【单元测试】北师大版九年级数学上册全章单元测试题(含答案)
北师大版九年级数学上册第一章特殊平行四边形单元模拟试题(含答案)(5)
第一章:特殊的平行四边形单元测试卷(典型题汇总)(100分钟,120分)一、选择题1.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠D C.AB∥CD,AD∥BC D.AB=CD,AD=BC 2.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是()A.6cm B.9cm C.3cm D.12cm3.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50° B.55° C.60° D.65°4.给出以下三个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③对角线互相垂直的矩形是正方形;④菱形对角线的平方和等于边长平方的4倍.其中真命题的是()A.③B.①② C.②③D.③④5.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()A.3B.4 C.5 D.76.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6 cm和9 cm B.5 cm和10 cm C.4 cm和11 cm D.7 cm和8 cm7.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为何?()A.8 B.9 C.11 D.129.如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A.2B.3 C.D.1+10.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.3 C.D.二、填空题11.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对称图形又是中心对称图形的是矩形、正方形.12.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是3cm2.【解答】解:∵菱形的两条对角线长分别为2cm,3cm,∴它的面积是:×2×3=3(cm2).13.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.14.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于 3.5 .【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴∠AOD=90°,∵AB+BC+CD+DA=28,∴AD=7,∵H为AD边中点,∴OH=AD=3.5;15.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为5.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,三、解答题(15题12分,16题12分,17题16分)16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,求△AEF的周长。
北师大九年级数学单元测试题
北师大九年级数学单元测试题一、选择题(每题3分,共30分)1. 一元二次方程x^2-6x 5 = 0配方后可变形为()A. (x 3)^2=14B. (x 3)^2=4C. (x + 3)^2=14D. (x + 3)^2=4解析:对于一元二次方程x^2-6x 5 = 0,配方时,首先将方程变形为x^2-6x=5,然后在等式两边加上一次项系数一半的平方,即((-6)/(2))^2=9,得到x^2-6x + 9=5 + 9,即(x 3)^2=14,所以答案是A。
2. 方程x^2=x的解是()A. x = 1B. x = 0C. x_1=1,x_2=0D. x_1=-1,x_2=0解析:移项得到x^2-x = 0,因式分解为x(x 1)=0,则x = 0或者x 1 = 0,解得x_1=1,x_2=0,所以答案是C。
二、填空题(每题4分,共20分)1. 一元二次方程2x^2-3x + 1 = 0的二次项系数是______,一次项系数是______,常数项是______。
答案:2, 3,1。
解析:对于一元二次方程ax^2+bx + c = 0(a≠0),a是二次项系数,b是一次项系数,c是常数项。
2. 若关于x的一元二次方程(m 1)x^2+5x + m^2-3m + 2 = 0的常数项为0,则m=______。
答案:2。
解析:因为常数项m^2-3m + 2 = 0,因式分解得(m 1)(m 2)=0,解得m = 1或m = 2,又因为方程是一元二次方程,所以二次项系数m 1≠0,即m≠1,所以m = 2。
三、解答题(每题10分,共50分)1. 用配方法解方程x^2+4x 1 = 0。
解:x^2+4x 1 = 0移项得x^2+4x=1配方:在等式两边加上((4)/(2))^2=4得到x^2+4x + 4=1+4即(x + 2)^2=5x+2=±√(5)解得x_1=-2 + √(5),x_2=-2-√(5)2. 已知关于x的一元二次方程x^2-2kx + k^2-2 = 0。
2021-2021学年北师大版九年级数学上册全册单元测试题(含答案)
2021-2021学年北师大版九年级数学上册全册单元测试题(含答案)2021-2021学年北师大版九年级数学上册全册单元测试题第21章一元二次方程测试题(时间: 90分钟,满分:120分)(班级:_____ 姓名:_____ 得分:_____)一、选择题(每小题3分,共30分)1. 一元二次方程2x2-3x-4=0的二次项系数是() A. 2 B. -3 C. 4 D. -42.把方程(x-5)(x+5)+(2x-1)2=0化为一元二次方程的一般形式是()A.5x2-4x-4=0B.x2-5=0C.5x2-2x+1=0 D.5x2-4x+6=03.方程x2-2x-3=0经过配方法化为(x+a)2=b的形式,正确的是()A.?x?1??422B.?x?1??422C.?x?1??16 D.?x?1??164.方程?x?1??x?2??x?1的解是()A.2 B.3 C.-1,2D.-1,35.下列方程中,没有实数根的方程是() A.x2?12x?27?0 C.2x2?34x?1?0B.2x2?3x?2?0D.x2?3x?k2?0(k为任意实数)6.一个矩形的长比宽多2cm,其面积为8cm2,则矩形的周长为() A.12cm B.16cm C.20cm D.24cm7.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得() A.168(1+x)2=128 B.168(1��x)2=128 C.168(1��2x)=128 D.168(1��x2)=1288.一个两位数等于它的个位数的平方,且个位数比十位数大3,则这个两位数为()A.25B.36C.25或36D.-25或-369.从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48�O,则原来这块木板的面积是() A.100�OB.64�OC.121�OD.144�O10.三角形两边的长分别是8和6,第三边的长是一元二次方程x2?16x?60?0的一个实数根,则该三角形的面积是()A.24 B.24或85 C.48 D.85 二、填空题(每小题4分,共32分)11.当k 时,方程kx2?x?2?3x2是关于x的一元二次方程.12.若a?b?c?0且a?0,则关于x的一元二次方程ax2?bx?c?0必有一定根,它是. 13.一元二次方程x(x-6)=0的两个实数根中较大的为 .14.某市某企业为节约用水,自建污水净化站.7月份净化污水3000吨,9月份增加到3630吨,则这两个月净化的污水量平均每月增长的百分率为.15.若关于x的一元二次方程x2?(k?3)x?k?0的一个根是-2,则另一个根是______. 16.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为x,则可列方程____________________.17.方程x2+px+q=0,甲同学因为看错了常数项,解得的根是6,-1;乙同学看错了一次项,解得的根是-2,-3,则原方程为.18.如图,矩形ABCD的周长是20cm,以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为68 cm2,那么矩形ABCD的面积是_______cm2.三、解答题(共58分)19.(每小题5分,共20分)选择适当的方法解下列方程:(1)7(2x?3)2?28;(2)x2?8x?9?0; (3)2x2?1?25x;(4)(x?1)2?2x?1?x?.20.(8分)当m为何值时,关于x的一元二次方程x2?4x?m?1?0有两个相等的实数根?此2时这两个实数根是多少?1121.(8分)已知a,b是方程x2?2x?1?0的两个根,求代数式(?)(ab2?a2b)的值. ab22.(10分)如图,△ABC中,∠B=90°,点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果点P,Q分别从点A,B同时出发,经几秒钟,使△PBQ的面积等于8cm2?23.(12分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x元. 据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?参考答案一、1.A2.A 3.A 4.D 5.B6.A 7.B8.C9.B 10.B 二、11.k??312.1 13.6 14.10% 15.116.200?200(1?x)?200(1?x)2?140017.x2-5x+6=0 18.16 三、19.(1)x51=2,x12=2;(2)x1=1,x2=-9;(3)x5?35?11=2,x32=2;(4)x1=1,x2=3 .20. 解:由题意,得?=(-4)2-4(m-21)=0,即16-4m+2=0,解得m=29.当m =92时,方程有两个相等的实数根x1=x2=2.21. 解:由题意,得a?b??2,ab??1. 所以原式=b?aab?ab?b?a???b?a?2??a?b?2?4ab=??2?2?4?8. 22.解:解:设x秒时,点P在AB 上,点Q在BC上,且使△PBD的面积为8 cm2,由题意,得12(6?x)?2x?8. 解得x1=2, x2=4.经检验均是原方程的解,且符合题意. 所以经过2秒或4秒时△PBQ的面积为8 cm2.解:(1)2x50-x(2)由题意,得(50-x)(30+2x)=2100. 化简,得x2-35x+300=0. 解得x1=15,x2=20.因为该商场为了尽快减少库存,所以降的越多,越吸引顾客,故选x=20. 答:每件商品降价20元,商场日盈利可达2100元.第22章二次函数测试题时间:100分钟满分:120分钟一、选择题(每小题3分,共24分)1.抛物线y=2(x��3)2+1的顶点坐标是()A.(3,1) B.(3,��1) C.(��3,1) D.(��3,��1) 2.关于抛物线y=x2��2x+1,下列说法错误的是() A.开口向上 B.与x轴有两个重合的交点C.对称轴是直线x=1 D.当x>1时,y随x的增大而减小 3.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x y … … ��5 4 ��4 0 ��3 ��2 ��2��2 ��1 0 0 4 … … 下列说法正确的是() A.抛物线的开口向下B.当x>��3时,y随x的增大而增大 C.二次函数的最小值是��2D.抛物线的对称轴是x=�� 4.抛物线y=2x2,y=��2x2,共有的性质是()A.开口向下 B.对称轴是y轴C.都有最高点 D.y随x的增大而增大5.已知点(x1,y1),(x2,y2)均在抛物线y=x2��1上,下列说法中正确的是() A.若y1=y2,则x1=x2 B.若x1=��x2,则y1=��y2 C.若0<x1<x2,则y1>y2 D.若x1<x2<0,则y1>y26.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B. C. D.7.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=��2.关于下列结论:①ab<0;②b2��4ac>0;③9a��3b+c<0;④b��4a=0;⑤方程ax2+bx=0的两个根为x1=0, x2=��4,其中正确的结论有()A.①③④ B.②④⑤ C.①②⑤ D.②③⑤感谢您的阅读,祝您生活愉快。
北师大版九年级数学上册单元测试卷:第二章 《一元二次方程》(含答案)
单元测试卷:第二章《一元二次方程》时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,692.若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是()A.k≥5 B.k≥5且k≠1 C.k≤5且k≠1 D.k≤53.下列方程中,是关于x的一元二次方程的是()A.+x=3 B.x2+2x﹣3=0C.4x+3=x D.x2+x+1=x2﹣2x4.已知m、n是一元二次方程x2﹣3x﹣1=0的两个实数根,则=()A.3 B.﹣3 C.D.﹣5.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.5000(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=75006.若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020 B.﹣2020 C.2019 D.﹣20197.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=3,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根8.若x 1x 2=2,+=,则以x 1,x 2为根的一元二次方程是( )A .x 2+3x ﹣2=0B .x 2﹣3x +2=0C .x 2+3x +2=0D .x 2﹣3x ﹣2=0 9.若关于x 的一元二次方程x 2+2x +c =0有实数根,则c 的取值可能为( )A .4B .3C .2D .110.设a 、b 是方程x 2+x ﹣2020=0的两个实数根,则(a ﹣1)(b ﹣1)的值为( )A .﹣2018B .2018C .2020D .2022二.填空题(每题4分,共20分)11.已知一元二次方程x 2+2x +m =0的一个根是﹣1,则m 的值为 .12.若关于x 的一元二次方程mx 2﹣2x ﹣1=0无实数根,则一次函数y =mx +m 的图象不经过第 象限.13.已知x 为实数,且满足(2x 2+3)2+2(2x 2+3)﹣15=0,则2x 2+3的值为 . 14.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场),一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军,为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜 场.15.已知一元二次方程x 2+2x ﹣8=0的两根为x 1、x 2,则+2x 1x 2+= .三.解答题(每题10分,共50分)16.解下列方程.(1)x 2+2x ﹣35=0(2)4x (2x ﹣1)=1﹣2x17.某公司设计了一款工艺品,每件的成本是40元,为了合理定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?18.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?19.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?20.某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.参考答案一.选择题1.解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.2.解:①当该方程是关于x的一元一次方程时,k﹣1=0即k=1,此时x=﹣,符合题意;②当该方程是关于x的一元二次方程时,k﹣1≠0即k≠1,此时△=16﹣4(k﹣1)≥0.解得k≤5;综上所述,k的取值范围是k≤5.故选:D.3.解:A、因为方程是分式方程,不是整式方程,所以方程不是一元二次方程,故本选项不符合题意;B、是一元二次方程,故本选项符合题意;C、因为方程是一元一次方程,所以方程不是一元二次方程,故本选项不符合题意;D、因为方程是一元一次方程,所以方程不是一元二次方程,故本选项不符合题意;故选:B.4.解:根据题意得m+n=3,mn=﹣1,所以=.故选:B.5.解:设我国2017年至2019年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故选:C.6.解:∵a是方程x2﹣x﹣1=0的一个根,∴a2﹣a﹣1=0,∴a 2﹣1=a ,﹣a 2+a =﹣1,∴﹣a 3+2a +2020=﹣a (a 2﹣1)+a +2020=﹣a 2+a +2020=2019.故选:C .7.解:∵小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =3,解出其中一个根是x =﹣1,∴(﹣1)2﹣3+c =0,解得:c =2,故原方程中c =4,则b 2﹣4ac =9﹣4×1×4=﹣7<0,则原方程的根的情况是不存在实数根.故选:A .8.解:∵+=,∴x 1+x 2=x 1x 2,∵x 1x 2=2,∴x 1+x 2=3,∴以x 1,x 2为根的一元二次方程是x 2﹣3x +2=0.故选:B .9.解:根据题意得△=22﹣4c ≥0,解得c ≤1.故选:D .10.解:∵a 、b 是方程x 2+x ﹣2020=0的两个实数根,∴a +b =﹣1,ab =﹣2020,则原式=ab ﹣a ﹣b +1=ab ﹣(a +b )+1=﹣2020+1+1=﹣2018.故选:A .二.填空题(共5小题)11.解:把x =﹣1代入方程得1﹣2+m =0,解得m =1,故答案为1.12.解:∵关于x 的一元二次方程mx 2﹣2x ﹣1=0无实数根,∴m ≠0且△=(﹣2)2﹣4m (﹣1)<0,∴一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象限.故答案为一.13.解:设2x2+3=t,且t≥3,∴原方程化为:t2+2t﹣15=0,∴t=3或t=﹣5(舍去),∴2x2+3=3,故答案为:314.解:设中国队在本届世界杯比赛中连胜x场,则共有(x+1)支队伍参加比赛,依题意,得:x(x+1)=66,整理,得:x2+x﹣132=0,解得:x1=11,x2=﹣12(不合题意,舍去).故答案为:11.15.解:∵一元二次方程x2+2x﹣8=0的两根为x1、x2,∴x1+x2=﹣2,x1•x2=﹣8,∴+2x1x 2 +=2x1x 2 +=2×(﹣8)+=﹣16+=﹣,故答案为:﹣.三.解答题(共5小题)16.解:(1)x2+2x﹣35=0,(x+7)(x﹣5)=0,x+7=0或x﹣5=0,12(2)4x(2x﹣1)=1﹣2x,4x(2x﹣1)+(2x﹣1)=0,(2x﹣1)(4x+1)=0,(2x﹣1)=0或(4x+1)=0,,17.解:(1)(60﹣40)×[100﹣(60﹣50)×2]=1600(元).答:每天的销售利润为1600元.(2)设每件工艺品售价为x元,则每天的销售量是[100﹣2(x﹣50)]件,依题意,得:(x﹣40)[100﹣2(x﹣50)]=1350,整理,得:x2﹣140x+4675=0,解得:x1=55,x2=85(不合题意,舍去).答:每件工艺品售价应为55元.18.解:(1)设BC=xm,则AB=(33﹣3x)m,依题意,得:x(33﹣3x)=90,解得:x1=6,x2=5.当x=6时,33﹣3x=15,符合题意,当x=5时,33﹣3x=18,18>18,不合题意,舍去.答:鸡场的长(AB)为15m,宽(BC)为6m.(2)不能,理由如下:设BC=ym,则AB=(33﹣3y)m,依题意,得:y(33﹣3y)=100,整理,得:3y2﹣33y+100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m2的矩形养鸡场.19.(1)证明:∵△=(2k+1)2﹣4×4(k﹣)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)x=∴x1=2k﹣1,x2=2,∵a、b、c为等腰三角形的三边,∴2k﹣1=2或2k﹣1=3,∴k=或2.20.解:(1)设该商品平均每月的价格增长率为m,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.。
第3章 概率的进一步认识 北师大版数学九年级上册单元测试卷(含答案)
第三章 概率的进一步认识时间:90分钟 满分:100分一、选择题(共8小题,每小题3分,共24分.每小题有四个选项,其中只有一个选项符合题意)1.用频率估计概率,可以发现抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每两次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上2.[教材变式P 61练习](2021·辽宁阜新中考)小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( )A.12 B.23 C.56 D.163.(2022·山东济南历城区期末)一个不透明的袋子里装有白棋子、黑棋子共20个,这些棋子除颜色外都相同.小明从中随机摸出一颗棋子,记下颜色后放回,通过多次重复试验发现,摸出白棋子的频率稳定在0.6,则袋子中白棋子的个数最有可能是( )A.5B.8C.12D.154.(2022·安徽宿州期中)2022年冬奥会吉祥物为“冰墩墩”,冬残奥会吉祥物为“雪容融”.现有三张正面印有吉祥物的不透明卡片,卡片除正面图案不同外,其余均相同,其中两张正面印有“冰墩墩”图案,一张正面印有“雪容融”图案,将三张卡片正面向下洗匀,从中随机一次性抽取两张卡片,则抽出的两张卡片正面都印有“冰墩墩”图案的概率是( )A.13 B.12 C.49 D.235.(2021·重庆期末)一个不透明的袋子中装有3个白球,2个黑球,它们除颜色外都相同.将球摇匀后,从中随机摸出一个球,记下颜色后不放回,再随机摸出一个球.两次摸到的球颜色相同的概率是( )A.23 B.25 C.1325 D.13206.(2022·河南许昌一中月考)某市教委部门高度重视自然灾害中的安全教育,要求各级各类学校从认识安全警示标志入手开展安全教育活动.某数学兴趣小组准备了4张印有安全警示标志的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片上的正面图案中有一张是轴对称图形的概率是( )A.12B.13C.14D.167.(2021·辽宁铁岭期末)若从1,2,3,4这四个数字中任选一个记为a ,再从这四个数字中任选一个记为c ,则关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为( )A.14B.13C.12D.238.(2022·江苏南京鼓楼区期中)如图是用画树状图的方法画出的某个试验的所有可能发生的结果,则这个试验不可能是( )A.在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球B.小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒C.从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答D.体育测试中,随机从足球、篮球、排球三个项目中选择两个项目二、填空题(共5小题,每小题4分,共20分)9.(2022·北京期末)经过某个十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,那么甲汽车经过这个十字路口时,向右转的概率是 .10.为积极响应“无偿献血,传递温暖”的号召,某高校一寝室的4个同学参与到爱心献血的活动中,他们其中有2个A 型血,1个B 型血,还有1个O 型血,现从该寝室随机抽取2个同学参与第一批次献血,则2个同学都是A 型血的概率为 .11.(2021·广东汕头潮阳区模拟)在如图所示的电路图中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是 .12.(2022·辽宁锦州期中)一张纸片上有一个不规则的图案,小雅想了解该图案的面积是多少,她采取了以下的试验办法:用一个长为5 cm,宽为3 cm的长方形,将不规则图案围起来如图(1)所示,然后在适当位置随机地向长方形区域扔小球,并记录小球落在不规则图案内的次数(球落在界线上或长方形区域外不计入试验结果),她将若干次有效试验的结果绘制成了图(2)所示的折线统计图,由此她估计此不规则图案的面积为 cm2.(结果保留整数)图(1)图(2)13.(2021·江苏镇江中考)一只不透明的袋子中装有1个黄球,现放若干个红球进去,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,若使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为 .三、解答题(共6小题,共56分)14.(8分)近几年,各式各样的共享经济模式在各个领域迅速普及应用,如图是某同学收集的四个共享经济领域的图标,将收集到的图标制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同),背面朝上,洗匀放好.(1)从中随机抽取一张,抽到的卡片上的图标恰好是“共享知识”的概率为 ;(2)从中随机抽取一张卡片,放回后洗匀,再从中随机抽取一张卡片,请用列表或画树状图的方法求抽到的两张卡片上的图标恰好是“共享出行”和“共享知识”的概率.15.(8分)某商场在“五一”促销活动中规定,顾客每消费100元就能获得一次抽奖机会.为了活跃气氛,设计了两种抽奖方案.方案一:转动转盘A一次,指针指向红的部分可领取一份奖品.方案二:转动转盘B两次,两次指针都指向红的部分可领取一份奖品.(两个转盘都被平均分成3份,若指针指向分界线,则重转)(1)转动一次转盘A,获得奖品的概率是 ;(2)如果你获得一次抽奖机会,你会选择哪种方案?请用列表法或画树状图法说明理由.16.(9分)(2022·辽宁抚顺新抚区期末)一个黑箱子里装有红、白两种颜色的球共4只,它们除颜色外,其他都相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,再把它放回,不断重复试验,根据多次试验结果画出如下的折线统计图.(1)当试验次数很大时,摸到白球的频率将会接近 (精确到0.01),从箱子中摸一次球,摸到红球的概率是 ;(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用画树状图法或列表法求摸到一个红球和一个白球的概率.17.(10分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)请用画树状图法或列表法求出恰好选中甲、乙两位同学的概率;(2)请利用若干个除颜色外其他都相同的球,设计一个摸球试验(至少摸两次),并根据该试验写出一个发生概率与(1)中所求概率相同的事件.18.(10分)(2021·黑龙江大庆期中)如图(1),一枚质地均匀的正四面体骰子,它有四个面,每个面上分别以1,2,3,4标号;如图(2),等边三角形ABC的三个顶点处各有一个圆圈.明明和亮亮想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)明明随机掷一次骰子,她跳跃后落到圈A的概率为 ;(2)明明和亮亮一起玩跳圈游戏:明明随机投掷一次骰子,亮亮随机投掷两次骰子,以最终落到圈A为胜者.这个游戏公平吗?请说明理由. 图(1) 图(2)19.(11分)(2021·辽宁本溪期末)为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A:非常了解,B:了解,C:了解较少,D:不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了 名学生;扇形统计图中D所在扇形的圆心角为 ;(2)将上面的条形统计图补充完整;(3)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数;(4)现有“非常了解”的男生2名,女生2名,从这4名学生中随机抽取2名学生进行座谈,刚好抽到同性别学生的概率是多少?第三章 概率的进一步认识12345678BD C A B A C B9.1310.1611.1312.613.31.B 抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,可能有5次正面向上.2.D 画树状图如图所示,可知共有6种等可能的结果,恰好拿到红色帽子和红色围巾的结果有1种,∴恰好拿到红色帽子和红色围巾的概率为16.3.C 设袋子中白棋子有x 个,根据题意,得x20=0.6,解得x=12,∴袋子中白棋子的个数最有可能是12.4.A 把两张正面印有“冰墩墩”图案的卡片分别记为A 1,A 2,正面印有“雪容融”图案的卡片记为B,根据题意画树状图如下:从树状图可知,共有6种等可能的结果,其中抽出的两张卡片正面都印有“冰墩墩”图案的结果有2种,故P (抽出的两张卡片正面都印有“冰墩墩”图案)=26=13.5.B 画树状图如图:由树状图可知,共有20种等可能的结果,两次摸到的球颜色相同的结果有8种,∴两次摸到的球颜色相同的概率为820=25.6.A 把4张卡片从左到右依次标记为A,B,C,D,画树状图如图所示:由树状图可知,共有12种等可能的结果,因为只有C 卡片上的正面图案是轴对称图形,所以这两张卡片上的正面图案中有一张是轴对称图形的结果有6种,故P (这两张卡片上的正面图案中有一张是轴对称图形)=612=12.7.C 画树状图如图:由树状图可知,共有16种等可能的结果,其中使Δ=42-4ac<0,即ac>4的结果有8种,∴关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为816=12.8.B 在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球,设A ,B 表示黑球,C 表示白球,则可画出题中的树状图;从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答,设A ,B 表示男生,C 表示女生,则可画出题中的树状图;体育测试中,随机从足球、篮球、排球三个项目中选择两个项目,设A 表示足球,B 表示篮球,C 表示排球,则可画出题中的树状图;而小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒,设A ,B ,C 分别表示三款盲盒,树状图为:9.1310.16 列表如下:AA B O A(A,A)(A,B)(A,O)A(A,A)(A,B)(A,O)B(B,A)(B,A)(B,O)O (O,A)(O,A)(O,B)由表可知共有12种等可能的结果,其中2个同学都是A 型血的结果有2种,∴P (2个同学都是A 型血)=212=16.11.13 根据题意画出树状图如下.由树状图可知,共有6种等可能的情况,其中能让灯泡L 1发光的情况有2种,即S 1S 2,S 2S 1,所以能让灯泡L 1发光的概率为26=13.12.6 假设不规则图案的面积为x cm 2,由题意得长方形的面积为15 cm 2,当事件A 试验次数足够多,即样本足够大时,其频率可估计事件A 发生的概率,故由题中折线统计图可知,小球落在不规则图案内的概率大约为0.4,所以x 15=0.4,解得x=6,所以估计此不规则图案的面积为6 cm 2.13.3 假设袋中的红球个数为1,此时袋中有1个黄球、1个红球,搅匀后从中任意摸出两个球,P (摸出一红一黄)=1,P (摸出两红)=0,不符合题意;假设袋中的红球个数为2,画树状图如下:由树状图可知,共有6种等可能的结果,其中两次摸到红球的结果有2种,摸出一红一黄的结果有4种,∴P (摸出一红一黄)=46=23,P (摸出两红)=26=13,不符合题意;假设袋中的红球个数为3,画树状图如下:由树状图可知,共有12种等可能的结果,其中两次摸到红球的结果有6种,摸出一红一黄的结果有6种,∴P (摸出一红一黄)=P (摸出两红)=612=12,符合题意,∴放入的红球个数为3.14.【参考答案】(1)14(3分)(2)根据题意画出如图所示的树状图:由树状图可知,共有16种等可能的结果,其中抽到的两张卡片上的图标是“共享出行”和“共享知识”的结果有2种,所以抽到的两张卡片上的图标是“共享出行”和“共享知识”的概率是216=18.(8分)15.【参考答案】(1)13(3分)(2)选择方案二.(4分)理由:画树状图如下.由树状图可知,共有9种等可能的结果,其中两次指针都指向红的部分的结果有4种,所以P (转动转盘B 两次,领取一份奖品)=49.(6分)由(1)知转动转盘A 一次,领取一份奖品的概率是13,因为13<49,所以选择方案二.(8分)16.【解题思路】(1)当试验次数达到1 500次时,摸到白球的频率接近于0.75,由此可估计摸到红球的概率;(2)先根据(1)的结论求出白球的个数和红球的个数,再列表得出所有等可能的结果,从中找到符合条件的结果,进而可求得概率.【参考答案】(1)0.75 14(4分)解法提示:由折线统计图可知,当试验次数很大时,摸到白球的频率将会接近0.75,从箱子中摸一次球,摸到红球的概率为1-0.75=0.25=14.(2)由(1)知,箱中白球的个数为4×0.75=3,则红球的个数为4-3=1,列表如下:白白白红白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)红(白,红)(白,红)(白,红)由表知,共有12种等可能的结果,其中摸到一个红球和一个白球的结果有6种,∴摸到一个红球和一个白球的概率为612=12.(9分)17.【参考答案】(1)根据题意,画树状图如下: (3分)由树状图,可知共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种,所以P (恰好选中甲、乙两位同学)=212=16.(5分)(2)答案不唯一.如:在一个不透明的袋子中,放入四个除颜色外其他都相同的球,它们的颜色分别为白、黄、粉、橙,从袋中随机摸出一个球记下颜色,不放回,再从袋中随机摸出一个球,记下颜色.事件:两次摸出的球一个是白球,一个是粉球.(10分)18.【参考答案】(1)14(3分)(2)这个游戏不公平.(4分)理由:画树状图如图,共有16种等可能的结果,其中亮亮随机投掷两次骰子,最终落到圈A 的结果数为5,即共跳3个边长或6个边长,所以P (亮亮随机投掷两次骰子,最终落回到圈A )=516.(8分)因为14<516,所以这个游戏不公平.(10分)19.【参考答案】(1)120 54°(2分)解法提示:(25+23)÷40%=120(名),360°×10+8120=54°.(2)D 所占的百分比为(10+8)÷120×100%=15%,A 中的人数为120×(1-40%-20%-15%)=30(名),其中男生有30-16=14(名),C 中的人数为120×20%=24(名),其中女生有24-12=12(名).补全条形统计图如图所示:(4分)(3)800×(1-40%-20%-15%)=200(名),答:估计对食品安全知识“非常了解”的学生的人数为200.(7分)(4)画树状图:由树状图可知,共有12种等可能的结果,抽到同性别学生的结果有4种,所以P (刚好抽到同性别学生)=412=13.(11分)。
2020秋北师大版九年级数学上第一、二章检测题含答案
单元测试(一) 特殊平行四边形(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分)1.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=8,则CD的长是( )A.6 B.5 C.4 D.32.如图,矩形ABCD中,对角线AC、BD相交于点O,若∠OAD=40°,则∠COD=( )A.20° B.40° C.80° D.100°3.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是( )A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若OA=2,则BD的长为( )A.4 B.3 C.2 D.15.如果要证明ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明( )A.AB=AD且AC⊥BD B.AB=AD且AC=BDC.∠A=∠B且AC=BD D.AC和BD互相垂直平分6.菱形的两条对角线长分别是6和8,则此菱形的边长是( )A.10 B.8 C.6 D.57.在正方形ABCD中,AB=12,对角线AC,BD相交于点O,则△ABO的周长是( )A.12+12 2 B.2+6 2C.12+ 2 D.24+6 28.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为( ) A.16a B.12aC.8a D.4a9.正方形的一条对角线长为4,则这个正方形面积是( )A.8 B.4 2C.8 2 D.1610.下列命题中,错误的是( )A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等11.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED为菱形的是( )A.AB=BC B.AC=BCC.∠B=60° D.∠ACB=60°12.如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G点,若∠AEB=55°,则∠DAF=( )A.40° B.35°C.20° D.15°13.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )A.75° B.60° C.55° D.45°14.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=( )A. 2 B.2 C. 6 D.2 215.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )A.AB=BE B.DE⊥DCC.∠ADB=90° D.CE⊥DE二、填空题(本大题共5个小题,每小题5分,共25分)16.如图,菱形ABCD的一条对角线的中点O到AB的距离为2,那么O点到另一边的距离为________.17.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB的大小为________度.18.如图所示,已知ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明ABCD是矩形的有________(填写序号).19.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是________________.20.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86 cm,对角线长是13 cm,那么矩形的周长是多少?22.(8分)如图,四边形ABCD中,AB=CD,∠BAD+∠ADC=180°,AC与BD相交于点O,△AOB是等边三角形,求证:四边形ABCD是矩形.23.(10分)如图,已知正方形ABCD,延长AB到E,使AE=AC,以AE为一边作菱形AEFC,若菱形的面积为92,求正方形的边长.24.(12分)如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.25.(12分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以证明.26.(14分)以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,求线段AB的最小值.27.(16分)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD∶AB=________时,四边形MENF是正方形.参考答案1.C2.C3.B4.A5.B6.D7.A8.C9.A 10.C 11.B 12.C 13.B 14.A 15.B 16.2 17.60 18.①④ 19.AC =BD 或AB ⊥BC 20.22.521.∵△AOB 、△BOC 、△COD 和△AOD 四个小三角形的周长和为86 cm ,且AC =BD =13 cm , ∴AB +BC +CD +DA =86-2(AC +BD)=86-4×13=34(cm), 即矩形ABCD 的周长是34 cm.22.证明:∵∠BAD +∠ADC =180°, ∴AB ∥CD.又∵AB =CD ,∴四边形ABCD 是平行四边形. ∵△AOB 是等边三角形, ∴AO =BO.∴2AO =2BO ,即AC =BD. ∴四边形ABCD 是矩形. 2 23.设正方形的边长为x ,∵AC 为正方形ABCD 的对角线,∴AC =2x.∴S 菱形AEFC =AE ·CB =2x ·x =2x 2.∴2x 2=9 2. ∴x 2=9.∴x =±3.舍去x =-3. ∴正方形边长为3.24.(1)在菱形ABCD 中,AB =AD ,∠A =60°, ∴△ABD 为等边三角形. ∴∠ABD =60°.(2)由(1)可知BD =AB =4, 又∵O 为BD 的中点, ∴OB =2.又∵OE ⊥AB ,∠ABD =60°, ∴∠BOE =30°. ∴BE =12OB =1.25.(1)由图可知,∠DAG ,∠AFB ,∠CDE 与∠AED 相等. (2)选择∠AFB =∠AED ,证明如下: ∵四边形ABCD 是正方形,∴∠DAB =∠B =90°,AB =AD.在Rt △BAF 和Rt △ADE 中,⎩⎪⎨⎪⎧BA =AD ,AF =DE ,∴Rt △BAF ≌Rt △ADE(HL).∴∠AFB =∠AED.26.∵四边形CDEF 是正方形,∴∠OCD =∠ODB =45°,∠COD =90°,OC =OD. ∵AO ⊥OB , ∴∠AOB =90°.∴∠AOC +∠AOD =90°,∠AOD +∠BOD =90°. ∴∠AOC =∠BOD.∵在△COA 和△DOB 中,⎩⎪⎨⎪⎧∠OCA =∠ODB ,OC =OD ,∠AOC =∠BOD ,∴△COA ≌△DOB.∴OA =OB.∵∠AOB =90°,∴△AOB 是等腰直角三角形.由勾股定理得AB =OA 2+OB 2=2OA , 要使AB 最小,只要OA 取最小值即可, 根据垂线段最短,OA ⊥CD 时,OA 最小, ∵四边形CDEF 是正方形, ∴FC ⊥CD ,OD =OF =OC. ∴CA =DA. ∴OA =12CF =1.∴AB = 2.∴AB 的最小值为 2.27.(1)证明:∵四边形ABCD 是矩形, ∴AB =CD ,∠A =∠D =90°. 又∵M 是AD 的中点, ∴AM =DM.在△ABM 和△DCM 中,⎩⎪⎨⎪⎧AB =CD ,∠A =∠D ,AM =DM ,∴△ABM ≌△DCM(SAS).(2)四边形MENF 是菱形.证明:∵E ,F ,N 分别是BM ,CM ,CB 的中点, ∴NE ∥MF ,NE =MF.∴四边形MENF 是平行四边形. 由(1),得BM =CM , ∴ME =MF.∴四边形MENF 是菱形.(3)当AD ∶AB =2∶1时,四边形MENF 是正方形.理由: ∵M 为AD 中点, ∴AD =2AM.∵AD ∶AB =2∶1, ∴AM =AB. ∵∠A =90°,∴∠ABM =∠AMB =45°. 同理:∠DMC =45°.∴∠EMF =180°-45°-45°=90°. ∵四边形MENF 是菱形, ∴四边形MENF 是正方形. 故答案为2∶1.单元测试(二) 一元二次方程(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分) 1.下列方程中,关于x 的一元二次方程是( )A .x 2+2y =1 B.1x 2+1x-2=0C .ax 2+bx +c =0 D .x 2+2x =12.用公式法解一元二次方程3x 2-2x +3=0时,首先要确定a ,b ,c 的值,下列叙述正确的是( )A .a =3,b =2,c =3B .a =-3,b =2,c =3C .a =3,b =2,c =-3D .a =3,b =-2,c =33.若关于x 的方程2x m -1+x -m =0是一元二次方程,则m 为( )A .1B .2C .3D .04.一元二次方程x 2-2x -1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根5.一元二次方程x 2+4x -3=0的两根为x 1,x 2,则x 1·x 2的值是( )A .4B .-4C .3D .-3 6.方程x(x +2)=0的根是( )A .x =2B .x =0C .x 1=0,x 2=-2D .x 1=0,x 2=27.用配方法解方程x 2-2x -5=0时,原方程应变形为( )A .(x +1)2=6B .(x -1)2=6C .(x +2)2=9D .(x -2)2=9 8.根据下面表格中的对应值:判断方程ax 2+bx +c =A .3<x <3.23 B .3.23<x <3.24 C .3.24<x <3.25 D .3.25<x <3.26 9.解方程(x +1)(x +3)=5较为合适的方法是( )A .直接开平方法B .配方法C .公式法或配方法D .分解因式法10.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为( )A .0B .1C .2D .411.三角形两边长分别为3和6,第三边是方程x 2-6x +8=0的根,则三角形的周长为( )A .11B .13C .15D .11或13 12.下列说法不正确的是( )A .方程x 2=x 有一根为0B .方程x 2-1=0的两根互为相反数C .方程(x -1)2-1=0的两根互为相反数D .方程x 2-x +2=0无实数根13.对二次三项式x 2-10x +36,小聪同学认为:无论x 取什么实数,它的值都不可能等于11;小颖同学认为:可以取两个不同的值,使它的值等于11.你认为( )A.小聪对,小颖错 B.小聪错,小颖对C.他们两人都对 D.他们两人都错14.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7 644平方米,则道路的宽应为多少米?设道路的宽为x米,则可列方程为( )A.100×80-100x-80x=7 644B.(100-x)(80-x)+x2=7 644C.(100-x)(80-x)=7 644D.100x+80x=35615.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( )二、填空题(本大题共5小题,每小题5分,共25分)16.将方程3x(x-1)=5化为ax2+bx+c=0的形式为____________.17.若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________.18.若(m+n)(m+n+5)=6,则m+n的值是________.19.一件工艺品进价100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降低1元出售,则每天可多售出4件,要使顾客尽量得到优惠,且每天获得的利润为3 596,每件工艺品需降价________元.20.已知关于x的方程x2-(a+b)x+ab-1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x21+x22<a2+b2.则正确结论的序号是________.(填上你认为正确的所有序号)三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)选择适当的方法解下列方程:(1)(x-3)2=4;(2)x2-5x+1=0.22.(8分)已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若mn+m+n=2,求a的值.23.(10分)随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2013年销售烟花爆竹20万箱,到2015年烟花爆竹销售量为9.8万箱.求咸宁市2013年到2015年烟花爆竹年销售量的平均下降率.24.(12分)小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2.”他的说法对吗?请说明理由.25.(12分)已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程的根的情况;(2)若方程有一个根为3,求m的值.26.(14分)观察下列一元二次方程,并回答问题:第1个方程:x2+x=0;第2个方程:x2-1=0;第3个方程:x2-x-2=0;第4个方程:x2-2x-3=0;…(1)第2 016个方程是____________________;(2)直接写出第n个方程,并求出第n个方程的解;(3)说出这列一元二次方程的解的一个共同特点.27.(16分)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.参考答案1.D 2.D 3.C 4.B 5.D 6.C 7.B 8.C 9.C 10.B 11.B 12.C 13.D 14.C 15.B 16.3x 2-3x -5=0 17.-3 18.-6或1 19.6 20.①② 21.(1)x 1=1,x 2=5. (2)x 1=5+212,x 2=5-212.22.∵m ,n 是关于x 的一元二次方程x 2-3x +a =0的两个解,∴m +n =3,mn =a. ∵mn +m +n =2,∴a +3=2.解得a =-1.23.设年销售量的平均下降率为x ,依题意,得20(1-x)2=9.8. 解这个方程,得x 1=0.3,x 2=1.7. ∵x 2=1.7不符合题意, ∴x =0.3=30%.答:咸宁市2013年到2015年烟花爆竹年销售量的平均下降率为30%.24.(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(10-x)cm.由题意,得x 2+(10-x)2=58.解得x 1=3,x 2=7.4×3=12,4×7=28.答:小林把绳子剪成12 cm 和28 cm 的两段.(2)假设能围成.由(1)得x 2+(10-x)2=48.化简得x 2-10x +26=0. ∵b 2-4ac =(-10)2-4×1×26=-4<0, ∴此方程没有实数根. ∴小峰的说法是对的.25.(1)∵b 2-4ac =(2m)2-4×1×(m 2-1)=4>0, ∴方程有两个不相等的实数根.(2)将x =3代入原方程,得9+6m +m 2-1=0.解得m 1=-2,m 2=-4.26.(1)x 2-2 014x -2 015=0(2)第n 个方程是x 2-(n -2)x -(n -1)=0,解得x 1=-1,x 2=n -1.(3)这列一元二次方程的解的一个共同特点:有一根是-1. 27.(1)△ABC 是等腰三角形.理由: ∵x =-1是方程的根,∴(a +c)×(-1)2-2b +(a -c)=0. ∴a +c -2b +a -c =0. ∴a -b =0. ∴a =b.∴△ABC 是等腰三角形.(2)∵方程有两个相等的实数根,∴(2b)2-4(a +c)(a -c)=0.∴4b 2-4a 2+4c 2=0. ∴a 2=b 2+c 2.∴△ABC 是直角三角形. (3)∵△ABC 是等边三角形,∴(a +c)x 2+2bx +(a -c)=0可整理为2ax 2+2ax =0. ∴x 2+x =0.解得x 1=0,x 2=-1.。
北师大版九年级数学上册各章测验汇总(共六套,附答案)
北师大版九年级数学上册各章测验汇总第一章特殊平行四边形一、选择题(本大题共6小题,共24分)1.下列关于▱ABCD的叙述中,正确的是( )A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形2.如图1,在△ABC中,D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF ∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形123.如图2,在菱形ABCD中,对角线AC,BD相交于点O,作OE⊥AB,垂足为E,若∠ADC =130°,则∠AOE的度数为( )A.75° B.65° C.55° D.50°4.如图3,P是矩形ABCD的边AD上的一个动点,矩形的两条边AB,BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是( )A.125 B.65 C.245D .不确定345.如图4,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是( )A .2.5 B. 5 C.322 D .26.如图5,在平面直角坐标系中,四边形OABC 是正方形,点A 的坐标是(4,0),P 为边AB 上一点,∠CPB =60°,沿CP 折叠正方形OABC ,折叠后,点B 落在平面内的点B ′处,则点B ′的坐标为( )图5A .(2,2 3)B .(32,2-3)C .(2,4-2 3)D .(32,4-2 3)二、填空题(本大题共6小题,共30分)7.已知菱形的边长为6,一个内角为60°,则菱形的较短对角线的长是________. 8.如图6所示,在矩形纸片ABCD 中,AB =2 cm ,点E 在BC 上,且AE =EC .若将纸片沿AE 折叠,点B 恰好与AC 上的点B ′重合,则AC =________ cm.679.如图7所示,若菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为________.10.如图8,在正方形ABCD的外侧作等边三角形ADE,则∠BED的度数是________.8911.如图9所示,在四边形ABCD中,对角线AC⊥BD,垂足为O,E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.图1012.如图10,在矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为________.三、解答题(共46分)13.(10分)如图11,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形ABCD的边长为4,AE=2,求菱形BEDF的面积.图1114.(10分)如图12,已知平行四边形ABCD的对角线AC,BD相交于点O,AC=20 cm,BD=12 cm,两动点E,F同时以2 cm/s的速度分别从点A,C出发在线段AC上相对运动,点E到点C,点F到点A时停止运动.(1)求证:当点E,F在运动过程中不与点O重合时,以点B,E,D,F为顶点的四边形为平行四边形;(2)当点E,F的运动时间t为何值时,四边形BEDF为矩形?图1215.(12分)如图13,△ABC是以BC为底的等腰三角形,AD是边BC上的高,E,F分别是AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.图1316.(14分)如图14,四边形ABCD是正方形,E是直线CD上的点,将△ADE沿AE对折得到△AFE,直线EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)当DE是线段CD的一半时,请你在备用图中利用尺规作图画出符合题意的图形(保留作图痕迹,不写作法);(3)在(2)的条件下,求∠EAG的度数.图141.C 2.D 3.B 4.A5.B .6.C 7.6 .8.49.(2+2,2)10.45° . 11.12 12.75813.解:(1)证明:连接BD 交AC 于点O , ∵四边形ABCD 为正方形, ∴BD ⊥AC ,OD =OB =OA =OC . ∵AE =CF ,∴OA -AE =OC -CF , 即OE =OF ,∴四边形BEDF 为平行四边形,且BD ⊥EF , ∴四边形BEDF 为菱形. (2)∵正方形ABCD 的边长为4, ∴BD =AC =4 2.∵AE =CF =2,∴EF =AC -2 2=2 2, ∴S 菱形BEDF =12BD ·EF =12×4 2×2 2=8.14.解:(1)证明:连接DE ,EB ,BF ,FD .∵两动点E ,F 同时以2 cm/s 的速度分别从点A ,C 出发在线段AC 上相对运动, ∴AE =CF .∵平行四边形ABCD 的对角线AC ,BD 相交于点O , ∴OD =OB ,OA =OC (平行四边形的对角线互相平分), ∴OA -AE =OC -CF 或AE -OA =CF -OC ,即OE =OF ,∴四边形BEDF 为平行四边形(对角线互相平分的四边形是平行四边形), 即以点B ,E ,D ,F 为顶点的四边形是平行四边形.(2)当点E 在OA 上,点F 在OC 上,EF =BD =12 cm 时,四边形BEDF 为矩形. ∵运动时间为t , ∴AE =CF =2t ,∴EF =20-4t =12, ∴t =2;当点E 在OC 上,点F 在OA 上时,EF =BD =12 cm ,EF =4t -20=12,∴t =8.因此,当点E ,F 的运动时间t 为2 s 或8 s 时,四边形BEDF 为矩形. 15.解:(1)证明:∵AD ⊥BC ,E ,F 分别是AB ,AC 的中点, ∴在Rt △ABD 中,DE =12AB =AE ,在Rt △ACD 中,DF =12AC =AF .又∵AB =AC , ∴AE =AF =DE =DF , ∴四边形AEDF 是菱形.(2)如图,∵菱形AEDF 的周长为12, ∴AE =3.设EF =x ,AD =y ,则x +y =7, ∴x 2+2xy +y 2=49.①由四边形AEDF 是菱形得AD ⊥EF , ∴在Rt △AOE 中,AO 2+EO 2=AE 2, ∴(12y )2+(12x )2=32, 即x 2+y 2=36.②把②代入①,可得2xy =13, ∴xy =132,∴菱形AEDF 的面积S =12xy =134.16.解:(1)证明:∵四边形ABCD 为正方形, ∴AB =AD ,∠B =∠D =90°. ∵将△ADE 沿AE 对折得到△AFE , ∴AF =AD =AB ,∠AFE =∠D =90°. 在Rt △ABG 和Rt △AFG 中,⎩⎪⎨⎪⎧AB =AF ,AG =AG ,∴Rt △ABG ≌Rt △AFG (HL). (2)如图所示:(3)∵△AFE ≌△ADE ,△ABG ≌△AFG , ∴∠EAF =∠EAD ,∠GAF =∠GAB . ∵在正方形ABCD 中,∠BAD =90°, ∴∠EAG =∠EAF +∠GAF =12×90°=45°.第二章 一元二次方程一、选择题(本大题共7小题,共21分)1.要使方程(a -3)x 2+(b +1)x +c =0是关于x 的一元二次方程,则( )A .a ≠0B .a ≠3C .a ≠3且b ≠-1D .a ≠3且b ≠-1且c ≠02.用配方法解关于x 的一元二次方程x 2-2x -3=0时,配方后的方程可以是( ) A .(x -1)2=4 B .(x +1)2=4 C .(x -1)2=16 D .(x +1)2=163.关于x 的一元二次方程x 2+ax -1=0的根的情况是( ) A .没有实数根 B .只有一个实数根 C .有两个相等的实数根 D .有两个不相等的实数根4.若x =-2是关于x 的一元二次方程x 2-52ax +a 2=0的一个根,则a 的值为( )A .1或4B .-1或-4C .-1或4D .1或-45.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数的年平均增长率为x ,则下列方程中正确的是( )A .12(1+x )=17B .17(1-x )=12C .12(1+x )2=17D .12+12(1+x )+12(1+x )2=176.已知2是关于x 的方程x 2-2mx +3m =0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则△ABC 的周长为( )A .10B .14C .10或14D .8或10图17.如图1,一农户要建一个矩形花圃,花圃的一边利用长为12 m 的住房墙,另外三边用25 m 长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1 m 宽的门,花圃面积为80 m 2,设与墙垂直的一边长为x m ,则可以列出关于x 的方程是( )A .x (26-2x )=80B .x (24-2x )=80C .(x -1)(26-2x )=80D .x (25-2x )=80二、填空题(本大题共6小题,共24分)8.已知关于x 的方程3x 2+mx -8=0有一个根是23,则另一个根及m 的值分别为________.9.关于x 的方程mx 2+x -m +1=0,有以下三个结论:①当m =0时,方程只有一个实数解;②当m ≠0时,方程有两个不相等的实数解;③无论m 取何值,方程都有一个负数解.其中正确的是________(填序号).10.已知m 是关于x 的方程x 2-2x -3=0的一个根,则2m 2-4m =________. 11.已知一元二次方程x 2-3x -4=0的两根是m ,n ,则m 2+n 2=________. 12.经过两次连续降价,某药品的销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是____________.13.将一条长为20 cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是________cm 2. 三、解答题(共55分)14.(12分)我们已经学习了一元二次方程的四种解法:因式分解法、直接开平方法、配方法和公式法.请选择你认为适当的方法解下列方程:(1)x 2-3x +1=0; (2)(x -1)2=3;(3)x2-3x=0; (4)x2-2x=4.15.(9分)已知关于x的一元二次方程x2-(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.16.(10分)如图2,在宽为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m2,求道路的宽.(部分参考数据:322=1024,522=2704,482=2304)图217.(12分)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率.(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.小华选择哪种方案更优惠?请说明理由.18.(12分)在图3中,每个正方形由边长为1的小正方形组成:图3(1)观察图形,请填写下列表格:(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为p1,白色小正方形的个数为p2,问是否存在偶数n,使p2=5p1?若存在,请写出n的值;若不存在,请说明理由.答案1.B 2.A 3.D4.B 5.C 6.B 7.A 8.-4,10 9.①③ 10.611.17 12.50(1-x )2=32 13.12.5 14.解:(1)b 2-4ac =9-4=5, x =-b ±b 2-4ac 2a =3±52,x 1=3+52,x 2=3-52. (2)两边直接开平方,得x -1=±3,x 1=1+3,x 2=1- 3.(3)原方程可化为x (x -3)=0,x =0或x -3=0, x 1=0,x 2=3.(4)配方,得x 2-2x +1=4+1, 整理,得(x -1)2=5, 开平方,得x -1=±5,x 1=1+5,x 2=1- 5.15.解:(1)证明:∵在方程x 2-(k +3)x +2k +2=0中,Δ=[-(k +3)]2-4×1×(2k +2)=k 2-2k +1=(k -1)2≥0,∴方程总有两个实数根.(2)∵x 2-(k +3)x +2k +2=(x -2)(x -k -1)=0, ∴x 1=2,x 2=k +1. ∵方程有一个根小于1,∴k+1<1,解得k<0,∴k的取值范围为k<0.16.解:解法1:利用平移,原图可转化为图①,设道路宽为x m,根据题意,得(20-x)(32-x)=540,整理,得x2-52x+100=0,解得x1=50(舍去),x2=2.答:道路的宽为2 m.解法2:利用平移,原图可转化为图②,设道路宽为x m,根据题意,得20×32-(20+32)x+x2=540,整理,得x2-52x+100=0,解得x1=2,x2=50(舍去).答:道路的宽是2 m.17.[解析] 本题考查了一元二次方程的应用,掌握增长率的计算方法是解题的关键.解:(1)设平均每次下调的百分率为x.由题意,得5(1-x)2=3.2.解这个方程,得x1=0.2,x2=1.8.因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一更优惠.理由:方案一所需费用为3.2×0.9×5000=14400(元),方案二所需费用为3.2×5000-200×5=15000(元).因为14400<15000,所以小华选择方案一更优惠.18.解:(1)1 5 9 13 2n-1 4 8 12 16 2n(2)由(1)可知,当n为偶数时,p1=2n,所以p2=n2-2n.根据题意,得n2-2n=5×2n,整理,得n2-12n=0,解得n1=12,n2=0(不合题意,舍去).所以存在偶数n=12,使得p2=5p1.第三章概率的进一步认识一、选择题(本大题共8小题,共40分)1.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A.16B.13C.12D.232.为估计鱼塘中鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘中鱼的数量约为( )A.1250条 B.1750条 C.2500条 D.5000条3.一个不透明的袋子里有若干个小球,它们除颜色不同外,其他都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀……甲同学反复大量试验后,根据白球出现的频率绘制了如图1所示的统计图,则下列说法正确的是( )图1A.袋子里一定有三个白球B.袋子中白球占小球总数的十分之三C.再摸三次球,一定有一次是白球D.再摸1000次,摸出白球的次数会接近330次4.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( )A.15B.14C.13D.125.如图2,两个转盘分别自由转动一次,转盘停止转动后,两个指针分别落在某两个数所表示的区域,这两个数的和是2的倍数或是3的倍数的概率等于( )图2A.316B.38C.58D.13166.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面的数字为x,乙立方体朝上一面的数字为y,这样就确定点P的一个坐标(x,y),那么点P落在正比例函数y=2x图象上的概率为( )A.118B.112C.19D.16图37.如图3,每个灯泡能通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是( )A.0.25 B.0.5 C.0.75 D.0.958.把五张大小、质地完全相同且分别写有1,2,3,4,5的卡片放在一个暗箱中,先由甲随机从里面抽取一张(不放回),并记下数字后,再由乙从里面随机抽取一张,并记下数字,若两数之和为偶数则甲胜,若两数之和为奇数则乙胜,则( )A.两者取胜的概率相同B.甲胜的概率为0.6C.乙胜的概率为0.6D.乙胜的概率为0.7二、填空题(本大题共5小题,共25分)9.在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在一组的概率是________.10.纸箱里有两双拖鞋,它们除颜色不同外,其他都相同,从中随机取一只(不放回),再取一只,则两次取出的鞋颜色恰好相同的概率为________.11.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:估计该种幼树在此条件下移植成活的概率为________.(精确到0.01)12.在四边形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是________.13.已知关于x的一元二次方程x2+bx+c=0,从-1,2,3三个数中任取一个数,作为方程中b的值,再从剩下的两个数中任取一个数作为方程中c的值,能使该一元二次方程有实数根的概率是________.三、解答题(共35分)14.(10分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是________;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.15.(12分)端午节当天,小明带了四个粽子(除味道不同外,其他均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用画树状图或列表的方法表示小红拿到的两个粽子的所有可能性;(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.16.(13分)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是________;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.1.D 2 A 3.D 4.C .5.C .6.B7.C .8.C 9.14 10.13 11.0.88 12.23 13.12 14.解:(1)12(2)画树状图如下:共有4种等可能的结果,其中至少有一个孩子是女孩的结果数为3, 所以至少有一个孩子是女孩的概率为34.15.解:(1)记两个大枣味的粽子分别为A 1,A 2,两个火腿味的粽子分别为B 1,B 2. 画树状图如下:所有可能情况为:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 2,A 1),(A 2,B 1),(A 2,B 2),(B 1,A 1),(B 1,A 2),(B 1,B 2),(B 2,A 1),(B 2,A 2),(B 2,B 1).(2)由(1)可知,一共有12种可能,小红拿到的两个粽子刚好是同一味道有4种可能,所以P (同一味道)=412=13.16.解:(1)因为控制第二排灯的开关已坏(闭合开关时灯也不亮,所以将4个开关都闭合时,教室里所有灯都亮起的概率是0.故答案为0.(2)用1,2,3,4分别表示第一排、第二排、第三排和第四排灯, 画树状图如下:因为共有12种等可能的结果,其中恰好关掉第一排与第三排灯的结果数为2种, 所以恰好关掉第一排与第三排灯的概率=212=16.第四章 图形的相似一、选择题(本大题共7小题,共28分)1.已知x y =32,那么下列等式中,不一定正确的是( )A .x +2y +2=32 B .2x =3y C .x +y y =52 D .x x +y =352.如图4-Z -1,l 1∥l 2∥l 3,已知AB =6 cm ,BC =3 cm ,A 1B 1=4 cm ,则线段B 1C 1的长为( )A .6 cmB .4 cmC .3 cmD .2 cm4-Z -1图4-Z -23.如图4-Z -2所示,在△ABC 中,D ,E 分别为AC ,BC 边上的点,AB ∥DE ,CF 为AB 边上的中线.若AD =5,CD =3,DE =4,则BF 的长为( )A .323B .163C .103D .83图4-Z -34.如图4-Z -3,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △ODB S △BDC =13.其中正确的个数为( ) A .1 B .2 C .3 D .45.在Rt △ABC 和Rt △DEF 中,∠C =∠F =90°,下列条件中不能判定这两个三角形相似的是( )A .∠A =55°,∠D =35°B .AC =9,BC =12,DF =6,EF =8 C .AC =3,BC =4,DF =6,DE =8D .AB =10,AC =8,DE =15,EF =96.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽约为( )A .12.36 cmB .13.64 cmC .32.36 cmD .7.64 cm7.如图4-Z -4,在Rt △ABC 中,∠C =90°,AC =BC =6 cm ,点P 从点A 出发,沿AB 方向以每秒 2 cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1 cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P ′.设点Q 运动的时间为t s ,若四边形QPCP ′为菱形,则t 的值为( )图4-Z -4A . 2B .2C .2 2D .3二、填空题(本大题共6小题,共24分)8.有一块三角形的草地,它的一条边长为25 m .在图纸上,这条边的长为5 cm ,其他两条边的长都为4 cm ,则其他两边的实际长度都是________ m .9.若a 5=b 7=c8,且3a -2b +c =3,则2a +4b -3c =________.10.已知甲、乙两个相似三角形对应中线之比为1∶2,甲三角形的面积为5 cm 2,则乙三角形的面积为__________.11.如图4-Z -5,在两个直角三角形中,∠ACB =∠ADC =90°,AC =6,AD =2.当AB =________时,△ABC ∽△ACD.4-Z -54-Z -612.如图4-Z -6,数学兴趣小组想测量电线杆AB 的高度,他们发现电线杆的影子恰好落在土坡的坡面CD 和地面BC 上,量得CD =4 m ,BC =10 m ,CD 与地面成30°角,且此时测得高1 m 的标杆的影长为2 m ,则电线杆的高度为________m (结果保留根号).图4-Z-713.如图4-Z-7,将边长为6 cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在点Q处,EQ与BC相交于点G,则△EBG的周长是________ cm.三、解答题(共48分)14.(10分)如图4-Z-8,矩形ABCD是台球桌面,AD=260 cm,AB=130 cm,球目前在E的位置,AE=60 cm,如果小宝瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到点D的位置.(1)求证:△BEF∽△CDF;(2)求CF的长.图4-Z-815.(12分)如图4-Z-9,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O为位似中心,将△ABC放大为原来的2倍得到△A′B′C′.(1)在图中的第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)求△A′B′C′的面积.图4-Z-916.(12分)如图4-Z-10,一块材料的形状是锐角三角形ABC,边BC=12 cm,高AD =8 cm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?图4-Z-1017.(14分)如图4-Z-11,在▱ABCD中,对角线AC,BD相交于点O,M为AD的中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△CND的面积为2,求四边形ABNM的面积.图4-Z-11参考答案1.A2.D 3.B 4.C 5.C 6.A 7.B 8.20 9.143 10.20 cm 211.312.(7+3) 13.12(cm).14.解:(1)证明:由题意,得∠EFG =∠DFG .∵∠EFG +∠BFE =90°,∠DFG +∠CFD =90°,∴∠BFE =∠CFD . 又∵∠B =∠C =90°, ∴△BEF ∽△CDF . (2)∵△BEF ∽△CDF ,∴BE CD =BF CF ,即70130=260-CF CF, ∴CF =169(cm).15.解:(1)△A ′B ′C ′如图所示.(2)图中每个小正方形的边长为1个单位长度,由勾股定理可得AC =2,AB =CB =5,AC 边上的高=(5)2-⎝ ⎛⎭⎪⎫222=322,所以△ABC 的面积S =12×2×32 2=32.设△A ′B ′C ′的面积为S ′,因为△ABC ∽△A ′B ′C ′,所以S S ′=⎝ ⎛⎭⎪⎫122,得S ′=4S =4×32=6,即△A ′B ′C ′的面积为6.16.解:如图,∵四边形EFHG 是正方形, ∴EF ∥BC ,∴△AEF ∽△ABC ,而AD ⊥BC , ∴EF BC =AK AD.设正方形EFHG 的边长为x cm ,则AK =(8-x )cm ,∴x 12=8-x 8,解得x =4.8. 答:这个正方形零件的边长为4.8 cm.17.解:(1)∵在▱ABCD 中,AD ∥BC ,AD =BC ,OB =OD , ∴∠DMN =∠BCN ,∠MDN =∠NBC , ∴△MND ∽△CNB , ∴MD CB =DN BN. ∵M 为AD 的中点,∴MD =12AD =12BC ,即MD CB =12,∴DN BN =12,即BN =2DN . 设OB =OD =x ,则BD =2x ,BN =OB +ON =x +1,DN =OD -ON =x -1, ∴x +1=2(x -1),解得x =3,∴BD =2x =6.(2)∵△MND ∽△CNB ,且相似比为1∶2, ∴MN ∶CN =DN ∶BN =1∶2,∴S △MND =12S △CND =1,S △CNB =2S △CND =4,∴S △ABD =S △BCD =S △CNB +S △CND =4+2=6, ∴S 四边形ABNM =S △ABD -S △MND =6-1=5.第五章 投影与视图一、选择题(本大题共7小题,共28分)1.如图5-Z -1所示属于物体在太阳光下形成的影子的图形是( )图5-Z -12.某运动会颁奖台示意图如图5-Z -2所示,它的主视图是( )图5-Z -2图5-Z -3图5-Z-43.某几何体的三视图如图5-Z-4所示,则这个几何体是( )A.圆柱B.长方体C.三棱锥D.三棱柱4.由5个大小相同的小正方体拼成的几何体如图5-Z-5所示,则下列说法正确的是( )A.主视图的面积最小B.左视图的面积最小C.俯视图的面积最小D.三个视图的面积相等5-Z-55-Z-65.如图5-Z-6,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8 m,窗户下檐到地面的距离BC=1 m,EC=1.2 m,那么窗户的高AB为( )A.1.5 m B.1.6 m C.1.86 m D.2.16 m6.一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图5-Z-7,则这张桌子上碟子的总数为( )图5-Z-7A.11 B.12 C.13 D.14图5-Z-87.如图5-Z-8,彬彬同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达点Q时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知彬彬同学的身高是1.5 m,两个路灯的高度都是9 m,则两个路灯之间的距离是( )A.24 m B.25 m C.28 m D.30 m二、填空题(本大题共4小题,共20分)8.图5-Z-9是小红在某天四个时刻看到一根木棒及其影子的情况,那么她看到的先后顺序是________.(填序号)图5-Z-9图5-Z-109.如图5-Z-10,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5 m,在旋转过程中,影长的最大值为5 m,最小值为3 m,且影长最大时,木杆与光线垂直,则路灯EF的高度为________ m.10.平面直角坐标系内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(4,1),则CD在x轴上的影长为________,点C的影子的坐标为________.11.如图5-Z-11是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是________.图5-Z-11三、解答题(共52分)12.(12分)如图5-Z-12,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6 m 的小明落在地面上的影长BC=2.4 m.(1)请你在图中画出旗杆DE在同一时刻阳光照射下落在地面上的影子EG;(2)若小明测得此刻旗杆落在地面上的影长EG=16 m,请求出旗杆DE的高度.图5-Z-1213.(12分)如图5-Z-13是由一些棱长都为1的小正方体组合成的简单几何体.5-Z-13图5-Z-14(1)该几何体的表面积(含下底面)为________;(2)请在图5-Z-14中画出这个几何体的三视图;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加________个小正方体.14.(14分)如图5-Z-15是一个工件的三视图,图中标有尺寸.(1)该工件是怎样的几何体?(2)该工件的体积是多少?图5-Z-1515.(14分)如图5-Z-16,公路旁有两个高度相等的路灯AB,CD.杨柳上午去学校时发现路灯AB在太阳光下的影子恰好落到里程碑E处,她自己的影子恰好落在路灯CD的底部C处.晚上回家时,站在上午同一个地方,她发现在路灯CD的灯光下自己的影子恰好落在里程碑E处.(1)在图中画出杨柳的位置(用线段FG表示),并画出光线,标明太阳光、灯光;(2)若杨柳上午去学校时高1 m 的木棒在太阳光下的影长为2 m ,杨柳的身高为1.5 m ,她离里程碑E 恰为5 m ,求路灯的高.图5-Z -16参考答案1.A 2.C 3.D 4.B5.A 6.B 7.D 8.④③①② 9.7.510.1 (5,0) 11.22 12.解:(1)影子EG 如图所示.(2)∵DG ∥AC , ∴∠C =∠G .又∵∠ABC =∠DEG =90°, ∴Rt △ABC ∽Rt △DEG ,∴AB DE =BC EG ,即1.6DE =2.416, 解得DE =323(m),∴旗杆DE 的高度为323m.13.解:(1)28故该几何体的表面积(含下底面)为28. (2)如图所示:(3)214.解:(1)该工件是两个圆柱体的组合体.(2)根据三视图可知该几何体是两个圆柱体叠加在一起形成的,上面圆柱的底面直径是2 cm ,高是1 cm ,所以它的体积为π×⎝ ⎛⎭⎪⎫222×1=π(cm 3);下面圆柱的底面直径是4 cm ,高是4 cm ,所以它的体积为π×⎝ ⎛⎭⎪⎫422×4=16π(cm 3),所以该工件的体积为16π+π=17π(cm 3).15.解:(1)如图.(2)∵杨柳上午去学校时高1 m 的木棒在太阳光下的影长为2 m ,杨柳的身高为1.5 m , ∴杨柳的影长CF 为3 m. ∵GF ⊥AC ,DC ⊥AC , ∴GF ∥CD , ∴△EGF ∽△EDC ,∴GF CD =EF EC ,即1.5CD =55+3, 解得CD =2.4(m). 答:路灯的高为2.4 m.第六章 反比例函数一、选择题(本大题共6小题,共30分)1.若反比例函数y =kx的图象过点(3,-7),那么它一定还经过点( )A .(3,7)B .(-3,-7)C .(-3,7)D .(2,-7)2.若函数y =(m +4)x|m|-5是反比例函数,则m 的值为( )A .4B .-4C .4或-4D .03.若反比例函数y =kx的图象经过点(a ,2a),其中a ≠0,则其函数的图象在( )A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限4.在同一平面直角坐标系中,函数y =mx +m(m ≠0)与y =mx(m ≠0)的图象可能是( )图6-Z -15.如图6-Z -2,函数y =-x 与函数y =-4x 的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为C ,D ,则四边形ACBD 的面积为( )图6-Z -2A .2B .4C .6D .86.根据图6-Z -3(1)所示的程序,得到了y 与x 的函数图象如图(2),过y 轴上一点M 作PQ ∥x 轴交图象于点P ,Q ,连接OP ,OQ.则以下结论:①当x <0时,y =2x ;②△OPQ 的面积为定值;③当x >0时,y 的值随x 值的增大而增大;④MQ =2PM ;⑤∠POQ 可以等于90°.其中正确的结论是( )图6-Z -3A .①②④B .②④⑤C .③④⑤D .②③⑤二、填空题(本大题共5小题,共30分)7.若反比例函数y =m -1x 的图象在同一象限内,y 的值随x 值的增大而增大,则m 的值可以是________(写出一个即可).8.如图6-Z -4所示,反比例函数y =kx (k ≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D.若矩形OABC 的面积为8,则k 的值为________.6-Z -46-Z -59.如图6-Z -5,A(4,0),B(3,3),以AO ,AB 为边作平行四边形OABC ,则图象经过点C 的反比例函数的表达式为________.10.如果一个正比例函数的图象与反比例函数y =6x 的图象相交于A(x 1,y 1),B(x 2,y 2)两点,那么(x 2-x 1)(y 2-y 1)的值为________.图6-Z -611.函数y 1=x(x ≥0),y 2=4x (x>0)的图象如图6-Z -6所示,则下列结论:①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 1>y 2; ③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小. 其中正确结论的序号是________. 三、解答题(共40分)12.(12分)如图6-Z -7,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数y =k x 的图象于点B ,AB =32.(1)求反比例函数的表达式;(2)若P(x 1,y 1),Q(x 2,y 2)是该反比例函数图象上的两点,且x 1<x 2时,y 1>y 2,指出点P ,Q 各位于哪个象限,并简要说明理由.图6-Z -713.(14分)如图6-Z -8,已知A(-4,0.5),B(-1,2)是一次函数y =ax +b 与反比例函数y =mx(m<0)图象的两个交点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D.(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数的值大于反比例函数的值?(2)求一次函数表达式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB 的面积相等,求点P 的坐标.图6-Z -814.(14分)环保局对某企业排污情况进行检测,结果显示,所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0 mg /L ,环保局要求该企业立即整改,在15天以内(含15天)排污达标,整改过程中,所排污水中硫化物的浓度y(mg /L )随时间x(天)的变化规律如图6-Z -9所示,其中线段AB 表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y 与时间x 成反比例关系.(1)求整改过程中硫化物的浓度y 与时间x 之间的函数表达式(要求标注自变量x 的取值范围);(2)该企业所排污水中硫化物的浓度能否在15天以内(含15天)不超过最高允许的1.0mg /L ?为什么?图6-Z -9参考答案1.C 2.A 3.A4.D 5.D 6.B7.0(答案不唯一) 8.29.y =-3x10.24 11.①②③④12.解:(1)由题意得点B (-2,32),把B (-2,32)代入y =kx 中,得到k =-3,∴反比例函数的表达式为y =-3x.(2)结论:点P 在第二象限,点Q 在第四象限. 理由:∵k =-3<0,∴反比例函数y 在每个象限内y 随x 的增大而增大.又∵P (x 1,y 1),Q (x 2,y 2)是该反比例函数图象上的两点,且x 1<x 2时,y 1>y 2, ∴点P ,Q 在不同的象限,即点P 在第二象限,点Q 在第四象限. 13.解:(1)当-4<x <-1时,一次函数的值大于反比例函数的值.(2)把A (-4,0.5),B (-1,2)代入y =ax +b ,得⎩⎪⎨⎪⎧-4a +b =0.5,-a +b =2,解得⎩⎪⎨⎪⎧a =12,b =52.∴一次函数的表达式为y =12x +52.把B (-1,2)代入y =m x,得m =-1×2=-2. (3)设点P 的坐标为(t ,12t +52).。
北师大版九年级数学上册第一章特殊平行四边形单元综合测试题及答案
第一章:特殊的平行四边形单元测试卷(典型题汇总)一、选择题(本大题共6小题,共24分)1.下列关于▱ABCD的叙述中,正确的是( )A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形2.如图1,在△ABC中,D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF ∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形123.如图2,在菱形ABCD中,对角线AC,BD相交于点O,作OE⊥AB,垂足为E,若∠ADC =130°,则∠AOE的度数为( )A.75° B.65° C.55° D.50°4.如图3,P是矩形ABCD的边AD上的一个动点,矩形的两条边AB,BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是( )A.125B.65C.245 D.不确定345.如图4,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )A.2.5 B.5 C.322 D.26.如图5,在平面直角坐标系中,四边形OABC是正方形,点A的坐标是(4,0),P为边AB上一点,∠CPB=60°,沿CP折叠正方形OABC,折叠后,点B落在平面内的点B′处,则点B′的坐标为( )图5A.(2,2 3) B.(32,2-3)C.(2,4-2 3) D.(32,4-2 3)二、填空题(本大题共6小题,共30分)7.已知菱形的边长为6,一个内角为60°,则菱形的较短对角线的长是________.8.如图6所示,在矩形纸片ABCD中,AB=2 cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点B′重合,则AC=________ cm.679.如图7所示,若菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为________.10.如图8,在正方形ABCD的外侧作等边三角形ADE,则∠BED的度数是________.8911.如图9所示,在四边形ABCD中,对角线AC⊥BD,垂足为O,E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.图1012.如图10,在矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为________.三、解答题(共46分)13.(10分)如图11,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形ABCD的边长为4,AE=2,求菱形BEDF的面积.图1114.(10分)如图12,已知平行四边形ABCD的对角线AC,BD相交于点O,AC=20 cm,BD=12 cm,两动点E,F同时以2 cm/s的速度分别从点A,C出发在线段AC上相对运动,点E到点C,点F到点A时停止运动.(1)求证:当点E,F在运动过程中不与点O重合时,以点B,E,D,F为顶点的四边形为平行四边形;(2)当点E,F的运动时间t为何值时,四边形BEDF为矩形?图1215.(12分)如图13,△ABC是以BC为底的等腰三角形,AD是边BC上的高,E,F分别是AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.图1316.(14分)如图14,四边形ABCD是正方形,E是直线CD上的点,将△ADE沿AE对折得到△AFE,直线EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)当DE是线段CD的一半时,请你在备用图中利用尺规作图画出符合题意的图形(保留作图痕迹,不写作法);(3)在(2)的条件下,求∠EAG的度数.图141.C 2.D 3.B 4.A5.B .6.C7.6 .8.49.(2+2,2)10.45°.11.12 12.75813.解:(1)证明:连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC.∵AE=CF,∴OA-AE=OC-CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形.(2)∵正方形ABCD的边长为4,∴BD=AC=4 2.∵AE=CF=2,∴EF=AC-2 2=2 2,∴S菱形BEDF=12BD·EF=12×4 2×2 2=8.14.解:(1)证明:连接DE,EB,BF,FD.∵两动点E,F同时以2 cm/s的速度分别从点A,C出发在线段AC上相对运动,∴AE=CF.∵平行四边形ABCD的对角线AC,BD相交于点O,∴OD=OB,OA=OC(平行四边形的对角线互相平分),∴OA-AE=OC-CF或AE-OA=CF-OC,即OE=OF,∴四边形BEDF为平行四边形(对角线互相平分的四边形是平行四边形),即以点B,E,D,F为顶点的四边形是平行四边形.(2)当点E在OA上,点F在OC上,EF=BD=12 cm时,四边形BEDF为矩形.∵运动时间为t,∴AE=CF=2t,∴EF=20-4t=12,∴t=2;当点E在OC上,点F在OA上时,EF=BD=12 cm,EF=4t-20=12,∴t=8.因此,当点E,F的运动时间t为2 s或8 s时,四边形BEDF为矩形.15.解:(1)证明:∵AD⊥BC,E,F分别是AB,AC的中点,∴在Rt△ABD中,DE=12AB=AE,在Rt△ACD中,DF=12AC=AF.又∵AB=AC,∴AE=AF=DE=DF,∴四边形AEDF是菱形.(2)如图,∵菱形AEDF的周长为12,∴AE=3.设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49.①由四边形AEDF是菱形得AD⊥EF,∴在Rt△AOE中,AO2+EO2=AE2,∴(12y)2+(12x)2=32,即x2+y2=36.②把②代入①,可得2xy=13,∴xy=132,∴菱形AEDF的面积S=12xy=134.16.解:(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠B=∠D=90°.∵将△ADE沿AE对折得到△AFE,∴AF=AD=AB,∠AFE=∠D=90°.在Rt△ABG和Rt△AFG中,AB=AF,AG=AG,)∴Rt△ABG≌Rt△AFG(HL).(2)如图所示:(3)∵△AFE≌△ADE,△ABG≌△AFG,∴∠EAF=∠EAD,∠GAF=∠GAB.∵在正方形ABCD中,∠BAD=90°,∴∠EAG=∠EAF+∠GAF=12×90°=45°.第一章:特殊的平行四边形单元测试卷(典型题汇总)(100分钟,120分)一、选择题1.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠D C.AB∥CD,AD∥BC D.AB=CD,AD=BC 2.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是()A.6cm B.9cm C.3cm D.12cm3.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50° B.55° C.60° D.65°4.给出以下三个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③对角线互相垂直的矩形是正方形;④菱形对角线的平方和等于边长平方的4倍.其中真命题的是()A.③B.①② C.②③D.③④5.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()A.3B.4 C.5 D.76.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6 cm和9 cm B.5 cm和10 cm C.4 cm和11 cm D.7 cm和8 cm7.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为何?()A.8 B.9 C.11 D.129.如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A.2B.3 C.D.1+10.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.3 C.D.二、填空题11.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对称图形又是中心对称图形的是矩形、正方形.12.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是3cm2.【解答】解:∵菱形的两条对角线长分别为2cm,3cm,∴它的面积是:×2×3=3(cm2).13.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.14.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于 3.5 .【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴∠AOD=90°,∵AB+BC+CD+DA=28,∴AD=7,∵H为AD边中点,∴OH=AD=3.5;15.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为5.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,三、解答题(15题12分,16题12分,17题16分)16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,求△AEF的周长。
北师大版九年级数学上名校课堂单元测试(二)(含答案)
单元测试(二) 一元二次方程(时间:45分钟满分:100分)一、选择题(每小题3分,共30分)1.下列方程中,关于x的一元二次方程是( )A.3(x+1)2=2(x+1) B.1x2+1x-2=0C.ax2+bx+c=0 D.x2+2x=x2-12.用配方法解方程x2-2x-5=0时,原方程应变形为( )A.(x+1)2=6 B.(x-1)2=6C.(x+2)2=9 D.(x-2)2=93.根据下面表格中的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是( ) A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.264.解方程(x+1)(x+3)=5较为合适的方法是( )A.直接开平方法B.配方法C.公式法或配方法D.分解因式法5.(湘西中考)下列方程中,没有实数根的是( )A.x2-4x+4=0 B.x2-2x+5=0C.x2-2x=0 D.x2-2x-3=06.下列说法不正确的是( )A.方程x2=x有一根为0B.方程x2-1=0的两根互为相反数C.方程(x-1)2-1=0的两根互为相反数D.方程x2-x+2=0无实数根7.(烟台中考)关于x的方程x2-ax+2a=0的两根的平方和是5,则a的值是( )A.-1或5 B.1 C.5 D.-18.对二次三项式x2-10x+36,小聪同学认为:无论x取什么实数,它的值都不可能等于11;小颖同学认为:可以取两个不同的值,使它的值等于11.你认为( )A.小聪对,小颖错B.小聪错,小颖对C.他们两人都对D.他们两人都错9.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7 644平方米,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A.100×80-100x-80x=7 644B.(100-x)(80-x)+x2=7 644C.(100-x)(80-x)=7 644D.100x+80x=35610.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( )二、填空题(每小题4分,共20分)11.(柳州中考)若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为______.12.若(m+n)(m+n+5)=6,则m+n的值是______.13.一件工艺品进价100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降低1元出售,则每天可多售出4件,要使顾客尽量得到优惠,且每天获得的利润为3 596,每件工艺品需降价______元.14.已知直角三角形的两条直角边的长恰好是方程2x2-8x+7=0的两个根,则这个直角三角形的斜边长是______.15.已知关于x的方程x2-(a+b)x+ab-1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x21+x22<a2+b2.则正确结论的序号是______.(填上你认为正确的所有序号)三、解答题(共50分)16.(12分)解方程:(1)x2-4x-1=0; (2)x2+3x-2=0;(3)2x2+3x+3=0; (4)(2x-1)2=x(3x+2)-7.17.(8分)小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2.”他的说法对吗?请说明理由.18.(8分)(南充中考)已知关于x的一元二次方程(x-1)(x-4)=p2,p为实数.(1)求证:方程有两个不相等的实数根;(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由)19.(10分)观察下列一元二次方程,并回答问题:第1个方程:x2+x=0;第2个方程:x2-1=0;第3个方程:x2-x-2=0;第4个方程:x2-2x-3=0;…(1)第2 016个方程是____________________;(2)直接写出第n个方程,并求出第n个方程的解;(3)说出这列一元二次方程的解的一个共同特点.20.(12分)(株洲中考)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c 分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.参考答案1.A 2.B 3.C 4.C 5.B 6.C 7.D 8.D 9.C 10.B 11.-3 12.-6或1 13.6 14.3 15.①②16.(1)x 1=5+2,x 2=-5+2. (2)x 1=-3+172,x 2=-3-172.(3)∵a =2,b =3,c =3,∴b 2-4ac =32-4×2×3=9-24=-15<0,∴原方程无实数根. (4)原方程可化为4x 2-4x +1=3x 2+2x -7,∴x 2-6x +8=0.∴(x -3)2=1.∴x -3=±1.∴x 1=2,x 2=4.17.(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(10-x)cm.由题意,得x 2+(10-x)2=58.解得x 1=3,x 2=7.4×3=12,4×7=28.答:小林把绳子剪成12 cm 和28 cm 的两段.(2)假设能围成.由(1)得x 2+(10-x)2=48.化简得x 2-10x +26=0.∵b 2-4ac =(-10)2-4×1×26=-4<0,∴此方程没有实数根.∴小峰的说法是对的.18.(1)证明:化简方程,得x 2-5x +(4-p 2)=0.Δ=(-5)2-4(4-p 2)=9+4p 2,∵p 为实数,p 2≥0,∴9+4p 2>0,即Δ>0.∴方程有两个不相等的实数根.(2)当p 为0,2,-2时,方程有整数解.19.(1)x 2-2 014x -2 015=0 (2)第n 个方程是x 2-(n -2)x -(n -1)=0,解得x 1=-1,x 2=n -1.(3)这列一元二次方程的解的一个共同特点:有一根是-1.20.(1)△ABC 是等腰三角形.理由:∵x =-1是方程的根,∴(a +c)×(-1)2-2b +(a -c)=0.∴a +c -2b +a -c =0.∴a -b =0.∴a =b.∴△ABC 是等腰三角形.(2)∵方程有两个相等的实数根,∴(2b)2-4(a +c)(a -c)=0.∴4b 2-4a 2+4c 2=0.∴a 2=b 2+c 2.∴△ABC 是直角三角形.(3)∵△ABC 是等边三角形,∴(a +c)x 2+2bx +(a -c)=0可整理为2ax 2+2ax =0.∴x 2+x =0.解得x 1=0,x 2=-1.。
北师大版九年级数学上名校课堂单元测试(一)(含答案)
单元测试(一) 特殊平行四边形(时间:45分钟满分:100分)一、选择题(每小题3分,共30分)1.在Rt△ABC中,CD是斜边AB边的中线,若AB=8,则CD的长是( )A.6 B.5 C.4 D.32.若矩形对角线相交所成钝角为120°,短边长3.6 cm,则对角线的长为( )A.3.6 cm B.7.2 cmC.1.8 cm D.14.4 cm3.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0)、B(0,2)、C(3,0)、D(0,-2),则四边形ABCD是( )A.矩形B.菱形C.正方形D.平行四边形4.如果要证明□ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明( )A.AB=AD且AC⊥BD B.AB=AD且AC=BDC.∠A=∠B且AC=BD D.AC和BD互相垂直平分5.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是( ) A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形6.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( ) A.75°B.60°C.55°D.45°7.(临沂中考)如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )A.AB=BE B.DE⊥DCC .∠ADB =90°D .CE ⊥DE8.如图,菱形纸片ABCD 中,∠A =60°,折叠菱形纸片ABCD ,使点C 落在DP(P 为AB 中点)所在的直线上,得到经过点D 的折痕DE.则∠DEC 的大小为( )A .78°B .75°C .60°D .45°9.(丽水中考)如图,小红在作线段AB 的垂直平分线时,是这样操作的:分别以点A ,B 为圆心,大于线段AB 长度一半的长为半径画弧,相交于点C ,D ,则直线CD 即为所求,连接AC ,BC ,AD ,BD ,根据她的作图方法可知,四边形ADBC 一定是( ) A .矩形 B .菱形 C .正方形 D .不确定10.如图,在菱形ABCD 中,∠A =60°,E ,F 分别是AB ,AD 的中点,DE ,BF 相交于点G ,连接BD ,CG .有下列结论:①∠BGD =120°;②BG +DG =CG ;③△BDF ≌△CGB ;④S △ABD =34AB 2.其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个二、填空题(每小题4分,共20分)11.如图,菱形ABCD 的边长是2 cm ,E 是AB 的中点,且DE 丄AB ,则菱形ABCD 的面积为________cm 2.12.(赤峰中考)如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AEF,F 在矩形ABCD内部,延长AF交DC于G点,若∠AEB=55°,∠DAF=________.13.(宜宾中考)菱形的周长为20 cm,两个相邻的内角的度数之比为1∶2,则较长的对角线长度是______cm.14.(上海中考)已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.15.(攀枝花中考)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为________________________________.三、解答题(共50分)16.(8分)如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86 cm,对角线长是13 cm,那么矩形的周长是多少?17.(8分)如图,以正方形ABCD的对角线AC为一边,延长AB到E,使AE=AC,以AE 为一边作菱形AEFC,若菱形的面积为92,求正方形的边长.18.(8分)(荆州中考)如图1,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连接BE,DF.请在图2中用实线补全图形,这时DF=BE还成立吗?请说明理由.19.(12分)(黔南中考)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形AECF的面积是多少?20.(14分)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD∶AB=________时,四边形MENF是正方形.参考答案1.C2.B3.B4.B5.C6.B7.B8.B9.B 10.C 11.23 12.20° 13.53 14.22.5 15.(2.5,4)或(3,4)或(2,4)或(8,4)16.∵△AOB 、△BOC 、△COD 和△AOD 四个小三角形的周长和为86 cm ,且AC =BD =13 cm ,∴AB +BC +CD +DA =86-2(AC +BD)=86-4³13=34(cm).即矩形ABCD 的周长是34 cm.17.设正方形的边长为x ,∵AC 为正方形ABCD 的对角线,∴AC =2x.∴S 菱形AEFC =AE ²CB =2x ²x =2x 2=9 2.∴x 2=9.∴x =±3.舍去x =-3,即正方形边长为3. 18.还成立.理由:∵四边形ABCD 是正方形,△AEF 是等腰直角三角形,∴AD =AB ,AF =AE ,∠FAE =∠DAB =90°.∴∠FAE -∠DAE =∠DAB -∠DAE ,即∠FAD =∠EAB. 在△ADF 与△ABE 中,⎩⎪⎨⎪⎧AF =AE ,∠FAD =∠EAB ,AD =AB ,∴△ADF ≌△ABE(SAS). ∴DF =BE.19.(1)证明:∵PQ 为线段AC 的垂直平分线,∴AE =CE ,AD =CD. ∵CF ∥AB ,∴∠EAC =∠FCA ,∠CFD =∠AED.在△AED 与△CFD 中,⎩⎪⎨⎪⎧∠EAC =∠FCA ,AD =CD ,∠CFD =∠AED ,∴△AED ≌△CFD.(2)证明:∵△AED ≌△CFD ,∴AE =CF.∵EF 为线段AC 的垂直平分线,∴EC =EA ,FC =FA.∴EC =EA =FC =FA.∴四边形AECF 为菱形.(3)∵AD =3,AE =5,∴根据勾股定理得ED =4.∴EF =8,AC =6.∴S 菱形AECF =8³6÷2=24.∴菱形AECF 的面积是24.20.(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠A =∠D =90°. 又∵M 是AD 的中点,∴AM =DM. 在△ABM 和△DCM 中,⎩⎪⎨⎪⎧AB =CD ,∠A =∠D ,AM =DM ,∴△ABM ≌△DCM(SAS). (2)四边形MENF 是菱形.证明:∵E ,F ,N 分别是BM ,CM ,CB 的中点,∴NE ∥MF ,NE =MF.∴四边形MENF 是平行四边形.由(1),得BM =CM ,∴ME =MF.∴四边形MENF 是菱形. (3)当AD ∶AB =2∶1时,四边形MENF 是正方形.理由:∵M 为AD 中点,∴AD =2AM.∵AD ∶AB =2∶1,∴AM =AB. ∵∠A =90°,∴∠ABM =∠AMB =45°.同理:∠DMC =45°,∴∠EMF =180°-45°-45°=90°. ∵四边形MENF 是菱形, ∴菱形MENF 是正方形. 故答案为2∶1.。
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)一、选择题1.菱形的周长为20cm,一条对角线长为8cm,则菱形的面积为()2cm.A.48B.24C.12D.202.菱形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相垂直C.对角相等D.对边平行3.要检验一个四边形画框是否为矩形,可行的测量方法是()A.测量四边形画框的两个角是否为90︒B.测量四边形画框的对角线是否相等且互相平分C.测量四边形画框的一组对边是否平行且相等D.测量四边形画框的四边是否相等4.如图,在矩形ABCD中,已知AE BD⊥于E,∠BDC=60°,BE=1,则AB的长为()A.3B.2C.3D35.下列条件中,能判定四边形是正方形的是()A.对角线相等的平行四边形B.对角线互相平分且垂直的四边形C.对角线互相垂直且相等的四边形D.对角线相等且互相垂直的平行四边形6.如图,将图1的正方形剪成四块,恰能拼成图2的矩形,则ba=()A 51-B 53+C 51+D 217.如图,在菱形ABCD 中 50ABC ∠=︒ ,对角线AC ,BD 交于点O ,E 为CD 的中点,连接OE ,则 AOE ∠ 的度数是( )A .110°B .112°C .115°D .120°8.如图,在四边形ABCD 中,AB =1,BC =4,CD =6,∠A =90°,∠B =∠C =120°,则AD 的长度为( )A .3B .3C .3D .3+39.如图,点E 、F 在矩形ABCD 的对角线BD 所在的直线上,BE =DF ,则四边形AECF 是( )A .平行四边形B .矩形C .菱形D .正方形10.如图,在边长为2的正方形ABCD 中,点E ,F 分别是边BC ,CD 上的动点,且BE CF =,连接BF ,DE ,则BF DE +的最小值为( )A 3B 5C .3D .512.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,∠A =120°,则A .13.如图,在矩形ABCD 中,E 是BC 边上一点90AED ∠=︒,∠EAD=30°,F 是AD 边的中点2cm EF =则BE = cm .14.如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE=3,点Q 为对角线AC 上的动点,则∠BEQ 周长的最小值为 .三、解答题15.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE//BD ,BE//AC .(1)求证:四边形AEBO 是菱形;(2)若2AB =,OB=3,求AD 的长及四边形AEBO 的面积.16.如图,平行四边形ABCD 中,AC=6,BD=8,点P 从点A 出发以每秒1cm 的速度沿射线AC 移动,点Q 从点C 出发以每秒1cm 的速度沿射线CA 移动.(1)经过几秒,以P ,Q ,B ,D 为顶点的四边形为矩形?(2)若BC∠AC 垂足为C ,求(1)中矩形边BQ 的长.17. 如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且∠EAF =45°,分别连接EF 、BD ,BD 与AF 、AE 分别相交于点M 、N.(1)求证:EF =BE +DF .为了证明“EF =BE +DF ”,小明延长CB 至点G ,使BG =DF ,连接AG ,请画出辅助线并按小明的思路写出证明过程. (2)若正方形ABCD 的边长为6,BE =2,求DF 的长.18.已知:如图,在 Rt ABC 中 90ACB ∠=︒ , CD 是 ABC 的角平分线,DE ⊥BC ,DF ⊥AC ,垂足分別为E 、F.求证:四边形 CEDF 是正方形.四、综合题19.如图,在ABC 中,AB=AC=2,∠BAC=45°,AEF 是由ABC 绕点A 按逆时针方向旋转得到的,连接BE ,CF 相交于点D .(1)求证:BE CF =;(2)当四边形ABDF 为菱形时,求CD 的长.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE∠AC ,且12DE AC =,连接CE(1)求证:四边形OCED为矩形;(2)连接AE,若DB=6,AC=8,求AE的长.21.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图1,连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断∠“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.22.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿∠AFB和∠CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q 的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.答案解析部分1.【答案】B【解析】【解答】解:∵菱形周长为20cm∴一条边的边长a=5cm又∵一条对角线长为8cm根据勾股定理可得另一条对角线长的一半22543 b-=∴另一条对角线长为6cm∴2186242m=⨯⨯=菱形的面积故答案为:B.【分析】本题考查菱形的性质、菱形的面积公式以及勾股定理,首先根据菱形的四边相等可知边长为5,又因为菱形的对角线垂直,所以结合一条已知的对角线求出另一条对角线的长度为6,两条对角线长度已知即可求出菱形的面积.2.【答案】B【解析】【解答】矩形的对角线相等,菱形的对角线不一定相等,故A不符合题意;矩形的对角线互相不垂直,菱形的对角线互相垂直,故B符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对角都相等,故C不符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对边都平行,故D不符合题意;故答案为:B.【分析】菱形和矩形具有平行四边形的一切性质,菱形特有:四条边都相等,对角线互相垂直且平分一组对角,矩形特有:四个角都是直角,对角线相等,据此逐一判断即可.3.【答案】B【解析】【解答】解:A、测量四边形画框的两个角是否为90°,不能判定为矩形,故选项A不符合题意;B、测量四边形画框的对角线是否相等且互相平分,能判定为矩形,故选项B符合题意;C、测量四边形画框的一组对边是否平行且相等,能判定为平行四边形,不能判定是否为矩形,故选项C 不符合题意;D、测量四边形画框的四边是否相等,能判断四边形是菱形,故选项D不符合题意.【分析】一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形;四边相等的四边形是菱形,据此一 一判断得出答案.4.【答案】B【解析】【解答】解:四边形ABCD 为矩形60BDC ∠=︒=60ABD ∴∠︒AE BD ⊥30BAE ∴∠=︒AB 2∴=故答案为:B .【分析】由矩形的性质求出∠ABD=90°,利用三角形内角和求出∠BAE=30°,再根据含30°角的直角三角形的性质即可求解.5.【答案】D【解析】【解答】解:A 、对角线相等的平行四边形是矩形,故此选项不符合题意;B 、对角线互相平分且垂直的四边形是菱形,故此选项不符合题意;C 、对角线相等且互相垂直的平行四边形是正方形,故C 选项不符合题意,D 选项符合题意.故答案为:D.【分析】利用对角线互相平分,垂直且相等的四边形是正方形;对角线相等且互相垂直的平行四边形 是正方形,一一判断可得答案.6.【答案】C【解析】【解答】解:依题意得()2()a b b b a b +=++整理得:22222a b ab b ab ++=+则220a b ab -+= 方程两边同时除以2a 2()10b b a a --=152b a +∴=(负值已经舍去)【分析】根据左图可以知道图形是一个正方形,边长为(a+b),右图是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),解方程即可求出ba的值.7.【答案】C【解析】【解答】解:∵四边形ABCD是菱形∴AC∠BD,∠CDO= 12∠ADC=12∠ABC=25°∴∠DOC=90°∵点E是CD的中点∴OE=DE= 12CD∴∠DOE=∠CDO=25°∴∠AOE=∠AOD+∠DOE=90°+25°=115°故答案为:C.【分析】根据菱形的性质得出AC∠BD,∠CDO=25°,然后根据直角三角形斜边中线的性质求出OE=DE,则由等腰三角形的性质求出∠DOE=25°,最后根据角的和差关系求∠AOE的度数即可. 8.【答案】A【解析】【解答】解:延长DC、AB,DC、AB的延长线相交于点E∵∠ABC=∠BCD=120°∴∠EBC=∠ECB=60°∴∠BCE是等边三角形∵BC=4,∴EC=BE=BC=4∵AB=1,CD=6∴AE=1+4=5,DE=CD+CE=4+6=10∵∠A=90°∴22221057553DE AE-=-=故答案为:53.【分析】延长DC、AB,DC、AB的延长线相交于点E,结合已知易得∠BCE是等边三角形,由等边三角形的性质可得EC=BE=BC,由线段的构成可求出AE、DE的值,然后在直角三角形ADE中,用勾股定理可求得AD的值.9.【答案】A∴AO=CO BO=DO又BE=DF∴ BO+BE=DO+DF即EO=FO∴ 四边形AECF 是平行四边(对角线互相平分的四边形是平行四边形)故选:A【分析】根据矩形性质得到平行四边形的判定条件。
九年级上册数学单元测试卷-第六章 反比例函数-北师大版(含答案)
九年级上册数学单元测试卷-第六章反比例函数-北师大版(含答案)一、单选题(共15题,共计45分)1、若点A(﹣6,y1),B(﹣2,y2),C(3,y3)在反比例函数(a为常数)的图象上,则y1, y2, y3大小关系为()A.y1>y2>y3B.y2>y3>y1C.y3>y2>y1D.y3>y1>y22、如图,正方形ABCD的顶点B、C在x轴的正半轴上,反个比例函数y= (k≠0)在第一象限的图象经过点A(m,2)和CD边上的点E(n,),过点E作直线l∥BD交y轴于点F,则点F的坐标是( )A.(0,- )B.(0,- )C.(0,-3)D.(0,- )3、已知抛物线y=x2+2x+k+1与x轴有两个不同的交点,则一次函数y=kx﹣k与反比例函数y= 在同一坐标系内的大致图象是()A. B. C. D.4、如图,已知反比例函数y= 的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若△ABO的周长为4+2 ,AD=2,则△ACO的面积为()A. B. C.1 D.25、如图,在平面直角坐标中,菱形ABCO的顶点O在坐标原点,且与反比例函数y=的图象相交于A(m,3 ),C两点,已知点B(2 ,2 ),则k的值为()A.6B.﹣6C.6D.﹣66、给出下列命题及函数y=x,y=x2和y=的图象.(如图所示)①如果>a>a2,那么0<a<1;②如果a2>a>,那么a>1;③如果a2>>a,那么a<﹣1.则真命题的个数是()A.0B.1C.2D.37、若反比例函数的图像经过点,则它的解析式是()A. B. C. D.8、如图,已知A点是反比例函数的图像上一点,AB⊥y轴于点B,且△ABO的面积为3,则k的值为()A.-3B.3C.-6D.69、已知点A(-1,y1)、B(2,y2)都在双曲线y=上,且 y1>y2,则m的取值范围是()A.m<0B.m>0C.m>-D.m<-10、下列函数中,当时,随增大而增大的是()A. B. C. D.11、方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A.﹣1<x0<0 B.0<x<1 C.1<x<2 D.2<x<312、反比例函数的图象在()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限13、如图,某个反比例函数的图象经过点P,则它的解析式为()A.y= (x>0)B.y= (x>0)C.y= (x<0)D.y=(x<0)14、如图,矩形AOBC的面积为4,反比例函数的图象的一支经过矩形对角线的交点P,则该反比例函数的解析式是()A. B. C. D.15、若点A(x1, 1)、B(x2, 2)、C(x3,﹣3)在双曲线y=﹣上,则()A.x1>x2>x3B.x1>x3>x2C.x3>x2>x1D.x3>x1>x2二、填空题(共10题,共计30分)16、如图,点A、B分别在双曲线和上,四边形ABCO为平行四边形,则□ABCO的面积为________17、如图,点A是反比例函数y=(x>0)图象上一点,过点A作AB⊥x轴于点B,连接OA,OB,tan∠OAB=.点C是反比例函数y=(x>0)图象上一动点,连接AC,OC,若△AOC的面积为,则点C的坐标为________.18、如果函数y=x 2m -1 为反比例函数,则m的值是________.19、如图,经过原点O的直线与反比例函数(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则的值为________,的值为________.20、将x1= 代入反比例函数y=﹣中,所得的函数值记为y1,将x2=y1+1代入反比例函数y=﹣中,所得的函数值记为y2,再将x3=y2+1代入函数y=﹣中,所得的函数值记为y3…,将xn=y(n﹣1)+1 代入反比例函数y=﹣中,所得的函数值记为y n (其中n≥2,且n 是整数)如此继续下去,则在2006个函数值y1 . y2 ,…,y2006中,值为2的情况共出现了________次?21、如图,点A是反比例函数y= (k>0)图象第一象限上一点,过点A作AB⊥x轴于B点,以AB为直径的圆恰好与Y轴相切,交反比例函数图象于点C,在AB的左侧半圆上有一动点D,连接CD交AB于点E。
第2章《一元二次方程 》北师大版九年级数学上册单元测试卷(含答案)
第二章《一元二次方程》单元测试卷一、单选题(每题3分)1.下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x2++5=0;④x2+5x3﹣6=0;⑤3x2=3(x﹣2)2;⑥12x﹣10=0,是一元二次方程个数是()A.1B.2C.3D.42.已知一元二次方程,若方程有解,则必须()A.n=0B.n=0或mn同号C.n是m的整数倍D.mn异号3.方程的解是()A.B.C.D.4.一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定5.解方程:①;②;③;④.较简便的解法是()A.依次用直接开平方法、配方法、公式法和因式分解法B.①用直接开平方法,②用公式法,③④用因式分解法C.依次用因式分解法、公式法、配方法和因式分解法D.①用直接开平方法,②③用公式法,④用因式分解法6.秋冬季节为流感的高发期,有一人患了流感,经过两轮传染后共有人患了流感,每轮传染中平均一个人传染的人数为()A.人B.人C.人D.人7.现要在一个长为,宽为的矩形花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为,那么小道的宽度应是()A.1B.2C.2.5D.38.小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为( )A.x2﹣3x+6=0B.x2﹣3x﹣6=0C.x2+3x﹣6=0D.x2+3x+6=09.若关于x的一元二次方程的一个根大于1,另一个根小于1,则a的值可能为()A.B.C.2D.410.将关于x的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,则的值为()A.3B.4C.5D.6二、填空题(每题3分)11.方程(m﹣1)x|m|+1﹣4x+3=0是一元二次方程,则m满足的条件是:_____,此方程的二次项系数为:_____,一次项系数为:_____,常数项为:_____.12.若一元二次方程的一个根为0,则___________.13.关于x的一元二次方程有两个不相等的实数根,则a的取值范围是____________.14.劳动教育已纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为,则可列方程为________.15.已知方程的两个实数根分别为、,则__.16.已知实数,满足,则的值为________.17.已知关于x的方程a(x+m)2+b=0(a,b,m均为常数,且a≠0)的两个解是x1=3,x2=7,则方程的解是________.18.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为_____.三、解答题19.解方程(8分)(1);(2);(3)(配方法);(4).20.用适当的方法解一元二次方程(8分)(1);(2);(3);(4).21.已知关于的方程.(6分)(1)当为何值时,方程只有一个实数根?(2)当为何值时,方程有两个相等的实数根?(3)当为何值时,方程有两个不相等的实数根?22.已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(6分)(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.23.如图,在足够大的空地上有一段长为的旧墙,某人利用旧墙和木栏围成一个矩形菜园,其中.已知矩形菜园的一边靠墙,修筑另三边一共用了木栏.若所围成的矩形菜园的面积为,求的长.(6分)24.某企业设计了一款工艺品,每件成本50元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.销售单价为多少元时,每天的销售利润可达4000元?(6分)25.某商店代销一种智能学习机,促销广告显示“若购买不超过40台学习机,则每台售价800元,若超出40台,则每超过1台,每台售价将均减少5元”,该学习机的进价与进货数量关系如图所示:(6分)(1)当时,用含x的代数式表示每台学习机的售价;(2)当该商店一次性购进并销售学习机60台时,每台学习机可以获利多少元?(3)若该商店在一次销售中获利4800元,则该商店可能购进并销售学习机多少台?26.已知关于x的一元二次方程.(6分)(1)求证:这个方程的一根大于2,一根小于2;(2)若对于时,相应得到的一元二次方程的两根分别为和和和,…,和和,试求的值.27.阅读理解:(7分)材料1:对于一个关于x的二次三项式(),除了可以利用配方法求该多项式的取值范围外,还可以用其他的方法:比如先令(),然后移项可得:,再利用一元二次方程根的判别式来确定y的取值范围,请仔细阅读下面的例子:例:求的取值范围:解:令,,即;材料2:在学习完一元二次方程的解法后,爱思考的小明同学又想到类比一元二次方程的解法来解决一元二次不等式的解集问题,他的具体做法如下:若关于x的一元二次方程()有两个不相等的实数根、(),则关于x的一元二次不等式()的解集为:或,则关于x的一元二次不等式()的解集为:;请根据上述材料,解答下列问题:(1)若关于x的二次三项式(a为常数)的最小值为-6,则_____.(2)求出代数式的取值范围.类比应用:(3)猜想:若中,,斜边(a为常数,),则_____时,最大,请证明你的猜想.28.(7分)阅读下列材料:分解因式的常用方法有提取公因式法、公式法,但有部分项数多于3的多项式只单纯用上述方法就无法分解,如,我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解.过程如下:,这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:1.知识运用:试用“分组分解法”分解因式:;2.解决问题:(1)已知a,b,c为△ABC的三边,且,试判断△ABC的形状.(2)已知四个实数a,b,c,d,满足a≠b,c≠d,并且,同时成立.①当k=1时,求a+c的值②当k≠0时,用含有a的代数式分别表示b,c,d(直接写出答案即可)答案一、单选题A.B.B.C.D.B.B.B.B.D.二、填空题11.m=﹣1;﹣2,﹣4,3.12.113.且.14.300(1+x)2=363.15.-5.16.2.17.或.18.x=2或x=﹣1+或x=﹣1﹣.三、解答题19.(1)解:或,;(2)解:或,;(3)解:,;(4)解:①当时,,解得:;②当时,,若,即,;若,即,方程无解.20.(1)原方程可化为,∴,用直接开平方法,得方程的根为,.(2)原方程可化为x2+2ax+a2=4x2+2ax+,∴x2=.用直接开平方法,得原方程的根为,.(3)a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0,∴,.(4)将方程整理,得(1-)x2-(1+)x=0用因式分解法,得x[(1-)x-(1+)]=0,,.21.(1)∵方程只有一个实数根,,解得(2)∵方程有两个相等的实数根,,,解得(3)∵方程有两个不相等的实数根,且,且,解得且.22.(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴x12+x22=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=323.解:设的长为,则的长为.依题意,得,解得,.当时,(不符合题意,舍去).当时,.∴的长为.24.设销售单价降低x元,则销售单价为元,每天的销售量是件,由题意得:,整理得:,解得或,因为要求销售单价不得低于成本,所以,解得,因此和均符合题意,则或70,答:销售单价为90元或70元时,每天的销售利润可达4000元.25.(1)由题意可知当时,每台学习机的售价为.(2)设题图中直线的解析式为.把和代入得解得故直线解析式为.当时,进价为(元),售价为(元),则每台学习机可以获利(元).(3)当时,每台学习机的利润是,则.解得(舍去).当时,每台学习机的利润是,则,解得(舍去).答:该商店可能购进并销售学习机80台或30台.26.解:(1)证明:设方程的两根是,,则,,,,,即这个方程的一根大于2,一根小于2;(2),对于,2,3,,2019,2020时,相应得到的一元二次方程的两根分别为和,和,和,,和,和,.27.解:(1)设,∴,∴,即,根据题意可知,∴,解得:或;(2)设,可化为,即,∴,即,令,解得,,∴或;(3)猜想:当时,最大.理由:设,,则,在中,斜边(a为常数,),∴,∴,∴,即,∴,即,∵,,∴,当时,有,∴,即当时,最大.28.解:(1)将写成,等式左边因式分解,得,证明,是等腰三角形;(2)①由得到和,推出,就可以算出a和c的值,再算;②同①可得,根据,利用因式分解得到,同理由,得,从而可以用a表示出b、c、d.解:知识运用原式;解决问题(1),∵,∴,即,∴是等腰三角形;(2)①当时,,即,,即,若则,把它代入,得,解得,当时,,则,当时,,则,综上:的值为6或;②当,∵,∴,∵,∴,同理由,得,由,,若,则,,,则此时k就等于0了,矛盾,不合题意,若,则,,,综上:,,.。
最新北师大版九年级数学上册单元测试题全套及答案
最新北师大版九年级数学上册单元测试题全套及答案(最新北师大版配套试题)第一章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.菱形的对称轴的条数为( )A .1B .2C .3D .4 2.下列说法中,正确的是( )A .相等的角一定是对顶角B .四个角都相等的四边形一定是正方形C .平行四边形的对角线互相平分D .矩形的对角线一定垂直3.平面直角坐标系中,四边形ABCD 的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD 是( )A .矩形B .菱形C .正方形D .平行四边形 4.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线相等的平行四边形是矩形C .对角线垂直的四边形是菱形D .对角线垂直的平行四边形是菱形5.如图,矩形纸片ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿AE 对折,使得点B 落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CE 的长为( )A .6 cmB .4 cmC .2 cmD .1 cm6.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( A ) A.245 B.125C .5D .4 ,第6题图) ,第7题图)7.如图,每个小正方形的边长为1,A ,B ,C 是小正方形的顶点,则∠ABC 的度数为( ) A .90° B .60° C .45° D .30°8.已知四边形ABCD 的两条对角线AC 与BD 互相垂直,则下列结论正确的是( ) A .当AC =BD 时,四边形ABCD 是矩形B .当AB =AD ,CB =CD 时,四边形ABCD 是菱形C .当AB =AD =BC 时,四边形ABCD 是菱形 D .当AC =BD ,AD =AB 时,四边形ABCD 是正方形9.如图,矩形ABCD 中,AD =2,AB =3,过点A ,C 作相距为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是( )A. 5B.136 C .1 D.56,第9题图) ,第10题图)10.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE =13AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是( )A .①②B .②③C .①③D .①④ 二、填空题(每小题3分,共18分)11.已知菱形的两条对角线长分别为2 cm ,3 cm ,则它的面积是___cm 2.12.如图,已知点P 是正方形ABCD 对角线BD 上一点,且BP =BC ,则∠ACP 的度数是___度.13.如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件____,使四边形ABCD 为矩形.,第12题图) ,第13题图) ,第14题图),第15题图)14.已知矩形ABCD ,AB =3 cm ,AD =4 cm ,过对角线BD 的中点O 作BD 的垂直平分线EF ,分别交AD ,BC 于点E ,F ,则AE 的长为_ cm.15.如图,菱形ABCD 的边长为4,过点A ,C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点E ,F ,AE =3,则四边形AECF 的周长为____.16.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,则点E 的坐标为__(_)_.三、解答题(共72分)17.(10分)如图,矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86 cm ,对角线长是13 cm ,那么矩形的周长是多少?18.(10分)如图,在△ABC中,AB=AC,点D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.19.(10分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.20.(10分)如图,已知在▱ABCD中,点E,F分别是边AB,CD的中点,BD是对角线,AG∥BD 交CB的延长线于点G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?证明你的结论.21.(10分)如图,已知菱形ABCD,AB=AC,点E,F分别是BC,AD的中点,连接AE,CF.(1)求证:四边形AECF是矩形;(2)若AB=8,求菱形的面积.22.(10分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至G,使OG=OD,连接EG,FG,判断四边形DEGF是否是菱形,并说明理由.23.(12分)如图,在矩形ABCD 中,点M ,N 分别是AD ,BC 的中点,点P ,Q 分别是BM ,DN 的中点.(1)求证:△MBA ≌△NDC ;(2)四边形MPNQ 是什么特殊四边形?请说明理由.第二章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列方程中,关于x 的一元二次方程是( ) A .3(x +1)2=2(x +1) B.1x 2+1x-2=0C .ax 2+bx +c =0D .x 2+2x =x 2-1 2.方程(x -2)(x +3)=0的解是( )A .x =2B .x =-3C .x 1=-2,x 2=3D .x 1=2,x 2=-3 3.若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( )A .-1或4B .-1或-4C .1或-4D .1或44.用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是( ) A .(x -1)2=2 B .(x -1)2=4 C .(x -1)2=1 D .(x -1)2=7 5.下列一元二次方程中,没有实数根的是( )A .x 2+2x +1=0 B .x 2+x +2=0 C .x 2-1=0 D .x 2-2x -1=0 6.解方程(x +1)(x +3)=5较为合适的方法是( ) A .直接开平方法 B .配方法 C .公式法或配方法 D .分解因式法7.已知一元二次方程x 2-2x -1=0的两个根分别是x 1,x 2,则x 12-x 1+x 2的值为( ) A .-1 B .0 C .2 D .38.关于x 的方程x 2-ax +2a =0的两根的平方和是5,则a 的值是( )A .-1或5B .1C .5D .-19.某县政府2015年投资0.5亿元用于保障性住房建设,计划到2017年投资保障性住房建设的资金为0.98亿元,如果从2015年到2017年投资此项目资金的年增长率相同,那么年增长率是( )A .30%B .40%C .50%D .10%10.有一块长32 cm ,宽24 cm 的长方形纸片,在每个角上截去相同的正方形,再折起来做一个无盖的盒子,已知盒子的底面积是原纸片面积的一半,则盒子的高是( )A .2 cmB .3 cmC .4 cmD .5 cm 二、填空题(每小题3分,共18分)11.一元二次方程2x 2+6x =9的二次项系数、一次项系数、常数项和为___. 12.方程(x +2)2=x +2的解是____.13.若代数式4x 2-2x -5与2x 2+1的值互为相反数,则x 的值是__.14.写一个你喜欢的实数k 的值__ _,使关于x 的一元二次方程(k +1)x 2+2x -1=0有两个不相等的实数根.15.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元.则这种药品的成本的年平均下降率为___.16.设m ,n 分别为一元二次方程x 2+2x -2018=0的两个实数根,则m 2+3m +n =__. 三、解答题(共72分) 17.(12分)解方程:(1) x 2+4x -1=0; (2)x 2+3x +2=0;(3)3x 2-7x +4=0.18.(10分)如图,已知A ,B ,C 是数轴上异于原点O 的三个点,且点O 为AB 的中点,点B 为AC 的中点.若点B 对应的数是x ,点C 对应的数是x 2-3x ,求x 的值.19.(8分)一元二次方程x 2-2x -54=0的某个根,也是一元二次方程x 2-(k +2)x +94=0的根,求k的值.20.(10分)某种商品的标价为400元/件,经过两次降价后的要价为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3 210元.问第一次降价后至少要售出该种商品多少件?21.(10分)小林准备进行如下操作试验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2,”他的说法对吗?请说明理由.22.(10分)某市电解金属锰厂从今年元月起安装了回收净化设备(安装时间不计),这样既保护环境,又节省原料成本,据统计使用回收净化设备后1~x月的利润的月平均值W(万元)满足W=10 x+90.请问多少个月后的利润和为1620万元?23.(12分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了109a%,求a 的值.第三章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.事件A :打开电视,它正在播广告;事件B :抛掷一个均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P(A),P(B),P(C),则P(A),P(B),P(C)的大小关系正确的是( )A .P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B ) C .P (C )<P (B )<P (A )D .P (A )<P (B )<P (C )2.从-5,0,4,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是( ) A.15 B.25 C.35 D.453.如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )A.12B.25C.37D.474.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,问抽取的两个球数字之和大于6的概率是( )A.12B.712C.58D.345.掷两枚普通正六面体骰子,所得点数之和为11的概率为( ) A.118 B.136 C.112 D.1156.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A.14B.34C.13D.12,第6题图) ,第7题图)7.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A.1925B.1025C.625D.5258.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a 的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为b 的值,则点(a ,b)在第二象限的概率是( )A.16B.13C.12D.239.从长为10 cm ,7 cm ,5 cm ,3 cm 的四条线段中任选三条能够组成三角形的概率是( ) A.14 B.13 C.12 D.3410.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( )A.34B.13C.23D.12二、填空题(每小题3分,共18分)11.一个布袋中装有3个红球和4个白球,这些球除颜色外其他都相同.从袋子中随机摸出一个球,这个球是白球的概率为___.12.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为40%,估计袋中白球有____个.13.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁,一次能打开锁的概率是___.14.一个不透明的袋子中装有黑、白小球各两个,这些球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率是__.15.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__.16.已知一包糖果共有五种颜色(糖果仅有颜色差别),如图是这包糖果颜色分布百分比的统计图.在这包糖果中任取一粒糖果,则取出的糖果的颜色为绿色或棕色的概率是__.三、解答题(共72分)17.(10分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.18.(10分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取一张纸牌记下数字然后放回,再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两人进行游戏,如果两次摸取纸牌上数字之和为奇数,则甲胜;如果两次摸取纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.19.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3.乙袋中的三张卡片所标的数值为-2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x,y 分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况;(2)求点A落在第三象限的概率.(1)列表:20.(10分)分别把带有指针的圆形转盘A,B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.21.(10分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样).食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是________事件;(可能,必然,不可能)(2)请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.22.(10分)某景区7月1日~7月7日一周天气预报如图,小丽打算选择这期间一天或两天去该景区旅游.求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.23.(12分)有四张正面分别标有数字2,1,-3,-4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.(1)①画树状图得:第四章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A .对应边都成比例的多边形相似B .对应角都相等的多边形相似C .边数相同的正多边形相似D .矩形都相似2.已知△ABC ∽△DEF ,相似比为3∶1,且△ABC 的周长为18,则△DEF 的周长为( ) A .2 B .3 C .6 D .54 3.如图,已知BC ∥DE ,则下列说法不正确的是( C )A .两个三角形是位似图形B .点A 是两个三角形的位似中心C .AE ∶AD 是相似比 D .点B 与点E ,点C 与点D 是对应位似点4.如图,身高为1.6 m 的小红想测量学校旗杆的高度,当她站在C 处时,她头顶端的影子正好与旗杆顶端的影子重合,并测得AC =2.0 m ,BC =8.0 m ,则旗杆的高度是( C )A .6.4 mB .7.0 mC .8.0 mD .9.0 m,第3题图) ,第4题图) ,第5题图),第6题图)5.如图,为估算某河的宽度,在河对岸选定一个目标点,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得BE =20 m ,CE =10 m ,CD =20 m ,则河的宽度AB 等于( B )A .60 mB .40 mC .30 mD .20 m6.如图,矩形ABCD 的面积是72,AE =12DC ,BF =12AD ,那么矩形EBFG 的面积是( B )A .24B .18C .12D .97.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( B )A .(6,0)B .(6,3)C .(6,5)D .(4,2),第7题图) ,第8题图) ,第9题图),第10题图)8.如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △ODE S △ADC =13.其中正确的个数有( B ) A .1个 B .2个 C .3个 D .4个9.如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD.下列结论错误的是( C )A .∠C =2∠AB .BD 平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点10.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =8,AD =3,BC =4,点P 为AB 边上一动点,若△PAD 与△PBC 是相似三角形,则满足条件的点P 的个数是( C )A .1个B .2个C .3个D .4个 二、填空题(每小题3分,共18分) 11.若x y =m n =45(y ≠n),则x -m y -n =__45__.12.如图是两个形状相同的红绿灯图案,则根据图中给出的部分数值,得到x 的值是__16__. 13.如图,在△ABC 中,点P 是AC 上一点,连接BP.要使△ABP ∽△ACB ,则必须有∠ABP =__∠C __或∠APB =__∠ABC __或AB AP =__ACAB__. ,第12题图) ,第13题图) ,第14题图) ,第15题图)14.如图,在矩形ABCD 中,AB =2,BC =3,点E 是AD 的中点,CF ⊥BE 于点F ,则CF =__125__.15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为__22.5__米.16.如图,以点O 为位似中心,将△ABC 缩小后得△A ′B ′C ′,已知OB =3OB ′,则△A ′B ′C ′与△ABC 的面积之比为__1∶9__.三、解答题(共72分)17.(10分)如图,点D 是△ABC 的边AC 上的一点,连接BD ,已知∠ABD =∠C ,AB =6,AD =4,求线段CD 的长.在△ABD 和△ACB 中,∠ABD =∠C ,∠A =∠A ,∴△ABD ∽△ACB ,∴AB AC =ADAB ,∵AB =6,AD =4,∴AC =AB 2AD =364=9,则CD =AC -AD =9-4=518.(10分)一个钢筋三角架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似的钢筋三角架,而只有长为30厘米和50厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.两种截法:①30厘米与60厘米的两根钢筋为对应边,把50厘米的钢筋按10厘米与25厘米两部分截,则有1020=2550=3060=12,从而两个三角形相似;②30厘米与50厘米的两根钢筋为对应边,把50厘米的钢筋截出12厘米和36厘米两部分,则有2012=5030=6036=53,从而两个三角形相似19.(10分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A(-1,2),B(-3,4),C(-2,6).(1)画出△ABC 绕点A 顺时针旋转90°后得到的△A 1B 1C 1;(2)在网格内以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2.20.(10分)如图,矩形ABCD 为台球桌面.AD =260 cm ,AB =130 cm .球目前在E 点位置,AE =60 cm .如果小丁瞄准了BC 边上的点F 将球打进去,经过反弹后,球刚好弹到D 点位置.(1)求证:△BEF ∽△CDF ; (2)求CF 的长.(1)∵FG ⊥BC ,∠EFG =∠DFG ,∴∠BFE =∠CFD ,又∵∠B =∠C =90°,∴△BEF ∽△CDF (2)设CF =x ,则BF =260-x ,∵AB =130,AE =60,BE =70,由(1)得,△BEF ∽△CDF ,∴BECD =BF CF ,即70130=260-x x,∴x =169,即CF =169 cm21.(10分)如图,在△ABC 中,AD 是中线,且CD 2=BE ·BA.求证:ED ·AB =AD ·BD.∵AD 是中线,∴BD =CD ,又CD 2=BE ·BA ,∴BD 2=BE ·BA ,即BE BD =BD AB ,又∠B =∠B ,∴△BED∽△BDA ,∴ED AD =BDAB,∴ED ·AB =AD ·BD22.(10分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为点E ,连接DE ,点F 为线段DE 上一点,且∠AFE =∠B.(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求AE 的长.(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠C +∠B =180°,∠ADF =∠DEC.∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C ,∴△ADF ∽△DEC (2)∵四边形ABCD 是平行四边形,∴CD =AB =8.由(1)知△ADF ∽△DEC ,∴AD DE =AF CD ,∴DE =AD ·CD AF =63×843=12.在Rt △ADE 中,由勾股定理得AE =DE 2-AD 2=122-(63)2=623.(12分)将一副三角尺如图①摆放(在Rt △ABC 中,∠ACB =90°,∠B =60°;在Rt △DEF 中,∠EDF =90°,∠E =45°),点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C.(1)求∠ADE 的度数;(2)如图②,将△DEF 绕点D 顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE ′F ′,DE ′交AC 于点M ,DF ′交BC 于点N ,试判断PM CN 的值是否随着α的变化而变化?如果不变,请求出PMCN 的值;反之,请说明理由.(1)由题意知,CD 是Rt △ABC 斜边AB 上的中线,∴AD =BD =CD ,∵在△BCD 中,BD =CD 且∠B =60°,∴△BCD 是等边三角形,∴∠BCD =∠BDC =60°,∴∠ADE =180°-∠BDC -∠EDF =180°-60°-90°=30° (2)PMCN 的值不会随着α的变化而变化,理由如下:∵△APD 的外角∠MPD =∠A +∠ADE =30°+30°=60°,∴∠MPD =∠BCD =60°,∵在△MPD 和△NCD 中,∠MPD =∠NCD =60°,∠PDM =∠CDN =α,∴△MPD ∽△NCD ,PM CN =PDCD ,∵∠ACB =90°,∠BCD =60°,∴∠PCD =30°.在Rt △PCD 中,∠PCD =30°,∴PD CD =13=33,∴PM CN =PD CD =33第五章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.将一包卷筒卫生纸按如图所示的方式摆放在桌面上,它的俯视图是( D )2.如图是由4个相同的正方体组成的几何体,则这个几何体的俯视图是( A )3.如图是一个几何体的实物图,则其主视图是( C )4.如图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度,则它的三视图是( A )5.木棒的长为1.2 m,则它的正投影的长一定( D )A.大于1.2 m B.小于1.2 m C.等于1.2 m D.小于或等于1.2 m 6.下列四个几何体中,俯视图为四边形的是( D )7.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( A )8.小琳过14周岁生日,父母为她预定的生日蛋糕如图所示,当投影线由生日蛋糕的前方射到后方时,它的正投影应该是( B )9.有两个完全相同的长方体,按如图所示方式摆放,其主视图是( C )10.如图,小轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现他身后影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达Q点时,发现他身前影子的顶部刚好接触到路灯BD的底部,已知小轩同学的身高是1.5 m,两个路灯的高度都是9 m,则两路灯这间的距离是( D ) A.24 m B.25 m C.28 m D.30 m二、填空题(每小题3分,共18分)11.太阳光形成的投影是__平行投影__,电动车灯所发出的光线形成的投影是__中心投影__.12.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有__①②③__.(填编号)13.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体可能是由__6或7或8__个小正方体搭成的.,第13题图) ,第15题图) ,第16题图)14.小刚和小明在太阳光下行走,小刚身高1.5 m,他的影长为2.0 m,小刚比小明矮9 cm,此刻小明的影长是__2.12_m__.15.一个长方体的主视图和左视图如图(单位:cm),则其俯视图的面积是__6_cm2__.16.如图是一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角∠AMC =30°,窗户的高在教室地面上的影长MN=23米,窗户的下沿到教室地面的距离BC=1米(点M,N,C在同一直线上),则窗户的高AB为__2米__.三、解答题(共72分)17.(10分)根据下列主视图和俯视图,指出其对应的物体.a—D,b—A,c—B,d—C18.(10分)如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数.请你画出它从正面和从左面看得到的平面图形.19.(10分)小亮在某一时刻测得小树高为1.5 m ,其影长为1.2 m ,当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,它的一部分影子便落在了教学楼的墙上,经测量,地面部分影长为6.4 m ,墙上影长为2 m ,那么这棵大树高为多少米?设大树影长为x 米,大树高为y 米,则x -6.42=1.21.5,解得x =8.∵y 8=1.51.2∴y =10,答:这棵大树高为10米20.(10分)在长、宽都为4 m ,高为3 m 的房间的正中央的天花板上悬挂一只白炽灯泡,为了集中光线,加上了灯罩,如图所示,已知灯罩深8 cm ,灯泡离地面2 m ,为了使光线恰好照在墙脚,问灯罩的直径应为多少?(结果精确到0.01米)如图,由题意知,DE 为地面上墙脚的对角线连线.过点A 作AM ⊥DE 交DE 于点M ,交BC 于点N.∵DE ∥BC ,∴△ABC ∽△ADE ,∴AN AM =BC DE .∵AN =0.08,AM =2,DE =42,∴BC =42×0.082≈0.23 m21.(10分)如图,某居民小区内A ,B 两楼之间的距离MN =30 m ,两楼的高度都是20 m ,A 楼在B 楼正南,B 楼窗户朝南.B 楼内一楼住户的窗台离小区地面的距离DN =2 m ,窗户高CD =1.8 m .当正午时刻太阳光线与地面成30°角时,A 楼的影子是否影响B 楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由.(参考数据:2=1.414,3=1.732,5=2.236)如图,设光线FE 影响到B 楼的E 处,作GE⊥FM于点G,EG=MN=30,∠FEG=30°,FG=103,MG=FM-GF=20-103≈2.68.又DN=2,CD=1.8,∴DE=2.68-2=0.68<1.8.∴A楼的影子影响到B楼一楼采光,挡住该住户窗户0.68 m22.(10分)如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积.(结果保留根号)根据该密封纸盒的三视图知道它是一个六棱柱.∵其高为12 cm,底面边长为5 cm,∴其侧面积为6×5×12=360(cm2),密封纸盒的上、下底面的面积和为:12×5×32×5×12=753(cm2),∴其表面积为(753+360)cm223.(12分)如图,王乐同学在晚上由路灯A走向路灯B,当他行到P处时发现,他在路灯B下的影长为2 m,且恰好位于路灯A的正下方,接着他又走了6.5 m到Q处,此时他在路灯A下的影子恰好位于路灯B的正下方(已知王乐身高1.8 m,路灯B高9 m).(1)标出王乐站在P处时,在路灯B下的影子;(2)计算王乐站在Q处时,在路灯A下的影长;(3)计算路灯A的高度.(1)线段CP为王乐在路灯B下的影子.(2)由题意得Rt△CEP∽Rt△CBD.∴EPBD =CPCD,∴1.89=22+6.5+QD ,解得QD =1.5 m .所以王乐站在Q 处时,在路灯A 下的影长为1.5 m (3)路灯A 的高度为12 m第六章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.反比例函数的图象经过点(-2,3),则此函数的图象也经过点( A )A .(2,-3)B .(-3,-3)C .(2,3)D .(-4,6) 2.如图,是我们学过的反比例函数的图象,它的函数表达式可能是( B )A .y =x 2B .y =4xC .y =-3xD .y =12x3.为了更好的保护水资源,造福人类,某工厂计划建一个容积V(m 3)一定的污水处理池,池的底面积S(m 2)与其深度h(m )满足关系式:V =Sh(V ≠0),则S 关于h 的函数图象大致是( C )4.反比例函数y =k x 的图象经过点(-2,32),则它的图象位于( B )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限5.若在同一直角坐标系中,直线y =k 1x 与双曲线y =k 2x 有两个交点,则有( C )A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<06.反比例函数y =2x的图象上有两个点为(x 1,y 1),(x 2,y 2),且x 1<x 2,则下列关系成立的是( D )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定 7.在反比例函数y =4x的图象上,阴影部分的面积不等于4的是( B )8.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y =kx (x>0)的图象经过顶点B ,则k 的值为( D )A .12B .20C .24D .32,第8题图),第9题图) ,第10题图)9.如图,函数y =-x 与函数y =-4x 的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D ,则四边形ACBD 的面积为( D )A .2B .4C .6D .810.反比例函数y =mx 的图象如图所示,以下结论:①常数m<-1;②在每个象限内,y 随x 的增大而增大;③若A(-1,h),B(2,k)在图象上,则h<k ;④若P(x ,y)在图象上,则P ′(-x ,-y)也在图象上.其中正确的是( C )A .①②B .②③C .③④D .①④ 二、填空题(每小题3分,共18分)11.反比例函数y =kx的图象经过点(1,-2),则k 的值为__-2__.12.已知正比例函数y =-2x 与反比例函数y =kx 的图象的一个交点坐标为(-1,2),则另一个交点的坐标为__(1,-2)__.13.已知反比例函数y =kx (k ≠0)的图象经过点(3,-1),则当1<y <3时,自变量x 的取值范围是__-3<x <-1__.14.在某一电路中,保持电压不变,电流I(安)与电阻R(欧)成反比例,其图象如图所示,则这一电路的电压为__12__伏.。
北师大版初中数学九年级上册第一章综合测试试卷-含答案01
第一章单元综合测试一、单选题1.已知四边形ABCD 是平行四边形,AC ,BD 相交于点O ,下列结论错误的是( ) A .OA OC =,OB OD =B .当AB CD =时,四边形ABCD 是菱形C .当90ABC ∠=︒时,四边形ABCD 是矩形D .当AC BD =且AC BD ⊥时,四边形ABCD 是正方形2.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,8AC =,6BD =,点E 是CD 上一点,连接OE ,若OE CE =,则OE 的长是( )A .2B .52C .3D .4 3.如图,面积为S 的菱形ABCD 中,点O 为对角线的交点,点E 是线段BC 单位中点,过点E 作EF BD ⊥于F ,EG AC ⊥与G ,则四边形EFOG 的面积为( )A .14SB .18SC .112S D .116S 4.如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 的中点.若菱形ABCD 的周长为32,则OE 的长为( )A .3B .4C .5D .65.如图,正方形ABCD 的面积为1,M 是AB 的中点,则图中阴影部分的面积是( )A .310B .13C .25D .496.如图,正方形ABCD 的边长8AB =,E 为平面内一动点,且4AE =,F 为CD 上一点,2CF =,连接EF ,ED ,则2EF ED +的最小值为( )A .B .C .12D .10二、填空题7.如图,在菱形ABCD 中,50B ∠=︒,点E 在CD 上,若AE AC =,则BAE ∠=________.8.如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC ,ED 分别交于点M ,N .已知4AB =,6BC =,则MN 的长为________.9.如图,在矩形ABCD 中,9AB =,AD =,点P 是边BC 上的动点(点P 不与点B ,点C 重合),过点P 作直线PQ BD ∥,交CD 边于Q 点,再把PQC △沿着动直线PQ 对折,点C 的对应点是R 点,则CQP ∠=________.10.如图,正方形ABCD 中,点E 为对角线AC 上一点,且AE AB =,则BEA ∠的度数是________度.三、作图题11.在正方形ABCD 中,E 是CD 边上的点,过点E 作EF BD ⊥于F .(1)尺规作图:在图中求作点E ,使得EF EC =;(保留作图痕迹,不写作法) (2)在(1)的条件下,连接FC ,求BCF ∠的度数.四、综合题12.如图,ABCD 的对角线AC ,BD 相交于点O ,过点O 作EF AC ⊥,分别交AB ,DC 于点E 、F ,连接AF 、CE .(1)若32OE =,求EF 的长;(2)判断四边形AECF 的形状,并说明理由.13.如图,在ABC △中,AB AC =,点D 、E 分别是线段BC 、AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:A BDE F E △≌△;(2)求证:四边形ADCF 为矩形.14.如图,四边形ABCD 的对角线AC ,BD 交于点O ,过点D 作DE BC ⊥于E ,延长CB 到点F ,使BF CE =,连接AF ,OF .(1)求证:四边形AFED 是矩形;(2)若7AD =,2BE =,45ABF ∠=︒,试求OF 的长.15.如图,点E 是正方形ABCD 外一点,点F 是线段AE 上一点,且EBF △是等腰直角三角形,其中90EBF ∠=︒,连接CE 、CF(1)求证:ABF CBE △≌△;(2)判断CE 与EF 的位置关系,并说明理由.16.如图,菱形EFGH 的三个顶点E 、G 、H 分别在正方形ABCD 的边AB 、CD 、DA 上,连接CF .(1)求证:HEA CGF ∠∠=;(2)当AH DG =时,求证:菱形EFGH 为正方形.第一章单元综合测试答案解析一、 1.【答案】B【解析】∵四边形ABCD 是平行四边形,OA OC =∴,OB OD =,故A 正确,∵四边形ABCD 是平行四边形,AB CD =,不能推出四边形ABCD 是菱形,故B 错误,∵四边形ABCD 是平行四边形,90ABC ∠=︒, ∴四边形ABCD 是矩形,故C 正确,∵四边形ABCD 是平行四边形,AC BD =,AC BD ⊥, ∵四边形ABCD 是正方形.故D 正确.故答案为:B . 2.【答案】B【解析】∵四边形ABCD 是菱形,8AC =,6BD =,142CO AC ==∴,132OD BD ==,AC BD ⊥,5DC =∴,90EOC DOE ∠+∠=︒,90DCO ODC ∠+∠=︒,OE CE =∵,EOC ECO ∠=∠∴,DOE ODC ∠=∠∴,DE OE =∴,1522OE CD ==∴故答案为:B . 3.【答案】B【解析】∵四边形ABCD 是菱形,OA OC =∴,OB OD =,AC BD ⊥,12S AC BD =⨯, EF BD ⊥∵于F ,EG AC ⊥于G ,∴四边形EFOG 是矩形,EF OC ∥,EG OB ∥,∵点E 是线段BC 的中点,EF ∴、EG 都是OBC △的中位线,1124EF OC AC ==∴,1124EG OB BD ==,∴矩形EFOG 的面积11111=44828EF EG AC BD AC BD S ⎛⎫=⨯=⨯=⨯⨯ ⎪⎝⎭;答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
九年级上册数学北师大版单元测试卷(1-6章)
九年级上册数学北师大版单元测试卷(1-6章)第一章综合能力检测卷时间:90分钟满分:120分一、选择题(本大题共10小题,每题3分,共30分)1.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形2.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF 的面积为25,DE=2,则AE的长为() A.5 B.√23 C.7 D.√29第2题图第3题图第4题图3.矩形ABCD在平面直角坐标系中的位置如图所示,其各顶点的坐标分别为A(0,0),B(2,0),C(2,1),D(0,1),固定点B 并将此矩形按顺时针方向旋转,若旋转后点C的对应点的坐标为(3,0),则旋转后点D的对应点的坐标为()A.(3,2)B.(2,3)C.(3,3)D.(2,2)4.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,BD=6,则AB的长是()A.2B.3C.4D.65.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.平行四边形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于点E,F,连接PB,PD.若AE=2,PF=8,则图中阴影部分的面积为() A.10 B.12 C.16 D.18第6题图第7题图7.如图,在给定的一张平行四边形ABCD纸片上作一个菱形,甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN,分别交AD,AC,BC于点M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠BAD,∠ABC的平分线AE,BF,分别交BC,AD于点E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误B.甲、乙均正确C.乙正确,甲错误D.甲、乙均错误8.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM=CN ,MN 与AC 交于点O ,连接BO ,若∠DAC=28°,则∠OBC 的度数为( )A.28°B.52°C.62°D.72°第8题图 第9题图 第10题图 9.如图,点E 在正方形ABCD 的对角线AC 上,且EC=2AE ,Rt △FEG 的两直角边EF ,EG 分别交BC ,DC 于点M ,N.若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( ) A.23a2B.14a2C.59a 2D.49a 210.如图,在正方形ABCD 中,点P 是AB 上一动点(点P 不与A ,B 重合),对角线AC ,BD 相交于点O ,过点P 分别作AC ,BD 的垂线,分别交AC ,BD 于点E ,F ,交AD ,BC 于点M ,N.给出下列结论:①△APE ≌△AME ;②PM+PN=BD ;③PE 2+PF 2=PO 2.其中正确的有( )A.0个B.1个C.2个D.3个二、填空题(本大题共6小题,每题3分,共18分)11.已知菱形的周长为20 cm ,两邻角的比为2∶1,则较短的对角线长为 cm .12.如图,在正方形ABCD 中,AC 为对角线,点E 在AB 边上,EF ⊥AC 于点F ,连接EC ,若AF=3,△EFC 的周长为12,则EC 的长为 .第12题图 第13题图 第14题图13.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角的度数为 .14.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,CE=5,F 为DE 的中点.若△CEF 的周长为18,则OF 的长为 .15.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE=13AB.将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q.对于下列结论:①EF=2BE ;②PF=2PE ;③FQ=4EQ ;④△PBF 是等边三角形.其中正确结论的序号是 .第15题图第16题图16.如图,菱形ABCD的面积为120 cm2,正方形AECF的面积为50 cm2,则菱形的边长为cm.三、解答题(本大题共6小题,共72分)17.(10分)如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形的边长为4,AE=√2,求菱形BEDF的面积.18.(10分)如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论.19.(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE∶∠BCE=2∶3.求证:四边形ABCD是正方形.20.(12分)如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A'处.然后将矩形展平,沿EF折叠,使顶点A落在DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2所示.(1)求证:EG=CH;(2)已知AF=√2,求AD和AB的长.21.(14分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D为AB的中点时,四边形BECD是什么特殊四边形?请说明你的理由;(3)若D为AB的中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.22.(14分)某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为;②BC,CD,CF之间的数量关系为.(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2√2,CD=1BC,请求出GE的长.4图1 图2 图3数学·九年级上册·BS第二章综合能力检测卷时间:90分钟满分:120分一、选择题(本大题共10小题,每题3分,共30分)1.下列方程一定是关于x的一元二次方程的是()=0 B.ax2+bx+c=0A.x2+1x2C.(x-1)(x+2)=1D.3x2-2xy-5y2=02.把一元二次方程2x=x2-3化为一般形式,若二次项系数为1,则一次项系数及常数项分别为()A.2,3B.-2,3C.2,-3D.-2,-33.根据关于x的一元二次方程x2+px+q=0,可列表如下:x0 0.5 1 1.1 1.2 1.3x2+px+q-15 -8.75 -2 -0.59 0.84 2.29则方程x2+px+q=0的一个根的范围是() A.1.2<x<1.3 B.1.1<x<1.2C.0.5<x<1D.0<x<0.54.若2x+1与2x-1互为倒数,则实数x为()A.±12B.±1 C.±√22D.±√25.下列方程中,没有实数根的是()A.x2-2x-5=0B.x2-2x=-5C.x2-2x=0D.x2-2x-3=06.下面是某同学在一次试验中解答的填空题,其中答对的是()A.若x2=4,则x=2B.方程x(2x-1)=2x-1的解为x=1C.若关于x的方程x2+2x+k=0有一根为2,则k=8D.若分式x 2-3x+2x-1的值为0,则x=27.某市某楼盘准备以每平方米12 000元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格进行连续两次下调后,决定以每平方米9 720元的均价开盘销售,则平均每次下调的百分率是()A.8%B.9%C.10%D.11%8.某三角形的两边的长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长为()A.9B.11C.13D.11或139.有两个一元二次方程,M:ax2+bx+c=0;N:cx2+bx+a=0,其中a+c≠0.下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么15是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=110.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a-b+c=0,那么我们称这个方程为“美好”方程.若一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是() A.方程有两个相等的实数根 B.方程有一根等于0C.方程两根之和等于0D.方程两根之积等于0二、填空题(本大题共6小题,每题3分,共18分)11.已知x=a 是方程x 2-3x-5=0的根,则代数式4-2a 2+6a 的值为 . 12.已知实数m ,n 满足m-n 2=1,则代数式2m 2-2n 2+4m-1的最小值是 .13.如果关于x 的一元二次方程(k-2)x 2+2kx+k+3=0有两个不相等的实数根,那么k 的取值范围是 . 14.准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,如图所示,四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为 米.15.将4个数a ,b ,c ,d 排成2行2列,两边各加一条竖直线记成|a c b d |,定义|a c b d |=ad-bc.若|x +11−x x -1x +1|=6,则x= .16.对于实数p ,q ,我们用符号min {p ,q }表示p ,q 两数中较小的数,如min {1,2}=1,min {-√2,-√3}=-√3.若min {(x-1)2,x 2}=1,则x= .三、解答题(本大题共6小题,共72分)17.(10分)解下列方程: (1)2x 2+3x-4=0;(2)(x+1)(x-1)+2(x+3)=20.18.(11分)已知关于x 的一元二次方程x 2-2x-k-2=0有两个不相等的实数根. (1)求k 的取值范围;(2)给k 取一个负整数值,解这个方程.19.(11分)水果店张阿姨以每千克4元的价格购进某种水果若干千克,然后以每千克6元的价格出售,每天可售出150千克,通过调查发现,这种水果每千克的售价每降低0.1元,每天可多售出30千克,为保证每天至少售出360千克,张阿姨决定降价销售.(1)若将这种水果每千克的售价降低x元,则每天的销售量是千克(用含x的代数式表示);(2)销售这种水果要想每天盈利450元,张阿姨需将每千克的售价降低多少元?)=0的20.(12分)在等腰三角形ABC中,三边长分别为a,b,c,其中ɑ=4,若b,c是关于x的方程x2-(2k+1)x+4(k-12两个实数根,求△ABC的周长.21.(14分)某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元,也不得低于7元,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)之间的函数关系式;(2)若该经营部希望日均获利1 350元,请你根据以上信息,就该桶装水的销售单价或销售量提出一个用一元二次方程解决的问题,并写出解答过程.22.(14分)如图,在△ABC 中,∠B=90°,AB=5 cm ,BC=7 cm ,点P 从点A 开始沿AB 边向点B 以1 cm/s 的速度匀速移动,点Q 从点B 开始沿BC 边向点C 以2 cm/s 的速度匀速移动. (1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,△PBQ 的面积等于4 cm 2?(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于2√10 cm ? (3)在(1)中,△PBQ 的面积能否等于7 cm 2?说明理由.数学·九年级上册·BS第三章 综合能力检测卷时间:60分钟满分:100分一、选择题(本大题共8小题,每题3分,共24分)1.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A.16B.13C.12D.232.小红、小明在玩“剪刀、石头、布”游戏,小红给自己一个规定:一直不出“石头”.小红、小明获胜的概率分别是P 1,P 2,则下列结论正确的是 ( )A.P 1=P 2B.P 1>P 2C.P 1<P 2D.P 1≤P 23.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一个球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1 000次,其中有200次摸到白球,因此小亮估计口袋中的红球有( )A.60个B.50个C.40个 D .30个4.掷一枚质地均匀的正方体骰子,向上一面的点数大于2且小于5的概率为P1,抛两枚质地均匀的硬币,正面均朝上的概率为P2,则下列正确的是()A.P1 <P2B.P1 >P2C.P1 =P2D.不能确定5.如图,用①,②,③表示三张背面完全相同的纸牌,正面分别写有3个不同的条件,小明将这三张纸片背面朝上洗匀后,先随机抽出一张(不放回),再随机抽出一张.抽得的条件能判断四边形ABCD为平行四边形的概率是()A.12 B.13C.23D.346.由两个可以自由转动的转盘,每个转盘被等分成如图所示的几个扇形.游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,那么下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为167.甲、乙两人玩猜数字游戏,游戏规则:有四个数字0,1,2,3,先由甲任意选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n.若m,n满足|m-n|≤1,则称甲、乙两人“心有灵犀”.则甲、乙两人“心有灵犀”的概率为()A.14 B.38C.12D.588.我们把十位上的数字比个位、百位上的数字都要小的三位数定义为“凹数”.如“859”就是一个“凹数”.如果十位上的数字为2,那么从1,3,4,5中任选两个数字,能与2组成“凹数”的概率是()A.14B.310C.12D.34二、填空题(本大题共6小题,每题3分,共18分)9.一次测验中有2道题是选择题,每题均有4个选项且只有1个选项是正确的,若从这2道题中每题都随机选择其中一个选项作为答案,则这2道选择题答案全对的概率为.10.某班学生分组做抛掷同一型号的一枚图钉的试验,大量重复试验的结果统计如下表:(钉尖朝上频率精确到0.001)累计试验次数100 200 300 400 500钉尖朝上的次数55 109 161 211 265钉尖朝上的频率0.550 0.545 0.537 0.528 0.530根据表格中的信息,估计掷一枚这样的图钉落地后钉尖朝上的概率为.(结果精确到0.01)11.某鱼塘里养了200条鲤鱼、若干条草鱼和150条罗非鱼,该鱼塘主人通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5附近.若该鱼塘主人随机在鱼塘捕捞一条鱼,则估计捞到鲤鱼的概率为.12.在如图所示的电路中,随机闭合开关S1,S2,S3中的两个,能让灯泡L1发光的概率是.13.从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数y=kx+b的系数k,b,则一次函数y=kx+b的图象不经过第四象限的概率是.14.如图,创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影部分铺黑色石子,其余部分铺白色石子.小鹏在规定地点随机向图案内投掷小球,每个小球都能落在图案内,经过多次试验,发现落在一、三、五环(阴影)内的概率分别是0.04,0.2,0.36.如果最大圆的半径是1 m,那么铺黑色石子区域的总面积为m2.(π≈3.14,结果精确到0.01)三、解答题(本大题共6小题,共58分)15.(8分)某购物广场设计了一种促销活动:在一个不透明的盒子里放有4个相同的小球,球上分别标有“0元” “10元” “20元”和“30元”.顾客每消费满200元,就可以在盒子里摸出两个球,可根据两个球所标金额的和返还同样金额的购物券.某顾客恰好消费了200元,请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.16.(9分)如图1是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图2是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,游戏规则:将这枚骰子掷出后,看骰子底面上的数字是几,图2中点A处的一枚棋子开始沿着顺时针方向连续跳动几个顶点,第二次跳动从第一次跳动的终点处开始,按第一次的方法跳动.图1图2(1)随机掷一次骰子,则棋子跳动到点C处的概率是;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.17.(9分)从一副52张(没有大小王)的扑克牌中,每次抽出1张,然后放回洗匀再抽,在试验中得到下列表中部分数据:试验次数4080120160200240280320360400出现方块的次数1118404963688091100出现方块的频率0.2750.2250.2500.2500.2450.2630.2430.2530.250(1)将数据表补充完整;(2)从表中可以估计出现方块的概率是.(3)从这副扑克牌中取出两组牌,分别是方块1,2,3和红桃1,2,3,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,若摸出的两张牌的牌面数字之和等于3,则甲方赢;若摸出的两张牌的牌面数字之和等于4,则乙方赢.你认为这个游戏对双方是公平的吗?若不是,有利于谁?请你用概率知识(列表或画树状图)分析说明.18.(10分)2017年9月,我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A《三国演义》、B《红楼梦》、C《西游记》、D《水浒传》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了如图所示的两幅不完整的统计图:(1)本次一共调查了名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用画树状图或列表的方法求恰好选中A《三国演义》和B《红楼梦》的概率.19.(10分)在不透明的袋子中有四张标着数字1,2,3,4的卡片(除数字外,其他均相同),小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:第一次1234第二次1(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)①(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)回答下列问题:(1)根据小明画出的树状图分析,他的游戏规则是随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为小明和小华谁获胜的可能性大?为什么?20.(12分)某校九年级共有6个班,需从中选出两个班参加一项重大活动,九(1)班是先进班集体必须参加,再从另外5个班中选出一个班.九(4)班同学建议用如下方法选班:从装有编号为1,2,3的三个白球的A袋中摸出一个球,再从装有编号也为1,2,3的三个红球的B袋中摸出一个球(两袋中球的大小、形状与质地完全一样),摸出的两个球编号之和是几就由几班参加.(1)请用列表或画树状图的方法,求选到九(4)班的概率;(2)这一建议公平吗?请说明理由.数学·九年级上册·BS第四章综合能力检测卷时间:90分钟满分:120分一、选择题(本大题共10小题,每题3分,共30分)1.已知x y =52,则x -yy的值为 ( )A.32B.2C.-32D.-22.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ,直线DF 分别交l 1,l 2,l 3于点D ,E ,F ,AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DEEF 的值为( )A.12B.2C.25D .35第2题图 第3题图 第4题图3.如图,为估算某河的宽度(河两岸平行),在河对岸选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上,若测得BE=20 m ,CE=10 m ,CD=20 m ,则河的宽度AB 等于 ( ) A.60 m B.40 m C.30 m D.20 m4.如图,以点O 为位似中心,将△ABC 放大得到△DEF.若AD=OA ,则△ABC 与△DEF 的面积之比为 ( ) A.1∶2 B.1∶4 C.1∶5 D .1∶65.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,连接AC ,则下列结论错误的是 ( )A .EA BE =EG EF B .EG GH =AG GD C .AB AE =BCCFD .FH EH =CFAD6.△ABC 如图所示,则下列四个选项中的三角形与△ABC 相似的是(网格均由边长为1的小正方形组成)( )A B C D7.如图,在△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是 ( )A B C D8.如果五边形ABCDE∽五边形PQGMN,且周长之比为3∶2,那么五边形ABCDE和五边形PQGMN的面积之比是() A.2∶3 B.3∶2 C.6∶4 D.9∶4第8题图第9题图第10题图CD,连接AE,AF,EF.给出下列结9.如图所示,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14论:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正确的个数为()A.1B.2C.3D.410.如图所示,在△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1B.2C.12√2-6D.6√2-6二、填空题(本大题共8小题,每题4分,共32分)11.若一个三角形的三边之比为3∶5∶7,与它相似的三角形的最长边的长为21,则最短边的长为.12.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心,若AB=2,则DE=.第12题图第13题图第14题图13.如图,已知有两堵墙AB,CD,AB墙高2米,两墙之间的距离BC为 8米,小明将一架木梯放在距B点3米的E 处靠向墙AB时,木梯有很多露出墙外.将木梯绕点E旋转90°靠向墙CD时,木梯刚好达到墙的顶端,则墙CD 的高为米.14.如图,已知点C是线段AB的黄金分割点,且BC>AC.若S1表示以BC为边的正方形BCED的面积,S2表示长为AG、宽为AC的矩形ACFG的面积,其中AG=AB.则S1与S2的大小关系为.15.在△ABC中,∠B=25°,AD是BC边上的高,且AD2=BD·DC,则∠BCA的度数为.16.如图,已知AB∥EF∥CD,若AB=6 cm,CD=9 cm,则EF=.第16题图第17题图第18题图17.如图,在矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=.18.如图,正三角形ABC的边长为2,以BC边上的高AB1为边作正三角形AB1C1,△ABC与△AB1C1公共部分的面积记为S1,再以正三角形AB1C1边B1C1上的高AB2为边作正三角形AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2……以此类推,则S n=.(用含n的式子表示,n为正整数)三、解答题(本大题共5小题,共58分)19.(10分)如图,在四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,连接CE,DE,AC与DE相交于点F.(1)求证:△ADF∽△CEF;的值.(2)若AD=4,AB=6,求ACAF20.(10分)如图,在6×6的正方形网格中,每个小正方形的边长都为1.(顶点都在网格线交点处的三角形叫做格点三角形)(1)在图1中,请判断△ABC与△DEF是否相似,并说明理由;(2)在图2中,以O为位似中心,再画一个格点三角形,使它与△ABC的相似比为2∶1;(3)在图3中,请画出所有与△ABC相似,且有一条公共边和一个公共角的格点三角形.图1图2图321.(12分)如图,在△ABC中,BA=BC=20 cm,AC=30 cm,点P从点A出发,沿着AB边以4 cm/s的速度向点B运动;同时点Q从点C出发,沿CA边以3 cm/s的速度向点A运动,当点P到达点B时停止运动,Q点随之停止运动.设运动的时间为x s.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,请说明理由.22.(12分)雯雯和笑笑想利用皮尺和所学的几何知识测量学校操场上旗杆的高度,他们的测量方案如下:当雯雯站在旗杆正前方地面上的点D处时,笑笑在地面上找到一点G,使得点G、雯雯的头顶C及旗杆的顶部A三点在同一直线上,并测得DG=2.8 m;然后雯雯向前移动1.5 m到达点F处,笑笑同样在地面上找到一点H,使得点H、雯雯的头顶E及旗杆的顶部A三点在同一直线上,并测得GH=1.7 m.已知图中的所有点均在同一平面内,且点B,D,F,G,H均在同一直线上,AB⊥BH,CD⊥BH,EF⊥BH,雯雯的身高CD=EF=1.6 m.请你根据以上测量数据,求该校旗杆的高度AB.23.(14分)如图1所示,在等边三角形ABC中,线段AD为其内角平分线,过点D的直线B1C1⊥AC于点C1,交AB的延长线于点B1.(1)请你探究:ACAB =CDDB,AC1AB1=DC1DB1是否都成立?(2)请你继续探究:若△ABC为任意三角形,线段AD为其内角平分线,ACAB =CDDB一定成立吗?并证明你的判断.(3)如图2所示,在Rt△ABC中,∠ACB=90°,AC=8,AB=403,E为AB上一点且AE=5,CE交内角平分线AD于点F.试求DFFA的值.图1图2数学·九年级上册·BS第五章综合能力检测卷时间:60分钟满分:100分一、选择题(本大题共10小题,每题3分,共30分)1.下列几何体中,主视图是矩形的是()2.一个立体图形的三视图如图所示,则该立体图形是()A.圆锥B.圆柱C.长方体D.球3.下列图中是太阳光下形成的影子的是()4.如图,位似图形由三角板与其在灯光照射下的中心投影组成,已知灯到三角板的距离与灯到墙的距离的比为2∶5,且三角板的一边长为8 cm,则投影三角形的对应边长为()A.20 cmB.10 cmC.8 cmD.3.2cm5.如图是一根空心方管,在研究物体的三种视图时,小明画出的该空心方管的主视图与俯视图分别是()A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)第5题图第6题图6.如图1为五角大楼的示意图,图2是它的俯视图,小红站在地面上观察这个大楼,若想看到大楼的两个侧面,则小红应站的区域是()A.A区域B.B区域C.C区域D.三区域都可以7.如图是某几何体的三种视图,则该几何体可以是()8.如图是由6个大小相同的小立方块组成的几何体,将小立方块①移走以后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图改变C.俯视图改变,左视图改变D.主视图改变,左视图不变第8题图第9题图第10题图9.如图,该直三棱柱的底面是一个直角三角形,且AD=2 cm,DE=4 cm,EF=3 cm,则下列说法正确的是()A.直三棱柱的体积为12 cm3B.直三棱柱的表面积为24 cm2C.直三棱柱的主视图的面积为11 cm2D.直三棱柱的左视图的面积为8 cm210.已知某几何体的三种视图如图所示,其中左视图是一个等边三角形,则该几何体的体积等于() (参考公式:棱锥的体积V=1Sh,其中S为棱锥的底面积,h为底面对应的高)3A.12√3B.16√3C.20√3D.32√3二、填空题(本大题共6小题,每题3分,共18分)11.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会.(填“逐渐变大”“逐渐变小”)第11题图第12题图第13题图12.一张桌子上摆放了若干个碟子,从三个方向看,三种视图如图所示,则这张桌子上共有碟子个.13.如图,在A时测得某树的影长为4米,在B时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为米.14.如图是一个由若干个相同的小立方块搭成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是.15.如图是一个正六棱柱的主视图和左视图,则图中的a的值为.16.圆桌面(桌面中间有一个直径为0.4 m的圆洞)正上方的灯泡(看作一个点)发出的光线照射到平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2 m,桌面离地面1 m,若灯泡离地面3 m,则地面圆环形阴影的面积是m2.三、解答题(本大题共 5小题,共52分)17.(8分)如图所示为一直三棱柱的主视图和左视图.。
最新北师大版九年级数学上册单元测试题及答案全册
最新北师大版九年级数学上册单元测试题及答案全册含期末试题时间:60分钟分值:100分一、选择题(每小题4分,共32分)1.(2016·益阳)下列判断错误的是(D)A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形解析:两条对角线垂直且平分的四边形是菱形,故D错.2.如图,在菱形ABCD中,对角线AC=4,∠BAD=120°,则菱形ABCD的周长为(C) A.20B.18C.16D.15解析:在菱形ABCD中,∵∠BAD=120°,∴∠B=60°,∴AB=AC=4,∴菱形ABCD 的周长=4AB=4×4=16.故选C.第2题图第3题图3.如图,在Rt△ABC中,∠C=90°,AB=5 cm,D为AB的中点,则CD等于(B) A.2 cm B.2.5 cmC.3 cm D.4 cm解析:∵直角三角形斜边上的中线等于斜边的一半,∴CD=12AB=2.5 cm.故选B.4.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为(C)A.1 B.2C.4-2 2 D.32-4解析:由∠BAE=22.5°,∠ADB=45°,易知△ADE是等腰三角形,△BEF是等腰直角三角形,所以DE=AD=4,BE=42-4,设EF=x,则2x2=(42-4)2,解得x=4-22,故选C.5.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2等于(B) A.90°B.100°C.130°D.180°6.(2016·无锡模拟)正方形具有而菱形不一定具有的性质是(B)A.对角线互相垂直B.对角线相等C.对角线相互平分D.对角相等解析:菱形和正方形的对角线都互相垂直,A错误;菱形的对角线不一定相等,正方形的对角线一定相等,B正确;菱形和正方形的对线都互相平分,对角都相等,C、D错误,故选B.7.如图所示,把一长方形纸片沿MN折叠后,点D,C分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′等于(B)A.144°B.126°C.108°D.72°解析:由题意知∠D′=∠D=90°,因为矩形的对边平行,所以AD∥BC,所以∠DMN =∠MNF,又因为∠DMN+∠NMD′=180°-∠AMD′=144°,所以∠MNF+∠NMD′=144°,根据四边形的内角和等于360°,所以∠NFD′=360°-144°-90°=126°.8.如图所示,菱形ABCD的周长为20 cm,DE⊥AB,垂足为E,DE∶AD=3∶5,则下列结论①DE=3 cm;②BE=1 cm;③菱形的面积为15 cm2;④BD=210 cm.正确的有(C)A.1个B.2个C.3个D.4个解析:因为菱形的周长为20 cm,所以边长是5 cm,由DE∶AD=3∶5,得DE=3 cm,利用勾股定理可求AE=4 cm,所以BE=1 cm,易求菱形的面积为15 cm2.在Rt△DBE中,利用勾股定理可得BD=10 cm,所以①②③正确.二、填空题(每小题4分,共24分)9.如图,矩形ABCD的周长为20 cm,两条对角线相交于O点,过点O作AC的垂线EF,分别交AD,BC于点E,F,连接CE,则△CDE的周长为10 cm.解析:∵EF⊥AC,在矩形ABCD中,AO=OC,∴AE=EC.∴C△CDE=CD+ED+EC=CD+ED+AE=CD+AD=12×20=10(cm).第9题图第10题图10.如图,矩形ABCD的两条对角线AC,BD相交于点O,已知∠AOB=60°,AC+AB =15,则对角线AC=__10__.解析:在矩形ABCD中,OB=OC,所以,∠OBC=∠OCB,∵∠AOB=60°,∴在△OBC中,∠OCB=12×∠AOB=12×60°=30°,∴AB=12AC,∵AC+AB=15,∴AC+12AC=15,解得AC=10.11.如图,在四边形ABCD中,∠A=∠B,AB∥DC,AD=BC=CD,点E为AB上一点,连接CE.请添加一个你认为合适的条件:∠CEB=∠B(或AE=AD等,答案不唯一),使四边形AECD 为菱形.解析:以∠CEB =∠B 为例进行说明:∵∠CEB =∠B ,∴BC =CE =AD ;∵∠A =∠B ,∴∠A =∠CEB =∠B ;∴CE 平行且等于AD ,即四边形AECD 是平行四边形;又∵AD =DC ,∴平行四边形AECD 是菱形.12.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点D ,B 作DE ⊥a 于点E ,BF ⊥a 于点F ,若DE =4,BF =3,则EF 的长为7.解析:∵四边形ABCD 是正方形,∴AB =AD ,∠ABC =∠BAD =90°,∵∠BAF +∠ABF =∠BAF +∠DAE ,∴∠ABF =∠DAE ,在△AFB 和△DEA 中,∠ABF =∠DAE ,∠AFB =∠AED ,AB =AD ,∴△AFB ≌△DEA ,∴AF =DE =4,BF =AE =3,∴EF =AF +AE =4+3=7.13.已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是15°或75°. 解析:如图1,当点E 在正方形ABCD 外时,在△ADE 中,AD =DE ,∠ADE =90°+60°=150°,所以∠AED =12(180°-150°)=15°;如图2,当点E 在正方形ABCD 内时,在△ADE 中,AD =DE ,∠ADE =90°-60°=30°,所以∠AED =12(180°-30°)=75°.图1图214.如图,E ,F 分别是正方形ABCD 的边CD ,AD 上的点,且CE =DF ,AE ,BF 相交于点O ,下列结论:①AE =BF ;②AE ⊥BF ;③AO =OE ; ④S △AOB =S 四边形DEOF .其中正确结论的序号是①②④.解析:∵四边形ABCD为正方形,∴AD=DC. 又∵CE=DF,∴AF=DE.又∵AB=AD,∠BAF=∠ADE=90°,∴△ABF≌△DAE.∴AE=BF,即①正确.∵△ABF≌△DAE,∴∠ABF=∠DAE.又∵∠ABF+∠AFB=90°,∴∠DAE+∠AFB=90°,∴∠AOF=90°.∴AE⊥BF,即②正确.∵△ABF≌△DAE,∴S△ABF =S△DAE.∴S△ABF -S△AOF=S△DAE-S△AOF,即S△AOB =S四边形DEOF,即④正确.三、解答题(共44分)15.(10分) 如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O 点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.解:(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形,∴∠ABD=60°;(2)由(1)可知BD=AB=4,∵O为BD的中点,∴OB=2,又∵OE⊥AB,∠ABD=60°,∴∠BOE=30°,∴BE=1.16.(10分)如图,点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE⊥AC于点E,DF⊥BC于点F.(1)求证:CE=CF;(2)当点C运动到什么位置时,四边形CEDF是正方形?并给出证明.解:(1)∵CD⊥AB,AD=BD,∴AC=BC.∴CD平分∠ACB.∵DE⊥AC,DF⊥BC,∴DE=DF.又∵CD=CD,∴Rt△ECD≌Rt△FCD,∴CE=CF;(2)当CD=12AB时,四边形CEDF为正方形.理由:∵CD=12AB,AD=BD,∴∠ACB=90°.又∵DE⊥AC,DF⊥BC,∴四边形CEDF为矩形.又∵由(1)得DE=DF,∴四边形CEDF为正方形.17.(12分)(2015·巴中)如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD,BC分别交于点M和点N.(1)请你判断OM与ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.解:(1)OM =ON .理由如下: ∵四边形ABCD 是菱形, ∴OA =OC ,AD ∥BC . ∴∠MAO =∠NCO . 在△AOM 和△CON 中,⎩⎨⎧∠MOA =∠NOC ,AO =CO ,∠MAO =∠NCO ,∴△AOM ≌△CON (ASA).∴OM =ON ;(2)∵四边形ABCD 是菱形, ∴AC ⊥BD , ∵DE ∥AC .∴DE ⊥BD , ∴∠BDE =90°.在菱形ABCD 中,BC =CD =AB =AD =6. ∵AC ∥DE ,AD ∥CE , ∴四边形ACED 是平行四边形, ∴CE =AD =6,DE =AC =8, ∴BE =6+6=12.在Rt △BDE 中,BD =BE 2-DE 2=122-82=45, ∴△BDE 的周长为8+12+45=20+4 5.18.(12分) 如图所示,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,AN 是△ABC 外角∠CAM 的平分线, CE ⊥AN 于点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?给出证明.证明:(1)在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC.∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE.∴∠DAE=∠DAC+∠CAE=12×180°=90°.又AD⊥BC,CE⊥AN,∴四边形ADCE为矩形;(2)当△ABC为直角三角形时,四边形ADCE是正方形.理由:∵△ABC为直角三角形,且AB=AC,∴△ABC为等腰直角三角形.又∵AD⊥BC,∠B=∠BCA=45°,∴AD为BC边上的中线,∴AD=BD=DC,即AD=DC,∴矩形ADCE是正方形.时间:60分钟分值:100分一、选择题(每小题4分,共32分)1.已知一元二次方程x2-6x+c=0有一个根为2,则另一根为(C)A.2B.3C.4 D.8解析:由题意,把2代入原方程得:22-6×2+c=0,解得c=8,把c=8代入方程得x2-6x+8=0,解得x1=2,x2=4.2.方程(x-2)2=9的解是(A)A.x1=5,x2=-1 B.x1=-5,x2=1C.x1=11,x2=-7 D.x1=-11,x2=7解析:开方,得x-2=±3,解得x1=5,x2=-1.故选A.3.关于x的一元二次方程(m+1)xm2+1+4x+2=0的解为(C)A.x1=1,x2=-1 B.x1=x2=1C.x1=x2=-1 D.无解解析:根据题意得m2+1=2,∴m=±1,又m=-1不符合题意,∴m=1,把m=1代入原方程得2x2+4x+2=0,解得x1=x2=-1.故选C.4.若关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=-2,x2=4,则b+c的值是(A)A.-10B.10C.-6D.-1解析:∵关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=-2,x2=4,∴根据根与系数的关系,可得-2+4=-b,-2×4=c,解得b=-2,c=-8,∴b+c=-10.故选A.5.用配方法解方程x2-2x-5=0时,原方程应变形为(B)A.(x+1)2=6 B.(x-1)2=6C.(x+2)2=9 D.(x-2)2=9解析:∵x2-2x-5=0,∴x2-2x=5,则x2-2x+1=5+1,∴(x-1)2=6.故选B.6.如图,在长70 m,宽40 m的长方形花园中,欲修宽度相等的观赏路(如阴影部分所示),要使观赏路面积占总面积的18,则路宽x应满足的方程是(B)A.(40-x)(70-x)=350 B.(40-2x)(70-3x)=2 450 C.(40-2x)(70-3x)=350 D.(40-x)(70-x)=2 450 解析:设路宽为x,则(40-2x)(70-3x)=(1-18)×70×40,即(40-2x )(70-3x )=2 450.7.(2015·成都)关于x 的一元二次方程kx 2+2x +1=0有两个不相等的实数根,则k 的取值范围是(D)A .k >-1B .k ≥-1C .k ≠0D .k <1且k ≠08.目前我国已建立了比较完善的经济困难学生资助体系.某校去年上半年发给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是(B)A .438(1+x )2=389B .389(1+x )2=438C .389(1+2x )=438D .438(1+2x )=389解析:由于每半年发放的资助金额的平均增长率为x ,则去年下半年发放的资助金额为389(1+x )元,今年上半年发放的资助金额为389(1+x )2元,根据相等关系“今年上半年发放了438元”,可建立一元二次方程389(1+x )2=438,故选B.二、填空题(每小题4分,共24分) 9.方程x 2-3x +1=0的解是x =3±52.解析:这里a =1,b =-3,c =1,∵b 2-4ac =5>0, ∴x =3±52.10.(2016·遵义)已知方程x 2-2x -1=0的两根分别是x 1,x 2 ,则1x 1+1x 2=-2.解析:∵x 1,x 2是x 2-2x -1=0的两根,∴x 1+x 2=2,x 1x 2=-1, ∴1x 1+1x 2=x 1+x 2x 1x 2=2-1=-2.11.关于x 的方程mx 2+mx +1=0有两个相等的实数根,那么m =__4__.解析:∵关于x 的方程mx 2+mx +1=0有两个相等的实数根,∴Δ=b 2-4ac =0,即m 2-4×m ×1=0,解这个方程得m =0或m =4, 又∵二次项的系数不能为0,∴m =4.12.在实数范围内定义运算“☆”,其规则为:a ☆b =a 2-b 2,则方程(4☆3)☆x =13的解为x =±6.解析:其规则为:a ☆b =a 2-b 2,所以方程(4☆3)☆x =13整理可得:(42-32)☆x =13,7☆x =13,49-x 2=13,x 2=36,∴x =±6.13.方程x 2-9x +18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为__15__.解析:解方程x 2-9x +18=0得x 1=3,x 2=6,当等腰三角形的三边是3,3,6时,因为3+3=6,不符合三角形的三边关系定理,所以此时不能组成三角形;当等腰三角形的三边是3,6,6时,此时符合三角形的三边关系定理,所以周长是3+6+6=15.14.若两个不等实数m ,n 满足条件:m 2-2m -1=0,n 2-2n -1=0,则m 2+n 2的值是__6__.解析:∵m 2-2m -1=0,n 2-2n -1=0,m ≠n ,∴m ,n 是x 2-2x -1=0的两根,由根与系数关系得⎩⎨⎧m +n =2,mn =-1,m 2+n 2=(m +n )2-2mn =22-2×(-1)=6. 三、解答题(共44分)15.(10分) 解方程:(1)x 2+3=3(x +1); (2)x 2-6x +3=0.解:(1)∵x 2+3=3(x +1),∴x 2+3=3x +3, ∴x 2-3x =0,∴x (x -3)=0,∴x 1=0,x 2=3; (2)解法一:(公式法)这里a =1,b =-6, c =3,∵b 2-4ac =(-6)2-4×1×3=24>0, ∴x =-b ±b 2-4ac 2a =6±262=3±6, ∴x 1=3-6,x 2=3+ 6.解法二:(配方法)原方程化为x 2-6x =-3 两边都加上(-3)2,得x 2-6x +(-3)2=-3-(-3)2, 即(x -3)2=6, 开平方得x -3=±6, 即x -3=-6或x -3=6, 所以x 1=3-6,x 2=3+ 6.16.(10分)已知关于x 的一元二次方程(a +c )x 2+2bx +(a -c )=0,其中a ,b ,c 分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.解:(1)△ABC是等腰三角形.理由:∵x=-1是方程的根,∴(a+c)×(-1)2-2b+(a-c)=0,∴a+c-2b+a-c=0,∴a-b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2-4(a+c)(a-c)=0,∴4b2-4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形时,(a+c)x2+2bx+(a-c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=-1.17.(12分)(2015·长沙)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=-2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6(万件)<13.31(万件),∴该公司现有的21名快递投递业务员不能完成6月份的快递投递任务.∴需要增加业务员(13.31-12.6)÷0.6=11160≈2(人).答:该公司现有的21名快递投递业务员不能完成6月份的快递投递任务,至少需要增加2名业务员.18.(12分) 学校为了美化校园环境,在一块长40 m,宽20 m的长方形空地上计划新建一块长9 m,宽7 m的长方形花圃.(1)请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建长方形花圃的面积多1 m2,给出你认为合适的三种不同的方案;(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃面积能否增加2 m2?如果能,请求出长方形花圃的长和宽,如果不能,请说明理由.解:(1)学校计划新建成的花圃的面积是7×9=63(m2),比它多1 m2的长方形花圃的面积是64 m2,因此可设计以下方案:方案一:长和宽都是8 m;方案二:长为10 m,宽是6.4 m;方案三:长为20 m,宽为3.2 m.(此题方案很多,但要注意空地的大小实际)(2)假设在计划新建的长方形花圃周长不变的情况下长方形花圃的面积能增加2 m2,计划新建的长方形花圃的周长为2×(9+7)=32(m),设面积增加后的长方形花圃的长为x m,则宽是(32-2x)÷2=(16-x) m,依题意得x(16-x)=65.整理得x2-16x+65=0.∵Δ=(-16)2-4×65=-4<0.∴方程没有实数根.即在计划新建的长方形花圃周长不变的情况下长方形花圃的面积不能增加2 m2.时间:60分钟分值:100分一、选择题(每小题5分,共40分)1.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是(C)A.12B.14C.16D.112解析:画树状图:∵共有12种等可能的结果,两次都摸到白球的情况有2种,∴两次都摸到白球的概率是2 12=16.故选C.2.浩南从m个苹果和6个雪梨中任选1个,若选中雪梨的概率是12,则m的值是(C) A.18B.12C.6D.3解析:由题意得6m+6=12,解得m=6.3.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或是3的倍数的概率等于(C)A.316B.38C.58D.1316解析:列表如下:10种,则P=1016=58.故选C.4.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是(B)A.13B.23C.14D.15解析:列表得:所有等可能的情况有12种,其中和为奇数的情况有8种,故所求概率为812=23,故选B.5.甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么四名运动员在比赛过程中的接棒顺序有(D)A.3种B.4种C.6种D.12种解析:画树状图得:故接棒顺序有12种.6.(2015·荆门)在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记为第一次传球),则经过三次传球后,球仍回到甲手中的概率是(B)A.12B.14C.38D.58解析:根据下面的树状图可得:三次传球后共有8种等可能的结果,回到甲手中的结果有2种,所以球仍回到甲手中的概率为28,即14.7.学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”“2”“3”“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是(C)A.14B.12C.34D.56解析:列表表示所有可能的结果如下,可知共有16种等可能的结果,其中12种结果为偶数,所以P(积为偶数)=1216=34,即乙获胜的概率为3 4.8.如图,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1,A2,B1,B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是(D)A.34B.13C.23D.12解析:分别以A1,A2,B1,B2其中的任意两点与点O为顶点作三角形的所有情况有:△A1OB2,△A1OB1,△A2OB1,△A2OB2共4种情况,其中是等腰三角形的是△A1OB1和△A2OB2两种情况,∴所作三角形是等腰三角形的概率=24=12.二、填空题(每小题5分,共30分)9. (2016·台州)不透明袋子中有1个红球,2个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率是4 9.解析:画树状图如下:由树状图得共有9种可能结果,其中两次摸出的球都是黄球的结果数为4,所以两次摸出的球都是黄球的概率为4 9.10.某电视台举办的青年街舞大赛中,得奖选手由观众发短信投票产生,并对发短信者进行抽奖活动.一万条短信为一个开奖组,设一等奖1名,二等奖3名,三等奖6名.李晓宇同学发了一条短信,那么他获奖的概率是11 000.解析:李晓宇同学获奖的概率是1+3+610 000=11 000.11.“校园手机”现象受到社会普遍关注.某校针对“学生是否可带手机”的问题进行了问卷调查,并绘制了如图扇形统计图.从调查的学生中随机抽取一名,恰好是持“无所谓”态度的学生的概率是0.09.解析:持“无所谓”态度的学生在总体所占的百分比为1-56%-35%=9%.故随机抽取一名,恰好是持“无所谓”态度的学生的概率是9%=0.09.12.某市举办“体彩杯”中学生篮球赛,初中男子组有市直学校的A,B,C三个队和县区学校的D,E,F,G,H五个队.如果从A,B,D,E四个队与C,F,G,H四个队中各抽取一个队进行首场比赛,那么参加首场比赛的两个队都是县区学校队的概率是3 8.解析:画树状图得:∵共有16种等可能的结果,首场比赛出场的两个队都是县区学校队的有6种情况,∴首场比赛出场的两个队都是县区学校队的概率是616=38.13.六一期间,小洁的妈妈经营的玩具店购进了一箱除颜色外都相同的散装塑料球共1 000个,小洁将纸箱里的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是200个.解析:设红球的个数为x,∵红球的频率在0.2附近波动,∴摸出红球的概率为0.2,即x1 000=0.2,解得x=200.所以可以估计红球的个数为200个.14.对于四边形ABCD,现从以下四个关系式①AB=CD,②AD=BC,③AB∥CD,④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是1 3.解析:列表:共有12种情况,4种情况,所以能够得出这个四边形ABCD是平行四边形的概率是1 3.三、解答题(共30分)15.(14分)有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3 cm,7 cm,9 cm;乙盒子中装有4张卡片,卡片上分别写着2 cm,4 cm,6 cm,8 cm;盒子外有一张写着5 cm的卡片,所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.解:(1)画树状图如下图:三条线段所有的情况共有12种.其中有4,3,5;4,7,5;6,3,5;6,7,5;6,9,5;8,7,5;8,9,5共7种情况能组成三角形,其概率为712.(2)因为只有3,4,5能组成直角三角形,所以能组成直角三角形的概率为112.16.(16分)(2015·陕西)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛,九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)解:(1)所求概率P=36=12.(2)游戏公平.理由如下:∴P (小亮胜)=936=14,P (小丽胜)=936=14. ∴该游戏是公平的.时间:60分钟 分值:100分一、选择题(每小题4分,共32分) 1.已知a 2=b 3=c4≠0,则a +b c 的值为(B) A.45 B .54 C .2D .12解析:设a 2=b 3=c 4=k ,则a =2k ,b =3k ,c =4k ,代入可得值为54.2.线段AB =10,点C 是AB 上靠近点B 的黄金分割点,则AC 的值为(B) A .0.618 B .6.18 C .3.82D .6.18或3.82解析:因为点C 是AB 上靠近点B 的黄金分割点,所以AC =10×5-12=55-5≈6.18.故选 B.3.(2016·武威)如果两个相似三角形的面积比是1∶4,那么它们的周长比是(D) A .1∶16 B .1∶4 C .1∶6D .1∶24.如图,AB 是斜靠在墙上的长梯,梯脚B 距墙脚1.4 m ,梯上点D 距墙1.2 m ,BD 长0.5 m ,且△ADE ∽△ABC .则梯子的长为(A)A.3.5 m B.3 mC.4 m D.4.2 m解析:∵△ADE∽△ABC,∴AD∶AB=DE∶BC,即(AB-0.5)∶AB=1.2∶1.4,所以AB=3.5(m).故梯子AB的长为3.5 m.故选A.5.在△ABC与△A′B′C′中,有下列条件:①ABA′B′=BCB′C′;②BCB′C′=ACA′C′;③∠A=∠A′;④∠C=∠C′.如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有(C)A.1组B.2组C.3组D.4组解析:共有3组,其组合分别是①和②:三边成比例的两个三角形相似;②和④:两边成比例且夹角相等的两个三角形相似;③和④:两角分别相等的两个三角形相似.故选C.6.如图,AB∥CD,AE∥FD,AE,FD分别交BC于点G,H,则图中共有相似三角形(C)A.4对B.5对C.6对D.7对解析:题图中具备“有两角分别相等的三角形”条件的共有4个,它们两两相似,共有6对.第6题图第7题图7.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD,AC于点E,F,则BFEF的值是(C)A.2-1 B.2+2 C.2+1 D. 2解析:如图,作FG ⊥AB 于点G ,∵∠DAB =90°,∴AE ∥FG , ∴BF EF =BG GA ,∵AC ⊥BC ,∴∠ACB =90°, 又∵BE 是∠ABC 的平分线, ∴FG =FC ,在Rt △BGF 和Rt △BCF 中, ⎩⎨⎧BF =BF ,CF =GF ,∴Rt △BGF ≌Rt △BCF (HL), ∴CB =GB ,∵AC =BC , ∴∠CBA =45°,∴AB =2BC , ∴BF EF =BG GA =BC 2BC -BC =12-1=2+1.故选C. 8. (2015·武汉)如图,在直角坐标系中,有两点A (6,3),B (6,0).以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到线段CD .则点C 的坐标为(A)A .(2,1)B .(2,0)C .(3,3)D .(3,1)解析:∵A (6,3),B (6,0), ∴AB ⊥x 轴,OB =6,AB =3. ∵△OCD ∽△OAB ,且相似比为13,∴CD ⊥x 轴,CD AB =OD OB =13,即CD 3=OD 6=13,解得CD =1,OD =2, ∴点C 的坐标为(2,1).二、填空题(每小题4分,共24分)9.若线段a ,b ,c ,d 成比例,其中a =3 cm ,b =6 cm ,c =2 cm ,则d =__4__ cm. 解析:根据比例线段的定义可知:3∶6=2∶d ,即d =4(cm).10.如图,锐角三角形ABC 的边AB ,AC 上的高线EC ,BF 相交于点D ,请写出图中的两对相似三角形:△BDE ∽△CDF ,△ABF ∽△ACE .(用相似符号连接)解析:由于∠CEA =∠BF A =90°,∠EDB =∠FDC ,所以 △BDE ∽△CDF ;由于∠CEA =∠BF A =90°,∠A =∠A ,所以△ABF ∽△ACE .第10题图第11题图11.如图,△ABC 中,DE ∥BC ,DE 分别交边AB ,AC 于D ,E 两点,若AD ∶AB =1∶3,则△ADE 与△ABC 的面积比为1∶9.解析:由DE ∥BC 可得∠ADE =∠ABC ,∠AED =∠ACB ,所以△ADE ∽△ABC ,根据相似三角形的面积比等于相似比的平方,所以△ADE 与△ABC 的面积比为(AD ∶AB )2=(1∶3)2=1∶9.12.(2015·沈阳)如图,△ABC 与△DEF 位似,位似中心为点O ,且△ABC 的面积等于△DEF 面积的49,则AB ∶DE =2∶3.解析:∵△ABC 与△DEF 位似,位似中心为点O , ∴△ABC ∽△DEF .∴△ABC 的面积∶△DEF 的面积=(AB DE )2=49. ∴AB ∶DE =2∶3.第12题图第13题图13.如图,在长为8 cm,宽为4 cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是8_cm2.解析:依题意,原矩形的面积等于8×4=32(cm2),留下的矩形长刚好是原矩形的宽,即两个矩形的相似比等于4∶8,此时,要求阴影部分的面积,利用相似多边形的面积比等于相似比的平方求得.设图中阴影部分的面积为x cm2,因为两个矩形相似,所以x32=⎝⎛⎭⎪⎫482,解得x=8.14.如图,AB∥GH∥DC,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH 的长为1.2.解析:方法1:∵AB∥GH,∴△CGH∽△CAB.∴GHAB=CHCB,即GH2=CHCB.①∵GH∥CD,∴△BGH∽△BDC.∴GHCD=BHBC,即GH3=BHBC.②∴①+②,得GH2+GH3=1,解得GH=1.2;方法2:∵AB∥CD,∴△ABG∽△CDG.∴BGDG=ABCD=23.∴BGBG+GD=22+3=25.∵GH∥CD,∴△BGH∽△BDC.∴GHCD=BGBD=25,即GH3=25.∴GH=1.2.三、解答题(共44分)15.(12分)(2015·陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞,小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长,当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)解:由题意,得∠CAD=∠MND=90°,∠CDA=∠MDN,∴△CAD∽△MND.∴CAMN=ADND,即1.6MN=1×0.8(5+1)×0.8,∴MN=9.6(米).又∵∠EBF=∠MNF=90°,∠EFB=∠MFN,∴△EBF∽△MNF.∴EBMN=BFNF,即EB9.6=2×0.8(2+9)×0.8,∴EB≈1.75(米).答:小军的身高约为1.75米.16.(16分) (2016·武威)如图,在△ABC中,点D,E分别在AB,AC上,∠AED=∠B.射线AG分别交线段DE,BC于点F,G,且ADAC=DFCG.(1)求证:△ADF∽△ACG;(2)若ADAC=12,求AFFG的值(1)证明:∵∠AED =∠B ,∠DAE =∠CAB , ∴△ADE ∽△ACB . ∴∠ADE =∠C . 又∵AD AC =DF CG , ∴△ADF ∽△ACG . (2)解:∵△ADF ∽△ACG . ∴AD AC =AF AG =12. ∴AFFG=1. 17.(16分)已知在△ABC 中,∠ABC =90°,AB =3,BC =4.点Q 是线段AC 上的一个动点,过点Q 作AC 的垂线交线段AB (如图1)或线段AB 的延长线(如图2)于点P .(1)当点P 在线段AB 上时,求证:△AQP ∽△ABC ; (2)当△PQB 为等腰三角形时,求AP 的长.图1 图2 证明:(1)∵PQ ⊥AC , ∴∠AQP =90°=∠ABC .∵∠A =∠A ,∴△AQP ∽△ABC ;(2)当点P 在线段AB 上时,显然∠APQ <90°, 所以∠BPQ >90°,∴当△PQB 为等腰三角形时必为PQ =PB ,设PQ =PB =x ,则P A =3-x . 在Rt △ABC 中,AC =AB 2+BC 2=5,由(1)知△AQP ∽△ABC , ∴AP AC =PQ BC , ∴AP ·BC =AC ·PQ , ∴(3-x )·4=x ·5,解得x =43,∴AP =3-x =53;当点P 在线段AB 延长线上时,显然∠ABQ ≤90°,所以∠QBP ≥90°,∴当△PQB为等腰三角形时必为BQ=BP,∴∠P=∠PQB,∵∠P+∠A=∠PQB+∠AQB=90°,∴∠A=∠AQB,∴AB=BQ=BP,∴AP=2AB=6.综上所述,当△PQB为等腰三角形时,AP的长为53或6.时间:60分钟分值:100分一、选择题(每小题4分,共32分)1.皮皮拿着一块正方形纸板在阳光下做投影实验,正方形纸板在投影面上形成的投影不可能是(D)A.正方形B.长方形C.线段D.梯形解析:在同一时刻,平行物体的投影仍旧平行.所以正方形纸板在投影面上形成的投影不可能是梯形.故选D.2.(2015·攀枝花)如图所示的几何体为圆台,其俯视图正确的是(C)3.一个几何体的三视图如图,那么这个几何体是(D)解析:由俯视图为圆形可得几何体为球、圆柱或圆锥,再根据主视图和左视图可知几何体为圆柱与圆锥的组合体.4.如图所示的是三通管的立体图,则这个几何体的俯视图是(A)解析:∵从上面看三通管时,只看到一个长方形和一个圆,所以这个几何体的俯视图是A,故选A.5.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下(D)A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长解析:在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.6.(2016·聊城)若干个大小相同的小正方体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是(C)主视图俯视图解析:由主视图可以判断出小正方体组合体最高2层,而选项C中的左视图反映的是正方体组合体有3层,所以它不可能是这个几何体的左视图,故选C.7.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2 m,桌面离地面1 m.若灯泡离地面3 m,则地面上阴影部分的面积为(B)A.0.36π m2B.0.81π m2C.2π m2D.3.24π m2解析:设阴影部分的直径是x m,则1.2∶x=2∶3,解得x=1.8,所以地面上阴影部分的面积为:S=πr2=0.81π(m2).8.(2015·菏泽)如图是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体(D)A.主视图改变,左视图改变。
北师大版九年级上册数学第二章单元测试卷(含答案)
第二章单元测试卷[时间:120分钟分值:150分]一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.方程(x+1)(x-2)=0的根是( )A.x=-1 B.x=2C.x1=1,x2=-2 D.x1=-1,x2=22.用配方法解一元二次方程x2+8x+7=0,则方程可变形为( )A.(x-4)2=9 B.(x+4)2=9C.(x-8)2=16 D.(x+8)2=573.已知α是一元二次方程x2-x-1=0较大的根,则下面对α的估计正确的是( )A.0<α<1 B.1<α<1.5C.1.5<α<2 D.2<α<34.已知关于x的一元二次方程3x2+4x-5=0,下列说法正确的是( B )A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定5.若x=-2 是关于x的一元二次方程x2-52ax+a2=0的一个根,则A的值为( )A.1或4 B.-1或-4C.-1或4 D.1或-46.某县为了大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造和更新.2016年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2018年投资7.2亿元人民币,那么每年投资的增长率为( )A.20%或-220% B.40%C.120% D.20%7.三角形两边长分别为3和6,第三边是方程x2-13x+36=0的根,则三角形的周长为( )A.13 B.15C.18 D.13或188.从正方形的铁片上截去2 c m宽的长方形,余下的面积是48 c m2,则原来的正方形铁片的面积是( )A.8 c m2 B.32 c m2C.64 c m2 D.96 c m29.若关于x的方程x2+2x+A=0不存在实数根,则A的取值范围是( ) A.A<1 B.A>1C.A≤1 D.A≥110.x1,x2是关于x的一元二次方程x2-mx+m-2=0的两个实数根,是否存在实数m使1x1+1x2=0成立?则正确的结论是( )A.m=0 时成立 B.m=2 时成立C.m=0 或2时成立 D.不存在二、填空题(本大题共6个小题,每小题4分,共24分)11.已知x1=3是关于x的一元二次方程x2-4x+C=0的一个根,则方程的另一个根x2=__ ____.12.一小球以15 m/s的速度竖直向上抛出,它在空中的高度h(m)与时间t(s)满足关系式:h=15t-5t2,当t=_________时,小球高度为10 m.小球所能达到的最大高度为________m.13.若关于x的一元二次方程x2-x+m=0有两个不相等的实数根,则m的值可能是_____________(写出一个即可).14.菱形的两条对角线长分别是方程x2-14x+48=0的两实根,则菱形的面积为________.15.已知关于x的一元二次方程x2+(2k+1)x+k2-2=0的两根为x1,x2,且(x1-2)(x1-x2)=0,则k的值是___________.16.如果关于x的方程Ax2+2x+1=0有两个不相等的实数根,则实数A的取值范围是________________.三、解答题(本大题共9个小题,共96分)17.(16分)解方程:(1)(x+8)2=36;(2)x(5x+4)-(4+5x)=0;(3)x2+3=3(x+1);(4)2x2-x-1=0(用配方法).18.(8分)已知关于x的方程x2+x+n=0有两个实数根-2,m,求m,n的值.19.(10分)先化简,再求值:m-33m2-6m ÷⎝⎛⎭⎪⎫m+2-5m-2,其中m是方程x2+2x-3=0的根.20.(10分)有一个两位数等于其各位数字之积的3倍,其十位数字比个位数字小2,求这个两位数.21.(10分)利用一面墙(墙的长度不限),另三边用58 m长的篱笆围成一个面积为200 m2的矩形场地,求矩形的长和宽.22.(10分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2015年市政府共投资3亿元人民币建设了廉租房12万平方米,2017年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,2017年建设了多少万平方米廉租房?23.(10分)当m为何值时,一元二次方程(m2-1)x2+2(m-1)x+1=0?(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?24.(10分)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?25.(12分)在矩形ABCD中,AB=6 cm,BC=12 cm,点P从点A沿边AB向点B以1 cm/s的速度移动;同时点Q从点B沿边BC向点C以2 cm/s的速度移动,设运动时间为t s.问:(1)几秒后△PBQ的面积等于8 cm2?(2)是否存在t,使△PDQ的面积等于26 cm2?参考答案一、1.D 2.B 3.C【解析】 解方程x 2-x -1=0,得x =1±52,∵α是方程x 2-x -1=0较大的根,∴α=1+52.∵2<5<3,∴3<1+5<4,∴32<1+52<2.4.B 5.B 6.D 7. A 8.C 9.B【解析】 ∵方程不存在实数根,∴Δ=4-4A <0,解得A >1. 10.A【解析】 ∵x 1,x 2是关于x 的一元二次方程x 2-mx +m -2=0的两个实数根,∴x 1+x 2=m ,x 1x 2=m -2.假设存在实数m 使1x 1+1x 2=0成立,则x 1+x 2x 1x 2=0,∴m m -2=0,∴m =0. 当m =0时,方程为x 2-2=0,此时Δ=8>0,∴m =0符合题意.二、11.1 【解析】 ∵x 1+x 2=4,x 1=3,∴x 2=1. 12. 1或2 454【解析】 当小球高度为10 m 时,有10=15t -5t 2,解得t 1=1,t 2=2.小球达到的高度h =15t -5t 2=-5(t 2-3t )=-5⎝⎛⎭⎪⎫t -322+454,故当t =32时,小球达到的最大高度为454m.13. 0(答案不唯一) 14. 24 15.-2或-94【解析】 先由(x 1-2)(x 1-x 2)=0, 得出x 1-2=0或x 1-x 2=0, 再分两种情况进行讨论: ①如果x 1-2=0,将x =2代入x 2+(2k +1)x +k 2-2=0, 得4+2(2k +1)+k 2-2=0,解得k =-2; ②如果x 1-x 2=0,由Δ=(2k +1)2-4(k 2-2)=0,解得k =-94.综上所述,k 的值是-2或-94.16. A <1且A ≠0【解析】 由题意,得Δ=4-4A >0且A ≠0, 解得A <1且A ≠0.三、17.(1) 解:直接开平方,得x +8=±6, ∴x 1=-2,x 2=-14. 4分(2) 解:提公因式,得(4+5x )(x -1)=0, 则4+5x =0或x -1=0. ∴x 1=-45,x 2=1. 8分(3)解:整理,得x 2-3x =0, 分解因式,得x (x -3)=0, 则x =0或x -3=0, ∴x 1=0,x 2=3. 12分(4)解:方程两边同除以2,得x 2-12x -12=0,移项,得x 2-12x =12,配方,得⎝⎛⎭⎪⎫x -142=916,开平方,得x -14=±34,∴x 1=1,x 2=-12.16分18.解:将x =-2代入原方程,得(-2)2-2+n =0, 1分 解得n =-2, 3分因此原方程为x 2+x -2=0, 5分 解得x 1=-2,x 2=1, 7分 ∴m =1. 8分19. 解:原式=m -33m (m -2)÷⎝ ⎛⎭⎪⎫m 2-4m -2-5m -2 =m -33m (m -2)·m -2(m +3)(m -3)=13m (m +3), 4分 ∵m 是方程x 2+2x -3=0的根,∴m =-3或m =1. 6分当m =-3时,原式无意义; 8分当m =1时,原式=13m (m +3)=13×1×(1+3)=112. 10分 20.解:设个位数字为x ,则十位数字为(x -2),这个两位数是[10(x -2)+x ].2分根据题意,得10(x -2)+x =3x (x -2),整理,得3x 2-17x +20=0,5分解得x 1=4,x 2=53(不合题意,舍去).8分 当x =4时,x -2=2,∴这个两位数是24. 10分21. 解:设垂直于墙的一边为x 米, 1分依题意得x (58-2x )=200. 3分解得x 1=25,x 2=4. 6分∴另一边为8米或50米. 9分故矩形长为25米,宽为8米或长为50米,宽为4米. 10分22. 解:(1)设每年市政府投资的增长率为x , 1分根据题意,得3(1+x )2=6.75, 3分解得x 1=0.5=50%,x 2=-2.5(不合题,舍去). 5分则每年市政府投资的增长率为50%. 6分(2)6.753×12=27(万平方米).则2017年建设了27万平方米廉租房. 10分23. 解:Δ=[2(m -1)]2-4(m 2-1)=-8m +8. 1分(1)根据题意,得-8m +8>0,且m 2-1≠0, 2分解得m <1且m ≠-1. 4分(2)根据题意,得-8m +8=0,且m 2-1≠0,可知无解, 6分则方程不可能有两个相等的实数根. 7分(3)根据题意,得-8m +8<0,且m 2-1≠0, 8分解得m >1. 10分24.解:设应降价x 元,则售价为(60-x )元,销售量为(300+20x )件,1分根据题意,得(60-x -40)(300+20x )=6 080, 5分解得x 1=1,x 2=4, 8分又需使顾客得实惠,故取x =4,即定价为56元,故应将销售单价定为56元. 10分25.解:(1)设x 秒后△PBQ 的面积等于8 cm 2.∵AP =x ,QB =2x .∴PB =6-x . ∴12(6-x )·2x =8, 2分解得x 1=2,x 2=4, 4分故2秒或4秒后△PBQ 的面积等于8 cm 2. 5分(2)假设存在t 使得△PDQ 的面积为26 cm 2, 6分则72-6t-t(6-t)-3(12-2t)=26, 8分整理得,t2-6t+10=0,∵Δ=36-4×1×10=-4<0,∴原方程无解, 11分∴不存在t,使△PDQ的面积等于26 cm2. 12分附赠材料:考试做题技巧会学习,还要会考试时间分配法:决定考场胜利的重要因素科学分配答题时间,是决定考场能否胜利的重要因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版九年级数学上册全章单元测试题目录【单元测试】北师大版九年级数学上册第1章特殊的平行四边行单元达标检测卷含答案【单元测试】北师大版九年级数学上册第2章一元二次方程单元测试【单元测试】北师大版九年级数学上册第3章概率的进一步认识单元测试【单元测试】北师大版九年级数学上册第4章图形的相似单元测试【单元测试】北师大版九年级数学上册第5章投影与视图单元测试【单元测试】北师大版九年级数学上册第6章反比例函数单元测试第一章达标检测卷(120分,90分钟) 总一、选择题(每题3分,共30分)1.如图,已知菱形ABCD 的边长为3,∠ABC=60°,则对角线AC 的长是( )A .12B .9C .6D .3(第1题)(第4题) (第6题)2.下列命题为真命题的是( ) A .四个角相等的四边形是矩形 B .对角线垂直的四边形是菱形C .对角线相等的四边形是矩形D .四边相等的四边形是正方形 3.若顺次连接四边形ABCD 四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是( )A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形4.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于点E ,F ,那么阴影部分的面积是矩形ABCD 面积的( )A.15B.14C.13D.3105.已知四边形ABCD 是平行四边形,下列结论中错误的有( )①当AB=BC 时,它是菱形;②当AC ⊥BD 时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD 时,它是正方形.A .1个B .2个C .3个D .4个6.如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A .8 2B .4 2C .8D .6 7.如图,每个小正方形的边长为1,A ,B ,C 是正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°8.如图,在菱形ABCD 中,点M ,N 分别在AB ,CD 上,且AM=CN ,MN 与AC 交于点O ,连接OB.若∠DAC=28°,则∠OBC 的度数为( )A .28°B .52°C .62°D .72°(第7题) (第8题)(第9题) (第10题)9.如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( ) A.AF=AE B.△ABE≌△AGF C.EF=2 5 D.AF=EF10.如图,在正方形ABCD中,点P是AB上一动点(点P不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有( )A.0个 B.1个 C.2个 D.3个二、填空题(每题3分,共24分)11.如图是一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α的度数为________时,两条对角线长度相等.12.如图,四边形ABC D是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为________.(第11题) (第12题) (第13题) 13.如图是根据四边形的不稳定性制作的边长为15 cm的可活动衣架,若墙上钉子间的距离AB=BC=15 cm,则∠1=________.14.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________.15.如图,矩形OBCD的顶点C的坐标为(1,3),则对角线BD的长等于________.(第15题) (第16题)(第17题) (第18题)16.如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD交BD于点E,则DE=________.17.如图,在矩形ABCD中,M,N分别是AD,BC的中点,E,F分别是线段BM,CM的中点.若AB=8,AD=12,则四边形ENFM的周长为________.18.如图,在边长为1的菱形 ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°,…,按此规律所作的第n个菱形的边长是________.三、解答题(19,20题每题9分,21题 10分,22,23题每题12分,24题14分,共66分)19.如图,在四边形ABCD中,AD∥BC,AC的垂直平分线交AD,BC于点E,F.求证:四边形AECF是菱形.(第19题)20.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.(第20题)21.如图,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF.(1)求证:△BCE≌△DCF;(2)若∠FDC=30°,求∠BEF的度数.(第21题)22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.(第22题)23.如图,在菱形ABCD中,AB=4,∠BAD=120°,以点A为顶点的一个60°的角∠EAF绕点A旋转,∠EAF 的两边分别交BC,CD于点E,F,且E,F不与B,C,D重合,连接EF.(1)求证:BE=CF.(2)在∠EAF绕点A旋转的过程中,四边形 AECF的面积是否发生变化?如果不变,求出其定值;如果变化,请说明理由.(第23题)24.如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.(1)探究线段OE与OF的数量关系并说明理由.(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?请说明理由.(3)当点O在边AC上运动时,四边形BCFE________是菱形(填“可能”或“不可能”).请说明理由.(第24题)答案一、1.D 2.A3.D 点拨:首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.4.B5.A 点拨:①当AB=BC 时,它是菱形,正确;②当AC ⊥BD 时,它是菱形,正确;③当∠ABC=90°时,它是矩形,正确;④当AC=BD 时,它是矩形,因此④是错误的.6.C 7.C 8.C9.D 点拨:如图,由折叠得∠1=∠2.∵AD ∥BC ,∴∠3=∠1.∴∠2=∠3.∴AE=AF.故选项A 正确.由折叠得CD=AG ,∠D=∠G=90°.∵AB=CD ,∴AB=AG.∵AE=AF ,∠B=90°,∴Rt △ABE ≌Rt △AGF(HL).故选项B 正确.设DF=x ,则GF=x ,AF=8-x.又AG=AB=4,∴在Rt △AGF 中,根据勾股定理得(8-x)2=42+x 2.解得x=3.∴AF=8-x=5.则AE=AF=5,∴BE=AE 2-AB 2=52-42=3.过点F 作FM ⊥BC 于点M ,则EM=5-3=2.在Rt △EFM 中,根据勾股定理得EF=EM 2+FM 2=22+42=20=25,则选项C 正确.∵AF=5,EF=25,∴AF ≠EF.故选项D 错误.(第9题)10.D 点拨:∵四边形ABCD 是正方形,∴∠PAE=∠MAE=45°.∵PM ⊥AC ,∴∠PEA=∠MEA.又∵AE=AE ,∴根据“ASA ”可得△APE ≌△AME.故①正确.由①得PE=ME ,∴PM=2PE.同理PN=2PF.又易知PF=BF ,四边形PEOF 是矩形,∴PN=2BF ,PM=2FO.∴PM +PN=2FO +2BF=2BO=BD.故②正确.在Rt △PFO 中,∵FO 2+PF 2=PO 2,而PE=FO ,∴PE 2+PF 2=PO 2.故③正确.二、11.90° 点拨:对角线相等的平行四边形是矩形.12.12 点拨:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=12³6³8=24.∵O 是菱形两条对角线的交点,∴阴影部分的面积=12³24=12.13.120°(第14题)14.22.5° 点拨:如图,由四边形ABCD 是正方形,可知∠CAD=12∠BAD=45°. 由FE ⊥AC ,可知∠AEF=90°.在Rt △AEF 与Rt △ADF 中, AE=AD ,AF=AF ,∴Rt △AEF ≌Rt △ADF(HL).∴∠FAD=∠FAE=12∠CAD=12³45°=22.5°. 15.10 16.2-117.20 点拨:点N 是BC 的中点,点E ,F 分别是BM ,CM 的中点,由三角形的中位线定理可证EN ∥MC ,NF∥ME ,EN=12MC ,FN=12MB.又易知MB=MC ,所以四边形ENFM 是菱形.由点M 是AD 的中点,AD=12得AM=6.在Rt △ABM 中,由勾股定理得BM=10.因为点E 是BM 的中点,所以EM=5.所以四边形ENFM 的周长为20.18.(3)n -1三、19.证明:∵EF 垂直平分AC ,∴∠AOE=∠COF=90°,OA=OC.∵AD ∥BC ,∴∠OAE=∠OCF.∴△AOE ≌△COF(ASA).∴AE=CF.又∵AE ∥CF ,∴四边形AECF 是平行四边形.∵EF ⊥AC ,∴四边形AECF 是菱形.20.(1)证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形.∵四边形ABCD 为矩形,∴OD=OC.∴四边形OCED 为菱形.(2)解:∵四边形ABCD 为矩形,∴BO=DO=12BD. ∴S △OCD =S △OCB =12S △ABC =12³12³3³4=3.∴S 菱形OCED =2S △OCD =6. 21.(1)证明:在△BCE 与△DCF 中,⎩⎪⎨⎪⎧BC =DC ,∠BCE =∠DCF ,CE =CF ,∴△BCE ≌△DCF.(2)解:∵△BCE ≌△DCF ,∴∠EBC=∠FDC=30°.∵∠BCD=90°,∴∠BEC=60°.∵EC=FC ,∠ECF=90°,∴∠CEF=45°.∴∠BEF=105°.22.(1)证明:∵在矩形ABCD 中,AD ∥BC ,∠A=∠C=90°,∴∠ADB =∠DBC.根据折叠的性质得∠ADB=∠BDF ,∠F=∠A=90°,∴∠DBC=∠BDF ,∠C=∠F.∴BE=DE.在△DCE 和△BFE 中,⎩⎪⎨⎪⎧∠DEC =∠BEF ,∠C =∠F ,DE =BE ,∴△DCE ≌△BFE.(2)解:在Rt △BCD 中,∵CD=2,∠ADB=∠DBC=30°,∴BD=4.∴BC=2 3.在Rt △ECD 中,易得∠EDC=30°.∴DE=2EC.∴(2EC)2-EC 2=CD 2.∵CD=2,∴CE=233.∴BE=BC -EC=433.(第23题)23.(1)证明:如图,连接AC.∵四边形ABCD 为菱形,∠BAD=120°,∴∠ABE=∠ACF=60°,∠1+∠2=60°.∵∠3+∠2=∠EAF=60°,∴∠1=∠3.∵∠ABC=60°,AB=BC ,∴△ABC 为等边三角形.∴AC=AB.∴△ABE ≌△ACF.∴BE=CF.(2)解:四边形AECF 的面积不变.由(1)知△ABE ≌△ACF ,则S △ABE =S △ACF ,故S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC .如图,过A 作AM ⊥BC 于点M ,则BM=MC=2,∴AM=AB 2-BM 2=42-22=2 3.∴S △ABC =12BC ²AM=12³4³23=4 3.故S 四边形AECF =4 3. 24.解:(1)OE=OF.理由如下:∵CE 是∠ACB 的平分线,∴∠ACE=∠BCE.又∵MN ∥BC ,∴∠NEC=∠BCE.∴∠NEC=∠ACE.∴OE=OC.∵CF 是∠ACD 的平分线,∴∠OCF=∠FCD.又∵MN ∥BC ,∴∠OFC=∠FCD.∴∠OFC=∠OCF.∴OF=OC.∴OE=OF.(2)当点O 运动到AC 的中点,且△ABC 满足∠ACB 为直角时,四边形AECF 是正方形. 理由如下:∵当点O 运动到AC 的中点时,AO=CO ,又∵EO=FO ,∴四边形AECF 是平行四边形.∵FO=CO ,∴AO=CO=EO=FO.∴AO +CO=EO +FO ,即AC=EF.∴四边形AECF 是矩形.已知MN ∥BC ,当∠ACB=90°时,∠AOE=90°,∴AC ⊥EF.∴四边形AECF 是正方形.(3)不可能理由如下:连接BF ,∵CE 平分∠ACB ,CF 平分∠ACD ,∴∠ECF=12∠ACB +12∠ACD=12(∠ACB +∠ACD)=90°.若四边形BCFE 是菱形,则BF ⊥EC.但在一个三角形中,不可能存在两个角为90°,故四边形BCFE 不可能为菱形.第二章一元二次方程单元测试一、单选题(共10题;共30分)1、关于x的一元二次方程(m-1)x2+x+m2-1=0有一根为0,则m的值为( )A、1或-1B、1C、-1D、2、方程x2+6x-5=0的左边配成完全平方后所得方程为 ( )A、(x+3)2 =14B、(x-3)2 =14C、(x+6)2=D、以上答案都不对3、一元二次方程2x2-3x=4的一次项系数是A、2B、-3C、4D、-44、用公式法解方程6x-8=5x2时,a、b、c的值分别是()A、5、6、-8B、5、-6、-8C、5、-6、8 D . 6、5、-85、九(1)班同学毕业的时候,每人都必须与其他任何一位同学合照一张双人照,全班共照相片780张,则九(1)班的人数是()A、39B、40C、50D、606、济宁市某经济开发区,今年一月份工业产值达10亿元,第一季度总产值为75亿元,二、三月平均每月增长率是多少,若设平均每月的增长率为x,根据题意,可列方程为()A、10(1+x)2=75B、10+10(1+x)+10(1+x)2=75C、10(1+x)+10(1+x)2=75D、10+10(1+x)2=757、2016年1月13日长城河报道,河北香河县中报“全国绿化模范县”通过审核,截止到2015年,香河县林地面积达到24.39万亩,森林覆盖率达到35.5%,若某县从2013到2015年经过两年的时间,使森林覆盖率增长21%,则该县这两年平均每年的森林覆盖的增长率为()A、9%B、10%C、11%D、12%8、根据下列表格中关于x的代数式ax2+bx+c的值与x的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解的范围是()A、5.14<x<5.15B、5.13<x<5.14C、5.12<x<5.13D、5.10<x<5.129、设x1, x2是方程x2+5x﹣3=0的两个根,则x12+x22的值是()A、19B、25C、31D、3010、下列关于x的方程中,是一元二次方程的是()A、y2+x=1B、x(x﹣1)=x2﹣2C、x2﹣1=0D、x2+ =1二、填空题(共8题;共25分)11、一元二次方程的求根公式是________.12、设a、b是方程的两个不等的根,则a2+2a+b的值为________.13、某小区2013年绿化面积为2000平方米,计划2015年绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是________.14、关于x的方程:(a﹣1)+x+a2﹣1=0,求当a=________时,方程是一元二次方程,当a=________时,方程是一元一次方程.15、已知若x1, x2是方程x2+3x+2=0的两根,则x1+x2=________16、某药品经过两次降价,每瓶零售价由168元降为128元,已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得________.17、如果(m﹣1)x2+2x﹣3=0是一元二次方程,则m的取值范围为________.18、若代数式x2﹣8x+12的值是21,则x的值是________三、解答题(共5题;共35分)19、小林准备进行如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于52cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于44cm2.”他的说法对吗?请说明理由.20、解下列方程:用配方法解方程:2x2+5x+3=0;21、若α、β是方程x2﹣2x﹣3=0的两个实数根,求的值.22、某花店将进货价为20元/盒的百合花,在市场参考价28~38元的范围内定价36元/盒销售,这样平均每天可售出40盒,经过市场调查发现,在进货价不变的情况下,若每盒下调1元,则平均每天可多销售10盒,要使每天的利润达到750元,应将每盒百合花在售价上下调多少元?23、已知关于x的一元二次方程x2﹣3x+m﹣3=0,若此方程的两根的倒数和为1,求m的值.四、综合题(共1题;共10分)24、用适当的方法解一元二次方程(1)x2+3x+1=0;(2)(x﹣1)(x+2)=2(x+2)第三章概率的进一步认识单元测试一、单选题(共10题;共30分)1、小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A、 B、 C、 D、2、一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为()A、60个B、50个C、40个D、30个3、一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小华在袋中放入10个除颜色外其它完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球实验后发现,摸到白球的频率是,则袋中红球约为()个.A、4B、25C、14D、354、做重复试验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A、0.22B、0.42C、0.50D、0.585、用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指()A、连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B、连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C、抛掷2n次硬币,恰好有n次“正面朝上”D、抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.56、一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色,…,甲同学反复大量实验后,根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是()A、袋子一定有三个白球B、袋子中白球占小球总数的十分之三C、再摸三次球,一定有一次是白球D、再摸1000次,摸出白球的次数会接近330次7、一个盒子有1个红球,1个白球,这两个球除颜色外其余都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,则两次都摸出红球的概率为()A、1B、C、D、8、经过某十字路口的汽车,可能直行,也可能左转或者右转,若这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆直行,一辆右转的概率是()A、 B、 C、 D、9、一个盒子装有除颜色外其它均相同的2个红球和1个白球,现从中任取2个球,则取到的是一个红球,一个白球的概率为()A、 B、 C、 D、10、(2014•海南)一个不透明的袋子中有3个分别标有3,1,﹣2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是()A、 B、 C、 D、二、填空题(共8题;共27分)11、在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有 ________个.12、一个口袋中装有2个完全相同的小球,它们分别标有数字1,2,从口袋中随机摸出一个小球记下数字后放回,摇匀后再随机摸出一个小球,则两次摸出小球的数字和为偶数的概率是________ .13、某口袋中有红色、黄色、蓝色玻璃共60个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有________ 个.14、一个口袋中有6个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,……,不断重复上述过程.小明共摸了100次 ,其中60次摸到白球.根据上述数据,小明可估计口袋中的白球大约有________ 个.15、“2015扬州鉴真国际半程马拉松”的赛事共有三项:A、“半程马拉松”、B、“10公里”、C、“迷你马拉松”.小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为________.(2)为估算本次赛事参加“迷你马拉松”的人数,小明对部分参赛选手作如下调查:请估算本次赛事参加“迷你马拉松”人数的概率为________.(精确到0.1)16、一个透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同,摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,则两次摸出的球恰好颜色不同的概率是________17、一个不透明的袋子中装有黑球两个,白球三个,这些小球除颜色外无其他区别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是黑球的概率为________.18、某校在甲、乙两名同学中选拔一人参加襄阳广播电台举办“国学风,少年颂”襄阳首届少年儿童经典诵读大赛.在相同的测试条件下,两人3次测试成绩(单位:分)如下:甲:79,86,82;乙:88,79,90.从甲、乙两人3次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率是________.三、解答题(共6题;共43分)19、在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别.摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球多少个?20、在一个口袋中有5个小球,其中有两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到小球的条件下,从袋中随机地取出一个小球.求取出的小球是红球的概率;把这5个小球中的两个都标号为1,其余分布标号为2、3、4,随机地取出一个小球后不放回,再随机地取出一个小球.利用树状图或列表的方法,求第二次取出小球标号大于第一次取出小球标号的概率.21、数学课堂上,为了学习构成任意三角形三边需要满足的条件.甲组准备3根木条,长度分别是3cm、8cm、13cm;乙组准备3根木条,长度分别是4cm、6cm、12cm.老师先从甲组再从乙组分别随机抽出一根木条,放在一起组成一组.(1)用画树状图法(或列表法)分析,并列出各组可能.(画树状图或列表以及列出可能时不用写单位)(2)现在老师也有一根木条,长度为5cm,与(1)中各组木条组成三角形的概率是多少?22、某市某幼儿园六一期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)23、在一个不透明的盒子里装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地完全相同,先从盒子里随机抽取一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字,请你用画树状图或列表的方法求两次取出小球上的数字和大于10的概率.24、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回,再摸出一个球,请用列表法或画树状图法求两次都摸到红球的概率.第四章图形的相似单元测试一、单选题(共10题;共30分)1、如图,在△ABC中.∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A、1对B、2对C、3对D、4对2、如果线段a、b、c、d满足ad=bc,则下列各式中不成立的是()A、 B、 C、 D、3、如图,身高为1.6米的某同学想测量学校旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2.0米,BC=8.0米,则旗杆的高度是()A、6.4米B、7.0米C、8.0米D、9.0米4、一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,且最短边长为6,则最长边长为()A、18B、12C、24D、305、线段4cm、16cm的比例中项为().A、20cmB、64cmC、±8cmD、8cm6、如果两个相似三角形的相似比是1:7,则它们的面积比等于()A、1:B、1:7C、1:3.5D、1:497、比例尺为1:1000的图纸上某区域面积400cm2,则实际面积为()A、4³B、4³C、1.6³D、2³8、如图,在△ABC中,AB=4,AC=3,DE∥BC交AB于点D,交AC于点E,若AD=3,则AE的长为()A、 B、 C、 D、9、(2015•黄陂区校级模拟)如图△ABC与△DEF是位似图形,位似比是1:2,已知DE=4,则AB的长是()A、2B、4C、8D、110、如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A、△PAB∽△PCAB、△PAB∽△PDAC、△ABC∽△DBAD、△ABC∽△DCA二、填空题(共8题;共24分)11、把一个正多边形放大到原来的2.5倍,则原图与新图的相似比为________12、如图,已知AD、BC相交于点O,AB∥CD∥EF,如果CE=2,EB=4,FD=1.5,那么AD=________ .13、若,则的值等于________14、如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为________.15、如图,已知AB∥CD∥EF,AD:AF=3:5,BE=12,那么CE的长等于________16、如图,直线a∥b∥c,度量线段AB≈1.89,BC≈3.80,DE≈2.02,则线段EF的长约为________.17、如图,在△ABC中,EF∥BC,= ,EF=3,则BC的值为________.18、在比例尺为1:2000的地图上,测得A、B两地间的图上距离为4.5厘米,则其实际距离为________米.三、解答题(共5题;共36分)19、如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB,求∠APB的度数.20、已知a、b、c是△ABC的三边长,且==≠0,求:(1)的值.(2)若△ABC的周长为90,求各边的长.21、如图,在四边形ABCD中,AD∥BC,∠A=∠BDC.(1)求证:△ABD∽△DCB;(2)若AB=12,AD=8,CD=15,求DB的长.22、如图,AD=2,AC=4,BC=6,∠B=36°,∠D=117°,△ABC∽△DAC.(1)求∠ACB的度数;(2)求CD的长.23、已知a:b:c=3:2:5,求的值.四、综合题(共1题;共10分)24、如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D、E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)若∠ABD=45°,AC=3时,求BF的长.第五章投影与视图单元测试一、单选题(共10题;共30分)1、给出下列结论正确的有()①物体在阳光照射下,影子的方向是相同的②物体在任何光线照射下影子的方向都是相同的③物体在路灯照射下,影子的方向与路灯的位置有关④物体在光线照射下,影子的长短仅与物体的长短有关.A、1个B、2个C、3个D、4个2、“皮影戏”作为我国一种民间艺术,对它的叙述错误的是()A、它是用兽皮或纸板做成的人物剪影,来表演故事的戏曲B、表演时,要用灯光把剪影照在银幕上C、灯光下,做不同的手势可以形成不同的手影D、表演时,也可用阳光把剪影照在银幕上3、如图所示,晚上小亮在路灯下散步,在从A处走向B处的过程中,他在地上的影子()A、逐渐变短B、先变短后再变长C、逐渐变长D、先变长后再变短4、如果阳光斜射在地面上,一张矩形纸片在地面上的影子不可能是()A、矩形B、线段C、平行四边形D、一个点5、由几个相同的小正方形搭成的一个几何体如图所示,这个几何体的主视图是()A、 B、 C、 D、6、下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A、1234B、4312C、3421D、42317、下列为某两个物体的投影,其中是在太阳光下形成投影的是()A、 B、 C、 D、8、如图,是五个相同的小正方体搭成的几何体,其主视图是()A、 B、 C、 D、9、如图是由四个小正方体叠成的一个立体图形,那么它的俯视图是()A、 B、 C、 D、10、图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()A、主视图相同B、俯视图相同二、填空题(共8题;共33分)11、(2013秋•邢台期末)小亮的身高为1.8米,他在路灯下的影子长为2米;小亮距路灯杆底部为3米,则路灯灯泡距离地面的高度为________ 米.12、直角坐标平面内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(3,1),则CD在x轴上的影长为________ ,点C的影子的坐标为________ .13、如图是两棵小树在同一时刻的影子,请问它们的影子是在________ 光线下形成的(填“灯光”或“太阳”).14、太阳光线下形成的投影是________ 投影.(平行或中心)15、如图所示,平地上一棵树高为5米,两次观察地面上的影子,第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长________ 米.16、请你写出一种几何体,使得它的主视图、左视图和俯视图都一样,它是________17、如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号)________ ①越来越长,②越来越短,③长度不变.在D处发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是________ 米.18、离物体越近,视角越________ ,离物体越远,视角越________ .三、解答题(共6题;共37分)19、同一时刻,两根木棒的影子如图,请画出图中另一根木棒的影子.20、如图,身高1.6米的小明从距路灯的底部(点O)20米的点A沿AO方向行走14米到点C处,小明在A处,头顶B在路灯投影下形成的影子在M处.(1)已知灯杆垂直于路面,试标出路灯P的位置和小明在C处,头顶D在路灯投影下形成的影子N的位置.(2)若路灯(点P)距地面8米,小明从A到C时,身影的长度是变长了还是变短了?变长或变短了多少米?21、如图,是一个由长方体和圆柱组合而成的几何体.已知长方体的底面是正方形,其边长与圆柱底面圆的直径相等,圆柱的高与长方体的高也相等.(1)画出这个几何体的主视图、左视图、俯视图;(2)若圆柱底面圆的直径记为a,高记为b.现将该几何体露在外面的部分喷上油漆,求需要喷漆部分的面积.22、如图是七个棱长为1的立方块组成的一个几何体,画出其三视图并计算其表面积.。