(文数)高考数学分类练习(坐标系与参数方程)
2020年高考数学(文)二轮专项复习专题13 坐标系与参数方程含答案
专题13 坐标系与参数方程【知识要点】1.极坐标系的概念,极坐标系中点的表示.在平面内取一个定点O ,O 点出发的一条射线Ox ,一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.O 称为极点,Ox 称为极轴.设M 是平面内任意一点,极点O 与点M 的距离|OM |叫做点M 的极径,记作ρ ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记作θ ,有序数对(ρ ,θ )叫做点M 的极坐标.一般情况下,约定ρ ≥0.2.极坐标系与直角坐标系的互化.直角坐标化极坐标:x =ρ cos θ ,y =ρ sin θ ; 极坐标化直角坐标:, 3.参数方程的概念设在平面上取定一个直角坐标系xOy ,把坐标x ,y 表示为第三个变量t 的函数……①,如果对于t 的每一个值(a ≤t ≤b ),①式所确定的点M (x ,y )都在一条曲线上;而这条曲线上任意一点M (x ,y ),都可由t 的某个值通过①式得到,则称①式为该曲线的参数方程,其中t 称为参数.4.参数方程与普通方程的互化把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法.常见的消参方法有:代入消元法;加减消参法;平方和(差)消参法;乘法消参法等.把曲线C 的普通方程F (x ,y )=0化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.要注意方程中的参数的变化范围. 5.直线、圆、椭圆的参数方程.(1)经过一定点P 0(x 0,y 0),倾斜角为α 的直线l 的参数方程为(t 为参数);(2)直线参数方程的一般形式为(t 为参数);222y x +=ρ).0(tan =/=x xyθ⎩⎨⎧==)()(t g y t f x b t a ≤≤⎩⎨⎧+=+=ααsin ,cos 00t y y t x x ⎩⎨⎧+=+=bt y y at x x 00,(3)圆的参数方程为(θ 为参数);(4)椭圆的参数方程为(θ 为参数).【复习要求】1.理解坐标系的作用.2.能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.3.了解参数方程.4.能选择适当的参数写出直线、圆和圆锥曲线的参数方程,并会简单的应用. 【例题分析】例1 (1)判断点是否在曲线上. (2)点P 的直角坐标为,则点P 的极坐标为______.(限定0<θ ≤2π)(3)点P 的极坐标为,则点P 的直角坐标为______.解:(1)因为,所以点是在曲线上. (2)根据ρ 2=x 2+y 2,, 得ρ =2,,又点P 在第四象限,,所以,所以点P 的极坐标为 (3)根据x =ρ cos θ ,y =ρ sin θ ,得, 所以点P 的直角坐标为 例2 (1)圆ρ =2(cos θ +sin θ )的半径为______.⎩⎨⎧+=+=θθsin ,cos 00r y y r x x )0(12222>>=+b a b y a x ⎩⎨⎧==θθsin ,cos b y a x )35π,23(-2cos θρ=)3,1(-)4π,3(-2365πcos2cos-==θ)35π,23(-2cos θρ=)0(tan =/=x xy θ3tan -=θ2π23π≤<θ35π=θ).3π5,2(223,223-==y x ).223,223(-(2)直线与圆ρ =2sin θ 交与A ,B 两点,则|AB |=______. 解:(1)由ρ =2(cos θ +sin θ ),得ρ 2=2ρ (cos θ +sin θ ), 所以,x 2+y 2=2x +2y ,即(x -1)2+(y -1)2=2, 所以圆ρ =2(cos θ +sin θ )的半径为. (2)将直线与圆ρ =2sin θ 化为直角坐标方程,得 由得,即, 由ρ =2sin θ ,变形为ρ 2=2ρ sin θ ,得x 2+y 2=2y ,即x 2+(y -1)2=1, 因为圆的半径为1,圆心到直线的距离为, 所以评述:(1)应熟练运用直角坐标与极坐标互化的方法解决有关极坐标的问题;(2)由直角坐标化极坐标时要注意点位于哪一个象限才能确定θ 的大小,如例1(2),否则,极坐标不唯一; (3)例2也可以用极坐标有关知识直接解决.这需要知道一些直线与圆的极坐标方程的知识.如: ①过极点,倾斜角为α 的直线:θ =α (ρ ∈R )或写成θ =α 及θ =α +π. ②过A (a ,α)垂直于极轴的直线:ρ cos θ =a cos α . ③以极点O 为圆心,a 为半径的圆(a >0):ρ =a .④若O (0,0),A (2a ,0),以OA 为直径的圆:ρ =2a cos θ . ⑤若O (0,0),A (2a ,),以OA 为直径的圆:ρ =2a sin θ . 对于例2(2),可以利用结论①⑤,作出直线与圆,通过解三角形的方法求|AB |,当然也可以用极坐标方程直接解ρ ,根据ρ 的几何意义求|AB |.例3 圆O 1和圆O 2的极坐标方程分别为ρ =4cos θ ,ρ =-4sin θ . (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过圆O 1和圆O 2交点的直线的直角坐标方程.)(3πR ∈=ρθ2)(3πR ∈=ρθ3π=θxy=3πtan x y 3=21311=+=d .3)21(12||2=-=AB 2π解:(1)由ρ =4cos θ 得ρ 2=4ρ cos θ ,根据x =ρ cos θ ,y =ρ sin θ ,所以x 2+y 2=4x . 即x 2+y 2-4x =0为圆O 1的直角坐标方程,同理x 2+y 2+4y =0为圆O 2的直角坐标方程.(2)由解得 即圆O 1和圆O 2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y =-x .例4(1)曲线的参数方程是(t 为参数,t ≠0),它的普通方程是________. (2)在平面直角坐标系xOy 中,直线l 的参数方程为 (参数t ∈R ),圆C 的参数方程为(参数θ ∈[0,2π]),则圆C 的圆心坐标为______,圆心到直线l 的距离为______. 解:(1)由得,带入y =1-t 2,得 注意到,所以已知参数的普通方程为 (2)直线l 的普通方程为x +y -6=0,圆C 的普通方程为x 2+(y -2)2=4, 所以圆心坐标为(0,2),圆心到直线l 的距离评述:(1)应熟练运用将参数方程化为普通方程的方法解决有关参数方程的问题;(2)在将参数方程化为普通方程的过程中应注意消参带来的范围变化问题.如例4(1),若参数方程为(t 为参数,t >0),则其普通方程为 例5 求椭圆的内接矩形的最大面积.解:设内接矩形在第一象限内的顶点为P (a cos θ ,b sin θ ),P 点在两轴上的投影分别为A 、B ,则有S 内接矩形=4S 矩形OAPB =4·a cos θ ·b sin θ =2ab sin2θ . 因为,所以2θ ∈(0,π),S 内接矩形的最大值为2ab . ⎪⎩⎪⎨⎧=++=-+,04,042222y y x x y x ⎩⎨⎧==;0,011y x ⎩⎨⎧-==.2,222y x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=21,11t y t x ⎩⎨⎧-=+=t y t x 3,3⎩⎨⎧+==2sin 2,cos 2θθy x t x 11-=x t -=11,)1()2()11(122--=--=x x x x y 111=/-=t x ⋅--=2)1()2(x x x y .222|620|=-+=d ⎪⎪⎩⎪⎪⎨⎧-=-=21,11t y t x ).1()1()2(2<--=x x x x y 12222=+by a x )2π,0(∈θ评述:圆锥曲线参数方程主要应用于利用参数方程设圆锥曲线上的点,从而讨论最值等有关问题.椭圆的参数方程为 (θ 为参数).抛物线y 2=2px (p >0)的参数方程为.例6 圆M 的参数方程为x 2+y 2-4Rx cos α -4Ry sin α +3R 2=0(R >0). (1)求该圆的圆心坐标以及圆M 的半径;(2)当R 固定,α 变化时,求圆心M 的轨迹,并证明此时不论α 取什么值,所有的圆M 都外切于一个定圆. 解:(1)依题意得圆M 的方程为(x -2R cos α )2+(y -2R sin α )2=R 2, 故圆心的坐标为M (2R cos α ,2R sin α ),半径为R .(2)当α 变化时,圆心M 的轨迹方程为 (α 为参数),两式平方相加得x 2+y 2=4R 2,所以圆心M 的轨迹是圆心在原点,半径为2R 的圆.由于所以所有的圆M 都和定圆x 2+y 2=R 2外切,和定圆x 2+y 2=9R 2内切.例7 过P (5,-3),倾斜角为α ,且的直线交圆x 2+y 2=25于P 1、P 2两点.(1)求|PP 1|·|PP 2|的值;(2)求弦P 1P 2的中点M 的坐标.解:(1)由已知得所以已知直线的参数方程为…………………①(t 为参数)代入圆的方程化简,得…………………② ②的两个解t 1、t 2就是P 1、P 2对应的参数,由参数的几何意义及韦达定理知)0,0(12222>>=+b a b y a x ⎩⎨⎧==θθtan sec b y a x ⎩⎨⎧==pty ptx 222⎩⎨⎧==,sin 2,cos 2ααR y R x ,32)sin 2()cos 2(22R R R R R -==+αα,2)sin 2()cos 2(22R R R R R +==+αα53cos -=α53cos -=α,54sin =α⎪⎪⎩⎪⎪⎨⎧+-=-=,543,535t y t x .095542=+-t t|PP 1|·|PP 2|=|t 1|·|t 2|=9.(2)设M (x ,y )为P 1P 2的中点,则点M 对应的参数,代入参数方程, 得 所以 评述:根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点t 1+t 2=0;③设弦M 1M 2的中点为M ,则点M 对应的参数值,(由此可求得|M 2M |及中点坐标). 习题13一、选择题 1.极坐标的直角坐标为 (A)(1,)(B)(-,-1)(C)(-1,-)(D)(-1,)2.椭圆(θ 为参数)的焦距等于( )(A) (B)2 (C) (D)3.已知某条曲线的参数方程为(0≤t ≤5),则该曲线是( )(A)线段 (B)圆弧 (C)双曲线的一支 (D)射线4.若是极坐标系中的一点,则四点中与P 重合的点有( )(A)1个(B)2个(C)3个(D)4个527221=+=t t t ,2533,2544==y x M PP PP ,9||||21=⋅).2533,2544(⇒221t t t M +=)34π(2,3333⎩⎨⎧==θθsin 5,cos 2y x 212129292⎪⎩⎪⎨⎧-=+=1,2322t y t x )3π,2(--P 、、、)3π5,2()3π8,2()3π2,2(-M R Q )3π5π2,2(-k N )(Z ∈k5.在极坐标系中,若等边△ABC 的两个顶点是,那么顶点C 的坐标可能是( ) (A) (B) (C)(D)(3,π)二、选择题6.过极点,倾斜角是的直线的极坐标方程为____________. 7.点M 的直角坐标(3,-3)化为极坐标是____________. 8.直线(t 为参数)过定点____________.9.曲线(t 为参数)与y 轴的交点坐标是____________.10.参数方程(θ 为参数)表示的曲线的普通方程是____________.三、解答题11.求过点,并且和极轴垂直的直线的极坐标方程.12.在椭圆上求一点,使点M 到直线的距离最小,并求出最小距离.13.设圆C 是以C (4,0)为圆心,半径等于4的圆.(1)求圆C 的极坐标方程;(2)从极点O 作圆C 的弦ON ,求ON 的中点M 的轨迹方程.)4π5,2()4π,2(B A 、)4π3,4()43π,32()π,32(6π⎩⎨⎧+-=+=t y at x 41,3⎩⎨⎧=+-=t y t x ,12⎩⎨⎧+==θθθcos sin ,2sin y x )4π,3(14922=+y x 021032=-+y x14.已知点M (2,1)和双曲线,求以M 为中点的双曲线右支的弦AB 所在直线l 的方程.专题13 坐标系与参数方程参考答案习题13一、选择题1.C 2.B 3.A 4.C 5.B 二、填空题 6.; 7.; 8.(3,-1); 9.(0,1),(0,-1); 三、解答题 11. 12.解:由题设知椭圆参数方程为(θ 为参数).设M 的坐标(3cos θ ,2sin θ )由点到直线距离 即d 的最小值为,此时.所以M 的坐标为13.解:(1)设P (ρ ,θ )为圆C 上任意一点,圆C 交极轴于另一点A .由已知|OA |=8,在Rt △ABC 中,|OP |=|OA |cos θ ,即ρ =8cos θ ,这就是圆C 的方程.1222=-y x )(6πR ∈=ρθ)47π,23(⋅=223cos θρ⎩⎨⎧==θθsin 2,cos 3y x ,13|210)4πsin(26|13|210sin 6cos 6|-+=-+=θθθd 261344π=θ).2,223((2)连结CM ,因为M 是ON 的中点,所以CM ⊥ON ,故M 在以OC 为直径的圆上. 由r =|OC |=4,得动点M 的轨迹方程是ρ =4cos θ .14.解:设AB 的方程为(t 为参数),代入双曲线方程,得(2cos 2α -sin 2α )t 2+(8cos α -2sin α )t +5=0,由于M 为AB 的中点,则t 1+t 2=0,则tan α =4,从而AB 的方程为:4x -y -7=0.⎩⎨⎧+=+=ααsin 1,cos 2t y t x。
高考数学-坐标系与参数方程(含22年真题讲解)
高考数学-坐标系与参数方程 (含22年真题讲解)1.【2022年全国甲卷】在直角坐标系xOy 中,曲线C 1的参数方程为{x =2+t 6y =√t(t 为参数),曲线C 2的参数方程为{x =−2+s 6y =−√s(s 为参数).(1)写出C 1的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2cosθ−sinθ=0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标. 【答案】(1)y 2=6x −2(y ≥0);(2)C 3,C 1的交点坐标为(12,1),(1,2),C 3,C 2的交点坐标为(−12,−1),(−1,−2).【解析】 【分析】(1)消去t ,即可得到C 1的普通方程;(2)将曲线C 2,C 3的方程化成普通方程,联立求解即解出. (1) 因为x =2+t 6,y =√t ,所以x =2+y 26,即C 1的普通方程为y 2=6x −2(y ≥0).(2) 因为x =−2+s 6,y =−√s ,所以6x =−2−y 2,即C 2的普通方程为y 2=−6x −2(y ≤0),由2cosθ−sinθ=0⇒2ρcosθ−ρsinθ=0,即C 3的普通方程为2x −y =0. 联立{y 2=6x −2(y ≥0)2x −y =0 ,解得:{x =12y =1 或{x =1y =2 ,即交点坐标为(12,1),(1,2);联立{y 2=−6x −2(y ≤0)2x −y =0 ,解得:{x =−12y =−1 或{x =−1y =−2 ,即交点坐标为(−12,−1),(−1,−2). 2.【2022年全国乙卷】在直角坐标系xOy 中,曲线C 的参数方程为{x =√3cos2t y =2sint ,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin (θ+π3)+m =0. (1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围. 【答案】(1)√3x +y +2m =0 (2)−1912≤m ≤52 【解析】 【分析】(1)根据极坐标与直角坐标的互化公式处理即可;(2)联立l 与C 的方程,采用换元法处理,根据新设a 的取值范围求解m 的范围即可. (1)因为l :ρsin (θ+π3)+m =0,所以12ρ⋅sinθ+√32ρ⋅cosθ+m =0,又因为ρ⋅sinθ=y,ρ⋅cosθ=x ,所以化简为12y +√32x +m =0,整理得l 的直角坐标方程:√3x +y +2m =0 (2)联立l 与C 的方程,即将x =√3cos2t ,y =2sint 代入 √3x +y +2m =0中,可得3cos2t +2sint +2m =0, 所以3(1−2sin 2t)+2sint +2m =0, 化简为−6sin 2t +2sint +3+2m =0,要使l 与C 有公共点,则2m =6sin 2t −2sint −3有解,令sint =a ,则a ∈[−1,1],令f(a)=6a 2−2a −3,(−1≤a ≤1), 对称轴为a =16,开口向上,所以f(a)max =f(−1)=6+2−3=5, f(a)min =f(16)=16−26−3=−196,所以−196≤2m ≤5m 的取值范围为−1912≤m ≤52.1.(2022·宁夏·吴忠中学三模(文))在平面直角坐标系xOy 中,曲线1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=.(1)求曲线1C 与2C 的直角坐标方程;(2)已知直线l 的极坐标方程为πR 02θαρα⎛⎫ ⎪=∈⎝<<⎭,,直线l 与曲线1C ,2C 分别交于M ,N (均异于点O )两点,若4OMON=,求α. 【答案】(1)曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)π4α=【解析】 【分析】(1)1C 的参数方程消参可求出1C 的直角坐标方程;2C 的极坐标方程同乘ρ,把cos x ρθ=,222x y ρ=+代入2C 的极坐标方程可求出2C 的直角坐标方程.(2)设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,用极径的几何意义表示出4OMON=,即124ρρ=,解方程即可求出α. (1)解:1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),把2216y t =代入24x t =-中可得,24y x =-,所以曲线1C 的直角坐标方程为24y x =-,2C 的极坐标方程为2cos ρθ=,即22cos ρρθ=,所以曲线2C 的直角坐标方程为2220x y x +-=,综上所述:曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)由(1)知,1C 的极坐标方程为2sin 4cos ρθθ=-, 设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,则21sin 4cos ραα=-,22cos ρα=,由题意知02πα<<可得sin 0α≠,因为4OMON=,所以124ρρ=,所以24cos 42cos sin ααα-=⨯,故21sin 2α=,所以sin 2α=或sin 2α=(舍) 所以π4α=.2.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),曲线2C 的参数方程为2221x t t y t ⎧=-⎨=-⎩(t 为参数).已知曲线2C 与x ,y 正半轴分别相交于,A B 两点.(1)写出曲线1C 的极坐标方程,并求出,A B 两点的直角坐标;(2)若过原点O 且与直线AB 垂直的直线l 与曲线1C 交于P 点,与直线AB 交于Q 点,求线段PQ 的长度.【答案】(1)2cos ρθ=,A 点为()3,0,B 点为()0,3(2)2【解析】 【分析】(1)普通方程()2211x y -+=,即可得2cos ρθ=(2)求出直线AB 的方程为3y x =-+,然后求出直线l 的方程,然后可求出PQ 的长度 (1)曲线1C 的普通方程()2211x y -+=,极坐标方程()()22cos 1sin 1ρθρθ-+=,∴2cos ρθ=.在曲线2C 上,当0x =时,0=t 或2t =,此时3y =或1y =-(舍),所以B 点为()0,3. 当0y =时,1t =-或1t =,此时3x =或1x =-(舍),所以A 点为()3,0. (2)直线AB 的方程为3y x =-+,极坐标方程为sin cos 3ρθρθ=-+, ∴()sin cos 3ρθθ+=,过原点O 且与直线AB 垂直的直线l 的极坐标方程为4πθ=.4πθ=与2cos ρθ=联立,得1ρ 4πθ=与()sin cos 3ρθθ+=联立,得2ρ=∴21PQ ρρ=-=. 3.(2022·江西·南昌市八一中学三模(理))在直角坐标系xOy 中,直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭.(1)求C 和l 的直角坐标方程;(2)设点Q的直角坐标为(,P 为C 上的动点,求PQ 中点R 的轨迹的极坐标方程. 【答案】(1)直线l 的普通方程为2x y +=,曲线C 的普通方程为()(2214x y ++=;(2)21ρ= 【解析】 【分析】(1)消去参数t ,即可得到直线l 的普通方程,再由两角和的正弦公式及222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,将曲线C 的极坐标方程化为直角坐标方程;(2)设(),R x y ,即可表示P 点坐标,再根据点P 在曲线C 上,代入C 的方程,即可得到点R 的轨迹方程,再将直角坐标方程化为极坐标方程即可;(1)解:因为直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 所以直线l 的普通方程为2x y +=,因为曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭,即4sin cos cos sin 66ππρθθ⎛⎫=-+ ⎪⎝⎭,即2cos ρθθ=--,所以2sin 2cos ρθρθ=--,又222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,所以222x y x +=--,即()(2214x y +++=,即曲线C 的普通方程为()(2214x y ++=;(2)解:设(),R x y,则(21,2P x y -,因为点P 在曲线C 上,所以()(2221124x y -++=,即221x y +=,所以PQ 中点R 的轨迹方程为221x y +=,即21ρ=4.(2022·黑龙江·哈尔滨三中模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为()2cos θsin θρ=+. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设点()2,1P ,直线l 与曲线C 的交点为A ,B ,求PA PBPB PA+的值. 【答案】(1)10x y --=,22220x y x y +--= (2)4 【解析】 【分析】(1)直接消去参数,将直线l 的方程化为普通方程,利用互化公式将曲线C 的极坐标方程转化为直角坐标方程(2)将直线的参数方程代入曲线C的普通方程,得到210t -=,得到12121t t t t +==- ,化简()222121212122112122PA PBt t t t t t t t PB PA t t t t t t +-++=+==,代入韦达定理,即可得到答案 (1)直线l的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 消去参数t 可得l 的普通方程为10x y --=.曲线C 的极坐标方程为2(cos θsin θ)ρ=+,即22(cos θsin θ)ρρ=+,根据222cos θsin θx y x y ρρρ=⎧⎪=⎨⎪=+⎩,可得2222x y x y +=+.∴曲线C 的直角坐标方程为22220x y x y +--= (2)在直线l的参数方程21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)中,设点A ,B 对应的参数分别为1t ,2t , 将直线l的参数方程221x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入22220x y x y +--=,得210t +-=,∴12t t +=121t t =-.∴()2221212121221121224PA PBt t t t t t t t PB PA t t t t t t +-++=+=== 5.(2022·安徽淮南·二模(文))在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(其中α为参数,02πα≤<),以原点O 为极点,x 轴非负半轴为极轴,取相同的单位长度建立极坐标系,直线1l 的极坐标方程为(R)3πθρ=∈.(1)求曲线C 的极坐标方程与直线1l 的直角坐标方程;(2)设直线1l 与曲线C 交于点O ,A ,直线2l 与曲线C 交于点O ,B ,求AOB 面积的最大值. 【答案】(1)4sin ρθ=,y(2)【解析】【分析】(1)依据参数方程与普通方程的互化和极坐标方程与直角坐标方程的互化即可解决; (2)先求得AOB 面积的表达式,再对其求最大值即可. (1)曲线C 的直角坐标方程为22(2)4x y +-=,展开得2240x y y +-=, 则曲线C 的极坐标方程为4sin ρθ=. 直线1l的直角坐标方程为y (2)由(1)可知π||4sin3OA == 设直线2l 的极坐标方程为(R)θβρ=∈,根据条件知要使AOB 面积取最大值,则ππ3β<<,则||4sin OB β=,于是1ππsin sin 233OAB S OA OB βββ⎛⎫⎛⎫=⨯⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2π6sin cos cos 2)3sin 226ββββββ⎛⎫=-=--=+ ⎪⎝⎭,所以当π3π262β+=即2π3β=时,AOB的面积取最大值,最大值为6.(2022·内蒙古呼和浩特·二模(理))在直角坐标系xOy 中,曲线C的参数方程为))cos sin cos sin 2x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,两坐标系取相同单位长度,直线l 的极坐标方程为2cos 3sin 100ρθρθ+-=. (1)求曲线C 的普通方程和直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 距离的最小值. 【答案】(1)2214x y +=,23100x y +-=;【解析】 【分析】(1)消去曲线C 的参数方程中的参数即可得解,利用极坐标与直角坐标互化得直线l 的直角坐标方程作答.(2)设出曲线C 上任意一点的坐标,利用点到直线距离公式及辅助角公式求解作答. (1)由))cos sin cos sin x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),消去参数得2214x y +=, 所以曲线C 的普通方程为2214x y +=,把cos sin x y ρθρθ=⎧⎨=⎩代入直线l 的极坐标方程2cos 3sin 100ρθρθ+-=得:23100x y +-=,所以直线l 的直角坐标方程为23100x y +-=. (2)由(1)知,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数),设()2cos ,sin P αα为曲线C 上一点,P 到直线l 的距离为d ,则105sin d αϕ-+===ϕ由4tan 3ϕ=确定,因此,当()sin 1αϕ+=时,d所以曲线C 上的点到直线l 7.(2022·甘肃·武威第六中学模拟预测(文))在直角坐标系xOy 中,曲线C 的参数方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),以坐标原点极点,以x 轴正半轴为极轴建立极坐标系,直线l 的极坐sin cos 0θρθ-.(1)求曲线C 的普通方程和直线l 的直角坐标方程: (2)若直线与曲线C 交于A ,B 两点,点P 的坐标为(0,1),求11||||PA PB +的值. 【答案】(1)224x y -=,0x+= (2)5【解析】【分析】(1)消去参数t 可得曲线C 的方程,利用公式法转化得到直线l 的直角坐标方程; (2)利用直线l 的参数方程中t 的几何意义求解. (1)∴11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),∴22222222112112x t t t t y t t t t ⎧⎛⎫=+=++⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=-=+- ⎪⎪⎝⎭⎩,所以224x y -=, 所以曲线C 的方程为224x y -=又∴cos x ρθ=,sin y ρθ=,0x - 所以直线l的直角坐标方程为0x =; (2)∴()0,1P 在直线l 上,∴直线l的参数方程为112x y t⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)设A ,B 对应的参数分别为1t 与2t将直线l 的参数方程代入到224x y -=得22100t t --=. ∴2Δ(2)41(10)440=--⨯⨯-=>, ∴122t t +=,12100t t ⋅=-<, ∴1||PA t =,2||PB t =∴1212121111||||-+=+====t tPA PB t t t t,所以11||||+=PA PB 8.(2022·全国·赣州市第三中学模拟预测(理))在平面直角坐标系xOy 中,曲线1C 满足参数方程2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩(t 为参数且11t -≤≤).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点P 为曲线1C 上一动点,且极坐标为(),ρθ. (1)求曲线1C 的直角坐标方程; (2)求()cos 3sin ρθθ+的取值范围.【答案】(1)y =()2204y x y +=≥(2)⎡-⎣ 【解析】 【分析】(1)消去参数t 可得普通方程,由11t -≤≤,得到0y ≥,即可求出曲线1C 的直角坐标方程; (2)先判断出2ρ=利用三角函数出()cos 3sin ρθθ+的范围. (1)由2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩消去t 可得:224x y +=. 由于11t -≤≤,则212t +≤,即0y ≥.因此曲线1C的直角坐标方程为y ()2204y x y +=≥(2)曲线1C 为上半圆,点P 在1C 上,因此2ρ=,0,θπ⎡⎤∈⎣⎦ 由三角函数的性质知,在[]0,π上,1cos 3sin θθ-≤+≤因此()cos 3sin 2,ρθθ⎡+∈-⎣9.(2022·黑龙江·哈尔滨三中三模(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为22x y t ⎧=⎪⎨=-⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为22cos 4sin 10ρρθρθ---=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点P 的坐标为()2,2,求1PA PB-.【答案】(1)()()22126x y -+-=;【解析】 【分析】(1)将222x y ρ=+、cos x ρθ=、sin y ρθ=代入圆C 的极坐标方程即可求其直角坐标方程; (2)将直线l 的参数方程化为标准形式,代入圆C 的直角坐标方程得到关于参数t 的二次方程,根据韦达定理和直线参数方程参数的几何意义即可求出1PA PB-.(1)∴22cos 4sin 10ρρθρθ---=,∴222410x y x y +---=, 即()()22126x y -+-=; (2)直线l参数方程的标准形式为2122x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 代入圆C直角坐标方程整理得250t -=, 设方程的两根为1t 、2t ,则A 、B 对应参数1t 、2t ,则121250t t t t ⋅=-<⎧⎪⎨+⎪⎩,∴1PA PB-121211t t t t ==+-10.(2022·河南·模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为222x m y m⎧=⎨=⎩(m 为参数),直线l 的参数方程为12x tcos y tsin αα⎧=+⎪⎨⎪=⎩,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=,直线l 与1C 交于点P ,Q ,与2C 交于点S ,T ,与x 轴交于点R .(1)写出曲线1C 的普通方程和曲线2C 的直角坐标方程; (2)若()4PR QR SR TR -=-,求直线l 的倾斜角. 【答案】(1)22y x =,()2211x y -+= (2)2π或4π或34π【解析】 【分析】(1)消参求得曲线1C 的普通方程为22y x =.由2cos ρθ=同乘ρ得到2C 的直角坐标方程. (2)l 过定点1,02R ⎛⎫ ⎪⎝⎭.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,利用参数的几何含义化简求解. (1)曲线1C 的普通方程为22y x =.由2cos ρθ=得22cos ρρθ=.所以2C 的直角坐标方程为222x y x +=,即()2211x y -+=.(2)不妨设0απ<<,则sin 0α>.易知1,02R ⎛⎫ ⎪⎝⎭是l 过的定点.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,设P ,Q 对应的参数分别为P t ,Q t ,则22cos sin P Q PR QR t t αα-=+=.将直线l 的参数方程代入()222:11C x y -+=,得23cos 04t t α--=, 设S ,T 对应的参数分别为S t ,T t ,则cos S T SR TR t t α-=+=.由()4PR QR SR TR -=-得22cos 4cos sin ααα=,得cos 0α=或sin α=l 的倾斜角为2π或4π或34π. 11.(2022·河南洛阳·三模(理))在直角坐标系xOy 中,直线1l的参数方程为12x ty kt⎧=⎪⎨=⎪⎩(t 为参数),直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数),设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线1C .(1)求曲线1C 的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,设曲线2C 的极坐标方程为2cos ρθ=,射线OM :()04πθρ=≥与1C ,2C 分别交于A ,B 两点,求线段AB 的长.【答案】(1)22163x y +=,()0y ≠(2)2【解析】 【分析】(1)消去参数得到直线1l 、2l 的普通方程,联立两方程消去k ,即可得到P 的轨迹; (2)首先将1C 的方程化为极坐标方程,再将()04πθρ=≥代入两极坐标方程即可求出OA ,OB ,即可得解;(1)解:因为直线1l的参数方程为12x ty kt⎧⎪⎨=⎪⎩(t 为参数), 消去参数t 得直线1l的普通方程为(12y k x =①, 直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数), 消去参数m 得直线2l的普通方程为(1y x k=-②, 设(),P x y ,由①②联立得((121y k x y x k ⎧=⎪⎪⎨⎪=-⎪⎩,消去k 得()22162y x =--即曲线1C 的普通方程为22163x y +=,()0y ≠;(2)解:设1OA ρ=,2OB ρ=,由cos sin x y ρθρθ=⎧⎨=⎩得曲线1C 的极坐标方程为2261sin ρθ=+(02θπ<<,θπ≠),代入()04πθρ=≥得12OA ρ==,将()04πθρ=≥代入2cos ρθ=得2OB ρ==所以2AB OA OB =-= 即线段AB的长度为212.(2022·安徽省芜湖市教育局模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 3sin x y ββ=+⎧⎨=⎩(β为参数),将曲线1C 经过伸缩变换13x xy y =⎧''⎪⎨=⎪⎩得到曲线2C .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程;(2)已知射线():0l θαρ=≥与曲线2C 交于A 、B 两点,若3OB OA =,求tan α的值. 【答案】(1)24cos 30ρρθ-+= (2)0 【解析】 【分析】(1)求出曲线2C 的参数方程,化为普通方程,再利用极坐标方程与直角坐标方程之间的转换关系可得出曲线2C 的极坐标方程;(2)设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根,由已知可得213ρρ=,结合韦达定理可求得cos α的值,利用同角三角函数的基本关系可求得tan α的值. (1)解:由题可得2C 的参数方程为2cos sin x y ββ=+⎧⎨=⎩(β为参数),则2C 的直角方程为()2221x y -+=,即22430x y x +-+=, 因为cos x ρθ=,sin y ρθ=,所以24cos 30ρρθ-+=,所以曲线2C 的极坐标方程为24cos 30ρρθ-+=. (2)解:设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根, 2Δ16cos 120α=->,则124cos ρρα+=①,123ρρ=②, 因为3OB OA =,所以213ρρ=③,由①②③解得cos 1α=,则sin 0α=,tan 0α∴=,此时16120∆=->,合乎题意. 故tan 0α=.13.(2022·贵州遵义·三模(文))在极点为O 的极坐标系中,经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,且与极轴的交点为N . (1)当π2α=时,求l 的极坐标方程; (2)当ππ,43α⎡⎤∈⎢⎥⎣⎦时,求MON △面积的取值范围.【答案】(1)cos ρθ=(2)⋃⎣⎦⎣⎦【解析】 【分析】(1)先求得l 的直角坐标方程,再转化为极坐标方程.(2)对直线l 的倾斜角进行分类讨论,结合三角形的面积公式求得MON △面积的取值范围. (1)点π2,6M ⎛⎫ ⎪⎝⎭,则π2cos 6π2sin 16x y ⎧=⨯=⎪⎪⎨⎪=⨯=⎪⎩,所以M点的直角坐标为),当π2α=时,直线l的直角坐标方程为x =转化为极坐标方程为cos ρθ=.(2)在极坐标系下:经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,在直角坐标系下:经过点)M的直线l 的倾斜角为α或πα-.即直线l 的倾斜角是α或πα-. 当直线l 的倾斜角为α时,直线l 的方程为(1tan y x α-=,令0y =得1tan N x α-=ππ,43α⎡⎤∈⎢⎥⎣⎦,tan α⎡∈⎣,111,1,,tan tan tan N x ααα⎤⎡∈-∈-=-⎥⎢⎣⎦⎣⎦⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯-+⨯ ⎝11tan 2α⎛=-⨯∈ ⎝⎣⎦.当直线l 的倾斜角为πα-时,直线l 的方程为()((1tan πtan y x x αα-=-=-,令0y =得1tan N x α=11,1tan tan N x αα⎤⎤∈=⎥⎥⎣⎦⎣⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯⨯ ⎝11tan 2α⎛=⨯∈ ⎝⎣⎦.综上所述,MON △面积的取值范围是⋃⎣⎦⎣⎦. 14.(2022·江西·上饶市第一中学二模(文))在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的普通方程为:22(2)4x y -+=,曲线2C 的参数方程是2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),点2,2P π⎛⎫⎪⎝⎭.(1)求曲线1C 和2C 的极坐标方程; (2)设射线(0)3πθρ=>分别与曲线1C 和2C 相交于A ,B 两点,求PAB △的面积.【答案】(1)4cos ρθ=,22123sin ρθ=+(2)1 【解析】 【分析】(1)由公式法求极坐标方程(2)联立方程后分别求出A ,B 坐标,及P 到直线AB 距离后求面积 (1)曲线1C 的直角坐标方程为:2240x y x +-=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线1C 的极坐标方程为:4cos ρθ=. 曲线2C 的普通方程是:22143x y +=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线2C 的极坐标方程为:22123sin ρθ=+.(2)设12,,,33A B ππρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则1||4cos23OA πρ===,22221216||53sin 3OB ρπ===+,所以||OB =,所以||||||2AB OA OB =-=-. 又(0,2)P到直线:AB y =的距离为:1d ==所以12112PABS⎛=⨯⨯= ⎝⎭ 15.(2022·全国·模拟预测(文))在直角坐标系xOy 中,曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 4ρθθ=. (1)求C 和l 的直角坐标方程;(2)若点M ,N 分别为曲线C 和直线l 上的动点,求MN 的最小值.【答案】(1)22163x y +=,40x -=2- 【解析】 【分析】(1)利用22cos sin 1θθ+=消去参数θ,可得曲线C 的普通方程,利用极坐标与直角坐标的互化公式可求出直线l 的直角坐标方程, (2)设曲线C上任意一点)Mθθ到直线l 的距离为d ,然后利用点到直线的距离公式表示出d ,再根据三角函数的性质可求出其最小值 (1)由曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数)可知2222cos sin 1θθ+=+=,故曲线C 的直角坐标方程为22163x y +=.由直线l的极坐标方程为cos sin 4ρθθ=,结合cos x ρθ=,sin y ρθ=可知l的直角坐标方程为40x -=. (2)MN 的最小值即为曲线C 上任意一点到直线l 距离的最小值.设曲线C上任意一点)Mθθ到直线l 的距离为d ,则2cos 24d πθ⎛⎫==+≥ ⎪⎝⎭,故MN 2..。
十年高考真题分类汇编(2010-2019) 数学 专题18 坐标系与参数方程(含答案)
十年高考真题分类汇编(2010—2019)数学专题18坐标系与参数方程1.(2018·北京·理T10)在极坐标系中,直线ρcos θ+ρsin θ=a(a>0)与圆ρ=2cos θ相切,则a=___________.2.(2019·全国1·理T22文T22)在直角坐标系xOy 中,曲线C 的参数方程为{x =1-t 21+t 2,y =4t 1+t 2(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcos θ+√3 ρsin θ+11=0. (1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.3.(2019·全国2·理T22文T22)[选修4—4:坐标系与参数方程]在极坐标系中,O 为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sin θ上,直线l 过点A(4,0)且与OM 垂直,垂足为P. (1)当θ0=π3时,求ρ0及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 4.(2019·全国3·理T22文T22)[选修4—4:坐标系与参数方程]如图,在极坐标系Ox 中,A(2,0),B (√2,π4),C (√2,3π4),D(2,π),弧AB ⏜,BC ⏜,CD ⏜所在圆的圆心分别是(1,0),(1,π2),(1,π),曲线M 1是弧AB⏜,曲线M 2是弧BC ⏜,曲线M 3是弧CD ⏜.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M 由M1,M2,M3构成,若点P 在M 上,且|OP|=√3 5.(2018·全国1·文T 理22)[选修4—4:坐标系与参数方程]在直角坐标系xOy 中,曲线C 1的方程为y=k|x|+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ-3=0. (1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程.6.(2018·全国2·理T22文T22)[选修4—4:坐标系与参数方程] 在直角坐标系xOy 中,曲线C 的参数方程为(θ为参数),直线l 的参数方程为(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.7.(2018·全国3·文T理22)[选修4—4:坐标系与参数方程]在平面直角坐标系xOy中,☉O的参数方程为(θ为参数),过点(0,-)且倾斜角为α的直线l 与☉O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.8.(2017·全国1·理T22文T22)[选修4—4:坐标系与参数方程]在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.9.(2017·全国2·理T22文T22)[选修4—4:坐标系与参数方程]在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|·|OP|=16,求点P的轨迹C2的直角坐标方程;),点B在曲线C2上,求△OAB面积的最(2)设点A的极坐标为(2,π3大值.10.(2017·全国3·理T22文T22)[选修4—4:坐标系与参数方程]在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cos θ+sin θ)- √2 =0,M为l3与C的交点,求M的极径.11.(2017·江苏·T21)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.12.(2016·全国1·理T23文T23)在直角坐标系xOy 中,曲线C 1的参数方程为{x =acost ,y =1+asint (t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a. 13.(2016·全国2·理T23文T23)在直角坐标系xOy 中,圆C 的方程为(x+6)2+y2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (2)直线l 的参数方程是(t 为参数),l 与C 交于A,B 两点,|AB|=,求l 的斜率.14. (2016·全国3·理T23文T23)在直角坐标系xOy 中,曲线C 1的参数方程为(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin =2.(1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ|的最小值及此时P 的直角坐标.15.(2015·全国1·理T23文T23)在直角坐标系xOy 中,直线C 1:x=-2,圆C 2:(x-1)2+(y-2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M,N, 求△C 2MN 的面积.16.(2015·全国2·理T23文T23)在直角坐标系xOy 中,曲线C 1:(t 为参数,t≠0),其中 0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=2cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B,求|AB|的最大值.17.(2015·陕西·理T23文T23)在直角坐标系xOy 中,直线l 的参数方程为(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,☉C 的极坐标方程为ρ=2sin θ.(1)写出☉C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 18.(2015·湖南·理T16文T16)已知直线l:(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cos θ.(1)将曲线C的极坐标方程化为直角坐标方程;(2)设点M的直角坐标为(5, √3),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.19.(2014·全国1·理T23文T23)已知曲线C:=1,直线l:(t为参数).(1)写出曲线C的参数方程,直线l的普通方程;(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.20.(2014·全国2·理T23文T23)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,].半圆C的极坐标方程为ρ=2cos θ,θ∈[0,π2(1)求C的参数方程;(2)设点D在C上,C在D处的切线与直线l:y=√3x+2垂直,根据(1)中你得到的参数方程,确定D的坐标.21.(2013·全国2·理T23文T23)已知动点P,Q都在曲线 C:(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.22.(2013·全国1·理T23文T23)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).23.(2013·江苏·T21)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.24.(2012·全国·理T23文T23)已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为.(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.25.(2011·全国·理T23文T23)在直角坐标系xOy中,曲线C1的参数方程为(α为参数).M是C1上的动点,P点满足=2,P点的轨迹为曲线C2.(1)求C2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.26.(2010·全国·理T23文T23)已知直线C 1:(t 为参数),圆C 2:(θ为参数).(1)当α=时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.十年高考真题分类汇编(2010—2019)数学专题18坐标系与参数方程1.(2018·北京·理T10)在极坐标系中,直线ρcos θ+ρsin θ=a(a>0)与圆ρ=2cos θ相切,则a=___________. 【答案】√2 +1【解析】由题意,可得直线的直角坐标方程为x+y=a(a>0),圆的直角坐标方程为x2+y2-2x=0,即(x-1)2+y2=1. 由直线与圆相切,可知1+1=1,即|1-a|=√2,解得a=1±√2.∵a>0,∴a=√2+1. 2.(2019·全国1·理T22文T22)在直角坐标系xOy 中,曲线C 的参数方程为{x =1-t 21+t 2,y =4t 1+t2(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcos θ+√3 ρsin θ+11=0. (1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【解析】(1)因为-1<1-t 21+t2≤1,且x2+(y 2)2=(1-t 21+t2)2+4t 2(1+t 2)2=1,所以C 的直角坐标方程为x 2+y 24=1(x≠-1).l 的直角坐标方程为2x+√3y+11=0.(2)由(1)可设C 的参数方程为{x =cosα,y =2sinα(α为参数,-π<α<π). C 上的点到l的距离为√3sinα+11√7=4cos (α-π3)+11√7.当α=-2π3时,4cos (α-π3)+11取得最小值7,故C 上的点到l 距离的最小值为√7. 3.(2019·全国2·理T22文T22)[选修4—4:坐标系与参数方程]在极坐标系中,O 为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sin θ上,直线l 过点A(4,0)且与OM 垂直,垂足为P. (1)当θ0=π3时,求ρ0及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 【解析】(1)因为M(ρ0,θ0)在C 上,当θ0=π3时,ρ0=4sin π3=2√3. 由已知得|OP|=|OA|cos π3=2.设Q(ρ,θ)为l 上除P 的任意一点.在Rt △OPQ 中,ρcos θ-π3=|OP|=2. 经检验,点P 2,π3在曲线ρcos θ-π3=2上. 所以,l 的极坐标方程为ρcos θ-π3=2.(2)设P(ρ,θ),在Rt △OAP 中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ. 因为P 在线段OM 上,且AP ⊥OM,故θ的取值范围是π4,π2. 所以,P 点轨迹的极坐标方程为ρ=4cos θ,θ∈π4,π2.4.(2019·全国3·理T22文T22)[选修4—4:坐标系与参数方程]如图,在极坐标系Ox 中,A(2,0),B (√2,π4),C (√2,3π4),D(2,π),弧AB ⏜,BC ⏜,CD ⏜所在圆的圆心分别是(1,0),(1,π2),(1,π),曲线M 1是弧AB⏜,曲线M 2是弧BC ⏜,曲线M 3是弧CD ⏜.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M 由M1,M2,M3构成,若点P 在M 上,且|OP|=√3 【解析】(1)由题设可得,弧所在圆的极坐标方程分别为ρ=2cos θ,ρ=2sin θ,ρ=-2cos θ.所以M 1的极坐标方程为ρ=2cos θ0≤θ≤,M 2的极坐标方程为ρ=2sin θ≤θ≤,M 3的极坐标方程为ρ=-2cos θ≤θ≤π.(2)设P(ρ,θ),由题设及(1)知 若0≤θ≤,则2cos θ=,解得θ=; 若≤θ≤,则2sin θ=,解得θ=或θ=; 若≤θ≤π,则-2cos θ=,解得θ=.综上,P 的极坐标为.5.(2018·全国1·文T 理22)[选修4—4:坐标系与参数方程]在直角坐标系xOy 中,曲线C 1的方程为y=k|x|+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ-3=0. (1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程.【解析】(1)由x=ρcos θ,y=ρsin θ得C 2的直角坐标方程为(x+1)2+y 2=4. (2)由(1)知C 2是圆心为A(-1,0),半径为2的圆.由题设知,C 1是过点B(0,2)且关于y 轴对称的两条射线.记y 轴右边的射线为l 1,y 轴左边的射线为l 2,由于B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点.当l 1与C 2只有一个公共点时,A 到l 1所在直线的距离为2,所以|-k+2|√k +1=2,故k=-43或k=0.经检验,当k=0时,l 1与C 2没有公共点;当k=-43时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点.当l 2与C 2只有一个公共点时,A 到l 2所在直线的距离为2,所以|k+2|√k +1=2,故k=0或k=43,经检验,当k=0时,l 1与C 2没有公共点;当k=43时,l 2与C 2没有公共点. 综上,所求C 1的方程为y=-43|x|+2.6.(2018·全国2·理T22文T22)[选修4—4:坐标系与参数方程] 在直角坐标系xOy 中,曲线C 的参数方程为(θ为参数),直线l 的参数方程为(t为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 【解析】(1)曲线C 的直角坐标方程为=1.当cos α≠0时,l 的直角坐标方程为y=tan α·x+2-tan α, 当cos α=0时,l 的直角坐标方程为x=1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程 (1+3cos 2α)t 2+4(2cos α+sin α)t-8=0,①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为t 1,t 2,则t 1+t 2=0.又由①得t1+t2=-,故2cos α+sin α=0,于是直线l的斜率k=tan α=-2.7.(2018·全国3·文T理22)[选修4—4:坐标系与参数方程]在平面直角坐标系xOy中,☉O的参数方程为(θ为参数),过点(0,-)且倾斜角为α的直线l 与☉O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.【解析】(1)☉O的直角坐标方程为x2+y2=1.当α=时,l与☉O交于两点.当α≠时,记tan α=k,则l的方程为y=kx-,l与☉O交于两点当且仅当<1,解得k<-1或k>1,即α∈或α∈.综上,α的取值范围是.(2)l的参数方程为t为参数,<α<.设A,B,P对应的参数分别为t A,t B,t P,则t P=,且t A,t B满足t2-2tsin α+1=0.于是t A+t B=2sin α,t P=sin α.又点P的坐标(x,y)满足所以点P的轨迹的参数方程是α为参数,<α<.8.(2017·全国1·理T22文T22)[选修4—4:坐标系与参数方程]在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解析】(1)曲线C的普通方程为+y2=1.当a=-1时,直线l的普通方程为x+4y-3=0.由解得从而C与l的交点坐标为(3,0),.(2)直线l的普通方程为x+4y-a-4=0,故C上的点(3cos θ,sin θ)到l的距离为d=.当a≥-4时,d的最大值为.由题设得,所以a=8;当a<-4时,d的最大值为.由题设得,所以a=-16.综上,a=8或a=-16.9.(2017·全国2·理T22文T22)[选修4—4:坐标系与参数方程]在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcos θ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|·|OP|=16,求点P的轨迹C2的直角坐标方程;),点B在曲线C2上,求△OAB面积的最(2)设点A的极坐标为(2,π3大值.【解析】(1)设P的极坐标为(ρ,θ)(ρ>0),M的极坐标为(ρ1,θ)(ρ1>0).由题设知|OP|=ρ,|OM|=ρ1=.由|OM|·|OP|=16得C2的极坐标方程ρ=4cos θ(ρ>0).因此C2的直角坐标方程为(x-2)2+y2=4(x≠0).(2)设点B的极坐标为(ρB,α)(ρB>0).由题设知|OA|=2,ρB=4cos α,于是△OAB面积S=|OA|·ρB·sin∠AOB=4cos α·=2≤2+.当α=-时,S取得最大值2+.所以△OAB面积的最大值为2+.10.(2017·全国3·理T22文T22)[选修4—4:坐标系与参数方程]在直角坐标系xOy 中,直线l 1的参数方程为(t 为参数),直线l 2的参数方程为(m 为参数).设l 1与l 2的交点为P,当k 变化时,P 的轨迹为曲线C. (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l3:ρ(cos θ+sin θ)- √2 =0,M 为l3与C 的交点,求M 的极径.【解析】(1)消去参数t 得l 1的普通方程l 1:y=k(x-2);消去参数m 得l 2的普通方程l 2:y=(x+2).设P(x,y),由题设得消去k 得x 2-y 2=4(y≠0).所以C 的普通方程为x 2-y 2=4(y≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π). 联立得cos θ-sin θ=2(cos θ+sin θ). 故tan θ=-,从而cos 2θ=,sin 2θ=. 代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5, 所以交点M 的极径为.11.(2017·江苏·T21)在平面直角坐标系xOy 中,已知直 线l 的参数方程为(t 为参数),曲线C 的参数方程为(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值. 【解析】直线l 的普通方程为x-2y+8=0. 因为点P 在曲线C 上,设P(2s 2,2s),从而点P 到直线l 的距离d=.当s=时,d min =.因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l 的距离取到最小值.12.(2016·全国1·理T23文T23)在直角坐标系xOy 中,曲线C 1的参数方程为{x =acost ,y =1+asint (t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(2)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a.【解析】(1)消去参数t得到C1的普通方程x2+(y-1)2=a2,C1是以(0,1)为圆心,a为半径的圆.将x=ρcos θ,y=ρsin θ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsin θ+1-a2=0.(2)曲线C1,C2的公共点的极坐标满足方程组若ρ≠0,由方程组得16cos2θ-8sin θcos θ+1-a2=0,由已知tan θ=2,可得16cos2θ-8sin θcos θ=0,从而1-a2=0,解得a=-1(舍去),a=1.a=1时,极点也为C1,C2的公共点,在C3上,所以a=1.13.(2016·全国2·理T23文T23)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|=,求l的斜率.【解析】(1)由x=ρcos θ,y=ρsin θ可得圆C的极坐标方程ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB|=|ρ1-ρ2|==.由|AB|=得cos2α=,tan α=±.所以l的斜率为或-.15.(2016·全国3·理T23文T23)在直角坐标系xOy中,曲线C1的参数方程为(α为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【解析】(1)C1的普通方程为+y2=1.C2的直角坐标方程为x+y-4=0.(2)由题意,可设点P的直角坐标为(cos α,sin α).因为C2是直线,所以|PQ|的最小值即为P到C2的距离d(α)的最小值,d(α)=.当且仅当α=2kπ+(k∈Z)时,d(α)取得最小值,最小值为,此时P的直角坐标为.15.(2015·全国1·理T23文T23)在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为θ=π(ρ∈R),设C2与C3的交点为M,N,4求△C2MN的面积.【解析】(1)因为x=ρcos θ,y=ρsin θ,所以C1的极坐标方程为ρcos θ=-2,C2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-3ρ+4=0,解得ρ1=2,ρ2=.故ρ1-ρ2=,即|MN|=.由于C2的半径为1,所以△C2MN的面积为.16.(2015·全国2·理T23文T23)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α<π.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sin θ,C3:ρ=2cos θ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【解析】(1)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2-2x=0.联立解得所以C2与C3交点的直角坐标为(0,0)和.(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.因此A的极坐标为(2sin α,α),B的极坐标为(2cos α,α).所以|AB|=|2sin α-2cos α|=4.故当α=时,|AB|取得最大值,最大值为4.17.(2015·陕西·理T23文T23)在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,☉C的极坐标方程为ρ=2sin θ.(1)写出☉C的直角坐标方程;(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.【解析】(1)由ρ=2sin θ,得ρ2=2ρsin θ,从而有x2+y2=2y,所以x2+(y-)2=3.(2)设P,又C(0,),则|PC|=,故当t=0时,|PC|取得最小值,此时,点P的直角坐标为(3,0).18.(2015·湖南·理T16文T16)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cos θ.(1)将曲线C的极坐标方程化为直角坐标方程;(2)设点M的直角坐标为(5, √3),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.【解析】(1)ρ=2cos θ等价于ρ2=2ρcos θ. ①将ρ2=x2+y2,ρcos θ=x代入①即得曲线C的直角坐标方程为x2+y2-2x=0.②(2)将代入②,得t2+5t+18=0.设这个方程的两个实根分别为t1,t2,则由参数t的几何意义即知,|MA|·|MB|=|t1t2|=18.19.(2014·全国1·理T23文T23)已知曲线C:=1,直线l:(t为参数).(1)写出曲线C的参数方程,直线l的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A,求|PA|的最大值与最小值. 【解析】(1)曲线C 的参数方程为{x =2cosθ,y =3sinθ(θ为参数).直线l 的普通方程为2x+y-6=0.(2)曲线C 上任意一点P(2cos θ,3sin θ)到l 的距离为d=√55|4cos θ+3sin θ-6|,则|PA|=d sin30°=2√55|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为22√55. 当sin(θ+α)=1时,|PA|取得最小值,最小值为2√55. 20.(2014·全国2·理T23文T23)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈[0,π2]. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l:y=√3x+2垂直,根据(1)中你得到的参数方程,确定D 的坐标. 【解析】(1)C 的普通方程为(x-1)2+y2=1(0≤y≤1).可得C 的参数方程为(t 为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C 是以C(1,0)为圆心,1为半径的上半圆,因为C 在点D 处的切线与l 垂直,所以直线CD 与l 的斜率相同,tan t=,t=.故D 的直角坐标为,即.21.(2013·全国2·理T23文T23)已知动点P,Q 都在曲线 C:(t 为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 【解析】(1)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α), 因此M(cos α+cos 2α,sin α+sin 2α). M 的轨迹的参数方程为(α为参数,0<α<2π).(2)M 点到坐标原点的距离 d=(0<α<2π).当α=π时,d=0,故M 的轨迹过坐标原点.22.(2013·全国1·理T23文T23)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【解析】(1)将消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.将代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsinθ+16=0.所以C1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C2的普通方程为x2+y2-2y=0.由解得所以C1与C2交点的极坐标分别为.23.(2013·江苏·T21)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.【解析】因为直线l的参数方程为(t为参数),由x=t+1得t=x-1,代入y=2t,得到直线l的普通方程为2x-y-2=0.同理得到曲线C的普通方程为y2=2x.联立方程组解得公共点的坐标为(2,2),.24.(2012·全国·理T23文T23)已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为.(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解析】(1)由已知可得A,B,C,D,即A(1,),B(-,1),C(-1,-),D(,-1).(2)设P(2cos φ,3sin φ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ.因为0≤sin2φ≤1,所以S的取值范围是[32,52].25.(2011·全国·理T23文T23)在直角坐标系xOy中,曲线C1的参数方程为(α为参数).M是C1上的动点,P点满足=2,P点的轨迹为曲线C2.(1)求C2的方程;与C1的异于极点的交点为A,与C2的异于极(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=π3点的交点为B,求|AB|.【解析】(1)设P(x,y),则由条件知M.由于M点在C1上,所以即从而C2的参数方程为(α为参数).(2)曲线C1的极坐标方程为ρ=4sin θ,曲线C2的极坐标方程为ρ=8sin θ.射线θ=与C1的交点A的极径为ρ1=4sin,射线θ=与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ2-ρ1|=2.26.(2010·全国·理T23文T23)已知直线C1:(t为参数),圆C2:(θ为参数). (1)当α=时,求C1与C2的交点坐标;(2)过坐标原点O作C1的垂线,垂足为A,P为OA的中点.当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.【解析】(1)当α=时,C1的普通方程为y=(x-1),C2的普通方程为x2+y2=1.联立方程组解得C1与C2的交点坐标为(1,0),.(2)C1的普通方程为xsin α-ycos α-sin α=0.A点坐标为(sin2α,-cos αsin α),因此当α变化时,P点轨迹的参数方程为(α为参数).P点轨迹的普通方程为+y2=.故P点轨迹是圆心为,半径为的圆.。
2023年高考数学(文科)一轮复习讲义——坐标系与参数方程 第二课时 参数方程
第二课时 参数方程考试要求 1.了解参数方程,了解参数的意义;2.能选择适当的参数写出直线、圆和椭圆的参数方程.1.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标(x ,y )都是某个变数t 的函数⎩⎨⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 2.参数方程与普通方程的互化通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎨⎧x =f (t ),y =g (t )就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 3.常见曲线的参数方程和普通方程 点的轨迹 普通方程 参数方程直线y -y 0=tan α(x -x 0)⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 圆 x 2+y 2=r 2⎩⎨⎧x =r cos θ,y =r sin θ(θ为参数) 椭圆x 2a 2+y 2b 2=1(a >b >0)⎩⎨⎧x =a cos φ,y =b sin φ(φ为参数)1.将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.2.直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离.1.思考辨析(在括号内打“√”或“×”)(1)参数方程⎩⎨⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M →的数量.( )(3)方程⎩⎨⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎨⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为 3.( ) 答案 (1)√ (2)√ (3)√ (4)×解析 (4)当t =π3时,点M 的坐标为(2cos π3,4sin π3),即M (1,23),∴OM 的斜率k =2 3.2.(2019·北京卷)已知直线l 的参数方程为⎩⎨⎧x =1+3t ,y =2+4t (t 为参数),则点(1,0)到直线l 的距离是( ) A.15 B.25C.45D.65答案 D解析 由题意可知直线l 的普通方程为4x -3y +2=0,则点(1,0)到直线l 的距离d =|4×1-3×0+2|42+(-3)2=65.故选D.3.在平面直角坐标系xOy 中,若直线l :⎩⎨⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值是________. 答案 3解析 直线l 的普通方程为x -y -a =0,椭圆C 的普通方程为x 29+y 24=1, 所以椭圆C 的右顶点坐标为(3,0), 若直线l 过点(3,0),则3-a =0,所以a =3.4.(2019·天津卷)设直线ax -y +2=0和圆⎩⎨⎧x =2+2cos θ,y =1+2sin θ(θ为参数)相切,则实数a =________. 答案 34解析 圆的参数方程消去θ,得 (x -2)2+(y -1)2=4. ∴圆心(2,1),半径r =2. 又直线ax -y +2=0与圆相切. ∴d =|2a -1+2|a 2+1=2,解得a =34.5.已知直线l 的参数方程是⎩⎨⎧x =t cos α,y =t sin α(t 为参数),若l 与圆x 2+y 2-4x +3=0交于A ,B 两点,且|AB |=3,则直线l 的斜率为________. 答案 ±1515解析 由⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),得y =x tan α,设k =tan α,得直线的方程为y =kx ,由x 2+y 2-4x +3=0,得(x -2)2+y 2=1,圆心为(2,0),半径为1, ∴圆心到直线y =kx 的距离为 12-|AB |24=12=|2k |k 2+1,得k =±1515.6.(易错题)设P (x ,y )是曲线C :⎩⎨⎧x =-2+cos θ,y =sin θ(θ为参数,θ∈[0,2π))上任意一点,则yx 的最大值为________.答案 33解析 由曲线C :⎩⎪⎨⎪⎧x =-2+cos θ,y =sin θ(θ为参数),得(x +2)2+y 2=1,表示圆心为(-2,0),半径为1的圆,yx 表示的是圆上的点和原点连线的斜率, 设yx =k ,则原问题转化为y =kx 和圆有交点的问题, 即圆心到直线的距离d ≤r ,所以|-2k |1+k 2≤1,解得-33≤k ≤33, 所以y x 的最大值为33.考点一 参数方程与普通方程的互化1.下列参数方程与方程y 2=x 表示同一曲线的是( ) A.⎩⎨⎧x =t ,y =t 2B.⎩⎨⎧x =sin 2t ,y =sin t C.⎩⎨⎧x =t ,y =|t |D.⎩⎨⎧x =1-cos 2t 1+cos 2t ,y =tan t答案 D解析 对于A ,消去t 后所得方程为x 2=y ,不符合y 2=x ;对于B ,消去t 后所得方程为y 2=x ,但要求0≤x ≤1,也不符合y 2=x ; 对于C ,消去t 得方程为y 2=|x |,且要求y ≥0,x ∈R ,也不符合y 2=x ; 对于D ,x =1-cos 2t1+cos 2t =2sin 2t2cos 2t =tan 2t =y 2,符合y 2=x .故选D.2.把下列参数方程化为普通方程. (1)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数);(2)⎩⎨⎧x =sin θ,y =cos 2θ(θ为参数,θ∈[0,2π)). 解 (1)由已知得t =2x -2,代入y =5+32t 中得y =5+32(2x -2). 即它的普通方程为3x -y +5-3=0.(2)因为sin 2θ+cos 2θ=1,所以x 2+y =1,即y =1-x 2. 又因为|sin θ|≤1,所以其普通方程为y =1-x 2(|x |≤1).3.(2021·全国乙卷)在直角坐标系xOy 中,⊙C 的圆心为C (2,1),半径为1. (1)写出⊙C 的一个参数方程;(2)过点F (4,1)作⊙C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.解 (1)由题意知⊙C 的标准方程为(x -2)2+(y -1)2=1, 则⊙C 的参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数).(2)由题意可知,切线的斜率存在,设切线方程为y -1=k (x -4),即kx -y +1-4k =0,所以|2k -1+1-4k |k 2+1=1,解得k =±33,则这两条切线方程分别为y =33x -433+1,y =-33x +433+1, 故这两条切线的极坐标方程分别为 ρsin θ=33ρcos θ-433+1,ρsin θ=-33ρcos θ+433+1.感悟提升 1.化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法.另外,消参时要注意参数的范围.2.普通方程化为参数方程时,先分清普通方程所表示的曲线类型,结合常见曲线的参数方程直接写出. 考点二 参数方程的应用例 1 (2022·兰州模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =12⎝ ⎛⎭⎪⎫t +1t ,y =t -1t(t 为参数),以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为cos ⎝ ⎛⎭⎪⎫θ+π3=0.(1)求曲线C 1的普通方程和C 2的直角坐标方程;(2)已知点P (3,3),曲线C 1和C 2相交于A ,B 两个不同的点,求||P A |-|PB ||的值.解(1)将⎩⎪⎨⎪⎧x =12⎝ ⎛⎭⎪⎫t +1t ,y =t -1t的参数t 消去得曲线C 1的普通方程为x 2-y 24=1.∵cos ⎝ ⎛⎭⎪⎫θ+π3=0,∴ρcos θ-3ρsin θ=0,由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ可得曲线C 2的直角坐标方程为x -3y =0. (2)由题意得点P (3,3)在曲线C 2上,曲线C 2的参数方程可表示为⎩⎪⎨⎪⎧x =3+32t ′,y =3+12t ′(t ′为参数),将上述参数方程代入x 2-y 24=1得11t ′2+443t ′+4×29=0,① Δ>0,设t ′1,t ′2为方程①的两根, 则t ′1+t ′2=-43,t ′1t ′2=4×2911,∴(|P A |-|PB |)2=(|P A |+|PB |)2-4|P A ||PB |=(t ′1+t ′2)2-4t ′1t ′2=6411,∴||P A |-|PB ||=81111.感悟提升 1.在与直线、圆、椭圆有关的题目中,参数方程的使用会使问题的解决事半功倍,尤其是求取值范围和最值问题,可将参数方程代入相关曲线的普通方程中,根据参数的取值条件求解.2.过定点P 0(x 0,y 0),倾斜角为α的直线参数方程的标准形式为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t为参数),t 的几何意义是P 0P →的数量,即|t |表示P 0到P 的距离,t 有正负之分.对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.训练1 (2022·晋中模拟)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α(t ∈R ,t 为参数,α∈⎝ ⎛⎭⎪⎫0,π2).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2sin θ,θ∈⎝ ⎛⎭⎪⎫π4,3π4.(1)求半圆C 的参数方程和直线l 的普通方程;(2)直线l 与x 轴交于点A ,与y 轴交于点B ,点D 在半圆C 上,且直线CD 的倾斜角是直线l 的倾斜角的2倍,△ABD 的面积为1+3,求α的值. 解 (1)由ρ=2sin θ,得ρ2=2ρsin θ,将x 2+y 2=ρ2,y =ρsin θ代入,得半圆C 的直角坐标方程为x 2+y 2=2y , ∵θ∈⎝ ⎛⎭⎪⎫π4,3π4,∴y =ρsin θ=2sin 2θ∈(1,2],x =ρcos θ=2sin θ·cos θ=sin 2θ∈(-1,1), ∴半圆C 的直角坐标方程为x 2+(y -1)2=1(1<y ≤2).由sin φ=y -1∈(0,1],cos φ=x ∈(-1,1)知,可取φ∈(0,π), ∴半圆C 的参数方程为⎩⎪⎨⎪⎧x =cos φ,y =1+sin φ(其中φ为参数,φ∈(0,π)).将直线l 的参数方程消去参数t ,得直线l 的普通方程为y =x tan α-2,α∈⎝ ⎛⎭⎪⎫0,π2.(2)由题意可知,A ⎝ ⎛⎭⎪⎫2tan α,0,B (0,-2),根据圆的参数方程中参数的几何意义, 结合已知条件,可得φ=2α, 所以D (cos 2α,1+sin 2α). 则点D 到直线AB 的距离d =|tan α·cos 2α-(1+sin 2α)-2|1+tan 2α=|sin αcos 2α-cos αsin 2α-3cos α| =sin α+3cos α, 又|AB |=(-2)2+⎝ ⎛⎭⎪⎫2tan α2=2sin α.∴△ABD 的面积S =12·|AB |·d =1+3tan α=1+3, ∴tan α= 3.又α∈⎝ ⎛⎭⎪⎫0,π2,∴α=π3.考点三 参数方程与极坐标方程的综合应用例2 (2020·全国Ⅰ卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =cos k t ,y =sin kt (t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为4ρcos θ-16ρsin θ+3=0. (1)当k =1时,C 1是什么曲线?(2)当k =4时,求C 1与C 2的公共点的直角坐标. 解 (1)当k =1时,C 1:⎩⎪⎨⎪⎧x =cos t ,y =sin t ,消去参数t 得x 2+y 2=1,故曲线C 1是以坐标原点为圆心,1为半径的圆.(2)当k =4时,C 1:⎩⎪⎨⎪⎧x =cos 4t ,y =sin 4t ,消去参数t 得C 1的直角坐标方程为x +y =1.C 2的直角坐标方程为4x -16y +3=0. 由⎩⎪⎨⎪⎧x +y =1,4x -16y +3=0,解得⎩⎪⎨⎪⎧x =14,y =14.故C 1与C 2的公共点的直角坐标为⎝ ⎛⎭⎪⎫14,14.感悟提升 在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以更简捷地解决问题.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.训练2 (2022·长春联考)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =t -2,y =t 2-2t (t 为参数),曲线C 上异于原点的两点M ,N 所对应的参数分别为t 1,t 2.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线D 的极坐标方程为ρ=2a sin θ. (1)当t 1=1,t 2=3时,直线MN 平分曲线D ,求a 的值;(2)当a =1时,若t 1+t 2=2+3,直线MN 被曲线D 截得的弦长为3,求直线MN 的方程.解 (1)因为t 1=1,t 2=3, 所以M (-1,-1),N (1,3). 所以直线MN 的方程为y =2x +1. 因为ρ=2a sin θ,所以ρ2=2aρsin θ, 又x 2+y 2=ρ2,y =ρsin θ,所以曲线D 的方程可化为x 2+(y -a )2=a 2,因为直线MN 平分曲线D ,所以直线MN 过点(0,a ),所以a =1.(2)由题意可知k MN =(t 21-2t 1)-(t 22-2t 2)(t 1-2)-(t 2-2)=(t 1-t 2)(t 1+t 2-2)t 1-t 2=3,曲线D 的方程为x 2+(y -1)2=1,设直线MN 的方程为y =3x +m ,圆心D 到直线MN 的距离为d ,则d =|m -1|2, 因为d 2+⎝ ⎛⎭⎪⎫322=12,所以⎝ ⎛⎭⎪⎫m -122+⎝ ⎛⎭⎪⎫322=1, 所以m =0或m =2,所以直线MN 的方程为y =3x 或y =3x +2.1.将下列参数方程化成普通方程.(1)⎩⎨⎧x =t 2-1,y =t 2+1(t 为参数); (2)⎩⎨⎧x =cos θ,y =sin θ⎝⎛⎭⎪⎫θ为参数,θ∈⎣⎢⎡⎦⎥⎤π2,π. 解 (1)消去参数t ,得y =x +2,由于t 2≥0,所以普通方程为y =x +2(x ≥-1),表示一条射线.(2)消去参数θ,得x 2+y 2=1,由于θ∈⎣⎢⎡⎦⎥⎤ π2,π,所以x ∈[-1,0],y ∈[0,1],所以普通方程为x 2+y 2=1(-1≤x ≤0,0≤y ≤1),表示圆的四分之一.2.(2021·全国甲卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=22cos θ.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),点M 为C 上的动点,点P 满足AP→=2AM →,写出点P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点.解 (1)根据ρ=22cos θ,得ρ2=22ρcos θ,因为x 2+y 2=ρ2,x =ρcos θ,所以x 2+y 2=22x ,所以曲线C 的直角坐标方程为(x -2)2+y 2=2.(2)设P (x ,y ),M (x ′,y ′),则AP→=(x -1,y ),AM →=(x ′-1,y ′). 因为AP →=2AM →,所以⎩⎪⎨⎪⎧x -1=2(x ′-1),y =2y ′,即⎩⎨⎧x ′=x -12+1,y ′=y 2. 因为点M 为C 上的动点,所以⎝ ⎛⎭⎪⎫x -12+1-22+⎝ ⎛⎭⎪⎫y 22=2, 即(x -3+2)2+y 2=4.所以点P 的轨迹C 1的参数方程为⎩⎪⎨⎪⎧x =3-2+2cos α,y =2sin α(其中α为参数,α∈[0,2π)). 所以|CC 1|=3-22,⊙C 1的半径r 1=2,又⊙C 的半径r =2,所以|CC 1|<r 1-r ,所以C 与C 1没有公共点.3.(2021·银川模拟)在平面直角坐标系xOy 中,直线l 过定点P (3,0),倾斜角为α⎝ ⎛⎭⎪⎫0<α<π2,曲线C 的参数方程为⎩⎪⎨⎪⎧x =t +1t ,y =t 2-12t(t 为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)已知直线l 交曲线C 于M ,N 两点,且|PM |·|PN |=103,求l 的参数方程.解 (1)由⎩⎪⎨⎪⎧x =t +1t ,y =t 2-12t 得⎩⎪⎨⎪⎧x =t +1t ,2y =t -1t ,∵⎝ ⎛⎭⎪⎫t +1t 2-⎝ ⎛⎭⎪⎫t -1t 2=t 2+2+1t 2-t 2+2-1t 2=4, ∴x 2-(2y )2=4,即x 2-4y 2=4.又⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,∴ρ2cos 2θ-4ρ2sin 2θ=4. 即曲线C 的极坐标方程为ρ2cos 2θ-4ρ2sin 2θ=4.(2)设l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =t sin α(t 为参数),代入x 2-4y 2=4整理得(cos 2α-4sin 2α)t 2+6t cos α+5=0,设M ,N 对应的参数分别为t 1,t 2,则t 1t 2=5cos 2α-4sin 2α, 则|PM |·|PN |=|t 1t 2|=⎪⎪⎪⎪⎪⎪5cos 2α-4sin 2α=103.解得cos α=±22, ∵0<α<π2,∴cos α=22,∴α=π4.故l 的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =22t(t 为参数). 4.(2022·合肥检测)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =22(t 14-t -14),y =2(t 14+t -14)(t 为参数).在以原点为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4-22=0. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若曲线C 2与曲线C 1交于点A ,B ,M (-2,2),求1|MA |-1|MB |的值.解 (1)由⎩⎪⎨⎪⎧x =22(t 14-t -14),y =2(t 14+t -14)得⎩⎪⎨⎪⎧2x =t 14-t -14,12y =t 14+t -14, 两式平方相减得12y 2-2x 2=4,即y 28-x 22=1.又y =2(t 14+t -14)≥22(t >0), ∴曲线C 1的普通方程为y 28-x 22=1(y ≥22).曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ-π4-22=0,化简,得ρsin θ-ρcos θ-4=0,又x =ρcos θ,y =ρsin θ,∴y -x -4=0,∴曲线C 2的直角坐标方程为x -y +4=0.(2)设曲线C 2的参数方程为⎩⎪⎨⎪⎧x =-2+22t ′,y =2+22t ′(t ′为参数).代入曲线C 1的方程得⎝ ⎛⎭⎪⎫2+22t ′2-4⎝ ⎛⎭⎪⎫-2+22t ′2=8,即3t ′2-202t ′+40=0.Δ=320>0.设方程的两个实数根为t 1,t 2,则t 1+t 2=2023,t 1t 2=403,∴⎪⎪⎪⎪⎪⎪1|MA |-1|MB |=⎪⎪⎪⎪⎪⎪1|t 1|-1|t 2|=||t 2|-|t 1|||t 1|·|t 2|=|t 1-t 2||t 1|·|t 2|=(t 1+t 2)2-4t 1t 2|t 1|·|t 2|=853403=55,∴1|MA |-1|MB |=55或-55.5.(2022·陕西部分学校联考)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3+sin φ-2cos φ,y =cos φ+2sin φ(φ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos θ+2=0.(1)求曲线C 1的极坐标方程并判断C 1,C 2的位置关系;(2)设直线θ=α⎝ ⎛⎭⎪⎫-π2<α<π2,ρ∈R 分别与曲线C 1交于A ,B 两点,与曲线C 2交于P 点,若|AB |=3|OA |,求|OP |的值.解 (1)曲线C 1:⎩⎪⎨⎪⎧x -3=sin φ-2cos φ,①y =cos φ+2sin φ,②①2+②2得(x -3)2+y 2=5,即x 2+y 2-6x +4=0,将x 2+y 2=ρ2,x =ρcos θ代入上式,得曲线C 1的极坐标方程为ρ2-6ρcos θ+4=0.由⎩⎪⎨⎪⎧ρ2-6ρcos θ+4=0,ρcos θ+2=0得ρ2+16=0,此方程无解. 所以C 1,C 2相离.(2)由⎩⎪⎨⎪⎧ρ2-6ρcos θ+4=0,θ=α得ρ2-6ρcos α+4=0, 因为直线θ=α与曲线C 1有两个交点A ,B ,所以Δ=36cos 2α-16>0,得cos α>23.设方程ρ2-6ρcos α+4=0的两根分别为ρ1,ρ2,则⎩⎪⎨⎪⎧ρ1+ρ2=6cos α>0,③ρ1ρ2=4,④因为|AB |=3|OA |,所以|OB |=4|OA |,即ρ2=4ρ1,⑤由③④⑤解得ρ1=1,ρ2=4,cos α=56,满足Δ>0,由⎩⎪⎨⎪⎧ρcos α+2=0,θ=α得ρ=-2cos α=-125, 所以|OP |=|ρ|=125.6.(2022·贵阳适应性测试)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =r cos α,y =r sin α(0<r <2,α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2:ρ2=4cos 2θ(如图所示).(1)若r =2,求曲线C 1的极坐标方程,并求曲线C 1与C 2交点的直角坐标;(2)已知曲线C 2既关于原点对称,又关于坐标轴对称,且曲线C 1与C 2交于不同的四点A ,B ,C ,D ,求矩形ABCD 面积的最大值.解 (1)∵r =2,∴x 2+y 2=2,又x 2+y 2=ρ2,∴曲线C 1的极坐标方程为ρ=2,∴⎩⎪⎨⎪⎧ρ2=4cos 2θ,ρ=2,cos 2θ=12⇒cos θ=±32, 当cos θ=32时,sin θ=±12,当cos θ=-32时,sin θ=±12,分别代入⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ,可得四个交点的直角坐标分别为⎝ ⎛⎭⎪⎫62,22,⎝ ⎛⎭⎪⎫62,-22,⎝ ⎛⎭⎪⎫-62,22,⎝ ⎛⎭⎪⎫-62,-22. (2)由(1)知曲线C 1的极坐标方程为ρ=r .由⎩⎪⎨⎪⎧ρ=r ,ρ2=4cos 2θ得cos 2θ=r 24. ∵曲线C 2关于原点和坐标轴对称, ∴S 矩形ABCD =4|r cos θ||r sin θ| =4r 2|cos θsin θ|=2r 2|sin 2θ| =2r 21-cos 22θ=2r 21-r 416 =12r 216-r 4=12r 4(16-r 4) ≤12⎝ ⎛⎭⎪⎫r 4+16-r 422=4. 当且仅当r 4=16-r 4,即r 2=22时等号成立. 故矩形ABCD 面积的最大值为4.。
坐标系与参数方程联系题(真题)(含答案)
1、在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ()θ-π4=22(ρ≥0,0≤θ<2π).(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 的公共点的极坐标. 解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 故圆O 的直角坐标方程为x 2+y 2-x -y =0, 直线l :ρsin ()θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为x -y +1=0. (2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得⎩⎨⎧ x 2+y 2-x -y =0,x -y +1=0,解得⎩⎨⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1),将(0,1)转化为极坐标为()1,π2即为所求.2、已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρ·cos ()θ-π4=2. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以圆O 1的直角坐标方程为x 2+y 2=4. 因为ρ2-22ρcos ()θ-π4=2,所以ρ2-22ρ()cos θcos π4+sin θsin π4=2, 所以圆O 2的直角坐标方程为x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ()θ+π4=22.3、(2017·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程; (2)设点A 的极坐标为()2,π3,点B 在曲线C 2上,求△OAB 面积的最大值. 解:(1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ. 由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0),由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积S =12|OA |·ρB ·sin ∠AOB =4cos α·||sin ()α-π3=2||sin ()2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3. 所以△OAB 面积的最大值为2+ 3.4、(2015·全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2. 由于C 2的半径为1, 所以△C 2MN 的面积为12.5.(2016·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =a cos t ,y =1+a sin t(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a . 解:(1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2,则C 1是以(0,1)为圆心,a 为半径的圆. 将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. (2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎨⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.6.(2018·洛阳模拟)在直角坐标系xOy 中,圆C 的方程为x 2+(y -2)2=4.以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是2ρsin ()θ+π6=53,射 线OM :θ=π6与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)将x =ρcos θ,y =ρsin θ代入x 2+(y -2)2=4, 得圆C 的极坐标方程为ρ=4sin θ.(2)设P (ρ1,θ1),则由⎩⎨⎧ρ=4sin θ,θ=π6,解得ρ1=2,θ1=π6.设Q (ρ2,θ2),则由⎩⎪⎨⎪⎧2ρsin ()θ+π6=53,θ=π6,解得ρ2=5,θ2=π6.所以|PQ |=ρ2-ρ1=3.7.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ()θ-π3=1,M ,N 分别为C 与x 轴,y 轴的交点.(1)求C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解:(1)由ρcos ()θ-π3=1得ρ()12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ()233,π2. (2)由(1)知M 点的直角坐标为(2,0),N 点的直角坐标为()0,233. 所以P 点的直角坐标为()1,33,则P 点的极坐标为()233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R). 8.(2018·福建质检)在直角坐标系xOy 中,曲线C 1的普通方程为(x -2)2+y 2=4,在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,曲线C 3:θ=π6(ρ>0),A (2,0).(1)把C 1的普通方程化为极坐标方程;(2)设C 3分别交C 1,C 2于点P ,Q ,求△APQ 的面积. 解:(1)因为C 1的普通方程为(x -2)2+y 2=4, 即x 2+y 2-4x =0,所以C 1的极坐标方程为ρ2-4ρcos θ=0,即ρ=4cos θ. (2)依题意,设点P ,Q 的极坐标分别为()ρ1,π6,()ρ2,π6. 将θ=π6代入ρ=4cos θ,得ρ1=23,将θ=π6代入ρ=2sin θ,得ρ2=1,所以|PQ |=|ρ1-ρ2|=23-1.依题意,点A (2,0)到曲线θ=π6(ρ>0)的距离d =|OA |sin π6=1,所以S △APQ =12|PQ |·d =12×(23-1)×1=3-12.9.(2018·贵州适应性考试)在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 1的极坐标方程为ρ=4cos θ,曲线C 2的极坐标方程为ρcos 2θ=sin θ.(1)求曲线C 2的直角坐标方程;(2)过原点且倾斜角为α()π6<α≤π4的射线l 与曲线C 1,C 2分别相交于A ,B 两点(A ,B 异于原点),求|OA |·|OB |的取值范围.解:(1)由曲线C 2的极坐标方程为ρcos 2θ=sin θ, 两边同乘以ρ,得ρ2cos 2θ=ρsin θ, 故曲线C 2的直角坐标方程为x 2=y . (2)射线l 的极坐标方程为θ=α,π6<α≤π4,把射线l 的极坐标方程代入曲线C 1的极坐标方程得|OA |=ρ=4cos α,把射线l 的极坐标方程代入曲线C 2的极坐标方程得|OB |=ρ=sin αcos 2α, ∴|OA |·|OB |=4cos α·sin αcos 2α=4tan α.∵π6<α≤π4, ∴|OA |·|OB |的取值范围是(]433,4.(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧ x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎨⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎨⎧x =a cos φ,y =b sin φ(φ为参数).(4)双曲线x 2a 2-y 2b2=1(a >0,b >0)的参数方程为⎩⎨⎧x =a 1cos θ,y =b tan θ (θ为参数).10、(2017·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎨⎧x =a +4t ,y =1-t(t 为参数). (1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 解:(1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0,由⎩⎨⎧x +4y -3=0,x 29+y 2=1解得⎩⎨⎧x =3,y =0或⎩⎪⎨⎪⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),()-2125,2425. (2)直线l 的普通方程为x +4y -a -4=0, 故C 上的点(3cos θ,sin θ)到l 的距离为 d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917. 由题设得a +917=17,解得a =8; 当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,解得a =-16. 综上,a =8或a =-16.2.结论要记根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2. (1)弦长l =|t 1-t 2|;(2)弦M 1M 2的中点⇒t 1+t 2=0; (3)|M 0M 1||M 0M 2|=|t 1t 2|.11.(2018·湖南五市十校联考)在直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为⎩⎨⎧x =3+t cos α,y =t sin α(t 为参数),直线l 与曲线C :⎩⎨⎧x =1cos θ,y =tan θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点的直角坐标;(2)若直线l 的斜率为2,且过已知点P (3,0),求|PA |·|PB |的值. 解:(1)由曲线C :⎩⎨⎧x =1cos θ,y =tan θ (θ为参数),可得曲线C 的普通方程是x 2-y 2=1.当α=π3时,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t (t 为参数),代入曲线C 的普通方程,得t 2-6t -16=0,得t 1+t 2=6,所以线段AB 的中点对应的t =t 1+t 22=3,故线段AB 的中点的直角坐标为()92,332. (2)将直线l 的参数方程代入曲线C 的普通方程,化简得(cos 2α-sin 2α)t 2+6cos αt +8=0, 则|PA |·|PB |=|t 1t 2|=||8cos 2α-sin 2α=||8(1+tan 2α)1-tan 2α,由已知得tan α=2,故|PA |·|PB |=403.12.(2018·石家庄质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos t ,y =3+2sin t(t 为参数),在以原点O为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos ()θ+π4=- 2.(1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△PAB 面积的最小值.解:(1)由⎩⎨⎧x =-5+2cos t ,y =3+2sin t ,消去参数t ,得(x +5)2+(y -3)2=2,所以圆C 的普通方程为(x +5)2+(y -3)2=2. 由ρcos ()θ+π4=-2,得ρcos θ-ρsin θ=-2, 所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2), 化为极坐标为A (2,π),B ()2,π2, 设点P 的坐标为(-5+2cos t,3+2sin t ), 则点P 到直线l 的距离为d =|-5+2cos t -3-2sin t +2|2=||-6+2cos ()t +π42.所以d min =42=22,又|AB |=2 2. 所以△PAB 面积的最小值是S =12×22×22=4.13、在平面直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点P 的极坐标为()23,π6,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =-3+2sin α(α为参数).(1)写出点P 的直角坐标及曲线C 的直角坐标方程;(2)若Q 为曲线C 上的动点,求PQ 中点M 到直线l :ρcos θ+2ρsin θ+1=0距离的最小值. 解:(1)由x =ρcos θ,y =ρsin θ, 可得点P 的直角坐标为(3,3),由⎩⎨⎧x =2cos α,y =-3+2sin α,得x 2+(y +3)2=4, ∴曲线C 的直角坐标方程为x 2+(y +3)2=4. (2)直线l 的普通方程为x +2y +1=0,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =-3+2sin α(α为参数),设Q (2cos α,-3+2sin α), 则M ()32+cos α,sin α, 故点M 到直线l 的距离d =||32+cos α+2sin α+112+22=||5sin (α+φ)+525≥-5+525=52-1()tan φ=12, ∴点M 到直线l 的距离的最小值为52-1.14、.(2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎨⎧x =2+t ,y =kt(t 为参数),直线l 2的参数方程为⎩⎨⎧x =-2+m ,y =m k(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.解:(1)消去参数t ,得l 1的普通方程l 1:y =k (x -2), 消去参数m ,得l 2的普通方程l 2:y =1k(x +2).设P (x ,y ),由题设得⎩⎨⎧y =k (x -2),y =1k (x +2).消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎨⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5, 所以交点M 的极径为 5.15.(2018·武昌调研)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =a cos t ,y =2sin t(t 为参数,a >0).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρcos ()θ+π4=-2 2.(1)设P 是曲线C 上的一个动点,当a =2时,求点P 到直线l 的距离的最小值; (2)若曲线C 上的所有点均在直线l 的右下方,求a 的取值范围. 解:(1)由ρcos ()θ+π4=-22, 得22(ρcos θ-ρsin θ)=-22, 化成直角坐标方程,得22(x -y )=-22, 即直线l 的方程为x -y +4=0. 依题意,设P (2cos t,2sin t ), 则点P 到直线l 的距离d =|2cos t -2sin t +4|2=||22cos ()t +π4+42=22+2cos ()t +π4.当cos ()t +π4=-1时,dmin =22-2.故点P 到直线l 的距离的最小值为22-2. (2)∵曲线C 上的所有点均在直线l 的右下方, ∴对∀t ∈R ,有a cos t -2sin t +4>0恒成立, 即a 2+4cos(t +φ)>-4()其中tan φ=2a 恒成立, ∴a 2+4<4, 又a >0,∴0<a <2 3. 故a 的取值范围为(0,23).16.已知P 为半圆C :⎩⎨⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴,建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程. 解:(1)由已知,点M 的极角为π3,且点M 的极径等于π3,故点M 的极坐标为()π3,π3. (2)由(1)知点M 的直角坐标为()π6,3π6,A (1,0). 故直线AM 的参数方程为⎩⎪⎨⎪⎧x =1+()π6-1t ,y =3π6t(t 为参数).17.在平面直角坐标系xOy 中,曲线C 1过点P (a,1),其参数方程为⎩⎨⎧x =a +2t ,y =1+2t(t 为参数,a ∈R).以O 为极点,x 轴非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|PA |=2|PB |,求实数a 的值.解:(1)∵曲线C 1的参数方程为⎩⎨⎧x =a +2t ,y =1+2t ,∴其普通方程为x -y -a +1=0.∵曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0, ∴ρ2cos 2θ+4ρcos θ-ρ2=0, ∴x 2+4x -x 2-y 2=0,即曲线C 2的直角坐标方程为y 2=4x . (2)设A ,B 两点所对应的参数分别为t 1,t 2,将曲线C 1的参数方程代入曲线C 2的直角坐标方程,化简得2t 2-22t +1-4a =0. ∴Δ=(-22)2-4×2(1-4a )>0,即a >0, t 1+t 2=2,t 1·t 2=1-4a2.根据参数方程的几何意义可知|PA |=2|t 1|,|PB |=2|t 2|, 又|PA |=2|PB |可得2|t 1|=2×2|t 2|, 即t 1=2t 2或t 1=-2t 2.∴当t 1=2t 2时,有⎩⎨⎧t 1+t 2=3t 2=2,t 1·t 2=2t 22=1-4a2,解得a =136,符合题意. 当t 1=-2t 2时,有⎩⎨⎧t 1+t 2=-t 2=2,t 1·t 2=-2t 22=1-4a 2,解得a =94,符合题意.综上,实数a =136或a =94.318.(2018·贵阳模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =4+3cos t ,y =5+3sin t(t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)求曲线C 1的普通方程和C 2的直角坐标方程;(2)若A ,B 分别为曲线C 1,C 2上的动点,求当AB 取最小值时△AOB 的面积.解:(1)由⎩⎨⎧x =4+3cos t ,y =5+3sin t(t 为参数)得C 1的普通方程为(x -4)2+(y -5)2=9, 由ρ=2sin θ,得ρ2=2ρsin θ, 将x 2+y 2=ρ2,y =ρsin θ代入上式, 得C 2的直角坐标方程为x 2+(y -1)2=1.(2)如图,当A ,B ,C 1,C 2四点共线,且A ,B 在线段C 1C 2上时,|AB |取得最小值,由(1)得C 1(4,5),C 2(0,1),则kC 1C 2=5-14-0=1, ∴直线C 1C 2的方程为x -y +1=0, ∴点O 到直线C 1C 2的距离d =12=22, 又|AB |=|C 1C 2|-1-3=(4-0)2+(5-1)2-4 =42-4,∴S △AOB =12d |AB |=12×22×(42-4)=2- 2.19.(2018·广州综合测试)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3-t ,y =1+t(t 为参数).在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C :ρ=22cos ()θ-π4.(1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值.解:(1)由⎩⎨⎧x =3-t ,y =1+t(t 为参数)消去t 得x +y -4=0,所以直线l 的普通方程为x +y -4=0.由ρ=22cos ()θ-π4=22()cos θcos π4+sin θsin π4=2cos θ+2sin θ, 得ρ2=2ρcos θ+2ρsin θ.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入上式, 得x 2+y 2=2x +2y ,即(x -1)2+(y -1)2=2. 所以曲线C 的直角坐标方程为(x -1)2+(y -1)2=2. (2)法一:设曲线C 上的点P (1+2cos α,1+2sin α),则点P 到直线l 的距离d =|1+2cos α+1+2sin α-4|2=|2(sin α+cos α)-2|2=||2sin ()α+π4-22.当sin ()α+π4=-1时,d max =2 2.所以曲线C 上的点到直线l 的距离的最大值为2 2. 法二:设与直线l 平行的直线l ′:x +y +b =0, 当直线l ′与圆C 相切时,|1+1+b |2=2, 解得b =0或b =-4(舍去), 所以直线l ′的方程为x +y =0. 因为直线l 与直线l ′的距离d =|0+4|2=2 2. 所以曲线C 上的点到直线l 的距离的最大值为2 2.20.在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和()32,32. (2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4||sin ()α-π3.当α=5π6时,|AB |取得最大值,最大值为4. 21.已知直线L 的参数方程为⎩⎨⎧x =2+t ,y =2-2t(t 为参数),以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=21+3cos 2 θ.(1)求直线L 的极坐标方程和曲线C 的直角坐标方程;(2)过曲线C 上任意一点P 作与直线L 夹角为π3的直线l ,设直线l 与直线L 的交点为A ,求|PA |的最大值. 解:(1)由⎩⎨⎧ x =2+t ,y =2-2t(t 为参数),得L 的普通方程为2x +y -6=0, 令x =ρcos θ,y =ρsin θ,得直线L 的极坐标方程为2ρcos θ+ρsin θ-6=0,由曲线C 的极坐标方程,知ρ2+3ρ2cos 2θ=4,所以曲线C 的直角坐标方程为x 2+y 24=1. (2)由(1),知直线L 的普通方程为2x +y -6=0,设曲线C 上任意一点P (cos α,2sin α),则点P 到直线L 的距离d =|2cos α+2sin α-6|5. 由题意得|PA |=d sin π3=415||2sin ()α+π4-315,所以当sin ()α+π4=-1时,|PA |取得最大值,最大值为415(3+2)15. 22.(2018·石家庄一模)在平面直角坐标系中,将曲线C 1上的每一个点的横坐标保持不变,纵坐标缩短为原来的12,得到曲线C 2.以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,已知曲线C 1的极坐标方程为ρ=2.(1)求曲线C 2的参数方程;(2)过坐标原点O 且关于y 轴对称的两条直线l 1与l 2分别交曲线C 2于A ,C 和B ,D ,且点A 在第一象限,当四边形ABCD 的周长最大时,求直线l 1的普通方程.解:(1)由ρ=2,得ρ2=4,所以曲线C 1的直角坐标方程为x 2+y 2=4.故由题意可得曲线C 2的直角坐标方程为x 24+y 2=1. 所以曲线C 2的参数方程为⎩⎨⎧ x =2cos θ,y =sin θ(θ为参数). (2)设四边形ABCD 的周长为l ,点A (2cos θ,sin θ),则l =8cos θ+4sin θ=45sin(θ+φ),()其中sin φ=25,cos φ=15 所以当θ+φ=2k π+π2(k ∈Z)时,l 取得最大值,最大值为45,此时θ=2k π+π2-φ(k ∈Z), 所以2cos θ=2sin φ=45,sin θ=cos φ=15, 此时A ()45,15. 所以直线l 1的普通方程为x -4y =0.23.(2018·成都诊断)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧ x =2cos α,y =2+2sin α(α为参数),直线l 的参数方程为⎩⎪⎨⎪⎧ x =3-32t ,y =3+12t (t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,过极点O 的射线与曲线C相交于不同于极点的点A ,且点A 的极坐标为(23,θ),其中θ∈()π2,π.(1)求θ的值;(2)若射线OA 与直线l 相交于点B ,求|AB |的值.解:(1)由题意知,曲线C 的普通方程为x 2+(y -2)2=4, ∵x =ρcos θ,y =ρsin θ,∴曲线C 的极坐标方程为(ρcos θ)2+(ρsin θ-2)2=4,即ρ=4sin θ.由ρ=23,得sin θ=32, ∵θ∈()π2,π,∴θ=2π3. (2)易知直线l 的普通方程为x +3y -43=0,∴直线l 的极坐标方程为ρcos θ+3ρsin θ-43=0.又射线OA 的极坐标方程为θ=2π3(ρ≥0), 联立⎩⎨⎧ θ=2π3(ρ≥0),ρcos θ+3ρsin θ-43=0,解得ρ=4 3.∴点B 的极坐标为()43,2π3,∴|AB |=|ρB -ρA |=43-23=2 3.。
(完整版)选修4-4坐标系与参数方程-高考题及答案
x t 3,1、已知在直角坐标系xOy中,直线I的参数方程为_ (t为参数),在极坐标系(与y v3t直角坐标系xOy取相同的长度单位,且以原点0为极点,以x轴正半轴为极轴)中,曲线C 的极坐标方程为2 4 cos 3 0.①求直线I普通方程和曲线C的直角坐标方程;②设点P是曲线C上的一个动点,求它到直线I的距离的取值范围.x = 2cos 0 , 一2、已知曲线C的参数方程是(0为参数),以坐标原点为极点,x轴的正半轴y = 3sin 0 ,为极轴建立极坐标系,曲线C2的极坐标方程是p = 2,正方形ABCD勺顶点都在C2上,且AnB C、D依逆时针次序排列,点A的极坐标为(2 ,—).3(I )求点A B C、D的直角坐标;(n )设P为C上任意一点,求|PA2+ |PB2+ |PC2+ |PD2的取值范围.. . 2 2 . - 2 23、在直角坐标系xOy中,圆C :x + y = 4,圆C2:(x—2) + y = 4.(I )在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C i, C2的极坐标方程, 并求出圆C,C2的交点坐标(用极坐标表示);(n)求圆C与C2的公共弦的参数方程.4、在直角坐标系xOy中,直线I的方程为x —y + 4 = 0,曲线C的参数方程为x= :::]3cos a ,(a为参数).y= sin a(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以xn轴正半轴为极轴)中,点P的极坐标为(4 ,―),判断点P与直线I的位置关系;(2)设点Q是曲线C上的一个动点,求它到直线I的距离的最小值.X = 2C0S a ,5、在直角坐标系xOy 中,曲线G 的参数方程为( a 为参数).M 是C i 上的y = 2+ 2sin a .动点,P 点满足0F= 20M P 点的轨迹为曲线 C 2.(1)求C 2的方程;(2)在以0为极点,x 轴的正半轴为极轴的极坐标系中,射线 交点为A ,与C 2的异于极点的交点为 B,求|AE |.x = cos e6、已知P 为半圆C:( e 为参数,o w e wn )上的点,点 A 的坐标为(1,0) , Oy = sin en 为坐标原点,点 M 在射线OP 上,线段OM 与C 的弧AP 的长度均为—.(1) 以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点 M 的极坐标;(2) 求直线AM 的参数方程.ne =g 与C 的异于极点的n n .* j 3 7、在极坐标系中,已知圆C经过点P .2,~4,圆心为直线P sin 9—3 =一与极轴的交点,求圆C的极坐标方程.8、在平面直角坐标系中,以坐标原点0为极点,x轴的正半轴为极轴建立极坐标系.已知直线I上两点M, N的极坐标分别为(2,0), 穿,-2,圆C的参数方程为x= 2+ 2cos 9 ,厂(9为参数).y=—3+ 2sin 9(1) 设P为线段MN的中点,求直线OP的平面直角坐标方程;(2) 判断直线l与圆C的位置关系.1、【答案】①直线I 的普通方程为:,3x y 3、、3 0. n n n n nn_nnA (2cos —, 2sin —), B (2cos(-3 + R , 2sin( — + —)) , q2cos( — +n ), 2sin( — +n 3 n n 3 nn )) , D (2cos( — + 〒),2sin( — + 亍)),即 A (1 , 3) , B ( — 3 , 1), Q — 1, — 3) , D ( 3 , — 1). (n )设 P (2cos 0 , 3sin 0 ),令 S =|PA 2+ |PB 2+ |PC 2+ |PD 2 ,则2 2S = 16cos 0 + 36sin 0 + 162=32 + 20sin 0 .因为0W sin 20W 1,所以S 的取值范围是[32 , 52].3、解:(I )圆C 的极坐标方程为p = 2 , 圆G 的极坐标方程p = 4cos 0 .2 解卩,得卩=2, 0=±石,p _ 4cos 03从而p_占.n(1)把极坐标系的点P (4 ,-)化为直角坐标,得 R0,4),满足直线l 的方程x — y + 4_ 0,所以点P 在直线l 上. 故可设点Q 的坐标为曲线C 的直角坐标方程为:x 2y 2②曲线C 的标准方程为(x 2)2 y 2•••圆心C(2,0)到直线I 的距离为:d所以点P 到直线I 的距离的取值范围是2、解:(I )由已知可得2 24x 3 0【或(x 2)2 y 21]1,圆心C(2,0),半径为1;|2、一 3 0 3.3| 5,32 2故圆C 与圆C 2交点的坐标为(2 ,,(2,—勺.注:极坐标系下点的表示不唯一.x _ p cos 0 ,得圆 y _ p sin 0 (n )法一:由故圆C 与G 的公共弦的参数方程为x_ t 1,-3w t w 3.x _ 1(或参数方程写成 , —..3 < y w 3)法二:将x = 1代入 cos 0得 p sin 0p cos 0 = 1,于是圆 C 与G 的公共弦的参数方程为x _ 1 y _ tan 0 '4、因为点P 的直角坐标(0,4)⑵因为点Q 在曲线C 上,(.3cos a , sin a ),C 与C 2交点的直角坐标分别为从而点Q 到直线I 的距离=;'2cos( a+ -Q )+ 2 2nl由此得,当cos( a + —) =— 1时,d 取得最小值,且最小值为:2.x y5、⑴设Rx , y ),则由条件知 M ^ 2 .由于M 点在C 上,x=2cos a , 2X = 4cos a ,所以即yy = 4+ 4sin a .2= 2+ 2sin a ,X = 4cos a ,从而C 2的参数方程为(a 为参数)y = 4 + 4sin a .(2)曲线C 的极坐标方程为 p = 4sin 0,曲线C 2的极坐标方程为 p = 8sin 0 .n n射线0 =三与C 的交点A 的极径为 p 1= 4sin —,3 3nn射线0 = y 与G 的交点B 的极径为p 2= 8sin —. 所以 | AB = | p 2— p 1| = 2 '3.nn6、 (1)由已知,M 点的极角为y ,且M 点的极径等于 J ,n n故点M 的极坐标为 ~~ .⑵M 点的直角坐标为n ,二空,A (1,0),故直线AM 的参数方程为6 6nx=1 + 6 — 1t ,(t 为参数).| 3cos a — sina + 4|2cos7t6所以圆C 的圆心坐标为(1,0) 因为圆C经过点P .'2, n,所以圆C的半径PC= 2+ 12—2X 1 x J2cos■—= 1,¥ 4于是圆C 过极点,所以圆 C 的极坐标方程为p = 2cos e .0, ¥8、解:(1)由题意知,M N 的平面直角坐标分别为所以直线l 的平面直角坐标方程为 3x + 3y — 2 3= 0.又圆C 的圆心坐标为(2 , — ,;3),半径r = 2, 圆心到直线I 的距离d =, : — ■' =-<r ,故直线l 与圆C 相交.yJ 3 + 9 2又P 为线段MN 勺中点,从而点 P 的平面直角坐标为1,,故直线OP 的平面直角坐标方程为 ⑵因为直线l 上两点M N 的平面直角坐标分别为 (2,0)(2,0)。
2020年高考数学 选修4-4:坐标系与参数方程 解答题专练(含答案)
2020年高考数学选修4-4:坐标系与参数方程解答题专练1.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,直线,曲线(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系,点M的极坐标为.(1)求直线l1和曲线C的极坐标方程;(2)在极坐标系中,已知射线与,C的公共点分别为A,B,且,求MOB的面积.2.【选修4-4:坐标系与参数方程】已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线l的参数方程是设点P(-1,2).(1)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;(2)设直线l与曲线C相交于M,N两点,求的值.3.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,已知曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数),点P的坐标为(-2,0)(1)若点Q在曲线C上运动,点M在线段PQ上运动,且,求动点M的轨迹方程;(2)设直线l与曲线C交于A,B两点,求的值.4.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,设倾斜角为α的直线l:(t为参数)与曲线(φ为参数)相交于不同的两点A,B.(1)若,若以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AB的极坐标方程;(2)若直线的斜率为,点,求的值.5.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线OM与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.6.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为,在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点P(-1,0),直线l和曲线C交于A,B两点,求的值.7.【选修4-4:坐标系与参数方程】以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为(1,0),若直线l的极坐标方程为,曲线C的参数方程是,(m为参数).(1)求直线l的直角坐标方程和曲线C的普通方程;(2)设直线l与曲线C交于A,B两点,求.8.【选修4-4:坐标系与参数方程】已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为,直线l与圆C交于A,B两点.(1)求圆C的直角坐标方程及弦AB的长;(2)动点P在圆C上(不与A,B重合),试求ABP的面积的最大值9.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,点P(0,﹣1),直线l的参数方程为(t为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ+ρcos2θ=8sinθ.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于不同的两点A,B,M是线段AB的中点,当|PM|=时,求sinα的值.10.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以坐标原点O为极点,z轴正半轴为极轴建立极坐标系,直线l的极坐标方程为(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点M(0,1).若直线l与曲线C相交于A,B两点,求|MA|+|MB|的值.为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为,直线l的极坐标方程为.(1)求直线l的直角坐标方程与曲线C的普通方程;(2)若Q是曲线C上的动点,M为线段PQ的中点,直线l上有两点A,B,始终满足|AB|=4,求△MAB面积的最大值与最小值。
2023年高考数学(文科)一轮复习讲义——坐标系与参数方程 第一课时 坐标系
第1节 坐标系与参数方程第一课时 坐标系考试要求 1.了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化;3.能在极坐标系中给出简单图形表示的极坐标方程.1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换.2.极坐标系与点的极坐标(1)极坐标系:如图所示,在平面内取一个定点O (极点),自极点O 引一条射线Ox (极轴);再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ.②极角:以极轴Ox为始边,射线OM为终边的角∠xOM叫做点M的极角,记为θ.③极坐标:有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).3.极坐标与直角坐标的互化4.常见曲线的极坐标方程曲线图形极坐标方程 圆心在极点,半径为r 的圆 ρ=r (0≤θ<2π) 圆心为(r ,0),半径为r 的圆ρ=2r cos__θ⎝ ⎛⎭⎪⎫-π2≤θ<π2圆心为⎝ ⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin__θ(0≤θ<π)过极点,倾斜角为α的直线①θ=α(ρ∈R )或θ=π+α(ρ∈R ) ②θ=α(ρ≥0)和 θ=π+α(ρ≥0)过点(a ,0),与极轴垂直的直线ρcos__θ=a ⎝ ⎛⎭⎪⎫-π2<θ<π2过点⎝ ⎛⎭⎪⎫a ,π2,与极轴平行的直线ρsin__θ=a (0<θ<π)1.极坐标的四要素:(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向,四者缺一不可.2.由极径的意义知ρ≥0,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系,约定极点的极坐标是极径ρ=0,极角可取任意角.3.曲线的极坐标方程与直角坐标方程互化:对于简单的可以直接代入公式ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,但有时需要作适当的变化,如将式子的两边同时平方,两边同乘以ρ等.1.思考辨析(在括号内打“√”或“×”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝ ⎛⎭⎪⎫2,-π3.( )(3)在极坐标系中,曲线的极坐标方程不是唯一的.( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( ) 答案 (1)× (2)√ (3)√ (4)×解析 (1)一般认为ρ≥0,当θ∈[0,2π)时,平面上的点(除去极点)才与极坐标建立一一对应关系;(4)极坐标方程θ=π(ρ≥0)表示的曲线是一条射线.2.(易错题)在极坐标系中,已知点P ⎝ ⎛⎭⎪⎫2,π6,则过点P 且平行于极轴的直线方程是( ) A.ρsin θ=1 B.ρsin θ= 3 C.ρcos θ=1D.ρcos θ= 3答案 A解析 先将极坐标化成直角坐标表示,P ⎝ ⎛⎭⎪⎫2,π6转化为直角坐标为x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1,即(3,1),过点(3,1)且平行于x 轴的直线为y =1, 再化为极坐标为ρsin θ=1.3.若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( ) A.ρ=1cos θ+sin θ,0≤θ≤π2B.ρ=1cos θ+sin θ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2D.ρ=cos θ+sin θ,0≤θ≤π4 答案 A解析 ∵y =1-x (0≤x ≤1), ∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1), ∴ρ=1sin θ+cos θ⎝⎛⎭⎪⎫0≤θ≤π2.4.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A.⎝ ⎛⎭⎪⎫1,π2 B.⎝ ⎛⎭⎪⎫1,-π2 C.(1,0)D.(1,π)答案 B解析 由ρ=-2sin θ得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y , 即x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为⎝ ⎛⎭⎪⎫1,-π2.5.(易错题)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________. 答案 x 2+(y -1)2=1解析 由ρ=2sin θ,得ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0,即x 2+(y -1)2=1.6.(2018·北京卷)在极坐标系中,直线ρcos θ+ρsin θ=a (a >0)与圆ρ=2cos θ相切,则a =________. 答案 1+ 2解析 直线的方程为x +y -a =0,圆的方程为(x -1)2+y 2=1, 所以圆心(1,0),半径r =1, 由于直线与圆相切,故圆心到直线的距离等于半径,即|1-a |2=1,又a >0,所以a =1+ 2.考点一 平面直角坐标系中的伸缩变换1.曲线C :x 2+y 2=1经过伸缩变换⎩⎨⎧x ′=2x ,y ′=y得到曲线C ′,则曲线C ′的方程为________. 答案 x ′24+y ′2=1解析 因为⎩⎪⎨⎪⎧x ′=2x ,y ′=y ,所以⎩⎪⎨⎪⎧x =x ′2,y =y ′,代入曲线C 的方程得C ′:x ′24+y ′2=1.2.曲线C 经过伸缩变换⎩⎨⎧x ′=2x ,y ′=3y 后所得曲线的方程为x ′2+y ′2=1,则曲线C 的方程为________. 答案 4x 2+9y 2=1解析 根据题意,曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 后所得曲线的方程为x ′2+y ′2=1,则(2x )2+(3y )2=1,即4x 2+9y 2=1,所以曲线C 的方程为4x 2+9y 2=1.3.在同一平面直角坐标系中,已知伸缩变换φ:⎩⎨⎧x ′=3x ,2y ′=y ,则点A ⎝ ⎛⎭⎪⎫13,-2经过变换后所得的点A ′的坐标为________. 答案 (1,-1)解析 设A ′(x ′,y ′),由伸缩变换φ: ⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 得到⎩⎨⎧x ′=3x ,y ′=12y .由于点A 的坐标为⎝ ⎛⎭⎪⎫13,-2,于是x ′=3×13=1,y ′=12×(-2)=-1, 所以点A ′的坐标为(1,-1).4.双曲线C :x 2-y 264=1经过伸缩变换φ:⎩⎨⎧x ′=3x ,2y ′=y后所得曲线C ′的焦点坐标为________.答案 (-5,0),(5,0)解析 设曲线C ′上任意一点P ′(x ′,y ′),将⎩⎨⎧x =13x ′,y =2y ′代入x 2-y 264=1,得x ′29-4y ′264=1, 化简得x ′29-y ′216=1,即为曲线C ′的方程,知C ′仍是双曲线,其焦点坐标分别为(-5,0),(5,0).感悟提升 1.平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下的变换方程的求法是将⎩⎪⎨⎪⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝ ⎛⎭⎪⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.2.解答该类问题应明确两点:一是明确平面直角坐标系中的伸缩变换公式的意义与作用;二是明确变换前的点P (x ,y )与变换后的点P ′(x ′,y ′)的坐标关系,用方程思想求解.考点二 极坐标与直角坐标的互化例1 (1)极坐标方程ρ2cos θ-ρ=0转化成直角坐标方程为( ) A.x 2+y 2=0或y =1 B.x =1C.x 2+y 2=0或x =1D.y =1(2)点M 的直角坐标是(-1,3),则点M 的极坐标为( ) A.⎝ ⎛⎭⎪⎫2,π3B.⎝ ⎛⎭⎪⎫2,-π3 C.⎝ ⎛⎭⎪⎫2,2π3 D.⎝ ⎛⎭⎪⎫2,2k π+π3(k ∈Z ) 答案 (1)C (2)C解析 (1)ρ2cos θ-ρ=0⇒ρ=x 2+y 2=0,或ρcos θ=1,即x =1.(2)∵ρ=(-1)2+(3)2=2,tan θ=3-1=- 3.又点M 在第二象限,∴θ=2π3, ∴点M 的极坐标为⎝ ⎛⎭⎪⎫2,2π3.感悟提升 1.进行极坐标方程与直角坐标方程互化的关键是抓住互化公式;x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=yx (x ≠0).2.进行极坐标方程与直角坐标方程互化时,要注意ρ,θ的取值范围及其影响;要善于对方程进行合理变形,并重视公式的逆向与变形使用;要灵活运用代入法和平方法等技巧.训练1 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为C 与x 轴,y 轴的交点.(1)求C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解 (1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1得,ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1, 即x +3y =2.当θ=0时,ρ=2,所以M (2,0).当θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫233,π2.(2)由(1)知M 点的直角坐标为(2,0),N 点的直角坐标为⎝⎛⎭⎪⎫0,233. 所以点P 的直角坐标为⎝⎛⎭⎪⎫1,33,则点P 的极坐标为⎝ ⎛⎭⎪⎫233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R ). 考点三 求曲线的极坐标方程例2 (2022·西安五校联考)在直角坐标系xOy 中,曲线C 1:(x -1)2+y 2=1(y ≥0),如图,将C 1分别绕原点O 逆时针旋转π2,π,3π2得到曲线C 2,C 3,C 4,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)分别写出曲线C 1,C 2,C 3,C 4的极坐标方程;(2)直线l :θ=π3(ρ∈R )交曲线C 1,C 3分别于A ,C 两点,直线l ′:θ=2π3(ρ∈R )交曲线C 2,C 4分别于B ,D 两点,求四边形ABCD 的面积.解 (1)将x =ρcos θ,y =ρsin θ代入C 1,得C 1的极坐标方程为ρ=2cos θ⎝ ⎛⎭⎪⎫0≤θ≤π2,设C 1上的点(ρ0,θ0)旋转π2得到曲线C 2上的点(ρ,θ),则ρ0=ρ,θ0=θ-π2,代入C 1的方程得ρ=2cos ⎝ ⎛⎭⎪⎫θ-π2=2sin θ⎝ ⎛⎭⎪⎫0≤θ-π2≤π2,所以C 2的极坐标方程为ρ=2sin θ⎝ ⎛⎭⎪⎫π2≤θ≤π,同理,C 3的极坐标方程为ρ=-2cos θ⎝ ⎛⎭⎪⎫π≤θ≤3π2,C 4的极坐标方程为ρ=-2sin θ⎝ ⎛⎭⎪⎫3π2≤θ≤2π.(2)结合图形的对称性可知S 四边形ABCD =4S △AOB , 将θ=π3代入C 1得|OA |=ρA =1,将θ=2π3代入C 2得|OB |=ρB =3,所以S 四边形ABCD =4S △AOB =4×12·|OA |·|OB |·sin π3=3. 感悟提升 求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点.(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式.(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.训练2 在极坐标系中,O 为极点,点M (ρ0,θ0)(ρ0>0)在曲线C :ρ=4sin θ上,直线l 过点A (4,0)且与OM 垂直,垂足为P . (1)当θ0=π3时,求ρ0及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 解 (1)因为M (ρ0,θ0)在曲线C 上, 当θ0=π3时,ρ0=4sin π3=2 3. 由已知得|OP |=|OA |cos π3=2. 设Q (ρ,θ)为l 上除P 外的任意一点.在Rt △OPQ 中,ρcos ⎝ ⎛⎭⎪⎫θ-π3=|OP |=2.经检验,点P ⎝ ⎛⎭⎪⎫2,π3在曲线ρcos ⎝ ⎛⎭⎪⎫θ-π3=2上,所以,l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=2.(2)设P (ρ,θ),在Rt △OAP 中,|OP |=|OA |cos θ=4cos θ,即ρ=4cos θ. 因为P 在线段OM 上,且AP ⊥OM ,所以θ的取值范围是⎣⎢⎡⎦⎥⎤π4,π2.所以,P 点轨迹的极坐标方程为ρ=4cos θ,θ∈⎣⎢⎡⎦⎥⎤π4,π2.考点四 极坐标方程的应用例3 已知曲线C :⎩⎨⎧x =2cos α,y =2sin α(α为参数),设曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=x ,y ′=12y 得到曲线C ′,以直角坐标中的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求曲线C ′的极坐标方程;(2)若A ,B 是曲线C ′上的两个动点,且OA ⊥OB ,求|OA |2+|OB |2的最小值. 解 (1)曲线C :⎩⎪⎨⎪⎧x =2cos α,y =2sin α(α为参数),转换为普通方程为x 2+y 2=4,曲线C经过伸缩变换⎩⎨⎧x ′=x ,y ′=12y得到曲线C ′:x 24+y 2=1,极坐标方程为ρ=21+3sin 2θ.(2)设A (ρ1,θ),B ⎝ ⎛⎭⎪⎫ρ2,θ+π2,所以|OA |2+|OB |2=ρ21+ρ22=41+3sin 2θ+41+3cos 2θ =8+12(sin 2θ+cos 2θ)(1+3sin 2θ)(1+3cos 2θ)=20(1+3sin 2θ)(1+3cos 2θ) =201+3(sin 2θ+cos 2θ)+94sin 22θ =204+94sin 22θ≥165. 当sin 2θ=±1时,|OA |2+|OB |2取得最小值165.感悟提升 1.若把直角坐标化为极坐标求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ.利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题.2.在极坐标系中,如果P 1(ρ1,θ1),P 2(ρ2,θ2),那么两点间的距离公式 |P 1P 2|=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2).两种特殊情况:(1)当θ1=θ2+2k π,k ∈Z 时,|P 1P 2|=|ρ1-ρ2|; (2)当θ1=θ2+π+2k π,k ∈Z ,|P 1P 2|=|ρ1+ρ2|.3.由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.训练3 (2021·昆明诊断)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =9+3t ,y =t (t为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=161+3sin 2θ.(1)求C 和l 的直角坐标方程;(2)已知P 为曲线C 上的一个动点,求线段OP 的中点M 到直线l 的最大距离. 解 (1)由ρ2=161+3sin 2θ, 得ρ2+3ρ2sin 2θ=16,则曲线C 的直角坐标方程为x 2+4y 2=16, 即x 216+y 24=1.直线l 的直角坐标方程为x -3y -9=0.(2)可知曲线C 的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =2sin α(α为参数),设P (4cos α,2sin α),α∈[0,2π),则M (2cos α,sin α)到直线l :x -3y -9=0的距离为d =|2cos α-3sin α-9|2=|7sin (θ-α)-9|2≤9+72,所以线段OP 的中点M 到直线l 的最大距离为9+72.1.将直角坐标方程与极坐标方程互化: (1)y 2=4x ;(2)y 2+x 2-2x -1=0; (3)θ=π3(ρ∈R );(4)ρcos 2 θ2=1; (5)ρ2cos 2θ=4; (6)ρ=12-cos θ.解 (1)将x =ρcos θ,y =ρsin θ代入y 2=4x ,得(ρsin θ)2=4ρcos θ.化简得ρsin 2θ=4cos θ.(2)将x =ρcos θ,y =ρsin θ代入y 2+x 2-2x -1=0,得(ρsin θ)2+(ρcos θ)2-2ρcos θ-1=0,化简得ρ2-2ρcos θ-1=0.(3)当x ≠0时,由于tan θ=y x ,故tan π3=yx =3,化简得y =3x (x ≠0); 当x =0时,y =0.显然(0,0)在y =3x 上,故θ=π3(ρ∈R )的直角坐标方程为 y =3x .(4)因为ρcos 2θ2=1,所以ρ·1+cos θ2=1,而ρ+ρcos θ=2,所以x 2+y 2+x =2.化简得y 2=-4(x -1).(5)因为ρ2cos 2θ=4,所以ρ2cos 2θ-ρ2sin 2θ=4,即x 2-y 2=4. (6)因为ρ=12-cos θ,所以2ρ-ρcos θ=1,因此2x 2+y 2-x =1,化简得3x 2+4y 2-2x -1=0.2.在极坐标系中,已知两点A ⎝ ⎛⎭⎪⎫3,π4,B ⎝ ⎛⎭⎪⎫2,π2,直线l 的方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=3.(1)求A ,B 两点间的距离; (2)求点B 到直线l 的距离.解 (1)设极点为O .在△OAB 中,A ⎝ ⎛⎭⎪⎫3,π4,B ⎝ ⎛⎭⎪⎫2,π2,由余弦定理,得 |AB |=32+(2)2-2×3×2×cos ⎝ ⎛⎭⎪⎫π2-π4= 5.(2)因为直线l 的方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=3,所以直线l 过点⎝ ⎛⎭⎪⎫32,π2,倾斜角为3π4.又B ⎝ ⎛⎭⎪⎫2,π2, 所以点B 到直线l 的距离为(32-2)×sin ⎝ ⎛⎭⎪⎫3π4-π2=2.3.以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程. 解 (1)因为ρ=x 2+y 2,ρsin θ=y ,所以ρ=21-sin θ化为ρ-ρsin θ=2,所以曲线的直角坐标方程为x 2=4y +4.(2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意21-sin θ0=3·21-sin (θ0+π),解得θ0=π6或θ0=5π6,所以直线l 的极坐标方程为θ=π6(ρ∈R )或θ=5π6(ρ∈R ).4.(2022·南宁调研)在直角坐标系xOy 中,圆C 1:(x -1)2+y 2=1,圆C 2:(x +2)2+y 2=4.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求圆C 1,C 2的极坐标方程;(2)设A ,B 分别为C 1,C 2上的点,若△OAB 为等边三角形,求|AB |. 解 (1)因为圆C 1:(x -1)2+y 2=1, 圆C 2:(x +2)2+y 2=4,所以C 1:x 2+y 2=2x ,C 2:x 2+y 2=-4x , 因为x 2+y 2=ρ2,x =ρcos θ, 所以C 1:ρ=2cos θ,C 2:ρ=-4cos θ.(2)因为C 1,C 2都关于x 轴对称,△OAB 为等边三角形, 所以不妨设A (ρA ,θ),B ⎝ ⎛⎭⎪⎫ρB ,θ+π3,0<θ<π2.依题意可得,ρA =2cos θ,ρB =-4cos ⎝ ⎛⎭⎪⎫θ+π3.从而2cos θ=-4cos ⎝ ⎛⎭⎪⎫θ+π3,整理得,2cos θ=3sin θ,所以tan θ=233,又因为0<θ<π2,所以cos θ=217,|AB |=|OA |=ρA =2217.5.(2021·成都诊断)在直角坐标系xOy 中,已知曲线C 的方程为(x -1)2+y 2=1,直线l 的方程为x +3y -6=0.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 和直线l 的极坐标方程;(2)若点P (x ,y )在直线l 上且y >0,射线OP 与曲线C 相交于异于点O 的点Q ,求|OP ||OQ |的最小值.解 (1)由极坐标与直角坐标的互化公式x =ρcos θ,y =ρsin θ得 曲线C 的极坐标方程为ρ=2cos θ. 由题意得直线l 的极坐标方程为ρcos θ+3ρsin θ-6=0,即ρsin ⎝ ⎛⎭⎪⎫θ+π6=3.(2)设点P 的极坐标为(ρ1,θ),点Q 的极坐标为(ρ2,θ),其中0<θ<π2. 由(1)知|OP |=ρ1=6cos θ+3sin θ,|OQ |=ρ2=2cos θ. ∴|OP ||OQ |=ρ1ρ2=62cos 2θ+23sin θcos θ=61+cos 2θ+3sin 2θ=61+2sin ⎝⎛⎭⎪⎫2θ+π6.∵0<θ<π2,∴π6<2θ+π6<7π6,∴-12<sin ⎝ ⎛⎭⎪⎫2θ+π6≤1. ∴当sin ⎝ ⎛⎭⎪⎫2θ+π6=1,即θ=π6时,|OP ||OQ |取得最小值2.6.已知曲线C 1:x 2+(y -3)2=9,A 是曲线C 1上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中心,将点A 绕点O 逆时针旋转90°得到点B ,设点B 的轨迹方程为曲线C 2. (1)求曲线C 1,C 2的极坐标方程;(2)射线θ=5π6(ρ>0)与曲线C 1,C 2分别交于P ,Q 两点,定点M (-4,0),求△MPQ的面积.解 (1)曲线C 1:x 2+(y -3)2=9, 即x 2+y 2-6y =0. 从而ρ2=6ρsin θ.所以曲线C 1的极坐标方程为ρ=6sin θ. 设B (ρ,θ),则A ⎝ ⎛⎭⎪⎫ρ,θ-π2,则有ρ=6sin ⎝ ⎛⎭⎪⎫θ-π2=-6cos θ.所以曲线C 2的极坐标方程为ρ=-6cos θ. (2)M 到射线θ=5π6(ρ>0)的距离为d =4sin 5π6=2,射线θ=5π6(ρ>0)与曲线C 1的交点P ⎝ ⎛⎭⎪⎫ρP ,5π6,其中,ρP =6sin 5π6=3,射线θ=5π6(ρ>0)与曲线C 2的交点Q ⎝ ⎛⎭⎪⎫ρQ ,5π6,其中,ρQ =-6cos 5π6=33,则|PQ |=|ρP -ρQ |=33-3, 则S △MPQ =12|PQ |d =33-3.。
高考数学真题之坐标系与参数方程
坐标系与参数方程2019年1.(2019全国1文22)在直角坐标系xOy 中,曲线C 的参数方程为2221141t x tt y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.2.(2019全国II 文22)在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P . (1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 3.(2019全国III 文22)如图,在极坐标系Ox 中,(2,0)A ,(2,)4B π,(2,)4C 3π,(2,)D π,弧»AB ,»BC ,»CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧»AB ,曲线2M 是弧»BC,曲线3M 是弧»CD . (1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||3OP =,求P 的极坐标.2010-2018年1.(2018北京)在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =___.2.(2017北京)在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0)),则||AP 的最小值为___________.3.(2017天津)在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为_____.4.(2016北京)在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于,A B两点,则||AB =____.5.(2015广东)已知直线l的极坐标方程为2sin()4πρθ-=Α的极坐标为7)4πA (,则点Α到直线l 的距离为 . 6.(2015安徽)在极坐标系中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是7.(2018全国卷Ⅰ) [选修4–4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程. 8.(2018全国卷Ⅱ)[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为2cos ,4sin ,=⎧⎨=⎩x θy θ(θ为参数),直线l 的参数方程为1cos 2sin =+⎧⎨=+⎩x t αy t α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 9.(2018全国卷Ⅲ)[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O e 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0,且倾斜角为α的直线l 与O e 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.10.(2018江苏)C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l被曲线C 截得的弦长.11.(2017新课标Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩,(θ为参数),直线l 的参数方程为41x a ty t=+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l,求a .12.(2017新课标Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程; (2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.13.(2017新课标Ⅲ)在直角坐标系xOy 中,直线1l 的参数方程为2x t y kt =+⎧⎨=⎩(t 为参数),直线2l 的参数方程为2x mm y k =-+⎧⎪⎨=⎪⎩(m 为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l :(cos sin )ρθθ+-0=,M 为3l 与C 的交点,求M 的极径.14.(2017江苏)在平面坐标系中xOy 中,已知直线l 的参考方程为82x t ty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C的参数方程为22x sy ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.15.(2016年全国I )在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :4cos ρθ=.(I )说明1C 是哪种曲线,并将1C 的方程化为极坐标方程;(II )直线3C 的极坐标方程为0=a θ,其中0a 满足0tan =2a ,若曲线1C 与2C 的公共点都在3C 上,求a .16.(2016年全国II )在直角坐标系xOy 中,圆C 的方程为()22625x y ++=.(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (II )直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B两点,AB ,求l 的斜率.17.(2016年全国III )在直角坐标系xOy 中,曲线1C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.18.(2016江苏)在平面直角坐标系xOy 中,已知直线l的参数方程为()11,2,x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长.19.(2015新课标Ⅰ)在直角坐标系xOy 中,直线1C :2x =-,圆2C :22(1)(2)1x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N,求2C MN ∆的面积.20.(2015新课标Ⅱ)在直角坐标系xOy 中,曲线1C :cos ,sin ,x t y t αα=⎧⎨=⎩(t 为参数,t ≠0)其中0απ<≤,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :2sin ρθ=,3C:ρθ=.(Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求||AB 的最大值. 21.(2015江苏)已知圆C的极坐标方程为2sin()404πρθ+--=,求圆C 的半径.22.(2015陕西)在直角坐标系xOy 中,直线l的参数方程为132x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρθ=. (Ⅰ)写出⊙C 的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.23.(2014新课标Ⅰ)已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数). (Ⅰ) 写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(2014新课标Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.25.(2013新课标Ⅰ)已知曲线1C 的参数方程为45cos 55sin x ty t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=。
【高三】2021高考数学坐标系与参数方程总复习测试(含答案)
【高三】2021高考数学坐标系与参数方程总复习测试(含答案)2021年高考数学总复习12-2坐标系与参数方程但因为测试新人教b版1.(海淀中期,北京,2022年)在极坐标系中,已知圆C的方程为ρ=2cosθ,那么在以下几点中,圆C上的方程为()a.(1,-π3)b.(1,π6)c、(2,3π4)d.(2,5π4)[答案] a[analysis]将替代答案代入圆C的方程中,因为2cos(-π3)=2×12=1,所以a成立2.(2021湖南,4)极坐标方程ρ=cosθ和参数方程x=-1-ty=2+t(t为参数)所表示的图形分别是( )a、直线,直线B.直线,圆c.圆、圆d.圆、直线[答:]d[解析] 由ρ=cosθ得ρ2=ρcosθ,∴x2+y2-x=0.此方程所表示的图形是圆.通过消除方程x=-1-ty=2+t,x+Y-1=0中的参数t。
这个方程式所代表的图形是一条直线3.()(2021湖南十二校联考)若直线的参数方程为x=1+3ty=2-3t(t为参数),则直线的倾斜角为( )a、30°b.60°c.120°d.150°[答:]d[解析] 由直线的参数方程知,斜率k=y-2x-1=-3t3t=-33=tanθ,θ为直线的倾斜角,所以该直线的倾斜角为150°.(理论上)直线的参数方程为x=tsin50°-1y=-tcos50°(t为参数),则直线的倾角为()a.40°b.50°c、140°d.130°[答案] c【分析】对直线的参数方程进行变形,得到x=-1-tcos 140°,y=-Tsin 140°,倾角为140°4.()(2021皖中地区示范高中联考)在平面直角坐标系xoy中,直线l的参数方程为x=ty=t+1(t∈r),圆的参数方程为x=cosθ+1y=sinθ(θ∈[0,2π)),则圆心c到直线l的距离为( )a、 0b.2c.2d.22[答:]C[解析] 化直线l的参数方程x=ty=t+1(t∈r)为普通方程为x-y+1=0,化圆的参数方程x=cosθ+1y=sinθ(θ∈[0,2π))为普通方程为(x-1)2+y2=1,则圆心c(1,0)到直线l的距离为1-0+112+-12=2.(原因)(上海市奉贤区2022年)如果已知点P(3,)位于以点F为焦点的抛物线x=4t2y=4T(t为参数)上,则pf=()a.1 b.2c、三,d、四,[答案] d【分析】将抛物线的参数方程转化为一般方程,即y2=4x,然后焦点f(1,0),拟线性方程为x=-1,P(3,)在抛物线上。
2023年高考数学真题分训练 极坐标系与参数方程(含答案含解析)
专题34 极坐标系与参数方程2⎩2 2考点 116 平面直角坐标系中的伸缩变换 考点 117 极坐标和直角坐标的互化⎧x = t + 1,⎪x = 4cos 2θ, 1.(2023 全国Ⅱ文理 21)已知曲线C 1 , C 2 的参数方程分别为C 1 : ⎨ (θ为参数),C : ⎪ t ( t 为 ⎩ y = 4sin 2θ⎪ y = t - 1参数).(1) 将C 1 , C 2 的参数方程化为一般方程;⎪ t(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系.设C 1 , C 2 的交点为 P ,求圆心在极轴上,且经过极点和 P 的圆的极坐标方程.(解析)(1)由cos 2 θ+ sin 2 θ= 1得C 1 的一般方程为: x + y = 4 ,⎧x = t + 1 ⎧x 2= t 2 + 1 + 2 ⎪ t ⎪ t 2 C 2 2由⎨ 1 得: ⎨1 ,两式作差可得2 的一般方程为: x - y = 4 . ⎪ y = t - ⎪ y 2 = t 2 + - 2 ⎪ t ⎪ t 2⎧x = 5 ⎧x + y = 4 ⎪ (2)由 得: 2 ,即 P ⎛ 5 , 3 ⎫. ⎨x 2 - y 2= 4 ⎨ ⎪ y = 3 ⎩ 2 ⎪ ⎝ ⎭⎛ 5 ⎫2⎛3 ⎫217设所求圆圆心的直角坐标为(a , 0),其中 a > 0 ,则 a - ⎪ + 0 - ⎪ = a 2 ,解得:a = ,⎝2 ⎭⎝2 ⎭10∴ 17 ∴⎛ 17 ⎫2⎛ 17 ⎫222 2 17 所求圆的半径 r = , 10 所求圆的直角坐标方程为: x - 10 ⎪ + y = 10 ⎪ ,即 x + y = x ,5 ∴所求圆的极坐标方程为ρ= 17cos θ.5⎝ ⎭ ⎝ ⎭103⎩⎪x = 2 - t - t 2, 2.(2023 全国Ⅲ文理 22)在直角坐标系 xOy 中,曲线C 的参数方程为⎪ y = 2 - 3t + t 2( t 为参数且t ≠ 1),C与坐标轴交于 A , B 两点.(1) 求 AB ;(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,求直线 AB 的极坐标方程.(解析)(1)令 x = 0 ,则t 2 + t - 2 = 0 ,解得t = -2 或t =1(舍),则 y = 2 + 6 + 4 = 12 ,即 A (0,12) . 令 y = 0 ,则t 2 - 3t + 2 = 0 ,解得t = 2 或t =1(舍),则 x = 2 - 2 - 4 = -4 ,即 B (-4, 0) .∴ AB == 4 .(2)由(1)可知 k AB =12 - 00 - (-4)= 3 ,则直线 AB 的方程为 y = 3(x + 4) ,即3x - y +12 = 0 .由 x = ρcos θ, y = ρsin θ可得,直线 AB 的极坐标方程为3ρcos θ- ρsin θ+12 = 0 .3.(2023 江苏 22)在极坐标系中,已知点 A (ρ, π) 在直线l : ρcos θ= 2 上,点 B (ρ , π) 在圆C : ρ= 4 sin θ上1 32 6(其中ρ≥ 0 , 0 ≤θ< 2π).(1)求ρ1 , ρ2 的值(2)求出直线l 与圆C 的公共点的极坐标.(解析)(1) Q ρ cos π = 2∴ρ = 4; Q ρ = 4 s inπ2 .131 26 ∴ρ2 = (2) Q ρcos θ= 2, ρ= 4 sin θ∴ 4 sin θcos θ= 2,∴sin 2θ= 1 Q θ∈0, 2π)∴θ= π, 5π,4 4当θ= π时ρ= 2 4;当θ= 5π 时ρ= -2 4 < 0 (舍);即所求交点坐标为当π (2 2, ) . 4 4.(2023 全国 II 文理 22)在极坐标系中,O 为极点,点 M (ρ0 ,θ0 )(ρ0 > 0)在曲线C : ρ= 4 s in θ上,直线 l 过点 A (4, 0) 且与OM 垂直,垂足为 P . (1)当θ = π时,求ρ 及 l 的极坐标方程;3(2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程.(解析)(1)因为 M (ρ,θ ) 在C 上,当θ = π 时,ρ = 4 s in π= 2 .0 0 0 3 03由已知得| OP |=| OA | cos π= 2 .322333⎢⎥⎢⎥设Q (ρ,θ) 为l 上除P 的任意一点.在Rt △OPQ 中ρcos⎛θ-π ⎫=| OP |= 2 , 3 ⎪ ⎝ ⎭π ⎛ π ⎫经检验,点P (2, ) 在曲线ρcos θ- ⎪ = 2 上. ⎝ ⎭所以,l 的极坐标方程为ρcos ⎛θ- π ⎫= 2 .3 ⎪ ⎝ ⎭(2)设 P (ρ,θ) ,在Rt △OAP 中, | OP |=| OA | cos θ= 4 cos θ,即 ρ= 4 cos θ..因为P 在线段OM 上,且 AP ⊥ OM ,故θ的取值范围是⎡π , π⎤. ⎣ 4 2 ⎦所以,P 点轨迹的极坐标方程为ρ= 4 cos θ,θ∈ ⎡π , π⎤ .⎣4 2 ⎦5.(2023 全国 III 文理 22)如图,在极坐标系 Ox 中, A (2, 0) , B ( 2, π) ,C ( 2, 3π) , D (2, π) ,弧 AB ,4 4 A , A 所在圆的圆心分别是(1, 0) ,π, (1, π) ,曲线 M 是弧 A ,曲线 M 是弧 A ,曲线 M 是BC CD(1, ) 21 AB2 BC3 弧C D .(1) 分别写出 M 1 , M 2 , M 3 的极坐标方程;(2) 曲线 M 由 M 1 , M 2 , M 3 构成,假设点 P 在 M 上,且| OP |= ,求P 的极坐标.(解析)(1)由题设可得,弧 AB , B C ,C D 所在圆的极坐标方程分别为ρ= 2 cos θ,ρ= 2 s in θ,ρ= -2 cos θ,所以 M 的极坐标方程为ρ= 2 cos θ⎛0 θ π ⎫ , M 的极坐标方程为 1 4⎪ 2⎝⎭ρ= 2 sin θ⎛ π θ3π ⎫ , M 的极坐标方程为ρ= -2 cos θ⎛ 3πθ π ⎫ . 4 4 ⎪ 34 ⎪ ⎝ ⎭ ⎝ ⎭(2)设 P (ρ,θ) ,由题设及(1)知3332⎩⎩⎩⎩⎩θ假设0 θπ,则 2 cos θ=,解得θ=π;4 6假设 π θ 3π ,则 2 sin θ= ,解得θ= π 或θ= 2π ; 4 4 3 3 假设 3π θ π ,则-2 cos θ= ,解得θ= 5π .4 ⎛ 综上,P 的极坐标为3, π ⎫ 或⎛3, π ⎫ 或⎛63,2π ⎫ 或⎛3, 5π ⎫ .6⎪ 3⎪ 3 ⎪ 6 ⎪ ⎝⎭ ⎝⎭ ⎝⎭ ⎝ ⎭考点 118 参数方程与一般方程的互化6.(2023 上海 14)已知直线方程3x + 4 y +1 = 0 的一个参数方程可以是()⎧x = 1+ 3t A . ⎨ y = -1+ 4t ⎧x = 1- 4tB . ⎨y = -1- 3t⎧x = 1- 3tC . ⎨y = -1+ 4t ⎧x = 1+ 4t D . ⎨y = -1- 3t(答案)D(解析)A .参数方程可化简为 4x - 3y - 7 = 0 ,故 A 不正确;B .参数方程可化简为3x - 4 y - 7 = 0 ,故B 不正确;C .参数方程可化简为 4x + 3y -1 = 0 ,故 C 不正确;D .参数方程可化简为3x + 4 y +1 = 0 , 故 D 正确.应选 D .7.(2023 全国Ⅲ)选修 4—4:坐标系与参数方程](10 分)在平面直角坐标系 xOy 中, A O 的参数方程为⎧x = cos θ(θ为参数),过点(0, -2) 且倾斜角为α的直线l 与A O 交于 A , B 两点.(1) 求α的取值范围;(2) 求 AB 中点 P 的轨迹的参数方程.⎨ y = sin ,(解析)(1) A O 的直角坐标方程为 x 2 + y 2 = 1. 当α= π时, l 与A O 交于两点.2当α≠ π时,记 tan α= k ,则l 的方程为 y = kx -.l 与A O 交于两点当且仅当< 1 ,解得 k < -1 或2α∈π ππ 3πk > 1,即( , ) 或α∈ ( , ) .4 2 2 4α π 3π 综上,的取值范围是( , ) . 4 4222222⎨(2) l 的参数方程为⎪x = t cos α, (t 为参数, π < α< 3π) . ⎨⎩ y = - + t sin α 4 4 设 A , B , P 对应的参数分别为 t , t , t ,则t =t A + t B,且t , t 满足t 2 - 2 2t sin α+ 1 = 0 .ABPP2A B于是t A + t B= 2 2 sin α, t P =2 sin α.又点 P 的坐标(x , y ) 满足 ⎪x = t P cos α,y = - + t sin α.⎧ ⎪x =2sin 2α, 2 ⎩P π 3π 所以点 P 的轨迹的参数方程是⎨ ⎪ y = - 2 - 2 cos 2α (α为参数, < α< ) . 4 4 ⎪ 2 2考点 119 极坐标方程与参数方程的综合应用8.(2023 北京文理)在极坐标系中,直线ρcos θ+ ρsin θ= a (a > 0) 与圆ρ=2 cos θ相切,则 a =.(答案)1+ (解析)利用 x = ρcos θ, y = ρsin θ,可得直线的方程为 x + y - a = 0 ,圆的方程为(x -1)2 + y 2 = 1 ,所以圆心(1, 0) ,半径 r = 1,由于直线与圆相切,故圆心到直线的距离等于半径,即|1- a |= 1 ,∴ a = 1+ 或1- ,又 a > 0 ,∴ a = 1+ .9.(2023 北京文理)在极坐标系中,点 A 在圆ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 上,点 P 的坐标为(1, 0) ),则| AP | 的最小值为.(答案)1(解析)圆的一般方程为 x 2 + y 2 - 2x - 4y + 4 = 0 ,即(x -1)2 + ( y - 2)2 = 1 .设圆心为C (1, 2) ,所以| AP |min =| PC | -r = 2 -1 = 1 .10.(2023 天津文理)在极坐标系中,直线4ρcos(θ- π) +1 = 0 与圆ρ= 2 s in θ的公共点的个数为.6(答案)2(解析)直线的一般方程为 2 3x + 2 y +1 = 0 ,圆的一般方程为 x 2 + ( y -1)2= 1 ,因为圆心到直 3线的距离 d = < 1 4,所以有两个交点.11.(2023 北京文理)在极坐标系中,直线ρcos θ- | AB |= .3ρsin θ-1 = 0 与圆ρ= 2 cos θ交于 A , B 两点,则(答案)2(解析)将ρcos θ-3ρsin θ-1 = 0 化为直角坐标方程为 x - 3y -1 = 0 ,将ρ=2cos θ化为直角坐标方程为(x -1)2+ y 2= 1 ,圆心坐标为(1,0),半径 r=1,又(1,0)在直线 x - 3y -1 = 0 上,所以|AB|=2r=2.222234y x ⎩⎩⎩)⎩12.(2023 广东文理)已知直线l 的极坐标方程为 2ρsin(θ- π= 47πA (2 2,) ,则点 Α 到直线l 的距离为 .42 ,点 Α 的极坐标为(答案)(解析)由 2ρsin(θ- 2π ) = 得2ρ´ 4 2 7π(sin θ- cos θ) = ,所以 y - x = 1, 故直线l 的直角坐标方程为 x - y +1 = 0 ,而点 A (2 2, ) 对应的直角坐标为4 A (2,-2) ,所以点 A (2,-2) 到直线l : x - y +1 = 0 的距离为| 2 + 2 +1| = 5 2. 213.(2023 安徽文理)在极坐标系中,圆ρ= 8sin θ上的点到直线θ=是.π(ρ∈ R ) 距离的最大值 3(答案)6(解析)圆ρ= 8sin θ即ρ2= 8ρsin θ,化为直角坐标方程为 x 2+ ( y - 4)2= 16 ,π直线θ=,则tan θ=,化为直角坐标方程为 3x - y = 0 ,圆心(0, 4) 到直线3的距离为| -4 |= 2 ,所以圆上的点到直线距离的最大值为 6.14.(2023 全国Ⅰ文理 21)⎧x = cos k t ,在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ y = sin k t(t 为参数) .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线C 2 的极坐标方程为 4ρcos θ-16ρsin θ+ 3 = 0 .(1) 当 k = 1时, C 1 是什么曲线?(2) 当 k = 4 时,求C 1 与C 2 的公共点的直角坐标.(解析)(1)当 k = 1时,曲线C 的参数方程为⎧x = cos t ,( t 为参数),两式平方相加得 x 2 + y 2 = 1 ,1⎨y = sin t∴曲线C 1 表示以坐标原点为圆心,半径为 1 的圆.⎧x = cos 4 t ,(2)当 k = 4 时,曲线C 1 的参数方程为⎨ y = sin 4t ( t 为参数),∴ x ≥ 0, y ≥ 0 ,曲线C 1 的参数方程化为⎧ x = cos 2 t ⎨ y = sin 2t(t 为参数),两式相加得曲线C 1 方程为 + = 1,得 = 1 - ,平方得 5 22x yx 77⎩2y = x - 2 + 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 ,曲线C 2 的极坐标方程为4ρcos θ-16ρsin θ+ 3 = 0 ,曲线C 2 直角坐标方程为4x -16 y + 3 = 0 ,联立C , C 方程⎪ y = x - 2 +1 , ,整理得12 x - 32 + 13 = 0 ,解得 x = 1 或 = 13(舍去),1 2⎨ ⎩4x -16 y + 3 = 02 6 ∴ x = 1 , y = 1 ,∴C ,C 1 1 公共点的直角坐标为( , ) .4 4 1 24 4⎧ 1- t 2 ⎪x =1+ t 215.(2023 全国 1 文理 22)在直角坐标系 xOy 中,曲线 C 的参数方程为⎨ ⎪ y = ⎩ 4t 1+ t 2(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 2ρcos θ+ 3ρsin θ+11 = 0 .(1) 求 C 和 l 的直角坐标方程;(2) 求 C 上的点到 l 距离的最小值.1- t 2⎛ y ⎫2⎛ 1- t 2 ⎫24t 2 (解析)(1)因为-1 < ≤ 1 ,且 x 2 + ⎪ = ⎪ + = 1,所以C 的直角坐标方程为2y 2 1+ t 2⎝ 2 ⎭ ⎝1 + t 2 ⎭ (1+ t 2 )2x += 1(x ≠ -1) .4l 的直角坐标方程为 2x + 3y +11 = 0 .⎧x = cos α, (2)由(1)可设C 的参数方程为 (α为参数, -π <α< π ).⎨y = 2sin α4 cos ⎛α- π ⎫ +113 ⎪ C 上的点到l 的距离为 = ⎝ ⎭.当α= - 2π 时, 4 c os ⎛α- π ⎫+11 取得最小值7,故C 上的点到l 距离的最小值为 . 3 3 ⎪ ⎝ ⎭16.(2023 全国Ⅰ文理) 在直角坐标系 xOy 中,曲线C 1 的方程为 y = k |x | + 2 .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2+ 2ρcos θ- 3 = 0 . (1) 求C 2 的直角坐标方程;x x x | 2 c os α+ 2 3 sin α+11|7⎨y = 4 s in θ,⎩(2) 假设C 1 与C 2 有且仅有三个公共点,求C 1 的方程.(解析)(1)由 x = ρcos θ, y = ρsin θ得C 2 的直角坐标方程为(x +1)2 + y 2 = 4 .(2)由(1)知C 2 是圆心为 A (-1, 0) ,半径为 2 的圆.由题设知,C 1 是过点 B (0, 2) 且关于 y 轴对称的两条射线.记 y 轴右边的射线为l 1 ,y 轴左边的射线为l 2 .由于 B 在圆C 2 的外面,故C 1 与C 2 有且仅有三个公共点等价于l 1 与C 2 只有一个公共点且l 2 与C 2 有两个公共点,或l 2 与C 2 只有一个公共点且l 1 与C 2 有两个公共点.当l 与C 只有一个公共点时, A 到l 所在直线的距离为 2 ,所以| -k + 2 |= 2 ,故 k = - 4 或 k = 0 .1213经检验,当k = 0 时, l 与C 没有公共点;当 k = - 4时, l 与C 只有一个公共点, l 与C 有两个公共点.1231 2 2 2| k + 2 | 当l 与C 只有一个公共点时, A 到l 所在直线的距离为2 ,所以= 2 ,故 k = 0 或 k = 4 .2 2 23经检验,当k = 0 时, l 与C 没有公共点;当 k = 4时, l 与C 没有公共点.1 2 32 2综上,所求C 的方程为 y = - 4| x | +2 .1317.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,曲线C 的参数方程为⎧x = 2 cos θ,( θ 为参数),直线l 的参数⎩⎧x = 1+ t cos α 方程为⎨ y = 2 + t sin α ( t 为参数).(1) 求C 和l 的直角坐标方程;(2) 假设曲线C 截直线l 所得线段的中点坐标为(1, 2) ,求l 的斜率.x 2 + y 2 =(解析)(1)曲线C 的直角坐标方程为 1. 4 16当cos α≠ 0 时, l 的直角坐标方程为 y = tan α⋅ x + 2 - tan α; 当cos α= 0 时, l 的直角坐标方程为 x = 1 .(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+ 3cos 2 α)t 2 + 4(2 cos α+ sin α)t - 8 = 0 .①3317⎩⎨ y = 1- ty 因为曲线C 截直线l 所得线段的中点(1, 2) 在C 内,所以①有两个解,设为t 1 , t 2 ,则t 1 + t 2 = 0 .4(2 cos α+ sin α)又由①得t 1 + t 2 = -1+ 3cos 2α,故 2 cos α+ sin α= 0 ,于是直线l 的斜率 k = tan α= -2 .18.(2023 江苏)在极坐标系中,直线l 的方程为ρsin( π-θ) = 2 ,曲线C 的方程为ρ= 4 cos θ,求直线l 被曲6 线C 截得的弦长.(解析)因为曲线C 的极坐标方程为ρ=4 cos θ,所以曲线C 的圆心为(2, 0) ,直径为 4 的圆.因为直线l 的极坐标方程为ρsin( π -θ) = 2 ,则直线l 过 A (4, 0) ,倾斜角为 π,所以 A 为直线l 与圆C 的一6 6 个交点.设另一个交点为 B ,则∠OAB= π ,连结 OB ,因为 OA 为直径,从而∠OBA= π ,所以 AB = 4 c os π= 2 .6 因此,直线l 被曲线C 截得的弦长为 2 .2 6⎧x = 3cos θ19.(2023 全国Ⅰ文理)在直角坐标系 xOy 中,曲线C 的参数方程为⎨ y = sin θ ,(θ为参数),直线l 的参数方程为⎧x = a + 4t( t 为参数).⎩ (1) 假设 a = -1,求C 与l 的交点坐标;(2) 假设C 上的点到l 距离的最大值为 ,求 a .(解析)(1)曲线C 的一般方程为 x 2 + 29= 1.当a = -1时,直线l 的一般方程为 x + 4 y - 3 = 0 .⎧x + 4 y - 3 = 0⎧x = - 21 ⎪ ⎧x = 3 ⎪25 21 24由⎨ x 2 2解得⎨ y = 0 或⎨ ,从而C 与l 的交点坐标为(3, 0) , (- 24 , ) . ⎩ 9+ y = 1 ⎩⎪ y = ⎩ 25 25 25171717171733342⎩(2)直线l 的一般方程为 x + 4 y - a - 4 = 0 ,故C 上的点(3cos θ, sin θ) 到l 的距离为| 3cos θ+ 4 sin θ- a - 4 |d =.当a ≥-4 时, d 的最大值为a + 9.由题设得a + 9= ,所以a = 8 ;当a < -4 时, d 的最大值为 -a + 1 .由题设得 -a + 1= ,所以 a = -16 . 综上, a = 8 或 a = -16 .20.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,曲线C 1 的极坐标方程为ρcos θ= 4 .(1) M 为曲线C 1 上的动点,点 P 在线段OM 上,且满足| OM | ⋅ | OP |= 16 ,求点 P 的轨迹C 2 的直角坐标方程;π(2) 设点 A 的极坐标为(2, 3) ,点 B 在曲线C 2 上,求∆OAB 面积的最大值. (解析)(1)设 P 的极坐标为(ρ,θ) (ρ> 0) , M 的极坐标为(ρ1 ,θ) (ρ1 > 0) .由椭圆知| OP |= ρ, | OM |= ρ1 =cos θ.由| OM | ⋅ | OP |= 16 得C 2 的极坐标方程ρ= 4 cos θ(ρ> 0) , 因此C 的直角坐标方程为(x - 2)2 + y 2= 4(x ≠ 0) .(2)设点 B 的极坐标为(ρB ,α) (ρB > 0) .由题设知| OA |= 2 , ρB = 4cos α,于是∆OAB 面积1 π π 3S = 2 | OA | ⋅ρB ⋅sin ∠AOB = 4cos α| sin(α- 3 ) | = 2 | sin(2α- 3 ) - | ≤ 2 + . 2 当α= - π时, S 取得最大值 2 + ,所以∆OAB 面积的最大值为 2 + .1221.(2023 全国Ⅲ文理)在直角坐标系 xOy 中,直线l 的参数方程为⎧x = 2 + t( t 为参数),直线l 的参数方⎧x = -2 + m⎪1 ⎨ y = kt 2程为⎨ ⎩ y = m k( m 为参数).设l 1 与l 2 的交点为 P ,当 k 变化时, P 的轨迹为曲线C .(1) 写出C 的一般方程;17175224 5⎨t⎩(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l3 :ρ(cosθ+ sinθ) -交点,求M 的极径.= 0 ,M 为l3与C 的(解析)(1)消去参数t 得l 的一般方程l : y =k (x -2),消去参数m 得l 的一般方程l : y =1 (x+2).11⎧y =k (x-2)22k⎪设P(x, y) ,由题设得⎨⎩y=1 (x+2)k,消去k 得x2-y2=4 (y ≠0),所以C 的一般方程为x2-y2=4 (y ≠0).⎪ρ2(cos2θ-sin2θ)=4(2)C的极坐标方程为ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π),联立⎨得⎩ρ(cosθ+sinθ)-2=0cosθ- sinθ=2 (cosθ+sinθ),故tanθ=-1,从而cos2θ=9,sin2θ=1,代入ρ2(cos2θ-sin2θ)=4得3ρ2=5,所以交点M的极径为.10 10⎧x =-8 +t22.(2023 江苏)在平面坐标系中xOy 中,已知直线l 的参考方程为⎪y = ( t 为参数),曲线C 的参数方⎧x=2s2⎪2程为⎨⎩y=22s( s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.(解析)直线l 的一般方程为x - 2 y + 8 = 0 .因为点P 在曲线C 上,设P(2s2 , 2 2s) ,从而点P 到直线l 的的距离4 5d == ,当s =时,dmin=5.因此当点P 的坐标为(4, 4) 时,曲线C 上点P 到直线l 的距离取到最小值.5⎧x =a cos t23.(2023 全国I 文理)在直角坐标系xOy 中,曲线C1 的参数方程为⎨y = 1+a sin t(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2 :ρ= 4 cosθ.(I)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(II)直线C3 的极坐标方程为θ=a0 ,其中a0 满足tan a0 =2 ,假设曲线C1 与C2 的公共点都在C3上,求a.22(s -2)2 +4510 10 ⎫2152⎩1123⎩⎨⎩=⎧x = a cos t (解析)(1) ⎨ y = 1 + a sin t( t 均为参数),∴x 2 + ( y - 1)2= a 2 ①∴ C 为以(0 ,1) 为圆心, a 为半径的圆.方程为 x 2 + y 2 - 2 y +1 - a 2 = 0 .∵ x 2 + y 2 = ρ2 ,y = ρsin θ,∴ ρ2- 2ρsin θ+ 1 - a 2 = 0 ,即为C 的极坐标方程.(2) C :ρ= 4cos θ,两边同乘ρ得ρ2 = 4ρcos θ ρ2= x 2 + y 2 ,ρcos θ= x ,∴ x 2 + y 2 = 4x ,即( x - 2)2+ y 2 = 4 ②C 3 :化为一般方程为 y = 2x ,由题意: C 1 和C 2 的公共方程所在直线即为C 3 ,①—②得: 4x - 2 y + 1 - a 2 = 0 ,即为C ,∴1 - a 2 = 0 ,∴ a = 1 .24.(2023 全国 II 文理)在直角坐标系 xOy 中,圆 C 的方程为( x + 6)2+ y 2 = 25 .(I) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程;⎧x = t cos α(II)直线 l 的参数方程是⎨ y = t sin α(t 为参数),l 与 C 交于 A 、B 两点, AB = ,求 l 的斜率.⎧ρ2 = x 2 + y 2 (解析)(Ⅰ)整理圆的方程得 x 2 + y 2 + 12 + 11 = 0 ,由⎪ρcos θ= x ⎪ρsin θ= y 可知圆C 的极坐标方程为ρ2 + 12ρcos θ+ 11 = 0 .(Ⅱ)记直线的斜率为 k ,则直线的方程为 kx - y = 0 ,由垂径定理及点到直线距离公式知:= 36k 2 290 ,整理得 k 2 = 5 ,则 k = ± . 1 + k 4 3 3⎪x =3 cos α25.(2023 全国 III 文理)在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ ⎩ y = sin α(α为参数),以坐标原点为极点,以 x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρsin(θ+ π) = 2.24(Ⅰ)写出C 1 的一般方程和C 2 的直角坐标方程;(Ⅱ)设点 P 在C 1 上,点 Q 在C 2 上,求| PQ |的最小值及此时 P 的直角坐标.x 2 2(解析)(Ⅰ) C 1 的一般方程为 3+ y = 1, C 2 的直角坐标方程为 x + y - 4 = 0 .(Ⅱ)由题意,可设点 P 的直角坐标为( 3 cos α, sin α) ,因为C 2 是直线,所以| PQ | 的最小值,即为 P 到C 2| 3 cos α+sin α- 4 |2222⎨⎩⎪=1⎩的距离d (α) 的最小值, d (α) ==π2 | sin(α+ π ) - 2 | .3 3 1当且仅当α= 2k π+(k ∈ Z ) 时, d (α) 取得最小值,最小值为 6,此时 P 的直角坐标为( , ) . 2 2 ⎧x = 1 + 1t , 26.(2023 江苏)在平面直角坐标系 xOy 中,已知直线l 的参数方程为⎪ ⎪ y = ⎩ 2 3 t , 2(t 为参数) ,椭圆C 的参数⎧x = cos θ,方程为⎨ y = 2sin θ, (θ为参数) ,设直线l 与椭圆C 相交于 A , B 两点,求线段 AB 的长.⎧x = 1+ 1t(解析)椭圆C 的一般方程为 x 2 + y 4 = 1,将直线l 的参数方程⎨ ⎪ y = ⎩2 3 t2 ,代入 x 2 + y 4 = 1,得(1+ 1 t )2 + 3 t )22 = 1,即7t 2 +16t = 0 ,解得t = 0 , t = - 16 ,所以 AB =| t - t | 16 .2 4 1 2 71 2727.(2023 全国Ⅰ文理)在直角坐标系 xOy 中,直线C : x = -2 ,圆C :(x -1)2 + ( y - 2)2= 1 ,以坐标原12点为极点, x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求C 1 , C 2 的极坐标方程;(Ⅱ)假设直线C 3 的极坐标方程为θ=(ρ∈ R ) ,设C 2 与C 3 的交点为 M , N ,求∆C 2MN 的面积.4(解析)(Ⅰ)因为 x = ρcos θ, y = ρsin θ,∴ C 的极坐标方程为ρcos θ= -2 , C 的极坐标方程为ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 .12(Ⅱ)将θ= π代入ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 ,得ρ2- 3 2ρ+ 4 = 0 ,解得ρ = 2, ρ = , 4|MN|= ρ - ρ = ,因为C 的半径为 1,则A C MN 的面积 ⨯ 122 ⨯1⨯sin 45o = 1 . 1 2 22 2 2 ⎧x = t cos α,28.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,曲线C 1 : ⎨ y = t sin α, ( t 为参数,t ≠0)其中0 ≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2 : ρ= 2 sin θ, C 3 : ρ= 2 3 cos θ. (Ⅰ)求C 2 与C 3 交点的直角坐标;(Ⅱ)假设C 1 与C 2 相交于点 A , C 1 与C 3 相交于点 B ,求| AB | 的最大值.222(π3623)( x -1+ y +1= )()⎨(解析)(Ⅰ)曲线C 的直角坐标方程为 x 2 + y 2 - 2 y = 0 ,曲线C 的直角坐标方程为 x 2 + y 2- 2 3x = 0 .联⎪x 2+ y 2- 2 y = 0,⎧x = 0, ⎧ 3 ⎪x = 2 , 立⎨x 2 + y 2 - 2 3x = 0,解得⎨ y = 0, 或⎨ 3 ⎪ ⎩ ⎪ y = ,⎩ 23所以C 2 与C 1 交点的直角坐标为(0, 0) 和( , ) .2 2(Ⅱ)曲线C 1 的极坐标方程为θ= α(ρ∈ R , ρ≠ 0) ,其中0 ≤α<π. 因此 A 得到极坐标为(2 sin α,α) , B 的极坐标为(2 3 cos α,α) . π5π所以 AB = 2 sin α- 2 3 cos α = 4 s in(α-) ,当α= 时, AB 取得最大值,最大值为 4 . 3 629.(2023 江苏) 已知圆 C 的极坐标方程为ρ2+ 2 2ρsin(θ- π- 4 = 0 ,求圆 C 的半径.4(解析) 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为 x 轴的正半轴,建立直角坐标系 xoy .圆C 的极坐标方程为ρ2 + 2⎛ 2 sin θ- 2cos ⎫4 = 0 ,化简,得ρ2 + 2ρsin θ- 2ρcos θ- 4 = 0 . ρ 22 θ⎪⎪ - ⎝ ⎭则圆C 的直角坐标方程为 x 2 + y 2 - 2x + 2 y - 4 = 0 ,即2 2,所以圆C 的半径为 . ⎧x = 3 + 1 t 30.(2023 陕西文理)在直角坐标系 xOy 中,直线l 的参数方程为⎪2⎪ y = 3 t ⎩ 2 轴正半轴为极轴建立极坐标系,⊙ C 的极坐标方程为ρ= 2 3 sin θ. (Ⅰ)写出⊙ C 的直角坐标方程;( t 为参数).以原点为极点, x(Ⅱ) P 为直线l 上一动点,当 P 到圆心C 的距离最小时,求 P 的直角坐标.(解析)(Ⅰ) 由ρ= 2 3 sin θ, 得ρ2= 2 3ρsin θ,从而有 x 2+y 2= 2 3y , 所以x 2+ (y -3 )2= 3 .(Ⅱ)设P (3 += ,故当t =0 时,| PC |取最小值,此时 P 点的直角坐标为(3, 0) .21t,3t), 又C(0, 3) ,则| PC |=3222 3 ⎪55⎨y = 2 - 2t⎩⎩31.(2023 全国Ⅰ文理)已知曲线C : x 4 + y 29 = 1,直线l : ⎧x = 2 + t ( t 为参数). ⎩(Ⅰ)写出曲线C 的参数方程,直线l 的一般方程;(Ⅱ)过曲线C 上任一点 P 作与l 夹角为30o的直线,交l 于点 A ,求| PA |的最大值与最小值.⎧x = 2 cos θ.(解析)〔I 〕曲线C 的参数方程为⎨ y = 3sin θ. (θ为参数).直线l 的一般方程为2x + y - 6 = 0. ……5 分(Ⅱ)曲线C 上任意一点P(2cos θ.3sin θ)到l 的距离为d =4 cos θ+ 3sin θ- 6 .则 PA =d = sin 30︒ 5sin(θ+α) - 6 , 其中α为锐角,且tan α= 4 . 3当sin (θ+α)=-1时,PA 取得最大值,最大值为22 5 .5当sin(θ+α) = 1时,PA 取得最小值,最小值为2 5 .532.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆 C 的极坐标方程为ρ= 2 cos θ,θ∈ ⎡0,π⎤ .(Ⅰ)求 C 的参数方程;⎣⎢ 2 ⎥⎦(Ⅱ)设点 D 在 C 上,C 在 D 处的切线与直线l : y = 3x + 2 垂直,依据(Ⅰ)中你得到的参数方程,确定 D 的坐标.(解析)(I)C 的一般方程为(x -1)0 ≤ t ≤ x ).2 + y 2⎧x = 1+ cos t , = 1(0 ≤ y ≤ 1) ,可得 C 的参数方程为⎨ y = sin t ,(t 为参数,(Ⅱ)设 D (1+ cos t , sin t ) .由(I)知 C 是以 G(1,0)为圆心,1 为半径的上半圆. π因为 C 在点D 处的切线与 t 垂直,所以直线 GD 与 t 的斜率相同, tan t = 3, t =.32 5523⎩⎩⎩1⎩⎩ππ 3故D 的直角坐标为(1+ cos , s in ) ,即( , ) .3 3 2 233.(2023 全国Ⅰ文理)已知曲线C 的参数方程为⎧x = 4 + 5 cos t( t 为参数),以坐标原点为极点,x 轴的正1 ⎨y = 5 + 5sin t半轴为极轴建立极坐标系,曲线C2 的极坐标方程为ρ= 2 s inθ.(Ⅰ)把C1 的参数方程化为极坐标方程;(Ⅱ)求C1 与C2 交点的极坐标( ρ≥0 ,0 ≤θ≤2π).⎧x = 4 + 5 c os t2 2(解析)将⎨y = 5 + 5sin t消去参数t ,化为一般方程(x - 4) + ( y -5) = 25 ,即C1 :x 2 +y2⎧x =ρcosθ-8x -10 y+16 = 0 ,将⎨y =ρsinθ代入x 2 +y2- 8x -10 y + 16 = 0 得,ρ2 - 8ρcosθ-10ρsinθ+16 = 0 ,∴C 的极坐标方程为ρ2 - 8ρcosθ-10ρsinθ+16 = 0 .⎪x2+y2-8x-10y+16=0(Ⅱ) C 的一般方程为x2 +y2 - 2 y = 0 ,由⎨⎧x =1解得⎨⎧x = 0或⎨,2∴C1 与C2 的交点的极坐标分别为(⎩x2+y2-2y=0π),(2, ) .4 2⎩y =1 ⎩y = 2 34.(2023 全国Ⅱ文理)已知动点P ,Q 都在曲线C与β= 2α( 0 <α< 2π) M 为PQ 的中点.⎧x = 2 c os β:⎨y = 2 s in β(β为参数)上,对应参数分别为β=α(Ⅰ)求M的轨迹的参数方程(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并推断M 的轨迹是否过坐标原点.(解析)(Ⅰ)由题意有P(2c osα,2sinα),Q(2c os2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α),⎧x = cosα+ cos 2α,M 的轨迹的参数方程为⎨y = sinα+ sin 2α, (0 <α< 2π).(Ⅱ)M 点到坐标原点的距离d ==0 <α< 2π),当α=π时,d = 0 ,故M 的轨迹过坐标原点.2,π3⎩100⎩135.(2023 全国文理)已知曲线C 的参数方程是⎧x = 2 cos ϕϕ为参数),以坐标原点为极点, x 轴的正半轴1⎨y = 3sin ϕ(为极轴建立极坐标系,曲线C 2 的极坐标方程是ρ= 2 .正方形 ABCD 的顶点都在C 2 上,且 A 、 B 、C 、πD 依逆时针次序排列,点 A 的极坐标为(2, ) . 3(Ⅰ)求点 A 、 B 、C 、 D 的直角坐标;(Ⅱ)设 P 为C 上任意一点,求| PA |2 + | PB |2 + | PC |2 + | PD |2 的取值范围.π5π 4π 11π(解析)(1)点 A , B , C , D 的极坐标为(2, ), (2, ), (2, ), (2, ) ,3 6 3 6点 A , B , C , D 的直角坐标为(1, 3),(-⎧x 0 = 2cos ϕ3,1), (-1, - 3),( 3, -1) .(2)设 P (x 0 , y 0 ) ;则⎨ y = 3sin (ϕ为参数) , ⎩ 0ϕt = PA 2+ PB 2+ PC 2+ PD 2= 4x 2 + 4 y 2 +16 = 32 + 20 sin 2ϕ∈32, 52.⎧x = 2 c os α 36.(2011 全国文理)在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ y = 2 + 2 s in(α为参数),M 是C 上 α的动点, P 点满足OP = 2OM , P 点的轨迹为曲线C 2(Ⅰ)求C 2 的方程(Ⅱ)在以 O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ= π与C 的异于极点的交点为 A ,与C 的异于极点的交点为 B ,求 AB .31 2(解析)(I)设 P (x , y ) ,则由条件知 M( x , y).由于 M 点在C 上,⎧ x = 2 cos α ⎪ 2 2 2⎧ x = 4 cos α 1⎧ x = 4 cos α 所以⎨ y ,即⎨y = 4 + 4 s in ,从而C 2 的参数方程为⎨y = 4 + 4 s in (α为参数), ⎪ = 2 + 2 s in α ⎩ α ⎩ α⎩ 2(Ⅱ)曲线C 1 的极坐标方程为ρ= 4sin θ,曲线C 2 的极坐标方程为ρ= 8sin θ.射线θ= π与C 的交点 A 的极径为ρ = 4sin π,射线θ= π与C 的交点 B 的极径为ρ = 8sin π.3 1 1 3 32 23所以| AB |=| ρ2 - ρ1 |= 2 .。
2023年高考数学微专题练习专练67高考大题专练七坐标系与参数方程含解析理
专练67 高考大题专练(七) 坐标系与参数方程1.[2022·贵阳市五校联考]以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =3t ,y =2t 2+1(t 为参数),直线l 的极坐标方程为ρsin (θ-π6)=- 3.(1)已知点M(6,a)在曲线C 上,求a 的值;(2)设点P 为曲线C 上一点,求点P 到直线l 距离的最小值.2.[2022·全国甲卷(理),22]在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+t 6y =t (t为参数),曲线C 2的参数方程为⎩⎪⎨⎪⎧x =-2+s 6y =-s(s 为参数). (1)写出C 1的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2cos θ-sin θ=0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标.3.[2022·安阳模拟]在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =sin θ(θ为参数),直线l 过点M(1,0)且倾斜角为α.(1)求出直线l 的参数方程和曲线C 的普通方程; (2)若直线l 与曲线C 交于A ,B 两点,且|MA|·|MB||||MA|-|MB|=33,求cos α的值.4.[2021·全国甲卷]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=22cos θ.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),M 为C 上的动点,点P 满足AP →=2AM →,写出P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点.5.[2022·石嘴山模拟]在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,点A 为曲线C 1上的动点,点B 在线段OA 的延长线上且满足|OA|·|OB|=8,点B 的轨迹为C 2.(1)求曲线C 1,C 2的极坐标方程;(2)设点M 的极坐标为(2,3π2),求△ABM 面积的最小值.6.[2022·全国乙卷(理),22]在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =3cos 2t ,y =2sin t(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin (θ+π3)+m =0.(1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围.专练67 高考大题专练(七) 坐标系与参数方程1.解析:(1)∵点M 在曲线C 上,∴6=3t ,∴t=2,∴a=y =2×22+1=9. (2)∵直线l 的极坐标方程为ρsin (θ-π6)=-3,∴直线l 的直角坐标方程为x -3y -23=0. ∵点P 在曲线C 上,∴设P(3t ,2t 2+1), 则点P 到直线l 的距离为d =|3t -23t 2-33|2,当t =34时,d min =21316. 2.解析:(1)C 1的参数方程为⎩⎪⎨⎪⎧x =2+t 6,y =t .消去参数t ,得C 1的普通方程为y 2=6x -2(y≥0). (2)曲线C 3的极坐标方程为2cos θ-sin θ=0, 两边同乘ρ,得2ρcos θ-ρsin θ=0, 则C 3的直角坐标方程为y =2x.联立得方程组⎩⎪⎨⎪⎧y 2=6x -2(y≥0),y =2x ,解得⎩⎪⎨⎪⎧x =12,y =1或⎩⎪⎨⎪⎧x =1,y =2.将曲线C 2的参数方程中的参数s 消去,得y 2=-6x -2(y≤0).联立得方程组⎩⎪⎨⎪⎧y 2=-6x -2(y≤0),y =2x ,解得⎩⎪⎨⎪⎧x =-12,y =-1或⎩⎪⎨⎪⎧x =-1,y =-2.所以C 3与C 1交点的直角坐标为⎝ ⎛⎭⎪⎫12,1和()1,2,C 3与C 2交点的直角坐标为⎝ ⎛⎭⎪⎫-12,-1和(-1,-2).3.解析:(1)曲线C 的参数方程⎩⎨⎧x =2cos θ,y =sin θ(θ为参数),转换为普通方程为x 22+y2=1;直线l 过点M(1,0)且倾斜角为α,则参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数).(2)把直线l 的参数方程⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数)代入x 22+y 2=1.得到(1+sin 2α)t 2+2t cos α-1=0, 所以t 1+t 2=-2cos α1+sin 2α, t 1t 2=-11+sin 2α(t 1和t 2分别为A 和B 对应的参数), t 1t 2<0,则t 1,t 2异号,||MA|-|MB||=||t 1|-|t 2||=|t 1+t 2|, 由|MA|·|MB|||MA|-|MB||=33,整理得|t 1+t 2|=⎪⎪⎪⎪⎪⎪-2cos α1+sin 2α=3|t 1t 2|=31+sin 2α, 解得cos α=±32. 4.解析:(1)根据ρ=22cos θ,得ρ2=22ρcos θ, 因为x 2+y 2=ρ2,x =ρcos θ,所以x 2+y 2=22x ,所以C 的直角坐标方程为(x -2)2+y 2=2. (2)设P(x ,y),M(x′,y′),则AP →=(x -1,y),AM →=(x′-1,y′).因为AP →=2AM →,所以⎩⎨⎧x -1=2(x′-1)y =2y′,即⎩⎪⎨⎪⎧x′=x -12+1y′=y 2,因为M 为C 上的动点,所以(x -12+1-2)2+(y 2)2=2,即(x -3+2)2+y 2=4.所以P 的轨迹C 1的参数方程为⎩⎨⎧x =3-2+2cos α,y =2sin α(其中α为参数,α∈[0,2π)).所以|CC 1|=3-22,⊙C 1的半径r 1=2,又⊙C 的半径r =2,所以|CC 1|<r 1-r , 所以C 与C 1没有公共点.5.解析:(1)由曲线C 1的参数方程⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),消去参数,可得普通方程为(x -1)2+y 2=1,即x 2+y 2-2x =0, 又由x =ρcos θ,y =ρsin θ,代入可得曲线C 1的极坐标方程为ρ=2cos θ,设点B 的极坐标为(ρ,θ),A 点的极坐标为(ρ0,θ0), 则|OB|=ρ,|OA|=ρ0,ρ0=2cos θ0,θ=θ0, 因为|OA|·|OB|=8, 所以ρ·ρ0=8,即8ρ=2cos θ,即ρcos θ=4, 所以曲线C 2的极坐标方程为ρcos θ=4. (2)由题意,可得|OM|=2,则S △ABM =S △OBM -S △OAM =12|OM|·|x B -x A |=12×2×|4-2cos 2θ|=|4-2cos 2θ|,即S △ABM =4-2cos 2θ,当cos 2θ=1时,可得S △ABM 的最小值为2. 6.解析:(1)由ρsin (θ+π3)+m =0,得12ρsin θ+32ρcos θ+m =0. ∵ρcos θ=x ,ρsin θ=y , ∴l 的直角坐标方程为32x +12y +m =0.(2)(方法一)把x =3cos 2t ,y =2sin t 代入32x +12y +m =0,得m =-32cos 2t -sin t =-32+3sin 2t -sin t =3(sin t -16)2-1912.∵sin t∈[-1,1],∴当sin t =16时,m 取得最小值-1912;当sin t =-1时,m 取得最大值52.∴m 的取值范围是[-1912,52].(方法二)x =3cos 2t =3(1-2sin 2t)=3[1-2(y 2)2]=3-32y 2.∵y=2sin t ,sin t∈[-1,1],∴y∈[-2,2]. 联立得方程组⎩⎪⎨⎪⎧x =3-32y 2,3x +y +2m =0.消去x 并整理,得3y 2-2y -4m -6=0, 即4m =3y 2-2y -6=3(y -13)2-193(-2≤y≤2).∴-193≤4m≤10,∴-1912≤m≤52.∴m 的取值范围是[-1912,52].。
专题 坐标系与参数方程(解析版)
专题 坐标系与参数方程1.【2019年高考北京卷理数】已知直线l 的参数方程为13,24x t y t =+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l的距离是 A .15B .25C .45D .652.【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ++=3.【2019年高考全国Ⅱ卷理数】在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P . (1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.4.【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.5.【2019年高考江苏卷数学】在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.6.【重庆西南大学附属中学校2019届高三第十次月考数学】在平面直角坐标系xOy 中,已知曲线1C 的参数方程为5()x y ϕϕϕ⎧=⎪⎨=⎪⎩为参数,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=.(1)求曲线1C 与曲线2C 两交点所在直线的极坐标方程;(2)若直线l的极坐标方程为sin()4ρθπ+=,直线l 与y 轴的交点为M ,与曲线1C 相交于,A B 两点,求MA MB +的值.7.【山东省郓城一中等学校2019届高三第三次模拟考试数学】在平面直角坐标系xOy 中,曲线C 的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点M 的极坐标为34π⎛⎫ ⎪⎝⎭,直线l 的极坐标方程为sin 04ρθπ⎛⎫-+= ⎪⎝⎭.(1)求直线l 的直角坐标方程与曲线C 的普通方程;(2)若N 是曲线C 上的动点,P 为线段MN 的中点,求点P 到直线l 的距离的最大值.8.【河南省周口市2018–2019学年度高三年级(上)期末调研考试数学】在直角坐标系xOy 中,直线l 的参数方程为4,232x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为223sin 12ρθ+=(). (1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)若直线l 与曲线C 交于A B ,两点,且设定点21P (,),求PB PA PAPB+的值.9.【河南省郑州市第一中学2019届高三上学期入学摸底测试数学】以直角坐标系的原点O 为极点,x 轴的正半轴为极轴.已知点P 的直角坐标为15 (,),点M 的极坐标为π42(,).若直线l 过点P ,且倾斜角为π3,圆C 以M 为圆心、4为半径. (1)求直线l 的参数方程和圆C 的极坐标方程; (2)试判定直线l 和圆C 的位置关系.10.【全国I 卷2019届高三五省优创名校联考数学】在直角坐标系xOy 中,直线l的参数方程为22x m t y t ⎧⎪=+⎨=⎪⎪⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,椭圆C 的极坐标方程为2222cos 3sin 48ρθρθ+=,其左焦点F 在直线l 上. (1)若直线l 与椭圆C 交于A B ,两点,求FA FB +的值; (2)求椭圆C 的内接矩形面积的最大值.11.【河北衡水金卷2019届高三12月第三次联合质量测评数学】在直角坐标系中,直线l 的参数方程为1cos ,1sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0πα<<),以坐标原点为极点,x 轴正半轴为极轴,取相同的长度单位建立极坐标系,曲线C 的极坐标方程为2241sin ρθ=+. (1)当π6a =时,写出直线l 的普通方程及曲线C 的直角坐标方程; (2)已知点()11P -,,设直线l 与曲线C 交于A ,B 两点,试确定PA PB ⋅的取值范围.12.【河南省信阳高级中学2018–2019学年高二上学期期中考试数学】在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2sin 2cos 0a a ρθθ=+>();直线l的参数方程为22x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).直线l 与曲线C 分别交于M N ,两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若点P 的极坐标为()2πPM PN +=,,a 的值.13.【河南省豫南九校(中原名校)2017届高三下学期质量考评八数学】己知直线l 的参数方程为132x ty t=+⎧⎨=+⎩(t 为参数),曲线C 的极坐标方程为2sin 16cos 0ρθθ-=,直线l 与曲线C 交于A 、B 两点,点13P (,). (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求11PA PB+的值.14.【河南省开封市2019届高三上学期第一次模拟考试数学】在直角坐标系xOy 中,直线l 的参数方程是1x t y t ==+⎧⎨⎩(t 为参数),曲线C 的参数方程是22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求直线l 和曲线C 的极坐标方程; (2)已知射线1OP θα=:(其中π02α<<)与曲线C 交于O P ,两点,射线2π2OQ θα=+:与直线l 交于Q 点,若OPQ ∆的面积为1,求α的值和弦长OP .15.【四川省成都市第七中学2019届高三一诊模拟考试数学】在平面直角坐标系xOy中,曲线C的参数标方程为e ee et tt txy--⎧=+⎪⎨=-⎪⎩(其中t为参数),在以O为极点、x轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线l的极坐标方程为πsin3ρθ⎛⎫-=⎪⎝⎭(1)求曲线C的极坐标方程;(2)求直线l与曲线C的公共点P的极坐标.16.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)数学】在平面直角坐标系xOy中,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,已知直线l 的参数方程为22x ty t =⎧⎨=+⎩(t为参数),曲线C 的极坐标方程为2cos 8sin ρθθ=. (1)求曲线C 的直角坐标方程,并指出该曲线是什么曲线; (2)若直线l 与曲线C 的交点分别为M ,N ,求MN .17.【河北省石家庄市2018届高中毕业班模拟考试(二)数学】在平面直角坐标系xOy 中,曲线1C 的方程为224x y +=,直线l的参数方程2x ty =--⎧⎪⎨=+⎪⎩(t 为参数),若将曲线1C 上的点的横坐标不变,纵坐标变为原来的32倍,得曲线2C . (1)写出曲线2C 的参数方程;(2)设点2P -(,直线l 与曲线2C 的两个交点分别为A B ,,求11PA PB+的值.答 案1.【2019年高考北京卷理数】已知直线l 的参数方程为13,24x t y t =+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l的距离是 A .15B .25C .45D .65【答案】D【解析】由题意,可将直线l 化为普通方程:1234x y --=,即()()41320x y ---=,即4320x y -+=,所以点(1,0)到直线l的距离65d ==,故选D . 【名师点睛】本题考查直线参数方程与普通方程的转化,点到直线的距离,属于容易题,注重基础知识、基本运算能力的考查.2.【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ++=(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【答案】(1)221(1)4y x x +=≠-;l的直角坐标方程为2110x +=;(2.【解析】(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-.l的直角坐标方程为2110x ++=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l.【名师点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题.3.【2019年高考全国Ⅱ卷理数】在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P . (1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 【答案】(1)0ρ=l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭; (2)4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ==由已知得||||cos23OP OA π==. 设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中,cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭, 经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上. 所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭. (2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ== 即 4cos ρθ=. 因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.【名师点睛】本题主要考查极坐标方程与直角坐标方程的互化,熟记公式即可,属于常考题型.4.【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【答案】(1)1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭.(2)π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.【解析】(1)由题设可得,弧,,AB BC CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤ ⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭. (2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos θ=,解得π6θ=;若π3π44θ≤≤,则2sin θ=π3θ=或2π3θ=;若3ππ4θ≤≤,则2cos θ-=5π6θ=.综上,P 的极坐标为π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.【名师点睛】此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题.5.【2019年高考江苏卷数学】在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.【答案】(12)2.【解析】(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =. (2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l的距离为3sin()242ππ⨯-=. 【名师点睛】本题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.6.【重庆西南大学附属中学校2019届高三第十次月考数学】在平面直角坐标系xOy 中,已知曲线1C 的参数方程为5()x y ϕϕϕ⎧=+⎪⎨=⎪⎩为参数,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=.(1)求曲线1C 与曲线2C 两交点所在直线的极坐标方程;(2)若直线l的极坐标方程为sin()4ρθπ+=,直线l 与y 轴的交点为M ,与曲线1C 相交于,A B 两点,求MA MB +的值. 【答案】(1)5cos 2ρθ=;(2) 【解析】(1)曲线1C 的普通方程为:22(5)10x y -+=,曲线2C 的普通方程为:224x y x +=,即22(2)4x y -+=,由两圆心的距离32)d =∈,所以两圆相交, 所以两方程相减可得交线为6215x -+=,即52x =. 所以直线的极坐标方程为5cos 2ρθ=. (2)直线l 的直角坐标方程:4x y +=,则与y 轴的交点为(0,4)M ,直线l的参数方程为24x y ⎧=-⎪⎪⎨⎪=⎪⎩,带入曲线1C 22(5)10x y -+=得2310t ++=.设,A B 两点的参数为1t ,2t ,所以12t t +=-1231t t =,所以1t ,2t 同号.所以1212MA MB t t t t +=+=+=【名师点睛】本题考查了极坐标,参数方程和普通方程的互化和用参数方程计算长度,是常见考题.7.【山东省郓城一中等学校2019届高三第三次模拟考试数学】在平面直角坐标系xOy 中,曲线C 的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点M的极坐标为34π⎛⎫ ⎪⎝⎭,直线l 的极坐标方程为sin 04ρθπ⎛⎫-+= ⎪⎝⎭.(1)求直线l 的直角坐标方程与曲线C 的普通方程;(2)若N 是曲线C 上的动点,P 为线段MN 的中点,求点P 到直线l 的距离的最大值.【答案】(1)40x y --=,2213x y +=;(2.【解析】(1)因为直线l 的极坐标方程为πsin 04ρθ⎛⎫-+= ⎪⎝⎭, 即ρsin θ-ρcos θ+4=0.由x =ρcos θ,y =ρsin θ, 可得直线l 的直角坐标方程为x -y -4=0.将曲线C 的参数方程sin x y αα⎧=⎪⎨=⎪⎩,消去参数a ,得曲线C 的普通方程为2213x y +=.(2)设N α,sin α),α∈[0,2π).点M 的极坐标(,3π4),化为直角坐标为(-2,2).则11,sin 12P αα⎫-+⎪⎪⎝⎭.所以点P 到直线l 的距离2d ==≤,所以当5π6α=时,点M 到直线l 的距离的最大值为2. 【名师点睛】本题主要考查参数方程、极坐标方程和普通方程的互化,考查三角函数的图像和性质,考查点到直线的距离的最值的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力. 8.【河南省周口市2018–2019学年度高三年级(上)期末调研考试数学】在直角坐标系xOy 中,直线l 的参数方程为4,32x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为223sin 12ρθ+=(). (1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)若直线l 与曲线C 交于A B ,两点,且设定点21P (,),求PB PA PAPB+的值.【答案】(1)l 普通方程为10x y --=,C 直角坐标方程为22143x y +=;(2)867. 【解析】(1)由直线l 的参数方程消去t ,得普通方程为10x y --=.223sin 12ρθ+=()等价于2223sin 12ρρθ+=,将222sin x y y ρρθ=+=,代入上式,得曲线C 的直角坐标方程为222312x y y ++=(), 即22143x y +=. (2)点21P (,)在直线10x y --=上,所以直线l的参数方程可以写为2 1x t y ⎧=+⎪⎪⎨⎪=+⎪⎩,(为参数), 将上式代入22143x y +=,得2780t ++=. 设A B ,对应的参数分别为12t t ,,则1212877t t t t +=-=, 所以22||PA PB PB PAPA PB PA PB ++=22PA PB PA PB PA PB+-=()21212122t t t t t t +-=()2121212||2t t t t t t +-⋅==⋅2828677877--⨯=(. 【名师点睛】本题考查了直线的参数方程,考查了简单曲线的极坐标方程,解答此题的关键是熟练掌握直线参数方程中参数的几何意义.9.【河南省郑州市第一中学2019届高三上学期入学摸底测试数学】以直角坐标系的原点O 为极点,x 轴的正半轴为极轴.已知点P 的直角坐标为15-(,),点M 的极坐标为π42(,).若直线l 过点P ,且倾斜角为π3,圆C 以M 为圆心、4为半径. (1)求直线l 的参数方程和圆C 的极坐标方程; (2)试判定直线l 和圆C 的位置关系.【答案】(1)11252x t y t ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数),8sin ρθ=;(2)直线l 与圆C 相离.【解析】(1)直线l的参数方程1π11cos 23 π5sin 53x t x t y t y ⎧⎧=+=+⋅⎪⎪⎪⎪⇒⎨⎨⎪⎪=-+⋅=-⎪⎪⎩⎩(t 为参数), M 点的直角坐标为(0,4),圆C 的半径为4,∴圆C 的方程为22416x y +-=(),将cos sin x y ρθρθ=⎧⎨=⎩代入,得圆C 的极坐标方程为222cos (sin 4)16ρθρθ+-=,即8sin ρθ=; (2)直线l50y ---=,圆心M 到l的距离为942d ==>, ∴直线l 与圆C 相离.【名师点睛】主要是考查了极坐标与直角坐标的互化,以及运用,属于基础题.10.【全国I 卷2019届高三五省优创名校联考数学】在直角坐标系xOy 中,直线l的参数方程为22x m t y t ⎧⎪=+⎨=⎪⎪⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,椭圆C 的极坐标方程为2222cos 3sin 48ρθρθ+=,其左焦点F 在直线l 上.(1)若直线l 与椭圆C 交于A B ,两点,求FA FB +的值;(2)求椭圆C 的内接矩形面积的最大值. 【答案】(1)2) 【解析】(1)将cos sin x y ρθρθ=⎧⎨=⎩代入ρ2cos 2θ+3ρ2sin 2θ=48,得x 2+3y 2=48,即2214816x y +=, 因为c 2=48-16=32,所以F的坐标为(-,0), 又因为F 在直线l上,所以m =-把直线l的参数方程22x t y =-=⎧⎪⎪⎨⎪⎪⎩代入x 2+3y 2=48,化简得t 2-4t -8=0,所以t 1+t 2=4,t 1t 2=-8,所以12FA FB t t +=-===(2)由椭圆C 的方程2214816x y +=,可设椭圆C 上在第一象限内的任意一点M 的坐标为(θ,4sin θ)(π02θ<<),所以内接矩形的面积8sin 2S θθθ=⋅=, 当π4θ=时,面积S取得最大值 【名师点睛】直角坐标方程转为极坐标方程的关键是利用公式cos sin x y ρθρθ=⎧⎨=⎩,而极坐标方程转化为直角坐标方程的关键是利用公式222tan x y yx ρθ⎧=+⎪⎨=⎪⎩,后者也可以把极坐标方程变形,尽量产生2cos ρρθ,,sin ρθ以便转化.另一方面,当动点在圆锥曲线运动变化时,我们可以用一个参数θ来表示动点坐标,从而利用一元函数求与动点有关的最值问题.11.【河北衡水金卷2019届高三12月第三次联合质量测评数学】在直角坐标系中,直线l 的参数方程为1cos ,1sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0πα<<),以坐标原点为极点,x 轴正半轴为极轴,取相同的长度单位建立极坐标系,曲线C 的极坐标方程为2241sin ρθ=+.(1)当π6a =时,写出直线l 的普通方程及曲线C 的直角坐标方程; (2)已知点()11P -,,设直线l 与曲线C 交于A ,B 两点,试确定PA PB ⋅的取值范围.【答案】(1)2210142x y x ++=+=,;(2)112⎡⎫⎪⎢⎣⎭,【解析】(1)当π6a =时,直线l的参数方程为π1cos ,162π11sin 162x t x y t y t ⎧⎧=-+=-+⎪⎪⎪⎪⇒⎨⎨⎪⎪=+=+⎪⎪⎩⎩,. 消去参数t得10x ++=. 由曲线C 的极坐标方程为2241sin ρθ=+,得()22sin 4ρρθ+=, 将222x y ρ+=,及sin y ρθ=代入得2224x y +=,即22142x y +=; (2)由直线l 的参数方程为1cos ,1sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0πα<<),可知直线l 是过点P (–1,1)且倾斜角为α的直线,又由(1)知曲线C 为椭圆22142x y +=,所以易知点P (–1,1)在椭圆C 内, 将1cos , 1sin x t y t αα=-+⎧⎨=+⎩代入22142x y +=中,整理得 ()()221sin 22sin c s 10to t ααα++--=,设A ,B 两点对应的参数分别为12t t ,, 则12211sin t t α⋅=-+, 所以12211sin PA PB t t α⋅==+,因为0πα<<,所以(]2sin 01α∈,,所以1221111sin 2PA PB t t α⎡⎫⋅==∈⎪⎢+⎣⎭,,所以PA PB ⋅的取值范围为112⎡⎫⎪⎢⎣⎭,.【名师点睛】利用直线参数方程中参数的几何意义求解问题.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为00cos sin x x t y y t θθ=+⎧⎨=+⎩(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为12t t ,,线段AB 的中点为M ,点M 所对应的参数为0t ,则以下结论在解题中经常用到:(1)1202t t t +=;(2)1202t t PM t +==;(3)21AB t t =-;(4)12··PA PB t t =. 12.【河南省信阳高级中学2018–2019学年高二上学期期中考试数学】在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2sin 2cos 0a a ρθθ=+>();直线l的参数方程为22x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).直线l 与曲线C 分别交于M N ,两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若点P 的极坐标为()2πPM PN +=,,a 的值.【答案】(1)曲线C 的直角坐标方程为:()()22211x a y a -+-=+,直线l 的普通方程为2y x =+. (2)2a =.【解析】(1)由()2sin 2cos 0a a ρθθ=+>,得()22sin 2cos 0a a ρρθρθ=+>,所以曲线C 的直角坐标方程为2222x y y ax +=+,即()()22211x a y a -+-=+,直线l 的普通方程为2y x =+.(2)将直线l的参数方程2,22x y t ⎧=-+⎪⎪⎨⎪=⎪⎩代入2222x y y ax +=+并化简、整理,得()2440t t a -++=.因为直线l 与曲线C 交于M N ,两点.所以()()2Δ4440a =-+>,解得1a ≠.由根与系数的关系,得121244t t t t a +==+,.因为点P 的直角坐标为()20-,,在直线l上.所以12PM PN t t +=+== 解得2a =,此时满足0a >.且1a ≠,故2a =.【名师点睛】参数方程主要通过代入法或者已知恒等式(如22cos sin 1αα+=等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式222tan cos ,sin x y x y xy ρρθρθθ=⎧+==⎧⎪⎨⎨=⎩⎪⎩等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.13.【河南省豫南九校(中原名校)2017届高三下学期质量考评八数学】己知直线l 的参数方程为132x ty t=+⎧⎨=+⎩(t 为参数),曲线C 的极坐标方程为2sin 16cos 0ρθθ-=,直线l 与曲线C 交于A 、B 两点,点13P (,). (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求11PA PB+的值. 【答案】(1)21y x =+,216y x =;(2. 【解析】(1)直线l 的参数方程为132x ty t=+⎧⎨=+⎩(t 为参数),消去参数,可得直线l 的普通方程21y x =+,曲线C 的极坐标方程为2sin 16cos 0ρθθ-=,即22sin 16cos 0ρθρθ-=, 曲线C 的直角坐标方程为216y x =,(2)直线的参数方程改写为135x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),代入221212435167054y x t t t t t =-=+==-,,,121211t t PA PB t t -+==. 【名师点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ⎧=⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.14.【河南省开封市2019届高三上学期第一次模拟考试数学】在直角坐标系xOy 中,直线l 的参数方程是1x t y t ==+⎧⎨⎩(t 为参数),曲线C 的参数方程是22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程; (2)已知射线1OP θα=:(其中π02α<<)与曲线C 交于O P ,两点,射线2π2OQ θα=+:与直线l 交于Q 点,若OPQ ∆的面积为1,求α的值和弦长OP . 【答案】(1)cos sin 10ρθρθ-+=,4cos ρθ=;(2)π4OP α==, 【解析】(1)直线l 的普通方程为10x y -+=,极坐标方程为cos sin 10ρθρθ-+=,曲线C 的普通方程为2224x y -+=(),极坐标方程为4cos ρθ=. (2)依题意,∵π02α∈(,),∴4cos OP α=, 1ππsin cos 22OQ αα=+-+()()1sin cos αα=+,12cos 12cos sin OPQ S OP OQ ααα===+△, ∴πtan 102αα=∈,(,),∴π4OP α==,【名师点睛】本题考查的知识要点:三角函数关系式的恒等变变换,参数方程直角坐标方程和极坐标方程之间的转换,三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型. 15.【四川省成都市第七中学2019届高三一诊模拟考试数学】在平面直角坐标系xOy 中,曲线C 的参数标方程为e e e et tt tx y --⎧=+⎪⎨=-⎪⎩(其中t 为参数),在以O 为极点、x 轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线l的极坐标方程为πsin 3ρθ⎛⎫-= ⎪⎝⎭(1)求曲线C 的极坐标方程;(2)求直线l 与曲线C 的公共点P 的极坐标. 【答案】(1)2ππcos2444ρθθ⎛⎫=-<< ⎪⎝⎭(2)π6⎛⎫ ⎪⎝⎭,【解析】(1)消去参数t ,得曲线C 的直角坐标方程()2242x y x -=≥. 将cos sin x y ρθρθ==,代入224x y -=,得()222cos sin 4ρθθ-=. 所以曲线C 的极坐标方程为2ππcos2444ρθθ⎛⎫=-<< ⎪⎝⎭.(2)将l 与C 的极坐标方程联立,消去ρ得2π4sin 2cos23θθ⎛⎫-=⎪⎝⎭.展开得()22223cos cos sin 2cos sin θθθθθθ-+=-. 因为cos 0θ≠,所以23tan 10θθ-+=.于是方程的解为tan θ=,即π6θ=.代入πsin 3ρθ⎛⎫-=⎪⎝⎭ρ=P 的极坐标为π6⎛⎫ ⎪⎝⎭,.【名师点睛】本题考查曲线的极坐标方程与普通方程的互化,直线的极坐标方程与曲线极坐标方程联立求交点的问题,考查计算能力.16.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)数学】在平面直角坐标系xOy中,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,已知直线l 的参数方程为22x ty t =⎧⎨=+⎩(t为参数),曲线C 的极坐标方程为2cos 8sin ρθθ=.(1)求曲线C 的直角坐标方程,并指出该曲线是什么曲线;(2)若直线l 与曲线C 的交点分别为M ,N ,求MN .【答案】(1)曲线C 方程为28x y =,表示焦点坐标为()0,2,对称轴为y 轴的抛物线;(2)10. 【解析】(1)因为2cos 8sin ρθθ=,所以22cos 8sin ρθρθ=,即28x y =,所以曲线C 表示焦点坐标为()0,2,对称轴为y 轴的抛物线. (2)设点()11,M x y ,点()22,N x y直线l 过抛物线的焦点()0,2,则直线参数方程为22x t y t =⎧⎨=+⎩化为一般方程为122y x =+,代入曲线C 的直角坐标方程,得24160x x --=, 所以12124,16x x x x +==- 所以MN ===10==.【名师点睛】本题考查极坐标方程化直角坐标方程,直线的参数方程化一般方程,弦长公式等,属于简单题.17.【河北省石家庄市2018届高中毕业班模拟考试(二)数学】在平面直角坐标系xOy 中,曲线1C 的方程为224x y +=,直线l的参数方程2x ty =--⎧⎪⎨=⎪⎩(t 为参数),若将曲线1C 上的点的横坐标不变,纵坐标变为原来的32倍,得曲线2C . (1)写出曲线2C的参数方程;(2)设点2P -(,直线l 与曲线2C 的两个交点分别为A B ,,求11PA PB+的值. 【答案】(1)2cos 3sin x y θθ=⎧⎨=⎩(θ为参数);(2)12【解析】(1)若将曲线1C 上的点的纵坐标变为原来的32,31则曲线2C 的直角坐标方程为22243x y +=(),整理得22149x y +=, ∴曲线2C 的参数方程2cos 3sin x y θθ=⎧⎨=⎩(θ为参数). (2)将直线的参数方程化为标准形式为1223332x t y t ''⎧=--⎪⎪⎨⎪=+⎪⎩(t '为参数),将参数方程带入22149x y +=得221(2))22149t --'+=' 整理得27183604t t ''++=(). 12127214477PA PB t t PA PB t t ''''+=+===,, 72111714427PA PB PA PB PA PB++===. 【名师点睛】本题考查了参数方程与普通方程的互化,及直线的参数方程的应用,重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用直线参数的几何意义求解.要结合题目本身特点,确定选择何种方程.。
坐标系与参数方程 高考数学必刷真题分类大全-专题18
专题18坐标系与参数方程考向一极坐标与参数方程【母题来源】2022年高考浙江卷【母题题文】在直角坐标系xOy 中,曲线1C的参数方程为26t x y +⎧=⎪⎨⎪=⎩(t 为参数),曲线2C的参数方程为26s x y +⎧=-⎪⎨⎪=⎩(s 为参数).(1)写出1C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线3C 的极坐标方程为2cos sin 0θθ-=,求3C 与1C 交点的直角坐标,及3C 与2C 交点的直角坐标.【试题解析】【小问1详解】因为26t x +=,y =,所以226y x +=,即1C 的普通方程为()2620y x y =-≥.【小问2详解】因为2,6sx y +=-=,所以262x y =--,即2C 的普通方程为()2620y x y =--≤,由2cos sin 02cos sin 0θθρθρθ-=⇒-=,即3C 的普通方程为20x y -=.联立()262020y x y x y ⎧=-≥⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩或12x y =⎧⎨=⎩,即交点坐标为1,12⎛⎫ ⎪⎝⎭,()1,2;联立()262020y x y x y ⎧=--≤⎨-=⎩,解得:121x y ⎧=-⎪⎨⎪=-⎩或12x y =-⎧⎨=-⎩,即交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.【命题意图】本题考查极坐标、参数方程与直角坐标的互化,属于较为简单题目.【命题方向】这类试题在考查题型上以解答题的形式出现.试题难度不大,多为低档题,是历年高考的热点,考查学生的基本运算能力.常见的命题角度有:(1)极坐标与直角坐标互化;(2)参数方程与直角坐标互化;(3)直线参数方程中参数的几何意义.【得分要点】(1)运用极坐标,借助极径的几何意义;(2)参数方程与直角方程的互化,借助直线的参数的几何意义;1.(2022·四川成都·模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t为参数,α为常数且2πα≠),在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为:22sin 40ρρθ--=.(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)点(1,1)P ,直线l 与曲线C 交于,A B 两点,若2PA PB =,求直线l 的斜率.2.(2022·河南安阳·模拟预测(文))在直角坐标系xOy 中,1C 的圆心为()11,1C点为极点,x 轴正半轴为极轴建立极坐标系,2C的极坐标方程为ρθ=.(1)求1C 的极坐标方程,判断1C ,C 的位置关系;(2)求经过曲线1C ,2C 交点的直线的斜率.3.(2023·四川·成都七中模拟预测(理))在直角坐标系xOy 中,倾斜角为α的直线l的参数方程为:2cos sin x t y t αα=+⎧⎪⎨=⎪⎩,(t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为22cos 8ρρθ=+.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A B ,两点,且AB =,求直线l 的倾斜角.4.(2022·青海·海东市第一中学模拟预测(理))在直角坐标系xOy 中,已知曲线1C的参数方程为x y t ⎧=⎪⎨=⎪⎩(t 为参数).曲线2C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线1C ,2C 的极坐标方程;(2)若曲线1C ,2C 的交点为A ,B,已知)1P-,求PA PB ⋅.5.(2022·内蒙古·海拉尔第二中学模拟预测(文))在平面直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t y t αα=-+⎧⎨=+⎩(其中α为直线的倾斜角,t 为参数),在以为O 极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为2sin 4cos 0.ρθθ-=(1)当直线l 的斜率k =2时,求曲线C 上的点A 与直线l 上的点B 间的最小距离;(2)如果直线l 与曲线C 有两个不同交点,求直线l 的斜率k 的取值范围.6.(2022·全国·模拟预测(文))在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 36πρθ⎛⎫-= ⎪⎝⎭,圆C 的极坐标方程为2sin ρθ=.(1)求C 的参数方程;(2)判断l 与C 的位置关系.7.(2022·河南·开封市东信学校模拟预测(理))在平面直角坐标系xOy 中,曲线C 的参数方程为2,2x t y t =⎧⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 20ρθρθ+-=.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)若直线l 与曲线C 交于P ,Q 两点,且点(0,2)M ,求11||||MP MQ +的值.8.(2022·四川·成都市锦江区嘉祥外国语高级中学模拟预测(理))在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系(取相同的单位长度),曲线1C 的极坐标方程为4cos ρθ=,曲线2C的参数方程为2222x y ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数),曲线1C ,2C 相交于A 、B 两点,曲线3C 经过伸缩变换22x x y y ='+='⎧⎨⎩后得到曲线1C .(1)求曲线1C 的普通方程和线段AB 的长度;(2)设点P 是曲线3C 上的一个动点,求PAB △的面积的最小值.9.(2022·全国·模拟预测(理))在直角坐标系xOy中,曲线1C的参数方程是11cos221sin2xyϕϕ⎧=+⎪⎪⎨⎪=⎪⎩(ϕ为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线2C的极坐标方程为1()ρθρ=∈R.(1)求曲线1C和曲线2C除极点外的交点的极坐标(02π)θ≤<;(2)若A,B分别为曲线1C和2C上的异于极点O的两点,且OA OB⊥,求OAB面积的最大值.10.(2022·吉林市教育学院模拟预测(理))以等边三角形的每个顶点为圆心,以其边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形被称为勒洛三角形,如图,在极坐标系Ox中,曲边三角形OPQ为勒洛三角形,且π2,6P⎛⎫-⎪⎝⎭,π2,6Q⎛⎫⎪⎝⎭,以极点O为直角坐标原点,极轴Ox为x轴正半轴建立平面直角坐标系xOy,曲线1C的参数方程为2112x ty t⎧=⎪⎪⎨⎪=-+⎪⎩(t为参数).(1)求 PQ的极坐标方程和OQ所在圆2C的直角坐标方程;(2)已知点M的直角坐标为()0,1-,曲线1C和圆2C相交于A,B两点,求11||||MA MB-.1.(2022·四川成都·模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数,α为常数且2πα≠),在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为:22sin 40ρρθ--=.(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)点(1,1)P ,直线l 与曲线C 交于,A B 两点,若2PA PB =,求直线l 的斜率.【答案】(1)tan (1)1y x α=⋅-+;22240x y y +--=(2)±1【解析】【分析】(1)消参可以把参数方程转化为普通方程,根据极坐标和直角坐标的转化,可将极坐标方程化成直角坐标方程.(2)根据直线的标准参数方程的几何意义以及韦达定理即可求解2cos 2α=±,进而可求tan α.(1)1cos 1sin x t y t αα=+⎧⎨=+⎩()tan 11y x α⇒=⋅-+,2222sin 40240x y y ρρθ--=⇒+--=;(2)将1cos 1sin x t y t αα=+⎧⎨=+⎩代入22240x y y +--=得22cos 40t t α+-=,12122cos 4t t t t α+=-⎧⎨=-⎩,因为点P 在圆内,故,A B 在点P 两侧,由题意知,122t t =-,因此122152t t t t +=-,即21212()12t t t t +=-,故2(2cos )142α-=--,解得2cos 2α=,进而tan 1k α==±因此斜率为±1.2.(2022·河南安阳·模拟预测(文))在直角坐标系xOy 中,1C 的圆心为()11,1C ,半径为2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,2C 的极坐标方程为2ρθ=.(1)求1C 的极坐标方程,判断1C ,2C 的位置关系;(2)求经过曲线1C ,2C 交点的直线的斜率.【答案】(1)2cos 2sin r q q =+,1C ,2C 相交21【解析】【分析】(1)先求解1C 的标准方程,再根据直角坐标与极坐标的转换求解1C 的极坐标方程,再根据2C 的直角坐标方程,分析1C ,2C 圆心之间的距离与半径之和差的关系判断即可;(2)根据1C ,2C 均过极点,联立极坐标方程,求解tan θ即可(1)由题意,1C 的标准方程为()()22112x y -+-=,即22220x y x y +--=,故1C 的极坐标方程为22cos 2sin =+ρρθρθ,即2cos 2sin r q q =+,又,2C 的极坐标方程为222cos ρθ=,即2222x y +=,(2222x y +=.因为()()22122110422C C -+-=-1C ,2C 半径相等,半径和为22124224222C C =-=<1C ,2C 相交.故1C 的极坐标方程2cos 2sin r q q =+,1C ,2C 相交.(2)由(1)1C :2cos 2sin r q q =+,2C :22ρθ=均经过极点且相交,联立2cos 2sin 22ρθθρθ=+⎧⎪⎨=⎪⎩有2cos 2sin 22θθθ+=,显然cos 0θ≠,故22tan 22θ+=,即tan 21θ=,即经过曲线1C ,2C 213.(2023·四川·成都七中模拟预测(理))在直角坐标系xOy 中,倾斜角为α的直线l 的参数方程为:2cos 3sin x t y t αα=+⎧⎪⎨=⎪⎩,(t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为22cos 8ρρθ=+.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A B ,两点,且42AB =,求直线l 的倾斜角.【答案】(1)当π2α=时,直线l 的普通方程为2x =;当π2α≠时,直线l 的普通方程为()3tan 2y x α=-;22280x y x +--=(2)π6或π2【解析】【分析】(1)因为直线l 的参数方程为2cos 3sin x t y t αα=+⎧⎪⎨=+⎪⎩(t 为参数),讨论π2α=和π2α≠时,消去参数t ,即可求出直线l 的普通方程,因为222x y ρ=+,cos x ρθ=即可求出曲线C 的直角坐标方程.(2)将直线l 的参数方程代入曲线C 的方程整理,()2232cos 50t t αα++-=.因为0∆>,可设该方程的两个根为2,l t t ,所以()2121224l AB t t t t t t =-=+-线l 的倾斜角.(1)因为直线l 的参数方程为2cos 3sin x t y t αα=+⎧⎪⎨=+⎪⎩(t 为参数),当π2α=时,直线l 的普通方程为2x =.当π2α≠时,直线l 的普通方程为()3tan 2y x α=-.因为222x y ρ=+,cos x ρθ=,因为22cos 8ρρθ=+,所以2228x y x +=+.所以C 的直角坐标方程为22280x y x +--=.(2)曲线C 的直角坐标方程为22280x y x +--=,将直线l 的参数方程代入曲线C 的方程整理,得()2232cos 50t t αα++-=.因为()2232cos 200αα∆=++>,可设该方程的两个根为2,l t t ,则()2232cos l t t αα+=-+,25l t t =-.所以()2121224l AB t t t t t t =-=+-()2[23sin 2cos ]2042αα=-++=整理得()23cos 3αα+=,故π2sin 36α⎛⎫+=± ⎪⎝⎭因为0πα≤<,所以ππ63α+=或π2π63α+=,解得或π6α=或π2α=,综上所述,直线l 的倾斜角为π6或π2.4.(2022·青海·海东市第一中学模拟预测(理))在直角坐标系xOy 中,已知曲线1C 的参数方程为3x ty t ⎧=-⎪⎨=⎪⎩(t 为参数).曲线2C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线1C ,2C 的极坐标方程;(2)若曲线1C ,2C 的交点为A ,B ,已知)3,1P-,求PA PB ⋅.【答案】(1)1:C πsin 06ρθ⎛⎫+= ⎪⎝⎭(或5π6θ=,R ρ∈),2:C ρ=4.(2)12【解析】【分析】(1)利用消参法进行化简曲线方程,然后通过公式将曲线的普通方程转化成极坐标方程;(2)利用直线的极坐标方程,结合参数的几何意义,联立曲线普通方程进行计算即可.(1)由曲线13:x tC y t ⎧=⎪⎨=⎪⎩(t 为参数),消去参数t 得30x =,化成极坐标方程得cos 3sin 0ρθρθ=.化简极坐标方程为πsin 06ρθ⎛⎫+= ⎪⎝⎭(或5π6θ=,R ρ∈).曲线24cos :4sin x C y θθ=⎧⎨=⎩(θ为参数)消去参数θ得2216x y +=.化简极坐标方程为ρ=4.(2)由已知得P 在曲线1C 上,将曲线1C 化为标准参数方程332112x y t ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数)代入2C 的直角坐标方程2216x y +=,得2231311622t ⎫⎛⎫+-+=⎪ ⎪⎪⎝⎭⎭,即24120t t --=,即A ,B 所对应的参数分别为1t ,2t ,所以121212PA PB t t t t ⋅===.5.(2022·内蒙古·海拉尔第二中学模拟预测(文))在平面直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t y t αα=-+⎧⎨=+⎩(其中α为直线的倾斜角,t 为参数),在以为O 极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为2sin 4cos 0.ρθθ-=(1)当直线l 的斜率k =2时,求曲线C 上的点A 与直线l 上的点B 间的最小距离;(2)如果直线l 与曲线C 有两个不同交点,求直线l 的斜率k 的取值范围.【答案】52(2)5151(,0))22⋃【解析】【分析】(1)利用极坐标与平面直角坐标互化公式得到曲线C 的平面直角坐标方程为24y x =,设出曲线上点()2,A s s ±,求出直线方程230x y -+=,利用点到直线距离公式,得到曲线C 上的点A 与直线l 上的点B 间的最小距离;(2)直线l 的普通方程为:()11y k x -=+,与曲线C :24y x =联立消去x 后用根的判别式得到不等式,求出斜率k 的取值范围.(1)2sin 4cos 0ρθθ-=两边同乘以ρ得:22sin 4cos 0ρθ-ρθ=,所以曲线C 的平面直角坐标方程为24y x =,设曲线上的一点坐标为()2,2A s s ±,当直线l 的斜率k =2时,直线方程为()121y x -=+,即230x y -+=,则A 点到直线距离为2215222223415s s s d ⎛⎫±+⎪±+⎝⎭==+当12s =±时,d 52,故曲线C 上的点A 与直线l 上的点B 52;(2)直线l 的普通方程为:()()110y k x k -=+≠,与曲线C :24y x =联立得:24440y y k k-++=,由0∆>得:1152k +>1152k -解得:5151()22k ---∈⋃6.(2022·全国·模拟预测(文))在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 36πρθ⎛⎫-= ⎪⎝⎭,圆C 的极坐标方程为2sin ρθ=.(1)求C 的参数方程;(2)判断l 与C 的位置关系.【答案】(1)cos 1sin x y θθ=⎧⎨=+⎩(θ为参数)(2)直线l 与圆C 相切.【解析】【分析】(1)先将圆C 的极坐标方程转化为直角坐标方程,求出圆心及半径,再转化为参数方程即可;(2)将直线l 的极坐标方程转化为直角坐标方程,利用圆心到直线的距离判断直线l 与圆C 的位置关系即可.(1)解:因为圆C 的极坐标方程为2sin ρθ=,则22sin ρρθ=,则其直角坐标方程为222x y y +=,即22(1)1y x +-=,圆心为(0,1),半径为1,则圆C 的参数方程为cos 1sin x y θθ=⎧⎨=+⎩(θ为参数).(2)解:因为直线l 的极坐标方程为2cos 36πρθ⎛⎫-= ⎪⎝⎭,则2cos cos sin sin 3066ππρθθ⎛⎫+-= ⎪⎝⎭3cos sin 30ρθρθ+-=,所以直线l 330x y +-=,由(1)得圆C 的直角坐标方程为22(1)1y x +-=,圆心为(0,1),半径为1,则圆心(0,1)到直线l 22301131(3)1⨯+⨯-=+,故直线l 与圆C 相切.7.(2022·河南·开封市东信学校模拟预测(理))在平面直角坐标系xOy 中,曲线C 的参数方程为2,2x t y t =⎧⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 20ρθρθ+-=.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)若直线l 与曲线C 交于P ,Q 两点,且点(0,2)M ,求11||||MP MQ +的值.【答案】(1)曲线2:2C y x =;直线:20+-=l x y (2)344【解析】【分析】(1)消去参数t 即可得C 的普通方程,并用极坐标与直角坐标互化即可得直线的普通方程;(2)写出直线l 参数方程的标准形式,再与C 的普通方程联立,借助参数的几何意义得解.(1)曲线C 的参数方程为2,2x t y t=⎧⎨=⎩(t 为参数),转化为直角坐标方程为22y x =,可得22y x =;直线l 的极坐标方程为cos sin 20ρθρθ+-=,转化为直角坐标方程为20x y +-=;(2)把直线l 的方程换成参数方程,得2,2222x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),代入22y x =.得22202t t --=,∴12122,22t t t t +==-,显然12,t t 异号.由22111211||,||22MP t t t MQ t =+==,∴()212121212121212121841111342||||24t t t t t t t t MP MQ t t t t t t t t ++-+-+=+=====.8.(2022·四川·成都市锦江区嘉祥外国语高级中学模拟预测(理))在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系(取相同的单位长度),曲线1C 的极坐标方程为4cos ρθ=,曲线2C 的参数方程为222222x y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数),曲线1C ,2C 相交于A 、B 两点,曲线3C 经过伸缩变换22x x y y ='+='⎧⎨⎩后得到曲线1C .(1)求曲线1C 的普通方程和线段AB 的长度;(2)设点P 是曲线3C 上的一个动点,求PAB △的面积的最小值.【答案】(1)22(2)4x y -+=,22AB =(2)45【解析】【分析】(1)利用极坐标与直角坐标的互化公式可求出1C 的普通方程,求出2C 的普通方程,然后求出圆心到直线的距离,再由圆心距,弦和半径的关系可求出AB 的长度,(2)由伸缩变换可求出曲线3C 的方程为2214xy +=,设点()2cos ,sin P ϕϕ,求出点P 到直线AB 的距离,化简后利用三角函数的性质可求出其最小值,从而可求出PAB △的面积的最小值(1)由4cos ρθ=,得24cos ρρθ=,又222x y ρ=+,cos x ρθ=,所以22(2)4x y -+=.由22222x y ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数),消去参数得4x y -=,1C 的圆心为(2,0),半径为2,则圆心到直线4x y -=的距离为2422d -==,所以()2222222AB =-=(2)曲线3C 经过伸缩变换22x x y y ='+='⎧⎨⎩后得到曲线1C ,则()()222224+-+=x y ,即曲线3C 的方程为2214x y +=,设点()2cos ,sin P ϕϕ,则点P 到直线AB 的距离为2555cos sin 4552cos sin 422d ϕϕϕϕ⎛⎫-- ⎪--⎝⎭==()5sin 4522αϕ--==25sin 5α=,5cos 5α=),故当()sin 1αϕ-=时,d 取得最小值,且min 52d =,因此,当点P 到直线AB 的距离最小时,PAB △的面积也最小,所以PAB △的面积的最小值为min 1152245222AB d ⋅⋅=⨯=.9.(2022·全国·模拟预测(理))在直角坐标系xOy 中,曲线1C 的参数方程是11cos 221sin 2x y ϕϕ⎧=+⎪⎪⎨⎪=⎪⎩(ϕ为参数).以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为13sin ()ρθρ=+∈R .(1)求曲线1C 和曲线2C 除极点外的交点的极坐标(02π)θ≤<;(2)若A ,B 分别为曲线1C 和2C 上的异于极点O 的两点,且OA OB ⊥,求OAB 面积的最大值.【答案】(1)()1,0,14π,23⎛⎫- ⎪⎝⎭31【解析】【分析】(1)求出曲线1C 的普通方程,进而求出极坐标方程,与2C 的极坐标方程联立,求出曲线1C 和曲线2C 除极点外的交点的极坐标;(2)设出,A B 两点的极坐标方程,表达出OAB 的面积,利用三角函数的有界性求出最大值.(1)曲线1C 的普通方程为221124x y ⎛⎫-+= ⎪⎝⎭,化为极坐标方程为:()2211cos sin 24ρθρθ⎛⎫-+= ⎪⎝⎭,化简得到:cos ρθ=,与13sin ()ρθρ=+∈R 联立,得:cos 13θθ=,即π1cos 32θ⎛⎫+= ⎪⎝⎭,因为02πθ≤<,所以ππ7π333θ≤+<,所以π5π33θ+=,或ππ33θ+=,解得:14π3θ=或20θ=,当4π3θ=时,此时4π1cos 32ρ==-,当0θ=时,此时cos01ρ==所以曲线1C 和曲线2C 除极点外的交点的极坐标为()1,0与14π,23⎛⎫- ⎪⎝⎭;(2)因为OA OB ⊥,①设()ππcos ,,13,22A B αααα⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,则()2πcos 13cos 133cos 2OAB S αααααα⎛⎫⎛⎫=⋅+=⋅=+ ⎪ ⎪⎝⎭⎝⎭ 2333cos 612α=⎭因为[]cos 1,1α∈-,所以当cos 1α=时,OAB 31+;②设()ππcos ,,13,22A B αααα⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,则()2πcos 13cos 133cos 2OAB S αααααα⎛⎫⎛⎫=⋅-=⋅=-+ ⎪ ⎪⎝⎭⎝⎭ 2333cos 612α⎫=-+⎪⎪⎭,因为[]cos 1,1α∈-,所以当3cos 6α=时,OAB 面积取得最大值,最大值为312;33112>OAB 31.10.(2022·吉林市教育学院模拟预测(理))以等边三角形的每个顶点为圆心,以其边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形被称为勒洛三角形,如图,在极坐标系Ox 中,曲边三角形OPQ 为勒洛三角形,且π2,6P ⎛⎫- ⎪⎝⎭,π2,6Q ⎛⎫⎪⎝⎭,以极点O 为直角坐标原点,极轴Ox 为x 轴正半轴建立平面直角坐标系xOy ,曲线1C 的参数方程为32112x t y t⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数).(1)求 PQ的极坐标方程和 OQ 所在圆2C 的直角坐标方程;(2)已知点M 的直角坐标为()0,1-,曲线1C 和圆2C 相交于A ,B 两点,求11||||MA MB -.【答案】(1)ππ2,,66ρθ⎛⎫=∈- ⎪⎝⎭;222:(3)(1)4++=C x y (2)3【解析】【分析】(1)由已知,可根据题意直接写出 PQ 的极坐标方程,并标注范围,然后求解出点P 的直角坐标,写出 OQ所在圆的直角坐标方程即可;(2)由已知,设A ,B 对应的参数分别为12,t t ,将曲线1C 的参数方程带入圆2C ,并根据根与系数关系,求解11||||MA MB -即可.(1)因为π2,6P ⎛⎫- ⎪⎝⎭,π2,6Q ⎛⎫ ⎪⎝⎭,所以 PQ 的极坐标方程:ππ2,,66ρθ⎛⎫=∈- ⎪⎝⎭,因为点P 的直角坐标是(3,1)-,所以 OQ所在圆的直角坐标方程为222:(3)(1)4++=C x y .(注: PQ的极坐标方程不标明θ的取值范围或写错扣1分)(2)设A ,B 对应的参数分别为12,t t ,将32112x y t ⎧=⎪⎪⎨⎪=-+⎪⎩代入22(3)(1)4x y ++=得:2310,0--=∆>t t 所以12123,1+==-t t t t 因为120t t <,由t 的几何意义得:121212121111113||||+-=-=+==t tMA MB t t t t t t。
坐标系与参数方程高考综合试题(含答案)
坐标系与参数方程1.【全国I 卷2019届高三五省优创名校联考数学】在直角坐标系xOy 中,直线l的参数方程为22x m t y t ⎧⎪=+⎨=⎪⎪⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,椭圆C 的极坐标方程为2222cos 3sin 48ρθρθ+=,其左焦点F 在直线l 上.(1)若直线l 与椭圆C 交于A B ,两点,求FA FB +的值; (2)求椭圆C 的内接矩形面积的最大值. 【答案】(1)2)【解析】(1)将cos sin x y ρθρθ=⎧⎨=⎩代入ρ2cos 2θ+3ρ2sin 2θ=48,得x 2+3y 2=48,即2214816x y +=, 因为c 2=48-16=32,所以F的坐标为(-0), 又因为F 在直线l上,所以m =-把直线l的参数方程22x y =-=⎧⎪⎪⎨⎪⎪⎩代入x 2+3y 2=48,化简得t 2-4t -8=0,所以t 1+t 2=4,t 1t 2=-8,所以12FA FB t t +=-===(2)由椭圆C 的方程2214816x y +=,可设椭圆C 上在第一象限内的任意一点M 的坐标为(θ,4sin θ)(π02θ<<),所以内接矩形的面积8sin 2S θθθ=⋅=, 当π4θ=时,面积S取得最大值【名师点睛】直角坐标方程转为极坐标方程的关键是利用公式cos sin x y ρθρθ=⎧⎨=⎩,而极坐标方程转化为直角坐标方程的关键是利用公式222tan x y yx ρθ⎧=+⎪⎨=⎪⎩,后者也可以把极坐标方程变形,尽量产生2cos ρρθ,,sin ρθ以便转化.另一方面,当动点在圆锥曲线运动变化时,我们可以用一个参数θ来表示动点坐标,从而利用一元函数求与动点有关的最值问题.2.【河北衡水金卷2019届高三12月第三次联合质量测评数学】在直角坐标系中,直线l 的参数方程为1cos ,1sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0πα<<),以坐标原点为极点,x 轴正半轴为极轴,取相同的长度单位建立极坐标系,曲线C 的极坐标方程为2241sin ρθ=+.(1)当π6a =时,写出直线l 的普通方程及曲线C 的直角坐标方程; (2)已知点()11P -,,设直线l 与曲线C 交于A ,B 两点,试确定PA PB ⋅的取值范围.【答案】(1)2210142x y x ++=+=,;(2)112⎡⎫⎪⎢⎣⎭,【解析】(1)当π6a =时,直线l的参数方程为π1cos ,162π11sin 162x t x y t y t ⎧⎧=-+=-+⎪⎪⎪⎪⇒⎨⎨⎪⎪=+=+⎪⎪⎩⎩,. 消去参数t得10x ++=. 由曲线C 的极坐标方程为2241sin ρθ=+,得()22sin 4ρρθ+=, 将222x y ρ+=,及sin y ρθ=代入得2224x y +=,即22142x y +=; (2)由直线l 的参数方程为1cos ,1sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0πα<<),可知直线l 是过点P (–1,1)且倾斜角为α的直线,又由(1)知曲线C 为椭圆22142x y +=,所以易知点P (–1,1)在椭圆C 内,将1cos , 1sin x t y t αα=-+⎧⎨=+⎩代入22142x y +=中,整理得 ()()221sin 22sin c s 10to t ααα++--=,设A ,B 两点对应的参数分别为12t t ,, 则12211sin t t α⋅=-+,所以12211sin PA PB t t α⋅==+, 因为0πα<<,所以(]2sin 01α∈,,所以1221111sin 2PA PB t t α⎡⎫⋅==∈⎪⎢+⎣⎭,,所以PA PB ⋅的取值范围为112⎡⎫⎪⎢⎣⎭,.【名师点睛】利用直线参数方程中参数的几何意义求解问题.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为00cos sin x x t y y t θθ=+⎧⎨=+⎩(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为12t t ,,线段AB 的中点为M ,点M 所对应的参数为0t ,则以下结论在解题中经常用到:(1)1202t t t +=;(2)1202t t PM t +==;(3)21AB t t =-;(4)12··PA PB t t =. 3.【河南省信阳高级中学2018–2019学年高二上学期期中考试数学】在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2sin 2cos 0a a ρθθ=+>();直线l的参数方程为222x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).直线l 与曲线C 分别交于M N ,两点. (1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若点P 的极坐标为()2πPM PN +=,,a 的值.【答案】(1)曲线C 的直角坐标方程为:()()22211x a y a -+-=+,直线l 的普通方程为2y x =+.(2)2a =.【解析】(1)由()2sin 2cos 0a a ρθθ=+>,得()22sin 2cos 0a a ρρθρθ=+>,所以曲线C 的直角坐标方程为2222x y y ax +=+,即()()22211x a y a -+-=+,直线l 的普通方程为2y x =+.(2)将直线l的参数方程2,2x y ⎧=-+⎪⎪⎨⎪=⎪⎩代入2222x y y ax +=+并化简、整理,得()2440t t a -++=.因为直线l 与曲线C 交于M N ,两点.所以()()2Δ4440a =-+>,解得1a ≠.由根与系数的关系,得121244t t t t a +==+,.因为点P 的直角坐标为()20-,,在直线l上.所以12PM PN t t +=+==, 解得2a =,此时满足0a >.且1a ≠,故2a =.【名师点睛】参数方程主要通过代入法或者已知恒等式(如22cos sin 1αα+=等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式222tan cos ,sin x y x y xy ρρθρθθ=⎧+==⎧⎪⎨⎨=⎩⎪⎩等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.4.【河南省豫南九校(中原名校)2017届高三下学期质量考评八数学】己知直线l 的参数方程为132x ty t=+⎧⎨=+⎩(t 为参数),曲线C 的极坐标方程为2sin 16cos 0ρθθ-=,直线l 与曲线C 交于A 、B 两点,点13P (,). (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求11PA PB+的值. 【答案】(1)21y x =+,216y x =;(2【解析】(1)直线l 的参数方程为132x ty t=+⎧⎨=+⎩(t 为参数),消去参数,可得直线l 的普通方程21y x =+,曲线C 的极坐标方程为2sin 16cos 0ρθθ-=,即22sin 16cos 0ρθρθ-=,曲线C 的直角坐标方程为216y x =,(2)直线的参数方程改写为1535x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),代入2212124351670554y x t t t t t =--=+==-,,,121211t t PA PB t t -+==. 【名师点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ⎧=⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.5.【河南省开封市2019届高三上学期第一次模拟考试数学】在直角坐标系xOy 中,直线l 的参数方程是1x t y t ==+⎧⎨⎩(t 为参数),曲线C 的参数方程是22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程; (2)已知射线1OP θα=:(其中π02α<<)与曲线C 交于O P ,两点,射线2π2OQ θα=+:与直线l 交于Q 点,若OPQ ∆的面积为1,求α的值和弦长OP . 【答案】(1)cos sin 10ρθρθ-+=,4cos ρθ=;(2)π4OP α==, 【解析】(1)直线l 的普通方程为10x y -+=,极坐标方程为cos sin 10ρθρθ-+=,曲线C 的普通方程为2224x y -+=(),极坐标方程为4cos ρθ=.(2)依题意,∵π02α∈(,),∴4cos OP α=, 1ππsin cos 22OQ αα=+-+()()1sin cos αα=+,12cos 12cos sin OPQ S OP OQ ααα===+△, ∴πtan 102αα=∈,(,),∴π4OP α==,【名师点睛】本题考查的知识要点:三角函数关系式的恒等变变换,参数方程直角坐标方程和极坐标方程之间的转换,三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型. 6.【四川省成都市第七中学2019届高三一诊模拟考试数学】在平面直角坐标系xOy 中,曲线C 的参数标方程为e e e et tt tx y --⎧=+⎪⎨=-⎪⎩(其中t 为参数),在以O 为极点、x 轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线l的极坐标方程为πsin 3ρθ⎛⎫-= ⎪⎝⎭(1)求曲线C 的极坐标方程;(2)求直线l 与曲线C 的公共点P 的极坐标. 【答案】(1)2ππcos2444ρθθ⎛⎫=-<< ⎪⎝⎭(2)π6⎛⎫ ⎪⎝⎭,【解析】(1)消去参数t ,得曲线C 的直角坐标方程()2242x y x -=≥.将cos sin x y ρθρθ==,代入224x y -=,得()222cos sin 4ρθθ-=.所以曲线C 的极坐标方程为2ππcos2444ρθθ⎛⎫=-<< ⎪⎝⎭.(2)将l 与C 的极坐标方程联立,消去ρ得2π4sin 2cos23θθ⎛⎫-=⎪⎝⎭.展开得()22223cos cos sin 2cos sin θθθθθθ-+=-.因为cos 0θ≠,所以23tan 10θθ-+=.于是方程的解为tan θ=,即π6θ=.代入πsin 3ρθ⎛⎫-=⎪⎝⎭ρ=P 的极坐标为π6⎛⎫ ⎪⎝⎭,.【名师点睛】本题考查曲线的极坐标方程与普通方程的互化,直线的极坐标方程与曲线极坐标方程联立求交点的问题,考查计算能力.7.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)数学】在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,已知直线l 的参数方程为22x ty t =⎧⎨=+⎩(t 为参数),曲线C 的极坐标方程为2cos 8sin ρθθ=.(1)求曲线C 的直角坐标方程,并指出该曲线是什么曲线; (2)若直线l 与曲线C 的交点分别为M ,N ,求MN .【答案】(1)曲线C 方程为28x y =,表示焦点坐标为()0,2,对称轴为y 轴的抛物线;(2)10. 【解析】(1)因为2cos 8sin ρθθ=,所以22cos 8sin ρθρθ=,即28x y =,所以曲线C 表示焦点坐标为()0,2,对称轴为y 轴的抛物线. (2)设点()11,M x y ,点()22,N x y直线l 过抛物线的焦点()0,2,则直线参数方程为22x t y t =⎧⎨=+⎩化为一般方程为122y x =+,代入曲线C 的直角坐标方程,得24160x x --=, 所以12124,16x x x x +==-所以MN ===10==.【名师点睛】本题考查极坐标方程化直角坐标方程,直线的参数方程化一般方程,弦长公式等,属于简单题.8.【河北省石家庄市2018届高中毕业班模拟考试(二)数学】在平面直角坐标系xOy 中,曲线1C 的方程为224x y +=,直线l的参数方程2x ty =--⎧⎪⎨=⎪⎩(t 为参数),若将曲线1C 上的点的横坐标不变,纵坐标变为原来的32倍,得曲线2C . (1)写出曲线2C 的参数方程;(2)设点2P -(,直线l 与曲线2C 的两个交点分别为A B ,,求11PA PB+的值. 【答案】(1)2cos 3sin x y θθ=⎧⎨=⎩(θ为参数);(2)12【解析】(1)若将曲线1C 上的点的纵坐标变为原来的32, 则曲线2C 的直角坐标方程为22243x y +=(),整理得22149x y +=, ∴曲线2C 的参数方程2cos 3sin x y θθ=⎧⎨=⎩(θ为参数).(2)将直线的参数方程化为标准形式为122333x t y t ''⎧=--⎪⎪⎨⎪=+⎪⎩(t '为参数),将参数方程带入22149x y +=得221(2))22149t --'+=' 整理得27183604t t ''++=().12127214477PA PB t t PA PB t t ''''+=+===,, 72111714427PA PB PA PB PA PB++===.【名师点睛】本题考查了参数方程与普通方程的互化,及直线的参数方程的应用,重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用直线参数的几何意义求解.要结合题目本身特点,确定选择何种方程.。
高考文科数学复习专题-极坐标与参数方程
1.曲线的极坐标方程.(1)极坐标系:一般地,在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O 称为极点,射线Ox称为极轴.(2)极坐标(ρ,θ)的含义:设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.明显,每一个有序实数对(ρ,θ),确定一个点的位置.其中ρ称为点M的极径,θ称为点M的极角.极坐标系和直角坐标系的最大区分在于:在直角坐标系中,平面上的点与有序数对之间的对应关系是一一对应的,而在极坐标系中,对于给定的有序数对(ρ,θ),可以确定平面上的一点,但是平面内的一点的极坐标却不是唯一的.(3)曲线的极坐标方程:一般地,在极坐标系中,假如平面曲线C上的随意一点的极坐标满意方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.2.直线的极坐标方程.(1)过极点且与极轴成φ0角的直线方程是θ=φ0和θ=π-φ0,如下图所示.(2)与极轴垂直且与极轴交于点(a,0)的直线的极坐标方程是ρcos θ=a,如下图所示.(3)与极轴平行且在x轴的上方,与x轴的距离为a的直线的极坐标方程为ρsin θ=a,如下图所示.3.圆的极坐标方程.(1)以极点为圆心,半径为r的圆的方程为ρ=r,如图1所示.(2)圆心在极轴上且过极点,半径为r的圆的方程为ρ=2rcos_θ,如图2所示.(3)圆心在过极点且与极轴成π2的射线上,过极点且半径为r的圆的方程为ρ2rsin_θ,如图3所示.4.极坐标与直角坐标的互化.若极点在原点且极轴为x 轴的正半轴,则平面内随意一点M 的极坐标M(ρ,θ)化为平面直角坐标M(x ,y)的公式如下:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或者ρ=x 2+y 2,tan θ=y x ,其中要结合点所在的象限确定角θ的值.1.曲线的参数方程的定义.在平面直角坐标系中,假如曲线上随意一点的坐标x ,y 都是某个变数t 的函数,即⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组所确定的点M(x ,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x ,y 之间关系的变数t 叫做参变数,简称参数.2.常见曲线的参数方程.(1)过定点P(x 0,y 0),倾斜角为α的直线:⎩⎪⎨⎪⎧x =x 0+tcos α,y =y 0+tsin α(t 为参数), 其中参数t 是以定点P(x 0,y 0)为起点,点M(x ,y)为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.依据t 的几何意义,有以下结论:①设A ,B 是直线上随意两点,它们对应的参数分别为t A 和t B ,则|AB|=|t B -t A |=(t B +t A )2-4t A ·t B ;②线段AB 的中点所对应的参数值等于t A +t B2.(2)中心在P(x 0,y 0),半径等于r 的圆:⎩⎪⎨⎪⎧x =x 0+rcos θ,y =y 0+rsin θ(θ为参数) (3)中心在原点,焦点在x 轴(或y 轴)上的椭圆:⎩⎪⎨⎪⎧x =acos θ,y =bsin θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧x =bcos θ,y =asin θ. 中心在点P(x 0,y 0),焦点在平行于x 轴的直线上的椭圆的参数方程为⎩⎪⎨⎪⎧x =x 0+acos α,y =y 0+bsin α(α为参数).(4)中心在原点,焦点在x 轴(或y 轴)上的双曲线:⎩⎪⎨⎪⎧x =asec θ,y =btan θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧x =btan θ,y =asec θ. (5)顶点在原点,焦点在x 轴的正半轴上的抛物线:⎩⎪⎨⎪⎧x =2p ,y =2p(t 为参数,p>0). 注:sec θ=1cos θ.3.参数方程化为一般方程.由参数方程化为一般方程就是要消去参数,消参数时经常采纳代入消元法、加减消元法、乘除消元法、三角代换法,消参数时要留意参数的取值范围对x ,y 的限制.1.已知点A 的极坐标为⎝⎛⎭⎪⎫4,5π3,则点A 的直角坐标是(2,-23).2.把点P 的直角坐标(6,-2)化为极坐标,结果为⎝ ⎛⎭⎪⎫22,-π6.3.曲线的极坐标方程ρ=4sin θ化为直角坐标方程为x 2+(y -2)2=4.4.以极坐标系中的点⎝ ⎛⎭⎪⎫1,π6为圆心、1为半径的圆的极坐标方程是ρ=2cos ⎝⎛⎭⎪⎫θ-π6.5.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ(θ为参数)的右顶点,则常数a 的值为3.解析:由直线l :⎩⎪⎨⎪⎧x =t ,y =t -a ,得y =x -a.由椭圆C :⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ,得x 29=y24=1.所以椭圆C 的右顶点为(3,0).因为直线l 过椭圆的右顶点,所以0=3-a ,即a =3.一、选择题1.在平面直角坐标系xOy 中,点P 的直角坐标为(1,-3).若以原点O 为极点,x 轴正半轴为极轴建立极坐标系,则点P 的极坐标可以是(C )A.⎝ ⎛⎭⎪⎫1,-π3B.⎝ ⎛⎭⎪⎫2,4π3C.⎝ ⎛⎭⎪⎫2,-π3D.⎝⎛⎭⎪⎫2,-4π3 2.若圆的方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),直线的方程为⎩⎪⎨⎪⎧x =t +1,y =t -1(t 为参数),则直线与圆的位置关系是(B )A .相离B .相交C .相切D .不能确定3.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cosθ,则直线l 被圆C 截得的弦长为(D )A.14 B .214 C. 2 D .2 2解析:由题意可得直线和圆的方程分别为x -y -4=0,x 2+y 2=4x ,所以圆心C(2,0),半径r =2,圆心(2,0)到直线l 的距离d =2,由半径,圆心距,半弦长构成直角三角形,解得弦长为2 2.4.已知动直线l 平分圆C :(x -2)2+(y -1)2=1,则直线l 与圆O :⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数)的位置关系是(A )A .相交B .相切C .相离D .过圆心解析:动直线l 平分圆C :(x -2)2+(y -1)2=1,即圆心(2,1)在直线l 上,又圆O :⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ的一般方程为x 2+y 2=9且22+12<9,故点(2,1)在圆O 内,则直线l 与圆O 的位置关系是相交.二、填空题5.在平面直角坐标系xOy 中,已知曲线C 的参数方程是⎩⎪⎨⎪⎧y =sin θ-2,x =cos θ(θ是参数),若以O 为极点,x 轴的正半轴为极轴,则曲线C 的极坐标方程可写为ρ2+4ρsin_θ+3=0.解析:在平面直角坐标系xOy 中,⎩⎪⎨⎪⎧y =sin θ-2,x =cos θ(θ是参数),∴⎩⎪⎨⎪⎧y +2=sin θ,x =cos θ.依据sin 2θ+cos 2θ=1,可得x 2+(y +2)2=1,即x 2+y 2+4y +3=0.∴曲线C 的极坐标方程为ρ2+4ρsin θ+3=0.6.在平面直角坐标系中圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数),以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,则圆C 的圆心的极坐标为⎝⎛⎭⎪⎫2,π2.三、解答题7.求极点到直线2ρ=1sin ⎝⎛⎭⎪⎫θ+π4(ρ∈R)的距离.解析:由2ρ=1sin ⎝ ⎛⎭⎪⎫θ+π4⇒ρsin θ+ρcos θ=1⇒x +y =1,故d =|0+0-1|12+12=22. 8.极坐标系中,A 为曲线ρ2+2ρcos θ-3=0上的动点,B 为直线ρcos θ+ρsin θ-7=0上的动点,求|AB|的最小值.9.(2015·大连模拟)曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),将曲线C 1上全部点的横坐标伸长为原来的2倍,纵坐标伸长为原来的3倍,得到曲线C 2.以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :ρ(cos θ-2sin θ)=6.(1)求曲线C 2和直线l 的一般方程;(2)P 为曲线C 2上随意一点,求点P 到直线l 的距离的最值.解析:(1)由题意可得C 2的参数方程为⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),即C 2:x 24+y23=1,直线l :ρ(cos θ-2sin θ)=6化为直角坐标方程为x -2y -6=0.(2)设点P(2cos θ,3sin θ),由点到直线的距离公式得点P 到直线l 的距离为 d =|2cos θ-23sin θ-6|5=⎪⎪⎪⎪⎪⎪6+4⎝ ⎛⎭⎪⎫32sin θ-12cos θ5=⎪⎪⎪⎪⎪⎪6+4sin ⎝⎛⎭⎪⎫θ-π65=55⎣⎢⎡⎦⎥⎤6+4sin ⎝⎛⎭⎪⎫θ-π6. 所以255≤d ≤25,故点P 到直线l 的距离的最大值为25,最小值为255.10.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l经过定点P(3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程.(2)设直线l 与曲线C 相交于A ,B 两点,求|PA|·|PB|的值.解析:(1)由曲线C 的参数方程⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),得一般方程为(x -1)2+(y -2)2=16,即x 2+y 2-2x -4y =11=0.直线l 经过定点P(3,5),倾斜角为π3,直线的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =5+32t (t 是参数).(2)将直线的参数方程代入x 2+y 2-2x -4y -11=0,整理,得t 2+(2+33)t -3=0,设方程的两根分别为t 1,t 2,则t 1t 2=-3,因为直线l 与曲线C 相交于A ,B 两点,所以|PA|·|PB|=|t 1t 2|=3.。
极坐标与参数方程高考题专题练习
1.在平面直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,以分别为与轴,轴的交点(1)写出的直角坐标方程,并求出的极坐标.(2)设的中点为,求直线的极坐标方程.2.已知曲线:(为参数),:的参数方程(为参数)(1)化,的方程为普通方程,并说明它们分别表示什么曲线.(2)若上的点对应的参数为,为上的动点,求中点到直线:(为参数)距离的最小值.3.已知曲线:(为参数),:的参数方程(为参数)(1)指出,是什么曲线,并说明与的公共点的个数.(2)若把,上各点的纵坐标都压缩为原来的一半,分别得到曲线,,写出,参数方程,与公共点的个数和与公共点个数是否相同,说明理由.4.在在平面直角坐标系中,点是椭圆上的一个动点,求的最大值.5.已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线截得的线段长度.6.已知圆的参数方程为,若是圆与轴正半轴的交点,以坐标原点为极点,轴正半轴为极轴建立极坐标系,试求过点的圆的切线的极坐标方程.7.在极坐标系中,已知圆的圆心坐标为,半径,求圆的极坐标方程.8.在平面直角坐标系中,动圆,的圆心为,求的取值范围.9.已知圆锥曲线:(为参数),点、分别是圆锥曲线的左、右焦点,点为圆锥曲线上的上顶点,求经过点且垂直于直线的直线的方程.10.求圆被直线(为参数)截得的弦长.11.已知直线的参数方程(为参数),是椭圆上的任意一点,求点到直线距离的最大值.12.已知圆,直线,求过点且与直线垂直的直线的极坐标方程。
13.已知直线的参数方程为(为参数),曲线参数方程(为参数)(1)将曲线的参数方程化为普通方程.(2)若直线与曲线相交于点,两点,试求线段的长.14.已知在一个极坐标系中,定点,动点对极点和点的张角,在的延长线上取一点,使,当在极轴上方运动时,求点的轨迹的极坐标方程.15.设是曲线:(为参数,)上任意一点(1)将曲线化为普通方程.(2)求的取值范围.16.在平面直角坐标系中,圆参数方程(为参数),直线经过点,倾斜角.(1)写出直线的参数方程.(2)设与圆交于点,两点,求点到,两点的距离之积.17.在曲线:(为参数)上求一点,使它到直线:(为参数)的距离最小,并求出该点坐标和最小距离.18.以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆以为圆心,为半径.(1)求直线的参数方程和圆的极坐标方程.(2)试判定直线和圆的位置关系.19.已知圆参数方程(为参数),若是圆与轴正半轴的交点,以圆心为极点,轴正半轴为极轴建立极坐标系,求过点的圆的切线的极坐标方程.。
极坐标与参数方程例题示范(分题型)
极坐标与参数方程例题示范(分题型)极坐标与参数方程是选修内容的必考题型,这里按照课本及高考考试说明,归纳总结为四类题型。
题型一。
极坐标与直角坐标的互化。
互化原理(三角函数定义)、数形结合。
1.在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧-=+-=t y t x 13(t 为参数),以O 为极点,x轴的非负半轴为极轴建立极坐标系,并在两种坐标系中取相同的长度单位,曲线C 的极坐标方程为0cos 2=+θρ.(1)把曲线C 的极坐标方程化为普通方程;(2)求直线l 与曲线C 的交点的极坐标(πθρ20,0<≤≥).试题解析:(1)由0cos 2=+θρ得θρcos 2-=,两边同乘以ρ,得x y x 222-=+; (2)由直线l 的参数方程为⎩⎨⎧-=+-=ty tx 13(t 为参数),得直线的普通方程为02=++y x ,联立曲线C 与直线l 的方程得,⎩⎨⎧-=-=11y x 或⎩⎨⎧=-=02y x ,化为极坐标为)45,2(π或),2(π.考点:极坐标方程与直角坐标方程的互化,直线参数方程与普通方程的互化. 考点:cos ,sin x y ρθρθ==,222x y ρ=+. 2.在极坐标系中,设圆C经过点6π⎛⎫P ⎪⎝⎭,圆心是直线sin 32πρθ⎛⎫-= ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.试题解析:法一:6π⎛⎫P ⎪⎝⎭直线sin 32πρθ⎛⎫-=⎪⎝⎭它与x 轴的交点也就是圆心为()1,0所以圆的方程为()2211x y -+=,得2220x y x +-=所以,圆的极坐标方程为:2cos ρθ=法二:因为圆心为直线2sin sin 33ππρθ⎛⎫-= ⎪⎝⎭与极轴的交点,所以令0θ=,得1ρ=,即圆心是()1,0 又圆C经过点6π⎫P ⎪⎭,∴圆的半径1r ==,∴圆过原点,∴圆C 的极坐标方程是2cos ρθ=.考点:(1)转化为直角坐标,求出所求方程,再转化为极坐标;(2)先求圆心坐标,再运用余弦定理求半径,最后借助过原点写出圆的极坐标方程.题型二。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年高考数学(文科)试题分类坐标系与参数方程1.(广东)已知两曲线参数方程分别为)0(sin cos 5πθθθ<≤⎩⎨⎧==y x 和)452R t ty t x ∈⎪⎩⎪⎨⎧==( 它们的交点坐标为____________2.(湖南)在直角坐标系xOy 中,曲线C l 的参数方程为⎩⎨⎧==ααsin 3cos 2y x (α为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴) 中,曲线C 2的方程为01)sin (cos =+-θθρ,则C l 与C 2的交点个数为_____________ 3.(陕西)直角坐标系xoy 中,以原点为极点,X 轴的正半轴为极轴建极坐标系,设点A ,B分别在曲线⎩⎨⎧=+=θθsin cos 3:1y x C (θ为参数)和曲线1:2=ρC 上,则AB 的最小值______.几何证明选讲4.(天津)如图,已知圆中两条弦AB 与CD 相交于点F,E 是AB 延长线上一点,且2==CF DF 1:2:4::=BE FB AF若CE 与圆相切,则线段CE 的长为_____________5.(广东)(几何证明选讲选做题)如图,在梯形 ABCD 中:AB ∥CD ,AB=4,CD=2,E 、F 分别为 AD 、BC 上点,且EF=3,EF∥AB,则梯形ABFE 与 梯形EFCD 的面积比为_____________6·(陕西)如图,∠B=∠D ,AE ⊥BC ,∠ACD=900。
且AB=6,AC=4,AD=12,则AE=_____________算法框图7.(福建)阅读下左图所示的程序框图,运行相应的程序,输出的结果是 ( )A .3B .11 C.38 D .123 8.(陕西)如下中框图,当61=x ,92=x ,5.8=p 时,3x 等于 ( ) A .7 B .8C .10D .1 19.(安徽)如下右图所示,程序框图(算法流程图)的输出结果是_____10.(江西)下图是某算法的程序框图,则程序运行后输出的结果是______.复数11.(山东)复数iiZ +-=22(i 为虚数单位)在复平面内对应的点所在象限为 ( ) A .第一象限 B .第=象限 C .第三象限 D .第四象限12.(安徽)设i 是虚数单位,复数iai-+21为纯虚数,则实数a 为 ( ) A .2 B .一2 C .21- D .2113.(湖北)i 为虚数单位,则=-+||20)11(ii ( ) A .-i B .-l C .i D .114.(江西)若R y x i y i i x ∈+=-,,2)(,其中i 为虚数单位,则复数=+yi x ( )i A +-2. ⋅+i B 2. i C 21.- i D 21.+15.(全国)复数i i212-+的共轭复数是 ( )i A 53.- i B 53. i C -. i D .16.(陕西)设集合}|,sin cos ||{22R x x x y y M ∈-==2|||{<-=i x x N ,i 为虚数单位,R x ∈},则N M I 为 ( )A .(0.1)B .(0,1]C .[0,1)D .[0,1] 17.(辽宁)i 为虚数单位=+++7531111i i i i ( ) A .0 B :2i C .-2i D .4i18.(上海)(已知复数Z 1满足i i z -=+-1)1)(2(1(i 为虚数单位),复数2z 的虚部为2,21z z ⋅是实数求2z ___________推理与证明19.(福建)在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即}Z n k n k ∈+=5{][,4,3,2,1,0=k 给出如下四个结论:]1[2011∈①,]3[3∈-②,③[][][][][]43210Y Y Y Y =Z④“整数a ,b 属于同一“类”的充要条件是“]0[∈-b a ” 其中正确结论的个数是 ( )A .1B .2C .3D .4 20.(江西)观察下列各式:则4972=,34373=,240174=…则20117的末两位数字为( )A .01B .43C .07D .49 21.(陕西)观察右边等式:照此规律,第*)(N n n ∈个等式应为_____________22.(江西)如下左图,一个直径为l 的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M ,N 在大圆内所绘出的图形大致是_________________23.(天津)对实数a 和b 定义运算“⊗”:⎩⎨⎧>-≤-=⊗1,1,b a b b a a b a设函数R x x x x x f ∈-⊗-=),()2()(22,若函数c x f y -=)(的图像与x 轴恰有两个公共 点,则实数c 的取值范围是 ( ))23,1(]2,(---∞⋅Y A )43,1(]2,.(----∞Y B⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-,4141,1.Y C ),41[)43,1(+∞--⋅Y D24.(山东)设4321,,,A A A A ⋅是平面直角坐标系中两两不同的四点,若2131A A A A λ=)(R ∈λ,()R A A A A ∈=μμ2141,且211=+μλ,则称43,A A 调和分割21,A A .已知平面上的点C ,D 调和分割点A ,B 则下面说法正确的是 ( ) A .C 可能是线段AB 的中点 B.D 可能是线段AB 的中点C .C.D 可能同时在线段AB 上 D .C ,D 不可能同时在线段AB 的延长线上 25.(湖北)若实数b a .满足0≥a ,0≥b ,且0=ab ,则称a 与b 互补,记那么0),(=b a φ是a 与b 互补的 ( )A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .即不充分也不必要的条件26.(福建)设V 是全体平面向量构成的集合,若映射R V f →:满足:对任意向量V y x ∈=),(.11,V y x b ∈=),(22,以及任意R ∈λ均有())()1())1((b f a f b a f λλλλ-+=-+则称映射f 具有性质P .现给出如下映射:①()f R V f 11,:→ V y x y x ∈=-),(, ②()f R V f 22,:→ ()V y x y x ∈=+,,2③()f R V f 33,:→ V y x y x ∈=++),(,1其中,具有性质P 的映射的序号为__________(写出所有具有性质P 的映射的序号) 27.(山东)设函数)0(2)(>+=x x xx f ,观察: 2)()(1+==x x x f x f ,,43))(()(12+==x x x f f x f 87))(()(23+==x x x f f x f ,1615))(()(34+==x xx f f x f根据以上事实,由归纳推理可得:当*N n ∈,且2≥n 时,==-))(()(1x f f x f n n _________ 28.(安徽)在平面直角坐标系中,如果x 与y 都是整数,就称点(x ,y )为整点,下列命题中正确的是_________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点. ②如果k 与b 都是无理数,则直线b kx y +=不经过任何整点. ③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点.④直线b kx y +=经过无穷多个整点的充分必要条件是:k 与b 都是有理数. ⑤存在恰经过一个整点的直线.,),(22b a b a b a --+=φ29.(江苏)设整数,4≥n ),(b a P 是平面直角坐标系xOy 中的点,其中b a n b a >∈},,,32,1{,Λ,.(1)记n A 为满足3=-b a 的点P 的个数,求n A ; (2)记n B 为满足)(31b a -是整数的点P 的个数,求n B .30.(四川)已知函数2132)(+=x x f ,x x h =)(. (1)设函数22)]([)(18)(x h x x f x F -=,求)(x F 的单调区间与极值.(2)设.R a ∈解关亍x 的方程)4(lg 2)(lg 2]43)1(23lg[x h x a h x f ---=--. (3)设*N n ∈,证明:61)]()2()1([)()(≥+++-n h h h n h n f Λ.参考答案1.【答案】)552,1( 【解析】两曲线的普通方程分别为)10,55(1522≤≤≤<-=+y x y x.542x y =2.【答案】2【解析】曲线,134:221=+y x C 曲线01:2=+-y x C 联立方程并消去y得.08872=-+x x 3.【答案】1【解析】由⎩⎨⎧=+=θθsin cos 3y x 得圆心为)0,3(1C ,11=r ,由1=ρ得圆心为)0,0(2C ,11=r ,由平几知识知当B A 、为21C C 连线与两圆的交点时||AB 的最小值,则||AB的最小值为1232|03|2||21=-=--=-C C 4.【答案】27【解析】设x AF 4=,x BF 2=,x BE =,则由相交弦定理得FB AF DF ⋅=2即282=x ,即412=x ,由切割线定理得47722==⋅=x EA FB CF ,所以27=CE .5.【答案】,75【解析】由题得EF 是梯形的中位线()()7543213221=•+•+=∴h h S S EFCDABFE 梯形梯形6.【答案】2【解析】 Rt△ABE≌Rt△ADC 所以AC AE AD AB =,即21246=⨯=⨯=AD AC AB AC 7.【答案】 B 【解析】1=a ,.10<a ,3212=+=a ,103<=a ,.11232=+=a1011>=a ,所以输出11=a8.【答案】B 【解析】5.7296221=+=+x x 而5.8=ρ则||||3221x x x x ->-所以5.82.9332=+=+=x hx x p ,即83=x9.(【答案】15【解析】由算法框图可知2)1(321+=++++=k k k T Λ 若105=T ,则,14=K ,继续执行循环体,这时15=k ,105>T ,所以输出的k 值为l5. 10.【答案】27 【解析】由框图的顺序,0=s ,1=n ,11*)10()(=+=+=n n s s.21=+=n n 依次循环3,62*)21(==+=n s ,注意此时3>3,仍然是否,所以还要循环一次,4,273*)36(==+=n s 此刻输出,27=s11.【答案】D 【解析】因为5435)2(222ii i i z -=-=+-=故复数Z 对应点在第四象限 12.【答案】A .【解析】设()R b bi iai∈=-+21,则bi b bi i ai 2)2(1+=-=+ 故22,1===b a b . 13.【答案】A 【解析】因为i i i =-+11,故i i i i ii -=⋅==-+505220112011)()11( 14.【答案】B 【解析】i y i xi i y i i x Q 2,2)(2+=-+=-i yi x x y +=+==∴2,2,1. 1 5.【答案】C 【解析】因为i ii i i i =--=-+21)21(212所以,共轭复数为i - 16.【答案】C 【解析】由]1,0[|2cos ||sin cos |22∈=-=x x x y ,即]1,0[=M , 由2|1|<-ix 得1121||2<<-⇒<+=+x x i x ,即)1,0[)1,1(=-=N M N I ,故选C17.【答案】A 【解析】01111753=+-+-=+++i i i i i i i i 18.【解析】i z i i z -=⇒-=+-21)1)(2(11,设R a i a z ∈+=,22 则i a a i a i z z )4()22()2)(2(21-++=+-=R z z ∈21Θ,i z 242+=∴19.【答案】C 【解析】由于}n 5{][Z k n k ∈+=对于①.52011÷等于402余l ,所以]1[2011∈,对于②,-3=-5+2,被5除应余2,所以②错;对于③,任意一整数x ,被5除余数为0,1,2,3,4,所以]4[]3[]2[]1[]0[Y Y Y Y ∈x ,所以③正确;对于④,先证充分性,因为b a ,是同一类,可设k n a +=15,k n b +=25,则.,5Z n n b a ∈=-即Z n b n a ∈+=,5,不妨令Z m k m b ∈+=,5,则Z n Z m k m n a ∈∈++=,,55, 所以b a ,属于同一类,故④正确,则正确的有①③④.20.【答案】B 【解析】设)(x f 表示x7的末两位数字,则49)2(=f ,,43)3(=f 01)4(=f ,07)5(=f ,49)6(=f ………可归纳得*))(()4(N n n f n f ∈=+从而43)3()35024()2011(==+⨯=f f f21.【答案】2)12()23()2()1(-=-+⋅⋅⋅+++++n n n n n【解析】第n 个等式是首项为n ,公差1,项数为12-n 的等差数列的所有项之和,即2)12()23()2()1(-=-+⋅+++++n n n n n Λ22。