高考真题汇编:坐标系与参数方程

合集下载

高考数学压轴专题人教版备战高考《坐标系与参数方程》真题汇编附答案

高考数学压轴专题人教版备战高考《坐标系与参数方程》真题汇编附答案

新数学《坐标系与参数方程》专题解析(1)一、131.参数方程21,11x ty t t ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数)所表示的曲线是( )A .B .C .D .【答案】D 【解析】 【分析】消参化简整理得221x y +=,即得方程对应的曲线. 【详解】将1t x =代入y =,化简整理得221x y +=,同时x 不为零,且x ,y 的符号一致, 故选:D. 【点睛】本题主要考查参数方程与普通方程的互化,考查圆的方程,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.在极坐标系中,设圆8:sin C ρθ=与直线 ():4l R πθρ=∈交于A B ,两点,则以线段AB 为直径的圆的极坐标方程为( )A .4πρθ⎛⎫=+ ⎪⎝⎭B .4πρθ⎛⎫=- ⎪⎝⎭C .4πρθ⎛⎫=+ ⎪⎝⎭D .4πρθ⎛⎫=-⎪⎝⎭【答案】A 【解析】 【分析】首先把极坐标方程化为直角坐标方程,进一步求出圆心坐标和半径,再把直角坐标方程化为极坐标方程,即可得到答案. 【详解】由题意,圆8:sin C ρθ=化为直角坐标方程,可得22(4)16x y +-=,直线():4l R πθρ=∈化为直角坐标方程,可得y x =,由直线与圆交于,A B 两点,把直线y x =代入圆22(4)16x y +-=,解得00x y =⎧⎨=⎩或44x y =⎧⎨=⎩,所以以线段AB 为直径的圆的圆心坐标为(2,2),半径为, 则圆的方程为22(2)(2)8x y -+-=,即22440x y x y +--=, 又由cos sin x y ρθρθ=⎧⎨=⎩,代入可得24cos 4sin 0ρρθρθ--=,即4cos 4sin 4θπρθθ⎛⎫=+= ⎝+⎪⎭,故选A . 【点睛】本题主要考查了极坐标方程与直角坐标方程的互化,以及圆的标准方程的求解,其中解答中把极坐标方程互为直角坐标方程,得到以线段AB 为直径的圆的标准方程是解答的关键,着重考查了推理与运算能力,属于基础题.3.设曲线C 的参数方程为35cos ()15sin x y θθθ⎧=+⎪⎨=-+⎪⎩为参数,直线l 的方程310x y -+=,则曲线C 上到直线l 的距离为52的点的个数为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】将圆C 化为普通方程,计算圆心到直线l 的距离,通过比较所求距离与52的关系即可得到满足条件的点的个数. 【详解】化曲线C 的参数方程为普通方程:()()223125x y -++=,圆心()3,1-到直线310x y -+=的距离3115522d ++==<, 所以直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求, 与l 平行且与圆相切的直线和圆的一个交点符合要求,故有3个点符合题意, 故选C 【点睛】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系得出结论.4.参数方程(为参数)所表示的图象是A .B .C .D .【答案】D 【解析】【分析】 由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。

高考数学-坐标系与参数方程(含22年真题讲解)

高考数学-坐标系与参数方程(含22年真题讲解)

高考数学-坐标系与参数方程 (含22年真题讲解)1.【2022年全国甲卷】在直角坐标系xOy 中,曲线C 1的参数方程为{x =2+t 6y =√t(t 为参数),曲线C 2的参数方程为{x =−2+s 6y =−√s(s 为参数).(1)写出C 1的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2cosθ−sinθ=0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标. 【答案】(1)y 2=6x −2(y ≥0);(2)C 3,C 1的交点坐标为(12,1),(1,2),C 3,C 2的交点坐标为(−12,−1),(−1,−2).【解析】 【分析】(1)消去t ,即可得到C 1的普通方程;(2)将曲线C 2,C 3的方程化成普通方程,联立求解即解出. (1) 因为x =2+t 6,y =√t ,所以x =2+y 26,即C 1的普通方程为y 2=6x −2(y ≥0).(2) 因为x =−2+s 6,y =−√s ,所以6x =−2−y 2,即C 2的普通方程为y 2=−6x −2(y ≤0),由2cosθ−sinθ=0⇒2ρcosθ−ρsinθ=0,即C 3的普通方程为2x −y =0. 联立{y 2=6x −2(y ≥0)2x −y =0 ,解得:{x =12y =1 或{x =1y =2 ,即交点坐标为(12,1),(1,2);联立{y 2=−6x −2(y ≤0)2x −y =0 ,解得:{x =−12y =−1 或{x =−1y =−2 ,即交点坐标为(−12,−1),(−1,−2). 2.【2022年全国乙卷】在直角坐标系xOy 中,曲线C 的参数方程为{x =√3cos2t y =2sint ,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin (θ+π3)+m =0. (1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围. 【答案】(1)√3x +y +2m =0 (2)−1912≤m ≤52 【解析】 【分析】(1)根据极坐标与直角坐标的互化公式处理即可;(2)联立l 与C 的方程,采用换元法处理,根据新设a 的取值范围求解m 的范围即可. (1)因为l :ρsin (θ+π3)+m =0,所以12ρ⋅sinθ+√32ρ⋅cosθ+m =0,又因为ρ⋅sinθ=y,ρ⋅cosθ=x ,所以化简为12y +√32x +m =0,整理得l 的直角坐标方程:√3x +y +2m =0 (2)联立l 与C 的方程,即将x =√3cos2t ,y =2sint 代入 √3x +y +2m =0中,可得3cos2t +2sint +2m =0, 所以3(1−2sin 2t)+2sint +2m =0, 化简为−6sin 2t +2sint +3+2m =0,要使l 与C 有公共点,则2m =6sin 2t −2sint −3有解,令sint =a ,则a ∈[−1,1],令f(a)=6a 2−2a −3,(−1≤a ≤1), 对称轴为a =16,开口向上,所以f(a)max =f(−1)=6+2−3=5, f(a)min =f(16)=16−26−3=−196,所以−196≤2m ≤5m 的取值范围为−1912≤m ≤52.1.(2022·宁夏·吴忠中学三模(文))在平面直角坐标系xOy 中,曲线1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=.(1)求曲线1C 与2C 的直角坐标方程;(2)已知直线l 的极坐标方程为πR 02θαρα⎛⎫ ⎪=∈⎝<<⎭,,直线l 与曲线1C ,2C 分别交于M ,N (均异于点O )两点,若4OMON=,求α. 【答案】(1)曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)π4α=【解析】 【分析】(1)1C 的参数方程消参可求出1C 的直角坐标方程;2C 的极坐标方程同乘ρ,把cos x ρθ=,222x y ρ=+代入2C 的极坐标方程可求出2C 的直角坐标方程.(2)设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,用极径的几何意义表示出4OMON=,即124ρρ=,解方程即可求出α. (1)解:1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),把2216y t =代入24x t =-中可得,24y x =-,所以曲线1C 的直角坐标方程为24y x =-,2C 的极坐标方程为2cos ρθ=,即22cos ρρθ=,所以曲线2C 的直角坐标方程为2220x y x +-=,综上所述:曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)由(1)知,1C 的极坐标方程为2sin 4cos ρθθ=-, 设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,则21sin 4cos ραα=-,22cos ρα=,由题意知02πα<<可得sin 0α≠,因为4OMON=,所以124ρρ=,所以24cos 42cos sin ααα-=⨯,故21sin 2α=,所以sin 2α=或sin 2α=(舍) 所以π4α=.2.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),曲线2C 的参数方程为2221x t t y t ⎧=-⎨=-⎩(t 为参数).已知曲线2C 与x ,y 正半轴分别相交于,A B 两点.(1)写出曲线1C 的极坐标方程,并求出,A B 两点的直角坐标;(2)若过原点O 且与直线AB 垂直的直线l 与曲线1C 交于P 点,与直线AB 交于Q 点,求线段PQ 的长度.【答案】(1)2cos ρθ=,A 点为()3,0,B 点为()0,3(2)2【解析】 【分析】(1)普通方程()2211x y -+=,即可得2cos ρθ=(2)求出直线AB 的方程为3y x =-+,然后求出直线l 的方程,然后可求出PQ 的长度 (1)曲线1C 的普通方程()2211x y -+=,极坐标方程()()22cos 1sin 1ρθρθ-+=,∴2cos ρθ=.在曲线2C 上,当0x =时,0=t 或2t =,此时3y =或1y =-(舍),所以B 点为()0,3. 当0y =时,1t =-或1t =,此时3x =或1x =-(舍),所以A 点为()3,0. (2)直线AB 的方程为3y x =-+,极坐标方程为sin cos 3ρθρθ=-+, ∴()sin cos 3ρθθ+=,过原点O 且与直线AB 垂直的直线l 的极坐标方程为4πθ=.4πθ=与2cos ρθ=联立,得1ρ 4πθ=与()sin cos 3ρθθ+=联立,得2ρ=∴21PQ ρρ=-=. 3.(2022·江西·南昌市八一中学三模(理))在直角坐标系xOy 中,直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭.(1)求C 和l 的直角坐标方程;(2)设点Q的直角坐标为(,P 为C 上的动点,求PQ 中点R 的轨迹的极坐标方程. 【答案】(1)直线l 的普通方程为2x y +=,曲线C 的普通方程为()(2214x y ++=;(2)21ρ= 【解析】 【分析】(1)消去参数t ,即可得到直线l 的普通方程,再由两角和的正弦公式及222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,将曲线C 的极坐标方程化为直角坐标方程;(2)设(),R x y ,即可表示P 点坐标,再根据点P 在曲线C 上,代入C 的方程,即可得到点R 的轨迹方程,再将直角坐标方程化为极坐标方程即可;(1)解:因为直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 所以直线l 的普通方程为2x y +=,因为曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭,即4sin cos cos sin 66ππρθθ⎛⎫=-+ ⎪⎝⎭,即2cos ρθθ=--,所以2sin 2cos ρθρθ=--,又222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,所以222x y x +=--,即()(2214x y +++=,即曲线C 的普通方程为()(2214x y ++=;(2)解:设(),R x y,则(21,2P x y -,因为点P 在曲线C 上,所以()(2221124x y -++=,即221x y +=,所以PQ 中点R 的轨迹方程为221x y +=,即21ρ=4.(2022·黑龙江·哈尔滨三中模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为()2cos θsin θρ=+. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设点()2,1P ,直线l 与曲线C 的交点为A ,B ,求PA PBPB PA+的值. 【答案】(1)10x y --=,22220x y x y +--= (2)4 【解析】 【分析】(1)直接消去参数,将直线l 的方程化为普通方程,利用互化公式将曲线C 的极坐标方程转化为直角坐标方程(2)将直线的参数方程代入曲线C的普通方程,得到210t -=,得到12121t t t t +==- ,化简()222121212122112122PA PBt t t t t t t t PB PA t t t t t t +-++=+==,代入韦达定理,即可得到答案 (1)直线l的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 消去参数t 可得l 的普通方程为10x y --=.曲线C 的极坐标方程为2(cos θsin θ)ρ=+,即22(cos θsin θ)ρρ=+,根据222cos θsin θx y x y ρρρ=⎧⎪=⎨⎪=+⎩,可得2222x y x y +=+.∴曲线C 的直角坐标方程为22220x y x y +--= (2)在直线l的参数方程21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)中,设点A ,B 对应的参数分别为1t ,2t , 将直线l的参数方程221x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入22220x y x y +--=,得210t +-=,∴12t t +=121t t =-.∴()2221212121221121224PA PBt t t t t t t t PB PA t t t t t t +-++=+=== 5.(2022·安徽淮南·二模(文))在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(其中α为参数,02πα≤<),以原点O 为极点,x 轴非负半轴为极轴,取相同的单位长度建立极坐标系,直线1l 的极坐标方程为(R)3πθρ=∈.(1)求曲线C 的极坐标方程与直线1l 的直角坐标方程;(2)设直线1l 与曲线C 交于点O ,A ,直线2l 与曲线C 交于点O ,B ,求AOB 面积的最大值. 【答案】(1)4sin ρθ=,y(2)【解析】【分析】(1)依据参数方程与普通方程的互化和极坐标方程与直角坐标方程的互化即可解决; (2)先求得AOB 面积的表达式,再对其求最大值即可. (1)曲线C 的直角坐标方程为22(2)4x y +-=,展开得2240x y y +-=, 则曲线C 的极坐标方程为4sin ρθ=. 直线1l的直角坐标方程为y (2)由(1)可知π||4sin3OA == 设直线2l 的极坐标方程为(R)θβρ=∈,根据条件知要使AOB 面积取最大值,则ππ3β<<,则||4sin OB β=,于是1ππsin sin 233OAB S OA OB βββ⎛⎫⎛⎫=⨯⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2π6sin cos cos 2)3sin 226ββββββ⎛⎫=-=--=+ ⎪⎝⎭,所以当π3π262β+=即2π3β=时,AOB的面积取最大值,最大值为6.(2022·内蒙古呼和浩特·二模(理))在直角坐标系xOy 中,曲线C的参数方程为))cos sin cos sin 2x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,两坐标系取相同单位长度,直线l 的极坐标方程为2cos 3sin 100ρθρθ+-=. (1)求曲线C 的普通方程和直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 距离的最小值. 【答案】(1)2214x y +=,23100x y +-=;【解析】 【分析】(1)消去曲线C 的参数方程中的参数即可得解,利用极坐标与直角坐标互化得直线l 的直角坐标方程作答.(2)设出曲线C 上任意一点的坐标,利用点到直线距离公式及辅助角公式求解作答. (1)由))cos sin cos sin x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),消去参数得2214x y +=, 所以曲线C 的普通方程为2214x y +=,把cos sin x y ρθρθ=⎧⎨=⎩代入直线l 的极坐标方程2cos 3sin 100ρθρθ+-=得:23100x y +-=,所以直线l 的直角坐标方程为23100x y +-=. (2)由(1)知,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数),设()2cos ,sin P αα为曲线C 上一点,P 到直线l 的距离为d ,则105sin d αϕ-+===ϕ由4tan 3ϕ=确定,因此,当()sin 1αϕ+=时,d所以曲线C 上的点到直线l 7.(2022·甘肃·武威第六中学模拟预测(文))在直角坐标系xOy 中,曲线C 的参数方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),以坐标原点极点,以x 轴正半轴为极轴建立极坐标系,直线l 的极坐sin cos 0θρθ-.(1)求曲线C 的普通方程和直线l 的直角坐标方程: (2)若直线与曲线C 交于A ,B 两点,点P 的坐标为(0,1),求11||||PA PB +的值. 【答案】(1)224x y -=,0x+= (2)5【解析】【分析】(1)消去参数t 可得曲线C 的方程,利用公式法转化得到直线l 的直角坐标方程; (2)利用直线l 的参数方程中t 的几何意义求解. (1)∴11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),∴22222222112112x t t t t y t t t t ⎧⎛⎫=+=++⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=-=+- ⎪⎪⎝⎭⎩,所以224x y -=, 所以曲线C 的方程为224x y -=又∴cos x ρθ=,sin y ρθ=,0x - 所以直线l的直角坐标方程为0x =; (2)∴()0,1P 在直线l 上,∴直线l的参数方程为112x y t⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)设A ,B 对应的参数分别为1t 与2t将直线l 的参数方程代入到224x y -=得22100t t --=. ∴2Δ(2)41(10)440=--⨯⨯-=>, ∴122t t +=,12100t t ⋅=-<, ∴1||PA t =,2||PB t =∴1212121111||||-+=+====t tPA PB t t t t,所以11||||+=PA PB 8.(2022·全国·赣州市第三中学模拟预测(理))在平面直角坐标系xOy 中,曲线1C 满足参数方程2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩(t 为参数且11t -≤≤).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点P 为曲线1C 上一动点,且极坐标为(),ρθ. (1)求曲线1C 的直角坐标方程; (2)求()cos 3sin ρθθ+的取值范围.【答案】(1)y =()2204y x y +=≥(2)⎡-⎣ 【解析】 【分析】(1)消去参数t 可得普通方程,由11t -≤≤,得到0y ≥,即可求出曲线1C 的直角坐标方程; (2)先判断出2ρ=利用三角函数出()cos 3sin ρθθ+的范围. (1)由2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩消去t 可得:224x y +=. 由于11t -≤≤,则212t +≤,即0y ≥.因此曲线1C的直角坐标方程为y ()2204y x y +=≥(2)曲线1C 为上半圆,点P 在1C 上,因此2ρ=,0,θπ⎡⎤∈⎣⎦ 由三角函数的性质知,在[]0,π上,1cos 3sin θθ-≤+≤因此()cos 3sin 2,ρθθ⎡+∈-⎣9.(2022·黑龙江·哈尔滨三中三模(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为22x y t ⎧=⎪⎨=-⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为22cos 4sin 10ρρθρθ---=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点P 的坐标为()2,2,求1PA PB-.【答案】(1)()()22126x y -+-=;【解析】 【分析】(1)将222x y ρ=+、cos x ρθ=、sin y ρθ=代入圆C 的极坐标方程即可求其直角坐标方程; (2)将直线l 的参数方程化为标准形式,代入圆C 的直角坐标方程得到关于参数t 的二次方程,根据韦达定理和直线参数方程参数的几何意义即可求出1PA PB-.(1)∴22cos 4sin 10ρρθρθ---=,∴222410x y x y +---=, 即()()22126x y -+-=; (2)直线l参数方程的标准形式为2122x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 代入圆C直角坐标方程整理得250t -=, 设方程的两根为1t 、2t ,则A 、B 对应参数1t 、2t ,则121250t t t t ⋅=-<⎧⎪⎨+⎪⎩,∴1PA PB-121211t t t t ==+-10.(2022·河南·模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为222x m y m⎧=⎨=⎩(m 为参数),直线l 的参数方程为12x tcos y tsin αα⎧=+⎪⎨⎪=⎩,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=,直线l 与1C 交于点P ,Q ,与2C 交于点S ,T ,与x 轴交于点R .(1)写出曲线1C 的普通方程和曲线2C 的直角坐标方程; (2)若()4PR QR SR TR -=-,求直线l 的倾斜角. 【答案】(1)22y x =,()2211x y -+= (2)2π或4π或34π【解析】 【分析】(1)消参求得曲线1C 的普通方程为22y x =.由2cos ρθ=同乘ρ得到2C 的直角坐标方程. (2)l 过定点1,02R ⎛⎫ ⎪⎝⎭.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,利用参数的几何含义化简求解. (1)曲线1C 的普通方程为22y x =.由2cos ρθ=得22cos ρρθ=.所以2C 的直角坐标方程为222x y x +=,即()2211x y -+=.(2)不妨设0απ<<,则sin 0α>.易知1,02R ⎛⎫ ⎪⎝⎭是l 过的定点.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,设P ,Q 对应的参数分别为P t ,Q t ,则22cos sin P Q PR QR t t αα-=+=.将直线l 的参数方程代入()222:11C x y -+=,得23cos 04t t α--=, 设S ,T 对应的参数分别为S t ,T t ,则cos S T SR TR t t α-=+=.由()4PR QR SR TR -=-得22cos 4cos sin ααα=,得cos 0α=或sin α=l 的倾斜角为2π或4π或34π. 11.(2022·河南洛阳·三模(理))在直角坐标系xOy 中,直线1l的参数方程为12x ty kt⎧=⎪⎨=⎪⎩(t 为参数),直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数),设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线1C .(1)求曲线1C 的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,设曲线2C 的极坐标方程为2cos ρθ=,射线OM :()04πθρ=≥与1C ,2C 分别交于A ,B 两点,求线段AB 的长.【答案】(1)22163x y +=,()0y ≠(2)2【解析】 【分析】(1)消去参数得到直线1l 、2l 的普通方程,联立两方程消去k ,即可得到P 的轨迹; (2)首先将1C 的方程化为极坐标方程,再将()04πθρ=≥代入两极坐标方程即可求出OA ,OB ,即可得解;(1)解:因为直线1l的参数方程为12x ty kt⎧⎪⎨=⎪⎩(t 为参数), 消去参数t 得直线1l的普通方程为(12y k x =①, 直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数), 消去参数m 得直线2l的普通方程为(1y x k=-②, 设(),P x y ,由①②联立得((121y k x y x k ⎧=⎪⎪⎨⎪=-⎪⎩,消去k 得()22162y x =--即曲线1C 的普通方程为22163x y +=,()0y ≠;(2)解:设1OA ρ=,2OB ρ=,由cos sin x y ρθρθ=⎧⎨=⎩得曲线1C 的极坐标方程为2261sin ρθ=+(02θπ<<,θπ≠),代入()04πθρ=≥得12OA ρ==,将()04πθρ=≥代入2cos ρθ=得2OB ρ==所以2AB OA OB =-= 即线段AB的长度为212.(2022·安徽省芜湖市教育局模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 3sin x y ββ=+⎧⎨=⎩(β为参数),将曲线1C 经过伸缩变换13x xy y =⎧''⎪⎨=⎪⎩得到曲线2C .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程;(2)已知射线():0l θαρ=≥与曲线2C 交于A 、B 两点,若3OB OA =,求tan α的值. 【答案】(1)24cos 30ρρθ-+= (2)0 【解析】 【分析】(1)求出曲线2C 的参数方程,化为普通方程,再利用极坐标方程与直角坐标方程之间的转换关系可得出曲线2C 的极坐标方程;(2)设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根,由已知可得213ρρ=,结合韦达定理可求得cos α的值,利用同角三角函数的基本关系可求得tan α的值. (1)解:由题可得2C 的参数方程为2cos sin x y ββ=+⎧⎨=⎩(β为参数),则2C 的直角方程为()2221x y -+=,即22430x y x +-+=, 因为cos x ρθ=,sin y ρθ=,所以24cos 30ρρθ-+=,所以曲线2C 的极坐标方程为24cos 30ρρθ-+=. (2)解:设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根, 2Δ16cos 120α=->,则124cos ρρα+=①,123ρρ=②, 因为3OB OA =,所以213ρρ=③,由①②③解得cos 1α=,则sin 0α=,tan 0α∴=,此时16120∆=->,合乎题意. 故tan 0α=.13.(2022·贵州遵义·三模(文))在极点为O 的极坐标系中,经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,且与极轴的交点为N . (1)当π2α=时,求l 的极坐标方程; (2)当ππ,43α⎡⎤∈⎢⎥⎣⎦时,求MON △面积的取值范围.【答案】(1)cos ρθ=(2)⋃⎣⎦⎣⎦【解析】 【分析】(1)先求得l 的直角坐标方程,再转化为极坐标方程.(2)对直线l 的倾斜角进行分类讨论,结合三角形的面积公式求得MON △面积的取值范围. (1)点π2,6M ⎛⎫ ⎪⎝⎭,则π2cos 6π2sin 16x y ⎧=⨯=⎪⎪⎨⎪=⨯=⎪⎩,所以M点的直角坐标为),当π2α=时,直线l的直角坐标方程为x =转化为极坐标方程为cos ρθ=.(2)在极坐标系下:经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,在直角坐标系下:经过点)M的直线l 的倾斜角为α或πα-.即直线l 的倾斜角是α或πα-. 当直线l 的倾斜角为α时,直线l 的方程为(1tan y x α-=,令0y =得1tan N x α-=ππ,43α⎡⎤∈⎢⎥⎣⎦,tan α⎡∈⎣,111,1,,tan tan tan N x ααα⎤⎡∈-∈-=-⎥⎢⎣⎦⎣⎦⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯-+⨯ ⎝11tan 2α⎛=-⨯∈ ⎝⎣⎦.当直线l 的倾斜角为πα-时,直线l 的方程为()((1tan πtan y x x αα-=-=-,令0y =得1tan N x α=11,1tan tan N x αα⎤⎤∈=⎥⎥⎣⎦⎣⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯⨯ ⎝11tan 2α⎛=⨯∈ ⎝⎣⎦.综上所述,MON △面积的取值范围是⋃⎣⎦⎣⎦. 14.(2022·江西·上饶市第一中学二模(文))在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的普通方程为:22(2)4x y -+=,曲线2C 的参数方程是2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),点2,2P π⎛⎫⎪⎝⎭.(1)求曲线1C 和2C 的极坐标方程; (2)设射线(0)3πθρ=>分别与曲线1C 和2C 相交于A ,B 两点,求PAB △的面积.【答案】(1)4cos ρθ=,22123sin ρθ=+(2)1 【解析】 【分析】(1)由公式法求极坐标方程(2)联立方程后分别求出A ,B 坐标,及P 到直线AB 距离后求面积 (1)曲线1C 的直角坐标方程为:2240x y x +-=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线1C 的极坐标方程为:4cos ρθ=. 曲线2C 的普通方程是:22143x y +=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线2C 的极坐标方程为:22123sin ρθ=+.(2)设12,,,33A B ππρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则1||4cos23OA πρ===,22221216||53sin 3OB ρπ===+,所以||OB =,所以||||||2AB OA OB =-=-. 又(0,2)P到直线:AB y =的距离为:1d ==所以12112PABS⎛=⨯⨯= ⎝⎭ 15.(2022·全国·模拟预测(文))在直角坐标系xOy 中,曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 4ρθθ=. (1)求C 和l 的直角坐标方程;(2)若点M ,N 分别为曲线C 和直线l 上的动点,求MN 的最小值.【答案】(1)22163x y +=,40x -=2- 【解析】 【分析】(1)利用22cos sin 1θθ+=消去参数θ,可得曲线C 的普通方程,利用极坐标与直角坐标的互化公式可求出直线l 的直角坐标方程, (2)设曲线C上任意一点)Mθθ到直线l 的距离为d ,然后利用点到直线的距离公式表示出d ,再根据三角函数的性质可求出其最小值 (1)由曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数)可知2222cos sin 1θθ+=+=,故曲线C 的直角坐标方程为22163x y +=.由直线l的极坐标方程为cos sin 4ρθθ=,结合cos x ρθ=,sin y ρθ=可知l的直角坐标方程为40x -=. (2)MN 的最小值即为曲线C 上任意一点到直线l 距离的最小值.设曲线C上任意一点)Mθθ到直线l 的距离为d ,则2cos 24d πθ⎛⎫==+≥ ⎪⎝⎭,故MN 2..。

2019年坐标系与参数方程真题汇编(文数)

2019年坐标系与参数方程真题汇编(文数)

2019年坐标系与参数方程真题汇编(文数)1.【2019年高考北京卷文数】已知直线l 的参数方程为13,24x t y t =+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l的距离是 A .15B .25C .45D .65【答案】D 【解析】由题意,可将直线l 化为普通方程:1234x y --=,即()()41320x y ---=,即4320x y -+=,所以点(1,0)到直线l的距离65d ==,故选D . 2.【2019年高考全国Ⅰ卷文数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【解析】(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-.l的直角坐标方程为2110x ++=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l.3.【2019年高考全国Ⅱ卷文数】在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ++=直线l 过点(4,0)A 且与OM 垂直,垂足为P . (1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ== 由已知得||||cos23OP OA π==. 设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中,cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭, 经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上. 所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭. (2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ== 即 4cos ρθ=. 因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.4.【2019年高考全国Ⅲ卷文数】如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【解析】(1)由题设可得,弧,,AB BC CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤ ⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭. (2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos θ=,解得π6θ=;若π3π44θ≤≤,则2sin θ=π3θ=或2π3θ=;若3ππ4θ≤≤,则2cos θ-=5π6θ=.综上,P 的极坐标为π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.5.【2019年高考江苏卷数学】在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为s i n 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.【解析】(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =. (2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. 模拟汇编6.【重庆西南大学附属中学校2019届高三第十次月考数学】在平面直角坐标系xOy 中,已知曲线1C 的参数方程为5()x y ϕϕϕ⎧=+⎪⎨=⎪⎩为参数,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=.(1)求曲线1C 与曲线2C 两交点所在直线的极坐标方程;(2)若直线l的极坐标方程为sin()4ρθπ+=,直线l 与y 轴的交点为M ,与曲线1C 相交于,A B 两点,求MA MB +的值.【解析】(1)曲线1C 的普通方程为:22(5)10x y -+=,曲线2C 的普通方程为:224x y x +=,即22(2)4x y -+=,由两圆心的距离32)d =∈,所以两圆相交, 所以两方程相减可得交线为6215x -+=,即52x =. 所以直线的极坐标方程为5cos 2ρθ=. (2)直线l 的直角坐标方程:4x y +=,则与y 轴的交点为(0,4)M ,直线l的参数方程为242x y ⎧=-⎪⎪⎨⎪=+⎪⎩,带入曲线1C 22(5)10x y -+=得2310t ++=.设,A B 两点的参数为1t ,2t ,所以12t t +=-1231t t =,所以1t ,2t 同号.所以1212MA MB t t t t +=+=+=7.【山东省郓城一中等学校2019届高三第三次模拟考试数学】在平面直角坐标系xOy 中,曲线C 的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点M的极坐标为34π⎛⎫ ⎪⎝⎭,直线l的极坐标方程为sin 04ρθπ⎛⎫-+= ⎪⎝⎭.(1)求直线l 的直角坐标方程与曲线C 的普通方程;(2)若N 是曲线C 上的动点,P 为线段MN 的中点,求点P 到直线l 的距离的最大值. 【解析】(1)因为直线l的极坐标方程为πsin 04ρθ⎛⎫-+= ⎪⎝⎭, 即ρsin θ-ρcos θ+4=0.由x =ρcos θ,y =ρsin θ, 可得直线l 的直角坐标方程为x -y -4=0.将曲线C的参数方程sin x y αα⎧=⎪⎨=⎪⎩,消去参数a ,得曲线C 的普通方程为2213x y +=.(2)设Nα,sin α),α∈[0,2π). 点M的极坐标(,3π4),化为直角坐标为(-2,2).则11,sin 12P αα⎫-+⎪⎪⎝⎭. 所以点P 到直线l的距离2d ==≤, 所以当5π6α=时,点M 到直线l的距离的最大值为2. 8.【河南省周口市2018–2019学年度高三年级(上)期末调研考试数学】在直角坐标系xOy 中,直线l 的参数方程为4,232x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为223sin 12ρθ+=(). (1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)若直线l 与曲线C 交于A B ,两点,且设定点21P (,),求PB PA PAPB+的值.【解析】(1)由直线l 的参数方程消去t ,得普通方程为10x y --=.223sin 12ρθ+=()等价于2223sin 12ρρθ+=,将222sin x y y ρρθ=+=,代入上式,得曲线C 的直角坐标方程为222312x y y ++=(), 即22143x y +=. (2)点21P (,)在直线10x y --=上,所以直线l的参数方程可以写为2 1x t y ⎧=+⎪⎪⎨⎪=+⎪⎩,(为参数), 将上式代入22143x y +=,得2780t ++=. 设A B ,对应的参数分别为12t t ,,则1212877t t t t +=-=, 所以22||PA PB PB PAPA PB PA PB ++=22PA PB PA PB PA PB+-=()21212122t t t t t t +-=()2121212||2t t t t t t +-⋅==⋅2828677877--⨯=(. 9.【河南省郑州市第一中学2019届高三上学期入学摸底测试数学】以直角坐标系的原点O 为极点,x 轴的正半轴为极轴.已知点P 的直角坐标为15-(,),点M 的极坐标为π42(,).若直线l 过点P ,且倾斜角为π3,圆C 以M 为圆心、4为半径. (1)求直线l 的参数方程和圆C 的极坐标方程; (2)试判定直线l 和圆C 的位置关系.【解析】(1)直线l的参数方程1π11cos 23 π5sin 53x t x t y t y ⎧⎧=+=+⋅⎪⎪⎪⎪⇒⎨⎨⎪⎪=-+⋅=-⎪⎪⎩⎩(t 为参数), M 点的直角坐标为(0,4),圆C 的半径为4,∴圆C 的方程为22416x y +-=(),将cos sin x y ρθρθ=⎧⎨=⎩代入,得圆C 的极坐标方程为222cos (sin 4)16ρθρθ+-=,即8sin ρθ=;(2)直线l50y ---=,圆心M 到l的距离为942d ==>, ∴直线l 与圆C 相离.【点睛】主要是考查了极坐标与直角坐标的互化,以及运用,属于基础题.10.【全国I 卷2019届高三五省优创名校联考数学】在直角坐标系xOy 中,直线l的参数方程为2x m y t ⎧⎪=+⎨=⎪⎪⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,椭圆C 的极坐标方程为2222cos 3sin 48ρθρθ+=,其左焦点F 在直线l 上.(1)若直线l 与椭圆C 交于A B ,两点,求FA FB +的值; (2)求椭圆C 的内接矩形面积的最大值. 【解析】(1)将cos sin x y ρθρθ=⎧⎨=⎩代入ρ2cos 2θ+3ρ2sin 2θ=48,得x 2+3y 2=48,即2214816x y +=, 因为c 2=48-16=32,所以F的坐标为(-,0), 又因为F 在直线l上,所以m =-把直线l的参数方程22x y =-=⎧⎪⎪⎨⎪⎪⎩代入x 2+3y 2=48,化简得t 2-4t -8=0,所以t 1+t 2=4,t 1t 2=-8,所以12FA FB t t +=-===(2)由椭圆C 的方程2214816x y +=,可设椭圆C 上在第一象限内的任意一点M 的坐标为(θ,4sin θ)(π02θ<<),所以内接矩形的面积8sin 2S θθθ=⋅=, 当π4θ=时,面积S取得最大值 11.【河北衡水金卷2019届高三12月第三次联合质量测评数学】在直角坐标系中,直线l 的参数方程为1cos ,1sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0πα<<),以坐标原点为极点,x 轴正半轴为极轴,取相同的长度单位建立极坐标系,曲线C 的极坐标方程为2241sin ρθ=+.(1)当π6a =时,写出直线l 的普通方程及曲线C 的直角坐标方程; (2)已知点()11P -,,设直线l 与曲线C 交于A ,B 两点,试确定PA PB ⋅的取值范围. 【解析】(1)当π6a =时,直线l的参数方程为π1cos ,16π11sin 162x t x y t y t ⎧⎧=-+=-⎪⎪⎪⎪⇒⎨⎨⎪⎪=+=+⎪⎪⎩⎩,. 消去参数t得10x ++=. 由曲线C 的极坐标方程为2241sin ρθ=+,得()22sin 4ρρθ+=, 将222x y ρ+=,及sin y ρθ=代入得2224x y +=,即22142x y +=; (2)由直线l 的参数方程为1cos ,1sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0πα<<),可知直线l 是过点P (–1,1)且倾斜角为α的直线,又由(1)知曲线C 为椭圆22142x y +=,所以易知点P (–1,1)在椭圆C 内, 将1cos , 1sin x t y t αα=-+⎧⎨=+⎩代入22142x y +=中,整理得 ()()221sin 22sin c s 10to t ααα++--=,设A ,B 两点对应的参数分别为12t t ,,则12211sin t t α⋅=-+, 所以12211sin PA PB t t α⋅==+,因为0πα<<,所以(]2sin 01α∈,,所以1221111sin 2PA PB t t α⎡⎫⋅==∈⎪⎢+⎣⎭,,所以PA PB ⋅的取值范围为112⎡⎫⎪⎢⎣⎭,.12.【河南省信阳高级中学2018–2019学年高二上学期期中考试数学】在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2sin 2cos 0a a ρθθ=+>();直线l的参数方程为222x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).直线l 与曲线C 分别交于M N ,两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若点P 的极坐标为()2πPM PN +=,,a 的值.【解析】(1)由()2sin 2cos 0a a ρθθ=+>,得()22sin 2cos 0a a ρρθρθ=+>,所以曲线C 的直角坐标方程为2222x y y ax +=+,即()()22211x a y a -+-=+,直线l 的普通方程为2y x =+.(2)将直线l的参数方程2,2x y ⎧=-+⎪⎪⎨⎪=⎪⎩代入2222x y y ax +=+并化简、整理,得()2440t t a -++=.因为直线l 与曲线C 交于M N ,两点.所以()()2Δ4440a =-+>,解得1a ≠.由根与系数的关系,得121244t t t t a +==+,.因为点P 的直角坐标为()20-,,在直线l上.所以12PM PN t t +=+== 解得2a =,此时满足0a >.且1a ≠,故2a =.13.【河南省豫南九校(中原名校)2017届高三下学期质量考评八数学】己知直线l 的参数方程为132x ty t=+⎧⎨=+⎩(t 为参数),曲线C 的极坐标方程为2sin 16cos 0ρθθ-=,直线l 与曲线C 交于A 、B 两点,点13P (,). (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求11PA PB+的值. 【解析】(1)直线l 的参数方程为132x ty t =+⎧⎨=+⎩(t 为参数),消去参数,可得直线l 的普通方程21y x =+,曲线C 的极坐标方程为2sin 16cos 0ρθθ-=,即22sin 16cos 0ρθρθ-=, 曲线C 的直角坐标方程为216y x =,(2)直线的参数方程改写为1535x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),代入2212124351670554y x t t t t t =--=+==-,,,121211t t PA PB t t -+==. 14.【河南省开封市2019届高三上学期第一次模拟考试数学】在直角坐标系xOy 中,直线l 的参数方程是1x t y t ==+⎧⎨⎩(t 为参数),曲线C 的参数方程是22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程; (2)已知射线1OP θα=:(其中π02α<<)与曲线C 交于O P ,两点,射线2π2OQ θα=+:与直线l 交于Q 点,若OPQ ∆的面积为1,求α的值和弦长OP .【解析】(1)直线l 的普通方程为10x y -+=,极坐标方程为cos sin 10ρθρθ-+=,曲线C 的普通方程为2224x y -+=(),极坐标方程为4cos ρθ=. (2)依题意,∵π02α∈(,),∴4cos OP α=, 1ππsin cos 22OQ αα=+-+()()1sin cos αα=+, 12cos 12cos sin OPQ S OP OQ ααα===+△, ∴πtan 102αα=∈,(,),∴π4OP α==, 15.【四川省成都市第七中学2019届高三一诊模拟考试数学】在平面直角坐标系xOy 中,曲线C 的参数标方程为e e e et t t t x y --⎧=+⎪⎨=-⎪⎩(其中t 为参数),在以O 为极点、x 轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线l的极坐标方程为πsin 3ρθ⎛⎫-=⎪⎝⎭(1)求曲线C 的极坐标方程;(2)求直线l 与曲线C 的公共点P 的极坐标. 【解析】(1)消去参数t ,得曲线C 的直角坐标方程()2242x y x -=≥. 将cos sin x y ρθρθ==,代入224x y -=,得()222cos sin 4ρθθ-=.所以曲线C 的极坐标方程为2ππcos2444ρθθ⎛⎫=-<< ⎪⎝⎭. (2)将l 与C 的极坐标方程联立,消去ρ得2π4sin 2cos23θθ⎛⎫-= ⎪⎝⎭.展开得()22223cos cos sin 2cos sin θθθθθθ-+=-.因为cos 0θ≠,所以23tan 10θθ-+=.于是方程的解为tan 3θ=,即π6θ=.代入πsin 3ρθ⎛⎫-= ⎪⎝⎭ρ=P 的极坐标为π6⎛⎫ ⎪⎝⎭,. 16.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)数学】在平面直角坐标系xOy中,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,已知直线l 的参数方程为22x t y t=⎧⎨=+⎩(t 为参数),曲线C 的极坐标方程为2cos 8sin ρθθ=. (1)求曲线C 的直角坐标方程,并指出该曲线是什么曲线;(2)若直线l 与曲线C 的交点分别为M ,N ,求MN .【解析】(1)因为2cos 8sin ρθθ=,所以22cos 8sin ρθρθ=,即28x y =,所以曲线C 表示焦点坐标为()0,2,对称轴为y 轴的抛物线.(2)设点()11,M x y ,点()22,N x y直线l 过抛物线的焦点()0,2,则直线参数方程为22x t y t =⎧⎨=+⎩化为一般方程为122y x =+,代入曲线C 的直角坐标方程,得24160x x --=,所以12124,16x x x x +==- 所以MN ===10==.17.【河北省石家庄市2018届高中毕业班模拟考试(二)数学】在平面直角坐标系xOy 中,曲线1C 的方程为224x y +=,直线l的参数方程2x t y =--⎧⎪⎨=⎪⎩(t 为参数),若将曲线1C 上的点的横坐标不变,纵坐标变为原来的32倍,得曲线2C . (1)写出曲线2C的参数方程;(2)设点2P -(,直线l 与曲线2C 的两个交点分别为A B ,,求11PA PB +的值. 【解析】(1)若将曲线1C 上的点的纵坐标变为原来的32,则曲线2C 的直角坐标方程为22243x y +=(),整理得22149x y +=, ∴曲线2C 的参数方程2cos 3sin x y θθ=⎧⎨=⎩(θ为参数). (2)将直线的参数方程化为标准形式为122333x t y t ''⎧=--⎪⎪⎨⎪=+⎪⎩(t '为参数),将参数方程带入22149x y +=得221(2))22149t --'+=' 整理得27183604t t ''++=(). 12127214477PA PB t t PA PB t t ''''+=+===,, 72111714427PA PB PA PB PA PB++===.。

高中数学高考总复习坐标系与参数方程习题及详解.doc

高中数学高考总复习坐标系与参数方程习题及详解.doc

高中数学高考总复习坐标系与参数方程习题及详解一、选择题x=一1 ~t1.极坐标方程P = g胡和参数方程(/为参数)所表示的图形分别是()3=2 + /A.直线、直线B.直线、圆C.圆、圆D.圆、直线[答案]D[解析]由p=cosO得p2=pcos<9, Ax2 +/-x=0.此方程所表示的图形是圆.X= — 1 —I消去方程中的参数/可得,x+y-l=o,此方程所表示的图形是直线.ly=2+t2.下列参数方程(f为参数)屮,与方程/ = x表示同一曲线的是(){x=t[x=taiFfB.v=tan/x=tan/2l=tarT7[答案]B[解析]将/=x代入y=r得,y=x29故A错,将tant=y代入x=tan2Z中得,x=y2,[点评]平方得y2=\x\. 限定了x的取VtanzeR,故B正确,C、D容易判断都是错的.值必须非负, /•K=x,但白于y=y[\x\9故它必须满足尹20,而y2=x中的yWR.注意C中消去(得y=y[\x\9x=1+2/ [y=}-2t (/为参数)被圆x=3cosaj^=3sina(a为参数)截得的眩长为(4. 直线)C. 4^/7D. 2[答案]A兀=l+2f[解析]将直线 宀 化为普通方程得x+y=2,[y=\-2tx=3cosa r 入 将圆 r • 化为普通方程得X 2+/ = 9.丿=3sina 圆心O到直线的距离宀眾, 所以弦长1=2,段一孑=2护.二、填空题7.在极坐标系中,过圆p = 6cos&的圆心,且垂直于极轴的直线的极坐标方程为[答案]”cos 〃=3[解析]解法一:圆p=6cos&的圆心极坐标(3,0), ・•・直线/方程为〃cos0=3.解法二:由 p 2 = 6pcos6> 得 #+夕2=&,圆心 C (3,0),・•・过圆心垂直于极轴(即x 轴)的直线方程为兀=3,其极坐标方程为〃cos 〃=3. [点评]1.在极坐标方程不熟练的情况下,化为直角坐标方程求解后,再化为极坐标形 式是基本方法,故应熟记互化公式.2.掌握常见的圆、直线、圆锥曲线的极坐标方程的形式,对提高解题速度至关重要.长度是8.x= 1 +3cos&(,为参数)被曲线J+3讪 (0为参数)所截,则截得的弦的[答案]华兀=—1 +2f[解析]直线 化为兀+2y+3=0;|x=l+3cos0圆仁l+3sin& 化为(Ll)+kl) =9,圆心C(l,l)到直线x+2y+3 = 0距离d=洋,半径r=3, 弦长为2寸/_护=弓^.x=cos611 .在平面直角坐标系xOy 中,已知曲线C 的参数方程是 .zil (加是常数,0丘(一y=sm"十加兀,兀]是参数),若曲线C 与x 轴相切,则加= ______ .[答案]±1[解析]VOC : x 2+(y~m)2=\ 与 x 轴相切, ・・加=± 1.x=3cos012.椭圆 4 .八的离心率是 ______________ ・歹=4sin&[答案]普2 2[解析]由已知可得椭圆的普通方程为等+話=1,tz =4, b=3, c =y [l , e=:= 4 •与C2的位置关系为 _______ •[答案]相离[解析]圆 Cl : (x-3)2+(y-2)2=4 的圆心 0(3,2)到直线 C 2: 4x+3y-7 = 0 的距离 d =¥>2,・・・0与C2相离.14. _______________________________________________________________ 在极坐标系中,过点(2迈,目作圆p=4sin^的切线,则切线的极坐标方程为 _________________[答案]“cos 〃=2 的直角坐标x=2迈cos 扌=2,尹=2迈sin 》=2,圆〃=4sim9化为直角坐标方程为x 2+y 2=4y 9即x 2+ (y-2)2=49则过点(2,2)的圆的切线方程显然为x=2,即pcos013.兀=3+2cos 〃已知曲线G :仁2 + 2畑(&为参数)'x=l+3/曲线C 2:4(/为参数),则Gb=i —4/[解析]=2.三、解答题15.以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),己知点/的直角坐标为(一2, 6),点3的极坐标为(4,号),直线/过点力且倾斜角为务圆C以点B为圆心,4为半径,试求直线/的参数方程和圆C的极坐标方程.JT[解析]・・•直线/过点(-2,6),倾斜角为才,r ―返X=—2+ 2 z・•・直线/的参数方程为{厂(/为参数),1円+务又圆心3的直角坐标为(0,4),半径为4,・・・圆C的直角坐标方程为,+e—4)2=16,将x=p・cos0, y=0sin0代入化简得圆C的极坐标方程为“ = 8・sin&.16.在极坐标系中,直线/的极坐标方程为以极点为原点,极轴为x轴的x=2cosa正半轴建立平而直角坐标系,曲线C的参数方程为_ c @为参数),求直线/与曲y= 1 十cos2a线C的交点P的直角坐标.[解析]因为直线/的极坐标方程为0=¥(pWR)所以直线/的普通方程为y=©c,又因为曲线C的参数方程为x=2cosa”—-(«为参数)y= 1 + cos2a所以曲线C的直角坐标方程为尸护(冃―2,2]),x=0 解箒仁。

十年真题(2010-近年)高考数学真题分类汇编专题14坐标系与参数方程文(含解析)(最新整理)

十年真题(2010-近年)高考数学真题分类汇编专题14坐标系与参数方程文(含解析)(最新整理)

专题14坐标系与参数方程2011解答题2010综合测试题2010年新课标1文科23历年高考真题汇编1.【2019年新课标1文科22】在直角坐标系xOy中,曲线C的参数方程为(t 为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.【解答】解:(1)由(t为参数),得,两式平方相加,得(x≠﹣1),∴C的直角坐标方程为(x≠﹣1),由2ρcosθρsinθ+11=0,得.即直线l的直角坐标方程为得;(2)设与直线平行的直线方程为,联立,得16x2+4mx+m2﹣12=0.由△=16m2﹣64(m2﹣12)=0,得m=±4.∴当m=4时,直线与曲线C的切点到直线的距离最小,为.2.【2018年新课标1文科22】在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该射线关于y轴对称,且恒过定点(0,2).由于该射线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,或解得:k或0,当k=0时,不符合条件,故舍去,同理解得:k或0经检验,直线与曲线C2没有公共点.故C1的方程为:.3.【2017年新课标1文科22】在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d,φ满足tanφ,且的d的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+φ)﹣a﹣4|≤|﹣5﹣a﹣4|=|5+a+4|=17解得a=8和﹣26,a=8符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+φ)﹣a﹣4|≤|5﹣a﹣4|=|5﹣a﹣4|=17,解得a=﹣16和18,a=﹣16符合题意.4.【2016年新课标1文科23】在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C上,求a.3【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).5.【2015年新课标1文科23】在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2,∴|MN|=|ρ1﹣ρ2|,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N•1•1.6.【2014年新课标1文科23】已知曲线C:1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.7.【2013年新课标1文科23】已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,联立,解得或,∴C1与C2交点的极坐标为()和(2,).8.【2012年新课标1文科23】已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]9.【2011年新课标1文科23】在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【解答】解:(I)设P(x,y),则由条件知M(,).由于M点在C1上,所以即从而C2的参数方程为(α为参数)(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ与C1的交点A的极径为ρ1=4sin,射线θ与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ2﹣ρ1|.10.【2010年新课标1文科23】已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【解答】解:(Ⅰ)当α时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为x sinα﹣y cosα﹣sinα=0①.则OA的方程为x cosα+y sinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A 点坐标为(sin 2α,﹣cos αsin α),故当α变化时,P 点轨迹的参数方程为:,P 点轨迹的普通方程.故P 点轨迹是圆心为,半径为的圆.本专题考查的知识点为:极坐标方程与直角坐标方程的转化,极坐标几何意义的应用,参数方程与普通方程的互化,参数方程的应用。

坐标系与参数方程 高考数学必刷真题分类大全-专题18

坐标系与参数方程 高考数学必刷真题分类大全-专题18

专题18坐标系与参数方程考向一极坐标与参数方程【母题来源】2022年高考浙江卷【母题题文】在直角坐标系xOy 中,曲线1C的参数方程为26t x y +⎧=⎪⎨⎪=⎩(t 为参数),曲线2C的参数方程为26s x y +⎧=-⎪⎨⎪=⎩(s 为参数).(1)写出1C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线3C 的极坐标方程为2cos sin 0θθ-=,求3C 与1C 交点的直角坐标,及3C 与2C 交点的直角坐标.【试题解析】【小问1详解】因为26t x +=,y =,所以226y x +=,即1C 的普通方程为()2620y x y =-≥.【小问2详解】因为2,6sx y +=-=,所以262x y =--,即2C 的普通方程为()2620y x y =--≤,由2cos sin 02cos sin 0θθρθρθ-=⇒-=,即3C 的普通方程为20x y -=.联立()262020y x y x y ⎧=-≥⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩或12x y =⎧⎨=⎩,即交点坐标为1,12⎛⎫ ⎪⎝⎭,()1,2;联立()262020y x y x y ⎧=--≤⎨-=⎩,解得:121x y ⎧=-⎪⎨⎪=-⎩或12x y =-⎧⎨=-⎩,即交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.【命题意图】本题考查极坐标、参数方程与直角坐标的互化,属于较为简单题目.【命题方向】这类试题在考查题型上以解答题的形式出现.试题难度不大,多为低档题,是历年高考的热点,考查学生的基本运算能力.常见的命题角度有:(1)极坐标与直角坐标互化;(2)参数方程与直角坐标互化;(3)直线参数方程中参数的几何意义.【得分要点】(1)运用极坐标,借助极径的几何意义;(2)参数方程与直角方程的互化,借助直线的参数的几何意义;1.(2022·四川成都·模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t为参数,α为常数且2πα≠),在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为:22sin 40ρρθ--=.(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)点(1,1)P ,直线l 与曲线C 交于,A B 两点,若2PA PB =,求直线l 的斜率.2.(2022·河南安阳·模拟预测(文))在直角坐标系xOy 中,1C 的圆心为()11,1C点为极点,x 轴正半轴为极轴建立极坐标系,2C的极坐标方程为ρθ=.(1)求1C 的极坐标方程,判断1C ,C 的位置关系;(2)求经过曲线1C ,2C 交点的直线的斜率.3.(2023·四川·成都七中模拟预测(理))在直角坐标系xOy 中,倾斜角为α的直线l的参数方程为:2cos sin x t y t αα=+⎧⎪⎨=⎪⎩,(t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为22cos 8ρρθ=+.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A B ,两点,且AB =,求直线l 的倾斜角.4.(2022·青海·海东市第一中学模拟预测(理))在直角坐标系xOy 中,已知曲线1C的参数方程为x y t ⎧=⎪⎨=⎪⎩(t 为参数).曲线2C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线1C ,2C 的极坐标方程;(2)若曲线1C ,2C 的交点为A ,B,已知)1P-,求PA PB ⋅.5.(2022·内蒙古·海拉尔第二中学模拟预测(文))在平面直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t y t αα=-+⎧⎨=+⎩(其中α为直线的倾斜角,t 为参数),在以为O 极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为2sin 4cos 0.ρθθ-=(1)当直线l 的斜率k =2时,求曲线C 上的点A 与直线l 上的点B 间的最小距离;(2)如果直线l 与曲线C 有两个不同交点,求直线l 的斜率k 的取值范围.6.(2022·全国·模拟预测(文))在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 36πρθ⎛⎫-= ⎪⎝⎭,圆C 的极坐标方程为2sin ρθ=.(1)求C 的参数方程;(2)判断l 与C 的位置关系.7.(2022·河南·开封市东信学校模拟预测(理))在平面直角坐标系xOy 中,曲线C 的参数方程为2,2x t y t =⎧⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 20ρθρθ+-=.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)若直线l 与曲线C 交于P ,Q 两点,且点(0,2)M ,求11||||MP MQ +的值.8.(2022·四川·成都市锦江区嘉祥外国语高级中学模拟预测(理))在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系(取相同的单位长度),曲线1C 的极坐标方程为4cos ρθ=,曲线2C的参数方程为2222x y ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数),曲线1C ,2C 相交于A 、B 两点,曲线3C 经过伸缩变换22x x y y ='+='⎧⎨⎩后得到曲线1C .(1)求曲线1C 的普通方程和线段AB 的长度;(2)设点P 是曲线3C 上的一个动点,求PAB △的面积的最小值.9.(2022·全国·模拟预测(理))在直角坐标系xOy中,曲线1C的参数方程是11cos221sin2xyϕϕ⎧=+⎪⎪⎨⎪=⎪⎩(ϕ为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线2C的极坐标方程为1()ρθρ=∈R.(1)求曲线1C和曲线2C除极点外的交点的极坐标(02π)θ≤<;(2)若A,B分别为曲线1C和2C上的异于极点O的两点,且OA OB⊥,求OAB面积的最大值.10.(2022·吉林市教育学院模拟预测(理))以等边三角形的每个顶点为圆心,以其边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形被称为勒洛三角形,如图,在极坐标系Ox中,曲边三角形OPQ为勒洛三角形,且π2,6P⎛⎫-⎪⎝⎭,π2,6Q⎛⎫⎪⎝⎭,以极点O为直角坐标原点,极轴Ox为x轴正半轴建立平面直角坐标系xOy,曲线1C的参数方程为2112x ty t⎧=⎪⎪⎨⎪=-+⎪⎩(t为参数).(1)求 PQ的极坐标方程和OQ所在圆2C的直角坐标方程;(2)已知点M的直角坐标为()0,1-,曲线1C和圆2C相交于A,B两点,求11||||MA MB-.1.(2022·四川成都·模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数,α为常数且2πα≠),在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为:22sin 40ρρθ--=.(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)点(1,1)P ,直线l 与曲线C 交于,A B 两点,若2PA PB =,求直线l 的斜率.【答案】(1)tan (1)1y x α=⋅-+;22240x y y +--=(2)±1【解析】【分析】(1)消参可以把参数方程转化为普通方程,根据极坐标和直角坐标的转化,可将极坐标方程化成直角坐标方程.(2)根据直线的标准参数方程的几何意义以及韦达定理即可求解2cos 2α=±,进而可求tan α.(1)1cos 1sin x t y t αα=+⎧⎨=+⎩()tan 11y x α⇒=⋅-+,2222sin 40240x y y ρρθ--=⇒+--=;(2)将1cos 1sin x t y t αα=+⎧⎨=+⎩代入22240x y y +--=得22cos 40t t α+-=,12122cos 4t t t t α+=-⎧⎨=-⎩,因为点P 在圆内,故,A B 在点P 两侧,由题意知,122t t =-,因此122152t t t t +=-,即21212()12t t t t +=-,故2(2cos )142α-=--,解得2cos 2α=,进而tan 1k α==±因此斜率为±1.2.(2022·河南安阳·模拟预测(文))在直角坐标系xOy 中,1C 的圆心为()11,1C ,半径为2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,2C 的极坐标方程为2ρθ=.(1)求1C 的极坐标方程,判断1C ,2C 的位置关系;(2)求经过曲线1C ,2C 交点的直线的斜率.【答案】(1)2cos 2sin r q q =+,1C ,2C 相交21【解析】【分析】(1)先求解1C 的标准方程,再根据直角坐标与极坐标的转换求解1C 的极坐标方程,再根据2C 的直角坐标方程,分析1C ,2C 圆心之间的距离与半径之和差的关系判断即可;(2)根据1C ,2C 均过极点,联立极坐标方程,求解tan θ即可(1)由题意,1C 的标准方程为()()22112x y -+-=,即22220x y x y +--=,故1C 的极坐标方程为22cos 2sin =+ρρθρθ,即2cos 2sin r q q =+,又,2C 的极坐标方程为222cos ρθ=,即2222x y +=,(2222x y +=.因为()()22122110422C C -+-=-1C ,2C 半径相等,半径和为22124224222C C =-=<1C ,2C 相交.故1C 的极坐标方程2cos 2sin r q q =+,1C ,2C 相交.(2)由(1)1C :2cos 2sin r q q =+,2C :22ρθ=均经过极点且相交,联立2cos 2sin 22ρθθρθ=+⎧⎪⎨=⎪⎩有2cos 2sin 22θθθ+=,显然cos 0θ≠,故22tan 22θ+=,即tan 21θ=,即经过曲线1C ,2C 213.(2023·四川·成都七中模拟预测(理))在直角坐标系xOy 中,倾斜角为α的直线l 的参数方程为:2cos 3sin x t y t αα=+⎧⎪⎨=⎪⎩,(t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为22cos 8ρρθ=+.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A B ,两点,且42AB =,求直线l 的倾斜角.【答案】(1)当π2α=时,直线l 的普通方程为2x =;当π2α≠时,直线l 的普通方程为()3tan 2y x α=-;22280x y x +--=(2)π6或π2【解析】【分析】(1)因为直线l 的参数方程为2cos 3sin x t y t αα=+⎧⎪⎨=+⎪⎩(t 为参数),讨论π2α=和π2α≠时,消去参数t ,即可求出直线l 的普通方程,因为222x y ρ=+,cos x ρθ=即可求出曲线C 的直角坐标方程.(2)将直线l 的参数方程代入曲线C 的方程整理,()2232cos 50t t αα++-=.因为0∆>,可设该方程的两个根为2,l t t ,所以()2121224l AB t t t t t t =-=+-线l 的倾斜角.(1)因为直线l 的参数方程为2cos 3sin x t y t αα=+⎧⎪⎨=+⎪⎩(t 为参数),当π2α=时,直线l 的普通方程为2x =.当π2α≠时,直线l 的普通方程为()3tan 2y x α=-.因为222x y ρ=+,cos x ρθ=,因为22cos 8ρρθ=+,所以2228x y x +=+.所以C 的直角坐标方程为22280x y x +--=.(2)曲线C 的直角坐标方程为22280x y x +--=,将直线l 的参数方程代入曲线C 的方程整理,得()2232cos 50t t αα++-=.因为()2232cos 200αα∆=++>,可设该方程的两个根为2,l t t ,则()2232cos l t t αα+=-+,25l t t =-.所以()2121224l AB t t t t t t =-=+-()2[23sin 2cos ]2042αα=-++=整理得()23cos 3αα+=,故π2sin 36α⎛⎫+=± ⎪⎝⎭因为0πα≤<,所以ππ63α+=或π2π63α+=,解得或π6α=或π2α=,综上所述,直线l 的倾斜角为π6或π2.4.(2022·青海·海东市第一中学模拟预测(理))在直角坐标系xOy 中,已知曲线1C 的参数方程为3x ty t ⎧=-⎪⎨=⎪⎩(t 为参数).曲线2C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线1C ,2C 的极坐标方程;(2)若曲线1C ,2C 的交点为A ,B ,已知)3,1P-,求PA PB ⋅.【答案】(1)1:C πsin 06ρθ⎛⎫+= ⎪⎝⎭(或5π6θ=,R ρ∈),2:C ρ=4.(2)12【解析】【分析】(1)利用消参法进行化简曲线方程,然后通过公式将曲线的普通方程转化成极坐标方程;(2)利用直线的极坐标方程,结合参数的几何意义,联立曲线普通方程进行计算即可.(1)由曲线13:x tC y t ⎧=⎪⎨=⎪⎩(t 为参数),消去参数t 得30x =,化成极坐标方程得cos 3sin 0ρθρθ=.化简极坐标方程为πsin 06ρθ⎛⎫+= ⎪⎝⎭(或5π6θ=,R ρ∈).曲线24cos :4sin x C y θθ=⎧⎨=⎩(θ为参数)消去参数θ得2216x y +=.化简极坐标方程为ρ=4.(2)由已知得P 在曲线1C 上,将曲线1C 化为标准参数方程332112x y t ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数)代入2C 的直角坐标方程2216x y +=,得2231311622t ⎫⎛⎫+-+=⎪ ⎪⎪⎝⎭⎭,即24120t t --=,即A ,B 所对应的参数分别为1t ,2t ,所以121212PA PB t t t t ⋅===.5.(2022·内蒙古·海拉尔第二中学模拟预测(文))在平面直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t y t αα=-+⎧⎨=+⎩(其中α为直线的倾斜角,t 为参数),在以为O 极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为2sin 4cos 0.ρθθ-=(1)当直线l 的斜率k =2时,求曲线C 上的点A 与直线l 上的点B 间的最小距离;(2)如果直线l 与曲线C 有两个不同交点,求直线l 的斜率k 的取值范围.【答案】52(2)5151(,0))22⋃【解析】【分析】(1)利用极坐标与平面直角坐标互化公式得到曲线C 的平面直角坐标方程为24y x =,设出曲线上点()2,A s s ±,求出直线方程230x y -+=,利用点到直线距离公式,得到曲线C 上的点A 与直线l 上的点B 间的最小距离;(2)直线l 的普通方程为:()11y k x -=+,与曲线C :24y x =联立消去x 后用根的判别式得到不等式,求出斜率k 的取值范围.(1)2sin 4cos 0ρθθ-=两边同乘以ρ得:22sin 4cos 0ρθ-ρθ=,所以曲线C 的平面直角坐标方程为24y x =,设曲线上的一点坐标为()2,2A s s ±,当直线l 的斜率k =2时,直线方程为()121y x -=+,即230x y -+=,则A 点到直线距离为2215222223415s s s d ⎛⎫±+⎪±+⎝⎭==+当12s =±时,d 52,故曲线C 上的点A 与直线l 上的点B 52;(2)直线l 的普通方程为:()()110y k x k -=+≠,与曲线C :24y x =联立得:24440y y k k-++=,由0∆>得:1152k +>1152k -解得:5151()22k ---∈⋃6.(2022·全国·模拟预测(文))在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 36πρθ⎛⎫-= ⎪⎝⎭,圆C 的极坐标方程为2sin ρθ=.(1)求C 的参数方程;(2)判断l 与C 的位置关系.【答案】(1)cos 1sin x y θθ=⎧⎨=+⎩(θ为参数)(2)直线l 与圆C 相切.【解析】【分析】(1)先将圆C 的极坐标方程转化为直角坐标方程,求出圆心及半径,再转化为参数方程即可;(2)将直线l 的极坐标方程转化为直角坐标方程,利用圆心到直线的距离判断直线l 与圆C 的位置关系即可.(1)解:因为圆C 的极坐标方程为2sin ρθ=,则22sin ρρθ=,则其直角坐标方程为222x y y +=,即22(1)1y x +-=,圆心为(0,1),半径为1,则圆C 的参数方程为cos 1sin x y θθ=⎧⎨=+⎩(θ为参数).(2)解:因为直线l 的极坐标方程为2cos 36πρθ⎛⎫-= ⎪⎝⎭,则2cos cos sin sin 3066ππρθθ⎛⎫+-= ⎪⎝⎭3cos sin 30ρθρθ+-=,所以直线l 330x y +-=,由(1)得圆C 的直角坐标方程为22(1)1y x +-=,圆心为(0,1),半径为1,则圆心(0,1)到直线l 22301131(3)1⨯+⨯-=+,故直线l 与圆C 相切.7.(2022·河南·开封市东信学校模拟预测(理))在平面直角坐标系xOy 中,曲线C 的参数方程为2,2x t y t =⎧⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 20ρθρθ+-=.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)若直线l 与曲线C 交于P ,Q 两点,且点(0,2)M ,求11||||MP MQ +的值.【答案】(1)曲线2:2C y x =;直线:20+-=l x y (2)344【解析】【分析】(1)消去参数t 即可得C 的普通方程,并用极坐标与直角坐标互化即可得直线的普通方程;(2)写出直线l 参数方程的标准形式,再与C 的普通方程联立,借助参数的几何意义得解.(1)曲线C 的参数方程为2,2x t y t=⎧⎨=⎩(t 为参数),转化为直角坐标方程为22y x =,可得22y x =;直线l 的极坐标方程为cos sin 20ρθρθ+-=,转化为直角坐标方程为20x y +-=;(2)把直线l 的方程换成参数方程,得2,2222x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),代入22y x =.得22202t t --=,∴12122,22t t t t +==-,显然12,t t 异号.由22111211||,||22MP t t t MQ t =+==,∴()212121212121212121841111342||||24t t t t t t t t MP MQ t t t t t t t t ++-+-+=+=====.8.(2022·四川·成都市锦江区嘉祥外国语高级中学模拟预测(理))在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系(取相同的单位长度),曲线1C 的极坐标方程为4cos ρθ=,曲线2C 的参数方程为222222x y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数),曲线1C ,2C 相交于A 、B 两点,曲线3C 经过伸缩变换22x x y y ='+='⎧⎨⎩后得到曲线1C .(1)求曲线1C 的普通方程和线段AB 的长度;(2)设点P 是曲线3C 上的一个动点,求PAB △的面积的最小值.【答案】(1)22(2)4x y -+=,22AB =(2)45【解析】【分析】(1)利用极坐标与直角坐标的互化公式可求出1C 的普通方程,求出2C 的普通方程,然后求出圆心到直线的距离,再由圆心距,弦和半径的关系可求出AB 的长度,(2)由伸缩变换可求出曲线3C 的方程为2214xy +=,设点()2cos ,sin P ϕϕ,求出点P 到直线AB 的距离,化简后利用三角函数的性质可求出其最小值,从而可求出PAB △的面积的最小值(1)由4cos ρθ=,得24cos ρρθ=,又222x y ρ=+,cos x ρθ=,所以22(2)4x y -+=.由22222x y ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数),消去参数得4x y -=,1C 的圆心为(2,0),半径为2,则圆心到直线4x y -=的距离为2422d -==,所以()2222222AB =-=(2)曲线3C 经过伸缩变换22x x y y ='+='⎧⎨⎩后得到曲线1C ,则()()222224+-+=x y ,即曲线3C 的方程为2214x y +=,设点()2cos ,sin P ϕϕ,则点P 到直线AB 的距离为2555cos sin 4552cos sin 422d ϕϕϕϕ⎛⎫-- ⎪--⎝⎭==()5sin 4522αϕ--==25sin 5α=,5cos 5α=),故当()sin 1αϕ-=时,d 取得最小值,且min 52d =,因此,当点P 到直线AB 的距离最小时,PAB △的面积也最小,所以PAB △的面积的最小值为min 1152245222AB d ⋅⋅=⨯=.9.(2022·全国·模拟预测(理))在直角坐标系xOy 中,曲线1C 的参数方程是11cos 221sin 2x y ϕϕ⎧=+⎪⎪⎨⎪=⎪⎩(ϕ为参数).以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为13sin ()ρθρ=+∈R .(1)求曲线1C 和曲线2C 除极点外的交点的极坐标(02π)θ≤<;(2)若A ,B 分别为曲线1C 和2C 上的异于极点O 的两点,且OA OB ⊥,求OAB 面积的最大值.【答案】(1)()1,0,14π,23⎛⎫- ⎪⎝⎭31【解析】【分析】(1)求出曲线1C 的普通方程,进而求出极坐标方程,与2C 的极坐标方程联立,求出曲线1C 和曲线2C 除极点外的交点的极坐标;(2)设出,A B 两点的极坐标方程,表达出OAB 的面积,利用三角函数的有界性求出最大值.(1)曲线1C 的普通方程为221124x y ⎛⎫-+= ⎪⎝⎭,化为极坐标方程为:()2211cos sin 24ρθρθ⎛⎫-+= ⎪⎝⎭,化简得到:cos ρθ=,与13sin ()ρθρ=+∈R 联立,得:cos 13θθ=,即π1cos 32θ⎛⎫+= ⎪⎝⎭,因为02πθ≤<,所以ππ7π333θ≤+<,所以π5π33θ+=,或ππ33θ+=,解得:14π3θ=或20θ=,当4π3θ=时,此时4π1cos 32ρ==-,当0θ=时,此时cos01ρ==所以曲线1C 和曲线2C 除极点外的交点的极坐标为()1,0与14π,23⎛⎫- ⎪⎝⎭;(2)因为OA OB ⊥,①设()ππcos ,,13,22A B αααα⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,则()2πcos 13cos 133cos 2OAB S αααααα⎛⎫⎛⎫=⋅+=⋅=+ ⎪ ⎪⎝⎭⎝⎭ 2333cos 612α=⎭因为[]cos 1,1α∈-,所以当cos 1α=时,OAB 31+;②设()ππcos ,,13,22A B αααα⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,则()2πcos 13cos 133cos 2OAB S αααααα⎛⎫⎛⎫=⋅-=⋅=-+ ⎪ ⎪⎝⎭⎝⎭ 2333cos 612α⎫=-+⎪⎪⎭,因为[]cos 1,1α∈-,所以当3cos 6α=时,OAB 面积取得最大值,最大值为312;33112>OAB 31.10.(2022·吉林市教育学院模拟预测(理))以等边三角形的每个顶点为圆心,以其边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形被称为勒洛三角形,如图,在极坐标系Ox 中,曲边三角形OPQ 为勒洛三角形,且π2,6P ⎛⎫- ⎪⎝⎭,π2,6Q ⎛⎫⎪⎝⎭,以极点O 为直角坐标原点,极轴Ox 为x 轴正半轴建立平面直角坐标系xOy ,曲线1C 的参数方程为32112x t y t⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数).(1)求 PQ的极坐标方程和 OQ 所在圆2C 的直角坐标方程;(2)已知点M 的直角坐标为()0,1-,曲线1C 和圆2C 相交于A ,B 两点,求11||||MA MB -.【答案】(1)ππ2,,66ρθ⎛⎫=∈- ⎪⎝⎭;222:(3)(1)4++=C x y (2)3【解析】【分析】(1)由已知,可根据题意直接写出 PQ 的极坐标方程,并标注范围,然后求解出点P 的直角坐标,写出 OQ所在圆的直角坐标方程即可;(2)由已知,设A ,B 对应的参数分别为12,t t ,将曲线1C 的参数方程带入圆2C ,并根据根与系数关系,求解11||||MA MB -即可.(1)因为π2,6P ⎛⎫- ⎪⎝⎭,π2,6Q ⎛⎫ ⎪⎝⎭,所以 PQ 的极坐标方程:ππ2,,66ρθ⎛⎫=∈- ⎪⎝⎭,因为点P 的直角坐标是(3,1)-,所以 OQ所在圆的直角坐标方程为222:(3)(1)4++=C x y .(注: PQ的极坐标方程不标明θ的取值范围或写错扣1分)(2)设A ,B 对应的参数分别为12,t t ,将32112x y t ⎧=⎪⎪⎨⎪=-+⎪⎩代入22(3)(1)4x y ++=得:2310,0--=∆>t t 所以12123,1+==-t t t t 因为120t t <,由t 的几何意义得:121212121111113||||+-=-=+==t tMA MB t t t t t t。

坐标系与参数方程高考综合试题(含答案)

坐标系与参数方程高考综合试题(含答案)

坐标系与参数方程1.【全国I 卷2019届高三五省优创名校联考数学】在直角坐标系xOy 中,直线l的参数方程为22x m t y t ⎧⎪=+⎨=⎪⎪⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,椭圆C 的极坐标方程为2222cos 3sin 48ρθρθ+=,其左焦点F 在直线l 上.(1)若直线l 与椭圆C 交于A B ,两点,求FA FB +的值; (2)求椭圆C 的内接矩形面积的最大值. 【答案】(1)2)【解析】(1)将cos sin x y ρθρθ=⎧⎨=⎩代入ρ2cos 2θ+3ρ2sin 2θ=48,得x 2+3y 2=48,即2214816x y +=, 因为c 2=48-16=32,所以F的坐标为(-0), 又因为F 在直线l上,所以m =-把直线l的参数方程22x y =-=⎧⎪⎪⎨⎪⎪⎩代入x 2+3y 2=48,化简得t 2-4t -8=0,所以t 1+t 2=4,t 1t 2=-8,所以12FA FB t t +=-===(2)由椭圆C 的方程2214816x y +=,可设椭圆C 上在第一象限内的任意一点M 的坐标为(θ,4sin θ)(π02θ<<),所以内接矩形的面积8sin 2S θθθ=⋅=, 当π4θ=时,面积S取得最大值【名师点睛】直角坐标方程转为极坐标方程的关键是利用公式cos sin x y ρθρθ=⎧⎨=⎩,而极坐标方程转化为直角坐标方程的关键是利用公式222tan x y yx ρθ⎧=+⎪⎨=⎪⎩,后者也可以把极坐标方程变形,尽量产生2cos ρρθ,,sin ρθ以便转化.另一方面,当动点在圆锥曲线运动变化时,我们可以用一个参数θ来表示动点坐标,从而利用一元函数求与动点有关的最值问题.2.【河北衡水金卷2019届高三12月第三次联合质量测评数学】在直角坐标系中,直线l 的参数方程为1cos ,1sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0πα<<),以坐标原点为极点,x 轴正半轴为极轴,取相同的长度单位建立极坐标系,曲线C 的极坐标方程为2241sin ρθ=+.(1)当π6a =时,写出直线l 的普通方程及曲线C 的直角坐标方程; (2)已知点()11P -,,设直线l 与曲线C 交于A ,B 两点,试确定PA PB ⋅的取值范围.【答案】(1)2210142x y x ++=+=,;(2)112⎡⎫⎪⎢⎣⎭,【解析】(1)当π6a =时,直线l的参数方程为π1cos ,162π11sin 162x t x y t y t ⎧⎧=-+=-+⎪⎪⎪⎪⇒⎨⎨⎪⎪=+=+⎪⎪⎩⎩,. 消去参数t得10x ++=. 由曲线C 的极坐标方程为2241sin ρθ=+,得()22sin 4ρρθ+=, 将222x y ρ+=,及sin y ρθ=代入得2224x y +=,即22142x y +=; (2)由直线l 的参数方程为1cos ,1sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0πα<<),可知直线l 是过点P (–1,1)且倾斜角为α的直线,又由(1)知曲线C 为椭圆22142x y +=,所以易知点P (–1,1)在椭圆C 内,将1cos , 1sin x t y t αα=-+⎧⎨=+⎩代入22142x y +=中,整理得 ()()221sin 22sin c s 10to t ααα++--=,设A ,B 两点对应的参数分别为12t t ,, 则12211sin t t α⋅=-+,所以12211sin PA PB t t α⋅==+, 因为0πα<<,所以(]2sin 01α∈,,所以1221111sin 2PA PB t t α⎡⎫⋅==∈⎪⎢+⎣⎭,,所以PA PB ⋅的取值范围为112⎡⎫⎪⎢⎣⎭,.【名师点睛】利用直线参数方程中参数的几何意义求解问题.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为00cos sin x x t y y t θθ=+⎧⎨=+⎩(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为12t t ,,线段AB 的中点为M ,点M 所对应的参数为0t ,则以下结论在解题中经常用到:(1)1202t t t +=;(2)1202t t PM t +==;(3)21AB t t =-;(4)12··PA PB t t =. 3.【河南省信阳高级中学2018–2019学年高二上学期期中考试数学】在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2sin 2cos 0a a ρθθ=+>();直线l的参数方程为222x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).直线l 与曲线C 分别交于M N ,两点. (1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若点P 的极坐标为()2πPM PN +=,,a 的值.【答案】(1)曲线C 的直角坐标方程为:()()22211x a y a -+-=+,直线l 的普通方程为2y x =+.(2)2a =.【解析】(1)由()2sin 2cos 0a a ρθθ=+>,得()22sin 2cos 0a a ρρθρθ=+>,所以曲线C 的直角坐标方程为2222x y y ax +=+,即()()22211x a y a -+-=+,直线l 的普通方程为2y x =+.(2)将直线l的参数方程2,2x y ⎧=-+⎪⎪⎨⎪=⎪⎩代入2222x y y ax +=+并化简、整理,得()2440t t a -++=.因为直线l 与曲线C 交于M N ,两点.所以()()2Δ4440a =-+>,解得1a ≠.由根与系数的关系,得121244t t t t a +==+,.因为点P 的直角坐标为()20-,,在直线l上.所以12PM PN t t +=+==, 解得2a =,此时满足0a >.且1a ≠,故2a =.【名师点睛】参数方程主要通过代入法或者已知恒等式(如22cos sin 1αα+=等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式222tan cos ,sin x y x y xy ρρθρθθ=⎧+==⎧⎪⎨⎨=⎩⎪⎩等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.4.【河南省豫南九校(中原名校)2017届高三下学期质量考评八数学】己知直线l 的参数方程为132x ty t=+⎧⎨=+⎩(t 为参数),曲线C 的极坐标方程为2sin 16cos 0ρθθ-=,直线l 与曲线C 交于A 、B 两点,点13P (,). (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求11PA PB+的值. 【答案】(1)21y x =+,216y x =;(2【解析】(1)直线l 的参数方程为132x ty t=+⎧⎨=+⎩(t 为参数),消去参数,可得直线l 的普通方程21y x =+,曲线C 的极坐标方程为2sin 16cos 0ρθθ-=,即22sin 16cos 0ρθρθ-=,曲线C 的直角坐标方程为216y x =,(2)直线的参数方程改写为1535x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),代入2212124351670554y x t t t t t =--=+==-,,,121211t t PA PB t t -+==. 【名师点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ⎧=⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.5.【河南省开封市2019届高三上学期第一次模拟考试数学】在直角坐标系xOy 中,直线l 的参数方程是1x t y t ==+⎧⎨⎩(t 为参数),曲线C 的参数方程是22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程; (2)已知射线1OP θα=:(其中π02α<<)与曲线C 交于O P ,两点,射线2π2OQ θα=+:与直线l 交于Q 点,若OPQ ∆的面积为1,求α的值和弦长OP . 【答案】(1)cos sin 10ρθρθ-+=,4cos ρθ=;(2)π4OP α==, 【解析】(1)直线l 的普通方程为10x y -+=,极坐标方程为cos sin 10ρθρθ-+=,曲线C 的普通方程为2224x y -+=(),极坐标方程为4cos ρθ=.(2)依题意,∵π02α∈(,),∴4cos OP α=, 1ππsin cos 22OQ αα=+-+()()1sin cos αα=+,12cos 12cos sin OPQ S OP OQ ααα===+△, ∴πtan 102αα=∈,(,),∴π4OP α==,【名师点睛】本题考查的知识要点:三角函数关系式的恒等变变换,参数方程直角坐标方程和极坐标方程之间的转换,三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型. 6.【四川省成都市第七中学2019届高三一诊模拟考试数学】在平面直角坐标系xOy 中,曲线C 的参数标方程为e e e et tt tx y --⎧=+⎪⎨=-⎪⎩(其中t 为参数),在以O 为极点、x 轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线l的极坐标方程为πsin 3ρθ⎛⎫-= ⎪⎝⎭(1)求曲线C 的极坐标方程;(2)求直线l 与曲线C 的公共点P 的极坐标. 【答案】(1)2ππcos2444ρθθ⎛⎫=-<< ⎪⎝⎭(2)π6⎛⎫ ⎪⎝⎭,【解析】(1)消去参数t ,得曲线C 的直角坐标方程()2242x y x -=≥.将cos sin x y ρθρθ==,代入224x y -=,得()222cos sin 4ρθθ-=.所以曲线C 的极坐标方程为2ππcos2444ρθθ⎛⎫=-<< ⎪⎝⎭.(2)将l 与C 的极坐标方程联立,消去ρ得2π4sin 2cos23θθ⎛⎫-=⎪⎝⎭.展开得()22223cos cos sin 2cos sin θθθθθθ-+=-.因为cos 0θ≠,所以23tan 10θθ-+=.于是方程的解为tan θ=,即π6θ=.代入πsin 3ρθ⎛⎫-=⎪⎝⎭ρ=P 的极坐标为π6⎛⎫ ⎪⎝⎭,.【名师点睛】本题考查曲线的极坐标方程与普通方程的互化,直线的极坐标方程与曲线极坐标方程联立求交点的问题,考查计算能力.7.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)数学】在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,已知直线l 的参数方程为22x ty t =⎧⎨=+⎩(t 为参数),曲线C 的极坐标方程为2cos 8sin ρθθ=.(1)求曲线C 的直角坐标方程,并指出该曲线是什么曲线; (2)若直线l 与曲线C 的交点分别为M ,N ,求MN .【答案】(1)曲线C 方程为28x y =,表示焦点坐标为()0,2,对称轴为y 轴的抛物线;(2)10. 【解析】(1)因为2cos 8sin ρθθ=,所以22cos 8sin ρθρθ=,即28x y =,所以曲线C 表示焦点坐标为()0,2,对称轴为y 轴的抛物线. (2)设点()11,M x y ,点()22,N x y直线l 过抛物线的焦点()0,2,则直线参数方程为22x t y t =⎧⎨=+⎩化为一般方程为122y x =+,代入曲线C 的直角坐标方程,得24160x x --=, 所以12124,16x x x x +==-所以MN ===10==.【名师点睛】本题考查极坐标方程化直角坐标方程,直线的参数方程化一般方程,弦长公式等,属于简单题.8.【河北省石家庄市2018届高中毕业班模拟考试(二)数学】在平面直角坐标系xOy 中,曲线1C 的方程为224x y +=,直线l的参数方程2x ty =--⎧⎪⎨=⎪⎩(t 为参数),若将曲线1C 上的点的横坐标不变,纵坐标变为原来的32倍,得曲线2C . (1)写出曲线2C 的参数方程;(2)设点2P -(,直线l 与曲线2C 的两个交点分别为A B ,,求11PA PB+的值. 【答案】(1)2cos 3sin x y θθ=⎧⎨=⎩(θ为参数);(2)12【解析】(1)若将曲线1C 上的点的纵坐标变为原来的32, 则曲线2C 的直角坐标方程为22243x y +=(),整理得22149x y +=, ∴曲线2C 的参数方程2cos 3sin x y θθ=⎧⎨=⎩(θ为参数).(2)将直线的参数方程化为标准形式为122333x t y t ''⎧=--⎪⎪⎨⎪=+⎪⎩(t '为参数),将参数方程带入22149x y +=得221(2))22149t --'+=' 整理得27183604t t ''++=().12127214477PA PB t t PA PB t t ''''+=+===,, 72111714427PA PB PA PB PA PB++===.【名师点睛】本题考查了参数方程与普通方程的互化,及直线的参数方程的应用,重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用直线参数的几何意义求解.要结合题目本身特点,确定选择何种方程.。

高考数学真题——坐标系与参数方程

高考数学真题——坐标系与参数方程

2018年数学全国1卷在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.【解析】(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.学#科网当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23y x =-+.2017年数学全国1卷在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la.(1)曲线C 的普通方程为2219x y +=.当1a =-时,直线l 的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩. 从而C 与l 的交点坐标为(3,0),2124(,)2525-.(2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为d =.当4a ≥-时,d=,所以8a =; 当4a <-时,d.=,所以16a =-.综上,8a =或16a =-.、2016年数学全国1卷在直角坐标系xOy 中,曲线C 1的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .【答案】(I )圆,222sin 10a ρρθ-+-=;(II )1 【解析】试题分析:(Ⅰ)把cos 1sin x a t y a t =⎧⎨=+⎩化为直角坐标方程,再化为极坐标方程;(Ⅱ)联立极坐标方程进行求解.试题解析:解:(Ⅰ)消去参数t 得到1C 的普通方程222)1(a y x =-+.1C 是以)1,0(为圆心,a 为半径的圆.将θρθρsin ,cos ==y x 代入1C 的普通方程中,得到1C 的极坐标方程为01sin 222=-+-a θρρ.(Ⅱ)曲线21,C C 的公共点的极坐标满足方程组⎩⎨⎧==-+-,cos 4,01sin 222θρθρρa 若0≠ρ,由方程组得01cos sin 8cos 1622=-+-a θθθ,由已知2tan =θ,可得0cos sin 8cos162=-θθθ,从而012=-a ,解得1-=a (舍去),1=a .1=a 时,极点也为21,C C 的公共点,在3C 上.所以1=a .2013年数学全国1卷已知曲线C 1的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为。

2014-2017高考真题选修4-4坐标系与参数方程

2014-2017高考真题选修4-4坐标系与参数方程

2014-2017⾼考真题选修4-4坐标系与参数⽅程选修4-4 坐标系与参数⽅程考点坐标系与参数⽅程1.(2014·安徽,4)以平⾯直⾓坐标系的原点为极点,x 轴的正半轴为极轴,建⽴极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数⽅程是?x =t +1,y =t -3(t 为参数),圆C 的极坐标⽅程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( ) A.14 B.214 C. 2 D.2 21.D [由?x =t +1,y =t -3消去t 得x -y -4=0,C :ρ=4cos θ?ρ2=4ρcos θ,∴C :x 2+y 2=4x ,即(x -2)2+y 2=4,∴C (2,0),r =2. ∴点C 到直线l 的距离d =|2-0-4|2=2,∴所求弦长=2r 2-d 2=2 2.故选D.]2.(2014·北京,3)曲线x =-1+cos θ,y =2+sin θ(θ为参数)的对称中⼼( )A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上2.B [曲线?x =-1+cos θ,y =2+sin θ(θ为参数)的普通⽅程为(x +1)2+(y -2)2=1,该曲线为圆,圆⼼(-1,2)为曲线的对称中⼼,其在直线y =-2x 上,故选B.]3.(2014·江西,11(2))若以直⾓坐标系的原点为极点,x 轴的⾮负半轴为极轴建⽴极坐标系,则线段y =1-x (0≤x ≤1)的极坐标⽅程为( ) A.ρ=1cos θ+sin θ,0≤θ≤π2B.ρ=1cos θ+sin θ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2D.ρ=cos θ+sin θ,0≤θ≤π43.A [∵?x =ρcos θ,y =ρsin θ,∴y =1-x 化为极坐标⽅程为ρcos θ+ρsin θ=1,即ρ=1cos θ+sin θ.∵0≤x ≤1,∴线段在第⼀象限内(含端点),∴0≤θ≤π2.故选A.]4.(2017?北京,11)在极坐标系中,点A 在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P 的坐标为(1,0),则|AP|的最⼩值为________.4.1 设圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0为圆C ,将圆C 的极坐标⽅程化为:x 2+y 2﹣2x ﹣4y+4=0,再化为标准⽅程:(x ﹣1)2+(y ﹣2)2=1;如图,当A 在CP 与⊙C 的交点Q 处时,|AP|最⼩为: |AP|min =|CP|﹣r C =2﹣1=1,故答案为:1.5.(2017·天津,11)在极坐标系中,直线4ρcos (θ﹣)+1=0与圆ρ=2sinθ的公共点的个数为________.5.2 直线4ρcos (θ﹣)+1=0展开为:4ρ+1=0,化为:2x+2y+1=0.圆ρ=2sin θ即ρ2=2ρsin θ,化为直⾓坐标⽅程:x 2+y 2=2y ,配⽅为:x 2+(y ﹣1)2=1.∴圆⼼C (0,1)到直线的距离d= = <1=R .∴直线4ρcos (θ﹣)+1=0与圆ρ=2sin θ的公共点的个数为2.故答案为:2.6.(2016·北京,11)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,则|AB |=________.6.2 [直线的直⾓坐标⽅程为x -3y -1=0,圆的直⾓坐标⽅程为x 2+y 2=2x ,即(x -1)2+y 2=1.圆⼼坐标为(1,0),半径r =1.点(1,0)在直线x -3y -1=0上,所以|AB |=2r =2.]7.(2015·⼴东,14)已知直线l 的极坐标⽅程为2ρsin θ-π4=2,点A 的极坐标为A 22,7π4,则点A 到直线l 的距离为________. 7.522[依题已知直线l :2ρsin θ-π4=2和点A 22,7π4可化为l :x -y +1=0和A (2,-2),所以点A 到直线l 的距离为d =|2-(-2)+1|12+(-1)2=522.]8.(2015·北京,11)在极坐标系中,点2,π3到直线ρ(cos θ+3sin θ)=6的距离为________.8.1 [在平⾯直⾓坐标系下,点2,π3化为(1,3),直线⽅程为:x +3y =6,∴点(1,3)到直线的距离为d =|1+3×3-6|2=|-2|2=1.]9.(2015·安徽,12)在极坐标系中,圆ρ=8sin θ上的点到直线θ=π3(ρ∈R )距离的最⼤值是________.9.6 [由ρ=8sin θ得x 2+y 2=8y ,即x 2+(y -4)2=16,由θ=π3得y =3x ,即3x -y =0,∴圆⼼(0,4)到直线y =3x 的距离为2,圆ρ=8sin θ上的点到直线θ=π3的最⼤距离为4+2=6.]10.(2015·重庆,15)已知直线l 的参数⽅程为?x =-1+t ,y =1+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建⽴极坐标系,曲线C 的极坐标⽅程为ρ2cos 2θ=4ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.10.(2,π) [直线l 的直⾓坐标⽅程为y =x +2,由ρ2cos 2θ=4得ρ2(cos 2θ-sin 2θ)=4,直⾓坐标⽅程为x 2-y 2=4,把y =x +2代⼊双曲线⽅程解得x =-2,因此交点为(-2,0),其极坐标为(2,π).]11.(2017?新课标Ⅰ,22)在直⾓坐标系xOy 中,曲线C 的参数⽅程为(θ为参数),直线l 的参数⽅程为(t 为参数).(10分)(1)若a=﹣1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最⼤值为,求a .11.(1)解:曲线C 的参数⽅程为(θ为参数),化为标准⽅程是:+y 2=1;a=﹣1时,直线l 的参数⽅程化为⼀般⽅程是:x+4y ﹣3=0;联⽴⽅程,解得或,所以椭圆C 和直线l 的交点为(3,0)和(﹣,).(2)l的参数⽅程(t为参数)化为⼀般⽅程是:x+4y﹣a﹣4=0,椭圆C上的任⼀点P可以表⽰成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d= = ,φ满⾜tanφ= ,⼜d的最⼤值d max= ,所以|5sin(θ+φ)﹣a﹣4|的最⼤值为17,得:5﹣a﹣4=17或﹣5﹣a﹣4=﹣17,即a=﹣16或a=8.12.(2017?新课标Ⅱ,22)在直⾓坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建⽴极坐标系,曲线C1的极坐标⽅程为ρcosθ=4.(Ⅰ)M为曲线C1上的动点,点P在线段OM上,且满⾜|OM|?|OP|=16,求点P的轨迹C2的直⾓坐标⽅程;(Ⅱ)设点A的极坐标为(2,),点B在曲线C2上,求△OAB⾯积的最⼤值.12.解:(Ⅰ)曲线C1的直⾓坐标⽅程为:x=4,设P(x,y),M(4,y0),则,∴y0= ,∵|OM||OP|=16,∴=16,即(x2+y2)(1+ )=16,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直⾓坐标⽅程:(x﹣2)2+y2=4(x≠0).(Ⅱ)点A的直⾓坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆⼼(2,0)到弦OA的距离d= = ,∴△AOB的最⼤⾯积S= |OA|?(2+ )=2+ .13.(2017?新课标Ⅲ,22)在直⾓坐标系xOy中,直线l1的参数⽅程为,(t为参数),直线l2的参数⽅程为,(m为参数).设l1与l2的交点为P,当k变化时,P 的轨迹为曲线C .(Ⅰ)写出C 的普通⽅程;(Ⅱ)以坐标原点为极点,x 轴正半轴为极轴建⽴极坐标系,设l 3:ρ(cosθ+sinθ)﹣ =0,M 为l 3与C 的交点,求M 的极径.13.(Ⅰ)∵直线l 1的参数⽅程为,(t 为参数),∴消掉参数t 得:直线l 1的普通⽅程为:y=k (x ﹣2)①;⼜直线l 2的参数⽅程为,(m 为参数),同理可得,直线l 2的普通⽅程为:x=﹣2+ky ②;联⽴①②,消去k 得:x 2﹣y 2=4,即C 的普通⽅程为x 2﹣y 2=4;(Ⅱ)∵l 3的极坐标⽅程为ρ(cosθ+sinθ)﹣ =0,∴其普通⽅程为:x+y ﹣=0,联⽴得:,∴ρ2=x 2+y 2=+=5.∴l 3与C 的交点M 的极径为ρ=.14.(2017?江苏,21C )在平⾯直⾓坐标系xOy 中,已知直线l 的参数⽅程为(t为参数),曲线C 的参数⽅程为(s 为参数).设P 为曲线C 上的动点,求点P到直线l 的距离的最⼩值.14.直线l 的直⾓坐标⽅程为x ﹣2y+8=0,∴P 到直线l 的距离d= = ,∴当s= 时,d 取得最⼩值 = .15.(2016·全国Ⅰ,23)在直⾓坐标系xOy 中,曲线C 1的参数⽅程为?x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (1)说明C 1是哪⼀种曲线,并将C 1的⽅程化为极坐标⽅程;(2)直线C 3的极坐标⽅程为θ=α0,其中α0满⾜tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .15.解(1)消去参数t 得到C 1的普通⽅程x 2+(y -1)2=a 2,C 1是以(0,1)为圆⼼,a 为半径的圆. 将x =ρcos θ,y =ρsin θ代⼊C 1的普通⽅程中,得到C 1的极坐标⽅程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满⾜⽅程组?ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由⽅程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从⽽1-a 2=0,解得a =-1(舍去),a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上. 所以a =1.16.(2016·全国Ⅱ,23)在直⾓坐标系xOy 中,圆C 的⽅程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建⽴极坐标系,求C 的极坐标⽅程;(2)直线l 的参数⽅程是?x =t cos α,y =t sin α(t 为参数),l 与C 交于A 、B 两点,|AB |=10,求l 的斜率.16.解 (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标⽅程ρ2+12ρcos θ+11=0. (2)在(1)中建⽴的极坐标系中,直线l 的极坐标⽅程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标⽅程代⼊C 的极坐标⽅程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153.17.(2016·全国Ⅲ,23)在直⾓坐标系xOy 中,曲线C 1的参数⽅程为x =3cos α,y =sin α(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建⽴极坐标系,曲线C 2的极坐标⽅程为ρsinθ+π4=2 2. (1)写出C 1的普通⽅程和C 2的直⾓坐标系⽅程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最⼩值及此时P 的直⾓坐标. 17.解 (1)C 1的普通⽅程为x 23+y 2=1.C 2的直⾓坐标⽅程为x +y -4=0.(2)由题意,可设点P 的直⾓坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最⼩值即为P 到C 2距离d (α)的最⼩值,d (α)=|3cos α+sin α-4|2=2sin α+π3-2. 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最⼩值,最⼩值为2,此时P 的直⾓坐标为32,12.18.(2015·江苏,21)已知圆C 的极坐标⽅程为ρ2+22ρsin θ-π4-4=0,求圆C 的半径. 18.解以极坐标系的极点为平⾯直⾓坐标系的原点O ,以极轴为x 轴的正半轴,建⽴直⾓坐标系xOy .圆C 的极坐标⽅程为ρ2+22ρ??22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcos θ-4=0.则圆C 的直⾓坐标⽅程为x 2+y 2-2x +2y -4=0,即(x -1)2+(y +1)2=6,所以圆C 的半径为 6.19.(2015·新课标全国Ⅰ,23)在直⾓坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建⽴极坐标系. (1)求C 1,C 2的极坐标⽅程;(2)若直线C 3的极坐标⽅程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的⾯积.19.解 (1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标⽅程为ρcos θ=-2, C 2的极坐标⽅程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代⼊ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 为等腰直⾓三⾓形,所以△C 2MN 的⾯积为12.20.(2015·福建,21(2))在平⾯直⾓坐标系xOy 中,圆C 的参数⽅程为?x =1+3cos t ,y =-2+3sin t (t 为参数).在极坐标系(与平⾯直⾓坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴⾮负半轴为极轴)中,直线l 的⽅程为2ρsin θ-π4=m (m ∈R ). ①求圆C 的普通⽅程及直线l 的直⾓坐标⽅程;②设圆⼼C 到直线l 的距离等于2,求m 的值.20.解①消去参数t ,得到圆C 的普通⽅程为(x -1)2+(y +2)2=9. 由2ρsin θ-π4=m ,得ρsin θ-ρcos θ-m =0. 所以直线l 的直⾓坐标⽅程为x -y +m =0.②依题意,圆⼼C 到直线l 的距离等于2,即|1-(-2)+m |2=2,解得m =-3±2 2.21.(2015·湖南,16Ⅱ)已知直线l :x =5+32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建⽴极坐标系,曲线C 的极坐标⽅程为ρ=2cos θ.(1)将曲线C 的极坐标⽅程化为直⾓坐标⽅程;(2)设点M 的直⾓坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. 21.解 (1)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代⼊①即得曲线C 的直⾓坐标⽅程为x 2+y 2-2x =0.②(2)将x =5+32t ,y =3+12t代⼊②式,得t 2+53t +18=0.设这个⽅程的两个实根分别为t 1,t 2,则由参数t 的⼏何意义即知,|MA |·|MB |=|t 1t 2|=18.22.(2014·湖北,16)已知曲线C 1的参数⽅程是x =t ,y =3t3(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建⽴极坐标系,曲线C 2的极坐标⽅程是ρ=2.则C 1与C 2交点的直⾓坐标为________.22.(3,1) [曲线C 1为射线y =33x (x ≥0).曲线C 2为圆x 2+y 2=4.设P 为C 1与C 2的交点,如图,作PQ 垂直x 轴于点Q .因为tan ∠POQ =33,所以∠POQ =30°,⼜∵OP =2,所以C 1与C 2的交点P 的直⾓坐标为(3,1).]23.(2014·重庆,15)已知直线l 的参数⽅程为?x =2+t ,y =3+t (t 为参数),以坐标原点为极点,x轴的正半轴为极轴建⽴极坐标系,曲线C 的极坐标⽅程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.23.5 [直线l 的普通⽅程为y =x +1,曲线C 的直⾓坐标⽅程为y 2=4x ,故直线l 与曲线C 的交点坐标为(1,2).故该点的极径ρ=x 2+y 2= 5.]24.(2014·天津,13)在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三⾓形,则a 的值为________.24.3 [圆的直⾓坐标⽅程为x 2+y 2=4y ,直线的直⾓坐标⽅程为y =a ,因为△AOB 为等边三⾓形,则A (±a 3,a ),代⼊圆的⽅程得a 23+a 2=4a ,故a =3.]25.(2014·湖南,11)在平⾯直⾓坐标系中,倾斜⾓为π4的直线l 与曲线C :?x =2+cos α,y =1+sin α(α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建⽴极坐标系,则直线l 的极坐标⽅程是________.25.2·ρcos θ+π4=1 [曲线C 的普通⽅程为(x -2)2+(y -1)2=1,由直线l 与曲线C 相交所得的弦长|AB |=2知,AB 为圆的直径,故直线l 过圆⼼(2,1),注意到直线的倾斜⾓为π4,即斜率为1,从⽽直线l 的普通⽅程为y =x -1,从⽽其极坐标⽅程为ρsin θ=ρcos θ-1,即2·ρcos θ+π4=1.]26.(2014·⼴东,14)在极坐标系中,曲线C 1和C 2的⽅程分别为ρsin 2θ=cos θ和ρsin θ=1.以极点为平⾯直⾓坐标系的原点,极轴为x 轴的正半轴,建⽴平⾯直⾓坐标系,则曲线C 1和C 2交点的直⾓坐标为________.26.(1,1) [由ρsin 2θ=cos θ得ρ2sin 2θ=ρcos θ,其直⾓坐标⽅程为y 2=x ,ρsin θ=1的直⾓坐标⽅程为y =1,由?y 2=x ,y =1得C 1和C 2的交点为(1,1).]27.(2014·辽宁,23)将圆x 2+y 2=1上每⼀点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数⽅程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建⽴极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标⽅程. 27.解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得?x =x 1,y =2y 1,由x 21+y 21=1得x 2+y 22=1,即曲线C 的⽅程为x 2+y 24=1.故C 的参数⽅程为?x =cos t y =2sin t (t 为参数).(2)由x 2+y 24=1,2x +y -2=0解得:x =1,y =0或x =0,y =2. 不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为12,1,所求直线斜率为k =12,于是所求直线⽅程为y -1=12x -12,化为极坐标⽅程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.28.(2014·江苏,21C)在平⾯直⾓坐标系xOy 中,已知直线l 的参数⽅程为??x =1-22t ,y =2+22t (t为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长. 28.解将直线l 的参数⽅程x =1-22t ,y =2+22t 代⼊抛物线⽅程y 2=4x ,得2+22t 2=4?1-22t ,解得t 1=0,t 2=-8 2.所以|AB |=|t 1-t 2|=8 2.。

坐标系与参数方程高考真题训练-教师用卷

坐标系与参数方程高考真题训练-教师用卷

坐标系与参数方程历年真题1.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.【答案】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.【解析】分别化直线与椭圆的参数方程为普通方程,然后联立方程组,求出直线与椭圆的交点坐标,代入两点间的距离公式求得答案.本题考查直线与椭圆的参数方程,考查了参数方程化普通方程,考查直线与椭圆位置关系的应用,是基础题.2.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【答案】解:直线l的直角坐标方程为x-2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.【解析】求出直线l的直角坐标方程,代入距离公式化简得出距离d关于参数s的函数,从而得出最短距离.本题考查了参数方程的应用,属于基础题.3.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)-=0,M为l3与C的交点,求M的极径.【答案】解:(1)∵直线l1的参数方程为,(t为参数),∴消掉参数t得:直线l1的普通方程为:y=k(x-2)①;又直线l2的参数方程为,(m为参数),同理可得,直线l2的普通方程为:x=-2+ky②;联立①②,消去k得:x2-y2=4,即C的普通方程为x2-y2=4;(2)∵l3的极坐标方程为ρ(cosθ+sinθ)-=0,∴其普通方程为:x+y-=0,联立得:,∴ρ2=x2+y2=+=5.∴l3与C的交点M的极径为ρ=.【解析】解:(1)分别消掉参数t与m可得直线l1与直线l2的普通方程为y=k(x-2)①与x=-2+ky②;联立①②,消去k可得C的普通方程为x2-y2=4;(2)将l3的极坐标方程为ρ(cosθ+sinθ)-=0化为普通方程:x+y-=0,再与曲线C 的方程联立,可得,即可求得l3与C的交点M的极径为ρ=.本题考查参数方程与极坐标方程化普通方程,考查函数与方程思想与等价转化思想的运用,属于中档题.4.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【答案】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x-2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x-2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.【解析】(1)设P(x,y),利用相似得出M点坐标,根据|OM|•|OP|=16列方程化简即可;(2)求出曲线C2的圆心和半径,得出B到OA的最大距离,即可得出最大面积.本题考查了极坐标方程与直角坐标方程的转化,轨迹方程的求解,直线与圆的位置关系,属于中档题.5.在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【答案】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=-1时,直线l的参数方程化为一般方程是:x+4y-3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(-,).(2)l的参数方程(t为参数)化为一般方程是:x+4y-a-4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,又d的最大值d max=,所以|5sin(θ+φ)-a-4|的最大值为17,得:5-a-4=17或-5-a-4=-17,即a=-16或a=8.【解析】(1)将曲线C的参数方程化为标准方程,直线l的参数方程化为一般方程,联立两方程可以求得焦点坐标;(2)曲线C上的点可以表示成P(3cosθ,sinθ),θ∈[0,2π),运用点到直线距离公式可以表示出P到直线l的距离,再结合距离最大值为进行分析,可以求出a的值.本题主要考查曲线的参数方程、点到直线距离和三角函数的最值,难点在于如何根据曲线C上的点到直线l距离的最大值求出a.6.选修4-4:坐标系与参数方程在直角坐标系xOy中,以坐标原点为极点,x轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈ .求C的参数方程.设点D在C上,C在D处的切线与直线l:y =x +2垂直,根据(1)中你得到的参数方程,确定D的坐标.【答案】【小题1】.【小题2】点D 的直角坐标为,即【解析】【小题1】试题分析:C的普通方程为+y2=1 .可得C的参数方程为.【小题2】试题分析:设D(1+cos t ,sin t ).由(1)知C是以G(1,0)为圆心,1为半径的上半圆.因为C在点D处的切线与l垂直,所以直线GD与l的斜率相同,tan t =,t = .故点D 的直角坐标为,即 .7.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为ρ2cos2θ=1.求曲线C的直角坐标方程.求直线l被曲线C截得的弦长.【答案】【小题1】由ρ2cos 2θ=1得ρ2cos2θ-ρ2sin2θ=1,即有x2-y2=1,所以曲线C的直角坐标方程为x2-y2=1.【小题2】把代入x2-y2=1中,得(2+t)2-(t)2=1,即2t2-4t-3=0,所以t1+t2=2,t1·t2=-设直线l与曲线C的交点为A(x1,y1),B(x2,y2).所以直线l被曲线C截得的弦长为【解析】【小题1】略【小题2】略8.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【答案】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y-4=0,即有C2的直角坐标方程为直线x+y-4=0;(2)由题意可得当直线x+y-4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y-4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2-3=0,由直线与椭圆相切,可得△=36t2-16(3t2-3)=0,解得t=±2,显然t=-2时,|PQ|取得最小值,即有|PQ|==,此时4x2-12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).【解析】(1)运用两边平方和同角的平方关系,即可得到C1的普通方程,运用x=ρcosθ,y=ρsinθ,以及两角和的正弦公式,化简可得C2的直角坐标方程;(2)由题意可得当直线x+y-4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y-4=0平行的直线方程为x+y+t=0,代入椭圆方程,运用判别式为0,求得t,再由平行线的距离公式,可得|PQ|的最小值,解方程可得P的直角坐标.另外:设P(cosα,sinα),由点到直线的距离公式,结合辅助角公式和正弦函数的值域,即可得到所求最小值和P的坐标.本题考查参数方程和普通方程的互化、极坐标和直角坐标的互化,同时考查直线与椭圆的位置关系,主要是相切,考查化简整理的运算能力,属于中档题.9.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【答案】解:(Ⅰ)由,得,两式平方相加得,x2+(y-1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2-2y+1-a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2-2ρsinθ+1-a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x-2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①-②得:4x-2y+1-a2=0,即为C3 ,∴1-a2=0,∴a=1(a>0).【解析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1-a2=0,则a值可求.本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.10.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.【答案】解:直线l的参数方程为,化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2-10x+9=0,∴交点A(1,2),B(9,-6),∴|AB|==8.【解析】直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.11.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【答案】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x-2,代入②并整理得:2x+y-6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=-1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【解析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.12.将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.【答案】解:(Ⅰ)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(Ⅱ)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y-1=(x-),即x-2y+=0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα-2ρsinα+=0,即ρ=.【解析】(Ⅰ)在曲线C上任意取一点(x,y),再根据点(x,)在圆x2+y2=1上,求出C的方程,化为参数方程.(Ⅱ)解方程组求得P1、P2的坐标,可得线段P1P2的中点坐标.再根据与l垂直的直线的斜率为,用点斜式求得所求的直线的方程,再根据x=ρcosα、y=ρsinα 可得所求的直线的极坐标方程.本题主要考查求点的轨迹方程的方法,极坐标和直角坐标的互化,用点斜式求直线的方程,属于中档题.13.在直角坐标系xoy中,曲线C1:(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2cosθ.(Ⅰ)求C2与C3交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.【答案】解:(Ⅰ)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C1交点的直角坐标为(0,0),(,);(Ⅱ)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα-2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.【解析】(Ⅰ)将C2与C3转化为直角坐标方程,解方程组即可求出交点坐标;(Ⅱ)求出A,B的极坐标,利用距离公式进行求解.本题主要考查极坐标方程和参数方程的应用,考查学生的运算和转化能力.14.已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.【答案】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x-1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5-1)2+3-1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.【解析】(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.本题主要考查把极坐标方程化为直角坐标方程的方法,属于基础题.。

极坐标和参数方程-近三年高考真题汇编

极坐标和参数方程-近三年高考真题汇编

分类汇编:坐标系与参数方程2014年真题: 1.[2014·安徽卷] 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( )A.14 B .214C. 2 D .2 2 答案:D2.[2014·北京卷] 曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上答案:B 3.[2014·江西卷]若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A .ρ=1cos θ+sin θ,0≤θ≤π2B .ρ=1cos θ+sin θ,0≤θ≤π4C .ρ=cos θ+sin θ,0≤θ≤π2D .ρ=cos θ+sin θ,0≤θ≤π4答案:A4.[2014·重庆卷] 已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t (t 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.答案: 55.[2014·陕西卷]在极坐标系中,点⎝⎛⎭⎫2,π6到直线ρsin ⎝⎛⎭⎫θ-π6=1的距离是________.答案: 16.[2014·湖北卷]已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t 3(t 为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,则C 1与C 2交点的直角坐标为________.答案:()3,17.[2014·湖南卷] 在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.答案:ρcos θ-ρsin θ=1 8.[2014·广东卷] (坐标系与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为ρsin 2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2交点的直角坐标为________.答案:(1,1)9. [2014·福建卷] 已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数). (1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 解:(1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =≤4,解得-25≤a ≤2 5. 10.[2014·辽宁卷]将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1,由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1,即曲线C 的方程为x 2+y 24=1. 故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2. 不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线的斜率k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12, 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.11.[2014·新课标全国卷Ⅰ]已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离 d =55|4cos θ+3sin θ-6|, 则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.12.[2014·新课标全国卷Ⅱ]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1). 可得C 的参数方程为 ⎩⎪⎨⎪⎧x =1+cos t ,y =sin t ,(t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.13.[2014·浙江卷] (1)在极坐标系Ox 中,设集合A ={(ρ,θ)|0≤θ≤π4,0≤ρ≤cos θ},求集合A 所表示区域的面积;(2)在直角坐标系xOy 中,直线l :⎩⎨⎧x =-4+t cos π4,y =t sinπ4(t 为参数),曲线C :⎩⎪⎨⎪⎧x =a cos θ,y =2sin θ(θ为参数),其中a >0.若曲线C 上所有点均在直线l 的右下方,求a 的取值范围. 解:(1)在ρ=cos θ两边同乘ρ,得ρ2=ρcos θ.化成直角坐标方程,得x 2+y 2=x ,即⎝⎛⎭⎫x -122+y 2=14.所以集合A 所表示的区域为:由射线y =x (x ≥0),y =0(x ≥0),圆⎝⎛⎭⎫x -122+y 2=14所围成的区域,如图所示的阴影部分,所求面积为π16+18.(2)由题意知,直线l 因为曲线C 上所有点均在直线l 的右下方,故对θ∈R ,有a cos θ-2sin θ+4>0恒成立,即a 2+4cos(θ+φ)>-4⎝⎛⎭⎫其中tan φ=2a 恒成立, 所以a 2+4<4.又a >0,得0<a <2 3.2013年真题:一、选择题1 .(2013年安徽数学(理)试题)在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为( )A .=0()cos=2R θρρ∈和B .=()cos=22R πθρρ∈和C .=()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和【答案】B二、填空题 2 .(2013年天津数学(理))已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | = ______.【答案】3 .(2013年高考上海卷(理))在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________. 4 .(2013年高考北京卷(理))在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于_________.【答案】15 .(2013年重庆数学(理))在直角坐标系中,以原点为极点,轴的正半轴为极轴xOy O x建立极坐标系.若极坐标方程为的直线与曲线(为参数)相交于两点,则【答案】6 .(2013年广东省数学(理)卷)(坐标系与参数方程选讲选做题)已知曲线C 的参数方程为2cos 2sin x ty t ⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________.【答案】sin 4πρθ⎛⎫+= ⎪⎝⎭7 .(2013年高考陕西卷(理))C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为______ .【答案】R y x ∈⎩⎨⎧⋅==θθθθ,sin cos cos 28 .(2013年高考江西卷(理))(坐标系与参数方程选做题)设曲线C 的参数方程为2x ty t =⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c的极坐标方程为__________【答案】2cossin 0ρθθ-=9 .(2013年高考湖南卷(理))在平面直角坐标系xoy 中,若,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a 的值为________.cos 4ρθ=23x ty t⎧=⎪⎨=⎪⎩t ,A B ______AB =16x【答案】310.(2013年高考湖北卷(理))在直角坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b θθ=⎧⎨=⎩()0a b ϕ>>为参数,.在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为2sin 42m πρθ⎛⎫+= ⎪⎝⎭()m 为非零常数与b ρ=.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为___________.三、解答题11.(2013年新课标Ⅱ卷数学(理))已知动点都在曲线为参数上,对应参数分别为与,为的中点.(Ⅰ)求的轨迹的参数方程; (Ⅱ)将到坐标原点的距离表示为的函数,并判断的轨迹是否过坐标原点.【答案】12.(2013年辽宁数学(理))在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫==-= ⎪⎝⎭. (I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为()3312x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值.【答案】13.(2013年福建数学(理)坐标系与参数方程:在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知点A的极坐标为)4π,直线的极坐标方程为cos()4a πρθ-=,且点A 在直线上.(1)求a 的值及直线的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.【答案】解:(Ⅰ)由点)4A π在直线cos()4a πρθ-=上,可得a =所以直线的方程可化为cos sin 2ρθρθ+= 从而直线的直角坐标方程为20x y +-=(Ⅱ)由已知得圆C 的直角坐标方程为22(1)1x y -+= 所以圆心为(1,0),半径1r = [来源:学科网]以为圆心到直线的距离1d =<,所以直线与圆相交 14.(2013年江苏卷(数学))在平面直角坐标系xoy 中,直线l 的参数方程为⎩⎨⎧=+=ty t x 21(t 为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x (θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标.【答案】C 解:∵直线l 的参数方程为⎩⎨⎧=+=t y t x 21∴消去参数t 后得直线的普通方程为022=--y x ①同理得曲线C 的普通方程为x y 22= ②①②联立方程组解得它们公共点的坐标为)2,2(,)1,21(- [来源:学科网]15.(2013年高考新课标1(理)) 已知曲线C 1的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为.(Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).【答案】将消去参数,化为普通方程, [来源:学科网] 即:,将代入得, [来源:学*科*网Z*X*X*K],∴的极坐标方程为;(Ⅱ)的普通方程为,由解得或,∴与的交点的极坐标分别为(),.2012真题(部分):1.【2012高考真题辽宁理23】在直角坐标xOy 中,圆221:4C x y +=,圆222:(2)4C x y -+=。

2024高考试题分类汇编-极坐标参数方程

2024高考试题分类汇编-极坐标参数方程

极坐标参数方程1.(2024新课标Ⅲ文数)[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 改变时,P 的轨迹为曲线C . (1)写出C 的一般方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ,M 为l 3与C 的交点,求M 的极径.2.(2024新课标Ⅲ理数)[选修44:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 改变时,P 的轨迹为曲线C . (1)写出C 的一般方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ,M 为l 3与C 的交点,求M 的极径.3.(2024新课标Ⅱ文)[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满意||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为π(2,)3,点B 在曲线2C 上,求OAB △面积的最大值. 4(2024新课标Ⅱ理).[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=. (1)M 为曲线1C 上的动点,点P 在线段OM 上,且满意||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值.5.(2024新课标Ⅰ文数)[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l a.6.(2024新课标Ⅰ理数)[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la.7(2024天津理)在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________.8[选修4-4:坐标系与参数方程](本小题满分10分) 在平面直角坐标系中,已知直线的参考方程为(为参数),曲线的参数方程为(为参数).设为曲线上的动点,求点到直线的距离的最小值. 9(2024北京理)在极坐标系中,点A 在圆上,点P 的坐标为(1,0),则|AP |的最小值为___________. xOy l 82x t t y =-+⎧⎪⎨=⎪⎩tC 22x s y ⎧=⎪⎨=⎪⎩s P C P l 22cos 4sin 40ρρθρθ--+=。

2014-2020全国卷分类汇编——极坐标系与参数方程

2014-2020全国卷分类汇编——极坐标系与参数方程

2014年1卷23. (本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为 参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值.2014年2卷23. (本小题满分10)选修4-4:坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.2015年1卷(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中.直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (I ) 求1C ,2C 的极坐标方程; (II ) 若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求△C 2MN 的面积2015年2卷(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1:cos ,sin ,x t y t α=⎧⎨=∂⎩(t 为参数,t ≠0)其中0απ≤,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:2sin ρθ=,C 3:ρθ=.(Ⅰ).求C 2与C 3交点的直角坐标;(Ⅱ).若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.2016年1卷(23)(本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xoy 中,曲线C 1的参数方程为(t 为参数,a >0)。

在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪种曲线,学.科.网并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a 。

高考复习专题:坐标系与参数方程

高考复习专题:坐标系与参数方程

直线 l 过点 A(4, 0) 且与 OM 垂直,垂足为 P.
(1)当0
=
3
时,求
0

l
的极坐标方程;
(2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程.
【答案】(1) 0 2
3
,l
的极坐标方程为
cos
3
2

(2) 4 cos ,
4
,
2

【解析】(1)因为
因为曲线 C 截直线 l 所得线段的中点 (1, 2) 在 C 内,所以①有两个解,设为 t1 , t2 ,则 t1 t2 0 .
又由①得 t1
t2
4(2cos sin ) 1 3cos2
,故 2cos
sin
0 ,于是直线 l
的斜率 k
tan
2

7.【2018
年高考全国Ⅲ卷文数】在平面直角坐标系
(
44
y
2 2
2 cos 2 2
为参数, ) .
4
4
【解析】(1) O 的直角坐标方程为 x2 y2 1.
当 时, l 与 O 交于两点. 2
当 时,记 tan k ,则 l 的方程为 y kx 2 . l 与 O 交于两点当且仅当| 2 | 1 ,解
2
1 k2
得 k 1或 k 1,即 ( , ) 或 ( , ) .
C
的参数方程为
x
y
3cos sin ,
,
(θ
为参数),
直线
l
的参数方程为
x y
a 4t(, t为参数). 1 t,
(1)若 a 1,求 C 与 l 的交点坐标;

高考数学 试题汇编 第二节 坐标系与参数方程(选修44) 文(含解析)

高考数学 试题汇编 第二节 坐标系与参数方程(选修44) 文(含解析)

第二节坐标系与参数方程(选修44)极坐标系与极坐标考向聚焦重点考查直线与圆的极坐标方程,极坐标与直角坐标的互化,主要以选择题、填空题的形式出现,难度不大,分值5分左右备考指津(1)简单曲线的极坐标方程可结合极坐标系中ρ和θ的具体含义求出,也可通过极坐标方程与直角坐标方程的互化得出;(2)通过比较这些图形在极坐标系和平面直角坐标系中的异同,理解用方程表示平面图形时选择适当坐标系的重要性1.(2012年陕西卷,文15C,5分)(坐标系与参数方程选做题)直线2ρcos θ=1与圆ρ=2cos θ相交的弦长为.解析:化极坐标为直角坐标得直线x=,圆(x-1)2+y2=1,由勾股定理可得相交弦长为2×=.答案:2.(2012年湖南卷,文10,5分)在极坐标系中,曲线C1:ρ(cos θ+sin θ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,则a= .解析:将极坐标方程化成直角坐标方程,C1:x+y-1=0,C2:x2+y2=a2,交点在极轴上,则y=0,x=,即交点坐标为(,0),代入C2方程可得a=.答案:极坐标系中交点问题常常化成直角坐标方程求解. 然本题也可直接在极坐标系中求解如下:交点在极轴上,则θ=2kπ,于是cos θ=1,sin θ=0,代入C1得ρ=,故a=.3.(2011年湖南卷,文9)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为ρ(cos θ-sin θ)+1=0,则C1与C2的交点个数为.解析:曲线C1化为普通方程+=1是椭圆,对曲线C2:ρ(cos θ-sin θ)+1=0,∴ρcos θ-ρsin θ+1=0,∴x-y+1=0是直线,而直线x-y+1=0与椭圆+=1有两个交点.答案:24.(2010年广东卷,文15)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ(cos θ+sin θ)=1与ρ(sin θ-cos θ)=1的交点的极坐标为.解析:曲线ρ(cos θ+sin θ)=1化为直角坐标方程为x+y=1,曲线ρ(sin θ-cos θ)=1化为直角坐标方程为y-x=1.由得交点为(0,1),化为极坐标为(1,).答案:(1,)5.(2012年辽宁卷,文23,10分)在直角坐标系xOy中,圆C1:x2+y2=4,圆C2:(x-2)2+y2=4. (1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(2)求圆C1与C2的公共弦的参数方程.解:(1)圆C1的极坐标方程为ρ=2,圆C2的极坐标方程为ρ=4cos θ,解,得ρ=2,θ=±,故圆C1与圆C2交点的坐标为(2,),(2,-).注:极坐标系下点的表示不唯一.(2)法一:由得圆C1与C2交点的直角坐标分别为(1,),(1,-).故圆C1与C2的公共弦的参数方程为,-≤t≤.(或参数方程写成,-≤y≤)法二:将x=1代入得ρcos θ=1,从而ρ=,于是圆C1与C2的公共弦的参数方程为,-≤θ≤.6.(2010年浙江自选模块卷,04)如图,在极坐标系Ox中,已知曲线C1:ρ=4sin θ(≤θ≤),C2:ρ=4cos θ(≤θ≤或<θ≤2π),C3:ρ=4(0≤θ≤).(1)求由曲线C1,C2,C3围成的区域的面积;(2)设M(4,),N(2,0),射线θ=α(ρ≥0,<α<)与曲线C1,C2分别交于A,B(不同于极点O)两点.若线段AB的中点恰好落在直线MN上,求tan α的值.解:(1)由已知,如图弓形OSP的面积=×π×22-×22=π-2,从而,如图阴影部分的面积=×π×22-2(π-2)=4,故所求面积=π×42+×π×22-4=6π-4.(2)设A(ρA,α),B(ρB,α),AB的中点为G(ρ,α),∠ONG=φ. 由题意ρ==2sin α+2cos α,sin φ=,cos φ=.在△OGN中,=,即=.所以sin α+cos α==.化简得sin2α-3sin αcos α=0,又因为sin α≠0,所以tan α=3.参数方程考向聚焦参数方程与普通方程的互化是高考考查的重点和热点问题,同时考查直线与曲线的位置关系等解析几何知识,主要以填空题与解答题的形式出现,且解答题常将参数方程与极坐标方程融合在一起综合考查,属中低档题目,每年高考分值占5~10分备考指津(1)能选择恰当的参数写出直线、圆和圆锥曲线的参数方程,并能利用参数方程解决一些几何问题(如求角、距离、弦长、面积、最值等);(2)参数方程化为普通方程的关键是消去其中的参数,此时要注意其中x,y的取值范围,保证互化前后方程的等价性,常用的消参技巧有:代入消元、加减消元、平方后相加减消元等7.(2010年湖南卷,文4)极坐标方程ρ=cos θ和参数方程(t为参数)所表示的图形分别是( )(A)直线、直线(B)直线、圆(C)圆、圆(D)圆、直线解析:∵ρ=cos θ,∴ρ2=ρcos θ,∴x2+y2=x,即(x-)2+y2=,∴ρ=cos θ所表示的图形是圆.由(t为参数),消参得x+y=1.∴参数方程(t为参数)所表示的图形是直线.答案:D.8.(2012年广东卷,文14,5分)(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为(θ为参数,0≤θ≤)和(t为参数),则曲线C1与C2的交点坐标为.解析:本小题主要考查参数方程.由C1:x2+y2=5,C2:x-y-1=0,联立得解得或,其坐标为(2,1),(-1,-2).答案:(2,1),(-1,-2)9.(2011年广东卷,文14)已知两曲线参数方程分别为(0≤θ<π)和(t ∈R),它们的交点坐标为.解析:由(0≤θ<π)得+y2=1(0≤y≤1),由(t∈R),得y2=x,联立方程组,解得x=1,y=,∴交点坐标为(1,).答案:(1,)10.(2010年陕西卷,文15C)参数方程(α为参数)化成普通方程为.解析:∵(α为参数),∴(α为参数).①2+②2得x2+(y-1)2=1,此即为所求普通方程.答案:x2+(y-1)2=111.(2010年陕西卷,理15C)已知圆C的参数方程为(α为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin θ=1,则直线l与圆C的交点的直角坐标为.解析:圆C的普通方程为x2+(y-1)2=1,直线l的直角坐标方程为y=1,解方程组,得或故直线l与圆C的交点的直角坐标为(-1,1),(1,1).答案:(-1,1),(1,1)此题巧妙地将参数方程、极坐标方程与直角坐标方程结合起来,体现了在知识交汇处命题的指导思想,但题目又不难,也是今后命题的方向.12.(2012年新课标全国卷,文23,10分)已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.解:(1)由已知可得A(2cos,2sin),B(2cos(+),2sin(+)),C(2cos(+π),2sin(+π)),D(2cos(+),2sin(+)),即A(1,),B(-,1),C(-1,-),D(,-1).(2)设P(2cos φ,3sin φ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ,因为0≤sin2φ≤1,所以S的取值范围是[32,52].13.(2012年浙江自选模块,04,10分)在直角坐标系xOy中,设倾斜角为α的直线l:(t为参数)与曲线C:(θ为参数)相交于不同两点A,B.(1)若α=,求线段AB中点M的坐标;(2)若|PA|·|PB|=|OP|2,其中P(2,),求直线l的斜率.解:设直线l上的点A,B对应参数分别为t1,t2,将曲线C的参数方程化为普通方程+y2=1.(1)当α=时,设点M对应参数为t0,直线l方程为(t为参数),代入曲线C的普通方程+y2=1,得13t2+56t+48=0,则t0==-,所以,点M的坐标为(,-).(2)将代入曲线C的普通方程+y2=1,得(cos2α+4sin2α)t2+(8sin α+4cos α)t+12=0,因为|PA|·|PB|=|t1t2|=,|OP|2=7,所以=7,得tan2α=.由于Δ=32cos α(2sin α-cos α)>0,故tan α=,所以直线l的斜率为.14.(2011年辽宁卷,文23)在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合.(1)分别说明C1,C2是什么曲线,并求出a与b的值;(2)设当α=时,l与C1,C2的交点分别为A1,B1,当α=-时,l与C1,C2的交点分别为A2,B2,求四边形A1A2B2B1的面积.解:(1)由C1:x2+y2=1,C2:+=1(a>b>0),∴C1是圆,C2是椭圆.当α=0时,射线l与C1,C2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a=3.当α=时,射线l与C1,C2交点的直角坐标分别为(0,1),(0,b),因为这两点重合,所以b=1.(2)C1,C2的普通方程分别为x2+y2=1和+y2=1.当α=时,射线l:y=x(x≥0)与C1交点A1的横坐标为x=,与C2交点B1的横坐标为x'=. 当α=-时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此四边形A1A2B2B1为梯形.故四边形A1A2B2B1的面积为=.15.(2011年浙江自选模块,04)已知直线l:(t为参数,α为l的倾斜角,且0<α<π)与曲线C:(θ为参数)相交于A、B两点,点F的坐标为(1,0).(1)求△ABF的周长;(2)若点E(-1,0)恰为线段AB的三等分点,求△ABF的面积.解:(1)由曲线C的普通方程+y2=1,得F(1,0),E(-1,0)为椭圆的两个焦点,又A、B在椭圆上, 知|AE|+|AF|=|BE|+|BF|=2a=2.又∵直线AB过点E,∴△ABF的周长为4.(2)将代入+y2=1,得(1+sin2α)t2-2tcos α-1=0.设点A、B对应的参数分别为t A、t B,其中Δ=4cos2α+4(1+sin2α)=8>0,且,∴|AB|=|t A-t B|=,不妨设|AE|∶|EB|=2∶1,则t A=-2t B,∴得t A t B=-2(t A+t B)2,∴=-2·,∴8cos2α=1+sin2α,∴sin2α=,∴S△ABF=|AB|·|EF|sin α=×·2sin α=.16.(2010年辽宁卷,文23)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与半圆C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.解:(1)由已知,M点的极角为,且M点的极径等于,故点M的极坐标为(,).(2)M点的直角坐标为(,),A(1,0),故直线AM的参数方程为(t为参数).17.(2010年全国新课标卷,文23)已知直线C1:(t为参数),圆C2:(θ为参数).(1)当α=时,求C1与C2的交点坐标;(2)过坐标原点O作C1的垂线,垂足为A,P为OA的中点,当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.解:(1)当α=时,C1的普通方程为y=(x-1),C2的普通方程为x2+y2=1.联立方程组解得C1与C2的交点为(1,0),(,-).(2)C1的普通方程为xsin α-ycos α-sin α=0.A点坐标为(sin2α,-cos αsin α).故当α变化时,P点轨迹的参数方程为(α为参数)P点轨迹的普通方程为(x-)2+y2=.故P点轨迹是圆心为(,0),半径为的圆.本题给出了两个参数方程,在解题过程中如果都用参数方程就不好做了,因此可以将其化为普通方程,至少将其中的某个方程化为我们便于应用的普通方程,即参数方程普通化的主导思想.(2011年全国新课标卷,理23,10分)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2.(1)求C2的方程;(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.解:(1)设P(x,y),由条件=2知M(,).2分∵M是C1上动点,∴即4分从而C2的参数方程为(α为参数)5分第(1)问赋分细则:(1)由向量等式=2找到由点P的坐标(x,y)得M(,)得2分;(2)由点M是曲线C1上的动点得得2分;(3)整理得曲线C2的方程(α为参数),得1分.(2)曲线C1的极坐标方程为ρ=4sin θ6分曲线C2的极坐标方程为ρ=8sin θ7分射线θ=与C1异于极点的交点A的极径ρ1=4sin ,射线θ=与C2异于极点的交点B的极径ρ2=8sin 9分∴|AB|=|ρ2-ρ1|=2.10分第(2)问赋分细则:(1)将曲线C1、C2的参数方程准确化为极坐标方程的,各得1分;(2)准确求出射线θ=与曲线C1、C2异于极点的交点A、B的极径ρ1、ρ2的,各得1分;(3)由极径ρ1、ρ2准确求出|AB|的,再得1分.通过高考阅卷统计分析,造成失分原因如下:(1)求曲线C2的方程,即求P点的轨迹方程,就设P点坐标为(x,y),求x,y与参数的函数关系式,这是本题第(1)问的基本解题思路,否则,无从下手,失分.(2)由=2找到点P与点M坐标之间的关系,这是本题第(1)问的切入点,忽视=2的利用束手无策,失分.(3)由P(x,y)及=2得M(,)转化,不知如何转化失分.(4)没有写结论的习惯,如第(1)问最后一步,应写“曲线C2的方程为(α为参数)”,否则扣1分.(5)对极径、极角等概念的具体含义不清,不能正确地写出曲线C1、C2的极坐标方程,失分.(6)将射线θ=与曲线C1、C2异于极点的交点A、B的极径ρ1、ρ2求错,失分.(7)不知道由极径的几何意义求|AB|,甚者,将|AB|错求为|AB|=ρ1-ρ2=-2,丢掉1分.(8)运算能力不强,将结果算错,如第(2)问由极径ρ1、ρ2求|AB|时,造成失分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考试题汇编:坐标系与参数方程1.x 4 cost x 8cos已知曲线C1 : (t 为参数),C2 (为参数),y 3 sint y 3sin(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P 对应的参数为t ,Q为C2上的动点,求PQ 中121 2x 3 2t点M 到直线C3 : x 3 2t(t 为参数)距离的最小值.3 y 2 t解:(1)曲线C1的普通方程为(x 4)2(y 3)2 1,表示以点( 4,3)为圆心,半径r 1 的圆;22曲线C2的普通方程为x y 1,表示中心是坐标原点,焦点在x 轴264 9上,长半轴长是8 ,短半轴长是3的椭圆;2)点P的坐标为( 4,4),设点Q的坐标为(8cos ,3sin ),8 5855,当且仅当sin() 1时,取最小结:本题主要考查1)参数方程与普通方程的互化;2)动点到直线距离的最值问题;28 8 5所以点 M 的坐标为 2 4cos ,2 32sin ,直线 C 3的普通方程为 x 2y 70,所以点 M 到直线 C 3 的距离为 d2 4cos 4 3sin 7513 5sin 5小值 8 5 .5x 1 tcosx cos 已知直线 C 1:( t 为参数),圆C 2 : ( 为参数),y tsiny sinx cos1)当时,求 C 1和 C 2的交点坐标;2)过坐标原点 O 作 C 1的垂线,垂足为 A ,P 为OA 的中点.当 变化 时,求 P 点轨迹的参数方程,并指出它是什么曲线 .x 解:(1)当时,则直线 C 1 : 31y1 1t 2,3t ,2 其普通方程为 3x y3 0,圆 C 2的普通方程为y 2 1,联立得 x 2 3(x 1)21,解得x 1 1 y 1 0x2y 212, 3 21 所以 C 1和C 2的交点坐标为 (1,0) ,(1,223).2)设垂足 A 点坐标为 1 tcos ,tsin ,则 OA 1 tcos ,tsin ,直线 C 1 的方向向量为 (cos ,sin ) ,所以 cos tcos 2tsin 20 ,则 t cos , 所以 A 点坐标为 1 cos 2cos sin ,则 P 点坐标为1 cos2 sin2 ,4,4,所以 P 点轨迹的参数方程为1 cos24( 为参数), sin2 4P 点轨迹的普通方程为 (x14)221 y16 ,11 表示以 14,0 为圆心,半径为 144的圆.(1)求曲线交点坐标; (2)求动点的轨迹方程;3.x 2cos在直角坐标系 xOy 中,曲线 C 1 的参数方程为( 为参y 2 2sin数).M 是C 1上的动点, P 点满足OP 2OM ,P 点的轨迹为曲线 C 2.(1)求 C 2的方程;(2)在以 O 为极点, x 轴的正半轴为极轴的极坐标系中, 射线3与C 1异于极点的交点为 A ,与C 2的异于极点的交点为 B ,求 AB . 解:(1)设 M 点坐标为 (2cos ,2 2sin ), P 点坐标为x,y ,则 x,y 2(2cos ,2 2sin ) ,所以 C 2的参数方程为 x 4cos (为参数),y 4 4sinC 2 的普通方程为 x 2 2(y 4) 2 16,(2)方法一: C 1 的极坐标方程为 2 4 sin 0 ,C 2的极坐标方程为 28 sin 0 ,将分别代入 C 1 ,C 2的极坐标方程, 得 A 2 3, ,B (4 3, ),3 1 23 3AB 4 3 2 3 2 3.方法二:射线 的直角坐标方程为 y 3x ( x 0)3将 y 3x 分别代入 C 1 , C 2的直角坐标方程,得 A 3,3 ,B (2 3,6)22所以 ABx 1 x 2 2 y 1 y 2 2 2 34.x 2cos已知曲线 C 1 的参数方程是( 为参数),以坐标原点为极y 3sin点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是2.正方形ABCD的顶点都在C2上,且A,B,C ,D依逆时针排列,点 A 的极坐标为 2, 3(1)求点 A , B , C , D 的直角坐标;2 2 2 2(2)设 P 为C 1上任意一点,求 PA 3 PB 4 PC 2 PD 2的取值范 围. 解:(1)点 A 的直角坐标为 (1, 3) ,点B 的极坐标为 (2,5 6 7 8 9 10 11 ),点 B 的直角坐标为 ( 3,1),6 点C 的极坐标为 (2,12 ),点 C 的直角坐标为 ( 1, 3),311点D 的极坐标为 (2,11 ),点 D 的直角坐标为 ( 3, 1),6(2)设 P 点坐标为 (2cos ,3sin ) ,232 20sin 2 32,523 2 2 2PA 2 PB 2 PC 2 PD 2的取值范围为 32,52 .(1)极坐标的几何意义;(2)利用参数方程设动点的坐标,求最值;x 4 5cost5.已知曲线 C 1的参数方程为(t 为参数),以坐标原点y 5 5sint为极点, x 轴的正半轴为极轴建立极坐标系, 曲线 C 2的极坐标方程为 2sin .( 1)把 C 1的参数方程化为极坐标方程; (2)求 C 1与C 2交点的极坐标( 0, 02 ).解( 1)曲线 C 1的普通方程为 (x 4)2 (y 5)2 25, 小结:本题主要考查则 PA 22PB 22PC22PD22 (2cos 1) 2(3sin 3)2 (2cos 3)2 (3sin 1)2 2(2cos 1)2 (3sin3) 2 (2cos3)2 (3sin 1)2即 x 2 y 2 8x 10y 16 0 ,线 C 1 的极坐标方程为 2 8 cos 10 sin2)联立得 4sin 28sin2 20sin 216 0,则 cos2 sin2 1 2sin 2 1 0,4所以 4或 2,故C 1与C 2交点的极坐标为 2, 4 ,(2, 2). 方法二:曲线 C 1 的普通方程为 x 22y 2 8x 10y 16 0 , 曲线 C 2 的普通方程为 x 2 y 2 2y 0,x 1 x 0 联立解得x 1或x 0,y 1 y 2故 C 1与C 2交点的极坐标为 2,4 , (2,2).小结:本题主要考查(1)曲线参数方程与普通方程,极坐标方程与直角坐标方程之间的 相互转化;(2)已知极坐标方程,求区间交点坐标;x 2cost6.已知动点 P ,Q 都在曲线 C : ( t 为参数),对应参数分别y 2sint为t 与t 2 (0 2 ),M 为PQ 的中点.( 1)求 M 的轨迹参数方程;(2)将M 到坐标原点的距离 d 表示为 的函数,并判断 M 的轨迹是 否过坐标原点 .解 :( 1 ) 点 P 的 坐 标 为 2cos ,2sin , 点 Q 的 坐 标 为2cos2 ,2sin2 ,点 M 的坐标为 cos cos2 ,sin sin22)将 M 到坐标原点的距离16 0 ;所以 M 的轨迹参数方程为x cos y sincos2(sin2为参数,22d cos cos2 (sin sin2 ) 2 2cos(02)因为当 时,d 0,所以 M 的轨迹过坐标原点 .小结:本题考查(1)动点轨迹的参数方程; (2)判断曲线是否过定点;7.在平面直角坐标系 xOy 中,直线l 的参数方程为 x t 1x t 1( t 为参数), y 2t2x 2tan ( 为参数)y 2tan普通方程,并求出它们公共点的坐标 .线 C 的参数方程为 .试求直线 l 和曲线 C 的 解:直线 l 的普通方程为2x y 2 0 , 线 C 的普通方程为 y 2 2x ,1 xx 联立解得 x2 或 x y1y小结:本题主要考查 2 ,公共点的坐标为21 12, 1 ,(2,2).8.1)参数方程与普通方程的互化; 2)求曲线的交点坐标; t 2t22已知曲线 C: x y 1,直线 l: x4 9 y(1)写出曲线 C 的参数方程,直线 l 的普通方程;t 为参数) .2)过曲线 C 上任意一点 P 作与 l 夹角为 30 的直线,交 l 于点 A ,求 PA 的最大值与最小值 .9.建立极坐标系,半圆 C 的极坐标方程为 2cos , 0, .2(1)求 C 的参数方程;(2)设点 D 在C 上,C 在 D 处的切线与直线 l : y 3x 2垂直,根 1 cos 13 D 的坐标为 3, 3 .22小结:本题主要考查 (1)曲线参数方程与普通方程,极坐标方程与直角坐标方程之间的 相互转化; (2)确定切点坐标;10. 在 平 面 直 角 坐 标 系 xOy 中 , 直 线 C 1 :x 2 , 圆 C 2 :(x 1)2 (y 2)21,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系 .(1)求 C 1, C 2的极坐标方程; (2)若直线 C 3 的极坐标方程为 (R ),设C 2与C 3 的交点为 4M , N ,求 C 2MN 的面积 .解:(1)直线 C 1 的极坐标方程为cos 2 , 圆 C 2 的极坐标方程为 22 cos 4 sin 4 0 , ( 2)将代入 2 cos44 sin 4 0 ,据( 1)中你得到的参数方 程,确定 D 的坐标 .解:(1)半圆 C 的直角坐标方程为 x 2 y 22x 0 ,( y 0), 即 (x 1) 2 y 21,( y0),x半圆 C 的参数方程为 1 cos为参数, 0,),ysin(2)设点 D 的坐标为 (1cos ,sin) ,( 0, ),则直线 CD 与直线 l 平行,sin故 03 tan , 所以得 2 3 2 4 0,解得 1 2 2, 2 2,故 1 2 2, 即 MN 2.由于 C 2的半径为1,所以 C 2MN 为等腰直角三角形, 1C 2MN 的面积为 . 22小结:本题主要考查(1)极坐标方程和直角坐标方程的互化; (2)求三角形的面积;x tcos11.在平面直角坐标系 xOy 中,曲线C 1 : ( t 为参数,t 0),y tsin其中 0 .在以坐标原点为极点, x 轴的正半轴为极轴的极坐标系中,曲线 C 2 : 2sin ,C 3 : 2 3cos .(1)求 C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于 A ,C 1与C 3相交于 B ,求 AB 的最大值 .因此 A 的极经为 A 2sin , B 的极经为 B 2 3cos ,AB A B 2sin 2 3cos 4sin( ) 4, 3当 5 时, AB 取最大值 4. 小结:本题主要考查 (1)求曲线的交点坐标;解:(1)曲线 C 2 的直角坐标方程为 x 2 y 2 2y 0 ,线 C 3 的直角坐标方程为 2 3x 0 ,联立解得或32,3 2所以 C 2与 C 3交点的直角坐标为 0,0 , 2) 曲线 C 1 的极坐标方程为0),其中02)求线段的最值;(2) P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角 坐标.解:(1)⊙ O 的直角坐标方程为 x 2 y 2 2 3y 0,x 2 (y 3)2 3 圆心为 (0, 3)(2)设 P 点坐标为(3 12t,23t ),正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为 2cos (1)将曲线 C 的极坐标方程化为直角坐标方程;(2)设点 M 的直角坐标为 (5, 3) ,直线l 与曲线 C 的交点为 A ,B , 求 MA MB 的值 .解:(1)曲线 C 的直角坐标方程为 x 2 y 2 2x 0,(2)设直线 l 与曲线 C 的交点 A , B 对应的参数分别为为 t 1,t 2, 联立得 (5 3t )2 ( 3 1t )2 2(5 3t ) 0,2 2 2即t 2 5 3t 18 0,则 t 1t 2 18,所以 MA MB t 1t 2 18. 小结:本题主要考查 (1)极坐标方程与直角坐标方程的互化;x 12.在平面直角坐标系 xOy 中,直线 l 的参数方程为 y 参数),以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系, ⊙ O 的极坐标方程为 2 3sin .(1)写出⊙ O 的直角坐标方程; 3t 2 3tt 为 x 13.已知直线 l :y5 3t 2 t 为参数),以坐标原点为极点, x 轴的 2(2)直线参数方程中参数的几何意义及其应用;12 3P到圆心C的距离d 3 1t 3t 3 t2 12 12,22当t 0时,P到圆心C的距离取最小值12.小结:本题主要考查1)极坐标方程与直角坐标方程的互化;2)求线段的最值;。

相关文档
最新文档