断路器的防跳

合集下载

断路器防跳功能的试验新方法

断路器防跳功能的试验新方法

断路器防跳功能的试验新方法断路器防跳功能是一种重要的电气安全保护装置,它能够在电流超过额定值时自动切断电路,以防止电路过载、短路等故障发生。

由于现有的断路器防跳功能试验方法存在一些不足之处,比如测试过程繁琐、操作复杂等问题,需要开发一种新的试验方法来提高测试效率和准确性。

我们可以利用电子积分仪来测试断路器的防跳功能。

具体方法是在待测试的电路上接入一个电子积分仪,该仪器能够测量并记录电路中的累积电流值。

然后,我们以递增的方式给电路加入电流,直到达到断路器的额定电流值。

在整个测试过程中,电子积分仪会实时监测电路中的累积电流,并将其记录下来。

接下来,我们可以设计一个电子控制系统来模拟电路的负载变化,从而对断路器的防跳功能进行全面测试。

该电子控制系统可以通过调节电阻的大小来改变电路的负载,从而实现对电流的控制。

我们可以通过逐步增加负载来测试断路器的防跳功能,直到达到其额定负载。

在测试过程中,电子控制系统可以根据实际的负载情况来模拟不同负载条件,从而全面评估断路器的防跳性能。

我们还可以利用数字图像处理技术来辅助断路器防跳功能的测试。

具体方法是在待测试的电路上安装一个摄像头,摄像头可以实时拍摄电路中的电流表指针或数字显示屏,并将拍摄的图像传输到计算机上进行处理。

利用数字图像处理技术,我们可以对图像进行分析和识别,从而获取电流表指针或数字显示屏上显示的电流数值。

通过对一系列图像进行处理和分析,我们能够获得电路中的实时电流数值,并对其进行记录和保存。

断路器防跳功能的试验新方法是利用电子积分仪、电子控制系统和数字图像处理技术来测试断路器的防跳性能。

通过这些新方法,我们可以实现对断路器防跳功能的全面评估,提高测试效率和准确性,为电气安全保护装置的研发和应用提供有力支持。

断路器本体防跳回路原理

断路器本体防跳回路原理

断路器本体防跳回路原理断路器是一种电力设备,用于在电路中保护其他电气设备免受过流和短路等故障的影响。

在电力系统中,断路器的稳定性和可靠性至关重要。

为了确保断路器能够正常运行,一种称为防跳回路的原理被广泛采用,以防止断路器在发生故障时意外地恢复其工作状态。

防跳回路的基本原理是通过在断路器主触头和辅助触头之间添加保持电路来实现的。

当断路器处于打开状态时,保持电路会接通并吸引辅助触头,这样即使主触头在故障恢复后突然关闭,辅助触头仍然保持吸合,从而防止断路器的跳回。

在断路器主体中,主要包含以下几个部分:控制电路、熔断器、分断器、触头、保持电路和弹簧机构。

这些部分协同工作,以保证断路器的正常运行。

控制电路是断路器的核心部分,它负责控制断路器的开关状态。

当电流超过额定值或发生短路时,控制电路会接收信号并触发断路器的切断动作。

控制电路还监测断路器的状况,如过温、超载等,以避免潜在的故障。

熔断器位于断路器主体的前端,主要用于检测电流是否超过额定值。

当电流超过熔断器的额定值时,熔断器内的电阻丝会瞬间熔断,切断电流的通路,从而保护其他设备免受过载电流的影响。

分断器是断路器的关键组件之一,它位于断路器的断口处。

当断路器被触发切断电路时,分断器会迅速分开主触头和辅助触头,从而有效切断电流的通路。

触头是用于传输电流的金属零件,它是断路器打开和关闭的关键部分。

主触头和辅助触头通过电磁力或机械力紧密接触在一起,在断路器关闭时形成电流通路。

保持电路是为了防止断路器跳回而设计的。

当断路器被打开时,保持电路会接通,并产生足够的吸引力将辅助触头固定在位,从而阻止断路器的意外恢复。

弹簧机构是断路器的动力来源,它提供足够的力量来闭合和断开断路器。

当断路器被触发打开时,弹簧会释放能量并将触头分离,同时在断路器关闭时,弹簧会重新压缩并闭合断路器。

断路器的防跳回路原理是通过在断路器主触头和辅助触头之间添加保持电路来防止断路器在故障恢复后意外地跳回。

断路器内部防跳继电器原理

断路器内部防跳继电器原理

断路器内部防跳继电器原理引言:断路器是一种用于保护电路免受过载和短路等故障的电气设备。

在断路器的内部,通常配备了一种称为防跳继电器的装置,它起着监测电流和控制断路器动作的重要作用。

本文将详细介绍断路器内部防跳继电器的原理和工作机制。

一、防跳继电器的作用防跳继电器是一种电气装置,用于监测电路中的电流,并在电流超过设定值时触发断路器的动作。

其主要作用是防止电路过载和短路引起的故障,保护电气设备和电路的安全运行。

二、防跳继电器的原理防跳继电器的原理基于电流的磁场效应和电磁感应定律。

当电流通过继电器的线圈时,会在继电器内部产生一个磁场。

根据电磁感应定律,当电流发生变化时,磁场也会发生变化,从而在继电器中产生感应电动势。

这个感应电动势会驱动继电器内部的机械结构,进而触发断路器的动作。

三、防跳继电器的工作机制防跳继电器通常由线圈、触点和机械结构组成。

当电流通过继电器的线圈时,线圈内部产生的磁场会吸引触点闭合。

闭合的触点连接着断路器的控制电路,使得断路器处于闭合状态。

当电流超过设定值时,线圈内部的磁场强度增加,触点受到磁力的作用而打开。

一旦触点打开,断路器的控制电路中断,断路器迅速跳闸,切断电路。

四、防跳继电器的特点1. 灵敏性:防跳继电器能够快速感知电流的变化,并迅速触发断路器的动作,保护电路免受过载和短路等故障的影响。

2. 稳定性:防跳继电器经过精确的设计和调试,能够在各种工作条件下稳定可靠地工作。

3. 可调性:防跳继电器通常具有可调节的动作电流值,可以根据实际需要进行调整。

4. 耐久性:防跳继电器采用高质量的材料和先进的制造工艺,具有较长的使用寿命。

结论:断路器内部的防跳继电器是保护电路安全运行的重要组成部分。

它通过监测电流并在电流超过设定值时触发断路器的动作,有效地防止电路过载和短路引起的故障。

防跳继电器具有灵敏性、稳定性、可调性和耐久性等特点,能够在各种工作条件下可靠地工作。

通过深入了解防跳继电器的原理和工作机制,我们可以更好地理解断路器的工作原理,提高电路的安全性和可靠性。

断路器防跳回路分析及规范

断路器防跳回路分析及规范

断路器防跳回路分析及规范防跳回路是断路器合闸回路中的重要部分,用于防止断路器跳跃现象。

跳跃现象指的是合闸回路出现故障或机构问题,导致断路器多次分合或反复合闸分闸。

防跳回路分为操作箱内和断路器就地操作机构内两类。

在操作箱内的防跳回路中,继电器12TBIJa动作后,防跳继电器1TBUJa启动。

若出现保护重合闸脉冲过长、开关机构辅助接点故障或操作把手接点粘连等情况,继电器2TBUJa将启动并自保持,使开关合闸回路不能导通,达到防跳的目的。

操作箱防跳回路的优点是实现简单,缺点是容易受到操作箱内部故障的影响。

断路器就地操作机构内的防跳回路则相对复杂,但不受操作箱内部故障的影响。

其实现原理类似于操作箱内的防跳回路,但需要考虑机构的特殊性质,如机构脱扣等。

总之,防跳回路对于保证断路器正常运行非常重要。

在设计和使用时,应根据实际情况选择合适的防跳回路种类,确保其可靠性和稳定性。

操作箱防跳回路的优点在于它能够保护操作箱内的回路,运行环境良好,不容易出现故障。

然而,它的缺点是保护范围受限,只能防止合闸命令接点误导通造成的断路器跳跃问题,无法避免因操作箱以外的寄生回路或二次回路接地引起的断路器跳跃。

此外,当断路器本体三相不一致继电器动作启动跳闸时,操作箱防跳回路无法启动。

还有一个问题是12TBIJa继电器需要与开关的跳闸电流箱配合。

机构防跳的原理是以___3AP/3-F1断路器A相回路为例,如图2所示:当开关合闸至合位后,S1LA开关常开辅助接点闭合。

若就地合闸接点K76粘连或保护合闸脉冲持续保持,则防跳继电器K75LA启动并自保持;合闸回路中的防跳继电器常闭接点断开,防跳功能实现。

机构防跳的优点是断路器机构防跳回路仅并联在合闸回路中,对分闸回路没有影响,回路相对比较简单,可以实现就地保护,有效地消除了从保护装置到断路器机构箱间的保护死区现象。

然而,它的缺点是机构防跳继电器安装在断路器机构箱或汇控柜中,运行环境比较恶劣,存在受断路器振动影响等隐患,随着年限增长,运行状况逐渐变坏。

断路器的防跳装置

断路器的防跳装置

断路器的“防跳”装置
1、断路器的“跳跃”
当操作控制开关KK使断路器合于存在永久性故障(如检修后地线未拆除)的电路时,会产生以下的过程:SA在合闸位置→SA1-3通→断路器合闸→继电保护动作.(SA把手未松开)断路器跳闸←出口继电器KOU 接点合这就会使断路器发生多次的“跳一合”,产生“跳跃”现象。

SA1-3接点卡住或自动合闸后KC接点粘住不返回,合于故障电路都可能发生断路器的跳跃现象。

断路器的跳跃危害很大,因为断路器多次断开和接通短路电流,就可能使断路器损坏甚至引起严重事故,同时也使电力系统的正常工作受到很大的影响,所以断路器应有“防跳”措施。

2、专用继电器的电气防跳
对于线路上的断路器,因跳合闸的机会多并且装有自动重合闸,对防跳的要求要高一些,一般应加装专用继电器的电气防跳装置。

专用防跳继电器KLJ有两个线圈:串接于断路器跳闸回路的电流起动线圈和并接于KMC线圈上的电压自保持线圈。

当操作SA使断路器合于永久性故障电路的时候,其防跳原理可用下面的过程来说明:
SA在合闸位置→SA1-3通→断路器合闸→继电保护动作→①,②:
①Yoff 线圈通电→断路器跳闸
②KJL(I)线圈通电→继电器KJL动作→a,b
a.KJL1通→KJL(V)线圈通电→继电器KJL自保持直至SA1-3
断开。

b.KJL2 断→切断KMC 线圈回路。

接点KJL3的作用是防止KOU接点先于QF2接点复归而烧坏,电阻R的作用是使并接的信号继电器能可靠动作。

但KJL3接点回路有可能引起跳闸线圈烧毁的事故,有关分析及采取的措施将在下面论述。

断路器的防跳(跳跃闭锁)控制回路资料讲解

断路器的防跳(跳跃闭锁)控制回路资料讲解

断路器的防跳(跳跃闭锁)控制回路当合闸回路出现故障时进行分闸,或短路事故未排除,又进行合闸(误操作),这时就会出现断路器反复合分闸,不仅容易引起或扩大事故,还会引起设备损坏或人身事故,所以高压开关控制回路应设计防跳。

防跳一般选用电流启动,电压保持的双线圈继电器。

电流线圈串接于分闸回路作为启动线圈。

电压线圈接于合闸回路,作为保持线圈,当分闸时,电流线圈经分闸回路起动。

如果合闸回路有故障,或处于手动合闸位置,电压线圈起启动并通过其常开接点自保持,其常闭接点马上断开合闸回路,保证断路器在分闸过程中不能马上再合闸。

防跳继电器的电流回路还可以通过其常开接点将电流线圈自保持,这样可以减轻保护继电器的出口接点断开负荷,也减少了保护继电器的保持时间要求。

有些微机保护装置自己已具有防跳功能,这样就可以不再设计防跳回路。

断路器操作机构选用弹簧储能时,如果选用储能后可以进行一次合闸与分闸的弹簧储能操作机构(也有用于重合闸的储能后可以进行二次合闸与分闸的弹簧储能操作机构),因为储能一般都要求10秒左右,当储能开关经常处于断开位置时,储一次能,合完之后,将储能开关再处于断开位置,可以跳一次闸;跳闸之后,要手动储能之后才能进行合闸,此时,也可以不再设计防跳回路。

1.断路器的“跳跃”现象及危害如果手动合闸后控制开关(SA的手柄尚未松开 5—8触点仍在接通状态)或者自动重合闸装置的出口触点K1烧结,若此时发生故障,则保护装置动作,其出口K2触点闭合,跳闸线圈YT通电起动使断路器跳闸,则QF2接通,使接触器KM又带电,使断路器再次合闸,保护装置又动作使断路器又跳闸……,断路器的这种多次“跳一合”现象称为“跳跃”。

如果断路器发生跳跃,势必造成绝缘下降、油温上升,严重时会引起断路器发生爆炸事故,危及设备和人身的安全。

2.断路器的“防跳”控制回路在35kV及以上电压的断路器控制回路中,通常加装防跳中间继电器KCF,如图5-3所示。

KCF 常采用DZB型中间继电器,它有两个线圈:电流起动线圈KCF1,串接于跳闸回路中;电压(自保持)线圈KCF2,与自身的动合触点串联,再并接于合闸接触器KM的回路中。

断路器防跳原理

断路器防跳原理

首先你要明白一个概念,防跳回路,实际上是防合,防止断路器合上后再跳开产生“跳跃”,因此,当故障消失,保护装置没有跳令的时候,当然允许合闸,不知道你有没有做过防跳回路的测试,它的方法就是,保持跳闸指令,合令发而合不上,这就算有效。

一、防跳回路的作用:1、防止因控制开关或自动装置的合闸接点未能及时返回(例如操作人员未松开手柄, 自动装置的合闸接点粘连) 而正好合闸在故障线路和设备上, 造成断路器连续合切现象。

2、对于电流启动、电压保持式的电气防跳回路还有一项重要功能, 就是防止因跳闸回路的断路器辅助接点调整不当(变位过慢) , 造成保护出口接点先断弧而烧毁的现象。

二、常用防跳回路有串联式防跳回路、并联式防跳回路、弹簧储能式防跳回路、跳闸线圈辅助接点式防跳回路等。

国产断路器多采用串联式防跳回路防跳回路的典型接线:断路器多采用并联式防跳回路。

其中串联式防跳回路最合理, 应用也最广泛, 它除具有防跳功能外, 还具有防止保护出口接点断弧而烧毁的优点, 这也是应用微机保护装置不可缺少的技术条件。

其他防跳回路只具有防止断路器跳跃的功能, 跳闸线圈辅助接点式防跳回路在执行防跳功能时, 跳闸线圈长期带电有可能烧毁。

三、串联式防跳回路所谓串联式防跳, 即防跳继电器TBJ 由电流启动, 该线圈串联在断路器的跳闸回路中。

电压保持线圈与断路器的合闸线圈并联。

当合闸到故障线路或设备上, 则继电保护动作, 保护出口接点TJ 闭合,此时防跳继电器TBJ 的电流线圈启动, 同时断路器跳闸, TBJ 的常闭接点断开合闸回路, 另一对常开接点接通电压线圈并保持。

若此时SK (5—8) 或HJ 接点不能返回而继续发出合闸命令, 由于合闸回路已被断开, 断路器不能合闸, 从而达到防跳目的。

另外,当TBJ 启动后, 其并联于保护出口的常开接点闭合并自保, 直到“逼迫”断路器常开辅助接点变位为止,有效地防止了保护出口接点断弧。

串联式防跳回路,如图。

断路器的防跳(跳跃闭锁)控制回路

断路器的防跳(跳跃闭锁)控制回路

断路器的防跳(跳跃闭锁)控制回路当合闸回路出现故障时进行分闸,或短路事故未排除,又进行合闸(误操作),这时就会出现断路器反复合分闸,不仅容易引起或扩大事故,还会引起设备损坏或人身事故,所以高压开关控制回路应设计防跳。

防跳一般选用电流启动,电压保持的双线圈继电器。

电流线圈串接于分闸回路作为启动线圈。

电压线圈接于合闸回路,作为保持线圈,当分闸时,电流线圈经分闸回路起动。

如果合闸回路有故障,或处于手动合闸位置,电压线圈起启动并通过其常开接点自保持,其常闭接点马上断开合闸回路,保证断路器在分闸过程中不能马上再合闸。

防跳继电器的电流回路还可以通过其常开接点将电流线圈自保持,这样可以减轻保护继电器的出口接点断开负荷,也减少了保护继电器的保持时间要求。

有些微机保护装置自己已具有防跳功能,这样就可以不再设计防跳回路。

断路器操作机构选用弹簧储能时,如果选用储能后可以进行一次合闸与分闸的弹簧储能操作机构(也有用于重合闸的储能后可以进行二次合闸与分闸的弹簧储能操作机构),因为储能一般都要求10秒左右,当储能开关经常处于断开位置时,储一次能,合完之后,将储能开关再处于断开位置,可以跳一次闸;跳闸之后,要手动储能之后才能进行合闸,此时,也可以不再设计防跳回路。

1.断路器的“跳跃”现象及危害如果手动合闸后控制开关(SA的手柄尚未松开 5—8触点仍在接通状态)或者自动重合闸装置的出口触点K1烧结,若此时发生故障,则保护装置动作,其出口K2触点闭合,跳闸线圈YT通电起动使断路器跳闸,则QF2接通,使接触器KM又带电,使断路器再次合闸,保护装置又动作使断路器又跳闸……,断路器的这种多次“跳一合”现象称为“跳跃”。

如果断路器发生跳跃,势必造成绝缘下降、油温上升,严重时会引起断路器发生爆炸事故,危及设备和人身的安全。

2.断路器的“防跳”控制回路在35kV及以上电压的断路器控制回路中,通常加装防跳中间继电器KCF,如图5-3所示。

KCF 常采用DZB型中间继电器,它有两个线圈:电流起动线圈KCF1,串接于跳闸回路中;电压(自保持)线圈KCF2,与自身的动合触点串联,再并接于合闸接触器KM的回路中。

断路器本体防跳回路原理

断路器本体防跳回路原理

断路器本体防跳回路原理详解1. 引言断路器是电力系统中保护装置的一种,主要用于预防电路过载和短路,保证电力系统的安全运行。

断路器通常由断路器本体和辅助触头组成,而断路器本体中的防跳回路则起到了重要的作用。

本文将详细解释断路器本体防跳回路的基本原理。

2. 断路器本体结构断路器本体是断路器的主要组成部分,它由固定触头、触发机构、分合闸机构和电磁铁等组件构成。

2.1 固定触头固定触头是断路器本体中的触头之一,它固定在断路器的固定触头腔中。

固定触头的主要作用是提供电流的进出口。

2.2 触发机构触发机构是断路器本体中的关键部件,它负责控制断路器的开合动作。

触发机构通常由电磁铁和机械传动机构组成。

2.3 分合闸机构分合闸机构是断路器本体中的另一个重要部件,它用于实现断路器的分合闸动作。

分合闸机构通常由机械传动机构和弹簧机构组成。

2.4 电磁铁电磁铁是断路器本体中的一个关键元件,它由线圈和铁芯组成。

当电磁铁通电时,会在铁芯上产生强磁场,从而引起机械传动机构的运动。

3. 断路器本体防跳回路原理断路器本体防跳回路是断路器中的一种保护机制,它的主要作用是防止断路器在分闸或合闸时因异常情况而造成的跳闸回路。

断路器本体防跳回路的设计原理如下:3.1 被动触发机构断路器本体防跳回路采用了被动触发机构的设计,即断路器只有在电力系统中存在异常情况时才会自动跳闸。

异常情况包括电流过载、短路、接地故障等。

3.2 过电流保护装置断路器本体防跳回路中通常配备了过电流保护装置,该装置能够监测电力系统中的电流大小,并根据设定的保护参数来判断是否存在过电流情况。

当电流超过设定值时,过电流保护装置会自动触发断路器的分闸动作。

3.3 短路保护装置除了过电流保护装置外,断路器本体防跳回路还配备了短路保护装置。

短路保护装置能够检测电力系统中的短路故障,并根据设定的保护参数来判断是否存在短路情况。

当检测到短路故障时,短路保护装置会立即触发断路器的分闸动作。

断路器防跳功能的试验新方法6篇

断路器防跳功能的试验新方法6篇

断路器防跳功能的试验新方法6篇第1篇示例:随着社会科技的不断发展,断路器在我们日常生活中扮演着非常重要的角色。

而在使用断路器的过程中,经常会遇到因过载或短路等原因造成断路器跳闸的情况。

虽然这是为了保护电路和电器的安全,但有时候过于频繁的跳闸也会给我们的生活带来不便。

如何在保证电路安全的前提下减少不必要的断路器跳闸,成为了一个亟需解决的问题。

目前市面上的断路器产品大多都配有过载保护和短路保护功能,但是由于每个家庭或者工作场所的电器设备使用情况不同,对电路的负荷也不同,因此断路器的调试和设定也是一个非常复杂的过程。

为了更好地解决这个问题,需要一个更加科学和系统的方法来测试断路器的防跳功能。

在进行断路器防跳功能的测试时,传统的方法主要是通过人工模拟各种电路故障情况来观察断路器的响应。

这种方法存在着操作不够标准、数据不够准确等问题。

为了更加科学和有效地测试断路器的防跳功能,可以尝试以下几种新方法:1.电脑仿真模拟利用电脑软件,可以建立各种不同负荷和故障情况下的电路模型,通过模拟的方式进行测试。

这样不仅可以避免人为操作误差,还可以更加精确地控制电路条件,得出更为准确的测试结果。

电脑仿真模拟还能根据不同的电气标准和要求,自动分析判断断路器的跳闸情况,帮助确定最佳的调试参数。

2.数据采集与分析通过安装数据采集仪器,在实际电路中采集各种负荷和故障情况下的电流、电压等数据,然后进行分析和对比。

通过对数据的分析,可以更加直观地了解断路器在不同情况下的响应时间、跳闸阈值等参数,为调试和设定提供参考依据。

数据采集还可以帮助记录和保存测试结果,方便工程师在未来的维护和管理工作中参考。

3.真实场景模拟在实际使用环境中,通过模拟不同电器设备的使用情况,观察断路器的跳闸情况。

可以在实验室或者工厂现场搭建一个真实的电路系统,模拟各种可能遇到的故障情况,以及不同时间段内的负荷变化情况。

通过持续观察和记录,可以更好地了解断路器的响应特性,为制定最佳的保护策略提供数据支持。

断路器防跳原理分析与故障回路改造

断路器防跳原理分析与故障回路改造

断路器防跳原理分析与故障回路改造摘要:断路器在运行的过程中,经常会发生跳闸现象,影响电网的安全运行。

为了防止手合于故障时,合闸接点粘连导致断路器不停“合—分—合—……”的跳跃现象,因而需要在断路器控制回路中设计防跳回路。

目前的断路器防跳主要包括操作箱防跳和断路器本体防跳。

本文首先对防跳回路研究,其次探讨断路器出现跳跃现象的原因,最后就防跳回路故障处理方法进行研究,该研究结果可为同类断路器控制回路故障分析提供参考和借鉴。

关键词:断路器;防跳;永久性故障引言在电力系统中,断路器是开断故障电流的重要设备,其可靠性关系着整个电力系统的安全稳定运行。

高压断路器在运行过程中的内部缺陷很难发现,停电查找又会损失负荷。

因此,对高压断路器开展故障诊断对于提高供电可靠性和减少停电时间具有重要意义。

针对当前服役运行的设备按照“一切事故可以预防”的理念,加强运维,尽早提前发现设备缺陷并及时处理。

1防跳回路防跳回路分为两类,一类是操作箱内的防跳回路,另一类是机构箱内的防跳回路。

防跳回路存在的意义是防止断路器出现跳跃现象,即合闸命令未复归(合闸触点粘连),或者合闸机械结构出现卡死的情况下,当出现短路故障跳闸时,断路器出现反复分闸、合闸的现象;或是断路器合闸命令未解除的情况下,当断路器机构出现脱扣,无法正常合闸时,断路器出现多次分合现象。

跳跃现象会导致断路器继电器损坏,绝缘下降,甚至造成断路器发生爆炸,因此防跳回路是断路器控制回路中必不可少的重要回路。

操作箱防跳回路启动方式和机构箱不同。

操作箱防跳继电器由跳闸回路启动。

在合闸触点(手合或者重合)发生故障粘连时又出现故障跳闸,保护动作启动操作箱内的防跳回路,断开合闸回路,从而有效防止断路器跳跃的发生。

机构箱防跳回路由合闸回路启动。

防跳继电器串接断路器辅助接点,在断路器完成合闸后,辅助接点闭合,防跳继电器将励磁,并断开它连接在合闸回路中的常闭接点,从而断开合闸回路,也防止断路器跳跃故障的发生。

断路器中的防跳原理

断路器中的防跳原理

断路器中的防跳原理断路器是一种用来保护电路的电气装置,能够在电路过载或短路时自动切断电流,以保护电器设备和人身安全。

防跳原理是指在电流达到设定值时,断路器能够快速切断电流,防止过流对电路和设备造成损坏。

断路器的防跳原理主要包括过载保护和短路保护两个方面。

首先是过载保护。

过载是指电路中电流超过了其额定值,这通常是由于电器设备过多或者电器设备过于耗电导致的。

当电流超过了设定的额定值时,断路器会迅速切断电流,以防止电路和设备受到损坏。

过载保护的原理是利用热保护装置,即热释放型保护器(也称热磁式断路器),通过电流通过的时间和大小来判断电路是否过载。

热释放型保护器内部有一个受热片,当电流通过断路器时,通过热器和热透传材料将热传递给受热片。

受热片会随着电流的增大而发热,当电流超过额定值时,受热片的温度升高,超过一定温度时,受热片会向下弯曲,触碰到独立的断开触点,即切断电流。

这样,断路器就能迅速切断电流,以保护电路和设备的安全。

其次是短路保护。

短路是指电流在电路中直接从一点短路到另一点,这通常是由于电路中出现故障或者设备损坏导致的。

短路会造成电流异常急剧增大,很容易损坏电路和设备,甚至可能引起火灾。

断路器的短路保护原理是利用磁场作用,即磁性释放型保护器(也称热磁式断路器),通过电流的瞬时增大来判断电路是否发生短路。

磁性释放型保护器内部有一个电磁线圈,当电流通过断路器时,电流通过电磁线圈产生的磁场会使得磁芯产生磁化,电磁线圈周围的螺旋弹簧受到磁力的作用而收缩。

当电流超过额定值时,磁化程度超过一定程度,螺旋弹簧会引起动铁芯的移动,切断电流。

这样,断路器就能迅速切断电流,以保护电路和设备的安全。

综上所述,断路器的防跳原理是通过过载保护和短路保护来防止过流对电路和设备造成损坏。

过载保护通过热释放型保护器利用受热片对电流的时间和大小进行判断,短路保护则通过磁性释放型保护器利用电磁线圈对电流的瞬时增大进行判断。

当电流超过额定值时,断路器会迅速切断电流,以保护电路和设备的安全。

断路器本体防跳回路原理

断路器本体防跳回路原理

断路器本体防跳回路原理一、断路器的基本原理1.1 断路器的作用断路器是一种用于保护电路和设备的电气开关装置,其主要作用是在电路发生过载、短路等故障时,能够快速切断电源,避免电气设备受到损害或引起火灾等事故。

1.2 断路器的分类根据其额定电流和使用场合不同,断路器可以分为低压断路器、中压断路器和高压断路器。

其中,低压断路器主要应用于家庭、商业和工业领域;中压断路器通常用于变电站和工业领域;高压断路器则主要应用于输电线路和变电站等大型场合。

1.3 断路器的组成一个完整的断路器通常由本体、触头系统、操作机构、弹簧机构、辅助触头等部分组成。

其中,本体是最重要的部分之一,它包括了静触头、动触头以及弧室等部分。

二、防跳回装置的作用及原理2.1 防跳回装置的作用在正常使用过程中,由于某些原因(如震动、温度变化等),断路器可能会发生跳回现象,即已经关闭的断路器重新合上。

这种情况下,如果电气设备没有得到及时的保护,就有可能会引起火灾等事故。

因此,为了避免这种情况的发生,需要在断路器中安装防跳回装置。

2.2 防跳回装置的原理防跳回装置主要由弹簧机构和防跳钩组成。

在正常使用过程中,当操作机构将断路器切断电源时,弹簧机构会将动触头向后拉开,并将防跳钩卡住固定触头。

这样一来,在弹簧机构受到外力作用(如震动)时,动触头就不会被拉回到原来的位置上去了。

三、断路器本体防跳回路原理3.1 断路器本体防跳回路的作用除了在操作机构中安装防跳回装置之外,还可以在断路器本体中设置一个防跳回电路来进一步增强其安全性能。

该电路能够检测到动触头是否已经完全脱离静触头,并在此基础上控制弹簧机构的动作,从而确保断路器在关闭后不会发生跳回现象。

3.2 断路器本体防跳回路的原理断路器本体防跳回电路主要由检测电路、控制电路和驱动电机组成。

在正常使用过程中,当操作机构将断路器切断电源时,弹簧机构会将动触头向后拉开,并将防跳钩卡住固定触头。

此时,检测电路会检测到动触头已经完全脱离静触头,并向控制电路发送信号。

断路器防跳功能的试验新方法5篇

断路器防跳功能的试验新方法5篇

断路器防跳功能的试验新方法5篇第1篇示例:随着社会的不断发展和进步,电力设备在我们日常生活中的使用越来越普遍。

在使用过程中,我们常常会遇到一些电路过载、短路等问题,这些问题给我们的生活造成了诸多不便。

为了更好地解决这些问题,人们发明了断路器这一设备,用于保护电路免受过载和短路的影响。

断路器的功能主要是在电路中检测到过载或短路时迅速切断电源,以避免电路发生火灾或其他危险。

由于断路器在设计中存在一些缺陷,如误跳、漏电检测不准确等问题,造成了一些不便。

如何更好地测试断路器的防跳功能成为了一个亟待解决的问题。

目前,常见的断路器防跳功能测试方法主要有两种:一是通过模拟测试,二是通过实际使用情况测试。

模拟测试是将断路器直接连接到一个模拟电路中,通过控制电流大小,监测断路器的跳闸时间和准确性。

这种方法虽然能够较为准确地测试断路器的跳闸时间,但无法真实反映在实际使用中的情况。

针对以上问题,我们提出了一种新的断路器防跳功能测试方法:基于电流波形的测试方法。

该方法主要通过分析电路中的电流波形和变化情况,来判断断路器的跳闸时机和准确性。

具体步骤如下:我们需要准备一台具备波形显示功能的示波器和一台可自动控制电流大小的电源供应器。

然后,将待测试的断路器连接到电路中,并将示波器与电路连接,以实时监测电流波形。

接着,通过电源供应器调节电流大小,逐渐增大电流值,直至断路器跳闸为止。

在测试过程中,我们需要记录下电流增大的过程中,电流波形的变化情况,如波峰值、波形图形等。

通过对电流波形的分析,我们可以判断断路器的跳闸时机和准确性。

如果在电流达到一定数值时,断路器能够准确跳闸,则说明其防跳功能良好;反之,如果断路器在电流未达到设定值时就跳闸,或者延迟跳闸,说明其防跳功能存在问题。

在测试完成后,我们可以根据分析结果对断路器进行修理或更换,以确保电路的安全性。

基于电流波形的测试方法相比传统的模拟测试方法更加直观和可靠,能够更真实地反映断路器在实际使用中的表现。

断路器的防跳(跳跃闭锁)控制回路资料讲解

断路器的防跳(跳跃闭锁)控制回路资料讲解

断路器的防跳(跳跃闭锁)控制回路当合闸回路出现故障时进行分闸,或短路事故未排除,又进行合闸(误操作),这时就会出现断路器反复合分闸,不仅容易引起或扩大事故,还会引起设备损坏或人身事故,所以高压开关控制回路应设计防跳。

防跳一般选用电流启动,电压保持的双线圈继电器。

电流线圈串接于分闸回路作为启动线圈。

电压线圈接于合闸回路,作为保持线圈,当分闸时,电流线圈经分闸回路起动。

如果合闸回路有故障,或处于手动合闸位置,电压线圈起启动并通过其常开接点自保持,其常闭接点马上断开合闸回路,保证断路器在分闸过程中不能马上再合闸。

防跳继电器的电流回路还可以通过其常开接点将电流线圈自保持,这样可以减轻保护继电器的出口接点断开负荷,也减少了保护继电器的保持时间要求。

有些微机保护装置自己已具有防跳功能,这样就可以不再设计防跳回路。

断路器操作机构选用弹簧储能时,如果选用储能后可以进行一次合闸与分闸的弹簧储能操作机构(也有用于重合闸的储能后可以进行二次合闸与分闸的弹簧储能操作机构),因为储能一般都要求10秒左右,当储能开关经常处于断开位置时,储一次能,合完之后,将储能开关再处于断开位置,可以跳一次闸;跳闸之后,要手动储能之后才能进行合闸,此时,也可以不再设计防跳回路。

1.断路器的“跳跃”现象及危害如果手动合闸后控制开关(SA的手柄尚未松开 5—8触点仍在接通状态)或者自动重合闸装置的出口触点K1烧结,若此时发生故障,则保护装置动作,其出口K2触点闭合,跳闸线圈YT通电起动使断路器跳闸,则QF2接通,使接触器KM又带电,使断路器再次合闸,保护装置又动作使断路器又跳闸……,断路器的这种多次“跳一合”现象称为“跳跃”。

如果断路器发生跳跃,势必造成绝缘下降、油温上升,严重时会引起断路器发生爆炸事故,危及设备和人身的安全。

2.断路器的“防跳”控制回路在35kV及以上电压的断路器控制回路中,通常加装防跳中间继电器KCF,如图5-3所示。

KCF 常采用DZB型中间继电器,它有两个线圈:电流起动线圈KCF1,串接于跳闸回路中;电压(自保持)线圈KCF2,与自身的动合触点串联,再并接于合闸接触器KM的回路中。

浅析断路器防跳保护原理及试验方法

浅析断路器防跳保护原理及试验方法

浅析断路器防跳保护原理及试验方法断路器是电力系统中的重要保护设备,用于断开电路并保护电气设备免受过电流或短路故障的损害。

在实际使用中,断路器会出现跳闸的情况,这可能是由于故障引起的,也可能是由于过载引起的。

为了提高断路器的可靠性和稳定性,需要进行断路器的防跳保护试验。

断路器的防跳保护原理主要包括以下几个方面:1.过电流保护:当电路中出现过电流故障时,断路器会迅速动作,切断电源,以防止故障进一步发展。

过电流保护可分为瞬时过电流保护和定时过电流保护两种,瞬时过电流保护适用于短路故障,定时过电流保护适用于过载故障。

2.热继电器保护:断路器内部设有热继电器,当电路中出现过载故障时,通过测量电路的电流,判断电路是否超过了预设的额定电流,当电流超过额定值时,热继电器会自动动作,切断电源。

3.短路保护:当电路中出现短路故障时,电流会迅速增大,超过断路器的额定电流容量,断路器会立即动作,切断电源。

断路器防跳保护试验的目的是验证断路器的保护功能是否正常、可靠。

试验方法主要包括以下几个方面:1.定值试验:通过改变电流大小和接入方式,验证断路器在不同工况下的动作性能是否符合设计要求,如过载试验、短路试验、振动试验等。

2.时间特性试验:通过测量断路器的动作时间,验证断路器的瞬时过电流保护和定时过电流保护的性能是否符合要求。

3.环境试验:在不同环境条件下,如高温、低温、潮湿等,验证断路器的可靠性和适应性,以及其对环境条件的影响。

以上试验方法都需要使用专业的试验设备和仪器,进行精确的测试和测量。

试验时需要注意安全,防止电路中的高压危险和其他意外事故的发生。

总之,断路器的防跳保护原理是通过瞬时过电流保护、定时过电流保护和热继电器保护等手段,对电路中的过电流、过载和短路等故障进行监测和保护。

断路器的防跳保护试验旨在验证其保护功能是否符合设计要求,通过定值试验、时间特性试验和环境试验等方法,对断路器进行全面的测试和评估。

这些试验对于保证断路器的可靠性和安全性具有重要意义。

浅析断路器防跳保护原理及试验方法

浅析断路器防跳保护原理及试验方法

浅析断路器防跳保护原理及试验方法摘要:断路器是电力系统中重要的一次设备。

断路器防跳回路是保证断路器安全稳定运行的一种重要的二次回路,所谓防跳,不是“防止跳闸”,而是“防止跳跃”,断路器合闸后控制开关未返回,触点仍接通或保护自动装置合闸触点卡死情况下,同时发生永久性故障导致保护动作后断路器跳闸,此时合闸脉冲还未消失,断路器将会再次合闸,造成断路器连续分合的现象。

因此高压断路器必须设计正确的防跳回路,检修人员在检修过程中应能及时发现断路器防跳回路存在的故障缺陷并及时处理,而防跳保护是断路器的重要组成部分,防止合闸接点粘连时断路器再次发生故障,阻止电力系统事故进一步扩大。

本文阐述了防跳保护原理和类型,分析了防跳保护试验方法。

关键词:断路器;防跳;原理断路器是变电站重要的电气设备,断路器发生跳跃故障会造成断路器损伤,甚至引起断路器爆炸事故,在断路器运行过程中,由于控制开关原因或自动装置触点原因,在断路器合闸后,启动回路触点未断开,合闸命令一直存在,此时,如果继电保护动作,断路器跳闸,但由于合闸脉冲一直存在,则会在断路器跳闸后重新合闸。

如果线路故障为永久性故障,保护将再次将断路器跳开,持续存在的合闸脉冲将会使断路器再次合闸,如此将会发生多次的“跳–合”现象,这种现象就称为跳跃。

断路器发生跳跃故障对断路器非常危险,容易引起机构损伤,甚至引起断路器爆炸,造成事故扩大,所以必须采取闭锁措施。

一、概述断路器又叫空气开关,具有短路保护、过载保护功能。

在电器超载或非正常运行中,如出现故障,会自动断开开关,起到保护电器和线路的作用;另外带有漏电保护的断路器,具有漏电保护功能。

所谓的断路器跳跃是指,是指断路器的控制手柄在合闸位置,当线路存在故障时,继电保护装置动作于断路器跳闸,此时断路器发生再合闸、跳闸,多次重复动作的现象,称“跳跃”。

断路器跳开后又多次合闸的现象,势必造成绝缘下降、油温上升,严重时会引起断路器发生爆炸事故,危及设备和人身的安全。

电力:断路器的跳跃及防止措施

电力:断路器的跳跃及防止措施

TBJ1 TBJ 5 8 TBJ2 DL1 HQ V 2 1 9 11 LD R SM6 7 I BCJ断路器的分、合闸回路+KM-KM13 15HD R 67 TBJ DL2 TQ变电站中,断路器的合闸和分闸操作通常是在主控制室进行的,主控制室中的控制屏上,装有对断路器进行合闸和跳闸控制的转换开关,转换开关与断路器操动机构之间用控制电缆联系。

1、 合闸状态:断路器处于合闸状态时,断路器操作机构中的辅助开关(转换开关)的常开接点是闭合的,红灯经附加电阻和断路器常开辅助接点及跳闸线圈形成回路,红灯发平光。

这时虽然跳闸线圈有电流通过,但因回路中串接了红灯电阻及附加电阻,故电流很少,电磁力不足以将跳闸铁芯吸合,断路器不会动作跳闸,灯所以带附加电阻,是防止灯泡两端短接,造成断路器误跳闸。

红灯亮平光,一方面指示断路器在合闸位置,另一方面指示跳闸回路完好。

2、 跳闸操作:断路器跳闸操作时,红灯及附加电阻被操作把手的 6、7 接点所短接,因而流过跳闸线圈的电流增大,跳闸线圈励磁,断路器动作,实现跳闸。

跳闸后,其辅 助开关常开接点断开,使跳闸线圈断电,此时,绿灯发平光,指示断路器在分闸位置。

这时虽然合闸线圈有电流通过,但因回路中串接了绿灯电阻及附加电阻,故电流很少,电磁力不足以将合闸铁芯吸合,断路器不会动作合闸,绿灯亮平光,一方面指示断路器在分闸位置,另一方面指示合闸回路完好。

断路器的跳跃及防止措施所谓跳跃就是断路器合闸后操作把手在未复归状态,若此时发生故障使断路器跳闸,由于合闸脉冲未解除,促使断路器再次合闸,如果合闸脉冲始终不能解除,断路器将出现多次的跳-合现象,这种现象称为跳跃现象。

长时间跳跃会缩短断路器的使用寿命以致造成断路器的毁坏,因此,在断路器机构内(机械防跳)及二次控制回路(电气防跳)加装防跳装置。

断路器合闸后,如果此时发生故障,继电保护动作,BCJ接点闭合,使断路器跳闸,与此同时,跳闸电流也流过TBJ的电流线圈,使其启动,常闭接点TBJ2 断开断路器的合闸回路,常开接点TBJ1接通TBJ的电压线圈,,此时,如果合闸脉冲未解除,则TBJ的电压线圈将通过控制开关合闸接点实现自保持,使TBJ2 接点长期打开,断开合闸回路,只有当合闸脉冲解除,TBJ的电压线圈断电后,才能复归至正常.断路器的非全相运行非全相运行的概念:断路器正常运行时,由于某种原因发生单相或两相跳闸时,出现缺相运行状态,这是不允许的,因此,在断路器的控制回路加装防止缺相运行的装置。

断路器防跳回路原理

断路器防跳回路原理

断路器防跳回路原理
断路器是电力系统中常用的一种保护设备,它能够在电路发生故障时迅速切断电源,保护电器设备和人身安全。

但是,在某些情况下,断路器可能会出现跳回的现象,即在故障被排除后,断路器仍然无法合上,需要手动操作才能恢复正常。

这种情况下,就需要采用断路器防跳回路来解决问题。

断路器防跳回路的原理是利用电磁铁的作用,使得断路器在故障被排除后能够自动合上。

具体来说,当断路器跳闸时,防跳回路中的电磁铁会被激活,吸引断路器上的铁芯,使得断路器保持在断开状态。

当故障被排除后,电磁铁会自动断电,断路器上的铁芯也会被释放,断路器就能够自动合上了。

断路器防跳回路的设计需要考虑多种因素,如电磁铁的选型、电路的稳定性等。

一般来说,电磁铁的选型需要考虑其吸引力和功率消耗之间的平衡,以及其在高温环境下的可靠性。

电路的稳定性则需要考虑电源的稳定性、电容电感的选择等因素。

断路器防跳回路是一种非常重要的保护措施,能够有效地避免断路器跳回的现象,保障电力系统的正常运行。

在实际应用中,需要根据具体情况进行设计和调试,以确保其稳定性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正常断路器操作顺序是:储能-合闸-(储能)-分闸-合闸-储能。

,断路器处于合闸
状态时,按合闸按钮会出现什么情况?如果您按合闸按钮时什么事都没发生就说明断路器具
有防跳功能。

如果断路器在合闸位置又能执行合闸动作就说明断路器没有防跳功能。

防跳的
作用就是防止断路器处在合闸位置时能执行合闸操作,防止断路器在合闸状态时出现储能-
合闸-储能-合闸-储能-合闸。

这样的跳跃。

现在标准要求断路器处于合闸位置时,按合闸按钮断路器不能有任何动作。

也就是说断路
器必须带有防跳功能。

一般需要同时具有机械防跳和电气防跳需,保证手动操作和电动操作
都不会出现跳跃。

断路器的防跳是指:在按下合闸按钮的时候,合闸回路接通,开关合闸,但此时由于继电保
护动作,开关跳闸,而合闸按钮没有释放(以为继电保护时间非常短,毫秒级),会造成开
关再次合闸,继电保护再次跳闸,如此多次合分闸。

设计防跳回路后,开关合闸后,合闸回路断开,即使保护使开关跳闸,按钮不释放,断路器
也不会再合闸。

其实现在断路器上的防跳绝大部分采用电气防跳,基本原理则大同小异,都通过中间继电器自保持回路实现。

至于采用微机的还是断路器的,个人认为没有多少差别,只是两者不要同时用,否则很可能发生回路竞争,造成断路器不断分闸等现象。

相关文档
最新文档