同一种付款方式的结果数为4,所以两人在购物时,用同一种付款方式的概率41164==.25.(14分)解:(1)50,28;(2)5024%12a=⨯=,补全图形如下:(3)估计选修“声乐”课程的学生有150028%420⨯=(人).(4)画树状图为:共有12种等可能的结果数,其中抽取的2名学生恰好来自同一个班级的结果数为4,则所抽取的2人恰好来自同一个班级的概率为41=.123第11页(共11页)。
第8章 统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)
第8章统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如果小磊将镖随意投中如图所示的正方形木板(假设投中每个小正方形是等可能的),那么镖落在阴影部分的概率为()A. B. C. D.2、汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是()A.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多B.以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少 C.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油 D.以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升3、水库中放养鲤鱼8000条,鲢鱼若干.在n次随机捕捞中,共抓到鲤鱼320条,抓到鲢鱼400条,估计塘中原来放养了鲢鱼()A.9000条B.9600条C.10000条D.12000条4、三名快递员某天的工作情况如图所示,其中点A1, A2, A3的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点B1, B2, B3的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下四个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送所用时间最长的是乙;④在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是()A.①④B.①③④C.②③D.①②③④5、某校为了解初三年级全体男生的身体发育情况,从中对20名男生的身高进行了测量(测量结果均为整数,单位:cm),将所得数据整理后,列出频数分布表如图所示,那么下面三个结论中正确的是()分组频数频率151.5~156.5 3 0.15156.5~161.5 2 0.10161.5~166.5 6 a166.5~171.5 5 0.25171.5~176.5 4 0.20①这次抽样分析的样本是20名学生;②频数分布表中的数据a=0.30;③身高在167cm以上(包括167cm)的男生有9人.A.①②③B.②③C.①③D.①②6、把过期的药品随意丢弃,会造成对土壤和水体的污染,危害人们的健康.如何处理过期药品,有关机构随机对若干家庭进行调查,调查结果如图,其中对过期药品处理不正确的家庭达到()A.75%B.82%C.22%D.78%7、容量100的样本数据,按从小到大的顺序分8组,如表:组号 1 2 3 4 5 6 7 8 频数10 13 x 14 15 13 12 9第三组的频数是()A.14B.13C.12D.108、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖、参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是()9、如图是小明所在学校八年级各班学生人数分布图,则该校八年级学生总数为( )A.180人B.200人C.210人D.220人10、小明掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件为必然事件的是()A.骰子向上的一面点数为奇数B.骰子向上的一面点数小于7C.骰子向上的一面点数是4 D.骰子向上的一面点数大于611、在统计中频率分布的主要作用是()A.可以反映一组数据的波动大小B.可以反映一组数据的平均水平C.可以反映一组数据的分布情况D.可以看出一组数据的最大值和最小值12、小明有两根长度分别为5cm和8cm的木棒,他想钉一个三角形的木框。
九年级第六章概率与统计测试题.doc
九年级数学(下)第六章《对概率的进一步认识》单元测试题时间90分钟,满分120分一、选择题(每题3分,共36分)1..下列事件中随机事件是()A. 如果a、b是有理数,那么ab=baB. 在太平洋的水常年不干C.打开电视机,正在播广告D. 太阳总是从东方升起2. 下列说法中正确的是()A. 可能性很小的事件在一次实验中一定不会发生B. 可能性很小的事件在一次实验中一定会发生C. 可能性很小的事件在一次实验中有可能发生D. 不可能事件在一次实验中也可能发生3. 学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为()A*3B・J2C・丄D・丄3 34•袋中有5个白球,有n个红球,从中任意取出一个,恰为红球的机会为?,贝V n的值为3A. 16B. 10C. 20D. 185•有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、& 9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为()A2 o 1 厂1 1A. 一B. -C. 一D・一3 24 36 •—个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是()A 1 o 1 1 1A. 一B. -C. 一D・一2 3 4 67•有5条线段的长分别为2、4、6、& 10,从中任取三条能构成三角形的概率是()下图是这个立方体表面的展开图,抛掷这个立方体,则朝上9.如果小明将飞镖随意投中如图所示的圆形木板,那么镖落在小圆内的概率为黑色格中的概率是()"•一个不透明的布袋中有分别标着数字 1, 2, 3, 4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A.-4 C.- 2D. 3 10 8. 一个均匀的立方体六个面上分别标有2, 3, 4, 5, 6,一面的数恰好等于朝下一面的数的-的概率是() 2A.-6B. 1C.- 3 2A.—40B. —C.— 80 800D. — 160010.把一个沙包丢在如图所示的某个方格中 (每个方格除颜色外完全一样),那么沙包落在 A.-2C.216 45 31 D 1 1 f 2A. —B. 一C. —D. —6 3 2 312•中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是()二、填空题(每题3分,共10次摸出黄球的概率是 _________ 14•有五张卡片,每张卡片上分别写有1, 2, 3, 4, 5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为 ________ 的概率最大,抽到和大于 8的概率为 ___________15•某口袋中有红色、 黄色、蓝色玻璃共72个,小明通过多次摸球试验后, 发现摸到红球、黄球、蓝球的频率为 35%、25%和40%,估计口袋中黄色玻璃球有 __________ 个.16•口袋里有红、绿、黄三种颜色的球,其中红球 4个,绿球5个,任意摸出一个绿球的1概率是一,则摸出一个黄球的概率是 __________ ・317•张卡片分别写有 0至9十个数字,将它们放入纸箱后,任意摸出一张,则 P (摸到数字2)= ___ , P (摸到奇数)二 ______ ・18.抛掷两枚均匀的正方体骰子 ,掷得点数之和为偶数的概率是 ______________ ,点数之和为奇数的概率是 __________ 三、解答题(共66分)19•一张椭圆形桌旁有六个座位, A 、E 、F 先坐在如图所示的座位上,到其他三个座位,求 A 与B 不相邻而座的概率・A.-4B.- 6C.-5D.3 2013. 一只布袋中有三种小球(除颜色外没有任何区别 ),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球, 观察后放回搅匀 在连续 9次摸出的都是蓝球的情况下,第B 、C 、D 三人随机坐@OO第19题图20•请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏"的奥秘:⑴用树状图表示出所有可能的寻宝情况;⑵求在寻宝游戏中胜出的概率21 •—只箱子里共有 3个球,其中2个白球,1个红球,它们除颜色外均相同。
第8章 统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)
第8章统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、相关数据显示:“鸡、鸭、鹅、鸽子的孵化期分别为21天、30天、30天、16天”,选用最适合的统计图表示这条信息的是()A.折线统计图B.条形统计图C.扇形统计图D.不确定2、有一首《对子歌》中唱到:天对地,雨对风,大陆对长空.现将“天,雨,大,空”四个字书写在材质、大小完全相同的卡片上,在暗箱搅匀后,随机抽取两张,恰为“天”、“空”二字的概率为()A. B. C. D.3、在一个不透明的口袋中装有5个完全相同的小球,他们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于3的概率是()A. B. C. D.4、小明和小亮玩一个游戏,每人在一张纸上写一个不大于3的正整数,则两个人写的数字之和大于4的概率是()A. B. C. D.5、一组数据的最小数是12,最大数是38,如果分组的组距相等,且组距为3,则分组后的第一组为()A.11.5~13.5B.11.5~14.5C.12.5~14.5D.12.5~15.56、甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A. B. C. D.7、在整理数据5,5,3,■,2,4时,■处的数据看不清,但从扇形统计图的答案上发现数据5的圆心角是180°,则■处的数据是()A.2B.3C.4D.58、布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红-黄-蓝”的概率是()A. B. C. D.9、甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是()A.1B.C.D.10、要反映某市一周内每天的最高气温的变化情况,宜采用()A.折线统计图B.扇形统计图C.条形统计图D.频数分布直方图11、小明根据去年1~8月本班同学参加学校组织的“书香校园”活动中全班同学的课外阅读书籍的数量(单位:本),绘制了如图所示折线统计图,下列说法正确的是()A.阅读数量的平均数是57B.阅读数量的众数是42C.阅读数量的中位数是58D.有4个月的阅读数量超过60本12、在一个抽屉里放有a个除颜色不同其它完全相同的球,设a个球中红球只有3个,每次将球搅拌均匀后任意摸出一个,大量重复摸球实验后发现,摸到红球的频率稳定在25%左右.则抽屉里原有球()个.A.12B.9C.6D.313、一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是()A. B. C. D.114、南阳市中心城区参加中招考试考生有25000名,为了解“一调”数学考试情况从中随机抽取了1800名学生的成绩进行统计分析.下面叙述正确的是()A.25000名学生是总体,每名学生是总体的一个个体B.1800名学生的成绩是总体的一个样本C.样本容量是25000D.以上调查是全面调查15、在抛掷1枚均匀硬币的试验中,如果没有硬币,你认为不可以用来替代的是()A.抛掷均匀的正六面体骰子,向上一面是偶数B.抛掷一枚图钉C.一个不透明的袋子里有两个形状、大小完全相同,但颜色是1红1白的两个乒乓球,从中摸出一个球D.人数相同的男、女生,以抽签的方式随机抽取一人二、填空题(共10题,共计30分)16、某鱼塘里养了100条鲤鱼、若干条草鱼和50条罗非鱼,通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.4左右,可估计该鱼塘中草鱼的数量为________.17、如图是七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是________人.18、现有三张分别标有数字1、2、3的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a;将卡片放回后,再次任意抽取一张,将上面的数字记为b,则点在直线图象上的概率为________.19、在一个不透明的袋子中只装有n个白球和2个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为________.20、—个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是________21、某教育网站正在就问题“中小学课外时间安排”进行在线调查,你认为调查结果是否具有代表性________.22、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图),从中任意摸出一张是数字3的概率是________.23、大冶市现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为参加全市汉字听写大赛,则恰好选中一男一女两位同学参赛的概率是________.24、从﹣3,﹣2,﹣1,0,1,2这6个数中任意取出一个数记作k,则既能使函数y=的图象经过第一、第三象限,又能使关于x的一元二次方程x2﹣kx+1=0有实数根的概率为________.25、小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A型血的有20人,则O型血的有________人.三、解答题(共5题,共计25分)26、有3个完全相同的小球,把它们分别标号为1,2,3,放在一个不透明的口袋中,从口袋中随机摸出一个小球,记下标号后放回,再从口袋中随机摸出一个小球,记下标号.用画树状图(或列表)的方法,求两次摸出的小球号码恰好都大于1的概率.27、一袋装有编号为1,2,3的三个形状、大小、材质等相同的小球,从袋中随意摸出1个球,记事件A为“摸出的球编号为奇数”,随意抛掷一个之地均匀正方体骰子,六个面上分别写有1﹣6这6个整数,记事件B为“向上一面的数字是3的整数倍”,请你判断等式“P(A)=2P(B)”是否成立,并说明理由.28、某同学在设计“你在快餐中是如何选择餐具的?”调查问卷时,用到下面的提问,你觉得是否合适?应该怎样改进?(1)你一定常选择快餐这种用餐方式?()(A)是( B)不是(C)有时是(2)你在选择快餐时难道不自带碗筷等餐具吗?()(A)是(B)不是(C)有时是(3)我认为自带碗筷具有意义.()(A)同意( B)不同意(C)不确定.29、口袋装有编号是1、2、3、4、5的5只形状大小一样的球,其中1、2、3号球是红色,4、5号是白色。
第8章 统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)
第8章统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、有40个数据,其中最大值为35,最小值为12,若取组距为4,则应分为()A.4组B.5组C.6组D.7组2、一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球比摸到白球的可能性相等 D.摸到红球比摸到白球的可能性大3、如右图所示,小明小刚利用两个转盘进行游戏规则为小明将两个转盘各转一次,如配成紫色(红与蓝),小明胜,否则小刚胜,此规则()A.公平B.对小明有利C.对小刚有利D.公平性不可预测4、阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.如图是某校三个年级学生人数分布扇形统计图,其中八年级人数为408人,表(1)是该校学生阅读课外书籍情况统计表.根据图表中的信息,可知该校学生平均每人读课外书的本数是()A.1B.2C.3D.45、下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投十次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法6、如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为a,如果投掷一枚硬币,正面向上的概率为b,关于a、b 大小的正确判断是()A.a>bB.a=bC.a<bD.不能判断7、在不透明的袋中装有白球,红球和蓝球各若干个,它们除颜色外其余都相同.“从袋中随意摸出一个球是红球“这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件8、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图),从中任意一张是数字3的概率是()A. B. C. D.9、一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为()A.60个B.50个C.40个D.30个10、在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是()A. B. C. D.11、某校对学生到学校上学前往方式进行调查,如图为收集数据后绘制的扇形统计图.已知骑自行车的人数为400人,根据图中提供的信息,本次调查的对象中选择坐私家车前往的人数是()A.200B.220C.360D.100012、一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是()A. B. C. D.13、在四张大小、材质完全相同的卡片上写有“翼、装、飞、行”四个字,将四张卡片放置于暗箱内摇匀后先后随机抽取两张,则两张卡片上的汉字恰为“飞”,“行”二字的概率是()A. B. C. D.14、计算频率时不可能得到的数值是()A.0B.0.5C.1D.1.215、如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定二、填空题(共10题,共计30分)16、为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,则估计湖里约有鱼________条.17、不透明的袋子里装有1个红球,1个白球,这些球除颜色外无其他差别,从袋子中随机摸出一个球,则摸出红球的概率是________ .18、有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,O)的概率是________.19、要反映兰州市一周大气中的变化情况,宜采用________(填“条形”或“折线”或“扇形”).20、一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入个白球和4个黑球,使得摸到白球的概率为,则________.21、在一个样本容量为80的样本所绘制的频数分布直方图中,4个小组所对应的各个长方形高的比为2:3:4:1,那么第二组频数是________.22、一个不透明的盒子中装有6个红球,若干个黄球和2个绿球,这些球除颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为,则黄球的个数为________.23、从﹣2,﹣,,1,3五个数中任选1个数,记为a,它的倒数记为b,将a,b代入不等式组中,能使不等式组至少有两个整数解的概率是________.24、从一个不透明的口袋中任意摸出一球是白球的概率为,已知袋中白球有3个,则袋中球的总数是________个.25、在一个不透明的口袋中装有若干只有颜色不同的球,如果口袋中装有3个红球,且摸出红球的概率为,那么袋中共有________个球.三、解答题(共5题,共计25分)26、篮球课上,朱老师向学生详细地讲解传球的要领时,叫甲、乙、丙、丁四位同学配合朱老师进行传球训练,朱老师把球传给甲同学后,让四位同学相互传球,其他人观看体会,当甲同学第一个传球时,求甲同学传给下一个同学后,这个同学再传给甲同学的概率27、咸阳市教育局为了了解七年级学生参加社会实践活动情况,随机抽取了泰郡区部分七年级学生2015﹣2016学年第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)a等于多少,并写出该扇形所对圆心角的度数为多少,并补全条形图.(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学生约4000人,请你估计活动时间不少于6天的学生人数大约有多少?28、如图,两个转盘中指针落在每个数字上的机会相等,现同时转动、两个转盘,停止后,指针各指向一个数字.小聪和小明利用这两个转盘做游戏:若两数之和为负数,则小聪胜;否则,小明胜.你认为这个游戏公平吗?如果不公平,对谁更有利?请你利用树状图或列表法说明理由.29、小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?30、某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数n1 2 3 4 5 6 7 8 9(本)人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.参考答案一、单选题(共15题,共计45分)1、C2、D3、C4、A6、B7、B8、B9、C10、B11、B12、D13、B14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
第8章 统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)
第8章统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A.50,50B.50,30C.80,50D.30,502、如图,在3×3的方格中,A,B,C,D,E,F分别位于格点上,从C,D,E,F四点中任意取一点,与点A,B为顶点作三角形,则所作三角形为等腰三角形的概率是()A.1B.C.D.3、有五张形状、大小、质地都相同的卡片,这些卡片上面分别画有下列图形:①正方形;②等边三角形;③平行四边形;④等腰三角形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一张,抽出的纸片正面图形是轴对称图形,但不是中心对称图形的概率是()A. B. C. D.4、某中学篮球队12名队员的年龄如表:年龄(岁)13 14 15 16人数 1 5 4 2关于这12名队员年龄的数据,下列说法正确的是()A.中位数是14.5B.年龄小于15岁的频率是C.众数是5 D.平均数是14.85、某“中学生暑期环保小组”的同学,随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.利用上述数据估计该小区2000户家庭一周内需要环保方便袋约()A.2000只B.14000只C.21000只D.98000只6、在九张质地都相同的卡片上分别写有数字1,2,3,4,5,6,7,8,9,在看不到数字的情况下,从中随机抽取一张卡片,则这张卡片上的数字是3的倍数的概率是()A. B. C. D.7、中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法不正确的是()A.调查方式是抽样调查B.该校只有360个家长持反对态度C.样本是400个家长对“中学生骑电动车上学”的态度D.该校约有90%的家长持反对态度8、某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )A.得分在70~80分的人数最多B.该班的总人数为40C.人数最少的得分段的频数为2D.得分及格(≥60分)的有12人9、下列说法不正确的是()A.为了解宿迁市所有中学生的视力情况,可采用抽样调查的方法B.彩票中奖的机会是1﹪,买100张彩票一定会中奖C.在同一年出生的367名学生中,至少有两人的生日是同一天D.12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任取一只,取到是二等品的概率是10、王老师的讲义夹里放了大小相同的试卷12张,其中语文5张,数学4张,外语3张,他随机从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率是()A. B. C. D.11、下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况12、在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( )A. B. C. D.13、在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、平行四边形、等腰三角形、圆、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形,就可以过关,那么一次过关的概率是()A. B. C. D.14、有下列事件,其中是必然事件的有()①367人中必有2人的生日相同;②在标准大气压下,温度低于0℃时冰融化;③抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;④如果a、b为实数,那么a+b=b+a.A.1个B.2个C.3个D.4个15、下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命 C.调查乘坐飞机的旅客是否携带了危禁物品 D.调查我市市民对伦敦奥运会吉祥物的知晓率二、填空题(共10题,共计30分)16、把只有颜色不同的1个白球和2个红球装入一个不透明的口袋里搅匀,从中随机地摸出1球后放回搅匀,再次随机地摸出1个球后放回搅匀,再次随机地摸出1个球,两次都摸到红球的概率为________.17、已知粉笔盒里只有2支红色粉笔和3支白色粉笔,每支粉笔除颜色外均相同,现从中任取两支粉笔,则两支都是白色粉笔的概率是________.18、小明对某班级同学选择课外活动内容进行问卷调查后(每人只选一种),绘制成如图所示的统计图.如果踢毽子和打篮球的人数之比是1:2,跳绳的同学有12人,那么参加“其他”活动的有________人。
第8章 统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)
第8章统计和概率的简单应用数学九年级下册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、在一个暗箱里放有m个除颜色外其它完全相同的球,这m个球中红球只有3个.每次将球搅拌均匀后,任意一个球记下颜色后再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%,那么可以推算出m大约是()A.出现“正面朝上”的概率等于B.一定出现“正面朝上”C.出现“正面朝上”的概率大于 D.无法预测“正面朝上”的概率2、下列说法不正确的是()A.频数与总数的比值叫做频率B.频率与频数成正比C.在频数分布直方图中,小长方形的面积是该组的频率 D.用样本来估计总体,样本越大对总体的估计就越精确3、一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A. B. C. D.4、小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )A.1B.C.D.5、在硬地上掷1枚图钉,通常会出现两种情况:“钉尖着地”与“钉尖不着地”.任意重复抛掷1枚图钉很多次时,你认为是哪种情况的可能性大()A.钉尖着地B.钉尖不着地C.一样大D.不能确定6、已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5﹣66.5这一小组的频率为()A.0.04B.0.5C.0.45D.0.47、一个不透明的布袋里装有7个球,其中3个红球,4个白球,它们除颜色外都相同,从布袋中随机摸出一个球,摸出的球是红球的概率是()A. B. C. D.8、在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是()A. B. C. D.9、抛掷一枚质地均匀的硬币次,正面朝上的次数最有可能为()A. B. C. D.10、甲、乙两布袋装有红、白两种小球,两袋装球总数量相同,两种小球仅颜色不同.甲袋中,红球个数是白球个数的2倍;乙袋中,红球个数是白球个数的3倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是( )A. B. C. D.11、下列说法正确的是()A.“购买一张彩票就中奖”是不可能事件B.“抛掷一枚质地均匀的骰子,向上一面的点数是6”是随机事件C.了解我国青年人喜欢的电视节目应做普查D.从扇形统计图中,可以直接得到各部分的具体数值12、下列说法正确的是()A.要了解人们对“低碳生活”的了解程度,宜采用普查方式B.一组数据3、4、5、5、6、7的众数和中位数都是5 C.随机事件的概率为50%,必然事件的概率为100% D.若甲组数据的方差是0.168,乙组数据的方差是0.034,则甲组数据比乙组数据稳定13、某班体育委员统计了全班45名同学一周的体育锻炼时间(单位:小时),并绘制了如图所示的折线统计图,下列说法中错误的是( )A.众数是9B.中位数是9C.平均数是9D.锻炼时间不低于9小时的有14人14、下列关于事件发生可能性的表述,正确的是()A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D.掷两枚硬币,朝上的一面是一正面一反面的概率为15、下列调查中,最适合用普查方式的是()A.了解全市高三年级学生的睡眠质量B.了解我校同学对国家设立雄安新区的看法C.对端午出游旅客上飞机前的安全检查D.对电影“摔跤吧,爸爸”收视率的调查二、填空题(共10题,共计30分)16、在抗疫一线中,火神山医院的一间重症监护室一天需6名护士护理,两人一组,每4小时轮换,6名护士的编号分别是1号、2号、3号、4号、5号、6号,则1号和2号恰好在同一组的概率是________17、在30个数据中,最小值为42,最大值为101,若取组距为10,则可将这组数据分为________组.18、某学校在“你最喜欢的球类运动”调查中.随机调查了若干名学生(每名学生只能选取一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人.则该校被调査的学生总人数为________ 人.19、林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:移植的棵数n 1 000 1 500 2 500 4 000 8 000 15 000 20 000 30 000 成活的棵数m 865 1 356 2 220 3 500 7 056 13 170 17 580 26 430 成活的频率0.865 0.904 0.888 0.875 0.882 0.878 0.879 0.881 估计该种幼树在此条件下移植成活的概率为________。
九年级初中数学《统计与概率》单元试卷含答案
九年级数学《统计与概率》单元试卷含答案一、选择题(本大题共10小题,每小题3分,共30分)1.下列调查方式,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对市场上一批LED节能灯使用寿命的调查C.对我市中学生观看电影《我和我的祖国》情况的调查D.对我国首艘国产航母山东舰各零部件质量情况的调查2.下列事件为确定事件的是()A.一个不透明的口袋中装有除颜色以外完全相同的3个红球和1个白球,均匀混合后,从中任意摸出一个球是红球B.掷两枚质地均匀的正方体骰子,点数之和一定大于7C.长度分别是4,6,9的三条线段能围成一个三角形D.掷一枚质地均匀的硬币,落地时正面朝上3日练字页数23456人数26543)A.3页,4页B.4页,4页C.3页,5页D.4页,5页4.为了解某市参加中考的26000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下面叙述正确的是()A.26000名学生是总体B.每名学生是总体的一个个体C.1200名学生的身高是总体的一个样本D.以上调查是全面调查5.从-1,2,3,-6这四个数中任取两数,分别记为m,n,那么点(m,n)在函数y =6x图象上的概率是()A.12B.13C.14D.186.某市青少年科技创新大赛中,有9名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前5名,他除了知道自己成绩外还要知道这9名学生成绩的()A.中位数B.众数C.平均数D.方差7.在“经典诵读”比赛的活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.中位数是95分B.方差是15C.平均数是95分D.众数是90分8.若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.1 9.在甲、乙两班进行的定点投篮中,每班选八名选手,每人投篮10次,甲、乙两班的比赛成绩(投中次数)统计如下表.甲、乙两班投中次数的平均数都是5,且s2甲=1.5.请你通过计算,选择正确的答案为()甲34455667乙33456667A.s2乙=1.4,甲班成绩比乙班更稳定B.s2乙=2,甲班成绩比乙班更稳定C.s2乙=1.5,甲、乙两班成绩一样稳定D.不能确定甲、乙两班成绩哪一个更稳定10.一个不透明的袋子中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球编号的积小于4的概率是()A.16B.516C.13D.12二、填空题(本大题共6小题,每小题4分,共24分)11.一个不透明的袋中装有除颜色外均相同的9个红球,3个白球,若干个绿球,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,经过大量重复试验后,发现摸到绿球的频率稳定在0.2,则袋中约有绿球个.12.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能构成三角形的概率是.13.一个不透明布袋里有3个红球,4个白球和m个蓝球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为13,则m的值为.14.已知一个样本-1,0,2,x,3,它们的平均数是2,则这个样本的方差s2 = .15.小华买了一套科普读物,有上、中、下三册,要整齐的摆放在书架上,其中恰好摆成“上、中、下”顺序的概率是.16.如图,△ABC三边的中点D,E,F组成△DEF,△DEF的三边的中点M,N,P组成△MNP,将△FPM与△ECD涂成阴影.假设可以随意在△ABC中取点,那么这个点取在阴影部分的概率为.三、解答题(本大题共3小题,共28分)17.(8分)4张相同的卡片上分别写有数字-1,-3,4,6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=k x+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=k x+b中的b,利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.18.(10分)九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必选且只能选择一门课程),将获得的数据整理绘制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是;(2)请根据以上信息补全条形统计图;(3)扇形统计图中“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.19.(10分)为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表:学生每月零花钱数额统计表零花钱数额x/元人数(频数)频率0≤x<3060.1530≤x<60120.3060≤x<90160.4090≤x<120b0.10120≤x<1502a请根据以上图表,解答下列问题:(1)这次被调查的人数共有人,a﹦;(2)计算并补全频数分布直方图;(3)请估计该校1500名学生中每月零花钱数额低于90元的人数.四、解答题(本大题共2小题,共20分)20.(10分)甲、乙两人进行摸牌游戏,现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜,这个游戏公平吗?请用概率的知识加以解释.21.(10分)某校为了解学生的阅读情况,对学生在2019年读课外书的数量进行了调查.下面是根据随机抽取的部分学生的读书数量情况整理的表格和两幅不完整的统计图:A B C D E01~3本4~7本8~12本超过12本请根据图中提供的信息,解答下列问题.(1)此次抽样调查共调查了名学生;(2)请将条形统计图补充完整;(3)请说明样本数据中,学生读书数量的中位数落在哪个范围内;(4)该校共有900名学生,估计在2019年读课外书的数量超过12本的学生有多少名.22.如图,有四张背面完全相同的纸牌A ,B ,C ,D ,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A ,B ,C ,D 表示).六、解答题(本大题共1小题,共12分)23.为增强学生环保意识,某中学举办了环保知识竞赛,某班共有5名学生(3名男生、2名女生)获奖.(1)老师若从获奖的5名学生中选取一名作为班级的“环保小卫士”,则恰 好是男生的概率为 ;(2)老师若从获奖的5名学生中任选两名作为班级的“环保小卫士”,请用 画树状图法或列表法,求出恰好是一名男生、一名女生的概率.正三角形 A 正方形 B 平行四边形 C 矩形D22题图24.学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每名被调查的学生必选且只选一项):A.非常了解,B.了解,C.知道一点,D.完全不知道.将调查的结果绘制成如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:(1)求本次共调查了多少名学生;(2)补全条形统计图;(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名;(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣讲员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.25.随着中央电视台《朗读者》节目的播出,“朗读”为越来越多的同学所喜爱,某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:A.积极参与;B.一定参与;C.可以参与;D.不参与.根据调查结果制作了如下不完整的统计表和统计图.学生参与“朗读”的态度统计表类别人数所占百分比A18aB2040﹪C m16﹪D48﹪合计b100﹪请你根据以上信息,解答下列问题:(1)a= ,b = ;(2)请求出m的值并将条形统计图补充完整;(3)该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?(4)“朗读”活动中,七年一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率.统计与概率参考答案一、选择题1.D 2.C 3.B 4.C 5.B 6.A 7.D 8.C 9.B 10.C 二、填空题11.3 12.31013.2 14.6 15.1616.516三、解答题17.(1)12;(2)画树状图或列表略,P(图象经过第一、二、四象限)=412=13.18.(1)50,18;(2)对数学感兴趣的人数为15名,补全条形统计图略;(3)108;(4)估计该校九年级学生中大约有300名学生对数学感兴趣.19.(1)40,0.05;(2)零花钱数额在90≤x<120的元人数为:40×0.10=4人,补全频数分布直方图略;(3)估计该校学生每月零花钱数额低于90元的有1275人.四、解答题20.(1)列表或画树状图略,P(两人抽取相同数字)=13;(2)不公平,P(甲获胜)=59,P(乙获胜)=39=13,△59>13,△甲获胜的概率大,游戏不公平.21.(1)100;(2)C组学生有25名,补全条形统计图略;(3)学生读书数量的中位数落在8~12本(或D组)内;(4)在2019年读课外书的数量超过12本的学生约为315名.五、解答题22.(1)34;(2)公平,列表或画树状图略,P(小明获胜)=12,则P(小亮获胜)=12,△P(小明获胜)=P(小亮获胜),△游戏对双方公平.六、解答题23.(1)35;(2)画树状图或列表略,P(恰好是一男一女)=35.七、解答题24.(1)6÷20﹪=30(名),答:本次共调查了30名学生.(2)选B的学生有12名,补全条形统计图略;(3)600×1230=240(名),答:估计“了解”的学生约有240名; (4)列表或画树状图略,P (一男生一女生)=46 =23.八、解答题25.(1)36﹪,50;(2)m =50×16﹪=8,补全条形统计图略;(3)△1500人中,不参与的人数约1500×8﹪=120(人)<150(人),△“朗读”活动可以顺利开展;(4)画树状图或列表略,P (所选两人都是女生)=212 =16.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学统计与概率单元测试
一、选择题:(每小题3分,共18分)
1、将100个数据分成8个组,如下表:组号1234]56]78频数1114121313x1210]则第六组的频数为()
A、12
B、13
C、14
D、1
52、10位评委给一名歌手打分如下:
9、73,
9、66,
9、83,
9、89,
9、76,
9、86,
9、79,
9、85,
9、68,
9、74,若去掉一个最高分和一个最低分,这名歌手的最后得分是()
A、9、79
B、9、78
C、9、77
D、9、7
63、某班50名学生期末考试数学成绩(单位:分)的频率分布条形图如图所示,其中数据不在分点上,对图中提供的信息作出如下的判断:(1)成绩在
49、5分~
59、5分段的人数与
89、5分~100分段的人数相等;(2)成绩在
79、5~
89、5分段的人数占30%;(3)成绩在
79、5分以上的学生有20人;(4)本次考试成绩的中位数落在
69、5~
79、5分段内,其中正确的判断有()
A、4个
B、3个
C、2个
D、1个 (第3题)
(第4题)
4、如图是九年级(2)班同学的一次体检中每分钟心跳次数的频数分布条形图(次数均为整数)、已知该班只有5位同学的心跳每分钟75次,请观察图,指出下列说法中错误的是()
A、数据75落在第2小组
B、第4小组的频率为0、1
C、心跳为每分钟75次的人数占该班体检人数的;
D、数据75一定是中位数[来
5、在转盘游戏的活动中,小颖根据试验数据绘制出如图所示的扇形统计图,则每转动一次转盘所获购物券金额的平均数是()
A、
22、5元
B、
42、5元
C、元
D、以上都不对 (第5题)
(第9题)
6、某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒、每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()
A、
B、
C、
D、
二、填空题(每小题4分,共24分)
7、某鞋厂为了了解初中学生穿鞋的鞋号情况,对某中学九(1)班的20名男生所穿鞋号统计如下:鞋号
23、524
24、525
25、526人数344711那么这20名男生鞋号数据的平均数是,中位数是,在平均数、中位数和众数中,鞋厂最感兴趣的是、8、某班50名学生在适应性考试中,分数段在90~100分的频率为0、1,则该班在这个分数段的学生有人、9、某班联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果,标于一个转盘的相应区域上(转盘被均匀等分为四个区域,如图所示),转盘可以自由转动、参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品,则获得钢笔的概率为、
10、从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命跟踪调查,结果如下(单位:年):甲:3,4,5,6,8,8,8,10乙:4,6,6,6,8,9,12,13丙:3,3,4,8,8,10,11,12三个厂家在广告中都称自己产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一个:甲:
,乙:
,丙、
11、一个质地均匀的六面体骰子,六个面上的数字分别为1,2,3,3,4,5,投掷一次,向上的面出现数字3的概率是、
12、有四张不透明的卡片分别为,除正面的数不同外,其余都相同、将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为、
三、解答题(本大题共58分)
13、(本题14分)2003年我国遭受到非典型肺炎传染性疾病(SARS)的巨大灾难,全国人民万众一心,众志成城,抗击“非典”,如图5是根据某校七、八、九年级学生“献爱心,抗非典”自愿捐款活动学生捐款情况制成的条形图和七、八、九年级学生人数扇形分布图、(1)该校七、八、九年级平均每人捐款多少元?(2)若该校共有1450名学生,试问九年级学生共捐款多少元?
14、(本题14分)改革开放以来,我国国民经济保持良好发展势头,国民生产总值持续较快增长,下表是1998年~2002年国民生产总值统计表、年份1998[1999200020012002国民生产总值/亿元78345820678944295933小明根据上表绘制出条形统计图如图:你认为小明绘制的这个统计图会引起人们错误的感觉吗?如果会,你认为应该怎样改?[
15、(本题15分)改革开放以来,我国国民经济保持良好发展势头,国民生产总值持续较快增长,如图是1998年~2002年国民生产总值统计图、(1)从图中可看出1999年国民生产总值是多少?(2)已知2002年国内生产总值比2000年增加12956亿元,2001 年比2000 年增加6491亿元,求2002年国民生产总值比2001年增长的百分率(结果保留两个有效数字)、
16、(本题15分)如图a,某同学用仪器测量校园内的一棵树AB的高度,测得了三组数据,制成了仪器到树的距离BD,测量仪器的高CD的数据情况的条形统计图(如图b(1)所示)和仰角情况的折线统计图(如图b(2)所示)、 (a)
(b)请你利用两个统计图提供的信息,完成以下任务:(1)把统计图中的相关数据填入相应的表中;仪器与树之间距离BD的长测量仪器的高CD仰角的度数(2)根据测得的样本平均数计算出树高AB(精确到0、1m)、
17、(做对可得附加分20分)(1)设计一个用样本估计总体的实际问题并解答、(2)利用扑克牌设计一个对双方都公平的游戏并解释公平理由、参考答案
一、1~
6、DBADAA
二、7、
24、55,
24、5,众数
8、5
9、25%
10、众数,平均数,中位数
11、
12、
三、
13、(1)
6、45元;(2)21
92、4元、
14、会引起人们错误的感觉,为了更直观、清楚地反映国民生产总值的增长情况,纵轴上的数值应从0开始、
15、(1)82 067亿元;(2)2002年国民生产总值比2001年增长
6、7%、
16、(1)第一行依次填:
19、97,
19、70,
20、51;第二行依次填:
1、21,
1、23,
1、22;第三行依次填:2940′,30,3020′;(2)由(1)可得,、在Rt△AEC中,tan30=,CE=BD,所以 AE=
20、06≈
11、57,即AB=AE+CD=11、57+
1、22≈
12、8m、。